1
|
Wang W, Li Q, Cui M, Shen D, Mo R, Tang F, Liu Y. Integrating widely targeted metabolomics and network pharmacology to provide insights into the mechanism of nutrition changes in walnut kernel under different drying methods. Food Chem 2025; 485:144498. [PMID: 40288341 DOI: 10.1016/j.foodchem.2025.144498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 04/18/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
The effect of drying temperature on nutritional metabolite profiles and health benefits in pellicle-free walnut kernels (WKs) remains unclear. This work used widely-targeted metabolomics to identify 1888 metabolites in WKs following three different drying methods. Among these, 697 temperature-sensitive metabolites (TSMs) were identified as key differential nutrition changes induced by drying temperature. Walnut kernels dried by hot-air drying with 80 °C (HD) had much higher antioxidant activity (around 155 %) than the other two drying methods. Based on WGCNA analysis, 249 significantly upregulated antioxidant contribution metabolites (ACMs) were identified as the primary contributors to the improved performance. Network pharmacology further revealed that these metabolites exhibit strong regulatory capabilities against neurological diseases, cardiovascular diseases, and cancer, providing optimal health benefits. A metabolic pathway network was constructed to provide insights into the potential mechanisms underlying the drying process in WKs. This work provides a theoretical basis for enhancing the quality of WKs.
Collapse
Affiliation(s)
- Wenwei Wang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
| | - Qingyang Li
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China; Institute of Pesticide and Environmental Toxicology, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Maokai Cui
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
| | - Danyu Shen
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
| | - Runhong Mo
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
| | - Fubin Tang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China
| | - Yihua Liu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Fuyang 311400, PR China.
| |
Collapse
|
2
|
Zhang Y, Lu Y, Zhao Y, Wu W, Zhang N, Zhang Y, Fu Y. The potential of food-derived peptides in alleviating depressed mood: Function, evaluation and mechanism. Food Res Int 2025; 211:116520. [PMID: 40356154 DOI: 10.1016/j.foodres.2025.116520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/25/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025]
Abstract
Food-derived peptides offer a promising approach to alleviating depressive symptoms due to their safety and natural origin, avoiding the adverse side effects of conventional pharmacological treatments. This review aims to explore their potential in mitigating depressive symptoms. Antidepressant peptides from both animal and plant sources have been reviewed, while the animal models and evaluation methods used to assess their efficacy have been summarized. The review highlights four major mechanisms underlying their effects, namely modulation of gut microbiota and production of neuroactive metabolites, alteration of molecules associated with nervous system, normalization of hypothalamic-pituitary-adrenal axis dysregulation to reduce cortisol production, and suppression of pro-inflammatory cytokines linked to neuroinflammation. It also highlights the role of gut-brain axis in mediating the mechanisms, which has been insufficiently elucidated. However, the efficacy of antidepressant peptides for clinical use has not been established. The present review provides a reference for developing dietary interventions with food-derived peptides to supplement current therapeutic approaches.
Collapse
Affiliation(s)
- Yan Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Yujia Lu
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
| | - Yuchen Zhao
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
| | - Wei Wu
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Na Zhang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| |
Collapse
|
3
|
Gong H, Zhao H, Mao X. Sea Cucumber Hydrolysates Alleviate Cognitive Deficits in D-Galactose-Induced C57BL/6J Aging Mice Associated with Modulation of Gut Microbiota. Foods 2025; 14:1938. [PMID: 40509464 PMCID: PMC12154004 DOI: 10.3390/foods14111938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2025] [Revised: 05/20/2025] [Accepted: 05/22/2025] [Indexed: 06/16/2025] Open
Abstract
As the global elderly population is rising, concerns about cognitive decline and memory loss are becoming urgent. This study evaluated the potential of sea cucumber hydrolysates (SCH) from Stichopus japonicus in alleviating cognitive deficits using a D-galactose-induced murine aging model. The effects of SCH on behavior, hippocampal morphology, gut microbiota, hippocampal cholinergic system, brain-derived neurotrophic factor (BDNF) signaling, and neuroinflammatory pathways were investigated. Results showed that SCH ameliorated learning and memory deficits and reduced neuronal damage in aging mice. SCH also modulated gut microbiota, along with increased fecal short-chain fatty acids levels. Functional prediction revealed that alterations in gut microbiota were related to signal transduction. Further, SCH enhanced hippocampal cholinergic function through elevating acetylcholine (ACh) levels and inhibiting acetylcholinesterase (AChE) activity and activated BDNF signaling, consistent with predictions of gut microbiota function. Restoration of cholinergic homeostasis and transmission of the BDNF pathway might contribute to the inhibition of hippocampal neuroinflammation via suppressing microglial activation and the nuclear factor kappa-B (NF-κB) pathway. In summary, SCH attenuated cognitive deficits through suppressing neuroinflammation, which might be correlated with the signal transduction caused by regulating gut microbiota. Further validation will be conducted through microbiota depletion and fecal microbiota transplantation. These findings suggest that SCH is a promising functional component for counteracting aging-related cognitive deficits.
Collapse
Affiliation(s)
| | | | - Xueying Mao
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (H.G.); (H.Z.)
| |
Collapse
|
4
|
Zheng W, Li Y, Wang Y, He J, Zhao Q, Huang A. Identification of a novel peptide with anti-inflammatory activity from Binglangjiang buffalo fermented milk and its potential inhibitory mechanism in lipopolysaccharide-stimulated RAW264.7 cells. Food Chem 2025; 468:142451. [PMID: 39700804 DOI: 10.1016/j.foodchem.2024.142451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/08/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Binglangjiang buffalo fermented milk (BBFM) is rich in bioactive peptides and exhibits significant immunomodulatory activity, although the specific components and effects are not well understood. In this study, we investigated the anti-inflammatory activity peptides from BBFM using peptidomics and proteomics. A total of 769 peptides were identified using LC-MS/MS. Among these, a novel peptide (GPGAPADPGRPTG (GG13)), was screened out using LPS-stimulated RAW264.7 cells. The molecular weight of peptide GG13 was 1149.56 Da, and it exhibited high in-vitro safety and thermal stability. Furthermore, ELISA and Western blot analysis showed that peptide GG13 significantly inhibited the secretion of pro-inflammatory cytokines NO and TNF-α, as well as the expression of proteins iNOS and TNF-α in LPS-stimulated RAW264.7 cells, and proteomics analysis showed that peptide GG13 significantly down-regulated the protein expression of STAT1, NOS2, COX2, and CD40. The study provides a basis for further explore the development of health fermented milk products.
Collapse
Affiliation(s)
- Wentao Zheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yufang Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yuzhu Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Jinze He
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Qiong Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China.
| | - Aixiang Huang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| |
Collapse
|
5
|
Mesias A, Borges S, Pintado M, Baptista-Silva S. Bioactive peptides as multipotent molecules bespoke and designed for Alzheimer's disease. Neuropeptides 2025; 111:102515. [PMID: 40056763 DOI: 10.1016/j.npep.2025.102515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/21/2025] [Accepted: 03/02/2025] [Indexed: 03/10/2025]
Abstract
In an increasingly aging world where neurodegenerative diseases (NDs) are exponentially rising, research into more effective and innovative treatments seems paramount. Bioactive peptides (BPs) emerge as promising compounds with revolutionary potential in the treatment of NDs, particularly in well-known conditions like Alzheimer's disease (AD). The biological potential of these compounds is primarily attributed to their drug development advantages such as enhanced penetration, low toxicity, and rapid clearance, as well as, their antioxidant, and anti-inflammatory properties bio-linked to the neuroprotective effect, able to attenuate the multifactorial pathologies of AD. BPs can be sourced from common dietary origins, like animals, plants, marine, and from emerging sources like edible insects. However, to isolate an active BP with beneficial biological effects it must first be released from its parent protein, followed by a synthesis-flow. While in silico approaches can predict a BP's potential bioactivity and structural characteristics, in vitro, cell-based, and in vivo assays should be conducted to ensure these properties. The blood-brain-barrier (BBB) microenvironment and permeability in health or disease state are key factors to consider since they can limit the ability of circulating therapeutical agents, including BPs, to reach the brain. This review focuses on the bioactivity properties of BPs from different dietary protein sources and explores their beneficial effect and neuroprotective activity in AD, unraveling new paths of treatment.
Collapse
Affiliation(s)
- Ana Mesias
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Sandra Borges
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Sara Baptista-Silva
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
6
|
Peng P, Yu H, Xian M, Qu C, Guo Z, Li S, Zhu Z, Xiao J. Preparation of Acetylcholinesterase Inhibitory Peptides from Yellowfin Tuna Pancreas Using Moderate Ultrasound-Assisted Enzymatic Hydrolysis. Mar Drugs 2025; 23:75. [PMID: 39997199 PMCID: PMC11857449 DOI: 10.3390/md23020075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
Bioactive peptides represent a promising therapeutic approach for Alzheimer's disease (AD) by maintaining cholinergic system homeostasis through the inhibition of acetylcholinesterase (AChE) activity. This study focused on extracting AChE inhibitory peptides from yellowfin tuna pancreas using moderate ultrasound-assisted enzymatic hydrolysis (MUE). Firstly, papain and MUE stood out from five enzymes and four enzymatic hydrolysis methods, respectively, by comparing the degree of hydrolysis and AChE inhibitory activity of different pancreatic protein hydrolysates. Subsequently, the optimal MUE conditions were obtained by single-factor, Plackett-Burman, and response surface methodologies. The pancreatic protein hydrolysate prepared under optimal MUE conditions was then purified by ultrafiltration followed by RP-HPLC, from which a novel AChE inhibitory peptide (LLDF) was identified by LC-MS/MS and virtual screening. LLDF effectively inhibited AChE activity by a competitive inhibition mechanism, with an IC50 of 18.44 ± 0.24 μM. Molecular docking and molecular dynamic simulation revealed that LLDF bound robustly to the active site of AChE via hydrogen bonds. These findings provided a theoretical basis for the valuable use of yellowfin tuna pancreas and introduced a new viewpoint on the potential therapeutic advantages of AChE inhibitory peptides for future AD treatment.
Collapse
Affiliation(s)
- Pai Peng
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (P.P.); (H.Y.); (M.X.); (C.Q.)
| | - Hui Yu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (P.P.); (H.Y.); (M.X.); (C.Q.)
| | - Meiting Xian
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (P.P.); (H.Y.); (M.X.); (C.Q.)
| | - Caiye Qu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (P.P.); (H.Y.); (M.X.); (C.Q.)
| | - Zhiqiang Guo
- School of Marine Science and Engineering, Hainan University, Haikou 570228, China;
| | - Shuyi Li
- National R&D Center for Se-Rich Agricultural Products, Processing, Hubei Engineering Research Center for Deep Processing of Green, Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (S.L.); (Z.Z.)
| | - Zhenzhou Zhu
- National R&D Center for Se-Rich Agricultural Products, Processing, Hubei Engineering Research Center for Deep Processing of Green, Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (S.L.); (Z.Z.)
| | - Juan Xiao
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Seafood Processing of Haikou, School of Food Science and Engineering, Hainan University, Haikou 570228, China; (P.P.); (H.Y.); (M.X.); (C.Q.)
| |
Collapse
|
7
|
Liu X, Mao S, Yuan Y, Wang Z, Tian Y, Tao L, Dai J. Antin-diabetic cognitive dysfunction effects and underpinning mechanisms of phytogenic bioactive peptides: a review. Front Nutr 2025; 11:1517087. [PMID: 39867560 PMCID: PMC11758632 DOI: 10.3389/fnut.2024.1517087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/10/2024] [Indexed: 01/28/2025] Open
Abstract
Diabetic cognitive dysfunction is one of the important comorbidities and complications of diabetes, which is mainly manifested by loss of learning ability and memory, behavioural disorders, and may even develop into dementia. While traditional anti-diabetic medications are effective in improving cognition and memory, long-term use of these medications can be accompanied by undesirable side effects. Therefore, there is an urgent need to find safe and effective alternative therapies. Accumulating evidence suggests that phytogenic bioactive peptides play an important role in the regulation of cognitive dysfunction in diabetes. In this review, we explored the relationship between diabetes mellitus and cognitive dysfunction, and the potential and underlying mechanisms of plant-derived bioactive peptides to improve diabetic cognitive dysfunction. We found that plant-derived active peptides alleviate diabetic cognitive impairment by inhibiting key enzymes (e.g., α-glucosidase, α-amylase) to improve blood glucose levels and increase antioxidant activity, modulate inflammatory mediators, and address intestinal dysbiosis. In conclusion, plant-derived active peptides show strong potential to improve diabetic cognitive impairment.
Collapse
Affiliation(s)
- Xiaoli Liu
- College of Food Science and Technology, Yunan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Shenglian Mao
- College of Food Science and Technology, Yunan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Yuxue Yuan
- College of Food Science and Technology, Yunan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Zilin Wang
- College of Food Science and Technology, Yunan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Yang Tian
- College of Food Science and Technology, Yunan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
- Pu’er College, Pu’er, China
| | - Liang Tao
- College of Food Science and Technology, Yunan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Jiahe Dai
- College of Food Science and Technology, Yunan Agricultural University, Kunming, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
8
|
Obeme-Nmom JI, Abioye RO, Reyes Flores SS, Udenigwe CC. Regulation of redox enzymes by nutraceuticals: a review of the roles of antioxidant polyphenols and peptides. Food Funct 2024; 15:10956-10980. [PMID: 39465304 DOI: 10.1039/d4fo03549f] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Redox enzymes are essential components of the cellular defence system against oxidative stress, which is a common factor in various diseases. Therefore, understanding the role of bioactive nutraceuticals in modulating the activity of these enzymes holds immense therapeutic potential. This paper provides a comprehensive review of the regulation of redox enzymes in cell and animal models by food-derived bioactive nutraceuticals, focusing on polyphenols and peptides. Specifically, this paper discusses the regulation of superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), NAPDH oxidase, xanthine oxidase (XO), myeloperoxidase (MPO), and haem oxygenase (HO) in cell and animal models. Polyphenols, which are abundant in fruits, vegetables, and beverages, have diverse antioxidant properties, including direct scavenging of reactive oxygen species and regulation of transcription factors such as nuclear factor erythroid 2-related factor 2, which leads to the increased expression of the redoxenzymes SOD, HO, and GPx. Similarly, bioactive peptides from various food proteins can enhance antioxidative enzyme activity by regulating gene expression and directly activating the enzyme CAT. In other cases, an antioxidative response requires the downregulation or inhibition of the redox enzymes XO, MPO, and NAPDH oxidase. This paper highlights the potential of bioactive nutraceuticals in mitigating oxidative stress-related diseases and their mechanisms in modulating the redox enzyme expression or activity. Furthermore, the review highlights the need for further research to uncover new therapeutic strategies using nutraceuticals for enhancing cellular antioxidant defence mechanisms and improving health outcomes.
Collapse
Affiliation(s)
- Joy I Obeme-Nmom
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Raliat O Abioye
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Samanta S Reyes Flores
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
- Department of Chemical, Food and Environmental Engineering, University of the Americas Puebla, San Andrés Cholula 72810, Puebla, Mexico
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
- University Research Chair in Food Properties and Nutrient Bioavailability, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| |
Collapse
|
9
|
Torrecillas-Lopez M, Rivero-Pino F, Trigo P, Toscano-Sanchez R, Gonzalez-de la Rosa T, Villanueva A, Millan-Linares MC, Montserrat-de la Paz S, Claro-Cala CM. Immunomodulatory properties of hempseed oligopeptides in an LRRK2-associated Parkinson's disease animal model. Food Funct 2024; 15:11115-11128. [PMID: 39435853 DOI: 10.1039/d4fo03167a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, with genetic factors like mutations in the LRRK2 gene being a key cause of late-onset autosomal dominant parkinsonism. Nutritional strategies, such as using bioactive peptides with anti-inflammatory properties from sources like hemp protein, are gaining interest as an alternative to pharmacological therapies. In this study, we used an LRRK2-associated PD mouse model to test the efficacy of a hempseed protein hydrolysate (HPH60A + 15F) with antioxidant and anti-inflammatory properties. Mice were given HPH60A + 15F (10 mg kg-1 day-1) orally for 7 days. After treatment, brain tissue and macrophages were analyzed to assess neuroinflammation markers. Additionally, the neuroavailable peptidome was characterized using an in vitro model simulating the intestinal and blood-brain barriers. The oral treatment has been shown to reduce protein aggregates of α-syn, CD68, iNOS, and COX2 in the brain. The treatment also significantly lowered TNF-α gene expression in the striatum, with a notable reduction in the gene expression of other pro-inflammatory cytokines in bone marrow-derived macrophages (BMDMs), such as IL-1β or IL-6. The peptide TVTAMNVVYALK was proposed as a potential highly active peptide, able to exert anti-inflammatory effects in the brain. The results have shown that HPH60A + 15F is capable of alleviating neuroinflammation by reducing the expression of pro-inflammatory cytokines, which could have promising effects in PD.
Collapse
Affiliation(s)
- Maria Torrecillas-Lopez
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Spain.
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, 41013, Spain
| | - Fernando Rivero-Pino
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Spain.
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, 41013, Spain
- European Food Safety Authority, Nutrition and Food Innovation Unit, Novel Foods Team, Parma, Italy
| | - Paula Trigo
- Department of Pharmacology, Pediatrics, and Radiology, School of Medicine, Universidad de Sevilla, Av Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Rocio Toscano-Sanchez
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Spain.
| | - Teresa Gonzalez-de la Rosa
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Spain.
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, 41013, Spain
| | - Alvaro Villanueva
- Department of Food and Health, Instituto de la Grasa (IG-CSIC), C\Utrera Km 1, Campus Universitario Pablo de Olavide, Building 46, Seville, 41013, Spain
| | - M Carmen Millan-Linares
- Department of Food and Health, Instituto de la Grasa (IG-CSIC), C\Utrera Km 1, Campus Universitario Pablo de Olavide, Building 46, Seville, 41013, Spain
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Spain.
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, 41013, Spain
| | - Carmen M Claro-Cala
- Department of Pharmacology, Pediatrics, and Radiology, School of Medicine, Universidad de Sevilla, Av Sanchez Pizjuan s/n, 41009 Seville, Spain
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, 41013, Spain
| |
Collapse
|
10
|
Lim DW, Lee JE, Lee C, Kim YT. Natural Products and Their Neuroprotective Effects in Degenerative Brain Diseases: A Comprehensive Review. Int J Mol Sci 2024; 25:11223. [PMID: 39457003 PMCID: PMC11508681 DOI: 10.3390/ijms252011223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
As the global population ages, the incidence of neurodegenerative diseases such as Alzheimer's and Parkinson's is rapidly rising. These diseases present a significant public health challenge, as they severely impair cognitive and motor functions, ultimately leading to a substantial reduction in quality of life and placing a heavy burden on healthcare systems worldwide. Although several therapeutic agents have been developed to manage the symptoms of these diseases, their effectiveness is often limited, and there remains an urgent need for preventive strategies. Growing evidence indicates that bioactive compounds from natural products possess neuroprotective properties through antioxidant and anti-inflammatory effects, modulating key pathways such as phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) and brain-derived neurotrophic factor-tropomyosin receptor kinase B-cAMP response element-binding protein (BDNF-TrkB-CREB), which are crucial for neuronal survival. These compounds may also reduce amyloid-beta and tau pathology, as well as enhance cholinergic neurotransmission by inhibiting acetylcholinesterase activity. By targeting oxidative stress, neuroinflammation, and neurodegeneration, natural products offer a promising approach for both prevention and treatment. These findings suggest that natural products may be promising for preventing and treating neurodegenerative diseases. This review aims to explore the pathogenesis of neurodegenerative diseases, the limitations of current therapies, and the potential role of natural products as therapeutic agents.
Collapse
Affiliation(s)
| | | | | | - Yun Tai Kim
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Republic of Korea; (D.W.L.); (J.-E.L.); (C.L.)
| |
Collapse
|
11
|
Pan Y, Zhang H, Zhu L, Tan J, Wang B, Li M. The role of gut microbiota in MP/NP-induced toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124742. [PMID: 39153541 DOI: 10.1016/j.envpol.2024.124742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Microplastics (MPs) and nanoplastics (NPs) are globally recognized as emerging environmental pollutants in various environmental media, posing potential threats to ecosystems and human health. MPs/NPs are unavoidably ingested by humans, mainly through contaminated food and drinks, impairing the gastrointestinal ecology and seriously impacting the human body. The specific role of gut microbiota in the gastrointestinal tract upon MP/NP exposure remains unknown. Given the importance of gut microbiota in metabolism, immunity, and homeostasis, this review aims to enhance our current understanding of the role of gut microbiota in MP/NP-induced toxicity. First, it discusses human exposure to MPs/NPs through the diet and MP/NP-induced adverse effects on the respiratory, digestive, neural, urinary, reproductive, and immune systems. Second, it elucidates the complex interactions between the gut microbiota and MPs/NPs. MPs/NPs can disrupt gut microbiota homeostasis, while the gut microbiota can degrade MPs/NPs. Third, it reveals the role of the gut microbiota in MP/NP-mediated systematic toxicity. MPs/NPs cause direct intestinal toxicity and indirect toxicity in other organs via regulating the gut-brain, gut-liver, and gut-lung axes. Finally, novel approaches such as dietary interventions, prebiotics, probiotics, polyphenols, engineered bacteria, microalgae, and micro/nanorobots are recommended to reduce MP/NP toxicity in humans. Overall, this review provides a theoretical basis for targeting the gut microbiota to study MP/NP toxicity and develop novel strategies for its mitigation.
Collapse
Affiliation(s)
- Yinping Pan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, PR China
| | - Haojie Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, PR China
| | - Liancai Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, PR China.
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological & Chemical engineering, Chongqing University of Education, Chongqing, 400067, PR China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, PR China
| | - Minghui Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, PR China; Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China.
| |
Collapse
|
12
|
Lee CH, Hamdan N, Nyakuma BB, Wong SL, Wong KY, Tan H, Jamaluddin H, Lee TH. Purification, identification and molecular docking studies of antioxidant and anti-inflammatory peptides from Edible Bird's Nest. Food Chem 2024; 454:139797. [PMID: 38797099 DOI: 10.1016/j.foodchem.2024.139797] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/27/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
This study investigated antioxidant and anti-inflammatory peptides from Edible Bird's Nest (EBN). The prepared EBN peptides were sequentially separated, purified, and successively identified by ultrafiltration, gel filtration and mass spectrometry techniques. Four potential antioxidant and anti-inflammatory peptides were identified as Peptide 1 (LFWSPSVYLK), Peptide 2 (GWPHLEDNYLDW), Peptide 3 (NPPADLHK) and Peptide 4 (GDLAYLDQGHR). Molecular docking analysis revealed that Peptide 1 and Peptide 2 can competitively interrupt the formation of Keap1-Nrf2 due to the presence of hydrophobic and antioxidant amino acids in their peptide sequences. Peptide 3 and Peptide 4 have a strong effect on interacting with the binding site of IKK-β due to the interaction of anti-inflammatory amino acids and C-terminal arginine/lysine. The four peptides were synthesised and validated for their antioxidant and anti-inflammatory activities. The results suggest that the four peptides may serve as promising bioactive peptides for preventing oxidative stress and inflammation-related diseases.
Collapse
Affiliation(s)
- Chia Hau Lee
- Faculty of Chemical & Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Norfadilah Hamdan
- Faculty of Chemical & Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Bemgba Bevan Nyakuma
- Department of Chemical Sciences, Faculty of Science & Computing, North-Eastern University, 0198 Gombe, Gombe State, Nigeria
| | - Syie Luing Wong
- Department of Chemical Engineering & Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - Keng Yinn Wong
- Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Huiyi Tan
- Faculty of Chemical & Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Haryati Jamaluddin
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Ting Hun Lee
- Faculty of Chemical & Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.
| |
Collapse
|
13
|
Sun L, Liu J, He Z, Du R. Plant-Derived as Alternatives to Animal-Derived Bioactive Peptides: A Review of the Preparation, Bioactivities, Structure-Activity Relationships, and Applications in Chronic Diseases. Nutrients 2024; 16:3277. [PMID: 39408244 PMCID: PMC11479132 DOI: 10.3390/nu16193277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: At present, a large number of bioactive peptides have been found from plant sources with potential applications for the prevention of chronic diseases. By promoting plant-derived bioactive peptides (PDBPs), we can reduce dependence on animals, reduce greenhouse gas emissions, and protect the ecological environment. Methods: In this review, we summarize recent advances in sustainably sourced PDBPs in terms of preparation methods, biological activity, structure-activity relationships, and their use in chronic diseases. Results: Firstly, the current preparation methods of PDBPs were summarized, and the advantages and disadvantages of enzymatic method and microbial fermentation method were introduced. Secondly, the biological activities of PDBPs that have been explored are summarized, including antioxidant, antibacterial, anticancer and antihypertensive activities. Finally, based on the biological activity, the structure-activity relationship of PDBPs and its application in chronic diseases were discussed. All these provide the foundation for the development of PDBPs. However, the study of PDBPs still has some limitations. Conclusions: Overall, PDBPs is a good candidate for the prevention and treatment of chronic diseases in humans. This work provides important information for exploring the source of PDBPs, optimizing its biological activity, and accurately designing functional foods or drugs.
Collapse
Affiliation(s)
- Li Sun
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (L.S.); (J.L.)
| | - Jinze Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (L.S.); (J.L.)
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (L.S.); (J.L.)
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (L.S.); (J.L.)
- Jilin Provincial Engineering Research Center for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China
| |
Collapse
|
14
|
Cheng L, Shi C, Li X, Matsui T. Impact of Peptide Transport and Memory Function in the Brain. Nutrients 2024; 16:2947. [PMID: 39275263 PMCID: PMC11396983 DOI: 10.3390/nu16172947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024] Open
Abstract
Recent studies have reported the benefits of food-derived peptides for memory dysfunction. Beyond the physiological effects of peptides, their bioavailability to the brain still remains unclear since the blood-brain barrier (BBB) strictly controls the transportation of compounds to the brain. Here, updated transportation studies on BBB transportable peptides are introduced and evaluated using in vitro BBB models, in situ perfusion, and in vivo mouse experiments. Additionally, the mechanisms of action of brain health peptides in relation to the pathogenesis of neurodegenerative diseases, particularly Alzheimer's disease, are discussed. This discussion follows a summary of bioactive peptides with neuroprotective effects that can improve cognitive decline through various mechanisms, including anti-inflammatory, antioxidative, anti-amyloid β aggregation, and neurotransmitter regulation.
Collapse
Affiliation(s)
- Lihong Cheng
- Department of Cell Biology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Caiyue Shi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, Fukuoka 819-0395, Japan
| | - Xixi Li
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, Fukuoka 819-0395, Japan
| | - Toshiro Matsui
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
15
|
Gao LL, Gao YQ, Liu WY, Stadler M, Zhu YT, Qi JZ, Han WB, Gao JM. Evaluation of Phenazine Derivatives from the Lichen-Associated Streptomyces flavidovirens as Potent Antineuroinflammatory Agents In Vitro and In Vivo. JOURNAL OF NATURAL PRODUCTS 2024; 87:1930-1940. [PMID: 39140432 DOI: 10.1021/acs.jnatprod.4c00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Eighteen nitrogen-containing compounds (1-18) were isolated from cultures of the lichen-associated Streptomyces flavidovirens collected from the Qinghai-Tibet Plateau, including seven phenazine derivatives with three new ones, named subphenazines A-C (2-4), two new furan pyrrolidones (8-9), and nine known alkaloids. The structures were elucidated by spectroscopic data analysis, and absolute configurations were determined by single-crystal X-ray diffraction and ECD calculations. The phenazine-type derivatives, in particular compound 3, exhibited significantly better antineuroinflammatory activity than other isolated compounds (8-18). Compound 3 inhibited the release of proinflammatory cytokines including IL-6, TNF-α, and PGE2, and the nuclear translocation of NF-κB; it also reduced the oxidative stress and activated the Nrf2 signaling pathway in LPS-induced BV2 microglia cells. In vivo anti-inflammatory activity in zebrafish indicated that 3 inhibited LPS-stimulated ROS generation. These findings suggested that compound 3 might be a potent antineuroinflammatory agent through the regulation of the NF-κB/Nrf2 signaling pathways.
Collapse
Affiliation(s)
- Lin-Lin Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi People's Republic of China
| | - Yu-Qi Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi People's Republic of China
| | - Wu-Yang Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi People's Republic of China
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research GmbH, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Yue-Tong Zhu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi People's Republic of China
| | - Jian-Zhao Qi
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi People's Republic of China
| | - Wen-Bo Han
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi People's Republic of China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi People's Republic of China
| |
Collapse
|
16
|
Dai K, Agarwal N, Rodriguez-Palacios A, Basson AR. Regulation of Intestinal Inflammation by Walnut-Derived Bioactive Compounds. Nutrients 2024; 16:2643. [PMID: 39203780 PMCID: PMC11357266 DOI: 10.3390/nu16162643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Walnuts (Juglans regia L.) have shown promising effects in terms of ameliorating inflammatory bowel disease (IBD), attributed to their abundant bioactive compounds. This review comprehensively illustrates the key mechanisms underlying the therapeutic potential of walnuts in IBD management, including the modulation of intestinal mucosa permeability, the regulation of inflammatory pathways (such as NF-kB, COX/COX2, MAPCK/MAPK, and iNOS/NOS), relieving oxidative stress, and the modulation of gut microbiota. Furthermore, we highlight walnut-derived anti-inflammatory compounds, such as polyunsaturated fatty acids (PUFA; e.g., ω-3 PUFA), tocopherols, phytosterols, sphingolipids, phospholipids, phenolic compounds, flavonoids, and tannins. We also discuss unique anti-inflammatory compounds such as peptides and polysaccharides, including their extraction and preparation methods. Our review provides a theoretical foundation for dietary walnut supplementation in IBD management and provides guidance for academia and industry. In future, research should focus on the targeted isolation and purification of walnut-derived anti-inflammatory compounds or optimizing extraction methods to enhance their yields, thereby helping the food industry to develop dietary supplements or walnut-derived functional foods tailored for IBD patients.
Collapse
Affiliation(s)
- Kexin Dai
- Department of Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4909, USA;
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4909, USA
| | - Neel Agarwal
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4909, USA;
| | - Alexander Rodriguez-Palacios
- Germfree Mouse Models Core, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4909, USA;
- University Hospitals Research and Education Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106-4909, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4909, USA
- Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4909, USA
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4909, USA
| | - Abigail Raffner Basson
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4909, USA
- Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4909, USA
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4909, USA
| |
Collapse
|
17
|
Zhang Q, Wang Y, Zhao L, Su G, Ding W, Zheng L, Zhao M. A Comparative Study of the Stability, Transport, and Structure-Activity Relationship of Round Scad Derived Peptides with Antineuroinflammatory Ability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39029133 DOI: 10.1021/acs.jafc.4c03029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Our previous study identified round scad neuroprotective peptides with different characteristics. However, the intrinsic relationship between their structure and bioactivity, as well as their bioavailability, remains unclear. The aim of this study is to elucidate the bioavailability of these peptides and their structure-activity relationship against neuroinflammation. Results showed that the SR and WCP peptides were resistant to gastrointestinal digestion. Additionally, peptides SR, WCP, and WCPF could transport Caco-2 monolayers as intact peptides. The permeability coefficients (Papp) of SR, WCP, and WCPF in Caco-2 monolayer were (1.53 ± 0.01) × 10-5, (2.12 ± 0.01) × 10-5, and (8.86 ± 0.03) × 10-7 cm/s, respectively. Peptides SR, WCP, and WCPF, as promising inhibitors of JAK2 and STAT3, could attenuate the levels of pro-inflammatory cytokines and regulate the NFκB and JAK2/STAT3 signaling pathway in LPS-treated BV-2 cells. WCPF exerted the highest anti-inflammatory activity. Moreover, bioinformatics, molecular docking, and quantum chemistry studies indicated that the bioactivity of SR was attributed to Arg, whereas those of WCP and WCPF were attributed to Trp. This study supports the application of round-scad peptides and deepens the understanding of the structure-activity relationship of neuroprotective peptides.
Collapse
Affiliation(s)
- Qi Zhang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yali Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lili Zhao
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Guowan Su
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wenping Ding
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lin Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
18
|
Xia W, Gao Y, Fang X, Jin L, Liu R, Wang LS, Deng Y, Gao J, Yang H, Wu W, Gao H. Simulated gastrointestinal digestion of walnut protein yields anti-inflammatory peptides. Food Chem 2024; 445:138646. [PMID: 38382250 DOI: 10.1016/j.foodchem.2024.138646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/06/2024] [Accepted: 01/30/2024] [Indexed: 02/23/2024]
Abstract
The impact of the simulated gastrointestinal digestion process on walnut protein and the potential anti-inflammatory properties of its metabolites was studied. Structural changes induced by digestion, notably in α-Helix, β-Turn, and Random Coil configurations, were unveiled. Proteins over 10,000 Da significantly decreased by 35.6 %. Antioxidant activity in these metabolites paralleled increased amino acid content. Molecular docking identified three walnut polypeptides-IPAGTPVYLINR, FQGQLPR, and VVYVLR-with potent anti-inflammatory properties. RMSD and RMSF analysis demonstrated the stable and flexible interaction of these polypeptides with their target proteins. In lipopolysaccharide (LPS)-induced inflammation in normal human colon mucosal epithelial NCM460 cells, these peptides decreased 5-hydroxytryptamine (5-HT), tumor necrosis factor-alpha (TNF-α), and vascular endothelial growth factor (VEGF) expression, while mitigating cell apoptosis and inflammation. Our study offers valuable insights into walnut protein physiology, shedding light on its potential health benefits.
Collapse
Affiliation(s)
- Wei Xia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yuan Gao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Xiangjun Fang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Long Jin
- Chacha Food Co., Ltd., Hefei 230061, China
| | - Ruiling Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Li-Shu Wang
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Hematology and Hematopoietic Cell Transplantation, Comprehensive, Cancer Center, City of Hope National Medical Center, Duarte, CA, USA
| | - Yangyong Deng
- Hangzhou Yaoshengji Food Co., Ltd., Hangzhou 310052, China
| | - Junlong Gao
- Hangzhou Yaoshengji Food Co., Ltd., Hangzhou 310052, China
| | - Hailong Yang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Weijie Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Haiyan Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
19
|
Wu L, Liu Y, Zhou H, Cao Z, Yu J. Gastrodin Ameliorates Learning and Memory Impairments Caused by Long-Term Noise Exposure. Noise Health 2024; 26:396-402. [PMID: 39345083 PMCID: PMC11540004 DOI: 10.4103/nah.nah_76_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 10/01/2024] Open
Abstract
The developing brain is significantly affected by long-term exposure to noise at an early age, leading to functional disorders such as learning and memory impairments. Gastrodin (GAS), a natural organic compound, is an extraction of phenolic glycoside from the rhizome of Gastrodia elata. Clinically, GAS is extensively utilised for the treatment of neurological disorders. This study aimed to explore the effect and mechanism of GAS on noise exposure-induced learning and memory impairments. Rats aged 21 days were exposed to a 90 dB noise environment for 4 weeks and divided into the noise group, the noise + GAS group, and the control group to establish a noise exposure model. After noise exposure treatment, the improvement effect of GAS on the memory of rats was evaluated by Y-maze and Morris water maze. Enzyme-linked immunosorbent assay was utilised to determine the effect of GAS on neurotransmitter levels in the hippocampal tissue of noise-exposed rats. Western blot was applied for the detection of the protein levels of neurotrophic factors. The GAS treatment significantly improved spatial memory and increased the levels of key neurotransmitters (norepinephrine, dopamine and serotonin) and neurotrophic factors (neurotrophin-3 and brain-derived neurotrophic factor) in the hippocampal tissues of noise-exposed rats. These alterations correlate with enhanced cognitive functions, suggesting a neuroprotective effect of GAS against noise-induced cognitive impairments. This study supports the potential of GAS to treat noise-induced learning and memory impairments by modulating neurotransmitter secretion and enhancing the expression levels of neurotrophic factors. These findings offer potential therapeutic avenues for cognitive impairments induced by noise exposure.
Collapse
Affiliation(s)
- Lin Wu
- Department of Pathology, Peking University Cancer Hospital Yunnan/Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University Kunming, Yunnan 650118, China
- Department of Forensic Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Ying Liu
- Department of Pathology, Peking University Cancer Hospital Yunnan/Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University Kunming, Yunnan 650118, China
| | - Hu Zhou
- Department of Forensic Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Zhenzhen Cao
- Department of Anatomy and Histology, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Jianyun Yu
- Department of Forensic Medicine, Kunming Medical University, Kunming, Yunnan 650500, China
| |
Collapse
|
20
|
Ji J, Yi X, Gao X, Wang B, Zhang X, Shen X, Xia G. Synergistic effects of tilapia head protein hydrolysate and walnut protein hydrolysate on the amelioration of cognitive impairment in mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5419-5434. [PMID: 38334319 DOI: 10.1002/jsfa.13369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/25/2024] [Accepted: 02/09/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND Cognitive impairment (CI) is a significant public health concern, and bioactive peptides have shown potential as therapeutic agents. However, information about their synergistic effects on cognitive function is still limited. Here, we investigated the synergistic effects of tilapia head protein hydrolysate (THPH) and walnut protein hydrolysate (WPH) in mitigating CI induced by scopolamine in mice. RESULTS The results showed that the combined supplementation of THPH and WPH (mass ratio, 1:1) was superior to either individual supplement in enhancing spatial memory and object recognition abilities in CI mice, and significantly lessened brain injury in CI mice by alleviating neuronal damage, reducing oxidative stress and stabilizing the cholinergic system. In addition, the combined supplementation was found to be more conducive to remodeling the gut microbiota structure in CI mice by not only remarkably reducing the ratio of Firmicutes to Bacteroidota, but also specifically enriching the genus Roseburia. On the other hand, the combined supplementation regulated the disorders of sphingolipid and amino acid metabolism in CI mice, particularly upregulating glutathione and histidine metabolism, and displayed a stronger ability to increase the expression of genes and proteins related to the brain-derived neurotrophic factor (BDNF)/TrkB/CrEB signaling pathway in the brain. CONCLUSION These findings demonstrate that tilapia head and walnut-derived protein hydrolysates exerted synergistic effects in ameliorating CI, which was achieved through modulation of gut microbiota, serum metabolic pathways and BDNF signaling pathways. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jun Ji
- College of Food Science and Technology, Hainan Tropical Ocean University, Sanya, China
- Hainan Provincial Engineering Research Center of Aquatic Resources Efficient Utilization in the South China Sea, College of Food Science and Technology, Hainan University, Haikou, China
- Univ. Lyon, University Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, Villeurbanne, France
| | - Xiangzhou Yi
- Hainan Provincial Engineering Research Center of Aquatic Resources Efficient Utilization in the South China Sea, College of Food Science and Technology, Hainan University, Haikou, China
| | - Xia Gao
- Hainan Provincial Engineering Research Center of Aquatic Resources Efficient Utilization in the South China Sea, College of Food Science and Technology, Hainan University, Haikou, China
| | - Bohui Wang
- Hainan Provincial Engineering Research Center of Aquatic Resources Efficient Utilization in the South China Sea, College of Food Science and Technology, Hainan University, Haikou, China
| | - Xueying Zhang
- Hainan Provincial Engineering Research Center of Aquatic Resources Efficient Utilization in the South China Sea, College of Food Science and Technology, Hainan University, Haikou, China
| | - Xuanri Shen
- College of Food Science and Technology, Hainan Tropical Ocean University, Sanya, China
- Hainan Provincial Engineering Research Center of Aquatic Resources Efficient Utilization in the South China Sea, College of Food Science and Technology, Hainan University, Haikou, China
| | - Guanghua Xia
- Hainan Provincial Engineering Research Center of Aquatic Resources Efficient Utilization in the South China Sea, College of Food Science and Technology, Hainan University, Haikou, China
| |
Collapse
|
21
|
Biji CA, Balde A, Nazeer RA. Anti-inflammatory peptide therapeutics and the role of sulphur containing amino acids (cysteine and methionine) in inflammation suppression: A review. Inflamm Res 2024; 73:1203-1221. [PMID: 38769154 DOI: 10.1007/s00011-024-01893-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Inflammation serves as our body's immune response to combat infections, pathogens, viruses, and external stimuli. Inflammation can be classified into two types: acute inflammation and chronic inflammation. Non-steroidal anti-inflammatory medications (NSAIDs) are used to treat both acute and chronic inflammatory disorders. However, these treatments have various side effects such as reduced healing efficiency, peptic ulcers, gastrointestinal toxicities, etc. METHOD: This review assesses the potential of anti-inflammatory peptides (AIPs) derived from various natural sources, such as algae, fungi, plants, animals, and marine organisms. Focusing on peptides rich in cysteines and methionine, sulphur-containing amino acids known for their role in suppression of inflammation. RESULT Due to their varied biological activity, ability to penetrate cells, and low cytotoxicity, bioactive peptides have garnered interest as possible therapeutic agents. The utilisation of AIPs has shown great potential in the treatment of disorders associated with inflammation. AIPs can be obtained from diverse natural sources such as algae, fungi, plants, and animals. Cysteine and methionine are sulphur-containing amino acids that aid in the elimination of free radicals, hence assisting in the treatment of inflammatory diseases. CONCLUSION This review specifically examines several sources of AIPs including peptides that contain numerous cysteines and methionine. In addition, the biological characteristics of these amino acids and advancements in peptide delivery are also discussed.
Collapse
Affiliation(s)
- Catherin Ann Biji
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, Tamilnadu, India
| | - Akshad Balde
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, Tamilnadu, India
| | - Rasool Abdul Nazeer
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, Tamilnadu, India.
| |
Collapse
|
22
|
Xing Y, Shi H, Gao X, Zhu X, Zhang D, Fang L, Wang J, Liu C, Wu D, Wang X, Min W. Walnut-Derived Peptides Alleviate Learning and Memory Impairments in a Mice Model via Inhibition of Microglia Phagocytose Synapses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38853533 DOI: 10.1021/acs.jafc.4c01201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Microglia phagocytose synapses have an important effect on the pathogenesis of neurological disorders. Here, we investigated the neuroprotective effects of the walnut-derived peptide, TWLPLPR(TW-7), against LPS-induced cognitive deficits in mice and explored the underlying C1q-mediated microglia phagocytose synapses mechanisms in LPS-treated HT22 cells. The MWM showed that TW-7 improved the learning and memory capacity of the LPS-injured mice. Both transmission electron microscopy and immunofluorescence analysis illustrated that synaptic density and morphology were increased while associated with the decreased colocalized synapses with C1q. Immunohistochemistry and immunofluorescence demonstrated that TW-7 effectively reduced the microglia phagocytosis of synapses. Subsequently, overexpression of C1q gene plasmid was used to verify the contribution of the TW-7 via the classical complement pathway-regulated mitochondrial function-mediated microglia phagocytose synapses in LPS-treated HT22 cells. These data suggested that TW-7 improved the learning and memory capability of LPS-induced cognitively impaired mice through a mechanism associated with the classical complement pathway-mediated microglia phagocytose synapse.
Collapse
Affiliation(s)
- Yihang Xing
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Haoyuan Shi
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Xi Gao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Xinyu Zhu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Dingwen Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Li Fang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Ji Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Chunlei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Dan Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Xiyan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Weihong Min
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, P. R. China
| |
Collapse
|
23
|
Chen P, Huang P, Liang Y, Wang Q, Miao J. The antioxidant peptides from walnut protein hydrolysates and their protective activity against alcoholic injury. Food Funct 2024; 15:5315-5328. [PMID: 38605685 DOI: 10.1039/d4fo00091a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
In this study, walnut protein was hydrolyzed, separated by ultrafiltration, purified by RP-HPLC, identified by LC-MS/MS, and screened by molecular docking to finally obtain three novel antioxidant peptides HGEPGQQQR (1189.584 Da), VAPFPEVFGK (1089.586 Da) and HNVADPQR (949.473 Da). These three peptides exhibited excellent cellular antioxidant activity (CAA) with EC50 values of 0.0120 mg mL-1, 0.0068 mg mL-1, and 0.0069 mg mL-1, respectively, which were superior to that of the positive control GSH (EC50: 0.0122 mg mL-1). In the ethanol injury model, three antioxidant peptides enhanced the survival of cells treated with ethanol from 47.36% to 62.69%, 57.06% and 71.64%, respectively. Molecular docking results showed that the three antioxidant peptides could effectively bind to Keap1, CYP2E1 and TLR4 proteins. These results suggested that walnut-derived antioxidant peptides could be potential antioxidants and hepatoprotective agents for application in functional foods.
Collapse
Affiliation(s)
- Peihang Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Pantian Huang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Yingyan Liang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Qiaoe Wang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, 100048, China
| | - Jianyin Miao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
24
|
Shan C, Miao F, Guo G. Ameliorative Effect of Macadamia Nut Protein Peptides on Acetaminophen-Induced Acute Liver Injury in Mice. J Med Food 2024; 27:257-266. [PMID: 38386536 DOI: 10.1089/jmf.2023.k.0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
This study aims to examine the ameliorative effect of macadamia nut protein peptides (MPP) on acetaminophen (APAP)-induced liver injury (AILI) in mice, and develop a new strategy for identifying hepatoprotective functional foods. The molecular weight distribution and amino acid composition of MPP were first studied. Forty mice were then randomized into four groups: control group (CON), APAP model group, APAP+MPP low-dose group (APAP+L-MPP), and APAP+MPP high-dose group (APAP+H-MPP). The APAP+L-MPP (320 mg/kg per day) and APAP+H-MPP (640 mg/kg per day) groups received continuous MPP gavage for 2 weeks. A 12 h of APAP (200 mg/kg) gavage resulted in liver damage. Pathological alterations, antioxidant index levels, expression of toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB), and associated inflammatory factors were determined for each treatment group. The results revealed that the total amino acid content of MPP was 39.58 g/100 g, with Glu, Arg, Asp, Leu, Tyr, and Gly being the major amino acids. The molecular weight range of 0-1000 Da accounted for 73.54%, and 0-500 Da accounted for 62.84% of MPP. MPP ameliorated the pathological morphology and reduced the serum levels of alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase of AILI in mice. MPP significantly increased the activities of superoxide dismutase and glutathione peroxidase in the liver compared with the APAP group. MPP inhibited the expression of TLR4, NF-κB, interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) genes in AILI mice. MPP also inhibited the expression levels of inflammatory factors (TNF-α and IL-6). Our study concludes that MPP alleviates AILI in mice by enhancing antioxidant capacity and inhibiting TLR4/NF-κB pathway-related gene activation.
Collapse
Affiliation(s)
- Chunlan Shan
- Department of Animal Medicine, College of Animal Science, Guizhou University, Guiyang, China
| | - Fujun Miao
- Economic Forest Research Institute, Yunnan Academy of Forestry and Grassland, Kunming, China
| | - Gangjun Guo
- Tropical Agricultural Products Development and Utilization Research Center, Yunnan Institute of Tropical Crops, Jinghong, China
| |
Collapse
|
25
|
Santos-Sánchez G, Ponce-España E, Álvarez-López AI, Pedroche J, Millán-Linares MDC, Fernández-Pachón MS, Lardone PJ, Cruz-Chamorro I, Carrillo-Vico A. A lupin protein hydrolysate protects the central nervous system from oxidative stress in WD-fed ApoE -/- mice. Mol Nutr Food Res 2024; 68:e2300503. [PMID: 38308501 DOI: 10.1002/mnfr.202300503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/22/2023] [Indexed: 02/04/2024]
Abstract
Oxidative stress plays a crucial role in neurodegenerative diseases like Parkinson's and Alzheimer's. Studies indicate the relationship between oxidative stress and the brain damage caused by a high-fat diet. It is previously found that a lupin protein hydrolysate (LPH) has antioxidant effects on human leukocytes, as well as on the plasma and liver of Western diet (WD)-fed ApoE-/- mice. Additionally, LPH shows anxiolytic effects in these mice. Given the connection between oxidative stress and anxiety, this study aimed to investigate the antioxidant effects of LPH on the brain of WD-fed ApoE-/- mice. LPH (100 mg kg-1) or a vehicle is administered daily for 12 weeks. Peptide analysis of LPH identified 101 amino acid sequences (36.33%) with antioxidant motifs. Treatment with LPH palliated the decrease in total antioxidant activity caused by WD ingestion and regulated the nitric oxide synthesis pathway in the brain of the animals. Furthermore, LPH increased cerebral glutathione levels and the activity of catalase and glutathione reductase antioxidant enzymes and reduced the 8-hydroxy-2'-deoxyguanosine levels, a DNA damage marker. These findings, for the first time, highlight the antioxidant activity of LPH in the brain. This hydrolysate could potentially be used in future nutraceutical therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Guillermo Santos-Sánchez
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, 41013, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Seville, 41009, Spain
| | - Eduardo Ponce-España
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, 41013, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Seville, 41009, Spain
| | - Ana Isabel Álvarez-López
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, 41013, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Seville, 41009, Spain
| | - Justo Pedroche
- Department of Food & Health, Instituto de la grasa, CSIC, Ctra, Utrera Km 1, Seville, 41013, Spain
| | - María Del Carmen Millán-Linares
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Seville, 41009, Spain
- Department of Food & Health, Instituto de la grasa, CSIC, Ctra, Utrera Km 1, Seville, 41013, Spain
| | - María-Soledad Fernández-Pachón
- Área de Nutrición y Bromatología, Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Ctra. Utrera Km 1, Sevilla, 41013, Spain
| | - Patricia Judith Lardone
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, 41013, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Seville, 41009, Spain
| | - Ivan Cruz-Chamorro
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, 41013, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Seville, 41009, Spain
| | - Antonio Carrillo-Vico
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, 41013, Spain
- Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Seville, 41009, Spain
| |
Collapse
|
26
|
Wang J, Yang Y, Shi Y, Wei L, Gao L, Liu M. Oxidized/unmodified-polyethylene microplastics neurotoxicity in mice: Perspective from microbiota-gut-brain axis. ENVIRONMENT INTERNATIONAL 2024; 185:108523. [PMID: 38484610 DOI: 10.1016/j.envint.2024.108523] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/10/2024] [Accepted: 02/19/2024] [Indexed: 03/26/2024]
Abstract
Microplastics (MPs) are inevitably oxidized in the environment, and their potential toxicity to organisms has attracted wide attention. However, the neurotoxicity and mechanism of oxidized polyethylene (Ox-PE) MPs to organisms remain unclear. Herein, we prepared oxidized low-density polyethylene (Ox-LDPE) and established a model of MPs exposure by continuously orally gavage of C57BL/6 J mice with LDPE-MPs/Ox-LDPE-MPs for 28 days with or without oral administration of Lactobacillus plantarum DP189 and galactooligosaccharides (DP189&GOS). The experimental results indicated that LDPE-MPs or Ox-LDPE-MPs caused several adverse effects in mice, mainly manifested by behavioral changes, disruption of the intestinal and blood-brain barrier (BBB), and simultaneous oxidative stress, inflammatory reactions, and pathological damage in the brain and intestines. Brain transcriptomic analysis revealed that the cholinergic synaptic signaling pathways, which affect cognitive function, were significantly disrupted after exposure to LDPE-MPs or Ox-LDPE-MPs. Real-time quantitative polymerase chain reaction and Western Blotting results further demonstrated that the critical genes (Slc5a7, Chat and Slc18a3) and proteins (Chat and Slc18a3) in the cholinergic synaptic signaling pathway were significantly down-regulated after exposure to LDPE-MPs or Ox-LDPE-MPs. These alterations lead to reduced acetylcholine concentration, which causes cognitive dysfunction in mice. Importantly, the DP189&GOS interventions effectively mitigated the MPs-induced cognitive dysfunction and intestinal microbiota alteration, improved intestinal and BBB integrity, attenuated the oxidative stress and inflammatory response, and also saw a rebound in the release of acetylcholine. These results indicated that LDPE-MPs and Ox-LDPE-MPs exert neurotoxic effects on mice by inducing oxidative stress, inflammatory responses, and dysregulation of cholinergic signaling pathways in the mouse brain. That probiotic supplementation is effective in attenuating MPs-induced neurotoxicity in mice. Overall, this study reveals the potential mechanisms of neurotoxicity of LDPE-MPs and Ox-LDPE-MPs on mice and their improvement measures, necessary to assess the potential risks of plastic contaminants to human health.
Collapse
Affiliation(s)
- Ji Wang
- School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China
| | - Ying Yang
- School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China
| | - Yongpeng Shi
- School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China
| | - Li Wei
- School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China; NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| | - Lan Gao
- School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| | - Mingxin Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| |
Collapse
|
27
|
Li Y, Dang Q, Shen Y, Guo L, Liu C, Wu D, Fang L, Leng Y, Min W. Therapeutic effects of a walnut-derived peptide on NLRP3 inflammasome activation, synaptic plasticity, and cognitive dysfunction in T2DM mice. Food Funct 2024; 15:2295-2313. [PMID: 38323487 DOI: 10.1039/d3fo05076a] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
NLRP3 inflammasome activation plays a key role in the development of diabetes-induced cognitive impairment. However, strategies to inhibit NLRP3 inflammasome activation remain elusive. Herein, we evaluated the impact of a walnut-derived peptide, TWLPLPR (TW-7), on cognitive impairment in high-fat diet/streptozotocin-induced type 2 diabetes mellitus (T2DM) mice and explored its underlying mechanisms in high glucose-induced HT-22 cells. In the Morris water maze test, TW-7 alleviated cognitive deficits in mice; this was confirmed at the level of synaptic structure and dendritic spine density in the mouse hippocampus using transmission electron microscopy and Golgi staining. TW-7 increased the expression of synaptic plasticity-related proteins and suppressed the NEK7/NLRP3 inflammatory pathway, as determined by western blotting and immunofluorescence analysis. The mechanism of action of TW-7 was verified in an HT-22 cell model of high glucose-induced insulin resistance. Collectively, TW-7 could regulate T2DM neuroinflammation and synaptic function-induced cognitive impairment by inhibiting NLRP3 inflammasome activation and improving synaptic plasticity.
Collapse
Affiliation(s)
- Yanru Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China.
| | - Qiao Dang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China.
| | - Yue Shen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China.
| | - Linxin Guo
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China.
| | - Chunlei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China.
| | - Dan Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China.
| | - Li Fang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China.
| | - Yue Leng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China.
| | - Weihong Min
- College of Food and Health, Zhejiang A & F University, Hangzhou 311300, P.R. China.
- National Grain Industry (High-Quality Rice Storage in Temperate and Humid Region) Technology Innovation Center, Hangzhou 311300, China
| |
Collapse
|
28
|
Lin L, Li C, Zhang Y, Zhang L, Gao L, Jin L, Shu Y, Shen Y. Effects of an Akt-activating peptide obtained from walnut protein degradation on the prevention of memory impairment in mice. Food Funct 2024; 15:2115-2130. [PMID: 38305469 DOI: 10.1039/d3fo04479c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Akt acts as a central protein influencing multiple pathologies in neurodegenerative diseases including AD and PD, and using Akt activators is a promising management strategy. The current study characterized the effects of an Akt-activating peptide (Glu-Pro-Glu-Val-Leu-Pro, EPEVLR) obtained from walnut protein degradation on D-gal-induced memory impairment in mice. EPEVLR was obtained by hydrolysis of walnut proteins, identification of peptide sequences, and screening for molecular docking sequentially. The MWM test in mice indicated that the oral administration of EPEVLR (80, 200 and 400 mg per kg per day) significantly (p < 0.05) reversed D-gal-induced memory impairment. WB tests of the mouse hippocampus confirmed that EPEVLR could activate Akt by promoting its phosphorylation. In addition, further characterization (including TEM, ELISA, and immunohistochemistry) related to Akt phosphorylation showed lower Aβ and p-tau levels, as well as more autophagosomes than those in the model group. Moreover, the EPEVLR treatment significantly increased Lactobacillus abundance and reduced Helicobacter abundance in the gut microbiome and caused up-regulation of SCFAs and down-regulation of LPS of serum metabolites. Therefore, EPEVLR ingestion reversed cognitive impairment symptoms, possibly related to the activation of Akt and regulation of the intestinal flora pathway. Consumption of an EPEVLR-containing diet is beneficial for treating cognitive dysfunction.
Collapse
Affiliation(s)
- Like Lin
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China.
| | - Cong Li
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China.
| | - Yujiao Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China.
| | - Li Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China.
| | - Lu Gao
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China.
| | - Lihua Jin
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China.
| | - Yu Shu
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi'an, Shaanxi 710127, China.
| |
Collapse
|
29
|
Wei M, Wu T, Chen N. Bridging neurotrophic factors and bioactive peptides to Alzheimer's disease. Ageing Res Rev 2024; 94:102177. [PMID: 38142891 DOI: 10.1016/j.arr.2023.102177] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder. As the demographic shifting towards an aging population, AD has emerged as a prominent public health concern. The pathogenesis of AD is complex, and there are no effective treatment methods for AD until now. In recent years, neurotrophic factors and bioactive peptides including brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), irisin, melatonin, have been discovered to exert neuroprotective functions for AD. Bioactive peptides can be divided into two categories based on their sources: endogenous and exogenous. This review briefly elaborates on the pathogenesis of AD and analyzes the regulatory effects of endogenous and exogenous peptides on the pathogenesis of AD, thereby providing new therapeutic targets for AD and a theoretical basis for the application of bioactive peptides as adjunctive therapies for AD.
Collapse
Affiliation(s)
- Minhui Wei
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Tong Wu
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China.
| |
Collapse
|
30
|
Xu X, Song Y, Jiang M, Liu M, Zhang X, Wang D, Pan Y, Ren S, Liu X. Screening of the Active Substances for the Assessment of Walnut Kernel in the Treatment of Scopolamine-Induced AD Animals. Mol Nutr Food Res 2024; 68:e2200816. [PMID: 38018298 DOI: 10.1002/mnfr.202200816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 07/22/2023] [Indexed: 11/30/2023]
Abstract
SCOPE Alzheimer's disease (AD) has been a challenge and hotspot in the field of neuroscience research due to the high morbidity. As we all know, walnut kernel (WK) ingestion has been linked to benefits to brain health and has the function of improving memory. This study follows the AD model induced by scopolamine to reveal the active fractions and substances of walnut in the treatment of AD. METHODS AND RESULTS The histopathological analysis and brain tissue biochemistry assay are revealed the active fractions of WK, and this result determines that walnut kernel organic acids have significant therapeutic effect on AD. The strategy of studying ingredients pointed at lesions is integrated to ascertain the selected brain-targeted effective substances of WK for blood-brain barrier by ultra-performance liquid chromatography-quadrupole/electrostatic field orbitrap mass spectrometry, and a total of eight organic acids are figured out definite absorptivity in rat brains. Finally, the binding interaction between the effective substances and target proteins is analyzed by molecular docking, and the main function related active markers are ascertained as glansreginin A, glansreginic acid, ellagic acid, and ellagic acid 4-O-xyloside. CONCLUSIONS The comprehensive process is helpful to the clinical application of WK as a promising cholinesterase inhibitors for nutritional intervention.
Collapse
Affiliation(s)
- Xiajing Xu
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang District, Shenyang, Liaoning, 110016, China
| | - Yutong Song
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang District, Shenyang, Liaoning, 110016, China
| | - Man Jiang
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang District, Shenyang, Liaoning, 110016, China
| | - Meihan Liu
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang District, Shenyang, Liaoning, 110016, China
| | - Xuanmeng Zhang
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang District, Shenyang, Liaoning, 110016, China
| | - Dongmei Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Yingni Pan
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang District, Shenyang, Liaoning, 110016, China
| | - Shumeng Ren
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang District, Shenyang, Liaoning, 110016, China
| | - Xiaoqiu Liu
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang District, Shenyang, Liaoning, 110016, China
| |
Collapse
|
31
|
Xu X, Ding Y, Liu M, Zhang X, Wang D, Pan Y, Ren S, Liu X. Neuroprotective mechanisms of defatted walnut powder against scopolamine-induced Alzheimer's disease in mice revealed through metabolomics and proteomics analyses. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117107. [PMID: 37652196 DOI: 10.1016/j.jep.2023.117107] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Defatted walnut powder (DWP), the byproduct remaining after extracting oil from the walnut kernel, has the actions of nourishing liver and the kidney, replenishing blood, and calming the nerves, which is believed to be a brain-nourishing in Chinese medicine. DWP is rich in phenolic substances with demonstrated anti-inflammatory, antioxidant, lipid-lowering and neuroprotective effects. Despite these promising properties of DWP, its effectiveness in treating Alzheimer's disease (AD) remains unclear, and further research is needed to understand the mechanism of action. AIM OF THE STUDY This study aimed to investigate the potential mechanism of DWP on AD by constructing the overall metabolic profile of mice with an anti-scopolamine AD model and verification of the highly correlated pathway. MATERIALS AND METHODS The neuroprotective efficacy of DWP in a mouse model of AD established by scopolamine injection was examined. Spatial memory performance in the Morris water maze (MWM), markers of cholinergic function in hippocampus and cortex, and neuropathological changes were compared among control, model, and DWP-consuming model group mice. In addition, combined metabolomic and proteomic analyses were conducted to investigate changes in metabolite and protein expression profiles in AD model mice induced by DWP consumption. Differentially expressed proteins and metabolites were then analyzed for KEGG pathway enrichment and results confirmed through targeted amino acid metabolomics. RESULTS The results showed that consumption of DWP improved spatial learning and memory in the MWM, enhanced cholinergic function, and reduced histopathological damage in the cortex and hippocampus of AD model mice. Based on differentially abundant metabolites and proteins, 43 metabolic pathways modulated by DWP were identified, mainly involving in amino acid metabolic pathways strongly associated with cellular energetics and antioxidant capacity, and targeted amino acid metabolomics confirmed that DWPE significantly elevated the levels of Arginine (Arg), Histidine (His), Proline (Pro), Serine (Ser), and Tyrosine (Tyr), while reducing the levels of Glutamate (Glu). This ultimately resulted in an improvement in the progression of AD. CONCLUSION This study identified numerous metabolic networks modulated by DWP that can mitigate scopolamine-induced AD neuropathology and cognitive dysfunction. DWP is a promising resource to identify AD-related pathogenic pathways and therapeutic strategies.
Collapse
Affiliation(s)
- Xiajing Xu
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang District, Shenyang, Liaoning, 110016, PR China
| | - Yong Ding
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang District, Shenyang, Liaoning, 110016, PR China
| | - Meihan Liu
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang District, Shenyang, Liaoning, 110016, PR China
| | - Xuanmeng Zhang
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang District, Shenyang, Liaoning, 110016, PR China
| | - Dongmei Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang District, Shenyang, Liaoning, 110016, PR China
| | - Yingni Pan
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang District, Shenyang, Liaoning, 110016, PR China
| | - Shumeng Ren
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang District, Shenyang, Liaoning, 110016, PR China.
| | - Xiaoqiu Liu
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang District, Shenyang, Liaoning, 110016, PR China.
| |
Collapse
|
32
|
Sun Y, Zhang H, Liu R, Huang R, Zhang X, Zhou S, Wu L, Zhu B, Wu H. Pyrolae herba alleviates cognitive impairment via hippocampal TREM2 signaling modulating neuroinflammation and neurogenesis in lipopolysaccharide-treated mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117214. [PMID: 37739108 DOI: 10.1016/j.jep.2023.117214] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANC Pyrolae herba (PH), a kind of Chinese herb, has been identified to have an anti-inflammatory effect, while the potential for treating cognitive impairment (CI), as well as the underlying mechanisms, is unclear. Currently, the interaction between neuroinflammation and neural function play a critical role in pathophysiology of CI. AIM OF THE STUDY To elucidate therapeutic effect of PH for CI as well as its underlying mechanisms with LPS-treated mice model. METHODS AND MATERIALS In this study, male C57BL6/J mice received lipopolysaccharide (LPS) injection for 10 days to establish CI model and were administrated with PH for 14 days. We used piracetam as a positive control. Memory and spatial function was tested by Morris water maze (MWM). The level of inflammation-related cytokines (TNF-α, IL-1β, IL-10, IL-6) were determined by enzyme-linked immunosorbent assay (ELISA) in serum and western blot in hippocampus. Immunofluorescence (IF) was used to measure the levels of ionized calcium binding linker molecule 1 (IBA-1), glial fibrillary acidic protein (GFAP), BrdU, Ki67 and doublecortin (DCX) in hippocampus. The mRNA sequencing was used to screen the potential target of PH with therapeutic CI. Reverse transcription-polymerase chain reaction (RT-PCR) was used to determine the gene alteration of triggering receptor expressed on myeloid cells 2 (TREM2) in hippocampus. We used western blot to determine protein expressions of TREM2 and its related signaling, as well as synaptic proteins in hippocampus. RESULTS The results revealed that LPS contributed to CI, and PH or piracetam treatment significantly ameliorated CI in MWM test. LPS contributed to increasing expressions of TNF-α and IL-1β in serum and hippocampus, which both reversed by PH or piracetam. PH or piracetam could inhibit the activation of glial cells including microglia and astrocyte in the hippocampus in LPS-induced CI model. The mRNA sequencing and RT-PCR results showed that LPS significantly increased the gene expression of TREM2, which was reversed by PH. The alteration of TREM2 expression was the most significant among the 10 genes (TREM2, Slc24a2, Ptch2, Gck, Il1rapl1, Cadps2, Btbd11, Secisbp2l, Tenm3 and Prepl) in hippocampus. Protein results showed that LPS upregulated the expressions of TREM2 and its related proteins including DAP12, spleen tyrosine kinase (SYK) phosphorylation and ADAM 10, which were all reversed by PH or piracetam in hippocampus. Furthermore, LPS was capable of reducing the expression of BrdU and DCX co-labeled positive cells in hippocampal dentate gyrus (DG), which was reversed only by PH. Moreover, PH or piracetam treatment significantly increased the expression of Ki67 and DCX co-labeled positive cells in hippocampal DG. The expression of synapsin1 was obviously decreased by LPS and was significantly reversed by PH or piracetam. CONCLUSIONS PH could alleviate CI by suppressing the secretion of pro-inflammatory cytokines and mitigating astrocyte activity by restraining microglia's activation in hippocampus, further facilitating neurogenesis and proliferation, thereby enhancing pre-synaptic protein. This study highlighted on the clinical application of PH, which might promote the use of phytomedicine in CI patients.
Collapse
Affiliation(s)
- Yan Sun
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; National Famous Chinese Medicine Expert Inheritance Studio (Meng Jingchun), Nanjing University of Chinese Medicine, School of Chinese Medicine, Nanjing, 210023, PR China
| | - Hailou Zhang
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, 510632, PR China
| | - Ruiyu Liu
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; National Famous Chinese Medicine Expert Inheritance Studio (Meng Jingchun), Nanjing University of Chinese Medicine, School of Chinese Medicine, Nanjing, 210023, PR China; Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, 510632, PR China
| | - Rumin Huang
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; National Famous Chinese Medicine Expert Inheritance Studio (Meng Jingchun), Nanjing University of Chinese Medicine, School of Chinese Medicine, Nanjing, 210023, PR China
| | - Xiangrui Zhang
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; National Famous Chinese Medicine Expert Inheritance Studio (Meng Jingchun), Nanjing University of Chinese Medicine, School of Chinese Medicine, Nanjing, 210023, PR China
| | - Shihan Zhou
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; National Famous Chinese Medicine Expert Inheritance Studio (Meng Jingchun), Nanjing University of Chinese Medicine, School of Chinese Medicine, Nanjing, 210023, PR China
| | - Lei Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, PR China
| | - Boran Zhu
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; National Famous Chinese Medicine Expert Inheritance Studio (Meng Jingchun), Nanjing University of Chinese Medicine, School of Chinese Medicine, Nanjing, 210023, PR China.
| | - Haoxin Wu
- Key Laboratory of Integrative Biomedicine for Brain Diseases, School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; National Famous Chinese Medicine Expert Inheritance Studio (Meng Jingchun), Nanjing University of Chinese Medicine, School of Chinese Medicine, Nanjing, 210023, PR China.
| |
Collapse
|
33
|
Skibska A, Perlikowska R. Natural Plant Materials as a Source of Neuroprotective Peptides. Curr Med Chem 2024; 31:5027-5045. [PMID: 37403392 DOI: 10.2174/0929867331666230703145043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023]
Abstract
In many circumstances, some crucial elements of the neuronal defense system fail, slowly leading to neurodegenerative diseases. Activating this natural process by administering exogenous agents to counteract unfavourable changes seems promising. Therefore, looking for neuroprotective therapeutics, we have to focus on compounds that inhibit the primary mechanisms leading to neuronal injuries, e.g., apoptosis, excitotoxicity, oxidative stress, and inflammation. Among many compounds considered neuroprotective agents, protein hydrolysates and peptides derived from natural materials or their synthetic analogues are good candidates. They have several advantages, such as high selectivity and biological activity, a broad range of targets, and high safety profile. This review aims to provide biological activities, the mechanism of action and the functional properties of plant-derived protein hydrolysates and peptides. We focused on their significant role in human health by affecting the nervous system and having neuroprotective and brain-boosting properties, leading to memory and cognitive improving activities. We hope our observation may guide the evaluation of novel peptides with potential neuroprotective effects. Research into neuroprotective peptides may find application in different sectors as ingredients in functional foods or pharmaceuticals to improve human health and prevent diseases.
Collapse
Affiliation(s)
- Agnieszka Skibska
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University, Lodz, Poland
| | - Renata Perlikowska
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University, Lodz, Poland
| |
Collapse
|
34
|
Patel K, Mani A. Food-derived Peptides as Promising Neuroprotective Agents: Mechanism and Therapeutic Potential. Curr Top Med Chem 2024; 24:1212-1229. [PMID: 38551052 DOI: 10.2174/0115680266289248240322061723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 07/20/2024]
Abstract
Many food-derived peptides have the potential to improve brain health and slow down neurodegeneration. Peptides are produced by the enzymatic hydrolysis of proteins from different food sources. These peptides have been shown to be involved in antioxidant and anti-inflammatory activity, neuro-transmission modulation, and gene expression regulation. Although few peptides directly affect chromatin remodeling and histone alterations, others indirectly affect the neuroprotection process by interfering with epigenetic changes. Fish-derived peptides have shown neuroprotective properties that reduce oxidative stress and improve motor dysfunction in Parkinson's disease models. Peptides from milk and eggs have been found to have anti-inflammatory properties that reduce inflammation and improve cognitive function in Alzheimer's disease models. These peptides are potential therapeutics for neurodegenerative diseases, but more study is required to assess their efficacy and the underlying neuroprotective benefits. Consequently, this review concentrated on each mechanism of action used by food-derived peptides that have neuroprotective advantages and applications in treating neurodegenerative diseases. This article highlights various pathways, such as inflammatory pathways, major oxidant pathways, apoptotic pathways, neurotransmitter modulation, and gene regulation through which food-derived peptides interact at the cellular level.
Collapse
Affiliation(s)
- Kavita Patel
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, India
| | - Ashutosh Mani
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, India
| |
Collapse
|
35
|
Rafique H, Hu X, Ren T, Dong R, Aadil RM, Zou L, Sharif MK, Li L. Characterization and Exploration of the Neuroprotective Potential of Oat-Protein-Derived Peptides in PC12 Cells and Scopolamine-Treated Zebrafish. Nutrients 2023; 16:117. [PMID: 38201947 PMCID: PMC10780882 DOI: 10.3390/nu16010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Neurodegenerative disorders pose a substantial risk to human health, and oxidative stress, cholinergic dysfunction, and inflammation are the major contributors. The purpose of this study was to explore the neuroprotective effects of oat protein hydrolysate (OPH) and identify peptides with neuroprotective potential. This study is the first to isolate and identify OPH peptides with neuroprotective potential, including DFVADHPFLF (DF-10), HGQNFPIL (HL-8), and RDFPITWPW (RW-9), by screening via peptidomes and molecular-docking simulations. These peptides showed positive effects on the activity of antioxidant enzymes and thus reduced oxidative stress through regulation of Nrf2-keap1/HO-1 gene expression in vitro and in vivo. The peptides also significantly ameliorated scopolamine-induced cognitive impairment in the zebrafish model. This improvement was correlated with mitigation of MDA levels, AChE activity, and levels of inflammatory cytokines in the brains of zebrafish. Furthermore, these peptides significantly upregulated the mRNA expression of Bdnf, Nrf2, and Erg1 in the brains of zebrafish with neurodegenerative disorders. Collectively, oat peptides have potential for use as active components in nutraceutical applications for the prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Hamad Rafique
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (H.R.)
| | - Xinzhong Hu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (H.R.)
| | - Tian Ren
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (H.R.)
| | - Rui Dong
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (H.R.)
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Mian Kamran Sharif
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Lu Li
- Guilin Seamild Food Co., Ltd., Guilin 541000, China
| |
Collapse
|
36
|
El-Ansary A, Al-Ayadhi L. Effects of Walnut and Pumpkin on Selective Neurophenotypes of Autism Spectrum Disorders: A Case Study. Nutrients 2023; 15:4564. [PMID: 37960217 PMCID: PMC10647375 DOI: 10.3390/nu15214564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Special diets or nutritional supplements are regularly given to treat children with autism spectrum disorder (ASD). The increased consumption of particular foods has been demonstrated in numerous trials to lessen autism-related symptoms and comorbidities. A case study on a boy with moderate autism who significantly improved after three years of following a healthy diet consisting of pumpkin and walnuts was examined in this review in connection to a few different neurophenotypes of ASD. We are able to suggest that a diet high in pumpkin and walnuts was useful in improving the clinical presentation of the ASD case evaluated by reducing oxidative stress, neuroinflammation, glutamate excitotoxicity, mitochondrial dysfunction, and altered gut microbiota, all of which are etiological variables. Using illustrated figures, a full description of the ways by which a diet high in pumpkin and nuts could assist the included case is offered.
Collapse
Affiliation(s)
- Afaf El-Ansary
- Autism Center, Lotus Holistic Alternative Medical Center, Abu Dhabi P.O. Box 110281, United Arab Emirates
- Autism Research and Treatment Center, P.O. Box 2925, Riyadh 11461, Saudi Arabia;
| | - Laila Al-Ayadhi
- Autism Research and Treatment Center, P.O. Box 2925, Riyadh 11461, Saudi Arabia;
- Department of Physiology, Faculty of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia
| |
Collapse
|
37
|
Hong Z, Shi C, Hu X, Chen J, Li T, Zhang L, Bai Y, Dai J, Sheng J, Xie J, Tian Y. Walnut Protein Peptides Ameliorate DSS-Induced Ulcerative Colitis Damage in Mice: An in Silico Analysis and in Vivo Investigation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15604-15619. [PMID: 37815395 DOI: 10.1021/acs.jafc.3c04220] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Walnut (Juglans regia L.) is a food with food-medicine homology, whose derived protein peptides have been shown to have anti-inflammatory activity in vitro. However, the effects and mechanisms of walnut protein peptides on ulcerative colitis (UC) in vivo have not been systematically and thoroughly investigated. In this study, we applied virtual screening and network pharmacology screening of bioactive peptides to obtain three novel WPPs (SHTLP, HYNLN, and LGTYP) that may alleviate UC through TLR4-MAPK signaling. In vivo studies have shown that WPPs improve intestinal mucosal barrier dysfunction and reduce inflammation by inhibiting activation of the TLR4-MAPK pathway. In addition, WPPs restore intestinal microbial homeostasis by reducing harmful bacteria (Helicobacter and Bacteroides) and increasing the relative abundance of beneficial bacteria (Candidatus_Saccharimonas). Our study showed that the WPPs obtained by virtual screening were effective in ameliorating colitis, which has important implications for future screening of bioactive peptides from medicinal food homologues as drugs or dietary supplements.
Collapse
Affiliation(s)
- Zishan Hong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Chongying Shi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming 650201, China
| | - Xia Hu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming 650201, China
| | - Jinlian Chen
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming 650201, China
| | - Tingting Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming 650201, China
| | - Li Zhang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming 650201, China
| | - Yuying Bai
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming 650201, China
| | - Jingjing Dai
- School of Tea and Coffee, Puer University, Puer 665000, China
| | - Jun Sheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Jing Xie
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Yang Tian
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
- School of Tea and Coffee, Puer University, Puer 665000, China
| |
Collapse
|
38
|
Li Q, Jia X, Zhong Q, Zhong Z, Wang Y, Tang C, Zhao B, Feng H, Hao J, Zhao Z, He J, Zhang Y. Combination of Walnut Peptide and Casein Peptide alleviates anxiety and improves memory in anxiety mices. Front Nutr 2023; 10:1273531. [PMID: 37867495 PMCID: PMC10588484 DOI: 10.3389/fnut.2023.1273531] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Anxiety disorders continue to prevail as the most prevalent cluster of mental disorders following the COVID-19 pandemic, exhibiting substantial detrimental effects on individuals' overall well-being and functioning. Even after a search spanning over a decade for novel anxiolytic compounds, none have been approved, resulting in the current anxiolytic medications being effective only for a specific subset of patients. Consequently, researchers are investigating everyday nutrients as potential alternatives to conventional medicines. Our prior study analyzed the antianxiety and memory-enhancing properties of the combination of Walnut Peptide (WP) and Casein Peptide (CP) in zebrafish. Methods and Results Based on this work, our current research further validates their effects in mice models exhibiting elevated anxiety levels through a combination of gavage oral administration. Our results demonstrated that at 170 + 300 mg human dose, the WP + CP combination significantly improved performances in relevant behavioral assessments related to anxiety and memory. Furthermore, our analysis revealed that the combination restores neurotransmitter dysfunction observed while monitoring Serotonin, gamma-aminobutyric acid (GABA), dopamine (DA), and acetylcholine (ACh) levels. This supplementation also elevated the expression of brain-derived neurotrophic factor mRNA, indicating protective effects against the neurological stresses of anxiety. Additionally, there were strong correlations among behavioral indicators, BDNF (brain-derived neurotrophic factor), and numerous neurotransmitters. Conclusion Hence, our findings propose that the WP + CP combination holds promise as a treatment for anxiety disorder. Besides, supplementary applications are feasible when produced as powdered dietary supplements or added to common foods like powder, yogurt, or milk.
Collapse
Affiliation(s)
- Qinxi Li
- Laboratory of Nonhuman Primate Disease Modeling Research, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China
| | - Xiuzhen Jia
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Qixing Zhong
- Laboratory of Nonhuman Primate Disease Modeling Research, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihui Zhong
- Laboratory of Nonhuman Primate Disease Modeling Research, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Wang
- Laboratory of Nonhuman Primate Disease Modeling Research, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Tang
- Laboratory of Nonhuman Primate Disease Modeling Research, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Bangcheng Zhao
- Laboratory of Nonhuman Primate Disease Modeling Research, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China
| | - Haotian Feng
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Jingyu Hao
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Zifu Zhao
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Jian He
- Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, China
| | - Yingqian Zhang
- Laboratory of Nonhuman Primate Disease Modeling Research, Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
39
|
Zhang L, Bai YY, Hong ZS, Xie J, Tian Y. Isolation, Identification, Activity Evaluation, and Mechanism of Action of Neuroprotective Peptides from Walnuts: A Review. Nutrients 2023; 15:4085. [PMID: 37764868 PMCID: PMC10534798 DOI: 10.3390/nu15184085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
As human life expectancy increases, the incidence of neurodegenerative diseases in older adults has increased in parallel. Walnuts contain bioactive peptides with demonstrated neuroprotective effects, making them a valuable addition to the diet. We here present a comprehensive review of the various methods used to prepare, isolate, purify, and identify the neuroprotective peptides found in walnuts. We further summarise the different approaches currently used to evaluate the activity of these peptides in experimental settings, highlighting their potential to reduce oxidative stress, neuroinflammation, and promote autophagy, as well as to regulate the gut microflora and balance the cholinergic system. Finally, we offer suggestions for future research concerning bioavailability and improving or masking the bitter taste and sensory properties of final products containing the identified walnut neuroprotective peptides to ensure successful adoption of these peptides as functional food ingredients for neurohealth promotion.
Collapse
Affiliation(s)
- Li Zhang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (L.Z.)
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Yu-Ying Bai
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (L.Z.)
- Yunnan Provincial Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Zi-Shan Hong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (L.Z.)
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming 650201, China
| | - Jing Xie
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (L.Z.)
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Yang Tian
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming 650201, China
- School of Tea and Coffee, Puer University, Puer 665000, China
| |
Collapse
|
40
|
Wu S, Zhu Z, Chen M, Huang A, Xie Y, Hu H, Zhang J, Wu Q, Wang J, Ding Y. Comparison of Neuroprotection and Regulating Properties on Gut Microbiota between Selenopeptide Val-Pro-Arg-Lys-Leu-SeMet and Its Native Peptide Val-Pro-Arg-Lys-Leu-Met In Vitro and In Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12203-12215. [PMID: 37530172 DOI: 10.1021/acs.jafc.3c02918] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Selenopeptides are promising candidates for intervening in neuroinflammation; however, the key role of selenium (Se) in selenopeptides remains poorly understood. To address this gap, we compared the neuroprotective effects of selenopeptide Val-Pro-Arg-Lys-Leu-SeMet (namely, Se-P1) and its native peptide Val-Pro-Arg-Lys-Leu-Met (namely, P1). Our results demonstrate that Se-P1 treatment exhibits superior antioxidant and antineuroinflammatory effects in PC12 cells and lipopolysaccharide (LPS)-injured mice compared to P1. Moreover, the administration of Se-P1 and P1 resulted in a shift in the gut microbiota composition. Notably, during LPS-induced injury, Se-P1 treatment demonstrated greater stability in maintaining gut microbiota composition compared to P1 treatment. Specifically, Se-P1 may have a positive impact on gut microbiota dysbiosis by modulating inflammatory-related bacteria such as enhancing Lactobacillus abundance while reducing that of Lachnospiraceae_NK4A136_group. Furthermore, the alteration of metabolites induced by Se-P1 treatment exhibited a significant correlation with gut microbiota, subsequently modulating the inflammatory-related metabolic pathways including histidine metabolism, lysine degradation, and purine metabolism. These findings suggest that organic Se contributes to the bioactivities of Se-P1 in mitigating neuroinflammation in LPS-injured mice compared to P1. These findings hold significant value for the development of potential preventive or therapeutic strategies against neurodegenerative diseases and introduce novel concepts in selenopeptide nutrition and supplementation recommendations.
Collapse
Affiliation(s)
- Shujian Wu
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhenjun Zhu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Mengfei Chen
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Aohuan Huang
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yizhen Xie
- Guangdong Yuewei Edible Mushroom Technology Co., Ltd., Guangzhou 510530, China
| | - Huiping Hu
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jumei Zhang
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qingping Wu
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou 510070, China
| | - Yu Ding
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
41
|
Hosseini Adarmanabadi SMH, Karami Gilavand H, Taherkhani A, Sadat Rafiei SK, Shahrokhi M, Faaliat S, Biabani M, Abil E, Ansari A, Sheikh Z, Poudineh M, Khalaji A, ShojaeiBaghini M, Koorangi A, Deravi N. Pharmacotherapeutic potential of walnut (Juglans spp.) in age-related neurological disorders. IBRO Neurosci Rep 2023; 14:1-20. [PMID: 36507190 PMCID: PMC9727645 DOI: 10.1016/j.ibneur.2022.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/30/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
Global and regional trends of population aging spotlight major public health concerns. As one of the most common adverse prognostic factors, advanced age is associated with a remarkable incidence risk of many non-communicable diseases, affecting major organ systems of the human body. Age-dependent factors and molecular processes can change the nervous system's normal function and lead to neurodegenerative disorders. Oxidative stress results from of a shift toward reactive oxygen species (ROS) production in the equilibrium between ROS generation and the antioxidant defense system. Oxidative stress and neuroinflammation caused by Amyloid-ß protein deposition in the human brain are the most likely pathogenesis of Alzheimer's disease (AD). Walnut extracts could reduce Amyloid-ß fibrillation and aggregation, indicating their beneficial effects on memory and cognition. Walnut can also improve movement disabilities in Parkinson's disease due to their antioxidant and neuroprotective effect by reducing ROS and nitric oxide (NO) generation and suppressing oxidative stress. It is noteworthy that Walnut compounds have potential antiproliferative effects on Glioblastoma (the most aggressive primary cerebral neoplasm). This effective therapeutic agent can stimulate apoptosis of glioma cells in response to oxidative stress, concurrent with preventing angiogenesis and migration of tumor cells, improving the quality of life and life expectancy of patients with glioblastoma. Antioxidant Phenolic compounds of the Walnut kernel could explain the significant anti-convulsion ability of Walnut to provide good prevention and treatment for epileptic seizures. Moreover, the anti-inflammatory effect of Walnut oil could be beneficial in treating multiple sclerosis. In this study, we review the pharmaceutical properties of Walnut in age-related neurological disorders.
Collapse
Affiliation(s)
| | - Helia Karami Gilavand
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirreza Taherkhani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyyed Kiarash Sadat Rafiei
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sara Faaliat
- Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Morteza Biabani
- Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Elaheh Abil
- Chemical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Akram Ansari
- Laboratory Science, Hormozgan University of Medical Science, Bandar Abbas, Iran
| | - Zahra Sheikh
- Student Research Committee, School of medicine, Babol University of Medical Sciences, Babol, Iran
| | | | | | - Mahdie ShojaeiBaghini
- Medical Informatics, Research Center, Institute for Futures Studies in Health, Kerman, Iran
| | - Amirhosein Koorangi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Shen J, Zeng M, Huang P, Chen B, Xia Z, Cao Y, Miao J. Purification and activity evaluation of novel anti-inflammatory peptides from pearl oyster ( Pinctada martensii) hydrolysates. Food Funct 2023; 14:4242-4253. [PMID: 37067400 DOI: 10.1039/d2fo04046h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Pearl oyster meat, a by-product of pearl production, is rich in protein, but has a low utilization rate. Our previous study showed that pearl oyster meat hydrolysates have potential anti-inflammatory activity. In this study, highly active peptides from pearl oyster meat hydrolysates were purified, identified, and extracted, and their anti-inflammatory activity was further investigated. A total of 206 peptides were identified, and three novel anti-inflammatory peptides, TWP (402.1903 Da), TAMY (484.1992 Da) and FPGA (390.1903 Da), were screened by molecular docking. The molecular docking results showed that TWP, TAMY and FPGA can bind to key regions in the cyclooxygenase-2 (COX-2) active site. Furthermore, the three anti-inflammatory peptides can effectively regulate the release of inflammatory mediators from RAW264.7 macrophages by reducing the levels of nitric oxide (NO) and pro-inflammatory cytokines (such as TNF-α, IL-6 and IL-1β), and increasing the production of anti-inflammatory cytokine IL-10, showing great anti-inflammatory activity. This study provides a new theoretical reference for the development of functional foods or nutritional supplements with natural anti-inflammatory effects.
Collapse
Affiliation(s)
- Jinpeng Shen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Manjia Zeng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Pantian Huang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Bingbing Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Zhen Xia
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Jianyin Miao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
43
|
Lin L, Li C, Li T, Zheng J, Shu Y, Zhang J, Shen Y, Ren D. Plant‐derived peptides for the improvement of Alzheimer's disease: Production, functions, and mechanisms. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Affiliation(s)
- Like Lin
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry and Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an Shaanxi China
| | - Cong Li
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry and Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an Shaanxi China
| | - Tingting Li
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry and Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an Shaanxi China
| | - Jingyi Zheng
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry and Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an Shaanxi China
| | - Yu Shu
- College of Food Science and Technology Northwest University Xi'an Shaanxi China
| | - Jingjing Zhang
- College of Chemical Engineering Northwest University Xi'an Shaanxi China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education College of Chemistry and Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an Shaanxi China
| | - Difeng Ren
- Beijing Key Laboratory of Food Processing and Safety in Forestry Department of Food Science and Engineering, College of Biological Sciences and Biotechnology Beijing Forestry University Beijing China
| |
Collapse
|
44
|
Zhao C, Gong Y, Zheng L, Zhao M. The Degree of Hydrolysis and Peptide Profile Affect the Anti-Fatigue Activities of Whey Protein Hydrolysates in Promoting Energy Metabolism in Exercise Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3010-3021. [PMID: 36748231 DOI: 10.1021/acs.jafc.2c08269] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The purpose of this study was to investigate the effects of characteristics of whey protein hydrolysates (WPHs) on energy metabolism in exercise mice. Results showed that high-degree of hydrolysis (DH) hydrolysates (22%, H-Alc and H-AXH) showed better anti-fatigue effects than low-DH hydrolysates (10%, L-Alc and L-AXH) in enhancing energy substances and reducing metabolic byproducts. It might be related to the higher content of components less than 3 kDa in H-Alc and H-AXH (92.35 and 81.05%, respectively) and higher intensities of small peptides containing two to nine residues. Moreover, Western blot results revealed that WPHs maintained the energy balance in exercise mice by regulating the AMP-activated protein kinase (AMPK) and mTOR signaling pathways. Notably, H-Alc had higher intensities of peptides containing two to five residues than H-AXH and these peptides were rich in essential amino acids, which might explain why H-Alc exhibited better effects in decreasing protein metabolites. Meanwhile, H-AXH contained more free amino acids, especially Leu, which might contribute to its ability to promote glucose consumption in muscle. Furthermore, 40 peptides with two to nine residues and high intensities (>5 × 105) were screened from H-Alc and H-AXH and predicted by bioinformatics tools. Among them, LLL, LLF, GTW, AGTW, and ALPM showed high bioavailability, cell permeability, and potential bioactivity.
Collapse
Affiliation(s)
- Chaoya Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Yurong Gong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Lin Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- College of Food Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
- Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510650, China
| |
Collapse
|
45
|
ATF5 Attenuates the Secretion of Pro-Inflammatory Cytokines in Activated Microglia. Int J Mol Sci 2023; 24:ijms24043322. [PMID: 36834738 PMCID: PMC9961550 DOI: 10.3390/ijms24043322] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
The highly dynamic changes in microglia necessary to achieve a rapid neuroinflammatory response require a supply of energy from mitochondrial respiration, which leads to the accumulation of unfolded mitochondrial proteins. We previously reported that microglial activation is correlated with the mitochondrial unfolded protein response (UPRmt) in a kaolin-induced hydrocephalus model, but we still do not know the extent to which these changes in microglia are involved in cytokine release. Here, we investigated the activation of BV-2 cells and found that treatment with lipopolysaccharide (LPS) for 48 h increased the secretion of pro-inflammatory cytokines. This increase was accompanied by a concurrent decrease in oxygen consumption rate (OCR) and mitochondrial membrane potential (MMP), in association with the up-regulation of the UPRmt. Inhibition of the UPRmt by knockdown of ATF5, a key upstream regulator of the UPRmt, using small-interfering RNA against ATF5 (siATF5) not only increased production of the pro-inflammatory cytokines, interleukin-6 (IL-6), IL-1β and tumor necrosis factor-α (TNF-α), but also decreased MMP. Our results suggest that ATF5-dependent induction of the UPRmt in microglia acts as a protective mechanism during neuroinflammation and may be a potential therapeutic target for reducing neuroinflammation.
Collapse
|
46
|
Novaj A, Engel MG, Wang R, Mao K, Xue X, Amir Y, Atzmon G, Huffman DM. Dietary Walnuts Preserve Aspects of Health Span and Alter the Hippocampal Lipidome in Aged High-Fat Diet-Fed Mice. Int J Mol Sci 2023; 24:ijms24032314. [PMID: 36768636 PMCID: PMC9916809 DOI: 10.3390/ijms24032314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Evidence continues to accrue that aging and its diseases can be delayed by pharmacologic and dietary strategies that target the underlying hallmarks of the aging process. However, identifying simple, safe, and effective dietary strategies involving the incorporation of whole foods that may confer some protection against the aging process is also needed. Recent observational studies have suggested that nut consumption can reduce mortality risk in humans. Among these, walnuts are particularly intriguing, given their high content of n-3 fatty acids, fiber, and antioxidant and anti-inflammatory compounds. To this end, 12-month-old male CB6F1 mice were provided either a defined control low-fat diet (LFD), a control high-fat diet (HFD), or an isocaloric HFD containing 7.67% walnuts by weight (HFD + W), and measures of healthspan and related biochemical markers (n = 10-19 per group) as well as survival (n = 20 per group) were monitored. Mice provided the HFD or HFD + W demonstrated marked weight gain, but walnuts lowered baseline glucose (p < 0.05) and tended to temper the effects of HFD on liver weight gain (p < 0.05) and insulin tolerance (p = 0.1). Additional assays suggested a beneficial effect on some indicators of health with walnut supplementation, including preservation of exercise capacity and improved short-term working memory, as determined by Y maze (p = 0.02). However, no effect was observed via any diet on inflammatory markers, antioxidant capacity, or survival (p = 0.2). Ingenuity Pathway Analysis of the hippocampal transcriptome identified two processes predicted to be affected by walnuts and potentially linked to cognitive function, including estrogen signaling and lipid metabolism, with changes in the latter confirmed by lipidomic analysis. In summary, while walnuts did not significantly improve survival on a HFD, they tended to preserve features of healthspan in the context of a metabolic stressor with aging.
Collapse
Affiliation(s)
- Ardijana Novaj
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Matthew G. Engel
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ruixuan Wang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kai Mao
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Xiaonan Xue
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yam Amir
- Department of Human Biology, University of Haifa, Haifa 3498838, Israel
| | - Gil Atzmon
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Human Biology, University of Haifa, Haifa 3498838, Israel
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Derek M. Huffman
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Correspondence: ; Tel.: +1-718-430-4278; Fax: +1-718-430-8922
| |
Collapse
|
47
|
Protective Effect of Foxtail Millet Protein Hydrolysate on Ethanol and Pyloric Ligation-Induced Gastric Ulcers in Mice. Antioxidants (Basel) 2022; 11:antiox11122459. [PMID: 36552666 PMCID: PMC9774519 DOI: 10.3390/antiox11122459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Foxtail millet has been traditionally considered to possess gastroprotective effects, but studies evaluating its use as a treatment for gastric ulcers are lacking. Here, we assessed the antiulcer effects of foxtail millet protein hydrolysate (FPH) and explored its mechanism by using blocking agents. In a mouse model of ethanol-induced gastric ulcers, pretreatment with FPH reduced the ulcerative lesion index, downregulated the expression of inflammatory cytokines in the gastric tissue, increased the activity of antioxidant enzymes, and improved the oxidative status. FPH increased constitutive the activity of nitric oxide synthase (cNOS), NO levels, and mucin expression in gastric mucosa, and inhibited the activation of the ET-1/PI3K/Akt pathway. In a mouse model of pyloric ligation-induced gastric ulcers, FPH inhibited gastric acid secretion and decreased the activity of gastric protease. Pretreatment of mice with the sulfhydryl blocker NEM and the NO synthesis inhibitor L-NAME abolished the gastroprotective effect of FPH, but not the KATP channel blocker glibenclamide and the PGE2 synthesis blocker indomethacin. Among the peptides identified in FPH, 10 peptides were predicted to have regulatory effects on the gastric mucosa, and the key sequences were GP and PG. The results confirmed the gastroprotective effect of FPH and revealed that its mechanism was through the regulation of gastric mucosal mucus and NO synthesis. This study supports the health effects of a millet-enriched diet and provides a basis for millet protein as a functional food to improve gastric ulcers and its related oxidative stress.
Collapse
|
48
|
Rivera-Jiménez J, Berraquero-García C, Pérez-Gálvez R, García-Moreno PJ, Espejo-Carpio FJ, Guadix A, Guadix EM. Peptides and protein hydrolysates exhibiting anti-inflammatory activity: sources, structural features and modulation mechanisms. Food Funct 2022; 13:12510-12540. [PMID: 36420754 DOI: 10.1039/d2fo02223k] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inflammation is the response of the immune system to harmful stimuli such as tissue injury, infection or toxic chemicals, which has the aim of eliminating irritants or pathogenic microorganisms and enhancing tissue repair. Uncontrolled long-lasting acute inflammation can gradually progress to chronic, causing a variety of chronic inflammatory diseases that are usually treated with anti-inflammatory drugs, but most of them are inadequate to control chronic responses and are also associated with adverse side effects. Thus, many efforts are being directed to develop alternative and more selective anti-inflammatory therapies from natural products. One main field of interest is the obtaining of bioactive peptides exhibiting anti-inflammatory activity from sustainable protein sources like edible insects or agroindustry and fishing by-products. This work highlighted the structure-activity relationship of anti-inflammatory peptides. Small peptides with molecular weight under 1 kDa and amino acid chain length between 2 to 20 residues are generally the most active because of the higher probability to be absorbed in the intestine and penetrate into cells when compared with the larger size peptides. The presence of hydrophobic (Val, Ile, Pro) and positively charged (His, Arg, Lys) amino acids is another common occurrence for anti-inflammatory peptides. Interestingly, a high percentage (77%) of these bioactive peptides can be found in alternative sustainable protein sources such as Tenebrio molitor or sunflower, apart from its original protein source. However, not all of these peptides with anti-inflammatory potential in vitro achieve good scores by the in silico bioactivity predictors studied. Therefore, it is essential to implement current bioinformatics tools, in order to complement in vitro experiments with prior prediction of potential bioactive peptides.
Collapse
Affiliation(s)
- Julia Rivera-Jiménez
- Department of Chemical Engineering, University of Granada, 18071, Granada, Spain.
| | | | - Raúl Pérez-Gálvez
- Department of Chemical Engineering, University of Granada, 18071, Granada, Spain.
| | | | | | - Antonio Guadix
- Department of Chemical Engineering, University of Granada, 18071, Granada, Spain.
| | - Emilia M Guadix
- Department of Chemical Engineering, University of Granada, 18071, Granada, Spain.
| |
Collapse
|
49
|
Wang Q, Zhang J, Zhuang J, Shen F, Zhao M, Du J, Yu P, Zhong H, Feng F. Soft-Shelled Turtle Peptides Extend Lifespan and Healthspan in Drosophila. Nutrients 2022; 14:nu14245205. [PMID: 36558363 PMCID: PMC9781693 DOI: 10.3390/nu14245205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
In traditional Chinese medicine, soft-shelled turtle protein and peptides serve as a nutraceutical for prolonging the lifespan. However, their effects on anti-aging have not been clarified scientifically in vivo. This study aimed to determine whether soft-shelled turtle peptides (STP) could promote the lifespan and healthspan in Drosophila melanogaster and the underlying molecular mechanisms. Herein, STP supplementation prolonged the mean lifespan by 20.23% and 9.04% in males and females, respectively, delaying the aging accompanied by climbing ability decline, enhanced gut barrier integrity, and improved anti-oxidation, starvation, and heat stress abilities, while it did not change the daily food intake. Mechanistically, STP enhanced autophagy and decreased oxidative stress by downregulating the target of rapamycin (TOR) signaling pathway. In addition, 95.18% of peptides from the identified sequences in STP could exert potential inhibitory effects on TOR through hydrogen bonds, van der Walls, hydrophobic interactions, and electrostatic interactions. The current study could provide a theoretical basis for the full exploitation of soft-shelled turtle aging prevention.
Collapse
Affiliation(s)
- Qianqian Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Junhui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jiachen Zhuang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Fei Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Minjie Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Juan Du
- Zhejiang Nuoyan Biotechnology Co., Ltd., Huzhou 313000, China
| | - Peng Yu
- Yuyao Lengjiang Turtle Industry, Ningbo 315400, China
| | - Hao Zhong
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Correspondence: (H.Z.); (F.F.)
| | - Fengqin Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Correspondence: (H.Z.); (F.F.)
| |
Collapse
|
50
|
Zhang Q, Zheng L, Luo D, Huang M, Feng Y, Zhao M. Peptide WCPFSRSF alleviates sleep deprivation-induced memory impairment by inhibiting neuroinflammation and modulating IL-6/JAK/STAT signaling pathway. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|