1
|
Pannico A, Arouna N, Fusco GM, Santoro P, Caporale AG, Nicastro R, Pagliaro L, De Pascale S, Paradiso R. Enhancing tuber yield and nutraceutical quality of potato by supplementing sunlight with LED red-blue light. FRONTIERS IN PLANT SCIENCE 2025; 16:1517074. [PMID: 40129742 PMCID: PMC11931653 DOI: 10.3389/fpls.2025.1517074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/12/2025] [Indexed: 03/26/2025]
Abstract
Introduction We investigated the influence of genetic material and light spectrum on plant performance of two cultivars of potato (Solanum tuberosum L.), 'Colomba' and 'Libra', grown in greenhouse, in the view of future plant cultivation in Space and terrestrial vertical farming and controlled environment agriculture under limiting light conditions. Methods The effects of 100% natural light (CNT) and two lighting treatments, in which 30% of solar radiation was replaced by red and blue LED light, RB 1:1 and RB 2:1, were evaluated on plant growth, gas exchange, and tuber yield and quality. Results In CNT plants, net photosynthesis (NP) was similar in the cultivars, while the aerial biomass and tuber yield were greater in 'Libra'. In 'Colomba', NP and plant leaf area were unaffected by lighting treatments, however tuber yield increased under RB 2:1. Conversely, in 'Libra' both the aerial biomass and tuber production decreased in RB 2:1. Tubers of 'Colomba' contained higher concentrations of most minerals than 'Libra', probably due to different genetic traits and the slightly lower biomass (concentration effect). Red-blue lighting did not alter the mineral content of tubers. 'Colomba' prioritized the accumulation of free amino acids, GABA, and polyphenols, enhancing the plant stress response and antioxidant capacity, and adapted well to variable light conditions, with significant increases in tuber yield under LED treatments. Differently, 'Libra' focused on synthesis of carbohydrates, and essential amino acid content was lower compared to 'Colomba'. Discussion Our findings underline the importance of genotype selection and highlights how light spectrum can improve the plant performance in potato. This knowledge could be useful in controlled environment agriculture and indoor cultivation (i.e., vertical farming) as well as in space research on potato, as this crop is a candidate for plant-based regenerative systems for long-term missions.
Collapse
Affiliation(s)
- Antonio Pannico
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Nafiou Arouna
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Giovanna Marta Fusco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Piero Santoro
- Mutable Efficient Growing - MEG S.r.l., Milan, Italy
| | | | - Rosalinda Nicastro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Letizia Pagliaro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Roberta Paradiso
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
2
|
Gruda NS, Samuolienė G, Dong J, Li X. Environmental conditions and nutritional quality of vegetables in protected cultivation. Compr Rev Food Sci Food Saf 2025; 24:e70139. [PMID: 39970014 PMCID: PMC11838150 DOI: 10.1111/1541-4337.70139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 01/11/2025] [Accepted: 01/27/2025] [Indexed: 02/21/2025]
Abstract
Despite progress in reducing global hunger, micronutrient deficiencies and imbalanced diets linked to urbanization remain pressing health threats. Protected cultivation offers a promising avenue for sustainable intensification of vegetable production. Additionally, indoor and vertical farming have recently emerged as cutting-edge strategies, particularly in densely populated urban areas and mega-cities. However, research has focused on maximizing yield, neglecting the impact of pre-harvest conditions on produce quality. Here, we explore strategies for manipulating environmental factors within protected cultivation systems to enhance vegetable nutritional value. Research suggests moderate stress can positively influence nutrient composition while plants exhibit stage-specific metabolic responses to environmental factors. For instance, seedlings thrive under a higher blue-to-red ratio, while green light benefits leafy vegetables. Additionally, increased blue light or supplemental UV-A benefits flowering and fruiting vegetables. When other environmental factors are optimal, light intensity significantly impacts vegetable nutritional quality, followed by CO2 levels, light spectrum, temperature, and humidity. Further research is needed to fully understand the mechanisms, the complex interplay of environmental factors, and their interaction with genetic material and cultural practices on nutritional quality.
Collapse
Affiliation(s)
- Nazim S. Gruda
- Institute of Crop Science and Resource Conservation, Division of Horticultural SciencesUniversity of BonnBonnGermany
- Department of Agronomical EngineeringTechnical University of CartagenaCartagenaSpain
| | - Giedrė Samuolienė
- Lithuanian Research Centre for Agriculture and ForestryAkademijaLithuania
| | - Jinlong Dong
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
| | - Xun Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- Zhongke Clean Soil (Guangzhou) Technology Service Co. Ltd.GuangzhouChina
| |
Collapse
|
3
|
Avila-Avila DE, Rodríguez-Mendiola MA, Arias-Castro C, Arias-Rodríguez LI, Avila-Miranda ME, Mancilla-Margalli NA. Antifungal Activity of Ethanolic Extracts from Aeroponically Grown Cape Gooseberry ( Physalis peruviana L.) with LED Lights and In Vitro Habituated Roots. PLANTS (BASEL, SWITZERLAND) 2024; 13:3586. [PMID: 39771284 PMCID: PMC11678921 DOI: 10.3390/plants13243586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/16/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025]
Abstract
Green mold caused by Penicillium digitatum is a major post-harvest disease in citrus fruits. Therefore, the search for sustainable and low-environmental-impact alternatives for the management of these fungi is of utmost importance. Physalis peruviana L. is a native fruit of the Peruvian Andes with rich bioactive components present throughout the plant. Its antifungal activity stands out, attributed to its high content of phenols, coupled with its antioxidant capacity and antimicrobial activity. Plants were cultivated aeroponically under a combination of red, mixed (50% red, 50% blue), and green LED lights. Additionally, in vitro-habituated roots free of plant growth regulators were also cultivated. An ethanol extraction assisted by ultrasound for 30 min followed by maceration for 72 h was performed, and the extract was filtrated and evaporated in an extraction hood. Antioxidant activity was assessed using the DPPH method, total polyphenols were measured using the Folin-Ciocâlteu method, and an antifungal test in vitro by the poisoned food method was conducted against P. digitatum. In vitro assays revealed that extracts from leaves, roots, and fruits exerted a significant inhibitory effect on the growth of P. digitatum, as evidenced by a reduction in colony radius when cultured employing the poisoned food method, with IC50 values of 62.17, 53.15, and 286.34 µg·mL-1, respectively, compared to 2297 µg·mL-1 for the commercial fungicide Captan 50WP. Although leaves had higher total polyphenol content, no direct correlation with antifungal activity was found. Colored LEDs enhanced phenol accumulation, antioxidant capacity, and antifungal properties in plant parts compared to white LEDs and in vitro roots. These findings suggest P. peruviana as a new alternative biological production system to provide natural compounds for post-harvest disease management.
Collapse
Affiliation(s)
- Daniel Eduardo Avila-Avila
- Plant Biotechnology Laboratory, Instrumental Analysis Laboratory, Plant Biochemistry Laboratory, National Technological Institute of Mexico, Tlajomulco de Zuñiga 45640, Mexico; (M.E.A.-M.); (N.A.M.-M.)
| | - Martha Alicia Rodríguez-Mendiola
- Plant Biotechnology Laboratory, Instrumental Analysis Laboratory, Plant Biochemistry Laboratory, National Technological Institute of Mexico, Tlajomulco de Zuñiga 45640, Mexico; (M.E.A.-M.); (N.A.M.-M.)
| | - Carlos Arias-Castro
- Plant Biotechnology Laboratory, Instrumental Analysis Laboratory, Plant Biochemistry Laboratory, National Technological Institute of Mexico, Tlajomulco de Zuñiga 45640, Mexico; (M.E.A.-M.); (N.A.M.-M.)
| | | | - Martin Eduardo Avila-Miranda
- Plant Biotechnology Laboratory, Instrumental Analysis Laboratory, Plant Biochemistry Laboratory, National Technological Institute of Mexico, Tlajomulco de Zuñiga 45640, Mexico; (M.E.A.-M.); (N.A.M.-M.)
| | - Norma Alejandra Mancilla-Margalli
- Plant Biotechnology Laboratory, Instrumental Analysis Laboratory, Plant Biochemistry Laboratory, National Technological Institute of Mexico, Tlajomulco de Zuñiga 45640, Mexico; (M.E.A.-M.); (N.A.M.-M.)
| |
Collapse
|
4
|
Dubey S, Harbourne N, Harty M, Hurley D, Elliott-Kingston C. Microgreens Production: Exploiting Environmental and Cultural Factors for Enhanced Agronomical Benefits. PLANTS (BASEL, SWITZERLAND) 2024; 13:2631. [PMID: 39339608 PMCID: PMC11435253 DOI: 10.3390/plants13182631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
An exponential growth in global population is expected to reach nine billion by 2050, demanding a 70% increase in agriculture productivity, thus illustrating the impact of global crop production on the environment and the importance of achieving greater agricultural yields. Globally, the variety of high-quality microgreens is increasing through indoor farming at both small and large scales. The major concept of Controlled Environment Agriculture (CEA) seeks to provide an alternative to traditional agricultural cultivation. Microgreens have become popular in the twenty-first century as a food in the salad category that can fulfil some nutrient requirements. Microgreens are young seedlings that offer a wide spectrum of colours, flavours, and textures, and are characterised as a "functional food" due to their nutraceutical properties. Extensive research has shown that the nutrient profile of microgreens can be desirably tailored by preharvest cultivation and postharvest practices. This study provides new insight into two major categories, (i) environmental and (ii) cultural, responsible for microgreens' growth and aims to explore the various agronomical factors involved in microgreens production. In addition, the review summarises recent studies that show these factors have a significant influence on microgreens development and nutritional composition.
Collapse
Affiliation(s)
- Shiva Dubey
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (N.H.); (M.H.); (D.H.); (C.E.-K.)
| | | | | | | | | |
Collapse
|
5
|
Hernández-Adasme C, Silva H, Peña Á, Vargas-Martínez MG, Salazar-Parra C, Sun B, Escalona Contreras V. Modifying the Ambient Light Spectrum Using LED Lamps Alters the Phenolic Profile of Hydroponically Grown Greenhouse Lettuce Plants without Affecting Their Agronomic Characteristics. PLANTS (BASEL, SWITZERLAND) 2024; 13:2466. [PMID: 39273950 PMCID: PMC11397191 DOI: 10.3390/plants13172466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/29/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024]
Abstract
The growth and development of green lettuce plants can be modulated by the prevailing light conditions around them. The aim of this study was to evaluate the effect of ambient light enrichment with different LED light spectra on agronomic characteristics, polyphenol concentration and relative gene expression of enzymes associated with polyphenol formation in 'Levistro' lettuce grown hydroponically in a Nutrient Film Technique (NFT) system for 28 days in a greenhouse. The spectra (blue:green:red:far-red) and red:blue (R:B) ratios obtained by enriching ambient light with Blue (B), White (W), Blue-Red (BR) and Red (R) LED light were B: 47:22:21:10, 0.5:1; W: 30:38:23:9, 0.8:1; BR: 33:15:44:8, 1.3:1 and R: 16:16:60:8, 3.8:1, respectively, and photosynthetically active radiation (PAR) under the different treatments, measured at midday, ranged from 328 to 336 µmoles m-2 s-1. The resulting daily light integral (DLI) was between 9.1 and 9.6 mol m-2 day-1. The photoperiod for all enrichment treatments was 12 h of light. The control was ambient greenhouse light (25:30:30:15; R:B = 1.2:1; PAR = 702 µmoles m-2 s-1; DLI = 16.9 mol m-2 day-1; photoperiod = 14.2 h of light). Fresh weight (FW) and dried weight percentage (DWP) were similar among the enrichment treatments and the control. The leaf number increased significantly under BR and R compared to B lights. The relative index of chlorophyll concentration (RIC) increased as plants grew and was similar among the enrichment treatments and the control. On the other hand, the concentration of chlorogenic acid and chicoric acid increased under BR and B lights, which was consistent with the higher relative expression of the coumarate 3-hydroxylase enzyme gene. In view of the results, it is inferred that half of the PAR or DLI is sufficient to achieve normal growth and development of 'Levistro' lettuce plants, suggesting a more efficient use of light energy under the light enrichment treatments. On the other hand, the blue and combined blue-red lights promoted the accumulation of phenolic compounds in the leaves of 'Levistro' lettuce plants.
Collapse
Affiliation(s)
- Cristian Hernández-Adasme
- Centro de Estudios de Postcosecha (CEPOC), Departamento de Producción Agrícola, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago 8820808, Chile
| | - Herman Silva
- Laboratorio de Genómica Funcional y Bioinformática, Departamento de Producción Agrícola, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago 8820808, Chile
| | - Álvaro Peña
- Departamento de Agroindustria y Enología, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago 8820808, Chile
| | - María Gabriela Vargas-Martínez
- Laboratorio de Desarrollo de Métodos Analíticos, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54740, Mexico
| | - Carolina Salazar-Parra
- Instituto de Investigaciones Agropecuarias (INIA), Centro Regional La Platina, Santiago 8831314, Chile
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Víctor Escalona Contreras
- Centro de Estudios de Postcosecha (CEPOC), Departamento de Producción Agrícola, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago 8820808, Chile
| |
Collapse
|
6
|
Fujiyama K, Muranaka T, Okazawa A, Seki H, Taguchi G, Yasumoto S. Recent advances in plant-based bioproduction. J Biosci Bioeng 2024; 138:1-12. [PMID: 38614829 DOI: 10.1016/j.jbiosc.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 04/15/2024]
Abstract
Unable to move on their own, plants have acquired the ability to produce a wide variety of low molecular weight compounds to survive against various stresses. It is estimated that there are as many as one million different kinds. Plants also have the ability to accumulate high levels of proteins. Although plant-based bioproduction has traditionally relied on classical tissue culture methods, the attraction of bioproduction by plants is increasing with the development of omics and bioinformatics and other various technologies, as well as synthetic biology. This review describes the current status and prospects of these plant-based bioproduction from five advanced research topics, (i) de novo production of plant-derived high value terpenoids in engineered yeast, (ii) biotransformation of plant-based materials, (iii) genome editing technology for plant-based bioproduction, (iv) environmental effect of metabolite production in plant factory, and (v) molecular pharming.
Collapse
Affiliation(s)
- Kazuhito Fujiyama
- International Center for Biotechnology, Osaka University, 2-1 Yamada-Oka, Suita, Osaka 565-0871, Japan; Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka 565-0871, Japan.
| | - Atsushi Okazawa
- Department of Agricultural Biology, Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Hikaru Seki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Goro Taguchi
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Shuhei Yasumoto
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan; Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
7
|
Huang M, Xu H, Zhou Q, Xiao J, Su Y, Wang M. The nutritional profile of chia seeds and sprouts: tailoring germination practices for enhancing health benefits-a comprehensive review. Crit Rev Food Sci Nutr 2024; 65:2365-2387. [PMID: 38622873 DOI: 10.1080/10408398.2024.2337220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Chia seeds have gained significant attention due to their unique composition and potential health benefits, including high dietary fibers, omega-3 fatty acids, proteins, and phenolic compounds. These components contribute to their antioxidant, anti-inflammatory effects, as well as their ability to improve glucose metabolism and dyslipidemia. Germination is recognized as a promising strategy to enhance the nutritional value and bioavailability of chia seeds. Chia seed sprouts have been found to exhibit increased essential amino acid content, elevated levels of dietary fiber and total phenols, and enhanced antioxidant capability. However, there is limited information available concerning the dynamic changes of bioactive compounds during the germination process and the key factors influencing these alterations in biosynthetic pathways. Additionally, the influence of various processing conditions, such as temperature, light exposure, and duration, on the nutritional value of chia seed sprouts requires further investigation. This review aims to provide a comprehensive analysis of the nutritional profile of chia seeds and the dynamic changes that occur during germination. Furthermore, the potential for tailored germination practices to produce chia sprouts with personalized nutrition, targeting specific health needs, is also discussed.
Collapse
Affiliation(s)
- Manting Huang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Hui Xu
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Qian Zhou
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Vigo, Spain
| | - Yuting Su
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen, China
| | - Mingfu Wang
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen University, Shenzhen, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
8
|
Roosta HR, Bikdeloo M, Ghorbanpour M. The growth, nutrient uptake and fruit quality in four strawberry cultivars under different Spectra of LED supplemental light. BMC PLANT BIOLOGY 2024; 24:179. [PMID: 38454341 PMCID: PMC10921718 DOI: 10.1186/s12870-024-04880-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
An experiment was conducted in a greenhouse to determine the effects of different supplemental light spectra on the growth, nutrient uptake, and fruit quality of four strawberry cultivars. The plants were grown under natural light and treated with blue (460 nm), red (660 nm), and red/blue (3:1) lights. Results showed that the "Parous" and "Camarosa" had higher fresh and dry mass of leaves, roots, and crowns compared to the "Sabrina" and "Albion". The use of artificial LED lights improved the vegetative growth of strawberry plants. All three supplemental light spectra significantly increased the early fruit yield of cultivars except for "Parous". The red/blue supplemental light spectrum also increased the fruit mass and length of the "Albion". Supplemental light increased the total chlorophyll in "Camarosa" and "Albion", as well as the total soluble solids in fruits. The "Albion" had the highest concentration of fruit anthocyanin, while the "Sabrina" had the lowest. The use of supplemental light spectra significantly increased the fruit anthocyanin concentration in all cultivars. Without supplemental light, the "Camarosa" had the lowest concentration of K and Mg, which increased to the highest concentration with the use of supplemental light spectra. All three spectra increased Fe concentration to the highest value in the "Sabrina", while only the red/blue light spectrum was effective on the "Camarosa". In conclusion, the use of supplemental light can increase the yield and fruit quality of strawberries by elevating nutrients, chlorophyll, and anthocyanin concentrations in plants.
Collapse
Affiliation(s)
- Hamid Reza Roosta
- Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
| | - Mahdi Bikdeloo
- Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
| |
Collapse
|
9
|
Su P, Ding S, Wang D, Kan W, Yuan M, Chen X, Tang C, Hou J, Wu L. Plant morphology, secondary metabolites and chlorophyll fluorescence of Artemisia argyi under different LED environments. PHOTOSYNTHESIS RESEARCH 2024; 159:153-164. [PMID: 37204684 PMCID: PMC10197053 DOI: 10.1007/s11120-023-01026-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
Different light spectra from light-emitting diodes (LEDs) trigger species-specific adaptive responses in plants. We exposed Artemisia argyi (A. argyi) to four LED spectra: white (the control group), monochromatic red light (R), monochromatic blue light (B), or a mixture of R and B light of photon flux density ratio is 3 (RB), with equivalent photoperiod (14 h) and light intensity (160 μmol s-1 m-2). R light accelerated photomorphogenesis but decreased biomass, while B light significantly increased leaf area and short-term exposure (7 days) to B light increased total phenols and flavonoids. HPLC identified chlorogenic acid, 3,5-dicaffeoylquinic acid, gallic acid, jaceosidin, eupatilin, and taxol compounds, with RB and R light significantly accumulating chlorogenic acid, 3,5-dicaffeoylquinic acid, and gallic acid, and B light promoting jaceosidin, eupatilin, and taxol. OJIP measurements showed that B light had the least effect on the effective quantum yield ΦPSII, with higher rETR(II), Fv/Fm, qL and PIabs, followed by RB light. R light led to faster photomorphology but lower biomass than RB and B lights and produced the most inadaptability, as shown by reduced ΦPSII and enlarged ΦNPQ and ΦNO. Overall, short-term B light promoted secondary metabolite production while maintaining effective quantum yield and less energy dissipation.
Collapse
Affiliation(s)
- Pengfei Su
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China
- School of Life Science, University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China
| | - Shuangshuang Ding
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China
- School of Life Science, University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China
| | - Dacheng Wang
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China
- School of Life Science, University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China
| | - Wenjie Kan
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China
- School of Life Science, University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China
| | - Meng Yuan
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China
- School of Life Science, University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China
| | - Xue Chen
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China
| | - Caiguo Tang
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China
| | - Jinyan Hou
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China.
| | - Lifang Wu
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China.
- School of Life Science, University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China.
- Zhongke Taihe Experimental Station, Taihe, 236626, Anhui, People's Republic of China.
| |
Collapse
|
10
|
Rehman M, Pan J, Mubeen S, Ma W, Luo D, Cao S, Saeed W, Jin G, Li R, Chen T, Chen P. Morpho-physio-biochemical, molecular, and phytoremedial responses of plants to red, blue, and green light: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20772-20791. [PMID: 38393568 DOI: 10.1007/s11356-024-32532-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
Light is a basic requirement to drive carbon metabolism in plants and supports life on earth. Spectral quality greatly affects plant morphology, physiology, and metabolism of various biochemical pathways. Among visible light spectrum, red, blue, and green light wavelengths affect several mechanisms to contribute in plant growth and productivity. In addition, supplementation of red, blue, or green light with other wavelengths showed vivid effects on the plant biology. However, response of plants differs in different species and growing conditions. This review article provides a detailed view and interpretation of existing knowledge and clarifies underlying mechanisms that how red, blue, and green light spectra affect plant morpho-physiological, biochemical, and molecular parameters to make a significant contribution towards improved crop production, fruit quality, disease control, phytoremediation potential, and resource use efficiency.
Collapse
Affiliation(s)
- Muzammal Rehman
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004, China
| | - Jiao Pan
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004, China
| | - Samavia Mubeen
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004, China
| | - Wenyue Ma
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004, China
| | - Dengjie Luo
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004, China
| | - Shan Cao
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004, China
| | - Wajid Saeed
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004, China
| | - Gang Jin
- Guangxi Subtropical Crops Research Institute, Nanning, 530001, China
| | - Ru Li
- College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Tao Chen
- Guangxi Subtropical Crops Research Institute, Nanning, 530001, China
| | - Peng Chen
- College of Agriculture, Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety; Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
11
|
Li S, Dong Y, Li D, Shi S, Zhao N, Liao J, Liu Y, Chen H. Eggplant transcription factor SmMYB5 integrates jasmonate and light signaling during anthocyanin biosynthesis. PLANT PHYSIOLOGY 2024; 194:1139-1165. [PMID: 37815242 DOI: 10.1093/plphys/kiad531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 10/11/2023]
Abstract
Low light conditions severely suppress anthocyanin synthesis in fruit skins, leading to compromised fruit quality in eggplant (Solanum melongena L.) production. In this study, we found that exogenous methyl-jasmonate (MeJA) application can effectively rescue the poor coloration of the eggplant pericarp under low light conditions. However, the regulatory relationship between jasmonate and light signaling for regulating anthocyanin synthesis remains unclear. Here, we identified a JA response factor, SmMYB5, as an anthocyanin positive regulator by applying RNA-sequencing and characterization of transgenic plants. Firstly, we resolved that SmMYB5 can interact with TRANSPARENT TESTA8 (SmTT8), an anthocyanin-promoted BASIC HELIX-LOOP-HELIX (bHLH) transcription factor, to form the SmMYB5-SmTT8 complex and activate CHALCONE SYNTHASE (SmCHS), FLAVANONE-3-HYDROXYLASE (SmF3H), and ANTHOCYANIN SYNTHASE (SmANS) promoters by direct binding. Secondly, we revealed that JA signaling repressors JASMONATE ZIM DOMAIN5 (SmJAZ5) and SmJAZ10 can interfere with the stability and transcriptional activity of SmMYB5-SmTT8 by interacting with SmMYB5. JA can partially rescue the transcriptional activation of SmF3H and SmANS promoters by inducing SmJAZ5/10 degradation. Thirdly, we demonstrated that the protein abundance of SmMYB5 is regulated by light. CONSTITUTIVELY PHOTOMORPHOGENIC1 (SmCOP1) interacts with SmMYB5 to trigger SmMYB5 degradation via the 26S proteasome pathway. Finally, we delineated a light-dependent JA-SmMYB5 signaling pathway that promotes anthocyanin synthesis in eggplant fruit skins. These results provide insights into the mechanism of the integration of JA and light signals in regulating secondary metabolite synthesis in plants.
Collapse
Affiliation(s)
- Shaohang Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanxiao Dong
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dalu Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Suli Shi
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Na Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jielei Liao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yang Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huoying Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
12
|
Garegnani M, Sandri C, Pacelli C, Ferranti F, Bennici E, Desiderio A, Nardi L, Villani ME. Non-destructive real-time analysis of plant metabolite accumulation in radish microgreens under different LED light recipes. FRONTIERS IN PLANT SCIENCE 2024; 14:1289208. [PMID: 38273958 PMCID: PMC10808373 DOI: 10.3389/fpls.2023.1289208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/29/2023] [Indexed: 01/27/2024]
Abstract
Introduction The future of human space missions relies on the ability to provide adequate food resources for astronauts and also to reduce stress due to the environment (microgravity and cosmic radiation). In this context, microgreens have been proposed for the astronaut diet because of their fast-growing time and their high levels of bioactive compounds and nutrients (vitamins, antioxidants, minerals, etc.), which are even higher than mature plants, and are usually consumed as ready-to-eat vegetables. Methods Our study aimed to identify the best light recipe for the soilless cultivation of two cultivars of radish microgreens (Raphanus sativus, green daikon, and rioja improved) harvested eight days after sowing that could be used for space farming. The effects on plant metabolism of three different light emitting diodes (LED) light recipes (L1-20% red, 20% green, 60% blue; L2-40% red, 20% green, 40% blue; L3-60% red, 20% green, 20% blue) were tested on radish microgreens hydroponically grown. A fluorimetric-based technique was used for a real-time non-destructive screening to characterize plant methabolism. The adopted sensors allowed us to quantitatively estimate the fluorescence of flavonols, anthocyanins, and chlorophyll via specific indices verified by standardized spectrophotometric methods. To assess plant growth, morphometric parameters (fresh and dry weight, cotyledon area and weight, hypocotyl length) were analyzed. Results We observed a statistically significant positive effect on biomass accumulation and productivity for both cultivars grown under the same light recipe (40% blue, 20% green, 40% red). We further investigated how the addition of UV and/or far-red LED lights could have a positive effect on plant metabolite accumulation (anthocyanins and flavonols). Discussion These results can help design plant-based bioregenerative life-support systems for long-duration human space exploration, by integrating fluorescence-based non-destructive techniques to monitor the accumulation of metabolites with nutraceutical properties in soilless cultivated microgreens.
Collapse
Affiliation(s)
- Marco Garegnani
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department for Sustainability Casaccia Research Center, Rome, Italy
- Department of Aerospace Science and Technology, Politecnico of Milano, Milan, Italy
| | - Carla Sandri
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department for Sustainability Casaccia Research Center, Rome, Italy
| | - Claudia Pacelli
- Human Spaceflight and Scientific Research Unit, Italian Space Agency, Rome, Italy
| | - Francesca Ferranti
- Human Spaceflight and Scientific Research Unit, Italian Space Agency, Rome, Italy
| | - Elisabetta Bennici
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department for Sustainability Casaccia Research Center, Rome, Italy
| | - Angiola Desiderio
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department for Sustainability Casaccia Research Center, Rome, Italy
| | - Luca Nardi
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department for Sustainability Casaccia Research Center, Rome, Italy
| | - Maria Elena Villani
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Department for Sustainability Casaccia Research Center, Rome, Italy
| |
Collapse
|
13
|
Zeng W, Yang J, He Y, Zhu Z. Bioactive compounds in cruciferous sprouts and microgreens and the effects of sulfur nutrition. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7323-7332. [PMID: 37254614 DOI: 10.1002/jsfa.12755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/13/2023] [Accepted: 05/25/2023] [Indexed: 06/01/2023]
Abstract
Cruciferous sprouts and microgreens are a good source of bioactive compounds for human health as they are rich in glucosinolates, polyphenols, carotenoids, and vitamins. Glucosinolates - sulfur-containing bioactive phytochemicals - have anti-cancer effects. They mainly exist in cruciferous vegetables. Sulfur is one of the essential elements for plants and is an indispensable component of glucosinolates. This paper summarizes the nutritional value of cruciferous spouts and microgreens, along with the effects of sulfur nutrition on bioactive phytochemical compounds of cruciferous sprouts and microgreens, especially glucosinolates, with the aim of providing information about the dietary effects of cruciferous sprouts and microgreens. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenjing Zeng
- College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
- College of Environmental and Resource Science, Zhejiang A&F University, Hangzhou, China
| | - Jing Yang
- College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Yong He
- College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| | - Zhujun Zhu
- College of Horticulture Science, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
14
|
Frąszczak B, Kula-Maximenko M, Podsędek A, Sosnowska D, Unegbu KC, Spiżewski T. Morphological and Photosynthetic Parameters of Green and Red Kale Microgreens Cultivated under Different Light Spectra. PLANTS (BASEL, SWITZERLAND) 2023; 12:3800. [PMID: 38005697 PMCID: PMC10674929 DOI: 10.3390/plants12223800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/22/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023]
Abstract
Microgreens are plants eaten at a very early stage of development, having a very high nutritional value. Among a large group of species, those from the Brassicaceae family, including kale, are very popularly grown as microgreens. Typically, microgreens are grown under controlled conditions under light-emitting diodes (LEDs). However, the effect of light on the quality of grown microgreens varies. The present study aimed to determine the effect of artificial white light with varying proportions of red (R) and blue (B) light on the morphological and photosynthetic parameters of kale microgreens with green and red leaves. The R:B ratios were for white light (W) 0.63, for red-enhanced white light (W + R) 0.75, and for white and blue light (W + B) 0.38 at 230 µmol m-2 s-1 PPFD. The addition of both blue and red light had a positive effect on the content of active compounds in the plants, including flavonoids and carotenoids. Red light had a stronger effect on the seedling area and the dry mass and relative chlorophyll content of red-leaved kale microgreens. Blue light, in turn, had a stronger effect on green kale, including dry mass. The W + B light combination negatively affected the chlorophyll content of both cultivars although the leaves were significantly thicker compared to cultivation under W + R light. In general, the cultivar with red leaves had less sensitivity to the photosynthetic apparatus to the spectrum used. The changes in PSII were much smaller in red kale compared to green kale. Too much red light caused a deterioration in the PSII vitality index in green kale. Red and green kale require an individual spectrum with different proportions of blue and red light at different growth stages to achieve plants with a large leaf area and high nutritional value.
Collapse
Affiliation(s)
- Barbara Frąszczak
- Department of Vegetable Crops, Poznań University of Life Sciences, Dąbrowskiego 159, 60-594 Poznań, Poland; (K.C.U.); (T.S.)
| | - Monika Kula-Maximenko
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, ul. Niezapominajek 21, 30-239 Kraków, Poland;
| | - Anna Podsędek
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland; (A.P.); (D.S.)
| | - Dorota Sosnowska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Łódź, Poland; (A.P.); (D.S.)
| | - Kingsley Chinazor Unegbu
- Department of Vegetable Crops, Poznań University of Life Sciences, Dąbrowskiego 159, 60-594 Poznań, Poland; (K.C.U.); (T.S.)
| | - Tomasz Spiżewski
- Department of Vegetable Crops, Poznań University of Life Sciences, Dąbrowskiego 159, 60-594 Poznań, Poland; (K.C.U.); (T.S.)
| |
Collapse
|
15
|
Han AR, Choi E, Park J, Jo SH, Hong MJ, Kim JB, Ryoo GH, Jin CH. Comparison of Policosanol Profiles of the Sprouts of Wheat Mutant Lines and the Effect of Differential LED Lights on Selected Lines. PLANTS (BASEL, SWITZERLAND) 2023; 12:3377. [PMID: 37836116 PMCID: PMC10574449 DOI: 10.3390/plants12193377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
Policosanols (PCs) are long-chain linear aliphatic alcohols that are present in the primary leaves of cereal crops, such as barley and wheat, sugar cane wax, and beeswax. PCs have been used as a nutraceutical for improving hyperlipidemia and hypercholesterolemia. However, the PC content in mutant wheat lines has not been investigated. To select highly functional wheat sprouts with a high content of PCs in wheat mutant lines developed via gamma-irradiated mutation breeding, we cultivated the sprouts of wheat mutant lines in a growth chamber with white LED light (6000 K) and analyzed the PC content in these samples using GC-MS. We studied the PC content in 91 wheat sprout samples: the original variety (Woori-mil × D-7; WS01), commercially available cv. Geumgang (WS87) and cv. Cheongwoo (WS91), and mutant lines (WS02-WS86 and WS88-WS90) developed from WS01 and WS87. Compared to WS01, 18 mutant lines exhibited a high total PC content (506.08-873.24 mg/100 g dry weight). Among them, the top 10 mutant lines were evaluated for their PC production after cultivating under blue (440 nm), green (520 nm), and red (660 nm) LED light irradiation; however, these colored LED lights reduced the total PC production by 35.8-49.7%, suggesting that the cultivation with white LED lights was more efficient in promoting PCs' yield, compared to different LED lights. Therefore, our findings show the potential of radiation-bred wheat varieties as functional foods against hyperlipidemia and obesity and the optimal light conditions for high PC production.
Collapse
Affiliation(s)
- Ah-Reum Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si 56212, Republic of Korea; (E.C.); (J.P.); (S.-H.J.); (M.J.H.); (J.-B.K.); (G.-H.R.); (C.H.J.)
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Murthy HN, Joseph KS, Hahn JE, Lee HS, Paek KY, Park SY. Suspension culture of somatic embryos for the production of high-value secondary metabolites. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1153-1177. [PMID: 37829704 PMCID: PMC10564700 DOI: 10.1007/s12298-023-01365-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023]
Abstract
Secondary metabolites from plants are ubiquitous and have applications in medicines, food additives, scents, colorants, and natural pesticides. Biotechnological production of secondary metabolites that have economic benefits is an attractive alternative to conventional methods. Cell, adventitious, and hairy root suspension cultures are typically used to produce secondary metabolites. According to recent studies, somatic embryos in suspension culture are useful tools for the generation of secondary metabolites. Somatic embryogenesis is a mode of regeneration in several plant species. This review provides an update on the use of somatic embryogenesis in the production of valuable secondary metabolites. The factors influencing the generation of secondary metabolites using somatic embryos in suspension cultures, elicitation methods, and prospective applications are also discussed in this review. Graphical abstract
Collapse
Affiliation(s)
- Hosakatte Niranjana Murthy
- Department of Botany, Karnatak University, Dharwad, 580003 India
- Department of Horticultural Science, Chungbuk National University, Cheongju, 28644 Republic of Korea
| | | | - Jong-Eun Hahn
- Department of Horticultural Science, Chungbuk National University, Cheongju, 28644 Republic of Korea
| | - Han-Sol Lee
- Department of Horticultural Science, Chungbuk National University, Cheongju, 28644 Republic of Korea
| | - Kee Yoeup Paek
- Department of Horticultural Science, Chungbuk National University, Cheongju, 28644 Republic of Korea
| | - So Young Park
- Department of Horticultural Science, Chungbuk National University, Cheongju, 28644 Republic of Korea
| |
Collapse
|
17
|
Sadiq NB, Kwon H, Park NI, Hamayun M, Jung JH, Yang SH, Jang SW, Kabadayı SN, Kim HY, Kim YJ. The Impact of Light Wavelength and Darkness on Metabolite Profiling of Korean Ginseng: Evaluating Its Anti-Cancer Potential against MCF-7 and BV-2 Cell Lines. Int J Mol Sci 2023; 24:ijms24097768. [PMID: 37175475 PMCID: PMC10178343 DOI: 10.3390/ijms24097768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Korean ginseng is a source of functional foods and medicines; however, its productivity is hindered by abiotic stress factors, such as light. This study investigated the impacts of darkness and different light wavelengths on the metabolomics and anti-cancer activity of ginseng extracts. Hydroponically-grown Korean ginseng was shifted to a light-emitting diodes (LEDs) chamber for blue-LED and darkness treatments, while white fluorescent (FL) light treatment was the control. MCF-7 breast cancer and lipopolysaccharide (LPS)-induced BV-2 microglial cells were used to determine chemo-preventive and neuroprotective potential. Overall, 53 significant primary metabolites were detected in the treated samples. The levels of ginsenosides Rb1, Rb2, Rc, Rd, and Re, as well as organic and amino acids, were significantly higher in the dark treatment, followed by blue-LED treatment and the FL control. The dark-treated ginseng extract significantly induced apoptotic signaling in MCF-7 cells and dose-dependently inhibited the NF-κB and MAP kinase pathways in LPS-induced BV-2 cells. Short-term dark treatment increased the content of Rd, Rc, Rb1, Rb2, and Re ginsenosides in ginseng extracts, which promoted apoptosis of MCF-7 cells and inhibition of the MAP kinase pathway in BV-2 microglial cells. These results indicate that the dark treatment might be effective in improving the pharmacological potential of ginseng.
Collapse
Affiliation(s)
- Nooruddin Bin Sadiq
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
- Department of Plant Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Hyukjoon Kwon
- Center of Biomaterials, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
| | - Nam Il Park
- Department of Plant Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Je-Hyeong Jung
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
| | - Seung-Hoon Yang
- Department of Medical Biotechnology, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea
| | - Soo-Won Jang
- Korean Ginseng Company (KGC), 71 Beotkkot-gil, Daedeok-gu, Daejeon 34337, Republic of Korea
| | - Seda Nur Kabadayı
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
| | - Ho-Youn Kim
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Young-Joo Kim
- Center of Biomaterials, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
| |
Collapse
|
18
|
Fitzner M, Schreiner M, Baldermann S. The interaction of salinity and light regime modulates photosynthetic pigment content in edible halophytes in greenhouse and indoor farming. FRONTIERS IN PLANT SCIENCE 2023; 14:1105162. [PMID: 37082347 PMCID: PMC10110887 DOI: 10.3389/fpls.2023.1105162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/13/2023] [Indexed: 05/03/2023]
Abstract
Given its limited land and water use and the changing climate conditions, indoor farming of halophytes has a high potential to contribute significantly to global agriculture in the future. Notably, indoor farming and classical greenhouse cultivation differ in their light regime between artificial and solar lighting, which can influence plant metabolism, but how this affects the cultivation of halophytes has not yet been investigated. To address this question, we studied the yield and content of abscisic acid, carotenoids, and chlorophylls as well as chloride of three halophyte species (Cochlearia officinalis, Atriplex hortensis, and Salicornia europaea) differing in their salt tolerance mechanisms and following four salt treatments (no salt to 600 mM of NaCl) in two light regimes (greenhouse/indoor farming). In particular, salt treatment had a strong influence on chloride accumulation which is only slightly modified by the light regime. Moreover, fresh and dry mass was influenced by the light regime and salinity. Pigments exhibited different responses to salt treatment and light regime, reflecting their differing functions in the photosynthetic apparatus. We conclude that the interaction of light regime and salt treatment modulates the content of photosynthetic pigments. Our study highlights the potential applications of the cultivation of halophytes for indoor farming and underlines that it is a promising production system, which provides food alternatives for future diets.
Collapse
Affiliation(s)
- Maria Fitzner
- Department Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Grossbeeren, Germany
- Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
- Food4Future (F4F), c/o Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Department Plant Quality and Food Security, Grossbeeren, Germany
| | - Monika Schreiner
- Department Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Grossbeeren, Germany
- Food4Future (F4F), c/o Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Department Plant Quality and Food Security, Grossbeeren, Germany
| | - Susanne Baldermann
- Department Plant Quality and Food Security, Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Grossbeeren, Germany
- Food4Future (F4F), c/o Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Department Plant Quality and Food Security, Grossbeeren, Germany
- Food Metabolome, Faculty of Life Science: Food, Nutrition and Health, University of Bayreuth, Kulmbach, Germany
| |
Collapse
|
19
|
Gai QY, Feng X, Jiao J, Xu XJ, Fu JX, He XJ, Fu YJ. Blue LED light promoting the growth, accumulation of high-value isoflavonoids and astragalosides, antioxidant response, and biosynthesis gene expression in Astragalus membranaceus (Fisch.) Bunge hairy root cultures. PLANT CELL, TISSUE AND ORGAN CULTURE 2023; 153:511-523. [PMID: 37197002 PMCID: PMC10042671 DOI: 10.1007/s11240-023-02486-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/07/2023] [Indexed: 05/19/2023]
Abstract
The root of Astragalus membranaceus (Fisch.) Bunge is one of the most frequently used herbs in traditional Chinese medicine (TCM) formulae for fighting COVID-19 infections, due to the presence of isoflavonoids and astragalosides associated with antiviral and immune-enhancing activities. For the first time, the exposure of A. membranaceus hairy root cultures (AMHRCs) to different colors of LED lights i.e., red, green, blue, red/green/blue (1/1/1, RGB), and white, was conducted to promote the root growth and accumulation of isoflavonoids and astragalosides. LED light treatment regardless of colors was found beneficial for root growth, which might be a result of the formation of more root hairs upon light stimulation. Blue LED light was found most effective for enhancing phytochemical accumulation. Results showed that the productivity of root biomass in blue-light grown AMHRCs with an initial inoculum size of 0.6% for 55 days was 1.40-fold higher than that in dark (control), and yields of high-value isoflavonoids and astragalosides including calycosin, formononetin, astragaloside IV, and astragaloside I increased by 3.17-fold, 2.66-fold, 1.78-fold, and 1.52-fold relative to control, respectively. Moreover, the photooxidative stress together with transcriptional activation of biosynthesis genes might contribute to the enhanced accumulation of isoflavonoids and astragalosides in blue-light grown AMHRCs. Overall, this work offered a feasible approach for obtaining higher yields of root biomass and medicinally important compounds in AMHRCs via the simple supplementation of blue LED light, which made blue-light grown AMHRCs industrially attractive as plant factory in controlled growing systems. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s11240-023-02486-7.
Collapse
Affiliation(s)
- Qing-Yan Gai
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Xue Feng
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Jiao Jiao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Xiao-Jie Xu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Jin-Xian Fu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Xiao-Jia He
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| | - Yu-Jie Fu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040 People’s Republic of China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Northeast Forestry University, Harbin, 150040 People’s Republic of China
| |
Collapse
|
20
|
Wu W, Luo X, Wang Y, Xie X, Lan Y, Li L, Zhu T, Ren M. Combined metabolomics and transcriptomics analysis reveals the mechanism underlying blue light-mediated promotion of flavones and flavonols accumulation in Ligusticum chuanxiong Hort. microgreens. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 242:112692. [PMID: 36958087 DOI: 10.1016/j.jphotobiol.2023.112692] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
Ligusticum chuanxiong Hort. (Chuanxiong) is an important Chinese medicinal herb, whose rhizomes are widely used as raw materials for treating various diseases caused by blood stasis. The fresh tender stems and leaves of Chuanxiong are also consumed and have the potential as microgreens. Here, we investigated the effect of light spectra on yield and total flavonoid content of Chuanxiong microgreens by treatment with LED-based white light (WL), red light (RL), blue light (BL), and continuous darkness (DD). The results showed that WL and BL reduced biomass accumulation but significantly increased total flavonoid content compared to RL or DD treatments. Widely targeted metabolomics analysis confirmed that BL promoted the accumulation of flavones and flavonols in Chuanxiong microgreens. Further integration of transcriptomics and metabolomics analysis revealed the mechanism by which BL induces the up-regulation of transcription factors such as HY5 and MYBs, promotes the expression of key genes targeted for flavonoid biosynthesis, and ultimately leads to the accumulation of flavones and flavonols. This study suggests that blue light is a proper light spectra to improve the quality of Chuanxiong microgreens, and the research results lay a foundation for guiding the de-etiolation of Chuanxiong microgreens to obtain both yield and quality in production practice.
Collapse
Affiliation(s)
- Wenxian Wu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences; Chengdu Agricultural Science and Technology Center, Chengdu 610000, Sichuan Province, China
| | - Xiumei Luo
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences; Chengdu Agricultural Science and Technology Center, Chengdu 610000, Sichuan Province, China
| | - Ying Wang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences; Chengdu Agricultural Science and Technology Center, Chengdu 610000, Sichuan Province, China
| | - Xiulan Xie
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences; Chengdu Agricultural Science and Technology Center, Chengdu 610000, Sichuan Province, China
| | - Yizhou Lan
- School of Foreign Languages, Shenzhen University, Shenzhen 518000, Guangdong Province, China
| | - Linxuan Li
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences; Chengdu Agricultural Science and Technology Center, Chengdu 610000, Sichuan Province, China
| | - Tingting Zhu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences; Chengdu Agricultural Science and Technology Center, Chengdu 610000, Sichuan Province, China
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences; Chengdu Agricultural Science and Technology Center, Chengdu 610000, Sichuan Province, China.
| |
Collapse
|
21
|
Zaytseva Y, Petruk A, Novikova T. Thidiazuron and LED Lighting Enhance Taxifolin and Rutin Production in Rhododendron mucronulatum Turcz. Microshoot Culture. JOURNAL OF PLANT GROWTH REGULATION 2023; 42:2933-2942. [PMID: 35975274 PMCID: PMC9374291 DOI: 10.1007/s00344-022-10757-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/28/2022] [Indexed: 05/03/2023]
Abstract
Rhododendron mucronulatum Turcz., distributed throughout the northern region of East Asia has been considered to be an alternative natural source of taxifolin (dihydroquercetin) and rutin. The present study was conducted based on a biotechnological approach to develop an environment friendly and efficient system to produce taxifolin and rutin in R. mucronulatum microshoots, using different thidiazuron (TDZ) treatments (0.1; 0.5; 2.5 µM) in combination with various types of lighting including fluorescent (FL) and light-emitting diode (LED) (R/B- 80% red + 20% blue; 5LED-20% red + 20% blue + 20% green + 20% yellow + 20% white). The highest number of shoots per explant was obtained under 0.5 µM TDZ combined with 5LED in comparison with FL lighting. Among shoot clusters obtained under different lighting types and TDZ concentrations, a considerable increase in fresh and dry weight was observed in ones cultivated on medium, supplemented with 2.5 µM TDZ under FL and 0.5 µM TDZ at R/B or 5LED. The content of total chlorophylls in R. mucronulatum microshoots increased on TDZ-free medium under FL lighting, whereas, the TDZ treatment decreased chlorophylls concentration at FL and 5LED. The use of 0.1 µM TDZ at 5LED decreased the ratio of chlorophylls a + b to carotenoids and led to the highest accumulation of taxifolin and rutin, quercetin, hyperoside, and avicularin. Thus, it has been demonstrated that the application of combined action of LED and TDZ has great potential in terms of propagation efficiency, biomass accumulation, and taxifolin and rutin production in R. mucronulatum microshoots.
Collapse
Affiliation(s)
- Yulianna Zaytseva
- Central Siberian Botanical Garden, Siberian Branch of the Russian Academy of Sciences, st. Zolotodolinskaya, 101, Novosibirsk, 630090 Russian Federation
| | - Anastasia Petruk
- Central Siberian Botanical Garden, Siberian Branch of the Russian Academy of Sciences, st. Zolotodolinskaya, 101, Novosibirsk, 630090 Russian Federation
| | - Tatyana Novikova
- Central Siberian Botanical Garden, Siberian Branch of the Russian Academy of Sciences, st. Zolotodolinskaya, 101, Novosibirsk, 630090 Russian Federation
| |
Collapse
|
22
|
Ding S, Su P, Wang D, Chen X, Tang C, Hou J, Wu L. Blue and red light proportion affects growth, nutritional composition, antioxidant properties and volatile compounds of Toona sinensis sprouts. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
23
|
Guijarro-Real C, Hernández-Cánovas L, Abellán-Victorio Á, Ben-Romdhane O, Moreno DA. The Combination of Monochromatic LEDs and Elicitation with Stressors Enhances the Accumulation of Glucosinolates in Mustard Sprouts with Species-Dependency. PLANTS (BASEL, SWITZERLAND) 2022; 11:2961. [PMID: 36365416 PMCID: PMC9657432 DOI: 10.3390/plants11212961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
This work studies the enhancement of glucosinolates (GSLs) in mustard sprouts as health promoters. Sprouts of Sinapis alba, Brassica nigra, and B. carinata were grown under broad-spectrum, monochromatic blue or red light-emitting diode (LED) lamps, irrigated with 0-100 mM sodium chloride (NaCl), and sprayed with 0-250 µM methyl jasmonate (MeJA) as elicitor. The use of LEDs did not result in increased sprout biomass in any case. The effect of the applied treatments on the GSLs depended on the species and were restricted to Brassica spp. The red LEDs produced an overall increase in GSLs over 500% in B. carinata (from 12 to 81 mg 100 g-1 F.W.), compared to the white broad-spectrum lights, although the highest increase in content was obtained in treated sprouts with 250 µM MeJA (104 an 105 mg 101 g-1 F.W., under the red and blue LEDs, respectively). The combination of blue LEDs, 100 mM NaCl, and 250 µM MeJA enhanced the levels of GLSs in B. nigra to the maximum (81 mg 100 g-1 F.W.). Overall, these results indicate that by modifying the growing conditions for a given sprout, enhancement in the accumulation of GSLs as health promoters is possible. The use of these treatments is a sustainable alternative to genetic modification when looking for bioactive-enriched foods, delivering natural plant foods rich in bioactive ingredients (e.g., glucosinolates). Nevertheless, the response to the treatments varies among species, indicating that treatments will require adjustment across sprouts. Further research continues with producing cruciferous sprouts to obtain GSL-enriched formulas for further studying the effects of their bioavailability and bioactivity on health-promotion.
Collapse
Affiliation(s)
- Carla Guijarro-Real
- Phytochemistry and Healthy Food Laboratory, Food Science and Technology Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS), CSIC, University Campus of Espinardo, 25, Espinardo, 30100 Murcia, Spain
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, 46022 Valencia, Spain
| | - Lorena Hernández-Cánovas
- Phytochemistry and Healthy Food Laboratory, Food Science and Technology Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS), CSIC, University Campus of Espinardo, 25, Espinardo, 30100 Murcia, Spain
- Sakata Seeds Iberica S.L., Dolores de Pacheco, 30739 Murcia, Spain
| | - Ángel Abellán-Victorio
- Phytochemistry and Healthy Food Laboratory, Food Science and Technology Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS), CSIC, University Campus of Espinardo, 25, Espinardo, 30100 Murcia, Spain
| | - Oumaima Ben-Romdhane
- Phytochemistry and Healthy Food Laboratory, Food Science and Technology Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS), CSIC, University Campus of Espinardo, 25, Espinardo, 30100 Murcia, Spain
| | - Diego A. Moreno
- Phytochemistry and Healthy Food Laboratory, Food Science and Technology Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS), CSIC, University Campus of Espinardo, 25, Espinardo, 30100 Murcia, Spain
| |
Collapse
|
24
|
Marchant MJ, Molina P, Montecinos M, Guzmán L, Balada C, Castro M. Effects of LED Light Spectra on the Development, Phytochemical Profile, and Antioxidant Activity of Curcuma longa from Easter Island. PLANTS (BASEL, SWITZERLAND) 2022; 11:2701. [PMID: 36297725 PMCID: PMC9608076 DOI: 10.3390/plants11202701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Curcuma longa (C. longa), an herbaceous plant used for medicinal purposes by the indigenous people of Easter Island, has been overexploited in its natural habitat, leading to its conservation status being designated as a vulnerable species. We have recently reported on the use of light-emitting diodes (LEDs) to improve the productivity of C. longa in vitro cultures under a temporary immersion system (TIS), but the effects of light quality on plant growth, phytochemical composition, and antioxidant capacity remained unexplored. Here, we set out to study these three aspects as observed at the end of TIS culture (day 0) and after 30 days of greenhouse acclimation (day 30). Thus, we evaluated plant morphological characteristics, phytochemical profile (polyphenols, tannins, flavonoids, reducing sugars, and curcumin), and radical scavenging activity by DPPH, ORAC, and FRAP assays. The results showed that, during in vitro cultivation under TIS, the red:blue (RB) LED light spectrum promoted C. longa shoot proliferation, with the resulting seedlings exhibiting greater fresh weight and no signs of etiolation. In the acclimation phase, the RB spectrum increased phytochemicals, such as polyphenols, flavonoids, and reducing sugars, and boosted curcumin synthesis. Nevertheless, the antioxidant activity of the plants under the RB light spectrum did not intensify. We surmise that this may be due to the premature intraplant allocation of metabolites to alternative pathways (e.g., curcumin synthesis) under RB light.
Collapse
Affiliation(s)
- María José Marchant
- Laboratory of Biomedicine and Biocatalysis, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Valparaíso 2340000, Chile
| | - Paula Molina
- Propagation Laboratory, Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, La Palma S/N, Quillota 2260000, Chile
| | - Miriam Montecinos
- Propagation Laboratory, Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, La Palma S/N, Quillota 2260000, Chile
| | - Leda Guzmán
- Laboratory of Biomedicine and Biocatalysis, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Valparaíso 2340000, Chile
| | - Cristóbal Balada
- Laboratory of Biomedicine and Biocatalysis, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Valparaíso 2340000, Chile
| | - Mónica Castro
- Propagation Laboratory, Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, La Palma S/N, Quillota 2260000, Chile
| |
Collapse
|
25
|
Kyriacou MC, Ebert AW, Samuolienė G, Brazaitytė A. Editorial: Sprouts, microgreens and edible flowers: Modulation of quality in functional specialty crops. FRONTIERS IN PLANT SCIENCE 2022; 13:1033236. [PMID: 36212361 PMCID: PMC9533116 DOI: 10.3389/fpls.2022.1033236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Marios C. Kyriacou
- Department of Vegetable Crops, Agricultural Research Institute, Nicosia, Cyprus
| | - Andreas W. Ebert
- Genetic Resources and Seed Unit, World Vegetable Center, Tainan City, Taiwan
| | - Giedrė Samuolienė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Babtai, Lithuania
| | - Aušra Brazaitytė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Babtai, Lithuania
| |
Collapse
|
26
|
Broccoli microgreens treated with CaCl2 solution absorb calcium atoms and accumulate them as Ca(II) hydrated ions. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Effects of Laser Irradiation at 488, 514, 532, 552, 660, and 785 nm on the Aqueous Extracts of Plantago lanceolata L.: A Comparison on Chemical Content, Antioxidant Activity and Caco-2 Viability. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
In this study, six laser radiation (488 nm/40 mW, 514 nm/15 mW, 532 nm/20 mW, 552 nm/15 mW, 660 nm/ 75 mW, and at 785 nm/70 mW) were tested on the aqueous extracts of leaves of Plantago lanceolata L. to compare extraction efficacy and antioxidant and cell viability effects in vitro. Briefly, in comparison with the control extract, laser extracts at 488, 514, 532, and 552 nm revealed small acquisitions of total extractible compounds in samples (up to 6.52%; laser extracts at 488 and 532 nm also revealed minerals and micro-elements increases (up to 6.49%); the most prominent results were obtained upon Fe (up to 38%, 488 nm), Cr (up to 307%, 660 nm), and Zn (up to 465%, 532 nm). Laser extracts at 488, 514, 552, and 785 nm proved more intense antioxidant capacity than the control sample, while laser extract at 660 nm indicated clear pro-oxidant effects. Caco-2 cells study indicated stimulatory activity for the extracts at 488 nm, no effects at 532 nm, and the decrease of the cell viability in the case of extracts at 660 nm respectively. Further studies are necessary to understand the pro-oxidant effects observed in the case of extracts exposed to laser radiation at 660 nm.
Collapse
|
28
|
The Inclusion of Green Light in a Red and Blue Light Background Impact the Growth and Functional Quality of Vegetable and Flower Microgreen Species. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030217] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Microgreens are edible seedlings of vegetables and flowers species which are currently considered among the five most profitable crops globally. Light-emitting diodes (LEDs) have shown great potential for plant growth, development, and synthesis of health-promoting phytochemicals with a more flexible and feasible spectral manipulation for microgreen production in indoor farms. However, research on LED lighting spectral manipulation specific to microgreen production, has shown high variability in how these edible seedlings behave regarding their light environmental conditions. Hence, developing species-specific LED light recipes for enhancement of growth and valuable functional compounds is fundamental to improve their production system. In this study, various irradiance levels and wavelengths of light spectrum produced by LEDs were investigated for their effect on growth, yield, and nutritional quality in four vegetables (chicory, green mizuna, china rose radish, and alfalfa) and two flowers (french marigold and celosia) of microgreens species. Microgreens were grown in a controlled environment using sole-source light with different photosynthetic photon flux density (110, 220, 340 µmol m−2 s−1) and two different spectra (RB: 65% red, 35% blue; RGB: 47% red, 19% green, 34% blue). At harvest, the lowest level of photosynthetically active photon flux (110 µmol m−2 s−1) reduced growth and decreased the phenolic contents in almost all species. The inclusion of green wavelengths under the highest intensity showed positive effects on phenolic accumulation. Total carotenoid content and antioxidant capacity were in general enhanced by the middle intensity, regardless of spectral combination. Thus, this study indicates that the inclusion of green light at an irradiance level of 340 µmol m−2 s−1 in the RB light environment promotes the growth (dry weight biomass) and the accumulation of bioactive phytochemicals in the majority of the microgreen species tested.
Collapse
|
29
|
Paradiso R, Proietti S. Light-Quality Manipulation to Control Plant Growth and Photomorphogenesis in Greenhouse Horticulture: The State of the Art and the Opportunities of Modern LED Systems. JOURNAL OF PLANT GROWTH REGULATION 2022; 41:742-780. [PMID: 0 DOI: 10.1007/s00344-021-10337-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/01/2021] [Indexed: 05/27/2023]
Abstract
AbstractLight quantity (intensity and photoperiod) and quality (spectral composition) affect plant growth and physiology and interact with other environmental parameters and cultivation factors in determining the plant behaviour. More than providing the energy for photosynthesis, light also dictates specific signals which regulate plant development, shaping and metabolism, in the complex phenomenon of photomorphogenesis, driven by light colours. These are perceived even at very low intensity by five classes of specific photoreceptors, which have been characterized in their biochemical features and physiological roles. Knowledge about plant photomorphogenesis increased dramatically during the last years, also thanks the diffusion of light-emitting diodes (LEDs), which offer several advantages compared to the conventional light sources, such as the possibility to tailor the light spectrum and to regulate the light intensity, depending on the specific requirements of the different crops and development stages. This knowledge could be profitably applied in greenhouse horticulture to improve production schedules and crop yield and quality. This article presents a brief overview on the effects of light spectrum of artificial lighting on plant growth and photomorphogenesis in vegetable and ornamental crops, and on the state of the art of the research on LEDs in greenhouse horticulture. Particularly, we analysed these effects by approaching, when possible, each single-light waveband, as most of the review works available in the literature considers the influence of combined spectra.
Collapse
|
30
|
Appolloni E, Pennisi G, Zauli I, Carotti L, Paucek I, Quaini S, Orsini F, Gianquinto G. Beyond vegetables: effects of indoor LED light on specialized metabolite biosynthesis in medicinal and aromatic plants, edible flowers, and microgreens. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:472-487. [PMID: 34462916 PMCID: PMC9292972 DOI: 10.1002/jsfa.11513] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/08/2021] [Accepted: 08/30/2021] [Indexed: 05/11/2023]
Abstract
Specialized metabolites from plants are important for human health due to their antioxidant properties. Light is one of the main factors modulating the biosynthesis of specialized metabolites, determining the cascade response activated by photoreceptors and the consequent modulation of expressed genes and biosynthetic pathways. Recent developments in light emitting diode (LED) technology have enabled improvements in artificial light applications for horticulture. In particular, the possibility to select specific spectral light compositions, intensities and photoperiods has been associated with altered metabolite content in a variety of crops. This review aims to analyze the effects of indoor LED lighting recipes and management on the specialized metabolite content in different groups of crop plants (namely medicinal and aromatic plants, microgreens and edible flowers), focusing on the literature from the last 5 years. The literature collection produced a total of 40 papers, which were analyzed according to the effects of artificial LED lighting on the content of anthocyanins, carotenoids, phenols, tocopherols, glycosides, and terpenes, and ranked on a scale of 1 to 3. Most studies applied a combination of red and blue light (22%) or monochromatic blue (23%), with a 16 h day-1 photoperiod (78%) and an intensity greater than 200 μmol m-2 s-1 (77%). These treatment features were often the most efficient in enhancing specialized metabolite content, although large variations in performance were observed, according to the species considered and the compound analyzed. The review aims to provide valuable indications for the definition of the most promising spectral components toward the achievement of nutrient-rich indoor-grown products. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Elisa Appolloni
- DISTAL – Department of Agricultural and Food SciencesAlma Mater Studiorum University of BolognaBolognaItaly
| | - Giuseppina Pennisi
- DISTAL – Department of Agricultural and Food SciencesAlma Mater Studiorum University of BolognaBolognaItaly
| | - Ilaria Zauli
- DISTAL – Department of Agricultural and Food SciencesAlma Mater Studiorum University of BolognaBolognaItaly
| | - Laura Carotti
- DISTAL – Department of Agricultural and Food SciencesAlma Mater Studiorum University of BolognaBolognaItaly
| | - Ivan Paucek
- DISTAL – Department of Agricultural and Food SciencesAlma Mater Studiorum University of BolognaBolognaItaly
| | | | - Francesco Orsini
- DISTAL – Department of Agricultural and Food SciencesAlma Mater Studiorum University of BolognaBolognaItaly
| | - Giorgio Gianquinto
- DISTAL – Department of Agricultural and Food SciencesAlma Mater Studiorum University of BolognaBolognaItaly
| |
Collapse
|
31
|
Bantis F. Light Spectrum Differentially Affects the Yield and Phytochemical Content of Microgreen Vegetables in a Plant Factory. PLANTS 2021; 10:plants10102182. [PMID: 34685989 PMCID: PMC8549008 DOI: 10.3390/plants10102182] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022]
Abstract
Light quality exerts considerable effects on crop development and phytochemical content. Moreover, crops grown as microgreens are ideal for plant factories with artificial lighting, since they contain greater amounts of bioactive compounds compared to fully-grown plants. The aim of the present study was to evaluate the effect of broad-spectra light with different red/blue ratios on the yield, morphology, and phytochemical content of seven microgreens. Mustard, radish, green basil, red amaranth, garlic chives, borage, and pea shoots were grown in a vertical farming system under three light sources emitting red/blue ratios of about 2, 5, and 9 units (RB2, RB5, and RB9, respectively). Mustard exhibited the most profound color responses. The yield was enhanced in three microgreens under RB9 and in garlic under RB2. Both the hypocotyl length and the leaf and cotyledon area were significantly enhanced by increasing the red light in three microgreens each. Total soluble solids (Brix) were reduced in 4 microgreens under RB2. The total phenolic content and antioxidant capacity were reduced under RB2 in 6 and 5 microgreens, respectively. The chlorophylls were variably affected but total the carotenoid content was reduced in RB9 in three microgreens. Overall, light wavelength differentially affected the microgreens' quality, while small interplays in spectral bands enhanced their phytochemical content.
Collapse
Affiliation(s)
- Filippos Bantis
- Department of Horticulture, Faculty of Agriculture, Forestry, and Natural Environment, Aristotle University, 54124 Thessaloniki, Greece
| |
Collapse
|
32
|
Truzzi F, Whittaker A, Roncuzzi C, Saltari A, Levesque MP, Dinelli G. Microgreens: Functional Food with Antiproliferative Cancer Properties Influenced by Light. Foods 2021; 10:foods10081690. [PMID: 34441474 PMCID: PMC8392261 DOI: 10.3390/foods10081690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 01/21/2023] Open
Abstract
The anti-proliferative/pro-oxidant efficacy of green pea, soybean, radish, Red Rambo radish, and rocket microgreens, cultivated under either fluorescent lighting (predominant spectral peaks in green and orange) or combination light-emitting diode (LED, predominant spectral peak in blue) was investigated using Ewing sarcoma lines, RD-ES and A673, respectively. All aqueous microgreen extracts significantly reduced cell proliferation (cancer prevention effect) to varying extents in two-dimensional sarcoma cell cultures. The effect of the polyphenol fraction in the aqueous food matrix was unrelated to total polyphenol content, which differed between species and light treatment. Only Pisum sativum (LED-grown) extracts exercised anti-proliferative and pro-apoptotic effects in both three-dimensional RD-ES and A673 spheroids (early tumor progression prevention), without cytotoxic effects on healthy L929 fibroblasts. A similar anti-tumor effect of Red Rambo radish (LED and fluorescent-grown) was evident only in the RD-ES spheroids. Aside from the promising anti-tumor potential of the polyphenol fraction of green pea microgreens, the latter also displayed favorable growth quality parameters, along with radish, under both light treatments over the 10 day cultivation period.
Collapse
Affiliation(s)
- Francesca Truzzi
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin, 44-40127 Bologna, Italy; (A.W.); (C.R.); (G.D.)
- Correspondence: ; Tel.: +39-05-1209-6673
| | - Anne Whittaker
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin, 44-40127 Bologna, Italy; (A.W.); (C.R.); (G.D.)
| | - Chiara Roncuzzi
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin, 44-40127 Bologna, Italy; (A.W.); (C.R.); (G.D.)
| | - Annalisa Saltari
- Department of Dermatology, University of Zurich Hospital, University of Zurich, Zurich, CH 8952 Schlieren, Switzerland; (A.S.); (M.P.L.)
| | - Mitchell P. Levesque
- Department of Dermatology, University of Zurich Hospital, University of Zurich, Zurich, CH 8952 Schlieren, Switzerland; (A.S.); (M.P.L.)
| | - Giovanni Dinelli
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin, 44-40127 Bologna, Italy; (A.W.); (C.R.); (G.D.)
| |
Collapse
|
33
|
Combined Effect of Salinity and LED Lights on the Yield and Quality of Purslane (Portulaca oleracea L.) Microgreens. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7070180] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The present work aims to explore the potential to improve quality of purslane microgreens by combining water salinity and LED lighting during their cultivation. Purslane plants were grown in a growth chamber with light insulated compartments, under different lighting sources on a 16 h d−1 photoperiod—fluorescent lamps (FL) and two LED treatments, including a red and blue (RB)) spectrum and a red, blue and far red (RB+IR) LED lights spectrum—while providing all of them a light intensity of 150 µmol m−2 s−1. Plants were exposed to two salinity treatments, by adding 0 or 80 mM NaCl. Biomass, cation and anions, total phenolics (TPC) and flavonoids content (TFC), total antioxidant capacity (TAC), total chlorophylls (Chl) and carotenoids content (Car) and fatty acids were determined. The results showed that yield was increased by 21% both in RB and RB+FR lights compared to FL and in salinity compared to non-salinity conditions. The nitrate content was reduced by 81% and 91% when microgreens were grown under RB and RB+FR, respectively, as compared to FL light, and by 9.5% under saline conditions as compared with non-salinity conditions. The lowest oxalate contents were obtained with the combinations of RB or RB+FR lighting and salinity. The content of Cl and Na in the leaves were also reduced when microgreens were grown under RB and RB+FR lights under saline conditions. Microgreens grown under RB light reached the highest TPC, while salinity reduced TFC, Chl and Car. Finally, the fatty acid content was not affected by light or salinity, but these factors slightly influenced their composition. It is concluded that the use of RB and RB+FR lights in saline conditions is of potential use in purslane microgreens production, since it improves the yield and quality of the product, reducing the content of anti-nutritional compounds.
Collapse
|
34
|
Changes in compositions of galactolipids, triacylglycerols, and tocopherols of lettuce varieties (Lactuca sativa L.) with type, age, and light source. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
35
|
Teng J, Liao P, Wang M. The role of emerging micro-scale vegetables in human diet and health benefits-an updated review based on microgreens. Food Funct 2021; 12:1914-1932. [PMID: 33595583 DOI: 10.1039/d0fo03299a] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Increasing public concern about health has prompted humans to find new sources of food. Microgreens are young and immature plants that have been recently introduced as a new category of vegetables, adapting their production at the micro-scale. In this paper, the chemical compositions including micro-nutrients and some typical phytochemicals of microgreens are summarized. Their edible safety and potential health benefits are also reviewed. Microgreens play an increasingly vital role in health-promoting diets. They are considered good sources of nutritional and bioactive compounds, and show potential in the prevention of malnutrition and chronic diseases. Some strategies in the pre- or post-harvest stages of microgreens can be further applied to obtain better nutritional, functional, and sensorial quality with freshness and extended shelf life. This review provides valuable nutrient data and health information for microgreens, laying a theoretical foundation for people to consume microgreens more wisely, and providing great value for the development of functional products with microgreens.
Collapse
Affiliation(s)
- Jing Teng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, P.R. China
| | - Pan Liao
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Mingfu Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, P.R. China and School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, P.R. China.
| |
Collapse
|
36
|
Shoot Production and Mineral Nutrients of Five Microgreens as Affected by Hydroponic Substrate Type and Post-Emergent Fertilization. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7060129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
As a new specialty crop with high market value, microgreens are vegetable or herb seedlings consumed at a young age, 7–21 days after germination. They are known as functional food with high concentrations of mineral nutrients and health beneficial phytochemicals. Microgreen industry lacks standardized recommendations on cultural practices including species/variety selection, substrate choice, and fertilization management. This study evaluated shoot growth and mineral nutrient concentrations in five microgreens including four Brassica and one Raphanus microgreens as affected by four hydroponic pad types and post-emergent fertilization in two experiments in January and February 2020. The five microgreens varied in their shoot height, fresh, dry shoot weights, and mineral nutrient concentrations with radish producing the highest fresh and dry shoot weights. Radish had the highest nitrogen (N) concentration and mustard had the highest phosphorus (P) concentrations when grown with three hydroponic pads except for hemp mat. Hydroponic pad type altered fresh, dry shoot weights, and mineral nutrients in tested microgreens. Microgreens in hemp mat showed the highest shoot height, fresh, dry shoot weights, and potassium (K) concentration, but the lowest N concentration in one or two experiments. One time post-emergent fertilization generally increased shoot height, fresh, dry shoot weights, and macronutrient concentrations in microgreens.
Collapse
|
37
|
Desaulniers Brousseau V, Wu BS, MacPherson S, Morello V, Lefsrud M. Cannabinoids and Terpenes: How Production of Photo-Protectants Can Be Manipulated to Enhance Cannabis sativa L. Phytochemistry. FRONTIERS IN PLANT SCIENCE 2021; 12:620021. [PMID: 34135916 PMCID: PMC8200639 DOI: 10.3389/fpls.2021.620021] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/07/2021] [Indexed: 05/02/2023]
Abstract
Cannabis sativa L. is cultivated for its secondary metabolites, of which the cannabinoids have documented health benefits and growing pharmaceutical potential. Recent legal cannabis production in North America and Europe has been accompanied by an increase in reported findings for optimization of naturally occurring and synthetic cannabinoid production. Of the many environmental cues that can be manipulated during plant growth in controlled environments, cannabis cultivation with different lighting spectra indicates differential production and accumulation of medically important cannabinoids, including Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiol (CBD), and cannabigerol (CBG), as well as terpenes and flavonoids. Ultraviolet (UV) radiation shows potential in stimulating cannabinoid biosynthesis in cannabis trichomes and pre-harvest or post-harvest UV treatment merits further exploration to determine if plant secondary metabolite accumulation could be enhanced in this manner. Visible LED light can augment THC and terpene accumulation, but not CBD. Well-designed experiments with light wavelengths other than blue and red light will provide more insight into light-dependent regulatory and molecular pathways in cannabis. Lighting strategies such as subcanopy lighting and varied light spectra at different developmental stages can lower energy consumption and optimize cannabis PSM production. Although evidence demonstrates that secondary metabolites in cannabis may be modulated by the light spectrum like other plant species, several questions remain for cannabinoid production pathways in this fast-paced and growing industry. In summarizing recent research progress on light spectra and secondary metabolites in cannabis, along with pertinent light responses in model plant species, future research directions are presented.
Collapse
Affiliation(s)
| | | | | | | | - Mark Lefsrud
- Department of Bioresource Engineering, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| |
Collapse
|
38
|
Hu G, Yue X, Song J, Xing G, Chen J, Wang H, Su N, Cui J. Calcium Positively Mediates Blue Light-Induced Anthocyanin Accumulation in Hypocotyl of Soybean Sprouts. FRONTIERS IN PLANT SCIENCE 2021; 12:662091. [PMID: 34122484 PMCID: PMC8194075 DOI: 10.3389/fpls.2021.662091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Soybean sprouts are a flavorful microgreen that can be eaten all year round and are widely favored in Southeast Asia. In this study, the regulatory mechanism of calcium on anthocyanin biosynthesis in soybean sprouts under blue light was investigated. The results showed that blue light, with a short wavelength, effectively induced anthocyanin accumulation in the hypocotyl of soybean sprout cultivar "Dongnong 690." Calcium supplementation further enhanced anthocyanin content, which was obviously inhibited by LaCl3 and neomycin treatment. Moreover, exogenous calcium changed the metabolism of anthocyanins, and seven anthocyanin compounds were detected. The trend of calcium fluorescence intensity in hypocotyl cells, as well as that of the inositol 1,4,5-trisphosphate and calmodulin content, was consistent with that of anthocyanins content. Specific spatial distribution patterns of calcium antimonate precipitation were observed in the ultrastructure of hypocotyl cells under different conditions. Furthermore, calcium application upregulated the expression of genes related to anthocyanin biosynthesis, and calcium inhibitors suppressed these genes. Finally, transcriptomics was performed to gain global insights into the molecular regulation mechanism of calcium-associated anthocyanin production. Genes from the flavonoid biosynthesis pathway were distinctly enriched among the differentially expressed genes, and weighted gene co-expression network analysis showed that two MYBs were related to the accumulation of anthocyanins. These results indicated that calcium released from apoplast and intracellular stores in specific spatial-temporal features promote blue light-induced anthocyanin accumulation by upregulation of the expression of genes related to anthocyanin synthesis of "Dongnong 690" hypocotyl. The findings deepen the understanding of the calcium regulation mechanism of blue light-induced anthocyanin accumulation in soybean sprouts, which will help growers produce high-quality foods beneficial for human health.
Collapse
|
39
|
LED Lighting and High-Density Planting Enhance the Cost-Efficiency of Halimione Portulacoides Extraction Units for Integrated Aquaculture. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11114995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Halophytes are salt-tolerant plants that can be used to extract dissolved inorganic nutrients from saline aquaculture effluents under a production framework commonly known as Integrated Multi-Trophic Aquaculture (IMTA). Halimione portulacoides (L.) Aellen (common name: sea purslane) is an edible saltmarsh halophyte traditionally consumed by humans living near coastal wetlands and is considered a promising extractive species for IMTA. To better understand its potential for IMTA applications, the present study investigates how artificial lighting and plant density affect its productivity and capacity to extract nitrogen and phosphorous in hydroponic conditions that mimic aquaculture effluents. Plant growth was unaffected by the type of artificial lighting employed—white fluorescent lights vs. blue-white LEDs—but LED systems were more energy-efficient, with a 17% reduction in light energy costs. Considering planting density, high-density units of 220 plants m−2 produced more biomass per unit of area (54.0–56.6 g m−2 day−1) than did low-density units (110 plants m−2; 34.4–37.1 g m−2 day−1) and extracted more dissolved inorganic nitrogen and phosphorus. Overall, H. portulacoides can be easily cultivated hydroponically using nutrient-rich saline effluents, where LEDs can be employed as an alternative to fluorescent lighting and high-density planting can promote higher yields and extraction efficiencies.
Collapse
|
40
|
Ontogenetic Variation in the Mineral, Phytochemical and Yield Attributes of Brassicaceous Microgreens. Foods 2021; 10:foods10051032. [PMID: 34068729 PMCID: PMC8151805 DOI: 10.3390/foods10051032] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/17/2022] Open
Abstract
Microgreens constitute novel gastronomic ingredients that combine visual, kinesthetic and bioactive qualities. The definition of the optimal developmental stage for harvesting microgreens remains fluid. Their superior phytochemical content against mature leaves underpins the current hypothesis of significant changes in compositional profile during the brief interval of ontogeny from the appearance of the first (S1) to the second true leaf (S2). Microgreens of four brassicaceous genotypes (Komatsuna, Mibuna, Mizuna and Pak Choi) grown under controlled conditions and harvested at S1 and S2 were appraised for fresh and dry yield traits. They were further analyzed for macro- and micromineral content using inductively coupled plasma optical emission spectrometry (ICP-OES), carotenoid content using high-performance liquid chromatography with a diode-array detector (HPLC-DAD), volatile organic compounds using solid-phase microextraction followed by gas chromatography-mass spectrometry (SPME-GC/MS), anthocyanins and polyphenols using liquid chromatography-high resolution-tandem mass spectrometry (LC-MS/MS) with Orbitrap technology and for chlorophyll and ascorbate concentrations, well as antioxidant capacity by spectrophotometry. Analysis of compositional profiles revealed genotype as the principal source of variation for all constituents. The response of mineral and phytochemical composition and of antioxidant capacity to the growth stage was limited and largely genotype-dependent. It is, therefore, questionable whether delaying harvest from S1 to S2 would significantly improve the bioactive value of microgreens while the cost-benefit analysis for this decision must be genotype-specific. Finally, the lower-yielding genotypes (Mizuna and Pak Choi) registered higher relative increase in fresh yield between S1 and S2, compared to the faster-growing and higher-yielding genotypes. Although the optimal harvest stage for specific genotypes must be determined considering the increase in yield against reduction in crop turnover, harvesting at S2 seems advisable for the lower-yielding genotypes.
Collapse
|
41
|
Quality Evaluation of Indoor-Grown Microgreens Cultivated on Three Different Substrates. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7050096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The microgreens are innovative products in the horticultural sector. They are appreciated by consumers thanks to their novelty and health-related benefits, having a high antioxidant concentration. This produce can be adopted for indoor production using hydroponic systems. The aim of the present work was to investigate the influence of three growing media (vermiculite, coconut fiber, and jute fabric) on yield and quality parameters of two basil varieties (Green basil—Ocimum basilicum L., Red basil—Ocimum basilicum var. Purpurecsens) and rocket (Eruca sativa Mill.) as microgreens. Microgreens were grown in floating, in a Micro Experimental Growing (MEG®) system equipped with LED lamps, with modulation of both energy and spectra of the light supplied to plants. Results showed high yield, comprised from 2 to 3 kg m−2. Nutritional quality varied among species and higher antioxidant compounds were found in red basil on vermiculite and jute. Coconut fiber allowed the differentiation of crop performance in terms of sucrose and above all nitrate. In particular, our results point out that the choice of the substrate significantly affected the yield, the dry matter percentage and the nitrate concentration of microgreens, while the other qualitative parameters were most influenced by the species.
Collapse
|
42
|
Alrifai O, Hao X, Liu R, Lu Z, Marcone MF, Tsao R. LED-Induced Carotenoid Synthesis and Related Gene Expression in Brassica Microgreens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4674-4685. [PMID: 33861063 DOI: 10.1021/acs.jafc.1c00200] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, various ratios of combined red, blue, and amber light-emitting diodes (rbaLEDs) were investigated for their effect on the expression of carotenoid biosynthetic genes and carotenoid accumulation in eight Brassica microgreens. Total and individual (β-carotene, lutein, α-carotene, neoxanthin, and violaxanthin) carotenoids were increased 20-44 and 10-55%, respectively, under dose-dependent increasing amber-blue light and decreasing red in most microgreens. Lipophilic 2,2-diphenyl-1-picrylhydrazyl and ferric reducing antioxidant power antioxidant activities were significantly increased under higher amber and blue light fractions, while oxygen radical absorbance capacity was generally decreased. Under rbaLED in mizuna (B. rapa) microgreens, the lycopene epsilon cyclase (LYCε) expression was 10-15-fold higher, which resulted in downstream accumulation of α-carotene and lutein. Lycopene beta cyclase (LYCβ) was not significantly changed, suggesting that β-carotene, violaxanthin and neoxanthin were mainly controlled by upstream phytoene synthase and branch-point LYCε. Increased beta-ring carotenoid hydroxylase (CHXβ) expression was also consistent with lutein accumulation. This study demonstrated for the first time that amber LED was involved in the regulatory mechanism of carotenoid biosynthesis, thus a potential novel approach to production of antioxidant-rich microgreens.
Collapse
Affiliation(s)
- Oday Alrifai
- Guelph Research & Development Center, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
- Department of Food Science, Ontario Agricultural College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Xiuming Hao
- Harrow Research & Development Center, Agriculture and Agri-Food Canada, 2585 County Road 20, Harrow, Ontario N0R 1G0, Canada
| | - Ronghua Liu
- Guelph Research & Development Center, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
| | - Zhanhui Lu
- Guelph Research & Development Center, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
| | - Massimo F Marcone
- Department of Food Science, Ontario Agricultural College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Rong Tsao
- Guelph Research & Development Center, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
| |
Collapse
|
43
|
Brazaitytė A, Miliauskienė J, Vaštakaitė-Kairienė V, Sutulienė R, Laužikė K, Duchovskis P, Małek S. Effect of Different Ratios of Blue and Red LED Light on Brassicaceae Microgreens under a Controlled Environment. PLANTS 2021; 10:plants10040801. [PMID: 33921895 PMCID: PMC8073284 DOI: 10.3390/plants10040801] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 11/24/2022]
Abstract
The consumption of microgreens has increased due to their having higher levels of bioactive compounds and mineral nutrients than mature plants. The lighting conditions during the cultivation of microgreens, if optimally selected, can have a positive effect by further increasing their nutritional value. Thus, our study aimed to determine the changes in mineral nutrients contents of Brassicaceae microgreens depending on different blue–red (B:R) light ratios in light-emitting diode (LED) lighting and to evaluate their growth and nutritional value according to different indexes. Experiments were performed in controlled environment growth chambers at IH LRCAF, 2020. Microgreens of mustard (Brassica juncea ‘Red Lace’) and kale (Brassica napus ‘Red Russian’) were grown hydroponically under different B:R light ratios: 0%B:100%R, 10%B:90%R, 25%B:75%R, 50%B:50%R, 75%B:25%R, and 100%B:0%R. A 220 μmol m−2 s−1 total photon flux density (TPFD), 18 h photoperiod, 21/17 ± 2 °C temperature and 60% ± 5% relative humidity in the growth chamber were maintained during cultivation. We observed that an increasing percentage of blue light in the LED illumination spectrum during growth was associated with reduced elongation in the microgreens of both species and had a positive effect on the accumulation of mostly macro- and micronutrients. However, different B:R light ratios indicate a species-dependent response to changes in growth parameters such as leaf area, fresh and dry mass, and optical leaf indexes such as for chlorophyll, flavonol, anthocyanin, and carotenoid reflectance.
Collapse
Affiliation(s)
- Aušra Brazaitytė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Kaunas str. 30, LT-54333 Babtai, Lithuania; (J.M.); (V.V.-K.); (R.S.); (K.L.); (P.D.)
- Correspondence:
| | - Jurga Miliauskienė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Kaunas str. 30, LT-54333 Babtai, Lithuania; (J.M.); (V.V.-K.); (R.S.); (K.L.); (P.D.)
| | - Viktorija Vaštakaitė-Kairienė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Kaunas str. 30, LT-54333 Babtai, Lithuania; (J.M.); (V.V.-K.); (R.S.); (K.L.); (P.D.)
| | - Rūta Sutulienė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Kaunas str. 30, LT-54333 Babtai, Lithuania; (J.M.); (V.V.-K.); (R.S.); (K.L.); (P.D.)
| | - Kristina Laužikė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Kaunas str. 30, LT-54333 Babtai, Lithuania; (J.M.); (V.V.-K.); (R.S.); (K.L.); (P.D.)
| | - Pavelas Duchovskis
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Kaunas str. 30, LT-54333 Babtai, Lithuania; (J.M.); (V.V.-K.); (R.S.); (K.L.); (P.D.)
| | - Stanisław Małek
- Department of Ecology and Silviculture, Faculty of Forestry, University of Agriculture in Krakow, 31-425 Krakow, Poland;
| |
Collapse
|
44
|
Estimation of Glucosinolates and Anthocyanins in Kale Leaves Grown in a Plant Factory Using Spectral Reflectance. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7030056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The spectral reflectance technique for the quantification of the functional components was applied in different studies for different crops, but related research on kale leaves is limited. This study was conducted to estimate the glucosinolate and anthocyanin components of kale leaves cultivated in a plant factory based on diffuse reflectance spectroscopy through regression methods. Kale was grown in a plant factory under different treatments. After specific periods of transplantation, leaf samples were collected, and reflectance spectra were measured immediately from nine different points on each leaf. The same leaf samples were freeze-dried and stored for analysis of the functional components. Regression procedures, such as principal component regression (PCR), partial least squares regression (PLSR), and stepwise multiple linear regression (SMLR), were applied to relate the functional components with the spectral data. In the laboratory analysis, progoitrin and glucobrassicin, as well as cyanidin and malvidin, were found to be dominating components in glucosinolates and anthocyanins, respectively. From the overall analysis, the SMLR model showed better performance, and the identified wavelengths for estimating the glucosinolates and anthocyanins were in the early near-infrared (NIR) region. Specifically, reflectance at 742, 761, 787, 796, 805, 833, 855, 932, 947, and 1000 nm showed a strong correlation.
Collapse
|
45
|
Light Emitting Diodes (LEDs) as Agricultural Lighting: Impact and Its Potential on Improving Physiology, Flowering, and Secondary Metabolites of Crops. SUSTAINABILITY 2021. [DOI: 10.3390/su13041985] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A reduction in crop productivity in cultivable land and challenging environmental factors have directed advancement in indoor cultivation systems, such that the yield parameters are higher in outdoor cultivation systems. In wake of this situation, light emitting diode (LED) lighting has proved to be promising in the field of agricultural lighting. Properties such as energy efficiency, long lifetime, photon flux efficacy and flexibility in application make LEDs better suited for future agricultural lighting systems over traditional lighting systems. Different LED spectrums have varied effects on the morphogenesis and photosynthetic responses in plants. LEDs have a profound effect on plant growth and development and also control key physiological processes such as phototropism, the immigration of chloroplasts, day/night period control and the opening/closing of stomata. Moreover, the synthesis of bioactive compounds and antioxidants on exposure to LED spectrum also provides information on the possible regulation of antioxidative defense genes to protect the cells from oxidative damage. Similarly, LEDs are also seen to escalate the nutrient metabolism in plants and flower initiation, thus improving the quality of the crops as well. However, the complete management of the irradiance and wavelength is the key to maximize the economic efficacy of crop production, quality, and the nutrition potential of plants grown in controlled environments. This review aims to summarize the various advancements made in the area of LED technology in agriculture, focusing on key processes such as morphological changes, photosynthetic activity, nutrient metabolism, antioxidant capacity and flowering in plants. Emphasis is also made on the variation in activities of different LED spectra between different plant species. In addition, research gaps and future perspectives are also discussed of this emerging multidisciplinary field of research and its development.
Collapse
|
46
|
Wojdyło A, Nowicka P, Tkacz K, Turkiewicz IP. Fruit tree leaves as unconventional and valuable source of chlorophyll and carotenoid compounds determined by liquid chromatography-photodiode-quadrupole/time of flight-electrospray ionization-mass spectrometry (LC-PDA-qTof-ESI-MS). Food Chem 2021; 349:129156. [PMID: 33581431 DOI: 10.1016/j.foodchem.2021.129156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/18/2020] [Accepted: 01/18/2021] [Indexed: 10/22/2022]
Abstract
This study focused on the identification (by LC-PDA-qTof-ESI-MS) and quantification (by UPLC-PDA) of isoprenoids of the fruit tree leaves (FTL) of commonly consumed fruits: apple, pears, quince, apricot, peach, plums, sweet and sour cherry. The FTL were collected at 2 time points: after tree blooming and after fruit collection. In FTL 7 carotenoids and 16 chlorophylls were identified, but the number of labeled chlorophyll compounds depended on the species. FTL of apple, sour cherry and apricot were identified as the best sources of chlorophylls (mean 404.8, 388.7 and 364.5 mg/100 g dw, respectively) and sweet and sour cherry leaves as the best sources of carotenoids (831.4 and 1162.0 mg/100 g dw, respectively). A lower content of chlorophylls and carotenoids, but not significantly, was detected in leaves after autumn collection of fruits compared to leaves collected after blooming. Fruit tree leaves are good material for isolation of chlorophylls and carotenoids for application in cosmetics, pharmaceuticals or in the food industry, e.g. production of beverages or puree.
Collapse
Affiliation(s)
- Aneta Wojdyło
- Wrocław University of Environmental and Life Sciences, Department of Fruit, Vegetable and Plant Nutraceutical Technology, 37 Chełmońskiego Street, 51-630 Wrocław, Poland
| | - Paulina Nowicka
- Wrocław University of Environmental and Life Sciences, Department of Fruit, Vegetable and Plant Nutraceutical Technology, 37 Chełmońskiego Street, 51-630 Wrocław, Poland
| | - Karolina Tkacz
- Wrocław University of Environmental and Life Sciences, Department of Fruit, Vegetable and Plant Nutraceutical Technology, 37 Chełmońskiego Street, 51-630 Wrocław, Poland
| | - Igor Piotr Turkiewicz
- Wrocław University of Environmental and Life Sciences, Department of Fruit, Vegetable and Plant Nutraceutical Technology, 37 Chełmońskiego Street, 51-630 Wrocław, Poland
| |
Collapse
|
47
|
Fertilization and Pre-Sowing Seed Soaking Affect Yield and Mineral Nutrients of Ten Microgreen Species. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7020014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Microgreens, vegetable or herb seedlings consumed at a young growth stage, are considered to be a functional food with high concentrations of mineral nutrients and healthy beneficial bioactive compounds. The production of microgreens has been increasing in recent years. Vegetable growers are interested in growing microgreens as a new specialty crop due to their high market value, popularity, and short production cycles. However, there is a lack of research-based crop-specific recommendations for cultural practices including fertilization, pre-sowing seed treatments, and their effects on nutritional facts of microgreens. Ten microgreen species were evaluated for their shoot growth and mineral nutrient concentrations as affected by one-time post-emergence fertilization and pre-sowing seed soaking in two repeated experiments, from November 2018 to January 2019, in a greenhouse. The microgreen species varied in fresh and dry shoot weights, shoot height, visual rating, as well as macro- and micro-nutrient concentrations. Fertilization with a general-purpose soluble fertilizer (20-20-20 with micronutrients) at a rate of 100 mg·L−1 nitrogen (N) increased fresh shoot weight, and macro- and micro-nutrient concentrations in one or both experiments, with the exception of decreasing concentrations of calcium (Ca), magnesium (Mg), and manganese (Mn). Seed soaking consistently decreased fresh or dry shoot weight and nutrient concentrations when there was a significant effect.
Collapse
|
48
|
Warner R, Wu BS, MacPherson S, Lefsrud M. A Review of Strawberry Photobiology and Fruit Flavonoids in Controlled Environments. FRONTIERS IN PLANT SCIENCE 2021; 12:611893. [PMID: 33633764 PMCID: PMC7902047 DOI: 10.3389/fpls.2021.611893] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/06/2021] [Indexed: 05/03/2023]
Abstract
Rapid technology development in controlled environment (CE) plant production has been applied to a large variety of plants. In recent years, strawberries have become a popular fruit for CE production because of their high economic and nutritional values. With the widespread use of light-emitting diode (LED) technology in the produce industry, growers can manipulate strawberry growth and development by providing specific light spectra. Manipulating light intensity and spectral composition can modify strawberry secondary metabolism and highly impact fruit quality and antioxidant properties. While the impact of visible light on secondary metabolite profiles for other greenhouse crops is well documented, more insight into the impact of different light spectra, from UV radiation to the visible light spectrum, on strawberry plants is required. This will allow growers to maximize yield and rapidly adapt to consumer preferences. In this review, a compilation of studies investigating the effect of light properties on strawberry fruit flavonoids is provided, and a comparative analysis of how light spectra influences strawberry's photobiology and secondary metabolism is presented. The effects of pre-harvest and post-harvest light treatments with UV radiation and visible light are considered. Future studies and implications for LED lighting configurations in strawberry fruit production for researchers and growers are discussed.
Collapse
|
49
|
Zhang S, Zhang L, Zou H, Qiu L, Zheng Y, Yang D, Wang Y. Effects of Light on Secondary Metabolite Biosynthesis in Medicinal Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:781236. [PMID: 34956277 PMCID: PMC8702564 DOI: 10.3389/fpls.2021.781236] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/17/2021] [Indexed: 05/16/2023]
Abstract
Secondary metabolites (SMs) found in medicinal plants are one of main sources of drugs, cosmetics, and health products. With the increase in demand for these bioactive compounds, improving the content and yield of SMs in medicinal plants has become increasingly important. The content and distribution of SMs in medicinal plants are closely related to environmental factors, especially light. In recent years, artificial light sources have been used in controlled environments for the production and conservation of medicinal germplasm. Therefore, it is essential to elucidate how light affects the accumulation of SMs in different plant species. Here, we systematically summarize recent advances in our understanding of the regulatory roles of light quality, light intensity, and photoperiod in the biosynthesis of three main types of SMs (polyphenols, alkaloids, and terpenoids), and the underlying mechanisms. This article provides a detailed overview of the role of light signaling pathways in SM biosynthesis, which will further promote the application of artificial light sources in medicinal plant production.
Collapse
Affiliation(s)
- Shuncang Zhang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Lei Zhang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Haiyan Zou
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Lin Qiu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Yuwei Zheng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Dongfeng Yang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- *Correspondence: Dongfeng Yang,
| | - Youping Wang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
- Youping Wang,
| |
Collapse
|
50
|
Loi M, Villani A, Paciolla F, Mulè G, Paciolla C. Challenges and Opportunities of Light-Emitting Diode (LED) as Key to Modulate Antioxidant Compounds in Plants. A Review. Antioxidants (Basel) 2020; 10:antiox10010042. [PMID: 33396461 PMCID: PMC7824119 DOI: 10.3390/antiox10010042] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 12/24/2020] [Accepted: 12/27/2020] [Indexed: 02/08/2023] Open
Abstract
Plant antioxidants are important compounds involved in plant defense, signaling, growth, and development. The quantity and quality of such compounds is genetically driven; nonetheless, light is one of the factors that strongly influence their synthesis and accumulation in plant tissues. Indeed, light quality affects the fitness of the plant, modulating its antioxidative profile, a key element to counteract the biotic and abiotic stresses. With this regard, light-emitting diodes (LEDs) are emerging as a powerful technology which allows the selection of specific wavelengths and intensities, and therefore the targeted accumulation of plant antioxidant compounds. Despite the unique advantages of such technology, LED application in the horticultural field is still at its early days and several aspects still need to be investigated. This review focused on the most recent outcomes of LED application to modulate the antioxidant compounds of plants, with particular regard to vitamin C, phenols, chlorophyll, carotenoids, and glucosinolates. Additionally, future challenges and opportunities in the use of LED technology in the growth and postharvest storage of fruits and vegetables were also addressed to give a comprehensive overview of the future applications and trends of research.
Collapse
Affiliation(s)
- Martina Loi
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70126 Bari, Italy
| | - Alessandra Villani
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70126 Bari, Italy
- Department of Biology, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Francesco Paciolla
- Automation Engineering, Polytechnic of Bari, Via E. Orabona 4, 70125 Bari, Italy
| | - Giuseppina Mulè
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70126 Bari, Italy
| | - Costantino Paciolla
- Department of Biology, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|