1
|
Yang JH, Seong KY, Kang M, Jang S, Yang SY, Hahn YK. Turbulence-enhanced microneedle immunoassay platform (TMIP) for high-precision biomarker detection from skin interstitial fluid. Biosens Bioelectron 2025; 282:117480. [PMID: 40279736 DOI: 10.1016/j.bios.2025.117480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/22/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
Conventional diagnostic methods for biomarker detection often require invasive procedures and exhibit limited reproducibility and sensitivity. In this study, the turbulence-enhanced microneedle immunoassay platform (TMIP) was designed to enhance the performance and accuracy of biomarker detection in skin interstitial fluid (ISF). TMIP combines a bullet-shaped microneedle (MN) array for minimally invasive biomarker capture, a microfluidic device for MN-mediated immunoassay process simplification, and a star-shaped magnetic stirrer tool (MST) to facilitate efficient washing. By targeting S100 calcium-binding protein B (S100B), a diagnostic biomarker for melanoma, TMIP demonstrated substantial improvements in reproducibility, reducing signal deviations by up to 55 % compared to manual operation. The application of nanoporous MNs (NPMNs) achieved a low detection limit of 20 pg/mL with a high linearity (R2 = 0.9758). Validation using a gelatin phantom mimicking human skin confirmed TMIP's ability to achieve improved reproducibility and sensitivity. Furthermore, TMIP successfully detected S100B with high reproducibility in both the phantom (R2 = 0.97523) and melanoma-expressing mice within a rapid incubation time of 1 min. TMIP enables the detection of biomarkers with remarkable reproducibility and sub-nanogram sensitivity by simplifying the analysis process and enhancing reagent washing through turbulence. These features suggest that TMIP has the potential to serve as an efficient and reliable tool for biomarker detection in skin ISF.
Collapse
Affiliation(s)
- Ju-Hong Yang
- Department of Biomedical Convergence Science and Technology, Advanced Institute of Science and Technology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Keum-Yong Seong
- Department of Biomaterials Science (BK21 Four Program), Life and Industry Convergence Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Mingi Kang
- Department of Biomaterials Science (BK21 Four Program), Life and Industry Convergence Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Sangsoo Jang
- Department of Biomaterials Science (BK21 Four Program), Life and Industry Convergence Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Seung Yun Yang
- Department of Biomaterials Science (BK21 Four Program), Life and Industry Convergence Institute, Pusan National University, Miryang, 50463, Republic of Korea.
| | - Young Ki Hahn
- Department of Biomedical Convergence Science and Technology, Advanced Institute of Science and Technology, Kyungpook National University, Daegu, 41566, Republic of Korea; Department of Advanced Bioconvergence (BK21 Four Program), Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
2
|
Li J, Zhang Y, Tian J, Ling G, Zhang P. Advances in magnetic microneedles: From fabrications to applications. Biomaterials 2025; 318:123143. [PMID: 40032442 DOI: 10.1016/j.biomaterials.2025.123143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/29/2024] [Accepted: 01/23/2025] [Indexed: 03/05/2025]
Abstract
Microneedles (MNs) are a new type of physically facilitated penetration technology that not only allows for transdermal drug delivery in a minimally invasive and painless manner, but also serves as a channel for biosignal sensing, demonstrating great potential for application in the medical field. Magnetic materials consist of magnetic elements and their compounds, which can be used for separation, diagnosis, drug delivery and other applications in the fields of medicine, biology and materials. Combining magnetic materials with microneedles can confer magnetic responsiveness to microneedles. Specific strategies for magnetic introduction, corresponding synthetic methods, related applications, and comparisons with other externally stimulus-responsive microneedles are reviewed in this paper on magnetic microneedles. In the end, the limitations of current research and the potential for development of magnetically responsive microneedles are discussed. We hope that the description of magnetic microneedle synthesis methods and related applications in this paper will provide readers with a better understanding of magnetic microneedle systems and inspire the development of novel magnetic microneedle products.
Collapse
Affiliation(s)
- Jiaweijie Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Yuanke Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Jingjing Tian
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China.
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, PR China.
| |
Collapse
|
3
|
Zhang Q, Xing Y, Wang K, Wu Q, Zheng Y, Wu J, Huang X. Feasibility of non-invasive measurement of cardiac biomarkers using mid-infrared spectroscopy: finite element analysis and experimental validation. Analyst 2025. [PMID: 40401368 DOI: 10.1039/d5an00335k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Attenuated total reflectance mid-infrared (ATR-MIR) spectroscopy provides a quick and efficient way to identify protein-specific absorption spectra, making it a promising technique for the non-invasive detection of cardiac biomarkers that are thought to be direct indicators of major cardiovascular events. However, there are still questions about the effectiveness of ATR-MIR in identifying various critical cardiac biomarkers and the detection depth of evanescent waves. This study employs finite element simulations to examine the optical path of attenuated total reflectance (ATR) and the detection depth of evanescent waves. To simulate a subcutaneous tissue environment, a polydimethylsiloxane (PDMS) reagent bath, a high-density melamine sponge, and a poly(ethylene terephthalate) (PET) film are used to assess the ability of MIR spectroscopy to detect cardiac biomarkers at different depths. The findings reveal that the absorption spectra of cardiac troponin I (cTnI), N-terminal pro-B-type natriuretic peptide (NT-proBNP), and C-reactive protein (CRP) show distinct characteristic peaks in the amide I and amide II bands with high specificity. At a depth of about 15 μm, the peak amplitude shows a strong correlation with the biomarker concentration. Even at a depth of 80 μm, the absorption spectrum of cTnI still displays significant characteristic peaks, confirming its ability to detect subcutaneous superficial cardiac biomarkers. This research underscores the considerable potential of ATR-MIR spectroscopy for the non-invasive detection of subcutaneous cardiac biomarkers, which could aid in the development of wearable devices for monitoring cardiovascular health, ultimately contributing to the prevention, diagnosis, and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Qingchao Zhang
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Yuxuan Xing
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Kaizheng Wang
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Qiushuo Wu
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Yang Zheng
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150086, China
| | - Jian Wu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, State Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, 150086, China
| | - Xian Huang
- School of Precision Instrument and Optoelectronics Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| |
Collapse
|
4
|
Emmons N, Duman Z, Erdal MK, Hespanha J, Kippin TE, Plaxco KW. Feedback Control over Plasma Drug Concentrations Achieves Rapid and Accurate Control over Solid-Tissue Drug Concentrations. ACS Pharmacol Transl Sci 2025; 8:1416-1423. [PMID: 40370982 PMCID: PMC12070313 DOI: 10.1021/acsptsci.5c00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/31/2025] [Accepted: 04/09/2025] [Indexed: 05/16/2025]
Abstract
Electrochemical aptamer-based (EAB) sensors enable the continuous, real-time monitoring of drugs and biomarkers in situ in the blood, brain, and peripheral tissues of live subjects. The real-time concentration information produced by these sensors provides unique opportunities to perform closed-loop, feedback-controlled drug delivery, by which the plasma concentration of a drug can be held constant or made to follow a specific, time-varying profile. Motivated by the observation that the site of action of many drugs is the solid tissues and not the blood, here we experimentally confirm that maintaining constant plasma drug concentrations also produces constant concentrations in the interstitial fluid (ISF). Using an intravenous EAB sensor we performed feedback control over the concentration of doxorubicin, an anthracycline chemotherapeutic, in the plasma of live rats. Using a second sensor placed in the subcutaneous space, we find drug concentrations in the ISF rapidly (30-60 min) match and then accurately (RMS deviation of 8 to 21%) remain at the feedback-controlled plasma concentration, validating the use of feedback-controlled plasma drug concentrations to control drug concentrations in the solid tissues that are the site of drug action. We expanded to pairs of sensors in the ISF, the outputs of the individual sensors track one another with good precision (R 2 = 0.95-0.99), confirming that the performance of in vivo EAB sensors matches that of prior, in vitro validation studies. These observations suggest EAB sensors could prove a powerful new approach to the high-precision personalization of drug dosing.
Collapse
Affiliation(s)
- Nicole
A. Emmons
- Department
of Psychological and Brain Sciences, University
of California, Santa Barbara 93106, United States
- Neuroscience
Research Institute, University of California, Santa Barbara 93106, United States
- Institute
for Collaborate Biotechnologies, University
of California, Santa Barbara 93106, United States
| | - Zeki Duman
- Department
of Electrical and Computer Engineering, University of California, Santa
Barbara 93106, United States
| | - Murat Kaan Erdal
- Department
of Electrical and Computer Engineering, University of California, Santa
Barbara 93106, United States
| | - João Hespanha
- Department
of Electrical and Computer Engineering, University of California, Santa
Barbara 93106, United States
| | - Tod E. Kippin
- Department
of Psychological and Brain Sciences, University
of California, Santa Barbara 93106, United States
- Neuroscience
Research Institute, University of California, Santa Barbara 93106, United States
- Institute
for Collaborate Biotechnologies, University
of California, Santa Barbara 93106, United States
| | - Kevin W. Plaxco
- Department
of Chemistry and Biochemistry, University
of California, Santa Barbara 93106, United States
- Department
of Bioengineering, University of California, Santa Barbara 93106, United States
- Institute
for Collaborate Biotechnologies, University
of California, Santa Barbara 93106, United States
| |
Collapse
|
5
|
Coskun A, Savas IN, Can O, Lippi G. From population-based to personalized laboratory medicine: continuous monitoring of individual laboratory data with wearable biosensors. Crit Rev Clin Lab Sci 2025; 62:198-227. [PMID: 39893518 DOI: 10.1080/10408363.2025.2453152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/28/2024] [Accepted: 01/09/2025] [Indexed: 02/04/2025]
Abstract
Monitoring individuals' laboratory data is essential for assessing their health status, evaluating the effectiveness of treatments, predicting disease prognosis and detecting subclinical conditions. Currently, monitoring is performed intermittently, measuring serum, plasma, whole blood, urine and occasionally other body fluids at predefined time intervals. The ideal monitoring approach entails continuous measurement of concentration and activity of biomolecules in all body fluids, including solid tissues. This can be achieved through the use of biosensors strategically placed at various locations on the human body where measurements are required for monitoring. High-tech wearable biosensors provide an ideal, noninvasive, and esthetically pleasing solution for monitoring individuals' laboratory data. However, despite significant advances in wearable biosensor technology, the measurement capacities and the number of different analytes that are continuously monitored in patients are not yet at the desired level. In this review, we conducted a literature search and examined: (i) an overview of the background of monitoring for personalized laboratory medicine, (ii) the body fluids and analytes used for monitoring individuals, (iii) the different types of biosensors and methods used for measuring the concentration and activity of biomolecules, and (iv) the statistical algorithms used for personalized data analysis and interpretation in monitoring and evaluation.
Collapse
Affiliation(s)
- Abdurrahman Coskun
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Irem Nur Savas
- Department of Medical Biochemistry, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ozge Can
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Giuseppe Lippi
- Section of Clinical Biochemistry and School of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
6
|
Renlund M, Kopp Fernandes L, Rangsten P, Hillmering M, Mosel S, Issa Z, Falk V, Meyer A, Schoenrath F. Use of a Silicon Microneedle Chip-Based Device for the Extraction and Subsequent Analysis of Dermal Interstitial Fluid in Heart Failure Patients. Diagnostics (Basel) 2025; 15:989. [PMID: 40310374 PMCID: PMC12026331 DOI: 10.3390/diagnostics15080989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/08/2025] [Accepted: 04/11/2025] [Indexed: 05/02/2025] Open
Abstract
Background/Objectives: Dermal interstitial fluid (dISF) is probably the most interesting biofluid for biomarker analysis as an alternative to blood, enabling higher patient comfort and closer or even continuous biomarker monitoring. The prerequisite for dISF-based analysis tools is having convenient access to dISF, as well as a better knowledge of the presence, concentration, and dynamics of biomarkers in dISF. Hollow microneedles represent one of the most promising platforms for access to pure dISF, enabling the mining of biomarker information. Methods and Results: Here, a microneedle-based method for dISF sampling is presented, where a combination of hollow microneedles and sub-pressure is used to optimize both penetration depth in skin and dermal interstitial fluid sampling volumes, and the design of an open, prospective, exploratory, and interventional study to examine the detectability of inflammatory and cardiocirculatory biomarkers in the dISF of heart failure patients, the relationship between dISF-derived and blood-derived biomarker levels, and their kinetics during a cardiopulmonary exercise test (CPET) is introduced. Conclusions: The dISF sampling method and study presented here will foster research on biomarkers in dISF in general and in heart failure patients in particular. The study is part of the European project DIGIPREDICT-Digital Edge AI-deployed DIGItal Twins for PREDICTing disease progression and the need for early intervention in infectious and cardiovascular diseases beyond COVID-19.
Collapse
Affiliation(s)
| | - Laurenz Kopp Fernandes
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Augustenburger Platz 1, 13353 Berlin, Germany (F.S.)
- Charité—Universitaetsmedizin Berlin, Corporate Member of Freie Universitaet Berlin, Humboldt-Universitaet zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany
| | | | | | - Sara Mosel
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Augustenburger Platz 1, 13353 Berlin, Germany (F.S.)
- Charité—Universitaetsmedizin Berlin, Corporate Member of Freie Universitaet Berlin, Humboldt-Universitaet zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Ziad Issa
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Augustenburger Platz 1, 13353 Berlin, Germany (F.S.)
- Charité—Universitaetsmedizin Berlin, Corporate Member of Freie Universitaet Berlin, Humboldt-Universitaet zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Volkmar Falk
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Augustenburger Platz 1, 13353 Berlin, Germany (F.S.)
- Charité—Universitaetsmedizin Berlin, Corporate Member of Freie Universitaet Berlin, Humboldt-Universitaet zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partnersite Berlin, 10785 Berlin, Germany
- Department Health Science and Technology, Eidgenoessische Technische Hochschule (ETH) Zurich, 8092 Zurich, Switzerland
| | - Alexander Meyer
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Augustenburger Platz 1, 13353 Berlin, Germany (F.S.)
- Charité—Universitaetsmedizin Berlin, Corporate Member of Freie Universitaet Berlin, Humboldt-Universitaet zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Felix Schoenrath
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Augustenburger Platz 1, 13353 Berlin, Germany (F.S.)
- Charité—Universitaetsmedizin Berlin, Corporate Member of Freie Universitaet Berlin, Humboldt-Universitaet zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partnersite Berlin, 10785 Berlin, Germany
| |
Collapse
|
7
|
Yoon J, Kwon N, Lee Y, Kim S, Lee T, Choi JW. Nanotechnology-Based Wearable Electrochemical Biosensor for Disease Diagnosis. ACS Sens 2025; 10:1675-1689. [PMID: 40036139 DOI: 10.1021/acssensors.4c03371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Recently, flexible electronics have significantly transformed information and communications technology (ICT). In particular, wearable devices, via integration with attachable biosensors, have driven the development of new types of biosensors and diagnostic devices for point-of-care testing (POCT). Moreover, wearable electrochemical biosensors can be applied to diagnose diseases in real time based on the synergistic effect generated from the incorporation of the electrochemical technique. Besides, to improve the sensitivity of electrochemical biosensors while retaining their wearability, novel nanomaterials and nanotechnologies have been introduced. In this review, recent studies on nanotechnology-based wearable electrochemical biosensors for accurate disease diagnosis are discussed. First, widely used techniques for developing flexible electrodes, including nanolithography- and nano/microneedle-based patches, are presented. Next, the latest studies on developing wearable electrochemical biosensors for the diagnosis of diseases such as diabetes and dermatitis are discussed by categorizing the biosensors into nanolithography- and nano/microneedle-based categories. Finally, this review explores the latest research trends on the application of nanotechnology-enabled nanopatterning and nano/microneedle technologies to electrochemical wearable biosensors. This review suggests novel approaches and methods for developing wearable electrochemical biosensors for real-time disease diagnosis under POCT applications.
Collapse
Affiliation(s)
- Jinho Yoon
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Nayeon Kwon
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Yejin Lee
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Seewoo Kim
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-Gu, Seoul 01897, Republic of Korea
| | - Jeong-Woo Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| |
Collapse
|
8
|
Xiao N, Li H, Fan Z, Luo F, Lu D, Sun W, Li Z, Wang Z, Han Y, Zhu Z. An electrochromism-equipped enzymatic biofuel cell system combined with hollow microneedle array for self-powered glucose sensing in interstitial fluid. Mikrochim Acta 2025; 192:224. [PMID: 40072690 DOI: 10.1007/s00604-025-07096-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025]
Abstract
A disposable, self-powered enzymatic biofuel cell (BFC) sensor integrated with a hollow microneedle array (HMNA) for glucose monitoring in interstitial fluid (ISF) is reported. The HMNA enables painless and minimally invasive ISF extraction. The BFC uses dehydrogenase (GDH) in conjunction with NAD+, diaphorase (DI), and vitamin K3 (VK3) serving as electron transfer mediators as the anode catalyst and Prussian blue (PB) as the electrochromic cathode. Glucose oxidation at the anode generates electrons that cause PB to change the color at the cathode, allowing for visual glucose concentration determination. The open-circuit potential (OCP) of the sensor is 0.14 V, with a maximum power density of 0.07 µW·cm-2, at a glucose concentration of 14 mM. The sensor shows good performance in glucose sensing with a linear relationship between the R/B ratio and glucose concentrations ranging from 0 to 14 mM. This disposable device offers a promising approach for non-invasive and self-powered glucose sensing.
Collapse
Affiliation(s)
- Nan Xiao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 20093, China
| | - Haotian Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 20093, China
| | - Zheyuan Fan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 20093, China
| | - Fangfang Luo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 20093, China
| | - Dingxi Lu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 20093, China
| | - Wen Sun
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 20093, China
| | - Zhanhong Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 20093, China.
| | - Zifeng Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 20093, China
| | - Yutong Han
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 20093, China
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 20093, China
| |
Collapse
|
9
|
Merzougui C, Yang X, Meng D, Huang Y, Zhao X. Microneedle Array-Based Dermal Interstitial Fluid Biopsy for Cancer Diagnosis: Advances and Challenges. Adv Healthc Mater 2025; 14:e2404420. [PMID: 39887596 DOI: 10.1002/adhm.202404420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/05/2025] [Indexed: 02/01/2025]
Abstract
Current early cancer diagnostic technologies, such as imaging, molecular tests, endoscopic techniques, and biopsies, face considerable challenges in low-and middle-income countries (LMICs) due to high costs, procedural complexity, and limited resource access. Microneedle-based liquid biopsy for skin interstitial fluid (ISF) offers a practical and minimally invasive alternative for cancer diagnosis in these settings. This review systematically examines ISF liquid biopsy methods for their effectiveness in capturing cancer biomarkers directly from the skin and assesses their potential to address diagnostic needs in low-resource environments. Recent innovations in microneedle design and ISF underscore their potential in enabling early, accessible cancer detection tailored to LMICs' needs. Additionally, integrating artificial intelligence (AI) for data interpretation is proposed as a way to enhance diagnostic accuracy and enable real-time point-of-care (POC) applications. Collectively, these advances illustrate a flexible, scalable model for accessible cancer diagnostics, with significant implications for improving early detection and healthcare quality in resource-limited environments.
Collapse
Affiliation(s)
- Chaima Merzougui
- State Key Laboratory of Digital Medical Engineering, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 211189, China
- Southeast University Shenzhen Research Institute, Shenzhen, 518000, China
- Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, 215163, China
| | - Xi Yang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 211189, China
- Southeast University Shenzhen Research Institute, Shenzhen, 518000, China
- Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, 215163, China
| | - Dianhuai Meng
- Rehabilitation Medical Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yan Huang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 211189, China
- Southeast University Shenzhen Research Institute, Shenzhen, 518000, China
- Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, 215163, China
| | - Xiangwei Zhao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science & Medical Engineering, Southeast University, Nanjing, 211189, China
- Southeast University Shenzhen Research Institute, Shenzhen, 518000, China
- Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, 215163, China
| |
Collapse
|
10
|
Taylor RM, Ali AMS, Zhu Y, Bolt AM, Baca JT. Advancements in heavy metal detection using microneedle array technology. Toxicol Mech Methods 2025:1-11. [PMID: 39895573 DOI: 10.1080/15376516.2025.2461647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
Heavy metal and metalloid (HM) exposure poses significant health risks, including cardiovascular disease, cancer, and renal damage. This contamination, prevalent in the Western US, involves arsenic (As), cadmium (Cd), uranium (U), and vanadium (V). Interstitial fluid (ISF) is a source of biomarkers, which can be minimally invasively collected using microneedle array (MA) technology. Our study hypothesized that MA-extracted ISF would facilitate noninvasive HM quantification. We established analytical parameters for HM detection in ISF using inductively coupled plasma-mass spectrometry (ICP-MS), defined baseline ISF HM concentrations in unexposed animal populations, and monitored HM levels in ISF under mixed exposure in animal models. Additionally, we assessed HM levels in ISF and biological fluids from three human subjects. Thirty-six Sprague-Dawley rats were divided into cohorts: low-level mixed HMs exposure (5X maximum contaminant level (MCL)); high-level single HM with low-level others (50X MCL for one HM with 5X for others); and unexposed controls. ISF and plasma were collected weekly for 8 weeks and analyzed via ICP-MS. Our findings reveal a correlation between ISF and plasma HM levels, underscoring ISF's potential for real-time monitoring of HM exposure. This study also establishes baseline ISF HM levels, illustrating the feasibility of HM quantification using small ISF volumes.
Collapse
Affiliation(s)
- Robert M Taylor
- Department of Emergency Medicine, The University of New Mexico, Albuquerque, NM, USA
| | - Abdul-Mehdi S Ali
- Department of Earth and Planetary Sciences, The University of New Mexico, Albuquerque, NM, USA
| | - Yiliang Zhu
- Department of Internal Medicine, The University of New Mexico, Albuquerque, NM, USA
| | - Alicia M Bolt
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of New Mexico, Albuquerque, NM, USA
| | - Justin T Baca
- Department of Emergency Medicine, The University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
11
|
Hsu YP, Li NS, Pang HH, Pan YC, Tsai HP, Chen HC, Chen YT, Weng CH, Kuo SW, Yang HW. Lab-on-the-Needles: A Microneedle Patch-Based Mobile Unit for Highly Sensitive Ex Vivo and In Vivo Detection of Protein Biomarkers. ACS NANO 2025; 19:3249-3264. [PMID: 39763125 PMCID: PMC11781025 DOI: 10.1021/acsnano.4c11238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/29/2025]
Abstract
Detection of biomarkers associated with physiological conditions provides critical insights into healthcare and disease management. However, challenges in sampling and analysis complicate the detection and quantification of protein biomarkers within the epidermal layer of the skin and in viscous liquid biopsy samples. Here, we present the "Lab-on-the-Needles" concept, utilizing a microneedle patch-based sensing box (MNP-based SenBox) for mobile healthcare applications. This system facilitates the rapid capture of protein biomarkers directly from the in situ epidermal layer of skin or liquid biopsies, followed by on-needle analysis for immediate assessment. The integration of horseradish peroxidase-incorporated zeolitic imidazolate framework-8 (HRP@ZIF-8) as a sensitive and stable signal probe, the detection limit for anti-SARS-CoV-2 NP IgA antibodies and various SARS-CoV-2 S1P mutant strains improves by at least 1,000-fold compared to FDA-approved commercial saliva lateral flow immune rapid tests. Additionally, the MNP-based SenBox demonstrated minimally invasive monitoring and rapid quantification of inflammatory cytokine levels (TNF-α and IL-1β) in rats within 30 min using a portable ColorReader. This study highlights the potential of the MNP-based SenBox for the minimally invasive collection and analysis of protein biomarkers directly from in situ epidermal layers of skin or liquid biopsies that might facilitate mobile healthcare diagnostics and longitudinal monitoring.
Collapse
Affiliation(s)
- Ying-Pei Hsu
- Department
of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Nan-Si Li
- Department
of Biomedical Engineering, National Cheng
Kung University, Tainan 70101, Taiwan
| | - Hao-Han Pang
- Department
of Biomedical Engineering, National Cheng
Kung University, Tainan 70101, Taiwan
| | - Yu-Chi Pan
- Graduate
Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hung-Pei Tsai
- Division
of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hsiao-Chien Chen
- Center for
Reliability Science and Technologies, Chang
Gung University, Taoyuan 33302, Taiwan
- Kidney
Research
Center, Department of Nephrology, Chang
Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
| | - Ying-Tzu Chen
- Department
of Biomedical Engineering, National Cheng
Kung University, Tainan 70101, Taiwan
- Department
of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
| | - Chen-Hsun Weng
- Medical Device
Innovation Center, National Cheng Kung University, No. 1, University Rd., Tainan City 70101, Taiwan
| | - Shiao-Wei Kuo
- Department
of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Department
of Medicinal and Applied Chemistry, Kaohsiung
Medical University, Kaohsiung 80708, Taiwan
| | - Hung-Wei Yang
- Department
of Biomedical Engineering, National Cheng
Kung University, Tainan 70101, Taiwan
- Medical Device
Innovation Center, National Cheng Kung University, No. 1, University Rd., Tainan City 70101, Taiwan
| |
Collapse
|
12
|
Emmons N, Duman Z, Erdal M, Kippin T, Hespanha J, Plaxco K. Feedback control over plasma drug concentrations achieves rapid and accurate control over solid-tissue drug concentrations. RESEARCH SQUARE 2025:rs.3.rs-5868915. [PMID: 39975897 PMCID: PMC11838736 DOI: 10.21203/rs.3.rs-5868915/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Electrochemical aptamer-based (EAB) sensors enable the continuous, real-time monitoring of drugs and biomarkers in situ in the blood, brain, and peripheral tissues of live subjects. The real-time concentration information produced by these sensors provides unique opportunities to perform closed-loop, feedback-controlled drug delivery, by which the plasma concentration of a drug can be held constant or made to follow a specific, time-varying profile. Motivated by the observation that the site of action of many drugs is the solid tissues and not the blood, here we experimentally confirm that maintaining constant plasma drug concentrations also produces constant concentrations in the interstitial fluid (ISF). Using an intravenous EAB sensor we performed feedback control over the concentration of doxorubicin, an anthracycline chemotherapeutic, in the plasma of live rats. Using a second sensor placed in the subcutaneous space, we find drug concentrations in the ISF rapidly (30-60 min) match and then accurately (RMS deviation of 8-21%) remain at the feedback-controlled plasma concentration, validating the use of feedback-controlled plasma drug concentrations to control drug concentrations in the solid tissues that are the site of drug action. We expanded to pairs of sensors in the ISF, the outputs of the individual sensors track one another with good precision (R 2 = 0.95-0.99), confirming that the performance of in vivo EAB sensors matches that of prior, in vitro validation studies. These observations suggest EAB sensors could prove a powerful new approach to the high-precision personalization of drug dosing.
Collapse
|
13
|
Wang Q, Jiao C, Chen W, Li L, Zhang X, Guo Z, Hu L, Fan Y. Reusable gallium-based electrochemical sensor for efficient glucose detection. Biosens Bioelectron 2025; 268:116858. [PMID: 39481300 DOI: 10.1016/j.bios.2024.116858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/12/2024] [Accepted: 10/14/2024] [Indexed: 11/02/2024]
Abstract
Among wearable sensing devices, electrochemical sensors are overwhelming in biochemical detection due to their simple design but high sensitivity. Most electrochemical sensors are disposable, which significantly impairs the service life. Here we present a reusable gallium (Ga)-based multilayer electrochemical glucose biosensor to extend noninvasive monitoring of glucose in the interstitial fluid. This multilayer sensor includes Ga as a conductive interconnector, poly(3,4-ethylenedioxythiophene) as an electrode layer to prevent oxidation and metal leakage, a nano-Pt layer to enhance the electrochemical properties, and a nano-Prussian blue layer for reducing the hydrogen peroxide reduction potential. The biosensor can be renewed without causing damage to its overall structure by automatically eliminating the modified nanocomposites via the electrolysis-induced bubbles. The biosensor showed high sensitivity (24.6 μA mM-1 cm-2), wide linear range (0.01-26 mM), excellent stability (i.e., pH, long-term use) and superior selectivity, that is comparable to those of the current electrochemical tools for glucose detection. More importantly, incorporated with the reverse iontophoresis, the Ga-based hybrid sensor was applied as a skin patch on rat for the in vivo noninvasive and continuous monitoring of interstitial fluid glucose. The results showed a good correlation with that measured by blood glucometer. As a whole, this Ga-based electrochemical biosensor should endow new functions like biochemical analysis in biofluids for Ga-based bioelectronic sensing devices, in which almost are physical sensors. We believe that the reusability of electrochemically controllable processes may further inspire the development of more integrated and long-term stable Ga-based biosensing devices.
Collapse
Affiliation(s)
- Qian Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Caicai Jiao
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Wuliang Chen
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Liangtao Li
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Xinxin Zhang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Zaixiang Guo
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Liang Hu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China.
| | - Yubo Fan
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China; A Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100191, China.
| |
Collapse
|
14
|
Behnam V, McManamen AM, Ballard HG, Aldana B, Tamimi M, Milosavić N, Stojanovic MN, Rubin MR, Sia SK. mPatch: A Wearable Hydrogel Microneedle Patch for In Vivo Optical Sensing of Calcium. Angew Chem Int Ed Engl 2025; 64:e202414871. [PMID: 39625999 DOI: 10.1002/anie.202414871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
This study presents an in vivo optical hydrogel microneedle platform that measures levels of analytes in interstitial fluid. The platform builds on a previously published technique for molding hydrogel microneedles by developing a composite hydrogel (i.e., PEGDA and polyacrylamide) that is sufficiently stiff to penetrate skin in the hydrated state and whose fluorescence changes dynamically-via a conjugated aptamer-depending on level of analyte. In a demonstration relevant to hypercalcemia, the hydrogel microneedle distinguished varying concentrations of calcium (within a range of 0 to 2 mM, which spans physiologically meaningful variations for hypoparathyroidism) within 10 minutes. In rats, a compact CMOS sensor measuring fluorescence from microneedles distinguished low hypercalcemic (1.7 mM) from high hypercalcemic (2.3 mM) ionized calcium levels as determined from reference blood measurements. Overall, this work demonstrates in vivo feasibility of a concept-which we call mPatch-for an optical hydrogel microneedle to measure small changes in levels of analytes in interstitial fluid, which does not rely on extraction of interstitial fluid out of the dermis.
Collapse
Affiliation(s)
- Vira Behnam
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Anika M McManamen
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Hannah G Ballard
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Bryan Aldana
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Melissa Tamimi
- Institute of Comparative Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Nenad Milosavić
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Milan N Stojanovic
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Mishaela R Rubin
- Department of Medicine Endocrinology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Samuel K Sia
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| |
Collapse
|
15
|
Aroche AF, Nissan HE, Daniele MA. Hydrogel-Forming Microneedles and Applications in Interstitial Fluid Diagnostic Devices. Adv Healthc Mater 2025; 14:e2401782. [PMID: 39558769 PMCID: PMC11694095 DOI: 10.1002/adhm.202401782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/02/2024] [Indexed: 11/20/2024]
Abstract
Hydrogel-forming microneedles are constructed from or coated with polymeric, hydrophilic materials that swell upon insertion into the skin. Designed to dissolve or disintegrate postinsertion, these microneedles can deliver drugs, vaccines, or other therapeutics. Recent advancements have broadened their application scope to include the collection, transport, and extraction of dermal interstitial fluid (ISF) for medical diagnostics. This review presents a brief introduction to the characteristics of dermal ISF, methods for extraction and sampling, and critical assessment of the state-of-the-art in hydrogel-forming microneedles for ISF diagnostics. Key factors are evaluated including material composition, swelling behavior, biocompatibility, and mechanical strength necessary for effective microneedle performance and ISF collection. The review also discusses successful examples of dermal ISF assays and microneedle sensor integrations, highlighting notable achievements, identifying research opportunities, and addressing challenges with potential solutions. Despite the predominance of synthetic hydrogels in reported hydrogel-forming microneedle technologies due to their favorable swelling and gelation properties, there is a significant variety of biopolymers and composites reported in the literature. The field lacks consensus on the optimal material, composition, or fabrication methods, though emerging evidence suggests that processing and fabrication techniques are critical to the performance and utility of hydrogel-forming microneedles for ISF diagnostics.
Collapse
Affiliation(s)
- Angélica F. Aroche
- Joint Department of Biomedical EngineeringNorth Carolina State University and University of North CarolinaChapel Hill, 911 Oval Dr.RaleighNC27695USA
| | - Hannah E. Nissan
- Department of Electrical & Computer EngineeringNorth Carolina State University890 Oval Dr.RaleighNC27695USA
| | - Michael A. Daniele
- Joint Department of Biomedical EngineeringNorth Carolina State University and University of North CarolinaChapel Hill, 911 Oval Dr.RaleighNC27695USA
- Department of Electrical & Computer EngineeringNorth Carolina State University890 Oval Dr.RaleighNC27695USA
| |
Collapse
|
16
|
Chauhan SS, Prasad A, Venuganti VVK. Swellable Biopolymer Composite Microneedle Patch for Pain-Free Collection of Interstitial Fluid to Analyze Multiple Biomolecules. J Biomed Mater Res A 2025; 113:e37809. [PMID: 39400481 DOI: 10.1002/jbm.a.37809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/07/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024]
Abstract
Sampling of interstitial fluid (ISF) using microneedle (MN) patch offers a pain-free minimally invasive alternative to syringe needle-based blood sample collection. However, there is a challenge in the development of MN patch that provides swelling behavior with sufficient mechanical strength for skin penetration. Here, we report fabrication of MN patch made of biopolymer composite containing iota-carrageenan, gelatin, and polyethylene glycol. Calcium chloride was used as a crosslinker to improve mechanical strength. MN patch was characterized for integrity, swelling behavior, mechanical strength, aspiration of fluid from agarose gel, and the excised porcine ear skin. An array of 361 MNs was able to aspirate 36 ± 5 and 14 ± 1 μL fluid after application in agarose gel matrix and the ex vivo porcine skin model, respectively. MN patch applied in vivo rat model for 30 min resulted in the collection of ISF containing 267 ± 128 mg/dL, 24 ± 13 mg/dL, and 0.6 ± 0.4 mIU/mL of glucose, uric acid and thyroid stimulating hormone (TSH), respectively. The concentration of glucose, uric acid, and TSH in rat blood was found to be 199 ± 47 mg/dL, 8.4 ± 6 mg/dL, and 1.1 ± 0.6 mIU/mL at the same time. Furthermore, MN patch applied on the forearm of 10 healthy human volunteers for 30 min was able to aspirate 32 ± 14 μL of ISF. The concentration of glucose, uric acid, and TSH determined from ISF samples of human volunteers was 64 ± 25 mg/dL, 4.2 ± 4.1 mg/dL, and 0.16 ± 0.08 mIU/mL, respectively. The visual analogue scale (VAS) pain score after MN application was lower compared with hypodermic syringe needle insertion. Taken together, biopolymer composite-based swellable MN patch can be developed for collection of ISF for simultaneous determination of multiple biomolecules in a minimally invasive manner.
Collapse
Affiliation(s)
- Shreya Shashank Chauhan
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana, India
| | - Aditi Prasad
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana, India
| | - Venkata Vamsi Krishna Venuganti
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana, India
| |
Collapse
|
17
|
Duan H, Peng S, He S, Tang S, Goda K, Wang CH, Li M. Wearable Electrochemical Biosensors for Advanced Healthcare Monitoring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411433. [PMID: 39588557 PMCID: PMC11727287 DOI: 10.1002/advs.202411433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/13/2024] [Indexed: 11/27/2024]
Abstract
Recent advancements in wearable electrochemical biosensors have opened new avenues for on-body and continuous detection of biomarkers, enabling personalized, real-time, and preventive healthcare. While glucose monitoring has set a precedent for wearable biosensors, the field is rapidly expanding to include a wider range of analytes crucial for disease diagnosis, treatment, and management. In this review, recent key innovations are examined in the design and manufacturing underpinning these biosensing platforms including biorecognition elements, signal transduction methods, electrode and substrate materials, and fabrication techniques. The applications of these biosensors are then highlighted in detecting a variety of biochemical markers, such as small molecules, hormones, drugs, and macromolecules, in biofluids including interstitial fluid, sweat, wound exudate, saliva, and tears. Additionally, the review also covers recent advances in wearable electrochemical biosensing platforms, such as multi-sensory integration, closed-loop control, and power supply. Furthermore, the challenges associated with critical issues are discussed, such as biocompatibility, biofouling, and sensor degradation, and the opportunities in materials science, nanotechnology, and artificial intelligence to overcome these limitations.
Collapse
Affiliation(s)
- Haowei Duan
- School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Shuhua Peng
- School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Shuai He
- School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Shi‐Yang Tang
- School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Keisuke Goda
- Department of ChemistryThe University of TokyoTokyo113‐0033Japan
- Department of BioengineeringUniversity of CaliforniaLos AngelesCalifornia90095USA
- Institute of Technological SciencesWuhan UniversityHubei430072China
| | - Chun H. Wang
- School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Ming Li
- School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyNSW2052Australia
| |
Collapse
|
18
|
Han J, Choi Y, Kang S. Synergistic Strategies of Biomolecular Transport Technologies in Transdermal Healthcare Systems. Adv Healthc Mater 2024; 13:e2401753. [PMID: 39087395 PMCID: PMC11616266 DOI: 10.1002/adhm.202401753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/11/2024] [Indexed: 08/02/2024]
Abstract
Transdermal healthcare systems have gained significant attention for their painless and convenient drug administration, as well as their ability to detect biomarkers promptly. However, the skin barrier limits the candidates of biomolecules that can be transported, and reliance on simple diffusion poses a bottleneck for personalized diagnosis and treatment. Consequently, recent advancements in transdermal transport technologies have evolved toward active methods based on external energy sources. Multiple combinations of these technologies have also shown promise for increasing therapeutic effectiveness and diagnostic accuracy as delivery efficiency is maximized. Furthermore, wearable healthcare platforms are being developed in diverse aspects for patient convenience, safety, and on-demand treatment. Herein, a comprehensive overview of active transdermal delivery technologies is provided, highlighting the combination-based diagnostics, therapeutics, and theragnostics, along with the latest trends in platform advancements. This offers insights into the potential applications of next-generation wearable transdermal medical devices for personalized autonomous healthcare.
Collapse
Affiliation(s)
- Jieun Han
- Department of Materials Science and EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Yi‐Jeong Choi
- Department of Materials Science and EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Seung‐Kyun Kang
- Department of Materials Science and EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
- Interdisciplinary Program of BioengineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826South Korea
- Research Institute of Advanced Materials (RIAM)Seoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826South Korea
- Nano Systems Institute SOFT FoundrySeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826South Korea
| |
Collapse
|
19
|
Wilkirson E, Li D, Lillehoj PB. Lateral Flow-Based Skin Patch for Rapid Detection of Protein Biomarkers in Human Dermal Interstitial Fluid. ACS Sens 2024; 9:5792-5801. [PMID: 39455057 PMCID: PMC11590092 DOI: 10.1021/acssensors.4c00956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/29/2024] [Accepted: 09/06/2024] [Indexed: 10/28/2024]
Abstract
Rapid diagnostic tests (RDTs) offer valuable diagnostic information in a quick, easy-to-use and low-cost format. While RDTs are one of the most commonly used tools for in vitro diagnostic testing, they require the collection of a blood sample, which is painful, poses risks of infection and can lead to complications. We introduce a blood-free point-of-care diagnostic test for the rapid detection of protein biomarkers in dermal interstitial fluid (ISF). This device consists of a lateral flow immunochromatographic assay (LFIA) integrated within a microfluidic skin patch. ISF is collected from the skin using a microneedle array and vacuum-assisted extraction system integrated in the patch, and transported through the lateral flow strip via surface tension. Using this skin patch platform, we demonstrate in situ detection of anti-tetanus toxoid IgG and SARS-CoV-2 neutralizing antibodies, which could be accurately detected in human ISF in <20 min. We envision that this device can be readily modified to detect other protein biomarkers in dermal ISF, making it a promising tool for rapid diagnostic testing.
Collapse
Affiliation(s)
- Elizabeth
C. Wilkirson
- Department
of Mechanical Engineering, Rice University, Houston, Texas 77005, United States
| | - Danika Li
- Department
of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Peter B. Lillehoj
- Department
of Mechanical Engineering, Rice University, Houston, Texas 77005, United States
- Department
of Bioengineering, Rice University, Houston, Texas 77030, United States
| |
Collapse
|
20
|
Kim G, Ahn H, Chaj Ulloa J, Gao W. Microneedle sensors for dermal interstitial fluid analysis. MED-X 2024; 2:15. [PMID: 39363915 PMCID: PMC11445365 DOI: 10.1007/s44258-024-00028-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024]
Abstract
The rapid advancement in personalized healthcare has driven the development of wearable biomedical devices for real-time biomarker monitoring and diagnosis. Traditional invasive blood-based diagnostics are painful and limited to sporadic health snapshots. To address these limitations, microneedle-based sensing platforms have emerged, utilizing interstitial fluid (ISF) as an alternative biofluid for continuous health monitoring in a minimally invasive and painless manner. This review aims to provide a comprehensive overview of microneedle sensor technology, covering microneedle design, fabrication methods, and sensing strategy. Additionally, it explores the integration of monitoring electronics for continuous on-body monitoring. Representative applications of microneedle sensing platforms for both monitoring and therapeutic purposes are introduced, highlighting their potential to revolutionize personalized healthcare. Finally, the review discusses the remaining challenges and future prospects of microneedle technology. Graphical Abstract
Collapse
Affiliation(s)
- Gwangmook Kim
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA USA
| | - Hyunah Ahn
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA USA
| | - Joshua Chaj Ulloa
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA USA
| |
Collapse
|
21
|
Ma L, Jiang Y, Feng H, Gao J, Du X, Fan Z, Zheng H, Zhu J. Role of arterial blood glucose and interstitial fluid glucose difference in evaluating microcirculation and clinical prognosis of patients with septic shock: a prospective observational study. BMC Infect Dis 2024; 24:910. [PMID: 39227759 PMCID: PMC11370223 DOI: 10.1186/s12879-024-09768-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 08/20/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Microcirculation abnormality in septic shock is closely associated with organ dysfunction and mortality rate. It was hypothesized that the arterial blood glucose and interstitial fluid (ISF) glucose difference (GA-I) as a marker for assessing the microcirculation status can effectively evaluate the severity of microcirculation disturbance in patients with septic shock. METHODS The present observational study enrolled patients with septic shock admitted to and treated in the intensive care unit (ICU) of a tertiary teaching hospital. The parameters reflecting organ and tissue perfusion, including lactic acid (Lac), skin mottling score, capillary refill time (CRT), venous-to-arterial carbon dioxide difference (Pv-aCO2), urine volume, central venous oxygen saturation (ScvO2) and GA-I of each enrolled patient were recorded at the time of enrollment (H0), H2, H4, H6, and H8. With ICU mortality as the primary outcome measure, the ICU mortality rate at any GA-I interval was analyzed. RESULTS A total of 43 septic shock patients were included, with median sequential organ failure assessment (SOFA) scores of 10.5 (6-16), and median Acute Physiology and Chronic Health Evaluation (APACHAE) II scores of 25.7 (9-40), of whom 18 died during ICU stay. The GA-I levels were negative correlation with CRT (r = 0.369, P < 0.001), Lac (r = -0.269, P < 0.001), skin mottling score (r=-0.223, P < 0.001), and were positively associated with urine volume (r = 0.135, P < 0.05). The ICU mortality rate of patients with septic shock presenting GA-I ≤ 0.30 mmol/L and ≥ 2.14 mmol/L was significantly higher than that of patients with GA-I at 0.30-2.14 mmol/L [65.2% vs. 15.0%, odds ratio (OR) = 10.625, 95% confidence interval (CI): 2.355-47.503]. CONCLUSION GA-I was correlated with microcirculation parameters, and with differences in survival. Future studies are needed to further explore the potential impact of GA-I on microcirculation and clinical prognosis of septic shock, and the bedside monitoring of GA-I may be beneficial for clinicians to identify high-risk patients.
Collapse
Affiliation(s)
- Limei Ma
- Department of Emergency and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Yuhao Jiang
- Department of Emergency and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Hui Feng
- Department of Emergency and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Jiake Gao
- Department of Emergency and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Xin Du
- Department of Emergency and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Zihao Fan
- Department of Emergency and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Hengheng Zheng
- Department of Emergency and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Jianjun Zhu
- Department of Emergency and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China.
| |
Collapse
|
22
|
Li Z, Wang Y, Zhang R, Liu Z, Chang Z, Deng Y, Qi X. Microneedles-Based Theranostic Platform: From the Past to the Future. ACS NANO 2024; 18:23876-23893. [PMID: 39177073 DOI: 10.1021/acsnano.4c04277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Fully integrated theranostic devices are highly esteemed in clinical applications, offering immense potential in real-time disease monitoring and personalized care. Microneedles (MNs), as innovative and wearable devices, boast important advantages in biosensing and therapy, thus holding significant promise in the advancement of diagnostic and therapeutic platforms. Encouragingly, advancements in electrochemical sensing technology, micronano fabrication, and biocompatible materials are propelling momentum for MNs-based closed-loop systems, enhancing detection capabilities, biocompatibility, and cost-effectiveness. Moreover, the notable progress in integrating MN chips with other biochips signifies a frontier for growth. Successful clinical trials in target molecule monitoring and drug delivery domains herald excellent clinical translational prospects for the aforementioned theranostic platform. Finally, we delineate both challenges and opportunities in the development of integrated diagnostic and therapeutic MN systems, including continuous monitoring, intelligent control algorithms, safety, and regulatory considerations.
Collapse
Affiliation(s)
- Ziyang Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yuhan Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Ruiwei Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Zijian Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Ziyong Chang
- Civil and Resource Engineering School, University of Science and Technology Beijing, Beijing 100083, China
| | - Yulin Deng
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoyue Qi
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
23
|
Wei C, Fu D, Ma T, Chen M, Wang F, Chen G, Wang Z. Sensing patches for biomarker identification in skin-derived biofluids. Biosens Bioelectron 2024; 258:116326. [PMID: 38696965 DOI: 10.1016/j.bios.2024.116326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/15/2024] [Accepted: 04/21/2024] [Indexed: 05/04/2024]
Abstract
In conventional clinical disease diagnosis and screening based on biomarker detection, most analysis samples are collected from serum, blood. However, these invasive collection methods require specific instruments, professionals, and may lead to infection risks. Additionally, the diagnosis process suffers from untimely results. The identification of skin-related biomarkers plays an unprecedented role in early disease diagnosis. More importantly, these skin-mediated approaches for collecting biomarker-containing biofluid samples are noninvasive or minimally invasive, which is more preferable for point-of-care testing (POCT). Therefore, skin-based biomarker detection patches have been promoted, owing to their unique advantages, such as simple fabrication, desirable transdermal properties and no requirements for professional medical staff. Currently, the skin biomarkers extracted from sweat, interstitial fluid (ISF) and wound exudate, are achieved with wearable sweat patches, transdermal MN patches, and wound patches, respectively. In this review, we detail these three types of skin patches in biofluids collection and diseases-related biomarkers identification. Patch classification and the corresponding manufacturing as well as detection strategies are also summarized. The remaining challenges in clinical applications and current issues in accurate detection are discussed for further advancement of this technology (Scheme 1).
Collapse
Affiliation(s)
- Chen Wei
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Danni Fu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Tianyue Ma
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Mo Chen
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada; Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Fangling Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Guojun Chen
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada; Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada.
| | - Zejun Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
24
|
Pei S, Babity S, Sara Cordeiro A, Brambilla D. Integrating microneedles and sensing strategies for diagnostic and monitoring applications: The state of the art. Adv Drug Deliv Rev 2024; 210:115341. [PMID: 38797317 DOI: 10.1016/j.addr.2024.115341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/23/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
Microneedles (MNs) offer minimally-invasive access to interstitial fluid (ISF) - a potent alternative to blood in terms of monitoring physiological analytes. This property is particularly advantageous for the painless detection and monitoring of drugs and biomolecules. However, the complexity of the skin environment, coupled with the inherent nature of the analytes being detected and the inherent physical properties of MNs, pose challenges when conducting physiological monitoring using this fluid. In this review, we discuss different sensing mechanisms and highlight advancements in monitoring different targets, with a particular focus on drug monitoring. We further list the current challenges facing the field and conclude by discussing aspects of MN design which serve to enhance their performance when monitoring different classes of analytes.
Collapse
Affiliation(s)
- Shihao Pei
- Faculté de pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec H3T 1J4, Canada
| | - Samuel Babity
- Faculté de pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec H3T 1J4, Canada
| | - Ana Sara Cordeiro
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, United Kingdom.
| | - Davide Brambilla
- Faculté de pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec H3T 1J4, Canada.
| |
Collapse
|
25
|
Jiang X, Wilkirson EC, Bailey AO, Russell WK, Lillehoj PB. Microneedle-based sampling of dermal interstitial fluid using a vacuum-assisted skin patch. CELL REPORTS. PHYSICAL SCIENCE 2024; 5:101975. [PMID: 38947182 PMCID: PMC11211974 DOI: 10.1016/j.xcrp.2024.101975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/05/2024] [Accepted: 04/19/2024] [Indexed: 07/02/2024]
Abstract
Interstitial fluid (ISF) contains a wealth of biomolecules, yet it is underutilized for diagnostic testing due to a lack of rapid and simple techniques for collecting abundant amounts of fluid. Here, we report a simple and minimally invasive technique for rapidly sampling larger quantities of ISF from human skin. A microneedle array is used to generate micropores in skin from which ISF is extracted using a vacuum-assisted skin patch. Using this technique, an average of 20.8 μL of dermal ISF is collected in 25 min, which is an ∼6-fold improvement over existing sampling methods. Proteomic analysis of collected ISF reveals that it has nearly identical protein composition as blood, and >600 medically relevant biomarkers are identified. Toward this end, we demonstrate the detection of SARS-CoV-2 neutralizing antibodies in ISF collected from COVID-19 vaccinees using two commercial immunoassays, showcasing the utility of this technique for diagnostic testing.
Collapse
Affiliation(s)
- Xue Jiang
- Department of Mechanical Engineering, Rice University, Houston 77005, TX, USA
| | | | - Aaron O. Bailey
- Mass Spectrometry Facility, University of Texas Medical Branch, Galveston 77550, TX, USA
| | - William K. Russell
- Mass Spectrometry Facility, University of Texas Medical Branch, Galveston 77550, TX, USA
| | - Peter B. Lillehoj
- Department of Mechanical Engineering, Rice University, Houston 77005, TX, USA
- Department of Bioengineering, Rice University, Houston 77030, TX, USA
| |
Collapse
|
26
|
Luo F, Li Z, Shi Y, Sun W, Wang Y, Sun J, Fan Z, Chang Y, Wang Z, Han Y, Zhu Z, Marty JL. Integration of Hollow Microneedle Arrays with Jellyfish-Shaped Electrochemical Sensor for the Detection of Biomarkers in Interstitial Fluid. SENSORS (BASEL, SWITZERLAND) 2024; 24:3729. [PMID: 38931517 PMCID: PMC11207310 DOI: 10.3390/s24123729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/24/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
This study integrates hollow microneedle arrays (HMNA) with a novel jellyfish-shaped electrochemical sensor for the detection of key biomarkers, including uric acid (UA), glucose, and pH, in artificial interstitial fluid. The jellyfish-shaped sensor displayed linear responses in detecting UA and glucose via differential pulse voltammetry (DPV) and chronoamperometry, respectively. Notably, the open circuit potential (OCP) of the system showed a linear variation with pH changes, validating its pH-sensing capability. The sensor system demonstrates exceptional electrochemical responsiveness within the physiological concentration ranges of these biomarkers in simulated epidermis sensing applications. The detection linear ranges of UA, glucose, and pH were 0~0.8 mM, 0~7 mM, and 4.0~8.0, respectively. These findings highlight the potential of the HMNA-integrated jellyfish-shaped sensors in real-world epidermal applications for comprehensive disease diagnosis and health monitoring.
Collapse
Affiliation(s)
- Fangfang Luo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (F.L.); (Y.S.); (W.S.); (Y.W.); (J.S.); (Z.F.); (Y.C.); (Z.W.); (Y.H.); (Z.Z.)
| | - Zhanhong Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (F.L.); (Y.S.); (W.S.); (Y.W.); (J.S.); (Z.F.); (Y.C.); (Z.W.); (Y.H.); (Z.Z.)
| | - Yiping Shi
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (F.L.); (Y.S.); (W.S.); (Y.W.); (J.S.); (Z.F.); (Y.C.); (Z.W.); (Y.H.); (Z.Z.)
| | - Wen Sun
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (F.L.); (Y.S.); (W.S.); (Y.W.); (J.S.); (Z.F.); (Y.C.); (Z.W.); (Y.H.); (Z.Z.)
| | - Yuwei Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (F.L.); (Y.S.); (W.S.); (Y.W.); (J.S.); (Z.F.); (Y.C.); (Z.W.); (Y.H.); (Z.Z.)
| | - Jianchao Sun
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (F.L.); (Y.S.); (W.S.); (Y.W.); (J.S.); (Z.F.); (Y.C.); (Z.W.); (Y.H.); (Z.Z.)
| | - Zheyuan Fan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (F.L.); (Y.S.); (W.S.); (Y.W.); (J.S.); (Z.F.); (Y.C.); (Z.W.); (Y.H.); (Z.Z.)
| | - Yanyi Chang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (F.L.); (Y.S.); (W.S.); (Y.W.); (J.S.); (Z.F.); (Y.C.); (Z.W.); (Y.H.); (Z.Z.)
| | - Zifeng Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (F.L.); (Y.S.); (W.S.); (Y.W.); (J.S.); (Z.F.); (Y.C.); (Z.W.); (Y.H.); (Z.Z.)
| | - Yutong Han
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (F.L.); (Y.S.); (W.S.); (Y.W.); (J.S.); (Z.F.); (Y.C.); (Z.W.); (Y.H.); (Z.Z.)
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (F.L.); (Y.S.); (W.S.); (Y.W.); (J.S.); (Z.F.); (Y.C.); (Z.W.); (Y.H.); (Z.Z.)
| | - Jean-Louis Marty
- UFR Sciences, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, CEDEX, 66860 Perpignan, France;
| |
Collapse
|
27
|
Nishida‐Aoki N, Ochiya T. Impacts of tissue context on extracellular vesicles-mediated cancer-host cell communications. Cancer Sci 2024; 115:1726-1737. [PMID: 38532284 PMCID: PMC11145126 DOI: 10.1111/cas.16161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
Tumor tissue is densely packed with cancer cells, non-cancerous cells, and ECM, forming functional structures. Cancer cells transfer extracellular vesicles (EVs) to modify surrounding normal cells into cancer-promoting cells, establishing a tumor-favorable environment together with other signaling molecules and structural components. Such tissue environments largely affect cancer cell properties, and so as EV-mediated cellular communications within tumor tissue. However, current research on EVs focuses on functional analysis of vesicles isolated from the liquid phase, including cell culture supernatants and blood draws, 2D-cultured cell assays, or systemic analyses on animal models for biodistribution. Therefore, we have a limited understanding of local EV transfer within tumor tissues. In this review, we discuss the need to study EVs in a physiological tissue context by summarizing the current findings on the impacts of tumor tissue environment on cancer EV properties and transfer and the techniques required for the analysis. Tumor tissue environment is likely to alter EV properties, pose physical barriers, interactions, and interstitial flows for the dynamics, and introduce varieties in the cell types taken up. Utilizing physiological experimental settings and spatial analyses, we need to tackle the remaining questions on physiological EV-mediated cancer-host cell interactions. Understanding cancer EV-mediated cellular communications in physiological tumor tissues will lead to developing interaction-targeting therapies and provide insight into EV-mediated non-cancerous cells and interspecies interactions.
Collapse
Affiliation(s)
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Center for Future Medical Research, Institute of Medical ScienceTokyo Medical UniversityTokyoJapan
| |
Collapse
|
28
|
Xiong F, Zheng Y, Ouyang Y, Song X, Jia S, Wang G, Wang S, Liu Q, Zhao J, Zhang W. Comparison of three methods for collecting interstitial fluid from subcutaneous tissue in mini pigs. MethodsX 2024; 12:102700. [PMID: 38633419 PMCID: PMC11022106 DOI: 10.1016/j.mex.2024.102700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
Interstitial fluid, owing to its similarity to blood components and higher sensitivity and specificity, finds widespread application in disease diagnosis and tumor marker detection. However, collecting interstitial fluid, particularly from the deep subcutaneous connective tissue, remains challenging.•This study aimed to compare three different collection methods - push-pull perfusion, multi-filament nylon thread implantation, and tissue centrifugation - for collecting interstitial fluid from the subcutaneous connective tissue layer of mini-pigs. High-performance ion chromatography was employed to analyze the conventional cation components in the samples and compare ion composition analysis between the different methods.•Results indicated that while the distribution of conventional cations in the interstitial fluid collected by the three methods was generally consistent, there were slight variations in the detection rates and concentrations of different ions. Hence, suitable collection methods should be selected based on the ions or collection sites of interest.
Collapse
Affiliation(s)
- Feng Xiong
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Zheng
- Beijing Nuclear Industry Hospital, Beijing, China
| | - Yinggen Ouyang
- Department of Radiochemistry, China Institute of Atomic Energy, Beijing, China
| | - Xiaojing Song
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuyong Jia
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guangjun Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuyou Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Liu
- College of Acupuncture and Massage, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Zhao
- Department of Radiochemistry, China Institute of Atomic Energy, Beijing, China
| | - Weibo Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
29
|
Li Y, Wang Y, Mei R, Lv B, Zhao X, Bi L, Xu H, Chen L. Hydrogel-Coated SERS Microneedles for Drug Monitoring in Dermal Interstitial Fluid. ACS Sens 2024; 9:2567-2574. [PMID: 38696667 DOI: 10.1021/acssensors.4c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
In vivo drug monitoring is crucial for evaluating the effectiveness and safety of drug treatment. Blood sampling and analysis is the current gold standard but needs professional skills and cannot meet the requirements of point-of-care testing. Dermal interstitial fluid (ISF) showed great potential to replace blood for in vivo drug monitoring; however, the detection was challenging, and the drug distribution behavior in ISF was still unclear until now. In this study, we proposed surface-enhanced Raman spectroscopy (SERS) microneedles (MNs) for the painless and real-time analysis of drugs in ISF after intravenous injection. Using methylene blue (MB) and mitoxantrone (MTO) as model drugs, the innovative core-satellite structured Au@Ag SERS substrate, hydrogel coating over the MNs, rendered sensitive and quantitative drug detection in ISF of mice within 10 min. Based on this technique, the pharmacokinetics of the two drugs in ISF was investigated and compared with those in blood, where the drugs were analyzed via liquid chromatography-mass spectrometry. It was found that the MB concentration in ISF and blood was comparable, whereas the concentration of MTO in ISF was 2-3 orders of magnitude lower than in blood. This work proposed an efficient tool for ISF drug monitoring. More importantly, it experimentally proved that the penetration ratio of blood to ISF was drug-dependent, providing insightful information into the potential of ISF as a blood alternative for in vivo drug detection.
Collapse
Affiliation(s)
- Yan Li
- School of pharmacy, Key Laboratory of Molecular pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Rongchao Mei
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Bingqian Lv
- School of pharmacy, Key Laboratory of Molecular pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Xizhen Zhao
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liyan Bi
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Hui Xu
- School of pharmacy, Key Laboratory of Molecular pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
30
|
Wang G, Zhang Y, Kwong HK, Zheng M, Wu J, Cui C, Chan KWY, Xu C, Chen T. On-Site Melanoma Diagnosis Utilizing a Swellable Microneedle-Assisted Skin Interstitial Fluid Sampling and a Microfluidic Particle Dam for Visual Quantification of S100A1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306188. [PMID: 38417122 PMCID: PMC11040363 DOI: 10.1002/advs.202306188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/19/2024] [Indexed: 03/01/2024]
Abstract
Malignant melanoma (MM) is the most aggressive form of skin cancer. The delay in treatment will induce metastasis, resulting in a poor prognosis and even death. Here, a two-step strategy for on-site diagnosis of MM is developed based on the extraction and direct visual quantification of S100A1, a biomarker for melanoma. First, a swellable microneedle is utilized to extract S100A1 in skin interstitial fluid (ISF) with minimal invasion. After elution, antibody-conjugated magnetic microparticles (MMPs) and polystyrene microparticles (PMPs) are introduced. A high expression level of S100A1 gives rise to a robust binding between MMPs and PMPs and reduces the number of free PMPs. By loading the reacted solution into the device with a microfluidic particle dam, the quantity of free PMPs after magnetic separation is displayed with their accumulation length inversely proportional to S100A1 levels. A limit of detection of 18.7 ng mL-1 for S100A1 is achieved. The animal experiment indicates that ISF-based S100A1 quantification using the proposed strategy exhibits a significantly higher sensitivity compared with conventional serum-based detection. In addition, the result is highly comparable with the gold standard enzyme-linked immunosorbent assay based on Lin's concordance correlation coefficient, suggesting the high practicality for routine monitoring of melanoma.
Collapse
Affiliation(s)
- Gaobo Wang
- Department of Biomedical EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloon TongHong Kong SAR999077China
| | - Yuyue Zhang
- Department of Biomedical EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloon TongHong Kong SAR999077China
| | - Hoi Kwan Kwong
- Department of Biomedical EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloon TongHong Kong SAR999077China
| | - Mengjia Zheng
- Department of Biomedical EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloon TongHong Kong SAR999077China
| | - Jianpeng Wu
- Department of Biomedical EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloon TongHong Kong SAR999077China
| | - Chenyu Cui
- Department of Biomedical EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloon TongHong Kong SAR999077China
- Hong Kong Centre for Cerebro‐Cardiovascular Health EngineeringRm 1115‐1119, Building 19W, 19 Science Park West AvenueHong Kong SAR999077China
| | - Kannie W. Y. Chan
- Department of Biomedical EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloon TongHong Kong SAR999077China
- Hong Kong Centre for Cerebro‐Cardiovascular Health EngineeringRm 1115‐1119, Building 19W, 19 Science Park West AvenueHong Kong SAR999077China
| | - Chenjie Xu
- Department of Biomedical EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloon TongHong Kong SAR999077China
| | - Ting‐Hsuan Chen
- Department of Biomedical EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloon TongHong Kong SAR999077China
- City University of Hong Kong Shenzhen Research Institute8 Yuexing 1st Road, Shenzhen Hi‐Tech Industrial Park, Nanshan DistrictShenzhen518057China
- Hong Kong Centre for Cerebro‐Cardiovascular Health EngineeringRm 1115‐1119, Building 19W, 19 Science Park West AvenueHong Kong SAR999077China
| |
Collapse
|
31
|
Hu Y, Chatzilakou E, Pan Z, Traverso G, Yetisen AK. Microneedle Sensors for Point-of-Care Diagnostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306560. [PMID: 38225744 PMCID: PMC10966570 DOI: 10.1002/advs.202306560] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/20/2023] [Indexed: 01/17/2024]
Abstract
Point-of-care (POC) has the capacity to support low-cost, accurate and real-time actionable diagnostic data. Microneedle sensors have received considerable attention as an emerging technique to evolve blood-based diagnostics owing to their direct and painless access to a rich source of biomarkers from interstitial fluid. This review systematically summarizes the recent innovations in microneedle sensors with a particular focus on their utility in POC diagnostics and personalized medicine. The integration of various sensing techniques, mostly electrochemical and optical sensing, has been established in diverse architectures of "lab-on-a-microneedle" platforms. Microneedle sensors with tailored geometries, mechanical flexibility, and biocompatibility are constructed with a variety of materials and fabrication methods. Microneedles categorized into four types: metals, inorganics, polymers, and hydrogels, have been elaborated with state-of-the-art bioengineering strategies for minimally invasive, continuous, and multiplexed sensing. Microneedle sensors have been employed to detect a wide range of biomarkers from electrolytes, metabolites, polysaccharides, nucleic acids, proteins to drugs. Insightful perspectives are outlined from biofluid, microneedles, biosensors, POC devices, and theragnostic instruments, which depict a bright future of the upcoming personalized and intelligent health management.
Collapse
Affiliation(s)
- Yubing Hu
- Department of Chemical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Eleni Chatzilakou
- Department of Chemical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Zhisheng Pan
- Department of Chemical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Giovanni Traverso
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Ali K. Yetisen
- Department of Chemical EngineeringImperial College LondonLondonSW7 2AZUK
| |
Collapse
|
32
|
Abstract
Continuous health monitoring aims to reduce hospitalization and the need for constant supervision of the patients. For an outpatient monitoring device to be effective, it must meet certain criteria: it should demand minimal patient involvement, be reliable, be connected, remain stable with infrequent replacements, be cost-efficient, be compatible with humans, and ultimately be self-powered. Microneedle (MN) technology, designed for transdermal biosensing, offers a promising solution for meeting a wide range of these demands in the field of continuous health monitoring. A variety of MN platforms have been developed to facilitate this crucial function. Our focus in this Perspective is on the significant challenges linked to MN-based biosensors. These challenges include ensuring skin compatibility, the effective integration of biorecognition elements into the MN systems, and the durability concerns of these sensors in enabling extended periods of continuous monitoring. Tackling these hurdles could pave the way for more effective and reliable MN-based health monitoring solutions in the future.
Collapse
Affiliation(s)
- Mahla Poudineh
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
33
|
Kim Y, Lewis MB, Hwang J, Wang Z, Gupta R, Liu Y, Gupta T, Barber JP, Singamaneni S, Quinn F, Prausnitz MR. Microneedle patch-based enzyme-linked immunosorbent assay to quantify protein biomarkers of tuberculosis. Biomed Microdevices 2024; 26:15. [PMID: 38289481 DOI: 10.1007/s10544-024-00694-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2024] [Indexed: 02/01/2024]
Abstract
There is a clinical need for differential diagnosis of the latent versus active stages of tuberculosis (TB) disease by a simple-to-administer test. Alpha-crystallin (Acr) and early secretory antigenic target-6 (ESAT-6) are protein biomarkers associated with the latent and active stages of TB, respectively, and could be used for differential diagnosis. We therefore developed a microneedle patch (MNP) designed for application to the skin to quantify Acr and ESAT-6 in dermal interstitial fluid by enzyme-linked immunosorbent assay (ELISA). We fabricated mechanically strong microneedles made of polystyrene and coated them with capture antibodies against Acr and ESAT-6. We then optimized assay sensitivity to achieve a limit of detection of 750 pg/ml and 3,020 pg/ml for Acr and ESAT-6, respectively. This study demonstrates the feasibility of an MNP-based ELISA for differential diagnosis of latent TB disease.
Collapse
Affiliation(s)
- Youngeun Kim
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Mary Beth Lewis
- Department of Infectious Diseases, University of Georgia, Athens, GA, 30602, USA
| | - Jihyun Hwang
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Zheyu Wang
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Rohit Gupta
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Yuxiong Liu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Tuhina Gupta
- Department of Infectious Diseases, University of Georgia, Athens, GA, 30602, USA
| | - James P Barber
- Department of Infectious Diseases, University of Georgia, Athens, GA, 30602, USA
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Fred Quinn
- Department of Infectious Diseases, University of Georgia, Athens, GA, 30602, USA
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
34
|
Chang M, Venkatasubramanian S, Barrett H, Urdahl KB, Weigel KM, Cangelosi GA, Shah JA, Saha A, Feng L, Adams KN, Sherman DR, Smith N, Seshadri C, Kublin JG, Murphy SC. Molecular detection of pre-ribosomal RNAs of Mycobacterium bovis bacille Calmette-Guérin and Mycobacterium tuberculosis to enhance pre-clinical tuberculosis drug and vaccine development. Diagn Microbiol Infect Dis 2024; 108:116106. [PMID: 37931386 PMCID: PMC10729053 DOI: 10.1016/j.diagmicrobio.2023.116106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/03/2023] [Accepted: 10/10/2023] [Indexed: 11/08/2023]
Abstract
Efforts are underway globally to develop effective vaccines and drugs against M. tuberculosis (Mtb) to reduce the morbidity and mortality of tuberculosis. Improving detection of slow-growing mycobacteria could simplify and accelerate efficacy studies of vaccines and drugs in animal models and human clinical trials. Here, a real-time reverse transcription PCR (RT-PCR) assay was developed to detect pre-ribosomal RNA (pre-rRNA) of Mycobacterium bovis bacille Calmette-Guérin (BCG) and Mtb. This pre-rRNA biomarker is indicative of bacterial viability. In two different mouse models, the presence of pre-rRNA from BCG and Mtb in ex vivo tissues showed excellent agreement with slower culture-based colony-forming unit assays. The addition of a brief nutritional stimulation prior to molecular viability testing further differentiated viable but dormant mycobacteria from dead mycobacteria. This research has set the stage to evaluate pre-rRNA as a BCG and/or Mtb infection biomarker in future drug and vaccine clinical studies.
Collapse
Affiliation(s)
- Ming Chang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA; Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA
| | | | - Holly Barrett
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Kevin B Urdahl
- Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA; Department of Immunology, University of Washington, Seattle, WA, USA
| | - Kris M Weigel
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Gerard A Cangelosi
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Javeed A Shah
- Department of Medicine, School of Medicine, University of Washington, Seattle, WA, USA; Veterans' Affairs Puget Sound Healthcare System, Seattle, WA, USA
| | - Aparajita Saha
- Department of Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Libing Feng
- Department of Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Kristin N Adams
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - David R Sherman
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Nahum Smith
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Chetan Seshadri
- Department of Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - James G Kublin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Sean C Murphy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA; Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, WA, USA; Department of Microbiology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
35
|
Naseska M, Globočnik A, Davies S, Yetisen AK, Humar M. Non-contact monitoring of glucose concentration and pH by integration of wearable and implantable hydrogel sensors with optical coherence tomography. OPTICS EXPRESS 2024; 32:92-103. [PMID: 38175065 DOI: 10.1364/oe.506780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
Optical coherence tomography (OCT) is a noninvasive imaging technique with large penetration depth into the tissue, but limited chemical specificity. By incorporating functional co-monomers, hydrogels can be designed to respond to specific molecules and undergo reversible volume changes. In this study, we present implantable and wearable biocompatible hydrogel sensors combined with OCT to monitor their thickness change as a tool for continuous and real-time monitoring of glucose concentration and pH. The results demonstrate the potential of combining hydrogel biosensors with OCT for non-contact continuous in-vivo monitoring of physiological parameters.
Collapse
|
36
|
Dai Y, Nolan J, Madsen E, Fratus M, Lee J, Zhang J, Lim J, Hong S, Alam MA, Linnes JC, Lee H, Lee CH. Wearable Sensor Patch with Hydrogel Microneedles for In Situ Analysis of Interstitial Fluid. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38041570 DOI: 10.1021/acsami.3c12740] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Continuous real-time monitoring of biomarkers in interstitial fluid is essential for tracking metabolic changes and facilitating the early detection and management of chronic diseases such as diabetes. However, developing minimally invasive sensors for the in situ analysis of interstitial fluid and addressing signal delays remain a challenge. Here, we introduce a wearable sensor patch incorporating hydrogel microneedles for rapid, minimally invasive collection of interstitial fluid from the skin while simultaneously measuring biomarker levels in situ. The sensor patch is stretchable to accommodate the swelling of the hydrogel microneedles upon extracting interstitial fluid and adapts to skin deformation during measurements, ensuring consistent sensing performance in detecting model biomarker concentrations, such as glucose and lactate, in a mouse model. The sensor patch exhibits in vitro sensitivities of 0.024 ± 0.002 μA mM-1 for glucose and 0.0030 ± 0.0004 μA mM-1 for lactate, with corresponding linear ranges of 0.1-3 and 0.1-12 mM, respectively. For in vivo glucose sensing, the sensor patch demonstrates a sensitivity of 0.020 ± 0.001 μA mM-1 and a detection range of 1-8 mM. By integrating a predictive model, the sensor patch can analyze and compensate for signal delays, improving calibration reliability and providing guidance for potential optimization in sensing performance. The sensor patch is expected to serve as a minimally invasive platform for the in situ analysis of multiple biomarkers in interstitial fluid, offering a promising solution for continuous health monitoring and disease management.
Collapse
Affiliation(s)
- Yumin Dai
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - James Nolan
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Emilee Madsen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Marco Fratus
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Junsang Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jinyuan Zhang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jongcheon Lim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Seokkyoon Hong
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Muhammad A Alam
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jacqueline C Linnes
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Public Health, Purdue University, West Lafayette, Indiana 47907, United States
| | - Hyowon Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Center for Implantable Devices, Purdue University, West Lafayette, Indiana 47907, United States
| | - Chi Hwan Lee
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Center for Implantable Devices, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
37
|
Sun H, Zheng Y, Shi G, Haick H, Zhang M. Wearable Clinic: From Microneedle-Based Sensors to Next-Generation Healthcare Platforms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207539. [PMID: 36950771 DOI: 10.1002/smll.202207539] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/24/2023] [Indexed: 06/18/2023]
Abstract
The rapid development of wearable biosensing calls for next-generation devices that allow continuous, real-time, and painless monitoring of health status along with responsive medical treatment. Microneedles have exhibited great potential for the direct access of dermal interstitial fluid (ISF) in a minimally invasive manner. Recent studies of microneedle-based devices have evolved from conventional off-line detection to multiplexed, wireless, and integrated sensing. In this review, the classification and fabrication techniques of microneedles are first introduced, and then the representative examples of microneedles for transdermal monitoring with different sensing modalities are summarized. State-of-the-art advances in therapeutic and closed-loop systems are presented to formulate guidelines for the development of next-generation microneedle-based healthcare platforms. The potential challenges and prospects are discussed to pave a new avenue toward pragmatic applications in the real world.
Collapse
Affiliation(s)
- Hongyi Sun
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai, 200241, China
| | - Youbin Zheng
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, 320003, Israel
| | - Guoyue Shi
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai, 200241, China
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, 320003, Israel
| | - Min Zhang
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
38
|
Friedel M, Thompson IAP, Kasting G, Polsky R, Cunningham D, Soh HT, Heikenfeld J. Opportunities and challenges in the diagnostic utility of dermal interstitial fluid. Nat Biomed Eng 2023; 7:1541-1555. [PMID: 36658344 DOI: 10.1038/s41551-022-00998-9] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 12/06/2022] [Indexed: 01/21/2023]
Abstract
The volume of interstitial fluid (ISF) in the human body is three times that of blood. Yet, collecting diagnostically useful ISF is more challenging than collecting blood because the extraction of dermal ISF disrupts the delicate balance of pressure between ISF, blood and lymph, and because the triggered local inflammation further skews the concentrations of many analytes in the extracted fluid. In this Perspective, we overview the most meaningful differences in the make-up of ISF and blood, and discuss why ISF cannot be viewed generally as a diagnostically useful proxy for blood. We also argue that continuous sensing of small-molecule analytes in dermal ISF via rapid assays compatible with nanolitre sample volumes or via miniaturized sensors inserted into the dermis can offer clinically advantageous utility, particularly for the monitoring of therapeutic drugs and of the status of the immune system.
Collapse
Affiliation(s)
- Mark Friedel
- Novel Device Laboratory, Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Ian A P Thompson
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Gerald Kasting
- The James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, OH, USA
| | - Ronen Polsky
- Nano and Micro Sensors, Sandia National Laboratories, Albuquerque, NM, USA
| | - David Cunningham
- Department of Chemistry and Physics, Southeast Missouri State University, Cape Girardeau, MO, USA
| | - Hyongsok Tom Soh
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
- Department of Radiology, Stanford University, Stanford, CA, USA.
| | - Jason Heikenfeld
- Novel Device Laboratory, Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
39
|
Zhang Y, Zhao G, Zheng M, Hu T, Yang C, Xu C. A nanometallic conductive composite-hydrogel core-shell microneedle skin patch for real-time monitoring of interstitial glucose levels. NANOSCALE 2023; 15:16493-16500. [PMID: 37795965 DOI: 10.1039/d3nr01245j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
A microneedle-based skin patch system allows the minimally invasive extraction of skin interstitial fluid, which offers hope for the realization of quantitative and non-invasive diagnosis/monitoring of biological/physiological signals (biomarkers) in the human body. This work describes a nanometallic conductive composite-hydrogel core-shell microneedle skin patch that can realize minimally invasive real-time monitoring of physiological signals. The microneedle sensing system contains an inner conductive silver paste core and an outer bioactive hydrogel layer. The inner core is coated with biomarker-specific enzymes while the outer hydrogel layer extracts the biomarkers from the skin interstitial fluid. This patch can be integrated with the commercial signal processing and transmission modules and enable real-time monitoring. Taking glucose as a model biomarker, we confirm the function and potential application of this core-shell microneedle patch for transdermal diagnosis. It is proven that the core-shell microneedle patch can quickly extract skin interstitial fluid within 30 seconds and has a fast and linear response to glucose concentrations from 0 to 21 mM with a correlation coefficient of 0.9970, which may pave the way for the future development of smart wearable devices with minimally invasive transdermal biosensors.
Collapse
Affiliation(s)
- Yuyue Zhang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China.
| | - Guangyao Zhao
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China.
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen City, Guangdong Province, China.
| | - Mengjia Zheng
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China.
| | - Tianli Hu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China.
| | - Cheng Yang
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen City, Guangdong Province, China.
| | - Chenjie Xu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
40
|
Wiltschko L, Roblegg E, Raml R, Birngruber T. Small volume rapid equilibrium dialysis (RED) measures effects of interstitial parameters on the protein-bound fraction of topical drugs. J Pharm Biomed Anal 2023; 234:115571. [PMID: 37527618 DOI: 10.1016/j.jpba.2023.115571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/16/2023] [Accepted: 07/09/2023] [Indexed: 08/03/2023]
Abstract
The importance of plasma protein binding in the early stages of drug development is well recognized. Free and bound drug fractions in plasma are routinely determined with well-established methods. However, for physiological fluids with a small accessible volume and low protein concentrations, such as dermal interstitial fluid (dISF) validated methods are currently missing. Due to the low protein concentration and highly dynamic processes in the dermis, protein binding data obtained from plasma samples may underestimate in-vivo efficacy. This study aimed to validate a small volume rapid equilibrium dialysis (RED) for low protein samples, as a tool to examine drug-protein binding directly in the biological fluid at the site of action. The sample volume required for RED was successfully downscaled to 50 µl and plasma protein binding values of the four model drugs were consistent with previous studies with an average recovery of 88 ± 8% which makes all tested drugs suitable for small volume RED. Inter- and intra-batch variability showed sufficient reproducibility across RED plates. Small volume RED was successfully applied to assess the effects of interstitial parameters, including the evaluation of the major binding protein and the effects of binding protein concentration, drug concentration, and pH on the protein-bound drug fraction using 2% HSA and/or diluted human plasma as a surrogate for dISF.
Collapse
Affiliation(s)
- Laura Wiltschko
- HEALTH - Institute for Biomedical Research and Technologies, Joanneum Research mbH, Neue Stiftingtalstrasse 2, 8010 Graz, Austria; University of Graz, Institute of Pharmaceutical Sciences, Pharmaceutical Technology & Biopharmacy, Universitaetsplatz 1, 8010 Graz, Austria
| | - Eva Roblegg
- University of Graz, Institute of Pharmaceutical Sciences, Pharmaceutical Technology & Biopharmacy, Universitaetsplatz 1, 8010 Graz, Austria
| | - Reingard Raml
- HEALTH - Institute for Biomedical Research and Technologies, Joanneum Research mbH, Neue Stiftingtalstrasse 2, 8010 Graz, Austria.
| | - Thomas Birngruber
- HEALTH - Institute for Biomedical Research and Technologies, Joanneum Research mbH, Neue Stiftingtalstrasse 2, 8010 Graz, Austria
| |
Collapse
|
41
|
Tian Y, Hu C, Peng D, Zhu Z. Self-powered intelligent pulse sensor based on triboelectric nanogenerators with AI assistance. Front Bioeng Biotechnol 2023; 11:1236292. [PMID: 37790256 PMCID: PMC10543276 DOI: 10.3389/fbioe.2023.1236292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/06/2023] [Indexed: 10/05/2023] Open
Affiliation(s)
- Yifei Tian
- Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing, China
| | - Cong Hu
- Guangxi Key Laboratory of Automatic Detecting Technology and Instruments, Guilin University of Electronic Technology, Guilin, China
| | - Deguang Peng
- Chongqing Megalight Technology Co., Ltd., Chongqing, China
| | - Zhiyuan Zhu
- Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing, China
| |
Collapse
|
42
|
Friedel M, Werbovetz B, Drexelius A, Watkins Z, Bali A, Plaxco KW, Heikenfeld J. Continuous molecular monitoring of human dermal interstitial fluid with microneedle-enabled electrochemical aptamer sensors. LAB ON A CHIP 2023; 23:3289-3299. [PMID: 37395135 PMCID: PMC11875127 DOI: 10.1039/d3lc00210a] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The ability to continually collect diagnostic information from the body during daily activity has revolutionized the monitoring of health and disease. Much of this monitoring, however, has been of physical "vital signs", with the monitoring of molecular markers having been limited to glucose, primarily due to the lack of other medically relevant molecules for which continuous measurements are possible in bodily fluids. Electrochemical aptamer sensors, however, have a recent history of successful in vivo demonstrations in rat animal models. Herein, we present the first report of real-time human molecular data collected using such sensors, successfully demonstrating their ability to measure the concentration of phenylalanine in dermal interstitial fluid after an oral bolus. To achieve this, we used a device that employs three hollow microneedles to couple the interstitial fluid to an ex vivo, phenylalanine-detecting sensor. The resulting architecture achieves good precision over the physiological concentration range and clinically relevant, 20 min lag times. By also demonstrating 90 days dry room-temperature shelf storage, the reported work also reaches another important milestone in moving such sensors to the clinic. While the devices demonstrated are not without remaining challenges, the results at minimum provide a simple method by which aptamer sensors can be quickly moved into human subjects for testing.
Collapse
Affiliation(s)
- Mark Friedel
- Novel Devices Laboratory, College of Engineering, University of Cincinnati, Cincinnati, Ohio 45221, USA.
| | - Benjamin Werbovetz
- Novel Devices Laboratory, College of Engineering, University of Cincinnati, Cincinnati, Ohio 45221, USA.
| | - Amy Drexelius
- Novel Devices Laboratory, College of Engineering, University of Cincinnati, Cincinnati, Ohio 45221, USA.
| | - Zach Watkins
- Novel Devices Laboratory, College of Engineering, University of Cincinnati, Cincinnati, Ohio 45221, USA.
| | - Ahilya Bali
- Novel Devices Laboratory, College of Engineering, University of Cincinnati, Cincinnati, Ohio 45221, USA.
| | - Kevin W Plaxco
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Jason Heikenfeld
- Novel Devices Laboratory, College of Engineering, University of Cincinnati, Cincinnati, Ohio 45221, USA.
| |
Collapse
|
43
|
Lin PH, Nien HH, Li BR. Wearable Microfluidics for Continuous Assay. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:181-203. [PMID: 36888989 DOI: 10.1146/annurev-anchem-091322-082930] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of wearable devices provides approaches for the realization of self-health care. Easily carried wearable devices allow individual health monitoring at any place whenever necessary. There are various interesting monitoring targets, including body motion, organ pressure, and biomarkers. An efficient use of space in one small device is a promising resolution to increase the functions of wearable devices. Through integration of a microfluidic system into wearable devices, embedding complicated structures in one design becomes possible and can enable multifunction analyses within a limited device volume. This article reviews the reported microfluidic wearable devices, introduces applications to different biofluids, discusses characteristics of the design strategies and sensing principles, and highlights the attractive configurations of each device. This review seeks to provide a detailed summary of recent advanced microfluidic wearable devices. The overview of advanced key components is the basis for the development of future microfluidic wearable devices.
Collapse
Affiliation(s)
- Pei-Heng Lin
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan;
- Department of Electronics and Electrical Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Hsin-Hua Nien
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan;
- College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Radiation Oncology, Cathay General Hospital, Taipei, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Bor-Ran Li
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan;
- Department of Electronics and Electrical Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center for Emergent Functional Matter of Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
44
|
Yuan Y, Arroyo-Currás N. Continuous Molecular Monitoring in the Body via Nucleic Acid-based Electrochemical Sensors: The Need for Statistically-powered Validation. CURRENT OPINION IN ELECTROCHEMISTRY 2023; 39:101305. [PMID: 37274549 PMCID: PMC10237360 DOI: 10.1016/j.coelec.2023.101305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nucleic acid-based electrochemical (NBE) sensors offer real-time and reagent-free sensing capabilities that overcome limitations of target-specific reactivity via affinity-based molecular detection. By leveraging affinity probes, NBE sensors become modular and versatile, allowing the monitoring of a variety of molecular targets by simply swapping the recognition probe without the need to change their sensor architecture. However, NBE sensors have not been rigorously validated in vivo in terms of analytical performance and clinical agreement relative to benchmark methods. In this article, we highlight reports from the past three years that evaluate NBE sensors performance in vivo. We hope this discussion will inspire future translational efforts with statistically robust experimental design, thus enabling real-world clinical applications and commercial development of NBE sensors.
Collapse
Affiliation(s)
- Yuchan Yuan
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21202
| | - Netzahualcóyotl Arroyo-Currás
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21202
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
45
|
Turner JG, Laabei M, Li S, Estrela P, Leese HS. Antimicrobial releasing hydrogel forming microneedles. BIOMATERIALS ADVANCES 2023; 151:213467. [PMID: 37236117 DOI: 10.1016/j.bioadv.2023.213467] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/27/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023]
Abstract
Hydrogel-forming microneedle arrays as a technique for transdermal drug delivery show promise as an alternative to traditional drug delivery methods. In this work, hydrogel-forming microneedles have been created with effective, controlled delivery of amoxicillin and vancomycin within comparable therapeutic ranges to that of oral delivered antibiotics. Fabrication using reusable 3D printed master templates enabled quick and low-cost hydrogel microneedle manufacturing through micro-molding. By 3D printing at a tilt angle of 45° the resolution of the microneedle tip was improved by double (from ca. 64 μm down to 23 μm). Amoxicillin and vancomycin were encapsulated within the hydrogel's polymeric network through a unique room temperature swell/deswell drug loading method within minutes, eliminating the need for an external drug reservoir. The hydrogel-forming microneedle mechanical strength was maintained, and successful penetration of porcine skin grafts observed with negligible damage to the needles or surrounding skin morphology. Hydrogel swell rate was tailored by altering the crosslinking density, resulting in controlled antimicrobial release for an applicable delivered dosage. The potent antimicrobial properties of the antibiotic-loaded hydrogel-forming microneedles against both Escherichia coli and Staphylococcus aureus, highlights the beneficial use of hydrogel-forming microneedles towards the minimally invasive transdermal drug delivery of antibiotics.
Collapse
Affiliation(s)
- Joseph G Turner
- Materials for Health Lab, Department of Chemical Engineering, University of Bath, Bath BA2 7AY, UK; Centre for Bioengineering and Biomedical Technologies (CBio), University of Bath, Bath BA2 7AY, UK
| | - Maisem Laabei
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| | - Shuxian Li
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| | - Pedro Estrela
- Centre for Bioengineering and Biomedical Technologies (CBio), University of Bath, Bath BA2 7AY, UK; Department of Electronic and Electrical Engineering, University of Bath, Bath BA2 7AY, UK
| | - Hannah S Leese
- Materials for Health Lab, Department of Chemical Engineering, University of Bath, Bath BA2 7AY, UK; Centre for Bioengineering and Biomedical Technologies (CBio), University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
46
|
VURAL B, ULUDAĞ İ, İNCE B, ÖZYURT C, ÖZTÜRK F, SEZGİNTÜRK MK. Fluid-based wearable sensors: a turning point in personalized healthcare. Turk J Chem 2023; 47:944-967. [PMID: 38173754 PMCID: PMC10760819 DOI: 10.55730/1300-0527.3588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 10/31/2023] [Accepted: 05/22/2023] [Indexed: 01/05/2024] Open
Abstract
Nowadays, it has become very popular to develop wearable devices that can monitor biomarkers to analyze the health status of the human body more comprehensively and accurately. Wearable sensors, specially designed for home care services, show great promise with their ease of use, especially during pandemic periods. Scientists have conducted many innovative studies on new wearable sensors that can noninvasively and simultaneously monitor biochemical indicators in body fluids for disease prediction, diagnosis, and management. Using noninvasive electrochemical sensors, biomarkers can be detected in tears, saliva, perspiration, and skin interstitial fluid (ISF). In this review, biofluids used for noninvasive wearable sensor detection under four main headings, saliva, sweat, tears, and ISF-based wearable sensors, were examined in detail. This report analyzes nearly 50 recent articles from 2017 to 2023. Based on current research, this review also discusses the evolution of wearable sensors, potential implementation challenges, and future prospects.
Collapse
Affiliation(s)
- Berfin VURAL
- Department of Bioengineering, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale,
Turkiye
| | - İnci ULUDAĞ
- Department of Bioengineering, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale,
Turkiye
| | - Bahar İNCE
- Department of Bioengineering, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale,
Turkiye
| | - Canan ÖZYURT
- Department of Chemistry and Chemical Processing Technologies, Lapseki Vocational School, Çanakkale Onsekiz Mart University, Çanakkale,
Turkiye
| | - Funda ÖZTÜRK
- Department of Chemistry, Faculty of Arts and Sciences, Tekirdağ Namık Kemal University, Tekirdağ,
Turkiye
| | - Mustafa Kemal SEZGİNTÜRK
- Department of Bioengineering, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale,
Turkiye
| |
Collapse
|
47
|
Downs AM, Bolotsky A, Weaver BM, Bennett H, Wolff N, Polsky R, Miller PR. Microneedle electrochemical aptamer-based sensing: Real-time small molecule measurements using sensor-embedded, commercially-available stainless steel microneedles. Biosens Bioelectron 2023; 236:115408. [PMID: 37267688 DOI: 10.1016/j.bios.2023.115408] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 06/04/2023]
Abstract
Microneedle sensors could enable minimally-invasive, continuous molecular monitoring - informing on disease status and treatment in real-time. Wearable sensors for pharmaceuticals, for example, would create opportunities for treatments personalized to individual pharmacokinetics. Here, we demonstrate a commercial-off-the-shelf (COTS) approach for microneedle sensing using an electrochemical aptamer-based sensor that detects the high-toxicity antibiotic, vancomycin. Wearable monitoring of vancomycin could improve patient care by allowing targeted drug dosing within its narrow clinical window of safety and efficacy. To produce sensors, we miniaturize the electrochemical aptamer-based sensors to a microelectrode format, and embed them within stainless steel microneedles (sourced from commercial insulin pen needles). The microneedle sensors achieve quantitative measurements in body-temperature undiluted blood. Further, the sensors effectively maintain electrochemical signal within porcine skin. This COTS approach requires no cleanroom fabrication or specialized equipment, and produces individually-addressable, sterilizable microneedle sensors capable of easily penetrating the skin. In the future, this approach could be adapted for multiplexed detection, enabling real-time monitoring of a range of biomarkers.
Collapse
Affiliation(s)
- Alex M Downs
- Biological & Chemical Sensors Department, Sandia National Laboratories, 1515 Eubank Blvd. SE, Albuquerque, New Mexico 87123, USA.
| | - Adam Bolotsky
- Biological & Chemical Sensors Department, Sandia National Laboratories, 1515 Eubank Blvd. SE, Albuquerque, New Mexico 87123, USA
| | - Bryan M Weaver
- Biological & Chemical Sensors Department, Sandia National Laboratories, 1515 Eubank Blvd. SE, Albuquerque, New Mexico 87123, USA
| | - Haley Bennett
- Biological & Chemical Sensors Department, Sandia National Laboratories, 1515 Eubank Blvd. SE, Albuquerque, New Mexico 87123, USA
| | - Nathan Wolff
- Biological & Chemical Sensors Department, Sandia National Laboratories, 1515 Eubank Blvd. SE, Albuquerque, New Mexico 87123, USA
| | - Ronen Polsky
- Biological & Chemical Sensors Department, Sandia National Laboratories, 1515 Eubank Blvd. SE, Albuquerque, New Mexico 87123, USA
| | - Philip R Miller
- Biological & Chemical Sensors Department, Sandia National Laboratories, 1515 Eubank Blvd. SE, Albuquerque, New Mexico 87123, USA
| |
Collapse
|
48
|
Brinkmann C, Bloch W, Mutinati GC. ELSAH (electronic smart patch system for wireless monitoring of molecular biomarkers for healthcare and wellbeing): definition of possible use cases. Front Bioeng Biotechnol 2023; 11:1166857. [PMID: 37251564 PMCID: PMC10211345 DOI: 10.3389/fbioe.2023.1166857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/18/2023] [Indexed: 05/31/2023] Open
Abstract
The ELSAH (electronic smart patch system for wireless monitoring of molecular biomarkers for healthcare and wellbeing) project has received funding from EU's Horizon 2020 research and innovation program (grant agreement no. 825549). Its aim is to develop a wearable smart patch-based microneedle sensor system that can simultaneously measure several biomarkers in users' dermal interstitial fluid. This system could have several use cases based on continuous glucose and lactate monitoring: early detection of (pre-) diabetes mellitus, increasing physical performance through optimal carbohydrate intake, achieving a healthier lifestyle through behavioral changes based on the interpretation of glucose data, performance diagnostics (lactate threshold test), control of optimal training intensities corresponding with certain lactate levels, or warning of diseases/health threats, such as the metabolic syndrome or sepsis associated with increased lactate levels. The ELSAH patch system has a high potential of increasing health and wellbeing in users.
Collapse
Affiliation(s)
- Christian Brinkmann
- Department of Preventive and Rehabilitative Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Cologne, Germany
- Department of Fitness and Health, IST University of Applied Sciences, Düsseldorf, Germany
| | - Wilhelm Bloch
- Department of Preventive and Rehabilitative Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - Giorgio C. Mutinati
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Molecular Diagnostics, Vienna, Austria
| |
Collapse
|
49
|
Ribet F, Bendes A, Fredolini C, Dobielewski M, Böttcher M, Beck O, Schwenk JM, Stemme G, Roxhed N. Microneedle Patch for Painless Intradermal Collection of Interstitial Fluid Enabling Multianalyte Measurement of Small Molecules, SARS-CoV-2 Antibodies, and Protein Profiling. Adv Healthc Mater 2023; 12:e2202564. [PMID: 36748807 PMCID: PMC11468663 DOI: 10.1002/adhm.202202564] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/19/2023] [Indexed: 02/08/2023]
Abstract
Blood sampling is a common practice to monitor health, but it entails a series of drawbacks for patients including pain and discomfort. Thus, there is a demand for more convenient ways to obtain samples. Modern analytical techniques enable monitoring of multiple bioanalytes in smaller samples, opening possibilities for new matrices, and microsampling technologies to be adopted. Interstitial fluid (ISF) is an attractive alternative matrix that shows good correlation with plasma concentration dynamics for several analytes and can be sampled in a minimally invasive and painless manner from the skin at the point-of-care. However, there is currently a lack of sampling devices compatible with clinical translation. Here, to tackle state-of-the-art limitations, a cost-effective and compact single-microneedle-based device designed to painlessly collect precisely 1.1 µL of dermal ISF within minutes is presented. The fluid is volume-metered, dried, and stably stored into analytical-grade paper within the microfluidic device. The obtained sample can be mailed to a laboratory, quantitatively analyzed, and provide molecular insights comparable to blood testing. In a human study, the possibility to monitor various classes of molecular analytes is demonstrated in ISF microsamples, including caffeine, hundreds of proteins, and SARS-CoV-2 antibodies, some being detected in ISF for the first time.
Collapse
Affiliation(s)
- Federico Ribet
- Division of Micro and NanosystemsSchool of Electrical Engineering and Computer ScienceKTH Royal Institute of TechnologyStockholm10044Sweden
| | - Annika Bendes
- Division of Affinity ProteomicsSchool of Engineering Sciences in ChemistryBiotechnology and Health (CBH)SciLifeLabSolna17165Sweden
| | - Claudia Fredolini
- Division of Affinity ProteomicsSchool of Engineering Sciences in ChemistryBiotechnology and Health (CBH)SciLifeLabSolna17165Sweden
| | - Mikolaj Dobielewski
- Division of Micro and NanosystemsSchool of Electrical Engineering and Computer ScienceKTH Royal Institute of TechnologyStockholm10044Sweden
| | - Michael Böttcher
- MVZ Medizinische Labor Dessau Kassel GmbHD‐06847Dessau‐RosslauGermany
| | - Olof Beck
- Department of Clinical NeuroscienceKarolinska InstituteStockholm17177Sweden
| | - Jochen M. Schwenk
- Division of Affinity ProteomicsSchool of Engineering Sciences in ChemistryBiotechnology and Health (CBH)SciLifeLabSolna17165Sweden
| | - Göran Stemme
- Division of Micro and NanosystemsSchool of Electrical Engineering and Computer ScienceKTH Royal Institute of TechnologyStockholm10044Sweden
| | - Niclas Roxhed
- Division of Micro and NanosystemsSchool of Electrical Engineering and Computer ScienceKTH Royal Institute of TechnologyStockholm10044Sweden
| |
Collapse
|
50
|
Ahmad NN, Ghazali NNN, Abdul Rani AT, Othman MH, Kee CC, Jiwanti PK, Rodríguez-Gómez A, Wong YH. Finger-Actuated Micropump of Constant Flow Rate without Backflow. MICROMACHINES 2023; 14:881. [PMID: 37421113 DOI: 10.3390/mi14040881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 07/09/2023]
Abstract
This paper presents a finger-actuated micropump with a consistent flow rate and no backflow. The fluid dynamics in interstitial fluid (ISF) extraction microfluidics are studied through analytical, simulation, and experimental methods. Head losses, pressure drop, diodocity, hydrogel swelling, criteria for hydrogel absorption, and consistency flow rate are examined in order to access microfluidic performance. In terms of consistency, the experimental result revealed that after 20 s of duty cycles with full deformation on the flexible diaphragm, the output pressure became uniform and the flow rate remained at nearly constant levels of 2.2 μL/min. The flow rate discrepancy between the experimental and predicted flow rates is around 22%. In terms of diodicity, when the serpentine microchannel and hydrogel-assisted reservoir are added to the microfluidic system integration, the diodicity increases by 2% (Di = 1.48) and 34% (Di = 1.96), respectively, compared to when the Tesla integration (Di = 1.45) is used alone. A visual and experimentally weighted analysis finds no signs of backflow. These significant flow characteristics demonstrate their potential usage in many low-cost and portable microfluidic applications.
Collapse
Affiliation(s)
- NurFarrahain Nadia Ahmad
- Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Federal Territory, Malaysia
- School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | - Nik Nazri Nik Ghazali
- Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Federal Territory, Malaysia
| | - Ahmad Taufiq Abdul Rani
- Industrial and Mechanical Design, Faculty of Engineering, German-Malaysian Institute, Jalan Ilmiah, Taman Universiti, Kajang 43000, Selangor, Malaysia
| | - Mohammad Hafiz Othman
- Department of Process & Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Chia Ching Kee
- Centre for Advance Materials and Intelligent Manufacturing, Faculty of Engineering, Built Environment & Information Technology, SEGi University, Petaling Jaya 47810, Selangor, Malaysia
| | - Prastika Krisma Jiwanti
- Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Arturo Rodríguez-Gómez
- Instituto de Física, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica s/n, Ciudad Universitaria, A.P. 20-364, Coyoacán, Ciudad de México 04510, Mexico
| | - Yew Hoong Wong
- Department of Mechanical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Federal Territory, Malaysia
| |
Collapse
|