1
|
Asadi Tokmedash M, Kim C, Chavda AP, Li A, Robins J, Min J. Engineering multifunctional surface topography to regulate multiple biological responses. Biomaterials 2025; 319:123136. [PMID: 39978049 PMCID: PMC11893264 DOI: 10.1016/j.biomaterials.2025.123136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/04/2025] [Accepted: 01/23/2025] [Indexed: 02/22/2025]
Abstract
Surface topography or curvature plays a crucial role in regulating cell behavior, influencing processes such as adhesion, proliferation, and gene expression. Recent advancements in nano- and micro-fabrication techniques have enabled the development of biomimetic systems that mimic native extracellular matrix (ECM) structures, providing new insights into cell-adhesion mechanisms, mechanotransduction, and cell-environment interactions. This review examines the diverse applications of engineered topographies across multiple domains, including antibacterial surfaces, immunomodulatory devices, tissue engineering scaffolds, and cancer therapies. It highlights how nanoscale features like nanopillars and nanospikes exhibit bactericidal properties, while many microscale patterns can direct stem cell differentiation and modulate immune cell responses. Furthermore, we discuss the interdisciplinary use of topography for combined applications, such as the simultaneous regulation of immune and tissue cells in 2D and 3D environments. Despite significant advances, key knowledge gaps remain, particularly regarding the effects of topographical cues on multicellular interactions and dynamic 3D contexts. This review summarizes current fabrication methods, explores specific and interdisciplinary applications, and proposes future research directions to enhance the design and utility of topographically patterned biomaterials in clinical and experimental settings.
Collapse
Affiliation(s)
| | - Changheon Kim
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ajay P Chavda
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Adrian Li
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jacob Robins
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jouha Min
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA; Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
2
|
Chiang MC, Clarke BR, Tew GN, Schiffman JD. Antifouling Activity of Bottlebrush Network Hydrogels. ACS APPLIED BIO MATERIALS 2025; 8:4200-4208. [PMID: 40270321 DOI: 10.1021/acsabm.5c00291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Mitigating the attachment of microorganisms to polymer biomaterials is critical for preventing hospital-acquired infections. Two chemical strategies to mitigate fouling include fabricating fouling-resistant surfaces, which typically present hydrophilic polymers, such as polyethylene glycol (PEG), or creating fouling-release surfaces, which are generally hydrophobic featuring polydimethylsiloxane (PDMS). Despite the demonstrated promise of employing PEG or PDMS, amphiphilic PEG/PDMS copolymer materials remain understudied. Here, for the first time, we investigated if phase-separated amphiphilic copolymers confounded microbial adhesion. We used bottlebrush amphiphilic PEG/PDMS co-networks and homopolymer networks to study bacterial adhesion across a library of gels (ϕPEG = 0.00, 0.21, 0.40, 0.55, 0.80, and 1.00). Hydrated atomic force microscopy measurements revealed that most of the gels had low surface roughness, less than 5 nm, and an elastic modulus of ∼80 kPa. Interestingly, the surface roughness and elastic modulus of the ϕPEG = 0.40 gel were twice as high as those of the other gels due to the presence of crystalline domains, as confirmed using polarized optical microscopy on the hydrated gel. The interactions of these six well-characterized gels with bacteria were determined using Escherichia coli K12 MG1655 and Staphylococcus aureus SH1000. The attachment of both microbes decreased by at least 60% on all polymer gels versus the glass controls. S. aureus adhesion peaked on the ϕPEG = 0.40, likely due to its increased elastic modulus, consistent with previous literature demonstrating that modulus impacts microbial adhesion. These findings suggest that hydrophilic, hydrophobic, and amphiphilic biomaterials effectively resist the early attachment of Gram-negative and Gram-positive microorganisms, providing guidance for the design of next-generation antifouling surfaces.
Collapse
Affiliation(s)
- Meng-Chen Chiang
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Brandon R Clarke
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Gregory N Tew
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Jessica D Schiffman
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
- Materials Science and Engineering Graduate Program, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| |
Collapse
|
3
|
Xue Y, Loranger MEW, Jia Y, Andoy NMO, Moeder W, Yoshioka K, Sullan RMA. Single-Cell Force Spectroscopy Uncovers Root Zone- and Bacteria-Specific Interactions. Angew Chem Int Ed Engl 2025; 64:e202419510. [PMID: 40014612 PMCID: PMC12051759 DOI: 10.1002/anie.202419510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/19/2025] [Accepted: 02/27/2025] [Indexed: 03/01/2025]
Abstract
Understanding root-bacteria interactions with plant growth-promoting rhizobacteria (PGPR) is key to developing effective biofertilizers for sustainable agriculture. We performed single-cell force spectroscopy using the atomic force microscope (AFM) to study the primary attachment of two PGPR, Bacillus velezensis and Pseudomonas defensor, to different regions of Arabidopsis thaliana roots. Force measurements with individual cells uncovered distinct attachment strategies by each strain, involving binding via micrometer-long polymers from both bacteria and root surfaces. Flagella differentially affected the binding interactions of each PGPR; their removal altered binding characteristics differently for each strain, highlighting the importance of flagella in early root colonization. Using silica beads to mimic the negatively charged bacteria, we demonstrated the influence of electrostatic forces on root-bacteria interactions. We also examined interactions with abiotic surfaces of varying surface energies, revealing the roles of hydrophilic and hydrophobic forces in initial binding. Our measurements show that differences in the physicochemical properties of bacteria and roots are responsible for variations in primary attachment strategies between PGPR strains and root regions. Parallel fluorescence measurements corroborated our AFM single-cell analysis. Overall, our results provide a nanoscale view of bacterial attachment to roots, offering key insights into how beneficial bacteria colonize roots, crucial for enhancing biofertilizer effectiveness.
Collapse
Affiliation(s)
- Yilei Xue
- Department of Physical and Environmental SciencesUniversity of Toronto Scarborough1065 Military TrailTorontoOntarioM1C 1A4Canada
- Department of ChemistryUniversity of Toronto80 St. George St.TorontoOntarioM5S 3H6Canada
| | - Mackenzie Eli W. Loranger
- Department of Cell and Systems BiologyUniversity of Toronto25 Wilcocks St.TorontoOntarioM5S 3B2Canada
| | - Yifan Jia
- Department of Physical and Environmental SciencesUniversity of Toronto Scarborough1065 Military TrailTorontoOntarioM1C 1A4Canada
- Present address:
Department of Biological EngineeringUniversity of Côte d'Azur930 Route des CollesBiot06410France
| | - Nesha May O. Andoy
- Department of Physical and Environmental SciencesUniversity of Toronto Scarborough1065 Military TrailTorontoOntarioM1C 1A4Canada
| | - Wolfgang Moeder
- Department of Cell and Systems BiologyUniversity of Toronto25 Wilcocks St.TorontoOntarioM5S 3B2Canada
| | - Keiko Yoshioka
- Department of Cell and Systems BiologyUniversity of Toronto25 Wilcocks St.TorontoOntarioM5S 3B2Canada
- Center for the Analysis of Genome Evolution and Function (CAGEF)University of Toronto25 Wilcocks St.TorontoOntarioM5S 3B2Canada
| | - Ruby May A. Sullan
- Department of Physical and Environmental SciencesUniversity of Toronto Scarborough1065 Military TrailTorontoOntarioM1C 1A4Canada
- Department of ChemistryUniversity of Toronto80 St. George St.TorontoOntarioM5S 3H6Canada
| |
Collapse
|
4
|
Davidov K, Itzahri S, Kartha A, Orr G, Lang Z, Navon‐Venezia S, Oren M. Rapid Colonisation of Plastic Surfaces by Marine Alcanivorax Bacteria Is Flagellum-Dependent and Influenced by Polymer Type and Photo-Weathering State. Environ Microbiol 2025; 27:e70102. [PMID: 40317824 PMCID: PMC12046545 DOI: 10.1111/1462-2920.70102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/31/2025] [Accepted: 04/16/2025] [Indexed: 05/07/2025]
Abstract
Marine plastic debris provides stable surfaces for microbial colonisation, forming a unique ecosystem known as the plastisphere. Among the early colonisers are Alcanivorax bacteria, hydrocarbon degraders commonly found in oil-polluted seawater and on marine plastic surfaces. This study examined factors influencing the adhesion and colonisation dynamics of six Alcanivorax species. Flagellated species-A. balearicus, A. dieselolei and A. xenomutans-rapidly colonised plastics, particularly polyethylene and polypropylene, while non-flagellated species did not. Notably, plastic photo-weathering treatments led to the elongation of A. dieselolei cells, secretion of extracellular polymeric substance in some cases, and increased colonisation on UVB-treated polyethylene terephthalate. These changes may be linked to the reduced plastic surface hydrophobicity recorded following photo-weathering. To confirm the role of flagella in Alcanivorax adhesion, we disrupted flagellar activity using sub-concentrations of polymyxin B sulfate, resulting in inhibition of swarming motility and complete disruption of colonisation. These results contribute to our understanding of the interactions between hydrocarbon-degrading Alcanivorax bacteria and their plastic substrate, which in turn contributes to the understanding of the ecological impact of plastic pollution in marine environments.
Collapse
Affiliation(s)
- Keren Davidov
- Molecular Biology DepartmentAriel UniversityArielIsrael
| | - Sheli Itzahri
- Molecular Biology DepartmentAriel UniversityArielIsrael
| | | | - Gilad Orr
- Physics Department, Crystal Physics LaboratoryAriel UniversityArielIsrael
| | - Ziv Lang
- Molecular Biology DepartmentAriel UniversityArielIsrael
| | - Shiri Navon‐Venezia
- Molecular Biology DepartmentAriel UniversityArielIsrael
- The Sheldon Adelson School of MedicineAriel UniversityArielIsrael
| | - Matan Oren
- Molecular Biology DepartmentAriel UniversityArielIsrael
| |
Collapse
|
5
|
Shimaya T, Yokoyama F, Takeuchi KA. Smectic-like bundle formation of planktonic bacteria upon nutrient starvation. SOFT MATTER 2025; 21:2868-2881. [PMID: 40126189 DOI: 10.1039/d4sm01117a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Bacteria aggregate through various intercellular interactions to build biofilms, but the effect of environmental changes on them remains largely unexplored. Here, by using an experimental device that overcomes past difficulties, we observed the collective response of Escherichia coli aggregates to dynamic changes in the growth conditions. We discovered that nutrient starvation caused bacterial cells to arrange themselves into bundle-shaped clusters, developing a structure akin to that of smectic liquid crystals. The degree of the smectic-like bundle order was evaluated by a deep learning approach. Our experiments suggest that both the depletion attraction by extracellular polymeric substances and the growth arrest are essential for the bundle formation. Since these effects of nutrient starvation at the single-cell level are common to many bacterial species, bundle formation might also be a common collective behavior that bacterial cells may exhibit under harsh environments.
Collapse
Affiliation(s)
- Takuro Shimaya
- Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Fumiaki Yokoyama
- Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Kazumasa A Takeuchi
- Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- Institute for Physics of Intelligence, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Universal Biology Institute, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
6
|
Bhattacharya S, Bejerano-Sagie M, Ravins M, Zeroni L, Kaur P, Gopu V, Rosenshine I, Ben-Yehuda S. Flagellar rotation facilitates the transfer of a bacterial conjugative plasmid. EMBO J 2025; 44:587-611. [PMID: 39623141 PMCID: PMC11730352 DOI: 10.1038/s44318-024-00320-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/30/2024] [Accepted: 11/07/2024] [Indexed: 01/15/2025] Open
Abstract
Conjugation-mediated DNA delivery is the primary mode for antibiotic resistance spread in bacteria; yet, molecular mechanisms regulating the conjugation process remain largely unexplored. While conjugative plasmids typically require bacterial attachment to solid surfaces for facilitation of donor-to-recipient proximity, the pLS20 conjugative plasmid, prevalent among Gram-positive Bacillus spp., uniquely requires fluid environments to enhance its transfer. Here, we show that pLS20, carried by Bacillus subtilis, induces multicellular clustering, which can accommodate various species, hence offering a stable platform for DNA delivery in a liquid milieu. We further discovered that induction of pLS20 promoters, governing crucial conjugative genes, is dependent on the presence of donor cell flagella, the major bacterial motility organelle. Moreover, the pLS20 regulatory circuit is controlled by a mechanosensing signal transduction pathway responsive to flagella rotation, thus activating conjugation gene expression exclusively during the host motile phase. This flagella-conjugation coupling strategy may allow the dissemination of the plasmid to remote destinations, allowing infiltration into new niches.
Collapse
Affiliation(s)
- Saurabh Bhattacharya
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, POB 12272, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Michal Bejerano-Sagie
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, POB 12272, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Miriam Ravins
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, POB 12272, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Liat Zeroni
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, POB 12272, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Prabhjot Kaur
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, POB 12272, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Venkadesaperumal Gopu
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, POB 12272, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel
| | - Ilan Rosenshine
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, POB 12272, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel.
| | - Sigal Ben-Yehuda
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, POB 12272, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel.
| |
Collapse
|
7
|
Agarwal H, Gurnani B, Pippal B, Jain N. Capturing the micro-communities: Insights into biogenesis and architecture of bacterial biofilms. BBA ADVANCES 2024; 7:100133. [PMID: 39839441 PMCID: PMC11750278 DOI: 10.1016/j.bbadva.2024.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025] Open
Abstract
Biofilm is an assemblage of microorganisms embedded within the extracellular matrix that provides mechanical stability, nutrient absorption, antimicrobial resistance, cell-cell interactions, and defence against host immune system. Various biomolecules such as lipids, carbohydrates, protein polymers (amyloid), and eDNA are present in the matrix playing significant role in determining the distinctive properties of biofilm. The formation of biofilms contributes to resistance against antimicrobial therapy in most of the human infections and exacerbates existing diseases. Therefore, this field requires several state-of-the-art techniques to fully understand the 3-D organization of biofilms, their cell behaviour and responses to pharmaceutical treatments. Here, we explore the assembly and regulation of biofilm biogenesis in the context of matrix components and highlight the significance of high-resolution imaging and analysing techniques for monitoring complex biofilm architecture. Our review also emphasizes the novelty and advancements in techniques to visualise biofilm structure and composition, providing valuable insights to understand biofilm-related infections.
Collapse
Affiliation(s)
- Harshita Agarwal
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Nagaur Road, Karwar, Rajasthan 342037, India
| | - Bharat Gurnani
- Centre of Excellence-AyurTech, Indian Institute of Technology Jodhpur, NH 65, Nagaur Road, Karwar, Rajasthan 342037, India
| | - Bhumika Pippal
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Nagaur Road, Karwar, Rajasthan 342037, India
| | - Neha Jain
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, NH 65, Nagaur Road, Karwar, Rajasthan 342037, India
| |
Collapse
|
8
|
Ramesh Kumar U, Nguyen NT, Dewangan NK, Mohiuddin SG, Orman MA, Cirino PC, Conrad JC. Co-Expression of type 1 fimbriae and flagella in Escherichia coli: consequences for adhesion at interfaces. SOFT MATTER 2024; 20:7397-7404. [PMID: 39021099 DOI: 10.1039/d4sm00499j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Escherichia coli expresses surface appendages including fimbriae, flagella, and curli, at various levels in response to environmental conditions and external stimuli. Previous studies have revealed an interplay between expression of fimbriae and flagella in several E. coli strains, but how this regulation between fimbrial and flagellar expression affects adhesion to interfaces is incompletely understood. Here, we investigate how the concurrent expression of fimbriae and flagella by engineered strains of E. coli MG1655 affects their adhesion at liquid-solid and liquid-liquid interfaces. We tune fimbrial and flagellar expression on the cell surface through plasmid-based inducible expression of the fim operon and fliC-flhDC genes. We show that increased fimbrial expression increases interfacial adhesion as well as bacteria-driven actuation of micron-sized objects. Co-expression of flagella in fimbriated bacteria, however, does not greatly affect either of these properties. Together, these results suggest that interfacial adhesion as well as motion actuated by adherent bacteria can be altered by controlling the expression of surface appendages.
Collapse
Affiliation(s)
- Udayanidhi Ramesh Kumar
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA.
| | - Nam T Nguyen
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA.
| | - Narendra K Dewangan
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA.
| | - Sayed Golam Mohiuddin
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA.
| | - Mehmet A Orman
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA.
| | - Patrick C Cirino
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA.
| | - Jacinta C Conrad
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA.
| |
Collapse
|
9
|
Hossain MR, Eagar AC, Blackwood CB, Leff LG. Nascently generated microplastics in freshwater stream are colonized by bacterial communities from stream and riparian sources. JOURNAL OF ENVIRONMENTAL QUALITY 2024; 53:577-588. [PMID: 39087255 DOI: 10.1002/jeq2.20602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 06/10/2024] [Indexed: 08/02/2024]
Abstract
The purpose of this study was to examine bacterial colonization of different types of microplastics through time in a freshwater ecosystem. Microplastics are persistent pollutants in aquatic ecosystems. Bacteria readily colonize microplastic surfaces and may contribute to their degradation, but the taxa involved, and their degradative abilities, differ based on factors such as microplastic chemistry, plastic age, and specific ecosystem types. Four different common types of newly manufactured microplastics, high-density polyethylene, low-density polyethylene, polypropylene, and polystyrene, were incubated for 7 weeks in a freshwater stream and sampled. Sample collection was timed to examine the development of early and late bacterial biofilm communities. Microplastics were analyzed for changes to buoyancy, weight, contact angles (an indicator of surface roughness), bacterial community composition, and the number of bacterial cells. Time was the only significant contributing factor in the development of bacterial biofilm communities on microplastic disks over the 7-week study. Notably, the Comamonadaceae were abundant early in the study and decreased in abundance with time, while the Methylococcaceae demonstrated the opposite trend. Different physicochemical properties among the various types of microplastics had only a minor effect on bacterial community compositions of biofilms growing on the microplastics. Additionally, the surfaces of all microplastic disks became rougher over time in the stream. Collectively, our results show that microplastic surfaces undergo surface modification and community succession as time progresses, regardless of microplastic type, in a freshwater stream ecosystem.
Collapse
Affiliation(s)
- M Rumman Hossain
- Department of Biological Sciences, University of Arkansas-Fort Smith, Fort Smith, Arkansas, USA
| | - Andrew C Eagar
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Christopher B Blackwood
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Laura G Leff
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| |
Collapse
|
10
|
Aqeel H, Brei E, Allen DG, Liss SN. Distribution of extracellular adhesins in environmental biofilms and flocs: Reimagining the microbial structure. CHEMOSPHERE 2024; 363:142928. [PMID: 39048048 DOI: 10.1016/j.chemosphere.2024.142928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Extracellular cellular adhesins facilitate microbial aggregation; however, most of the information about extracellular adhesins is based on pure culture studies. In this study, we characterized the hydrophobic characteristics and distribution of the extracellular adhesins in environmental biofilms and flocs. The hydrophobic characteristics of the extracellular adhesins were studied by sonicating the microbial aggregates to disperse the cells and by fractionating them using the microbial adhesion to the hydrocarbon method. Furthermore, we probed environmental biofilms and flocs using immunohistochemistry coupled with confocal laser scanning microscopy for reimaging the microbial aggregates based on extracellular adhesins. Small flocs have a relatively dispersed distribution of extracellular adhesins (flagella, fimbriae, pili, and amyloid adhesins). The stratified distribution of extracellular adhesins was observed in environmental biofilms. It was observed that the pili and amyloid adhesins were predominantly present in the core of biofilms, whereas flagella and fimbriae were present in the outer layer of the microbial aggregates. The dispersion of microbial aggregates is one of the limiting factors that challenge the sustainable application of wastewater treatment processes. Greater attention to the components of extracellular protein (such as the adhesins) is required to understand the aggregation of dispersible environmental microbial aggregates.
Collapse
Affiliation(s)
- Hussain Aqeel
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Canada
| | - Elena Brei
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - D Grant Allen
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - Steven N Liss
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Canada; School of Environmental Studies, Queen's University, Kingston, Canada; Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
11
|
Ronish LA, Biswas B, Bauer RM, Jacob ME, Piepenbrink KH. The role of extracellular structures in Clostridioides difficile biofilm formation. Anaerobe 2024; 88:102873. [PMID: 38844261 DOI: 10.1016/j.anaerobe.2024.102873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/27/2024] [Accepted: 06/03/2024] [Indexed: 07/08/2024]
Abstract
C. difficile infection (CDI) is a costly and increasing burden on the healthcare systems of many developed countries due to the high rates of nosocomial infections. Despite the availability of several antibiotics with high response rates, effective treatment is hampered by recurrent infections. One potential mechanism for recurrence is the existence of C. difficile biofilms in the gut which persist through the course of antibiotics. In this review, we describe current developments in understanding the molecular mechanisms by which C. difficile biofilms form and are stabilized through extracellular biomolecular interactions.
Collapse
Affiliation(s)
- Leslie A Ronish
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Baishakhi Biswas
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Robert M Bauer
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Mallory E Jacob
- Biochemistry Department, University of Geneva, Geneva, Switzerland
| | - Kurt H Piepenbrink
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA; Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA; Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA; Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA; Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| |
Collapse
|
12
|
Zhang J, Ma W, Li Y, Zhong D, Zhou Z, Ma J. The resistance change and stress response mechanisms of chlorine-resistant bacteria under microplastic stress in drinking water distribution system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124331. [PMID: 38848962 DOI: 10.1016/j.envpol.2024.124331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
The presence of both chlorine-resistant bacteria (CRB) and microplastics (MPs) in drinking water distribution systems (DWDS) poses a threat to water quality and human health. However, the risk of CRB bio evolution under the stress of MPs remains unclear. In this study, polypropylene (PP) and polyethylene (PE) were selected to study the adsorption and desorption behavior of sulfamethoxazole (SMX), and it was clear that MPs had the risk of carrying pollutants into DWDS and releasing them. The results of the antibiotic susceptibility test and disinfection experiment confirmed that MPs could enhance the resistance of CRB to antibiotics and disinfectants. Bacteria epigenetic resistance mechanisms were approached from multiple perspectives, including physiological and biochemical characteristics, as well as molecular regulatory networks. When MPs enter DWDS, CRB could attach to the surface of MPs and directly interact with both MPs and the antibiotics they release. This attachment process promoted changes in the composition and content of extracellular polymers (EPS) within cells, enhanced surface hydrophobicity, stimulated oxidative stress function, and notably elevated the relative abundance of certain antibiotic resistance genes (ARGs). This study elucidates the mechanism by which MPs alter the intrinsic properties of CRB, providing valuable insights into the effective avoidance of biological risks to water quality during CRB evolution.
Collapse
Affiliation(s)
- Jingna Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wencheng Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; Chongqing Research Institute of HIT, Chongqing, 401151, China
| | - Yibing Li
- Central & Southern China Municipal Engineering Design and Research Institute Co., Ltd, Wuhan, 430014, China
| | - Dan Zhong
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; Chongqing Research Institute of HIT, Chongqing, 401151, China.
| | - Ziyi Zhou
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
13
|
Vilas Boas D, Castro J, Araújo D, Nóbrega FL, Keevil CW, Azevedo NF, Vieira MJ, Almeida C. The Role of Flagellum and Flagellum-Based Motility on Salmonella Enteritidis and Escherichia coli Biofilm Formation. Microorganisms 2024; 12:232. [PMID: 38399635 PMCID: PMC10893291 DOI: 10.3390/microorganisms12020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
Flagellum-mediated motility has been suggested to contribute to virulence by allowing bacteria to colonize and spread to new surfaces. In Salmonella enterica and Escherichia coli species, mutants affected by their flagellar motility have shown a reduced ability to form biofilms. While it is known that some species might act as co-aggregation factors for bacterial adhesion, studies of food-related biofilms have been limited to single-species biofilms and short biofilm formation periods. To assess the contribution of flagella and flagellum-based motility to adhesion and biofilm formation, two Salmonella and E. coli mutants with different flagellar phenotypes were produced: the fliC mutants, which do not produce flagella, and the motAB mutants, which are non-motile. The ability of wild-type and mutant strains to form biofilms was compared, and their relative fitness was determined in two-species biofilms with other foodborne pathogens. Our results showed a defective and significant behavior of E. coli in initial surface colonization (p < 0.05), which delayed single-species biofilm formation. Salmonella mutants were not affected by the ability to form biofilm (p > 0.05). Regarding the effect of motility/flagellum absence on bacterial fitness, none of the mutant strains seems to have their relative fitness affected in the presence of a competing species. Although the absence of motility may eventually delay initial colonization, this study suggests that motility is not essential for biofilm formation and does not have a strong impact on bacteria's fitness when a competing species is present.
Collapse
Affiliation(s)
- Diana Vilas Boas
- Center of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (D.V.B.); (M.J.V.)
- LABBELS–Associate Laboratory, Braga/Guimarães, 4710-057 Braga, Portugal
| | - Joana Castro
- Center of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (D.V.B.); (M.J.V.)
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (J.C.); (D.A.)
| | - Daniela Araújo
- Center of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (D.V.B.); (M.J.V.)
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (J.C.); (D.A.)
| | - Franklin L. Nóbrega
- Center of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (D.V.B.); (M.J.V.)
- School of Biological Sciences, University of Southampton, University Road Southampton, Southampton SO17 1BJ, UK; (F.L.N.); (C.W.K.)
| | - Charles W. Keevil
- School of Biological Sciences, University of Southampton, University Road Southampton, Southampton SO17 1BJ, UK; (F.L.N.); (C.W.K.)
| | - Nuno F. Azevedo
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- AliCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria João Vieira
- Center of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (D.V.B.); (M.J.V.)
- LABBELS–Associate Laboratory, Braga/Guimarães, 4710-057 Braga, Portugal
| | - Carina Almeida
- Center of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (D.V.B.); (M.J.V.)
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (J.C.); (D.A.)
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- AliCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
14
|
Boby F, Bhuiyan MNH, Saha BK, Dey SS, Saha AK, Islam MJ, Bashera MA, Moulick SP, Jahan F, Zaman MAU, Chowdhury SF, Naser SR, Khan MS, Sarkar MMH. In silico exploration of Serratia sp. BRL41 genome for detecting prodigiosin Biosynthetic Gene Cluster (BGC) and in vitro antimicrobial activity assessment of secreted prodigiosin. PLoS One 2023; 18:e0294054. [PMID: 37967102 PMCID: PMC10651056 DOI: 10.1371/journal.pone.0294054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 10/24/2023] [Indexed: 11/17/2023] Open
Abstract
The raising concern of drug resistance, having substantial impacts on public health, has instigated the search of new natural compounds with substantial medicinal activity. In order to find out a natural solution, the current study has utilized prodigiosin, a linear tripyrrole red pigment, as an active ingredient to control bacterial proliferation and prevent cellular oxidation caused by ROS (Reactive Oxygen Species). A prodigiosin-producing bacterium BRL41 was isolated from the ancient Barhind soil of BCSIR Rajshahi Laboratories, Bangladesh, and its morphological and biochemical characteristics were investigated. Whole genome sequencing data of the isolate revealed its identity as Serratia sp. and conferred the presence of prodigiosin gene cluster in the bacterial genome. "Prodigiosin NRPS", among the 10 analyzed gene clusters, showed 100% similarity with query sequences where pigC, pigH, pigI, and pigJ were identified as fundamental genes for prodigiosin biosynthesis. Some other prominent clusters for synthesis of ririwpeptides, yersinopine, trichrysobactin were also found in the chromosome of BRL41, whilst the rest displayed less similarity with query sequences. Except some first-generation beta-lactam resistance genes, no virulence and resistance genes were found in the genome of BRL41. Structural illumination of the extracted red pigment by spectrophotometric scanning, Thin-Layer Chromatography (TLC), Fourier Transform Infrared Spectroscopy (FTIR), and change of color at different pH solutions verified the identity of the isolated compound as prodigiosin. Serratia sp. BRL41 attained its maximum productivity 564.74 units/cell at temperature 30˚C and pH 7.5 in two-fold diluted nutrient broth medium. The compound exhibited promising antibacterial activity against Gram-positive and Gram-negative bacteria with MIC (Minimum Inhibitory Concentration) and MBC (Minimum Bactericidal Concentration) values ranged from 3.9 to15.62 μg/mL and 7.81 to 31.25 μg/mL respectively. At concentration 500 μg/mL, except in Salmonella enterica ATCC-10708, prodigiosin significantly diminished biofilm formed by Listeria monocytogens ATCC-3193, Pseudomonas aeruginosa ATCC-9027, Escherichia coli (environmental isolate), Staphylococcus aureus (environmental isolate). Cellular glutathione level (GSH) was elevated upon application of 250 and 500 μg/mL pigment where 125 μg/mL failed to show any free radical scavenging activity. Additionally, release of cellular components in growth media of both Gram-positive and Gram-negative bacteria were facilitated by the extract that might be associated with cell membrane destabilization. Therefore, the overall findings of antimicrobial, antibiofilm and antioxidant activities suggest that in time to come prodigiosin might be a potential natural source to treat various diseases and infections.
Collapse
Affiliation(s)
- Farhana Boby
- BCSIR Rajshahi Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Md. Nurul Huda Bhuiyan
- BCSIR Rajshahi Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Barun Kanti Saha
- BCSIR Rajshahi Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Subarna Sandhani Dey
- BCSIR Rajshahi Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Anik Kumar Saha
- BCSIR Rajshahi Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Md Jahidul Islam
- BCSIR Rajshahi Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Mahci Al Bashera
- BCSIR Rajshahi Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Shyama Prosad Moulick
- BCSIR Laboratories, Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Farhana Jahan
- BCSIR Rajshahi Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | | | - Sanjana Fatema Chowdhury
- BCSIR Laboratories, Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Showti Raheel Naser
- BCSIR Laboratories, Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Md. Salim Khan
- BCSIR Laboratories, Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Md. Murshed Hasan Sarkar
- BCSIR Laboratories, Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| |
Collapse
|
15
|
van den Berg D, Asker D, Awad TS, Lavielle N, Hatton BD. Mechanical deformation of elastomer medical devices can enable microbial surface colonization. Sci Rep 2023; 13:7691. [PMID: 37169828 PMCID: PMC10175502 DOI: 10.1038/s41598-023-34217-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/26/2023] [Indexed: 05/13/2023] Open
Abstract
Elastomers such as silicone are common in medical devices (catheters, prosthetic implants, endoscopes), but they remain prone to microbial colonization and biofilm infections. For the first time, our work shows that rates of microbial surface attachment to polydimethylsiloxane (PDMS) silicone can be significantly affected by mechanical deformation. For a section of bent commercial catheter tubing, bacteria (P. aeruginosa) show a strong preference for the 'convex' side compared to the 'concave' side, by a factor of 4.2. Further testing of cast PDMS materials in bending only showed a significant difference for samples that were manually wiped (damaged) beforehand (1.75 × 104 and 6.02 × 103 cells/mm2 on the convex and concave sides, respectively). We demonstrate that surface microcracks in elastomers are opened under tensile stress (convex bending) to become 'activated' as sites for microbial colonization. This work demonstrates that the high elastic limit of elastomers enables these microcracks to reversibly open and close, as 'dynamic defects'. Commercial catheters have relatively high surface roughness inherent to manufacturing, but we show that even manual wiping of newly-cast PDMS is sufficient to generate surface microcracks. We consider the implication for medical devices that feature sustained, surgical, or cyclic deformation, in which localized tensile conditions may expose these surface defects to opportunistic microbes. As a result, our work showcases serious potential problems in the widespread usage and development of elastomers in medical devices.
Collapse
Affiliation(s)
| | - Dalal Asker
- Department of Materials Science and Engineering, University of Toronto, Toronto, Canada
- Food Science & Technology Department, Alexandria University, Alexandria, Egypt
| | - Tarek S Awad
- Department of Materials Science and Engineering, University of Toronto, Toronto, Canada
| | - Nicolas Lavielle
- Physique et Mécanique des Milieux Hétérogènes, CNRS, ESPCI, PSL Research University, Sorbonne Université, Sorbonne Paris Cité, 75005, Paris, France
| | - Benjamin D Hatton
- Department of Materials Science and Engineering, University of Toronto, Toronto, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada.
| |
Collapse
|
16
|
You Z, Li J, Wang Y, Wu D, Li F, Song H. Advances in mechanisms and engineering of electroactive biofilms. Biotechnol Adv 2023; 66:108170. [PMID: 37148984 DOI: 10.1016/j.biotechadv.2023.108170] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/22/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
Electroactive biofilms (EABs) are electroactive microorganisms (EAMs) encased in conductive polymers that are secreted by EAMs and formed by the accumulation and cross-linking of extracellular polysaccharides, proteins, nucleic acids, lipids, and other components. EABs are present in the form of multicellular aggregates and play a crucial role in bioelectrochemical systems (BESs) for diverse applications, including biosensors, microbial fuel cells for renewable bioelectricity production and remediation of wastewaters, and microbial electrosynthesis of valuable chemicals. However, naturally occurred EABs are severely limited owing to their low electrical conductivity that seriously restrict the electron transfer efficiency and practical applications. In the recent decade, synthetic biology strategies have been adopted to elucidate the regulatory mechanisms of EABs, and to enhance the formation and electrical conductivity of EABs. Based on the formation of EABs and extracellular electron transfer (EET) mechanisms, the synthetic biology-based engineering strategies of EABs are summarized and reviewed as follows: (i) Engineering the structural components of EABs, including strengthening the synthesis and secretion of structural elements such as polysaccharides, eDNA, and structural proteins, to improve the formation of biofilms; (ii) Enhancing the electron transfer efficiency of EAMs, including optimizing the distribution of c-type cytochromes and conducting nanowire assembly to promote contact-based EET, and enhancing electron shuttles' biosynthesis and secretion to promote shuttle-mediated EET; (iii) Incorporating intracellular signaling molecules in EAMs, including quorum sensing systems, secondary messenger systems, and global regulatory systems, to increase the electron transfer flux in EABs. This review lays a foundation for the design and construction of EABs for diverse BES applications.
Collapse
Affiliation(s)
- Zixuan You
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jianxun Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yuxuan Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Deguang Wu
- Department of Brewing Engineering, Moutai Institute, Luban Ave, Renhuai 564507, Guizhou, PR China
| | - Feng Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Hao Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
17
|
Zamora R, McEvoy J, Colbert C, Chacana Olivares J, Kaewlom P, Khan E. Blocking bacterial appendage attachment to wastewater treatment membranes using anti-adhesins. CHEMOSPHERE 2023; 323:138246. [PMID: 36842556 PMCID: PMC10083094 DOI: 10.1016/j.chemosphere.2023.138246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/30/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Membrane bioreactors (MBRs) suffer from high operational and cleaning costs due to biofouling. The biofouling begins when the adhesins (an anchor-type epitope made up of polar and charged amino acids) on microbial appendages bind to the surface. Two different compounds-dodecyl-β-D-maltoside (DDM) and methyl α-d-mannopyranoside (MeαMan)-were investigated as possible biofilm mitigation tools due to their documented anti-adhesin properties in the biomedical field. DDM prevented up to 56.3, 87.0, and 67.6% of the formation of Pseudomonas putida, Escherichia coli and wastewater culture biofilms, respectively, in microplate experiments. MeαMan increased biofilm in the microplates. In a biofilm reactor setting, DDM was then applied on typical membrane materials, polyvinylidene fluoride, polyamide, polyether-sulfone, and polyacrylonitrile and prevented 79.4, 62.5, 81.3, and 68.2% of the detectable wastewater culture biofilm formation, respectively. The mechanism of anti-adhesion was the binding of the polar head of the DDM to the polar amino acids of the microbial appendages in conjunction with the orientation of the DDM as it binds different membrane materials. If the anti-adhesins are effective at increasing the distance of the bacteria from the membrane materials, they will serve as a new method for delaying biofouling.
Collapse
Affiliation(s)
- Ricardo Zamora
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND, 58108, USA
| | - John McEvoy
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Christopher Colbert
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58108, USA
| | | | - Puangrat Kaewlom
- Department of Environmental Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA.
| |
Collapse
|
18
|
Vasconcelos L, Aburjaile F, Andrade L, Cancio AF, Seyffert N, Aguiar ERGR, Ristow P. Genomic insights into the c-di-GMP signaling and biofilm development in the saprophytic spirochete Leptospira biflexa. Arch Microbiol 2023; 205:180. [PMID: 37031284 DOI: 10.1007/s00203-023-03519-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 03/20/2023] [Accepted: 03/26/2023] [Indexed: 04/10/2023]
Abstract
C-di-GMP is a bacterial second messenger with central role in biofilm formation. Spirochete bacteria from Leptospira genus present a wide diversity, with species of medical importance and environmental species, named as saprophytic. Leptospira form biofilms in the rat's reservoir kidneys and in the environment. Here, we performed genomic analyses to identify enzymatic and effector c-di-GMP proteins in the saprophytic biofilm-forming species Leptospira biflexa serovar Patoc. We identified 40 proteins through local alignments. Amongst them, 16 proteins are potentially functional diguanylate cyclases, phosphodiesterases, or hybrid proteins. We also identified nine effectors, including PilZ proteins. Enrichment analyses suggested that c-di-GMP interacts with cAMP signaling system, CsrA system, and flagella assembly regulation during biofilm development of L. biflexa. Finally, we identified eight proteins in the pathogen Leptospira interrogans serovar Copenhageni that share high similarity with L. biflexa c-di-GMP-related proteins. This work revealed proteins related to c-di-GMP turnover and cellular response in Leptospira and their potential roles during biofilm development.
Collapse
Affiliation(s)
- Larissa Vasconcelos
- Institute of Biology, Federal University of Bahia, Salvador, Bahia, Brazil
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Flávia Aburjaile
- Preventive Veterinary Medicine Department, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lara Andrade
- Institute of Biology, Federal University of Bahia, Salvador, Bahia, Brazil
| | | | - Núbia Seyffert
- Institute of Biology, Federal University of Bahia, Salvador, Bahia, Brazil
- Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Eric R G R Aguiar
- Institute of Health Sciences, Federal University of Bahia, Salvador, Bahia, Brazil
- Department of Biological Science, Center of Biotechnology and Genetics, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | - Paula Ristow
- Institute of Biology, Federal University of Bahia, Salvador, Bahia, Brazil.
- National Institute of Science and Technology in Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution (INCT IN-TREE), Federal University of Bahia, Salvador, Bahia, Brazil.
| |
Collapse
|
19
|
Latag GV, Nakamura T, Palai D, Mondarte EAQ, Hayashi T. Investigation of Three-Dimensional Bacterial Adhesion Manner on Model Organic Surfaces Using Quartz Crystal Microbalance with Energy Dissipation Monitoring. ACS APPLIED BIO MATERIALS 2023; 6:1185-1194. [PMID: 36802460 PMCID: PMC10031553 DOI: 10.1021/acsabm.2c01012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Bacterial biofilms reduce the performance and efficiency of biomedical and industrial devices. The initial step in forming bacterial biofilms is the weak and reversible attachment of the bacterial cells onto the surface. This is followed by bond maturation and secretion of polymeric substances, which initiate irreversible biofilm formation, resulting in stable biofilms. This implies that understanding the initial reversible stage of the adhesion process is crucial to prevent bacterial biofilm formation. In this study, we analyzed the adhesion processes of E. coli on self-assembled monolayers (SAMs) with different terminal groups using optical microscopy and quartz crystal microbalance with energy dissipation (QCM-D) monitoring. We found that a considerable number of bacterial cells adhere to hydrophobic (methyl-terminated) and hydrophilic protein-adsorbing (amine- and carboxy-terminated) SAMs forming dense bacterial adlayers while attaching weakly to hydrophilic protein-resisting SAMs [oligo(ethylene glycol) (OEG) and sulfobetaine (SB)], forming sparse but dissipative bacterial adlayers. Moreover, we observed positive shifts in the resonant frequency for the hydrophilic protein-resisting SAMs at high overtone numbers, suggesting how bacterial cells cling to the surface using their appendages as explained by the coupled-resonator model. By exploiting the differences in the acoustic wave penetration depths at each overtone, we estimated the distance of the bacterial cell body from different surfaces. The estimated distances provide a possible explanation for why bacterial cells tend to attach firmly to some surfaces and weakly to others. This result is correlated to the strength of the bacterium-substratum bonds at the interface. Elucidating how the bacterial cells adhere to different surface chemistries can be a suitable guide in identifying surfaces with a more significant probability of contamination by bacterial biofilms and designing bacteria-resistant surfaces and coatings with excellent bacterial antifouling characteristics.
Collapse
Affiliation(s)
- Glenn Villena Latag
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-Cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
| | - Taichi Nakamura
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-Cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
| | - Debabrata Palai
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-Cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
| | - Evan Angelo Quimada Mondarte
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-Cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Tomohiro Hayashi
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-Cho, Midori-ku, Yokohama, Kanagawa 226-8502, Japan
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| |
Collapse
|
20
|
Zhang M, He L, Qin J, Wang S, Tong M. Influence of flagella and their property on the initial attachment behaviors of bacteria onto plastics. WATER RESEARCH 2023; 231:119656. [PMID: 36709567 DOI: 10.1016/j.watres.2023.119656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Flagella and their property would influence the initial attachment of bacteria onto plastics, yet their impacts have not been investigated. In present study, four types of E. coli with or without flagella as well as with normal or sticky flagella were utilized to investigate the effects of flagella and their property on the initial attachment behaviors of bacteria onto six types of plastics in freshwater systems. We found that E. coli with flagella exhibited better initial attachment performance onto all six types of plastics than strain without flagella. Flagella could help bacteria swim near to plastics, pierce the energy barrier, and subsequently attach onto plastics. With stronger adhesive force, sticky flagella could further facilitate bacterial attachment onto plastics. Moreover, flagella especially sticky flagella could help bacteria form more rigid attachment layer on plastics. Even with humic acid in suspensions or in river water, flagellar E. coli showed greater attachment onto plastics than E. coli without flagella. Humic acid might adsorb onto sticky flagella and thus decreased the attachment of bacteria with sticky flagella onto plastics. Obviously, flagella as well as their property would impact the initial attachment of bacteria onto plastics and the subsequent formation of plastisphere in freshwater.
Collapse
Affiliation(s)
- Mengya Zhang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Lei He
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jianmei Qin
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuai Wang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
21
|
Scarinci G, Sourjik V. Impact of direct physical association and motility on fitness of a synthetic interkingdom microbial community. THE ISME JOURNAL 2023; 17:371-381. [PMID: 36566339 PMCID: PMC9938286 DOI: 10.1038/s41396-022-01352-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022]
Abstract
Mutualistic exchange of metabolites can play an important role in microbial communities. Under natural environmental conditions, such exchange may be compromised by the dispersal of metabolites and by the presence of non-cooperating microorganisms. Spatial proximity between members during sessile growth on solid surfaces has been shown to promote stabilization of cross-feeding communities against these challenges. Nonetheless, many natural cross-feeding communities are not sessile but rather pelagic and exist in turbulent aquatic environments, where partner proximity is often achieved via direct cell-cell adhesion, and cooperation occurs between physically associated cells. Partner association in aquatic environments could be further enhanced by motility of individual planktonic microorganisms. In this work, we establish a model bipartite cross-feeding community between bacteria and yeast auxotrophs to investigate the impact of direct adhesion between prokaryotic and eukaryotic partners and of bacterial motility in a stirred mutualistic co-culture. We demonstrate that adhesion can provide fitness benefit to the bacterial partner, likely by enabling local metabolite exchange within co-aggregates, and that it counteracts invasion of the community by a non-cooperating cheater strain. In a turbulent environment and at low cell densities, fitness of the bacterial partner and its competitiveness against a non-cooperating strain are further increased by motility that likely facilitates partner encounters and adhesion. These results suggest that, despite their potential fitness costs, direct adhesion between partners and its enhancement by motility may play key roles as stabilization factors for metabolic communities in turbulent aquatic environments.
Collapse
Affiliation(s)
- Giovanni Scarinci
- grid.419554.80000 0004 0491 8361Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany.
| |
Collapse
|
22
|
Öztürk FY, Darcan C, Kariptaş E. The Determination, Monitoring, Molecular Mechanisms and Formation of Biofilm in E. coli. Braz J Microbiol 2023; 54:259-277. [PMID: 36577889 PMCID: PMC9943865 DOI: 10.1007/s42770-022-00895-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 12/16/2022] [Indexed: 12/30/2022] Open
Abstract
Biofilms are cell assemblies embedded in an exopolysaccharide matrix formed by microorganisms of a single or many different species. This matrix in which they are embedded protects the bacteria from external influences and antimicrobial effects. The biofilm structure that microorganisms form to protect themselves from harsh environmental conditions and survive is found in nature in many different environments. These environments where biofilm formation occurs have in common that they are in contact with fluids. The gene expression of bacteria in complex biofilm differs from that of bacteria in the planktonic state. The differences in biofilm cell expression are one of the effects of community life. Means of quorum sensing, bacteria can act in coordination with each other. At the same time, while biofilm formation provides many benefits to bacteria, it has positive and negative effects in many different areas. Depending on where they occur, biofilms can cause serious health problems, contamination risks, corrosion, and heat and efficiency losses. However, they can also be used in water treatment plants, bioremediation, and energy production with microbial fuel cells. In this review, the basic steps of biofilm formation and biofilm regulation in the model organism Escherichia coli were discussed. Finally, the methods by which biofilm formation can be detected and monitored were briefly discussed.
Collapse
Affiliation(s)
- Fırat Yavuz Öztürk
- Department of Molecular Biology and Genetic, Faculty of Arts and Science, Bilecik Seyh Edebali University, Bilecik, Turkey.
| | - Cihan Darcan
- Department of Molecular Biology and Genetic, Faculty of Arts and Science, Bilecik Seyh Edebali University, Bilecik, Turkey
| | - Ergin Kariptaş
- Department of Medical Microbiology, Faculty of Medicine, Samsun University, Samsun, Turkey
| |
Collapse
|
23
|
Cedillo-González EI, Chierici P, Buttazzo M, Siligardi C, Blasi E, Ardizzoni A. Correlating the physico-chemical properties of two conventional glazed porcelain stoneware tiles in relation to cleanability and sanitization. MATERIALS TODAY. COMMUNICATIONS 2023; 34:105191. [PMID: 36567982 PMCID: PMC9758761 DOI: 10.1016/j.mtcomm.2022.105191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/24/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Keeping surfaces clean can reduce the spread of infections. In particular, to decrease the potential for SARS CoV-2 contamination, performing disinfection of high-touching surfaces. Several ceramic tiles and porcelain stoneware tiles with antimicrobial properties are already available on the market. However, the widespread use of antimicrobial glazed stoneware tiles may require to replace the ceramic surfaces already present in many buildings. The unfeasibility of such replacement can be due to both product durability (lifetime of a tile is usually long) and/or monetary restrictions. Furthermore, as porcelain stoneware per se does not have antimicrobial activity, these materials are fabricated by adding chemical agents able to provide antimicrobial properties. This approach requires a compatibility between the antimicrobial agents and the glaze formulation, as well as a careful control of the firing cycle and the final properties of the ceramic products. It follows that the final cost of antimicrobial tiles is not competitive with that of conventional tiles. In the latter, the persistence of potential pathogens on the surfaces is a crucial problem to face: the longer a pathogen survives on a surface, the longer it may be a source of transmission and thus endanger susceptible subjects. In this work, bacteria's capacity to adhere and to be effectively removed from two conventional glazed porcelain stoneware tiles (under dirty and clean conditions) was investigated. Two different glazes were tested, one mainly glassy (glossy) and the other mainly crystalline (matt). The sanitization procedures were carried out by chemical and chemo-mechanical procedures. The results showed that chemo-mechanical sanitization was the most effective, and the best results could be obtained on the stoneware tiles coated with the mainly glassy glaze, with the lowest porosity and the lower roughness values and water contact angles, especially under clean conditions.
Collapse
Affiliation(s)
- Erika Iveth Cedillo-González
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Via P. Vivarelli 10/1, Modena 41125, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, Florence 50121, Italy
| | - Paolo Chierici
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncological and Regenerative Medicine, Via Campi 287, 41125 Modena, Italy
| | - Marta Buttazzo
- SMALTICERAM UNICER S.p.A., Via della Repubblica 10/12, 42014 Roteglia, RE, Italy
| | - Cristina Siligardi
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Via P. Vivarelli 10/1, Modena 41125, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, Florence 50121, Italy
| | - Elisabetta Blasi
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncological and Regenerative Medicine, Via Campi 287, 41125 Modena, Italy
| | - Andrea Ardizzoni
- Department of Surgical, Medical, Dental and Morphological Sciences with interest in Transplant, Oncological and Regenerative Medicine, Via Campi 287, 41125 Modena, Italy
| |
Collapse
|
24
|
Identification of novel genes involved in the biofilm formation process of Avian Pathogenic Escherichia coli (APEC). PLoS One 2022; 17:e0279206. [PMID: 36534660 PMCID: PMC9762606 DOI: 10.1371/journal.pone.0279206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is the etiological agent of avian colibacillosis, a leading cause of economic loss to the poultry industry worldwide. APEC causes disease using a diverse repertoire of virulence factors and has the ability to form biofilms, which contributes to the survival and persistence of APEC in harsh environments. The objective of this study was to identify genes most widespread and important in APEC that contribute to APEC biofilm formation. Using the characterized APEC O18 as the template strain, a total of 15,660 mutants were randomly generated using signature tagged mutagenesis and evaluated for decreased biofilm formation ability using the crystal violet assay. Biofilm deficient mutants were sequenced, and a total of 547 putative biofilm formation genes were identified. Thirty of these genes were analyzed by PCR for prevalence among 109 APEC isolates and 104 avian fecal E. coli (AFEC) isolates, resulting in nine genes with significantly greater prevalence in APEC than AFEC. The expression of these genes was evaluated in the wild-type APEC O18 strain using quantitative real-time PCR (qPCR) in both the exponential growth phase and the mature biofilm phase. To investigate the role of these genes in biofilm formation, isogenic mutants were constructed and evaluated for their biofilm production and planktonic growth abilities. Four of the mutants (rfaY, rfaI, and two uncharacterized genes) displayed significantly decreased biofilm formation, and of those four, one (rfaI) displayed significantly decreased growth compared to the wild type. Overall, this study identified novel genes that may be important in APEC and its biofilm formation. The data generated from this study will benefit further investigation into the mechanisms of APEC biofilm formation.
Collapse
|
25
|
Porous Pellicle Formation of a Filamentous Bacterium, Leptothrix. Appl Environ Microbiol 2022; 88:e0134122. [PMID: 36416549 PMCID: PMC9746318 DOI: 10.1128/aem.01341-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The bacterium Leptothrix cholodnii generates filaments encased in a sheath comprised of woven nanofibrils. In static liquid culture, L. cholodnii moves toward the air-liquid interface, where it forms porous pellicles. Observations of aggregation at the interface reveal that clusters consisting of only a few bacteria primarily grow by netting free cells. These growing clusters hierarchically enlarge through the random docking of other small clusters. We find that the bacteria swim using their polar flagellum toward the interface, where their sheath assists them in intertwining with others and thereby promotes the formation of small clusters. In contrast, sheathless hydrophobic mutant cells get stuck to the interface. We find that the nanofibril sheath is vital for robust pellicle formation as it lowers cell surface hydrophobicity by 60%, thereby reducing their adsorption and enabling cells to move toward and stick together at the air-liquid interface. IMPORTANCE Efficient and sustainable management of water resources is becoming a fundamental issue for supporting growing populations and for developing economic activity. Fundamental to this management is the treatment of wastewater. Microorganisms are the active component of activated sludge that is employed in the biodegradation process of many wastewater treatment facilities. However, uncontrolled growth of filamentous bacteria such as Sphaerotilus often results in filamentous bulking, lowering the efficiency of water treatment systems. To prevent this undesirable condition, strategies based on a fundamental understanding of the ecology of filamentous bacteria are required. Although the filamentous bacterium Leptothrix cholodnii, which is closely related to Sphaerotilus, is a minor inhabitant of activated sludge, its complete genome sequence is known, making gene manipulation relatively easy. Moreover, L. cholodnii generates porous pellicles under static conditions, which may be a characteristic of filamentous bulking. We show that both swimming motility and nanofibril-mediated air-liquid interface attachment are required for porous pellicle formation. These insights are critical for a better understanding of the characteristics of filamentous bulking and might improve strategies to control activated sludge.
Collapse
|
26
|
Valinton JAA, Kurniawan A, Jhang RH, Pangilinan CR, Lee CH, Chen CH. Invisible Bactericidal Coatings on Generic Surfaces through a Convenient Hand Spray. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14909-14917. [PMID: 36472118 DOI: 10.1021/acs.langmuir.2c02604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Robust antimicrobial coatings featuring high transparency, strong bactericidal activity, and an easy application procedure on generic surfaces can be widely accepted by the public to prevent pandemics. In this work, we demonstrated the hand-sprayer-based approach to deposit complex oxide coatings composed of Co-Mn-Cu-Zn-Ag on screen protectors of smartphones through acidic redox-assisted deposition (ARD). The as-obtained coatings possess high transparency (99.74% transmittance at 550 nm) and long-lasting durability against swiping (for 135 days of average use) or wet cleaning (for a routine of 3 times/day for 33 days). The spray coating enabling 3.14% Escherichia coli viability can further be reduced to 0.21% through a consistent elemental composition achieved via the immersion method. The high intake of Cu2+ in the coating is majorly responsible for the bactericidal activity, and the presence of Ag+ and Zn2+ is necessary to achieve almost complete eradication. The success of extending the bactericidal coatings on other typical hand-touched surfaces (e.g., stainless steel railings, rubber handrails, and plastic switches) in public areas has been demonstrated.
Collapse
Affiliation(s)
| | - Alfin Kurniawan
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung80424, Taiwan
| | - Ren-Huai Jhang
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung80424, Taiwan
| | - Christian R Pangilinan
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung80424, Taiwan
| | - Che-Hsin Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung80424, Taiwan
| | - Chun-Hu Chen
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung80424, Taiwan
| |
Collapse
|
27
|
Flagellar Phenotypes Impact on Bacterial Transport and Deposition Behavior in Porous Media: Case of Salmonella enterica Serovar Typhimurium. Int J Mol Sci 2022; 23:ijms232214460. [PMID: 36430938 PMCID: PMC9698738 DOI: 10.3390/ijms232214460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
Bacterial contamination of groundwater has always been an ecological problem worthy of attention. In this study, Salmonella enterica serovar Typhimurium with different flagellar phenotypes mainly characterized during host-pathogen interaction were analyzed for their transport and deposition behavior in porous media. Column transport experiments and a modified mobile-immobile model were applicated on different strains with flagellar motility (wild-type) or without motility (ΔmotAB), without flagella (ΔflgKL), methylated and unmethylated flagellin (ΔfliB), and different flagella phases (fliCON, fljBON). Results showed that flagella motility could promote bacterial transport and deposition due to their biological advantages of moving and attaching to surfaces. We also found that the presence of non-motile flagella improved bacterial adhesion according to a higher retention rate of the ΔmotAB strain compared to the ΔflgKL strain. This indicated that bacteria flagella and motility both had promoting effects on bacterial deposition in sandy porous media. Flagella phases influenced the bacterial movement; the fliCON strain went faster through the column than the fljBON strain. Moreover, flagella methylation was found to favor bacterial transport and deposition. Overall, flagellar modifications affect Salmonella enterica serovar Typhimurium transport and deposition behavior in different ways in environmental conditions.
Collapse
|
28
|
Kim SY, Kim YJ, Lee SW, Lee EH. Interactions between bacteria and nano (micro)-sized polystyrene particles by bacterial responses and microscopy. CHEMOSPHERE 2022; 306:135584. [PMID: 35798153 DOI: 10.1016/j.chemosphere.2022.135584] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/19/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Microorganisms play an important role in biogeochemical cycles, and are inevitably found associated with plastic debris. The interplay between microbes and plastics may change the characteristics of certain plastics over time and drive the environmental fate of plastics. In this study, we evaluated interactions of bacteria with nano- and microplastics. Here, polystyrene (PS) polymer particles of various diameters, specifically 60, 220, 430, 700, 1040, 1700, and 2260 nm, were used as the plastics. Escherichia coli (E. coli, gram-negative) and Bacillus sp. (gram-positive) were chosen as model bacteria. The effects of nano- and microPS particles on E. coli and Bacillus sp. cells were investigated by measuring the growth and viability of the cells in laboratory-scale flasks and their generation of reactive oxygen species (ROS) upon their exposure to these particles of 100 mg/L. The particles inhibited the growth and viability of both types of bacterial cells, but their inhibitory effects varied depending on the diameter of PS particle. The 60-nm-diameter PS particles were visually observed to enter the cells as well as accumulate on their surfaces and enhanced ROS generation of the cells. Unexpectedly, the 1040-nm-diameter PS particles, similar in size to the bacterial cells, inhibited the growth of both E. coli and Bacillus sp. cells the most. The E. coli and Bacillus sp. cells formed microPS-biofilm complex by secreting an extracellular polymeric substance (EPS) in response to their exposure to the ∼ 1-μm-diameter PS particles. A positive correlation between relative ROS levels and specific growth rates of the E. coli cells were observed with a Pearson correlation coefficient r value of 0.676 (p < 0.05).
Collapse
Affiliation(s)
- So Yoon Kim
- Department of Microbiology, Pusan National University, 2 Busandaehak-ro 63 Beon-gil, Geumjeong-gu, Busan, Republic of Korea
| | - Yong Jin Kim
- Department of Microbiology, Pusan National University, 2 Busandaehak-ro 63 Beon-gil, Geumjeong-gu, Busan, Republic of Korea
| | - Seung-Woo Lee
- Department of Fine Chemistry, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul, Republic of Korea; Department of Nano Bio Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul, Republic of Korea
| | - Eun-Hee Lee
- Department of Microbiology, Pusan National University, 2 Busandaehak-ro 63 Beon-gil, Geumjeong-gu, Busan, Republic of Korea.
| |
Collapse
|
29
|
Halsted MC, Bible AN, Morrell-Falvey JL, Retterer ST. Quantifying biofilm propagation on chemically modified surfaces. Biofilm 2022; 4:100088. [PMID: 36303845 PMCID: PMC9594113 DOI: 10.1016/j.bioflm.2022.100088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/26/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022] Open
Abstract
Conditions affecting biofilm formation differ among bacterial species and this presents a challenge to studying biofilms in the lab. This work leverages functionalized silanes to control surface chemistry in the study of early biofilm propagation, quantified with a semi-automated image processing algorithm. These methods support the study of Pantoea sp. YR343, a gram-negative bacterium isolated from the poplar rhizosphere. We found that Pantoea sp. YR343 does not readily attach to hydrophilic surfaces but will form biofilms with a “honeycomb” morphology on hydrophobic surfaces. Our image processing algorithm described here quantified the evolution of the honeycomb morphology over time, and found the propagation to display a logarithmic behavior. This methodology was repeated with a flagella-deficient fliR mutant of Pantoea sp. YR343 which resulted in reduced surface attachment. Quantifiable differences between Pantoea WT and ΔfliR biofilm morphologies were captured by the image processing algorithm, further demonstrating the insight gained from these methods.
Collapse
Affiliation(s)
| | - Amber N. Bible
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | | | - Scott T. Retterer
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA,Center for Nanophase Materials Sciences, Oak Ridge, TN, USA,Corresponding author. Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
30
|
Song E, Lee K, Kim J. Tetrazolium-Based Visually Indicating Bacteria Sensor for Colorimetric Detection of Point of Contamination. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38153-38161. [PMID: 35946791 PMCID: PMC9415389 DOI: 10.1021/acsami.2c08613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Protective equipment for detecting bacterial contamination has been in high demand with increasing interest in public health and hygiene. Herein, a fiber-based visually indicating bacteria sensor (VIBS) embedded with iodonitrotetrazolium chloride is developed for the general purpose of detecting live bacteria, and its chromogenic effectiveness is investigated for Gram-negative Escherichia coli and Gram-positive Micrococcus luteus. The developed color intensity is measured by the light absorption coefficient to the scattering coefficient (K/S) based on the Kubelka-Munk equation, and the colorimetric sensitivities of different membranes are examined by calculating the limit of detection (LOD) and the limit of quantification (LOQ). The results demonstrate that the interactions between VIBS and bacteria depend on the wetting properties of membranes. A hydrophobic membrane shows excessive interactions at high concentrations of Gram-negative E. coli bacteria, whose cell membrane is lipophilic. The membrane blended with hydrophobic and hydrophilic polymers displays linear colorimetric responses for both Gram-negative and Gram-positive bacteria strains, demonstrating a reliable sensing capability in the range of the tested bacteria concentration. This study is significant in that explorative experimentations are performed to conceive a proof of concept of a fiber-based bacteria sensor, which is readily applicable in various fields where bacteria pose a threat.
Collapse
Affiliation(s)
- Eugene Song
- Department
of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea
| | - Kyeongeun Lee
- Department
of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea
- Reliability
Assessment Center, FITI Testing & Research
Institute, Seoul 07791, Korea
| | - Jooyoun Kim
- Department
of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea
- Research
Institute of Human Ecology, Seoul National
University, Seoul 08826, Korea
| |
Collapse
|
31
|
Avelino-Flores F, Soria-Bustos J, Saldaña-Ahuactzi Z, Martínez-Laguna Y, Yañez-Santos JA, Cedillo-Ramírez ML, Girón JA. The Transcription of Flagella of Enteropathogenic Escherichia coli O127:H6 Is Activated in Response to Environmental and Nutritional Signals. Microorganisms 2022; 10:microorganisms10040792. [PMID: 35456842 PMCID: PMC9032864 DOI: 10.3390/microorganisms10040792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023] Open
Abstract
The flagella of enteropathogenic Escherichia coli (EPEC) O127:H6 E2348/69 mediate adherence to host proteins and epithelial cells. What environmental and nutritional signals trigger or down-regulate flagella expression in EPEC are largely unknown. In this study, we analyzed the influence of pH, oxygen tension, cationic and anionic salts (including bile salt), carbon and nitrogen sources, and catecholamines on the expression of the flagellin gene (fliC) of E2348/69. We found that sodium bicarbonate, which has been shown to induce the expression of type III secretion effectors, down-regulated flagella expression, explaining why E2348/69 shows reduced motility and flagellation when growing in Dulbecco’s Minimal Essential Medium (DMEM). Further, growth under a 5% carbon dioxide atmosphere, in DMEM adjusted to pH 8.2, in M9 minimal medium supplemented with 80 mM glucose or sucrose, and in DMEM containing 150 mM sodium chloride, 0.1% sodium deoxycholate, or 30 µM epinephrine significantly enhanced fliC transcription to different levels in comparison to growth in DMEM alone. When EPEC was grown in the presence of HeLa cells or in supernatants of cultured HeLa cells, high levels (4-fold increase) of fliC transcription were detected in comparison to growth in DMEM alone. Our data suggest that nutritional and host signals that EPEC may encounter in the intestinal niche activate fliC expression in order to favor motility and host colonization.
Collapse
Affiliation(s)
- Fabiola Avelino-Flores
- Centro de Investigación en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (F.A.-F.); (Y.M.-L.)
| | - Jorge Soria-Bustos
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Pachuca 42160, Mexico;
| | - Zeus Saldaña-Ahuactzi
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA;
| | - Ygnacio Martínez-Laguna
- Centro de Investigación en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (F.A.-F.); (Y.M.-L.)
| | - Jorge A. Yañez-Santos
- Facultad de Estomatología, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico;
| | - María L. Cedillo-Ramírez
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla 72592, Mexico;
| | - Jorge A. Girón
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla 72592, Mexico;
- Correspondence:
| |
Collapse
|
32
|
Molecular Characterization of Three Tandemly Located Flagellin Genes of Stenotrophomonas maltophilia. Int J Mol Sci 2022; 23:ijms23073863. [PMID: 35409223 PMCID: PMC8998449 DOI: 10.3390/ijms23073863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 01/25/2023] Open
Abstract
Stenotrophomonas maltophilia is a motile, opportunistic pathogen. The flagellum, which is involved in swimming, swarming, adhesion, and biofilm formation, is considered a virulence factor for motile pathogens. Three flagellin genes, fliC1, fliC2, and fliC3, were identified from the sequenced S. maltophilia genome. FliC1, fliC2, and fliC3 formed an operon, and their encoding proteins shared 67–82% identity. Members of the fliC1C2C3 operon were deleted individually or in combination to generate single mutants, double mutants, and a triple mutant. The contributions of the three flagellins to swimming, swarming, flagellum morphology, adhesion, and biofilm formation were assessed. The single mutants generally had a compromise in swimming and no significant defects in swarming, adhesion on biotic surfaces, and biofilm formation on abiotic surfaces. The double mutants displayed obvious defects in swimming and adhesion on abiotic and biotic surfaces. The flagellin-null mutant lost swimming ability and was compromised in adhesion and biofilm formation. All tested mutants demonstrated substantial but different flagellar morphologies, supporting that flagellin composition affects filament morphology. Bacterial swimming motility was significantly compromised under an oxidative stress condition, irrespective of flagellin composition. Collectively, the utilization of these three flagellins for filament assembly equips S. maltophilia with flagella adapted to provide better ability in swimming, adhesion, and biofilm formation for its pathogenesis.
Collapse
|
33
|
Ballén V, Gabasa Y, Ratia C, Sánchez M, Soto S. Correlation Between Antimicrobial Resistance, Virulence Determinants and Biofilm Formation Ability Among Extraintestinal Pathogenic Escherichia coli Strains Isolated in Catalonia, Spain. Front Microbiol 2022; 12:803862. [PMID: 35087504 PMCID: PMC8786794 DOI: 10.3389/fmicb.2021.803862] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/09/2021] [Indexed: 01/29/2023] Open
Abstract
Escherichia coli is a well-characterized bacterium highly prevalent in the human intestinal tract and the cause of many important infections. The aim of this study was to characterize 376 extraintestinal pathogenic E. coli strains collected from four hospitals in Catalonia (Spain) between 2016 and 2017 in terms of antimicrobial resistance, siderophore production, phylogroup classification, and the presence of selected virulence and antimicrobial resistance genes. In addition, the association between these characteristics and the ability to form biofilms was also analyzed. The strains studied were classified into four groups according to their biofilm formation ability: non-biofilm formers (15.7%), weak (23.1%), moderate (35.6%), and strong biofilm formers (25.6%). The strains were highly resistant to ciprofloxacin (48.7%), trimethoprim-sulfamethoxazole (47.9%), and ampicillin (38%), showing a correlation between higher resistance to ciprofloxacin and lower biofilm production. Seventy-three strains (19.4%) were ESBL-producers. However, no relationship between the presence of ESBL and biofilm formation was found. The virulence factor genes fimH (92%), pgaA (84.6%), and irp1 (77.1%) were the most prevalent in all the studied strains. A statistically significant correlation was found between biofilm formation and the presence of iroN, papA, fimH, sfa, cnf, hlyA, iutA, and colibactin-encoding genes clbA, clbB, clbN, and clbQ. Interestingly, a high prevalence of colibactin-encoding genes (19.9%) was observed. Colibactin is a virulence factor, which interferes with the eukaryotic cell cycle and has been associated with colorectal cancer in humans. Most colibactin-encoding E. coli isolates belonged to phylogroup B2, exhibited low antimicrobial resistance but moderate or high biofilm-forming ability, and were significantly associated with most of the virulence factor genes tested. Additionally, the analysis of their clonal relatedness by PFGE showed 48 different clusters, indicating a high clonal diversity among the colibactin-positive strains. Several studies have correlated the pathogenicity of E. coli and the presence of virulence factor genes; however, colibactin and its relationship to biofilm formation have been scarcely investigated. The increasing prevalence of colibactin in E. coli and other Enterobacteriaceae and the recently described correlation with biofilm formation, makes colibactin a promising therapeutic target to prevent biofilm formation and its associated adverse effects.
Collapse
Affiliation(s)
- Victoria Ballén
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Yaiza Gabasa
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Carlos Ratia
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Melany Sánchez
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Sara Soto
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
34
|
Buck LD, Paladino MM, Nagashima K, Brezel ER, Holtzman JS, Urso SJ, Ryno LM. Temperature-Dependent Influence of FliA Overexpression on PHL628 E. coli Biofilm Growth and Composition. Front Cell Infect Microbiol 2022; 11:775270. [PMID: 34976858 PMCID: PMC8718923 DOI: 10.3389/fcimb.2021.775270] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Biofilm growth and survival pose a problem in both medical and industrial fields. Bacteria in biofilms are more tolerant to antibiotic treatment due to the inability of antibiotics to permeate to the bottom layers of cells in a biofilm and the creation of altered microenvironments of bacteria deep within the biofilm. Despite the abundance of information we have about E. coli biofilm growth and maturation, we are still learning how manipulating different signaling pathways influences the formation and fitness of biofilm. Understanding the impact of signaling pathways on biofilm formation may narrow the search for novel small molecule inhibitors or activators that affect biofilm production and stability. Here, we study the influence of the minor sigma transcription factor FliA (RpoF, sigma-28), which controls late-stage flagellar assembly and chemotaxis, on biofilm production and composition at various temperatures in the E. coli strain PHL628, which abundantly produces the extracellular structural protein curli. We examined FliA's influence on external cellular structures like curli and flagella and the biomolecular composition of the biofilm's extracellular polymeric substance (EPS) using biochemical assays, immunoblotting, and confocal laser scanning microscopy (CLSM). At 37°C, FliA overexpression results in the dramatic growth of biofilm in polystyrene plates and more modest yet significant biofilm growth on silica slides. We observed no significant differences in curli concentration and carbohydrate concentration in the EPS with FliA overexpression. Still, we did see significant changes in the abundance of EPS protein using CLSM at higher growth temperatures. We also noticed increased flagellin concentration, a major structural protein in flagella, occurred with FliA overexpression, specifically in planktonic cultures. These experiments have aided in narrowing our focus to FliA's role in changing the protein composition of the EPS, which we will examine in future endeavors.
Collapse
Affiliation(s)
- Luke D Buck
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, OH, United States
| | - Maddison M Paladino
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, OH, United States
| | - Kyogo Nagashima
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, OH, United States
| | - Emma R Brezel
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, OH, United States
| | - Joshua S Holtzman
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, OH, United States
| | - Sarel J Urso
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, OH, United States
| | - Lisa M Ryno
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, OH, United States
| |
Collapse
|
35
|
Sun L, Wang D, Yin Z, Zhang C, Bible A, Xie Z. The FtcR-Like Protein ActR in Azorhizobium caulinodans ORS571 Is Involved in Bacterial Motility and Symbiosis With the Host Plant. Front Microbiol 2021; 12:744268. [PMID: 34867860 PMCID: PMC8639532 DOI: 10.3389/fmicb.2021.744268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/20/2021] [Indexed: 12/22/2022] Open
Abstract
Bacterial signal transduction pathways are important for a variety of adaptive responses to environment, such as two-component systems (TCSs). In this paper, we reported the characterization of a transcriptional regulator in Azorhizobium caulinodans ORS571, ActR, with an N-terminal receiver domain and one C-terminal OmpR/PhoB-type DNA binding domain. Sequence analysis showed that ActR shared a high similarity with FtcR regulator of Brucella melitensis 16M known to be involved in flagellar regulation. The structural gene of this regulator was largely distributed in Alphaproteobacteria, in particular in Rhizobiales and Rhodobacterales, and was located within clusters of genes related to motility functions. Furthermore, we studied the biological function of ActR in A. caulinodans grown at the free-living state or in association with Sesbania rostrata by constructing actR gene deletion mutant. In the free-living state, the bacterial flagellum and motility ability were entirely deleted, the expression of flagellar genes was downregulated; and the exopolysaccharide production, biofilm formation, and cell flocculation decreased significantly compared with those of the wild-type strain. In the symbiotic state, ΔactR mutant strain showed weakly competitive colonization and nodulation on the host plant. These results illustrated that FtcR-like regulator in A. caulinodans is involved in flagellar biosynthesis and provide bacteria with an effective competitive nodulation for symbiosis. These findings improved our knowledge of FtcR-like transcriptional regulator in A. caulinodans.
Collapse
Affiliation(s)
- Li Sun
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian, China
| | - Dandan Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian, China
| | - Zhiqiu Yin
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian, China
| | - Chengsheng Zhang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Amber Bible
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, United States
| | - Zhihong Xie
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian, China.,Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| |
Collapse
|
36
|
Colin R, Ni B, Laganenka L, Sourjik V. Multiple functions of flagellar motility and chemotaxis in bacterial physiology. FEMS Microbiol Rev 2021; 45:fuab038. [PMID: 34227665 PMCID: PMC8632791 DOI: 10.1093/femsre/fuab038] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022] Open
Abstract
Most swimming bacteria are capable of following gradients of nutrients, signaling molecules and other environmental factors that affect bacterial physiology. This tactic behavior became one of the most-studied model systems for signal transduction and quantitative biology, and underlying molecular mechanisms are well characterized in Escherichia coli and several other model bacteria. In this review, we focus primarily on less understood aspect of bacterial chemotaxis, namely its physiological relevance for individual bacterial cells and for bacterial populations. As evident from multiple recent studies, even for the same bacterial species flagellar motility and chemotaxis might serve multiple roles, depending on the physiological and environmental conditions. Among these, finding sources of nutrients and more generally locating niches that are optimal for growth appear to be one of the major functions of bacterial chemotaxis, which could explain many chemoeffector preferences as well as flagellar gene regulation. Chemotaxis might also generally enhance efficiency of environmental colonization by motile bacteria, which involves intricate interplay between individual and collective behaviors and trade-offs between growth and motility. Finally, motility and chemotaxis play multiple roles in collective behaviors of bacteria including swarming, biofilm formation and autoaggregation, as well as in their interactions with animal and plant hosts.
Collapse
Affiliation(s)
- Remy Colin
- Max Planck Institute for Terrestrial Microbiology & Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Strasse 16, Marburg D-35043, Germany
| | - Bin Ni
- Max Planck Institute for Terrestrial Microbiology & Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Strasse 16, Marburg D-35043, Germany
- College of Resources and Environmental Science, National Academy of Agriculture Green Development, China Agricultural University, Yuanmingyuan Xilu No. 2, Beijing 100193, China
| | - Leanid Laganenka
- Institute of Microbiology, D-BIOL, ETH Zürich, Vladimir-Prelog-Weg 4, Zürich 8093, Switzerland
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology & Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Strasse 16, Marburg D-35043, Germany
| |
Collapse
|
37
|
Yi X, Li W, Liu Y, Yang K, Wu M, Zhou H. Effect of Polystyrene Microplastics of Different Sizes to Escherichia coli and Bacillus cereus. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:626-632. [PMID: 33864099 DOI: 10.1007/s00128-021-03215-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
The toxicity of polystyrene (PS) particles of different sizes was investigated using Gram-negative Escherichia coli and Gram-positive Bacillus cereus. PS particles could inhibit the cell growth of E. coli but promote the cell growth of B. cereus, and this difference might be attributed to different composition in their cell walls and the different interactions between the two bacteria and PS particles. Direct adhesion of E. coli cells on the surface of 5 μm PS microbeads by flagella was observed, indicating the putative role of E. coli on biofilm formation of plastisphere. The regulations of malondialdehyde, lactate dehydrogenase and glutathione were similar between the two bacteria, so the difference in the toxicity effect of PS between the two bacteria was not caused by the antioxidant activity. The overall results of the present study could help to understand the responses of different bacteria to microplastic exposure.
Collapse
Affiliation(s)
- Xianliang Yi
- School of Food and Environment, Dalian University of Technology, Panjin, 124221, China
| | - Wentao Li
- School of Food and Environment, Dalian University of Technology, Panjin, 124221, China
| | - Yang Liu
- School of Food and Environment, Dalian University of Technology, Panjin, 124221, China
| | - Kaiming Yang
- School of Food and Environment, Dalian University of Technology, Panjin, 124221, China
| | - Minghuo Wu
- School of Food and Environment, Dalian University of Technology, Panjin, 124221, China
| | - Hao Zhou
- School of Food and Environment, Dalian University of Technology, Panjin, 124221, China.
| |
Collapse
|
38
|
Muok AR, Claessen D, Briegel A. Microbial hitchhiking: how Streptomyces spores are transported by motile soil bacteria. THE ISME JOURNAL 2021; 15:2591-2600. [PMID: 33723381 PMCID: PMC8397704 DOI: 10.1038/s41396-021-00952-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 01/31/2023]
Abstract
Streptomycetes are sessile bacteria that produce metabolites that impact the behavior of microbial communities. Emerging studies have demonstrated that Streptomyces spores are distributed through various mechanisms, but it remains unclear how spores are transported to their preferred microenvironments, such as plant roots. Here, we show that Streptomyces spores are capable of utilizing the motility machinery of other soil bacteria. Motility assays and microscopy studies reveal that Streptomyces spores are transported to plant tissues by interacting directly with the flagella of both gram-positive and gram-negative bacteria. Genetics experiments demonstrate that this form of motility is facilitated by structural proteins on the spore coat. These results demonstrate that nonmotile bacteria are capable of utilizing the motility machinery of other microbes to complete necessary stages of their lifecycle.
Collapse
Affiliation(s)
- Alise R. Muok
- grid.5132.50000 0001 2312 1970Institute for Biology, Leiden University, Leiden, The Netherlands ,grid.5132.50000 0001 2312 1970Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Dennis Claessen
- grid.5132.50000 0001 2312 1970Institute for Biology, Leiden University, Leiden, The Netherlands ,grid.5132.50000 0001 2312 1970Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Ariane Briegel
- grid.5132.50000 0001 2312 1970Institute for Biology, Leiden University, Leiden, The Netherlands ,grid.5132.50000 0001 2312 1970Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
39
|
Abstract
Bacteria thrive both in liquids and attached to surfaces. The concentration of bacteria on surfaces is generally much higher than in the surrounding environment, offering bacteria ample opportunity for mutualistic, symbiotic, and pathogenic interactions. To efficiently populate surfaces, they have evolved mechanisms to sense mechanical or chemical cues upon contact with solid substrata. This is of particular importance for pathogens that interact with host tissue surfaces. In this review we discuss how bacteria are able to sense surfaces and how they use this information to adapt their physiology and behavior to this new environment. We first survey mechanosensing and chemosensing mechanisms and outline how specific macromolecular structures can inform bacteria about surfaces. We then discuss how mechanical cues are converted to biochemical signals to activate specific cellular processes in a defined chronological order and describe the role of two key second messengers, c-di-GMP and cAMP, in this process.
Collapse
Affiliation(s)
| | - Urs Jenal
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland; ,
| |
Collapse
|
40
|
Current Understanding on Adhesion and Biofilm Development in Actinobacteria. Int J Microbiol 2021; 2021:6637438. [PMID: 34122552 PMCID: PMC8166509 DOI: 10.1155/2021/6637438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 05/07/2021] [Indexed: 12/30/2022] Open
Abstract
Biofilm formation and microbial adhesion are two related and complex phenomena. These phenomena are known to play an important role in microbial life and various functions with positive and negative aspects. Actinobacteria have wide distribution in aquatic and terrestrial ecosystems. This phylum is very large and diverse and contains two important genera Streptomyces and Mycobacteria. The genus Streptomyces is the most biotechnologically important, while the genus Mycobacteria contains the pathogenic species of Mycobacteriaceae. According to the literature, the majority of studies carried out on actinomycetes are focused on the detection of new molecules. Despite the well-known diversity and metabolic activities, less attention has been paid to this phylum. Research on adhesion and biofilm formation is not well developed. In the present review, an attempt has been made to review the literature available on the different aspects on biofilm formation and adhesion of Actinobacteria. We focus especially on the genus Streptomyces. Furthermore, a brief overview about the molecules and structures involved in the adhesion phenomenon in the most relevant genus is summarized. We mention the mechanisms of quorum sensing and quorum quenching because of their direct association with biofilm formation.
Collapse
|
41
|
Guzmán-Soto I, McTiernan C, Gonzalez-Gomez M, Ross A, Gupta K, Suuronen EJ, Mah TF, Griffith M, Alarcon EI. Mimicking biofilm formation and development: Recent progress in in vitro and in vivo biofilm models. iScience 2021; 24:102443. [PMID: 34013169 PMCID: PMC8113887 DOI: 10.1016/j.isci.2021.102443] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Biofilm formation in living organisms is associated to tissue and implant infections, and it has also been linked to the contribution of antibiotic resistance. Thus, understanding biofilm development and being able to mimic such processes is vital for the successful development of antibiofilm treatments and therapies. Several decades of research have contributed to building the foundation for developing in vitro and in vivo biofilm models. However, no such thing as an "all fit" in vitro or in vivo biofilm models is currently available. In this review, in addition to presenting an updated overview of biofilm formation, we critically revise recent approaches for the improvement of in vitro and in vivo biofilm models.
Collapse
Affiliation(s)
- Irene Guzmán-Soto
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
| | - Christopher McTiernan
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
| | - Mayte Gonzalez-Gomez
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
| | - Alex Ross
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada
| | - Keshav Gupta
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
| | - Erik J. Suuronen
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
| | - Thien-Fah Mah
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada
| | - May Griffith
- Centre de Recherche Hôpital Maisonneuve-Rosemont, Montréal, QC, H1T 2M4, Canada
- Département d'ophtalmologie, Université de Montréal, Montréal, QC, H3T1J4, Canada
| | - Emilio I. Alarcon
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada
| |
Collapse
|
42
|
Sulfate Import in Salmonella Typhimurium Impacts Bacterial Aggregation and the Respiratory Burst in Human Neutrophils. Infect Immun 2021; 89:IAI.00701-20. [PMID: 33820814 DOI: 10.1128/iai.00701-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
During enteric salmonellosis, neutrophil-generated reactive oxygen species alter the gut microenvironment, favoring survival of Salmonella Typhimurium. While type 3 secretion system 1 (T3SS-1) and flagellar motility are potent Salmonella Typhimurium agonists of the neutrophil respiratory burst in vitro, neither of these pathways alone is responsible for stimulation of a maximal respiratory burst. To identify Salmonella Typhimurium genes that impact the magnitude of the neutrophil respiratory burst, we performed a two-step screen of defined mutant libraries in coculture with human neutrophils. We first screened Salmonella Typhimurium mutants lacking defined genomic regions and then tested single-gene deletion mutants representing particular regions under selection. A subset of single-gene deletion mutants was selected for further investigation. Mutants in four genes, STM1696 (sapF), STM2201 (yeiE), STM2112 (wcaD), and STM2441 (cysA), induced an attenuated respiratory burst. We linked the altered respiratory burst to reduced T3SS-1 expression and/or altered flagellar motility for two mutants (ΔSTM1696 and ΔSTM2201). The ΔSTM2441 mutant, defective for sulfate transport, formed aggregates in minimal medium and adhered to surfaces in rich medium, suggesting a role for sulfur homeostasis in the regulation of aggregation/adherence. We linked the aggregation/adherence phenotype of the ΔSTM2441 mutant to biofilm-associated protein A and flagellins and hypothesize that aggregation caused the observed reduction in the magnitude of the neutrophil respiratory burst. Our data demonstrate that Salmonella Typhimurium has numerous mechanisms to limit the magnitude of the neutrophil respiratory burst. These data further inform our understanding of how Salmonella may alter human neutrophil antimicrobial defenses.
Collapse
|
43
|
Eckhart KE, Arnold AM, Starvaggi FA, Sydlik SA. Tunable, bacterio-instructive scaffolds made from functional graphenic materials. Biomater Sci 2021; 9:2467-2479. [PMID: 33404025 DOI: 10.1039/d0bm01471k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The balance of bacterial populations in the human body is critical for human health. Researchers have aimed to control bacterial populations using antibiotic substrates. However, antibiotic materials that non-selectively kill bacteria can compromise health by eliminating beneficial bacteria, which leaves the body vulnerable to colonization by harmful pathogens. Due to their chemical tunablity and unique surface properties, graphene oxide (GO)-based materials - termed "functional graphenic materials" (FGMs) - have been previously designed to be antibacterial but have the capacity to actively adhere and instruct probiotics to maintain human health. Numerous studies have demonstrated that negatively and positively charged surfaces influence bacterial adhesion through electrostatic interactions with the negatively charged bacterial surface. We found that tuning the surface charge of FGMs provides an avenue to control bacterial attachment without compromising vitality. Using E. coli as a model organism for Gram-negative bacteria, we demonstrate that negatively charged Claisen graphene (CG), a reduced and carboxylated FGM, is bacterio-repellent through electrostatic repulsion with the bacterial surface. Though positively charged poly-l-lysine (PLL) is antibacterial when free in solution by inserting into the bacterial cell wall, here, we found that covalent conjugation of PLL to CG (giving PLLn-G) masks the antimicrobial activity of PLL by restricting polypeptide mobility. This allows the immobilized positive charge of the PLLn-Gs to be leveraged for E. coli adhesion through electrostatic attraction. We identified the magnitude of positive charge of the PLLn-G conjugates, which is modulated by the length of the PLL peptide, as an important parameter to tune the balance between the opposing forces of bacterial adhesion and proliferation. We also tested adhesion of Gram-positive B. subtilis to these FGMs and found that the effect of FGM charge is less pronounced. B. subtilis adheres nondiscriminatory to all FGMs, regardless of charge, but adhesion is scarce and localized. Overall, this work demonstrates that FGMs can be tuned to selectively control bacterial response, paving the way for future development of FGM-based biomaterials as bacterio-instructive scaffolds through careful design of FGM surface chemistry.
Collapse
Affiliation(s)
- Karoline E Eckhart
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | | | | | | |
Collapse
|
44
|
The Effect of Antimicrobial Resistance Plasmids Carrying blaCMY-2 on Biofilm Formation by Escherichia coli from the Broiler Production Chain. Microorganisms 2021; 9:microorganisms9010104. [PMID: 33466318 PMCID: PMC7824781 DOI: 10.3390/microorganisms9010104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/05/2022] Open
Abstract
Extended-spectrum cephalosporin-resistant Escherichia coli (ESCR E. coli) with plasmids carrying the blaCMY-2 resistance gene have been isolated from the Norwegian broiler production chain through the Norwegian monitoring program for antimicrobial resistance in animals, food and feed, NORM-VET. The aim of the present study was to investigate the biofilm forming abilities of these strains, and in particular to see whether these might be influenced by the carriage of blaCMY-2 plasmids. The ESCR E. coli from the broiler production chain displayed relatively low biofilm forming abilities in the crystal violet biofilm assay as compared to quinolone-resistant E. coli (QREC) from the same population (mean ± SD = 0.686 ± 0.686 vs. 1.439 ± 0.933, respectively). Acquisition of two different blaCMY-2 plasmids by QREC strains reduced their biofilm production in microtiter plates, but not their biofilm production on Congo Red agar plates. Furthermore, motility was reduced, but not planktonic growth. We hypothesize that genes carried by these plasmids may have caused the observed reduction in biofilm formation, possibly mediated through changes in flagellar expression or function. Furthermore, this may help explain the different biofilm forming abilities observed between ESCR E. coli and QREC. The results also indicate that the risk of biofilm reservoirs of antimicrobial resistant E. coli on in the broiler production is lower for ESCR E. coli than for QREC.
Collapse
|
45
|
Milne-Davies B, Wimmi S, Diepold A. Adaptivity and dynamics in type III secretion systems. Mol Microbiol 2020; 115:395-411. [PMID: 33251695 DOI: 10.1111/mmi.14658] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 01/07/2023]
Abstract
The type III secretion system is the common core of two bacterial molecular machines: the flagellum and the injectisome. The flagellum is the most widely distributed prokaryotic locomotion device, whereas the injectisome is a syringe-like apparatus for inter-kingdom protein translocation, which is essential for virulence in important human pathogens. The successful concept of the type III secretion system has been modified for different bacterial needs. It can be adapted to changing conditions, and was found to be a dynamic complex constantly exchanging components. In this review, we highlight the flexibility, adaptivity, and dynamic nature of the type III secretion system.
Collapse
Affiliation(s)
- Bailey Milne-Davies
- Department of Ecophysiology, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | - Stephan Wimmi
- Department of Ecophysiology, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| | - Andreas Diepold
- Department of Ecophysiology, Max-Planck-Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
46
|
The phosphorylated regulator of chemotaxis is crucial throughout biofilm biogenesis in Shewanella oneidensis. NPJ Biofilms Microbiomes 2020; 6:54. [PMID: 33188190 PMCID: PMC7666153 DOI: 10.1038/s41522-020-00165-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/13/2020] [Indexed: 02/04/2023] Open
Abstract
The core of the chemotaxis system of Shewanella oneidensis is made of the CheA3 kinase and the CheY3 regulator. When appropriated, CheA3 phosphorylates CheY3, which, in turn, binds to the rotor of the flagellum to modify the swimming direction. In this study, we showed that phosphorylated CheY3 (CheY3-P) also plays an essential role during biogenesis of the solid-surface-associated biofilm (SSA-biofilm). Indeed, in a ΔcheY3 strain, the formation of this biofilm is abolished. Using the phospho-mimetic CheY3D56E mutant, we showed that CheY-P is required throughout the biogenesis of the biofilm but CheY3 phosphorylation is independent of CheA3 during this process. We have recently found that CheY3 interacts with two diguanylate cyclases (DGCs) and with MxdA, the c-di-GMP effector, probably triggering exopolysaccharide synthesis by the Mxd machinery. Here, we discovered two additional DGCs involved in SSA-biofilm development and showed that one of them interacts with CheY3. We therefore propose that CheY3-P acts together with DGCs to control SSA-biofilm formation. Interestingly, two orthologous CheY regulators complement the biofilm defect of a ΔcheY3 strain, supporting the idea that biofilm formation could involve CheY regulators in other bacteria.
Collapse
|
47
|
Blesken CC, Bator I, Eberlein C, Heipieper HJ, Tiso T, Blank LM. Genetic Cell-Surface Modification for Optimized Foam Fractionation. Front Bioeng Biotechnol 2020; 8:572892. [PMID: 33195133 PMCID: PMC7658403 DOI: 10.3389/fbioe.2020.572892] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Rhamnolipids are among the glycolipids that have been investigated intensively in the last decades, mostly produced by the facultative pathogen Pseudomonas aeruginosa using plant oils as carbon source and antifoam agent. Simplification of downstream processing is envisaged using hydrophilic carbon sources, such as glucose, employing recombinant non-pathogenic Pseudomonas putida KT2440 for rhamnolipid or 3-(3-hydroxyalkanoyloxy)alkanoic acid (HAA, i.e., rhamnolipid precursors) production. However, during scale-up of the cultivation from shake flask to bioreactor, excessive foam formation hinders the use of standard fermentation protocols. In this study, the foam was guided from the reactor to a foam fractionation column to separate biosurfactants from medium and bacterial cells. Applying this integrated unit operation, the space-time yield (STY) for rhamnolipid synthesis could be increased by a factor of 2.8 (STY = 0.17 gRL/L·h) compared to the production in shake flasks. The accumulation of bacteria at the gas-liquid interface of the foam resulted in removal of whole-cell biocatalyst from the reactor with the strong consequence of reduced rhamnolipid production. To diminish the accumulation of bacteria at the gas-liquid interface, we deleted genes encoding cell-surface structures, focusing on hydrophobic proteins present on P. putida KT2440. Strains lacking, e.g., the flagellum, fimbriae, exopolysaccharides, and specific surface proteins, were tested for cell surface hydrophobicity and foam adsorption. Without flagellum or the large adhesion protein F (LapF), foam enrichment of these modified P. putida KT2440 was reduced by 23 and 51%, respectively. In a bioreactor cultivation of the non-motile strain with integrated rhamnolipid production genes, biomass enrichment in the foam was reduced by 46% compared to the reference strain. The intensification of rhamnolipid production from hydrophilic carbon sources presented here is an example for integrated strain and process engineering. This approach will become routine in the development of whole-cell catalysts for the envisaged bioeconomy. The results are discussed in the context of the importance of interacting strain and process engineering early in the development of bioprocesses.
Collapse
Affiliation(s)
- Christian C. Blesken
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH, Aachen University, Aachen, Germany
| | - Isabel Bator
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH, Aachen University, Aachen, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Christian Eberlein
- Department of Environmental Biotechnology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Hermann J. Heipieper
- Department of Environmental Biotechnology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Till Tiso
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH, Aachen University, Aachen, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Lars M. Blank
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH, Aachen University, Aachen, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
48
|
Soni R, Nanjani S, Keharia H. Genome analysis reveals probiotic propensities of Paenibacillus polymyxa HK4. Genomics 2020; 113:861-873. [PMID: 33096257 DOI: 10.1016/j.ygeno.2020.10.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/24/2020] [Accepted: 10/16/2020] [Indexed: 12/14/2022]
Abstract
The legislations on the usage of antibiotics as growth promoters and prophylactic agents have compelled to develop alternative tools to upsurge the animal protection and contain antibiotic usage. Probiotics have emerged as an effective antibiotic substitute in animal farming. The present study explores the probiotic perspective of Paenibacillus polymyxa HK4 interlinking the genotypic and phenotypic characteristics. The draft genome of HK4 revealed the presence of ORFs encoding the functions associated with tolerance to gastrointestinal stress and adhesion. The biosynthetic gene clusters encoding non-ribosomally synthesized peptides, polyketides and lanthipeptides such as fusaricidin, tridecaptin, polymyxin, paenilan and paenibacillin were annotated in HK4 genome. The strain harbored the chromosomal gene conferring the resistance to lincosamides. No functional gene encoding virulence or toxins could be identified in the genome of HK4. The genome analysis data was complemented by the in vitro experiments confirming its survival during gastrointestinal transit, antimicrobial potential and antibiotic sensitivity. NUCLEOTIDE SEQUENCE ACCESSION NUMBER: The draft-genome sequence of Paenibacillus polymyxa HK4 has been deposited as whole-genome shotgun project at GenBank under the accession number PRJNA603023.
Collapse
Affiliation(s)
- Riteshri Soni
- Post Graduate Department of Biosciences, UGC Center of Advanced Study, Sardar Patel University, Vadtal road, Bakrol 388315, Gujarat, India
| | - Sandhya Nanjani
- Post Graduate Department of Biosciences, UGC Center of Advanced Study, Sardar Patel University, Vadtal road, Bakrol 388315, Gujarat, India
| | - Hareshkumar Keharia
- Post Graduate Department of Biosciences, UGC Center of Advanced Study, Sardar Patel University, Vadtal road, Bakrol 388315, Gujarat, India.
| |
Collapse
|
49
|
Wolfson EB, Elvidge J, Tahoun A, Gillespie T, Mantell J, McAteer SP, Rossez Y, Paxton E, Lane F, Shaw DJ, Gill AC, Stevens J, Verkade P, Blocker A, Mahajan A, Gally DL. The interaction of Escherichia coli O157 :H7 and Salmonella Typhimurium flagella with host cell membranes and cytoskeletal components. MICROBIOLOGY (READING, ENGLAND) 2020; 166:947-965. [PMID: 32886602 PMCID: PMC7660914 DOI: 10.1099/mic.0.000959] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022]
Abstract
Bacterial flagella have many established roles beyond swimming motility. Despite clear evidence of flagella-dependent adherence, the specificity of the ligands and mechanisms of binding are still debated. In this study, the molecular basis of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium flagella binding to epithelial cell cultures was investigated. Flagella interactions with host cell surfaces were intimate and crossed cellular boundaries as demarcated by actin and membrane labelling. Scanning electron microscopy revealed flagella disappearing into cellular surfaces and transmission electron microscopy of S. Typhiumurium indicated host membrane deformation and disruption in proximity to flagella. Motor mutants of E. coli O157:H7 and S. Typhimurium caused reduced haemolysis compared to wild-type, indicating that membrane disruption was in part due to flagella rotation. Flagella from E. coli O157 (H7), EPEC O127 (H6) and S. Typhimurium (P1 and P2 flagella) were shown to bind to purified intracellular components of the actin cytoskeleton and directly increase in vitro actin polymerization rates. We propose that flagella interactions with host cell membranes and cytoskeletal components may help prime intimate attachment and invasion for E. coli O157:H7 and S. Typhimurium, respectively.
Collapse
Affiliation(s)
- Eliza B. Wolfson
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
- Departments of Biochemistry, Biomedical Sciences Building, The University of Bristol, Bristol, BS8 1TD, UK
| | - Johanna Elvidge
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Amin Tahoun
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
- Faculty of Veterinary Medicine, Kafrelsheikh University, 33516 Kafr el-Sheikh, Egypt
| | - Trudi Gillespie
- IMPACT Facility, Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Judith Mantell
- Departments of Biochemistry, Biomedical Sciences Building, The University of Bristol, Bristol, BS8 1TD, UK
| | - Sean P. McAteer
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Yannick Rossez
- Génie Enzymatique et Cellulaire, UMR 7025 CNRS, Centre de recherche Royallieu, Sorbonne Universités, Université de Technologie de Compiègne, Compiègne Cedex, France
| | - Edith Paxton
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Fiona Lane
- Division of Neurobiology, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Darren J. Shaw
- Division of Clinical Sciences, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Andrew C. Gill
- Division of Neurobiology, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Jo Stevens
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Paul Verkade
- Departments of Biochemistry, Biomedical Sciences Building, The University of Bristol, Bristol, BS8 1TD, UK
| | - Ariel Blocker
- Department of Cellular and Molecular Medicine, Biomedical Sciences Building, The University of Bristol, Bristol, BS8 1TD, UK
| | - Arvind Mahajan
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - David L. Gally
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| |
Collapse
|
50
|
Kimkes TEP, Heinemann M. How bacteria recognise and respond to surface contact. FEMS Microbiol Rev 2020; 44:106-122. [PMID: 31769807 PMCID: PMC7053574 DOI: 10.1093/femsre/fuz029] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/23/2019] [Indexed: 12/27/2022] Open
Abstract
Bacterial biofilms can cause medical problems and issues in technical systems. While a large body of knowledge exists on the phenotypes of planktonic and of sessile cells in mature biofilms, our understanding of what happens when bacteria change from the planktonic to the sessile state is still very incomplete. Fundamental questions are unanswered: for instance, how do bacteria sense that they are in contact with a surface, and what are the very initial cellular responses to surface contact. Here, we review the current knowledge on the signals that bacteria could perceive once they attach to a surface, the signal transduction systems that could be involved in sensing the surface contact and the cellular responses that are triggered as a consequence to surface contact ultimately leading to biofilm formation. Finally, as the main obstacle in investigating the initial responses to surface contact has been the difficulty to experimentally study the dynamic response of single cells upon surface attachment, we also review recent experimental approaches that could be employed to study bacterial surface sensing, which ultimately could lead to an improved understanding of how biofilm formation could be prevented.
Collapse
Affiliation(s)
- Tom E P Kimkes
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Matthias Heinemann
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| |
Collapse
|