1
|
Chauhan A, Chaudhury S. Understanding Anti-Polyelectrolyte Effect in Polyzwitterions Using Coarse-Grained Molecular Dynamics Simulations. J Phys Chem B 2025; 129:3253-3262. [PMID: 40091211 DOI: 10.1021/acs.jpcb.4c07728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Polyzwitterions (PZs)─polymers bearing both positive and negative charges within each repeating unit─exhibit an unusual antipolyelectrolyte effect where their solubility and viscosity increase upon the addition of salt, contrary to typical polyelectrolytes. As model synthetic analogues of intrinsically disordered proteins, PZs in dilute aqueous solutions are expected to adopt either globular or random coil conformations, with salt addition influencing these structures. We employed coarse-grained Langevin dynamics simulations to investigate how structural parameters─specifically, the spacing between dipolar side chains (d), and the overall polymer chain length (N)─affect the conformational properties of polyzwitterions in salt solutions. Our simulations reveal that added salt leads to nonmonotonic changes in the polymer's radius of gyration, exhibiting both antipolyelectrolyte and polyelectrolyte effects depending on the salt concentration. This behavior is attributed to charge regulation and screening of dipole-dipole interactions by ions. Understanding and controlling the conformations of PZs in aqueous solutions by adjusting salt concentration is of paramount interest for applications in antimicrobial materials, antifouling coatings, drug delivery, membranes, and polymer electrolytes.
Collapse
Affiliation(s)
- Akshay Chauhan
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008 Maharashtra, India
| | - Srabanti Chaudhury
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008 Maharashtra, India
| |
Collapse
|
2
|
Karthäuser JF, Ademmer K, Zimmermann R, Rosenhahn A. Effect of Interfacial Charge Distribution in Mixed Charge-Equilibrated SAMs on the Attachment of Pathogens. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16145-16155. [PMID: 40019159 DOI: 10.1021/acsami.4c20789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Zwitterions consisting of positively and negatively charged groups confer hydrophilicity while retaining overall charge neutrality. Both properties were identified as decisive prerequisites for protein-resistant coatings. In this work, we studied the electrostatic contributions to the bacterial attachment process by altering the interfacial charge distribution of the two charges and correlated the results with bacterial adhesion data. Therefore, we generated a set of well-defined, quasi-zwitterionic, charge-equilibrated self-assembled monolayers on gold-coated substrates. As cationic component (11-mercaptoundecyl)-N,N,N-trimethylammonium was combined in a 1:1 ratio with anionic thiols of varying alkyl spacer lengths. By embedding 8-mercaptooctanoic acid, 12-mercaptododecanoic acid, or 16-mercaptohexadecanoic acid, the distance of the anionic moiety to the surface could be varied while maintaining the distance of the cationic moiety to the substrate. Thereby, the interfacial charge distribution and thus the average orientation of the zwitterionic dipoles of the charge-equilibrated mixed self-assembled monolayers have been systematically varied. The resistance against the nonspecific adsorption of the blood-related proteins human serum albumin and fibronectin as well as the attachment-inhibiting effect against the pathogenic bacteria Escherichia coli, Pseudomonas fluorescens, and Bacillus subtilis was tested. It turned out that the change in dipole orientation affected the proteins and the bacteria in different ways with an equilibrated charge distribution within the surface plane being in total the superior one. The results are further discussed based on streaming current data revealing net surface charge of the self-assembled monolayers and the apparent zeta potential of the bacteria to understand to what degree electrostatic interactions contribute to the attachment process.
Collapse
Affiliation(s)
- Jana F Karthäuser
- Analytical Chemistry - Biointerfaces, Ruhr-University Bochum, Bochum 44801, Germany
| | - Katrin Ademmer
- Analytical Chemistry - Biointerfaces, Ruhr-University Bochum, Bochum 44801, Germany
| | - Ralf Zimmermann
- Division Polymer Biomaterials Science, Leibniz Institute of Polymer Research Dresden, Dresden 01069, Germany
- Max Bergmann Center of Biomaterials Dresden, Dresden 01069, Germany
| | - Axel Rosenhahn
- Analytical Chemistry - Biointerfaces, Ruhr-University Bochum, Bochum 44801, Germany
| |
Collapse
|
3
|
Karthäuser JF, Hansen J, Smajlji A, Hunsucker K, Yeshi T, Braga C, Patschorke T, Swain G, Rosenhahn A, Laschewsky A. Enhanced Resistance of Zwitterionic Hydrogels against Marine Fouling Using a Zwitterionic Photo Cross-Linker. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:4545-4559. [PMID: 39957142 DOI: 10.1021/acs.langmuir.4c04351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Polyzwitterions have great potential as fouling-resistant materials for biomedical and environmental products, in particular, in the form of hydrogel coatings. While typically these are soft materials, for many applications it is also necessary to achieve sufficient mechanical stability. This may be accomplished by high degrees of cross-linking, which, however, will impair the overall hydrophilicity of the gels for the commonly used hydrophobic cross-linkers. To mitigate this dilemma, a zwitterionic methacrylate monomer was developed that contains a benzophenone moiety as a photo-cross-linkable unit and a hydrophilic zwitterionic sulfobetaine moiety. Copolymers of the standard sulfobetaine methacrylate 3-[N-(2'-methacryloyloxyethyl)-N,N-dimethylammonio] propane-1-sulfonate (SPe) with contents of the new photo cross-linker of up to about 50 mol % were realized, and their films were photocured and analyzed. Subsequently, the resistance against the nonspecific adsorption of model proteins was determined in laboratory assays by surface plasmon resonance spectroscopy. Moreover, the attachment of marine fouling organisms was investigated in laboratory assays under dynamic conditions as well as in short-term field exposures in the sea. Copolymers with sufficiently high cross-linker contents of about 30 mol % were able to maintain a high hydration capability and to substantially reduce marine biofouling even in field tests in the ocean.
Collapse
Affiliation(s)
| | - Jasper Hansen
- Institute of Chemistry─University of Potsdam, Potsdam 14476, Germany
| | - Arben Smajlji
- Analytical Chemistry─Ruhr University Bochum, Bochum 44801, Germany
| | - Kelli Hunsucker
- Center for Corrosion and Biofouling Control─Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Tenzin Yeshi
- Center for Corrosion and Biofouling Control─Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Cierra Braga
- Center for Corrosion and Biofouling Control─Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Tim Patschorke
- Center for Corrosion and Biofouling Control─Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Geoffrey Swain
- Center for Corrosion and Biofouling Control─Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Axel Rosenhahn
- Analytical Chemistry─Ruhr University Bochum, Bochum 44801, Germany
| | - André Laschewsky
- Institute of Chemistry─University of Potsdam, Potsdam 14476, Germany
- Fraunhofer Institute of Applied Polymer Research, Potsdam 14476, Germany
| |
Collapse
|
4
|
Gao C, Gao Y, Liu Q, Tong J, Sun H. Polyzwitterions: controlled synthesis, soft materials and applications. SOFT MATTER 2025; 21:538-555. [PMID: 39692690 DOI: 10.1039/d4sm00674g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Polyzwitterions refer to polymers containing both positive and negative charged groups in one side chain, which have shown unique physicochemical properties and significant potential in diverse applications due to their amphiphilic and net-neutral charged properties. This review aims to highlight the recent advances in the design and synthesis of polyzwitterions including direct polymerization of zwitterionic monomers and deionization of polymers. Furthermore, the formation of polyzwitterion based soft materials such as nanoparticles by self-assembly, hydrogels, coatings and polyzwitterion brushes, as well as the influence of the microstructure on their properties and applications are discussed. The potential applications of polyzwitterions in drug delivery, antifouling, lubrication, energy storage and antibacterial are also summarized. Finally, the prospects of polyzwitterions are proposed.
Collapse
Affiliation(s)
- Chenchen Gao
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Yaning Gao
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Qin Liu
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Jinhua Tong
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Hui Sun
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
5
|
Chen M, Yin J, Wu H. Unveiling the Preference for a Carbon Spacer Length of Three in Zwitterionic Sulfobetaines: Insights from DFT Calculations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:822-831. [PMID: 39994949 DOI: 10.1021/acs.langmuir.4c04179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Zwitterionic sulfobetaines (SBs) have shown excellent performance in biological and chemical applications. The carbon spacer lengths (CSLs) between oppositely charged groups are crucial for the properties of SBs. However, most reported studies naturally selected the SB molecule with a CSL of three, although the underlying reason for this choice remains unclear. In this work, using DFT calculations, we systemically investigated the effect of CSL on the molecular properties of SB molecules, including optimized confirmations, electrostatic potentials, atomic charges, dipole moments, and their self-association behaviors in both the gas phase and water solvent. The solvation free energies of SB molecules with various CSLs were calculated to evaluate the hydrophilicity of SBs. The results of our calculations demonstrated that a CSL of three is a critical length for optimal molecular properties, offering the strongest charge separation and the best hydrophilicity. While all SB molecules can form stable dimers through strong intermolecular electrostatic interactions, the dimers become unstable in water due to electrostatic shielding by water molecules. These findings shed light on the preference for a CSL of three in zwitterionic SBs and provide guidance for the rational design of SB-based materials.
Collapse
Affiliation(s)
- Miaomiao Chen
- Hubei Key Laboratory of Drug Synthesis and Optimization, Jingchu University of Technology, Jingmen, Hubei 448000, China
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Jiabin Yin
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Hanyu Wu
- Hubei Key Laboratory of Drug Synthesis and Optimization, Jingchu University of Technology, Jingmen, Hubei 448000, China
| |
Collapse
|
6
|
Zaghari P, Özcan O, Islam MD, Black B, Liu S, Shovon SMN, Ware HOT, Rosenhahn A, Ryu JE. Fabrication and anti-fouling performance assessment of micro-textured CNT-PDMS nanocomposites through the scalable roll-coating process. BIOFOULING 2024; 40:1012-1025. [PMID: 39654354 DOI: 10.1080/08927014.2024.2438694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/08/2024] [Accepted: 11/30/2024] [Indexed: 12/13/2024]
Abstract
This study investigates the micro-topographic surfaces as a benign anti-fouling/fouling-release method. The bio-inspired engineered surfaces were manufactured by controlling the viscoelastic instabilities of carbon nanotubes (CNTs) and polydimethylsiloxane (PDMS) nanocomposites using a customized, scalable two-roll coating process. The effects of manufacturing conditions, i.e., roller speed and roller radius-to-gap ratio, on surface properties, such as Wenzel roughness factor, peak density, water contact angle, and the tensile testing of the nanocomposite, were studied. The results showed that decreasing roller gap distance would significantly increase the hydrophobicity of the samples. Moreover, a positive correlation was observed between surface peak density and roughness factor. A textured sample was manufactured that significantly outperformed the non-textured CNT-PDMS, indicating a correlation between surface roughness and diatom attachment density. The dynamic diatom attachment assay showed up to 35% reduction in surface coverage of textured samples by the Navicula perminuta diatom compared to the non-textured CNT-PDMS control samples.
Collapse
Affiliation(s)
- Pouria Zaghari
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| | - Onur Özcan
- Analytical Chemistry-Biointerfaces, Ruhr University Bochum, Bochum, Germany
| | - Md Didarul Islam
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| | - Benjamin Black
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| | - Sipan Liu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| | - S M Naser Shovon
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| | - Henry Oliver T Ware
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| | - Axel Rosenhahn
- Analytical Chemistry-Biointerfaces, Ruhr University Bochum, Bochum, Germany
| | - Jong Eun Ryu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
7
|
Kang Y, Wang Y, Zhang H, Wang Z, Zhang X, Wang H. Functionalized 2D membranes for separations at the 1-nm scale. Chem Soc Rev 2024; 53:7939-7959. [PMID: 38984392 DOI: 10.1039/d4cs00272e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The ongoing evolution of two-dimensional (2D) material-based membranes has prompted the realization of mass separations at the 1-nm scale due to their well-defined selective nano- and subnanochannels. Strategic membrane functionalization is further found to be key to augmenting channel accuracy and efficiency in distinguishing ions, gases and molecules within this range and is thus trending as a research focus in energy-, resource-, environment- and pharmaceutical-related applications. In this review, we present the fundamentals underpinning functionalized 2D membranes in various separations, elucidating the critical "method-interaction-property" relationship. Starting with an introduction to various functionalization strategies, we focus our discussion on functionalization-induced channel-species interactions and reveal how they shape the transport- and operation-related features of the membrane in different scenarios. We also highlight the limitations and challenges of current functionalized 2D membranes and outline the necessary breakthroughs needed to apply them as reliable and high-performance separation units across industries in the future.
Collapse
Affiliation(s)
- Yuan Kang
- Department of Chemical and Biological Engineering, Monash University, 3800, Australia.
| | - Yuqi Wang
- School of Materials Science and Engineering, Zhejiang University, 310058, China
| | - Hao Zhang
- UQ Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, St. Lucia, 4072, Australia.
| | - Zhouyou Wang
- Department of Chemical and Biological Engineering, Monash University, 3800, Australia.
| | - Xiwang Zhang
- UQ Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, St. Lucia, 4072, Australia.
| | - Huanting Wang
- Department of Chemical and Biological Engineering, Monash University, 3800, Australia.
| |
Collapse
|
8
|
Karthäuser JF, Gruhn D, Martínez Guajardo A, Kopecz R, Babel N, Stervbo U, Laschewsky A, Viebahn R, Salber J, Rosenhahn A. In vitro biocompatibility analysis of protein-resistant amphiphilic polysulfobetaines as coatings for surgical implants in contact with complex body fluids. Front Bioeng Biotechnol 2024; 12:1403654. [PMID: 39086500 PMCID: PMC11288920 DOI: 10.3389/fbioe.2024.1403654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024] Open
Abstract
The fouling resistance of zwitterionic coatings is conventionally explained by the strong hydrophilicity of such polymers. Here, the in vitro biocompatibility of a set of systematically varied amphiphilic, zwitterionic copolymers is investigated. Photocrosslinkable, amphiphilic copolymers containing hydrophilic sulfobetaine methacrylate (SPe) and butyl methacrylate (BMA) were systematically synthesized in different ratios (50:50, 70:30, and 90:10) with a fixed content of photo-crosslinker by free radical copolymerization. The copolymers were spin-coated onto substrates and subsequently photocured by UV irradiation. Pure pBMA and pSPe as well as the prepared amphiphilic copolymers showed BMA content-dependent wettability in the dry state, but overall hydrophilic properties a fortiori in aqueous conditions. All polysulfobetaine-containing copolymers showed high resistance against non-specific adsorption (NSA) of proteins, platelet adhesion, thrombocyte activation, and bacterial accumulation. In some cases, the amphiphilic coatings even outperformed the purely hydrophilic pSPe coatings.
Collapse
Affiliation(s)
- Jana F. Karthäuser
- Analytical Chemistry—Biointerfaces, Ruhr University Bochum, Bochum, Germany
| | - Dierk Gruhn
- Experimental Surgery, Ruhr University Bochum, Bochum, Germany
- Department of Surgery, Knappschaftskrankenhaus Bochum, University Hospital of the Ruhr University Bochum, Bochum, Germany
| | | | - Regina Kopecz
- Analytical Chemistry—Biointerfaces, Ruhr University Bochum, Bochum, Germany
| | - Nina Babel
- Centre for Translational Medicine, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Herne, Germany
| | - Ulrik Stervbo
- Centre for Translational Medicine, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Herne, Germany
| | - André Laschewsky
- Institute of Chemistry, Universität Potsdam, Potsdam, Germany
- Fraunhofer Institute of Applied Polymer Research IAP, Potsdam, Germany
| | - Richard Viebahn
- Department of Surgery, Knappschaftskrankenhaus Bochum, University Hospital of the Ruhr University Bochum, Bochum, Germany
| | - Jochen Salber
- Experimental Surgery, Ruhr University Bochum, Bochum, Germany
- Department of Surgery, Knappschaftskrankenhaus Bochum, University Hospital of the Ruhr University Bochum, Bochum, Germany
| | - Axel Rosenhahn
- Analytical Chemistry—Biointerfaces, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
9
|
Zhao Y, Ran B, Lee D, Liao J. Photo-Controllable Smart Hydrogels for Biomedical Application: A Review. SMALL METHODS 2024; 8:e2301095. [PMID: 37884456 DOI: 10.1002/smtd.202301095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/28/2023] [Indexed: 10/28/2023]
Abstract
Nowadays, smart hydrogels are being widely studied by researchers because of their advantages such as simple preparation, stable performance, response to external stimuli, and easy control of response behavior. Photo-controllable smart hydrogels (PCHs) are a class of responsive hydrogels whose physical and chemical properties can be changed when stimulated by light at specific wavelengths. Since the light source is safe, clean, simple to operate, and easy to control, PCHs have broad application prospects in the biomedical field. Therefore, this review timely summarizes the latest progress in the PCHs field, with an emphasis on the design principles of typical PCHs and their multiple biomedical applications in tissue regeneration, tumor therapy, antibacterial therapy, diseases diagnosis and monitoring, etc. Meanwhile, the challenges and perspectives of widespread practical implementation of PCHs are presented in biomedical applications. This study hopes that PCHs will flourish in the biomedical field and this review will provide useful information for interested researchers.
Collapse
Affiliation(s)
- Yiwen Zhao
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Bei Ran
- Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Dashiell Lee
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| |
Collapse
|
10
|
Luc VS, Lin CC, Wang SY, Lin HP, Li BR, Chou YN, Chang CC. Antifouling Properties of Amine-Oxide-Containing Zwitterionic Polymers. Biomacromolecules 2023; 24:5467-5477. [PMID: 37862241 DOI: 10.1021/acs.biomac.3c00948] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Biofouling due to nonspecific proteins or cells on the material surfaces is a major challenge in a range of applications such as biosensors, medical devices, and implants. Even though poly(ethylene glycol) (PEG) has become the most widely used stealth material in medical and pharmaceutical products, the number of reported cases of PEG-triggered rare allergic responses continues to increase in the past decades. Herein, a new type of antifouling material poly(amine oxide) (PAO) has been evaluated as an alternative to overcome nonspecific foulant adsorption and impart comparable biocompatibility. Alkyl-substituted PAO containing diethyl, dibutyl, and dihexyl substituents are prepared, and their solution properties are studied. Photoreactive copolymers containing benzophenone as the photo-cross-linker are prepared by reversible addition-fragmentation chain-transfer polymerization and fully characterized by gel permeation chromatography and dynamic light scattering. Then, these water-soluble polymers are anchored onto a silicon wafer with the aid of UV irradiation. By evaluating the fouling resistance properties of these modified surfaces against various types of foulants, protein adsorption and bacterial attachment assays show that the cross-linked PAO-modified surface can efficiently inhibit biofouling. Furthermore, human blood cell adhesion experiments demonstrate that our PAO polymer could be used as a novel surface modifier for biomedical devices.
Collapse
Affiliation(s)
- Van-Sieu Luc
- Sustainable Chemical Science and Technology (SCST), Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei 11529, Taiwan
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Chien-Cheng Lin
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Shao-Yu Wang
- Department of Chemical and Materials Engineering, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan
| | - Hsiu-Pen Lin
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Bor-Ran Li
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Ying-Nien Chou
- Department of Chemical and Materials Engineering, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan
| | - Chia-Chih Chang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
11
|
Liu Z, Keum JK, Li T, Chen J, Hong K, Wang Y, Sumpter BG, Advincula R, Kumar R. Anti-polyelectrolyte and polyelectrolyte effects on conformations of polyzwitterionic chains in dilute aqueous solutions. PNAS NEXUS 2023; 2:pgad204. [PMID: 37424896 PMCID: PMC10323900 DOI: 10.1093/pnasnexus/pgad204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023]
Abstract
Polyzwitterions (PZs) are considered as model synthetic analogs of intrinsically disordered proteins. Based on this analogy, PZs in dilute aqueous solutions are expected to attain either globular (i.e. molten, compact) or random coil conformations. Addition of salt is expected to open these conformations. To the best of our knowledge, these hypotheses about conformations of PZs have never been verified. In this study, we test these hypotheses by studying effects of added salt [potassium bromide (KBr)] on gyration and hydrodynamic radii of poly(sulfobetaine methacrylate) in dilute aqueous solutions using dynamic light scattering and small-angle X-ray scattering, respectively. Effects of zwitteration are revealed by direct comparisons of the PZs with the polymers of the same backbone but containing (1) no explicit charges on side groups such as poly(2-dimethylaminoethyl methacrylate)s and (2) explicit cationic side groups with tertiary amino bromide pendants. Zeta-potential measurements, transmission electron microscopy, and ab initio molecular dynamics simulations reveal that the PZs acquire net positive charge in near salt-free conditions due to protonation but retain coiled conformations. Added KBr leads to nonmonotonic changes exhibiting an increase followed by a decrease in radius of gyration (and hydrodynamic radius), which are called antipolyelectrolyte and polyelectrolyte effects, respectively. Charge regulation and screening of charge-charge interactions are discussed in relation to the antipolyelectrolyte and polyelectrolyte effects, respectively, which highlight the importance of salt in affecting net charge and conformations of PZs.
Collapse
Affiliation(s)
| | | | - Tianyu Li
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jihua Chen
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Kunlun Hong
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Yangyang Wang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Bobby G Sumpter
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Rigoberto Advincula
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | | |
Collapse
|
12
|
Druvari D, Lainioti GC, Bekiari V, Avramidis P, Kallitsis JK, Bokias G. Development of Antifouling Coatings Based on Quaternary Ammonium Compounds through a Multilayer Approach. Int J Mol Sci 2023; 24:ijms24076594. [PMID: 37047567 PMCID: PMC10094943 DOI: 10.3390/ijms24076594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
The development of polymeric materials as antifouling coatings for aquaculture nets is elaborated in the present work. In this context, cross-linked polymeric systems based on quaternary ammonium compounds (immobilized or releasable) prepared under mild aqueous conditions were introduced as a more environmentally friendly methodology for coating nets on a large scale. To optimize the duration of action of the coatings, a multilayer coating method was applied by combining the antimicrobial organo-soluble copolymer poly(cetyltrimethylammonium 4-styrenesulfonate-co-glycidyl methacrylate) [P(SSAmC16-co-GMA20)] as the first layer with either the water-soluble copolymer poly(vinylbenzyl trimethylammonium chloride-co-acrylic acid) [P(VBCTMAM-co-AA20)] or the water-soluble polymers poly(acrylic acid) (PAA) and poly(hexamethylene guanidine), PHMG, as the second layer. The above-mentioned approach, followed by thermal cross-linking of the polymeric coatings, resulted in stable materials with controlled release of the biocidal species. The coated nets were studied in terms of their antifouling efficiency under accelerated biofouling conditions as well as under real conditions in an aquaculture field. Resistance to biofouling after three water-nutrient replenishments was observed under laboratory accelerated biofouling conditions. In addition, at the end of the field test (day 23) the uncoated nets were completely covered by marine contaminants, while the coated nets remained intact over most of their extent.
Collapse
Affiliation(s)
- Denisa Druvari
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece
| | - Georgia C. Lainioti
- Department of Food Science & Technology, University of Patras, GR-30100 Agrinio, Greece
| | - Vlasoula Bekiari
- Department of Agriculture, University of Patras, GR-30200 Messolonghi, Greece
| | - Pavlos Avramidis
- Department of Geology, University of Patras, GR-26504 Patras, Greece
| | | | - Georgios Bokias
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece
| |
Collapse
|
13
|
Levien M, Nasri Z, Weltmann KD, Fricke K. Study on the Interaction of Plasma-Polymerized Hydrogel Coatings with Aqueous Solutions of Different pH. Gels 2023; 9:gels9030237. [PMID: 36975686 PMCID: PMC10048005 DOI: 10.3390/gels9030237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Amphiphilic hydrogels from mixtures of 2-hydroxyethyl methacrylate and 2-(diethylamino)ethyl methacrylate p(HEMA-co-DEAEMA) with specific pH sensitivity and hydrophilic/hydrophobic structures were designed and polymerized via plasma polymerization. The behavior of plasma-polymerized (pp) hydrogels containing different ratios of pH-sensitive DEAEMA segments was investigated concerning possible applications in bioanalytics. In this regard, the morphological changes, permeability, and stability of the hydrogels immersed in solutions of different pHs were studied. The physico-chemical properties of the pp hydrogel coatings were analyzed using X-ray photoelectron spectroscopy, surface free energy measurements, and atomic force microscopy. Wettability measurements showed an increased hydrophilicity of the pp hydrogels when stored in acidic buffers and a slightly hydrophobic behavior after immersion in alkaline solutions, indicating a pH-dependent behavior. Furthermore, the pp (p(HEMA-co-DEAEMA) (ppHD) hydrogels were deposited on gold electrodes and studied electrochemically to investigate the pH sensitivity of the hydrogels. The hydrogel coatings with a higher ratio of DEAEMA segments showed excellent pH responsiveness at the studied pHs (pH 4, 7, and 10), demonstrating the importance of the DEAEMA ratio in the functionality of pp hydrogel films. Due to their stability and pH-responsive properties, pp (p(HEMA-co-DEAEMA) hydrogels are conceivable candidates for functional and immobilization layers for biosensors.
Collapse
Affiliation(s)
- Monique Levien
- Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany
| | - Zahra Nasri
- Center for Innovation Competence Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany
| | - Klaus-Dieter Weltmann
- Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany
| | - Katja Fricke
- Leibniz Institute for Plasma Science and Technology (INP), 17489 Greifswald, Germany
| |
Collapse
|
14
|
Krause LMK, Manderfeld E, Gnutt P, Vogler L, Wassick A, Richard K, Rudolph M, Hunsucker KZ, Swain GW, Rosenhahn B, Rosenhahn A. Semantic segmentation for fully automated macrofouling analysis on coatings after field exposure. BIOFOULING 2023; 39:64-79. [PMID: 36924139 DOI: 10.1080/08927014.2023.2185143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Biofouling is a major challenge for sustainable shipping, filter membranes, heat exchangers, and medical devices. The development of fouling-resistant coatings requires the evaluation of their effectiveness. Such an evaluation is usually based on the assessment of fouling progression after different exposure times to the target medium (e.g. salt water). The manual assessment of macrofouling requires expert knowledge about local fouling communities due to high variances in phenotypical appearance, has single-image sampling inaccuracies for certain species, and lacks spatial information. Here an approach for automatic image-based macrofouling analysis was presented. A dataset with dense labels prepared from field panel images was made and a convolutional network (adapted U-Net) for the semantic segmentation of different macrofouling classes was proposed. The establishment of macrofouling localization allows for the generation of a successional model which enables the determination of direct surface attachment and in-depth epibiotic studies.
Collapse
Affiliation(s)
- Lutz M K Krause
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, Bochum, Germany
| | - Emily Manderfeld
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, Bochum, Germany
| | - Patricia Gnutt
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, Bochum, Germany
| | - Louisa Vogler
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, Bochum, Germany
| | - Ann Wassick
- Center for Corrosion and Biofouling Control, Florida Institute of Technology, Melbourne, Florida, USA
| | - Kailey Richard
- Center for Corrosion and Biofouling Control, Florida Institute of Technology, Melbourne, Florida, USA
| | - Marco Rudolph
- Institute for Information Processing, Leibniz University Hannover, Hannover, Germany
| | - Kelli Z Hunsucker
- Center for Corrosion and Biofouling Control, Florida Institute of Technology, Melbourne, Florida, USA
| | - Geoffrey W Swain
- Center for Corrosion and Biofouling Control, Florida Institute of Technology, Melbourne, Florida, USA
| | - Bodo Rosenhahn
- Institute for Information Processing, Leibniz University Hannover, Hannover, Germany
| | - Axel Rosenhahn
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
15
|
Yang C, Long M, Ding C, Zhang R, Zhang S, Yuan J, Zhi K, Yin Z, Zheng Y, Liu Y, Wu H, Jiang Z. Antifouling graphene oxide membranes for oil-water separation via hydrophobic chain engineering. Nat Commun 2022; 13:7334. [PMID: 36443300 PMCID: PMC9705527 DOI: 10.1038/s41467-022-35105-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
Engineering surface chemistry to precisely control interfacial interactions is crucial for fabricating superior antifouling coatings and separation membranes. Here, we present a hydrophobic chain engineering strategy to regulate membrane surface at a molecular scale. Hydrophilic phytic acid and hydrophobic perfluorocarboxylic acids are sequentially assembled on a graphene oxide membrane to form an amphiphilic surface. The surface energy is reduced by the introduction of the perfluoroalkyl chains while the surface hydration can be tuned by changing the hydrophobic chain length, thus synergistically optimizing both fouling-resistance and fouling-release properties. It is found that the surface hydration capacity changes nonlinearly as the perfluoroalkyl chain length increases from C4 to C10, reaching the highest at C6 as a result of the more uniform water orientation as demonstrated by molecular dynamics simulations. The as-prepared membrane exhibits superior antifouling efficacy (flux decline ratio <10%, flux recovery ratio ~100%) even at high permeance (~620 L m-2 h-1 bar-1) for oil-water separation.
Collapse
Affiliation(s)
- Chao Yang
- grid.33763.320000 0004 1761 2484Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
| | - Mengying Long
- grid.33763.320000 0004 1761 2484Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
| | - Cuiting Ding
- grid.33763.320000 0004 1761 2484Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
| | - Runnan Zhang
- grid.33763.320000 0004 1761 2484Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China ,grid.33763.320000 0004 1761 2484Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201 China ,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192 China
| | - Shiyu Zhang
- grid.4280.e0000 0001 2180 6431Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207 China
| | - Jinqiu Yuan
- grid.33763.320000 0004 1761 2484Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
| | - Keda Zhi
- grid.33763.320000 0004 1761 2484Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
| | - Zhuoyu Yin
- grid.33763.320000 0004 1761 2484Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
| | - Yu Zheng
- grid.33763.320000 0004 1761 2484Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
| | - Yawei Liu
- grid.9227.e0000000119573309Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China
| | - Hong Wu
- grid.33763.320000 0004 1761 2484Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China ,grid.33763.320000 0004 1761 2484Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201 China ,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192 China ,grid.33763.320000 0004 1761 2484Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, 300072 China
| | - Zhongyi Jiang
- grid.33763.320000 0004 1761 2484Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China ,grid.33763.320000 0004 1761 2484Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201 China ,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192 China ,grid.4280.e0000 0001 2180 6431Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207 China
| |
Collapse
|
16
|
Eickenscheidt A, Lavaux V, Paschke S, Martínez AG, Schönemann E, Laschewsky A, Lienkamp K, Staszewski O. Effect of Poly(Oxanorbonene)- and Poly(Methacrylate)-Based Polyzwitterionic Surface Coatings on Cell Adhesion and Gene Expression of Human Keratinocytes. Macromol Biosci 2022; 22:e2200225. [PMID: 36200655 DOI: 10.1002/mabi.202200225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/21/2022] [Indexed: 12/25/2022]
Abstract
Polyzwitterions are generally known for their anti-adhesive properties, including resistance to protein and cell adhesion, and overall high bio-inertness. Yet there are a few polyzwitterions to which mammalian cells do adhere. To understand the structural features of this behavior, a panel of polyzwitterions with different functional groups and overall degrees of hydrophobicity is analyzed here, and their physical and biological properties are correlated to these structural differences. Cell adhesion is focused on, which is the basic requirement for cell viability, proliferation, and growth. With the here presented polyzwitterion panel, three different types of cell-surface interactions are observed: adhesion, slight attachment, and cell repellency. Using immunofluorescence methods, it is found that human keratinocytes (HaCaT) form focal adhesions on the cell-adhesive polyzwitterions, but not on the sample that has only slight cell attachment. Gene expression analysis indicates that HaCaT cells cultivated in the presence of a non-adhesive polyzwitterion have up-regulated inflammatory and apoptosis-related cell signaling pathways, while the gene expression of HaCaT cells grown on a cell-adhesive polyzwitterion does not differ from the gene expression of the growth control, and thus can be defined as fully cell-compatible.
Collapse
Affiliation(s)
- Alice Eickenscheidt
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany.,Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
| | - Valentine Lavaux
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany.,Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
| | - Stefan Paschke
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany.,Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
| | | | - Eric Schönemann
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht Str. 25, 14476, Potsdam-Golm, Germany
| | - André Laschewsky
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht Str. 25, 14476, Potsdam-Golm, Germany.,Fraunhofer Institut für Angewandte Polymerforschung, 14476, Potsdam-Golm, Germany
| | - Karen Lienkamp
- Department of Materials Science, Saarland University, Campus, 66123, Saarbrücken, Germany
| | - Ori Staszewski
- Institute for Neuropathology, Medical Center of the University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| |
Collapse
|
17
|
Mawby LM, Ludwig B, Lear BJ. 27Al Solid-State Magic-Angle Spinning NMR Studies of Aluminum Powder Particle Surfaces Treated with a Methyltriethoxysilane Coupling Agent under Acidic Conditions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10810-10816. [PMID: 36007149 DOI: 10.1021/acs.langmuir.2c01202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We report on the reaction between methyltriethoxysilane (MTES) and micrometer-sized aluminum particles, facilitated by HCl. This reaction ultimately produces silane-coated aluminum particles. Using 27Al magic-angle spinning solid-state nuclear magnetic resonance, we find that aluminum powder starts with a mixture of tetrahedrally, pentahedrally, and octahedrally coordinated aluminum, with the pentahedral species dominating. In the presence of HCl, however, the aluminum undergoes a restructuring, so that octahedrally coordinated aluminum is the dominant species. Using diffuse reflectance infrared spectroscopy to confirm the deposition of silane, we find that this restructuring of the aluminum in the presence of HCl is both a sufficient and necessary condition for the deposition of the silane.
Collapse
Affiliation(s)
- Lillian M Mawby
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Bellamarie Ludwig
- Applied Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Benjamin J Lear
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
18
|
Javan Nikkhah S, Vandichel M. Modeling Polyzwitterion-Based Drug Delivery Platforms: A Perspective of the Current State-of-the-Art and Beyond. ACS ENGINEERING AU 2022; 2:274-294. [PMID: 35996394 PMCID: PMC9389590 DOI: 10.1021/acsengineeringau.2c00008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Drug delivery platforms are anticipated to have biocompatible and bioinert surfaces. PEGylation of drug carriers is the most approved method since it improves water solubility and colloid stability and decreases the drug vehicles' interactions with blood components. Although this approach extends their biocompatibility, biorecognition mechanisms prevent them from biodistribution and thus efficient drug transfer. Recent studies have shown (poly)zwitterions to be alternatives for PEG with superior biocompatibility. (Poly)zwitterions are super hydrophilic, mainly stimuli-responsive, easy to functionalize and they display an extremely low protein adsorption and long biodistribution time. These unique characteristics make them already promising candidates as drug delivery carriers. Furthermore, since they have highly dense charged groups with opposite signs, (poly)zwitterions are intensely hydrated under physiological conditions. This exceptional hydration potential makes them ideal for the design of therapeutic vehicles with antifouling capability, i.e., preventing undesired sorption of biologics from the human body in the drug delivery vehicle. Therefore, (poly)zwitterionic materials have been broadly applied in stimuli-responsive "intelligent" drug delivery systems as well as tumor-targeting carriers because of their excellent biocompatibility, low cytotoxicity, insignificant immunogenicity, high stability, and long circulation time. To tailor (poly)zwitterionic drug vehicles, an interpretation of the structural and stimuli-responsive behavior of this type of polymer is essential. To this end, a direct study of molecular-level interactions, orientations, configurations, and physicochemical properties of (poly)zwitterions is required, which can be achieved via molecular modeling, which has become an influential tool for discovering new materials and understanding diverse material phenomena. As the essential bridge between science and engineering, molecular simulations enable the fundamental understanding of the encapsulation and release behavior of intelligent drug-loaded (poly)zwitterion nanoparticles and can help us to systematically design their next generations. When combined with experiments, modeling can make quantitative predictions. This perspective article aims to illustrate key recent developments in (poly)zwitterion-based drug delivery systems. We summarize how to use predictive multiscale molecular modeling techniques to successfully boost the development of intelligent multifunctional (poly)zwitterions-based systems.
Collapse
Affiliation(s)
- Sousa Javan Nikkhah
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Matthias Vandichel
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| |
Collapse
|
19
|
Sarvari R, Naghili B, Agbolaghi S, Abbaspoor S, Bannazadeh Baghi H, Poortahmasebi V, Sadrmohammadi M, Hosseini M. Organic/polymeric antibiofilm coatings for surface modification of medical devices. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2066668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Raana Sarvari
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrooz Naghili
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Agbolaghi
- Chemical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
| | | | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahdat Poortahmasebi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Sadrmohammadi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hosseini
- Chemical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
20
|
Gnanasampanthan T, Karthäuser JF, Spöllmann S, Wanka R, Becker HW, Rosenhahn A. Amphiphilic Alginate-Based Layer-by-Layer Coatings Exhibiting Resistance against Nonspecific Protein Adsorption and Marine Biofouling. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16062-16073. [PMID: 35377590 DOI: 10.1021/acsami.2c01809] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Amphiphilic coatings are promising materials for fouling-release applications, especially when their building blocks are inexpensive, biodegradable, and readily accessible polysaccharides. Here, amphiphilic polysaccharides were fabricated by coupling hydrophobic pentafluoropropylamine (PFPA) to carboxylate groups of hydrophilic alginic acid, a natural biopolymer with high water-binding capacity. Layer-by-layer (LbL) coatings comprising unmodified or amphiphilic alginic acid (AA*) and polyethylenimine (PEI) were assembled to explore how different PFPA contents affect their physicochemical properties, resistance against nonspecific adsorption (NSA) of proteins, and antifouling activity against marine bacteria (Cobetia marina) and diatoms (Navicula perminuta). The amphiphilic multilayers, characterized through spectroscopic ellipsometry, water contact angle goniometry, elemental analysis, AFM, XPS, and SPR spectroscopy, showed similar or even higher swelling in water and exhibited higher resistance toward NSA of proteins and microfouling marine organisms than multilayers without fluoroalkyl groups.
Collapse
Affiliation(s)
| | - Jana F Karthäuser
- Analytical Chemistry─Biointerfaces, Ruhr University Bochum, Bochum 44780, Germany
| | - Stephan Spöllmann
- RUBION, Central Unit for Ion Beams and Radionuclides, University of Bochum, Bochum 44780, Germany
| | - Robin Wanka
- Analytical Chemistry─Biointerfaces, Ruhr University Bochum, Bochum 44780, Germany
| | - Hans-Werner Becker
- RUBION, Central Unit for Ion Beams and Radionuclides, University of Bochum, Bochum 44780, Germany
| | - Axel Rosenhahn
- Analytical Chemistry─Biointerfaces, Ruhr University Bochum, Bochum 44780, Germany
| |
Collapse
|
21
|
Ahmed ST, Madinya JJ, Leckband DE. Ionic strength dependent forces between end-grafted Poly(sulfobetaine) films and mica. J Colloid Interface Sci 2022; 606:298-306. [PMID: 34392027 DOI: 10.1016/j.jcis.2021.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/26/2021] [Accepted: 08/01/2021] [Indexed: 12/12/2022]
Abstract
The molecular surface properties of zwitterionic polymer coatings are central to their ultra-low fouling properties and effectiveness as steric stabilizers in concentrated salt solutions. Here, Surface Force Apparatus measurements quantified the molecular forces between end-grafted poly(sulfobetaine) methacrylate thin films and mica, as a function of the chain grafting density and ionic strength. These results demonstrate that, at the ionic strengths considered, end-grafted poly(sulfobetaine) films can be described by models for polymers in good solvent. Parameters determined from data fits to the Milner-Witten-Cates or Dolan and Edwards models for dense or dilute chains, respectively, varied with ionic strength, in ways that reflect poly(sulfobetaine) swelling and the increased excluded volume strength of chain segments. These force measurements provide new insight into how polymer coverage and salt cooperate to regulate repulsive poly(sulfobetaine) steric barriers. These findings have implications for the design of grafted poly(sulfobetaine) as colloidal stabilizers or nonfouling surface coatings.
Collapse
Affiliation(s)
- Syeda Tajin Ahmed
- Department of Chemical and Biomolecular Engineering, 600 South Mathews Avenue, Roger Adams Laboratory, Urbana, IL 61801, USA
| | - Jason J Madinya
- Department of Chemical and Biomolecular Engineering, 600 South Mathews Avenue, Roger Adams Laboratory, Urbana, IL 61801, USA
| | - Deborah E Leckband
- Department of Chemical and Biomolecular Engineering, 600 South Mathews Avenue, Roger Adams Laboratory, Urbana, IL 61801, USA; Department of Chemical and Biomolecular Engineering and Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Roger Adams Laboratory, Urbana, IL 61801, USA.
| |
Collapse
|
22
|
Liu S, Tang J, Ji F, Lin W, Chen S. Recent Advances in Zwitterionic Hydrogels: Preparation, Property, and Biomedical Application. Gels 2022; 8:46. [PMID: 35049581 PMCID: PMC8775195 DOI: 10.3390/gels8010046] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 01/27/2023] Open
Abstract
Nonspecific protein adsorption impedes the sustainability of materials in biologically related applications. Such adsorption activates the immune system by quick identification of allogeneic materials and triggers a rejection, resulting in the rapid failure of implant materials and drugs. Antifouling materials have been rapidly developed in the past 20 years, from natural polysaccharides (such as dextran) to synthetic polymers (such as polyethylene glycol, PEG). However, recent studies have shown that traditional antifouling materials, including PEG, still fail to overcome the challenges of a complex human environment. Zwitterionic materials are a class of materials that contain both cationic and anionic groups, with their overall charge being neutral. Compared with PEG materials, zwitterionic materials have much stronger hydration, which is considered the most important factor for antifouling. Among zwitterionic materials, zwitterionic hydrogels have excellent structural stability and controllable regulation capabilities for various biomedical scenarios. Here, we first describe the mechanism and structure of zwitterionic materials. Following the preparation and property of zwitterionic hydrogels, recent advances in zwitterionic hydrogels in various biomedical applications are reviewed.
Collapse
Affiliation(s)
- Sihang Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; (S.L.); (J.T.); (F.J.)
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingyi Tang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; (S.L.); (J.T.); (F.J.)
- Zhejiang Development & Planning Institute, Hangzhou 310030, China
| | - Fangqin Ji
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; (S.L.); (J.T.); (F.J.)
- Taizhou Technician College, Taizhou 318000, China
| | - Weifeng Lin
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shengfu Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; (S.L.); (J.T.); (F.J.)
- Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China
| |
Collapse
|
23
|
Qiu H, Feng K, Gapeeva A, Meurisch K, Kaps S, Li X, Yu L, Mishra YK, Adelung R, Baum M. Functional Polymer Materials for Modern Marine Biofouling Control. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101516] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
24
|
Abstract
Polymers that feature both positive and negative charges along chains, known as polyampholytes, represent a class of materials that hold promise for a new generation of energy storage devices, the design of which will require knowledge of the underlying structure and dynamics. Here, we develop a theory based on the Rouse model for the dynamic structure factor of a single polyampholyte chain in the weak coupling regime (negligible intramolecular electrostatics) or subjected to weak external electric fields (governed by linear response). Neglecting effects of small ions, we find deviations in scaling from the classic Rouse theory and make predictions for scattering experiments performed on polyampholytes. We find that, under weak coupling with arbitrarily strong fields, the dynamics are highly dependent on the charge distribution and consequently look at two representative examples-random charge densities and periodic charge densities-with different scaling properties. Under weak fields, the dynamics are largely independent of charge distribution. Finally, we investigate the influence of hydrodynamic effects and the implications of including inertial effects in the model.
Collapse
Affiliation(s)
- Kevin S Silmore
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Rajeev Kumar
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
25
|
Schardt L, Martínez Guajardo A, Koc J, Clarke JL, Finlay JA, Clare AS, Gardner H, Swain GW, Hunsucker K, Laschewsky A, Rosenhahn A. Low Fouling Polysulfobetaines with Variable Hydrophobic Content. Macromol Rapid Commun 2021; 43:e2100589. [PMID: 34734670 DOI: 10.1002/marc.202100589] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/01/2021] [Indexed: 11/08/2022]
Abstract
Amphiphilic polymer coatings combining hydrophilic elements, in particular zwitterionic groups, and hydrophobic elements comprise a promising strategy to decrease biofouling. However, the influence of the content of the hydrophobic component in zwitterionic coatings on the interfacial molecular reorganization dynamics and the anti-fouling performance is not well understood. Therefore, coatings of amphiphilic copolymers of sulfobetaine methacrylate 3-[N-2'-(methacryloyloxy)ethyl-N,N-dimethyl]-ammonio propane-1-sulfonate (SPE) are prepared which contain increasing amounts of hydrophobic n-butyl methacrylate (BMA). Their fouling resistance is compared to that of their homopolymers PSPE and PBMA. The photo-crosslinked coatings form hydrogel films with a hydrophilic surface. Fouling by the proteins fibrinogen and lysozyme as well as by the diatom Navicula perminuta and the green algae Ulva linza is assessed in laboratory assays. While biofouling is strongly reduced by all zwitterionic coatings, the best fouling resistance is obtained for the amphiphilic copolymers. Also in preliminary field tests, the anti-fouling performance of the amphiphilic copolymer films is superior to that of both homopolymers. When the coatings are exposed to a marine environment, the reduced susceptibility to silt incorporation, in particular compared to the most hydrophilic polyzwitterion PSPE, likely contributes to the improved fouling resistance.
Collapse
Affiliation(s)
- Lisa Schardt
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, 44801, Bochum, Germany
| | | | - Julian Koc
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, 44801, Bochum, Germany
| | - Jessica L Clarke
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - John A Finlay
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Anthony S Clare
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Harrison Gardner
- Center for Corrosion and Biofouling Control, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Geoffrey W Swain
- Center for Corrosion and Biofouling Control, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Kelli Hunsucker
- Center for Corrosion and Biofouling Control, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - André Laschewsky
- Institute of Chemistry, University of Potsdam, 14476, Potsdam, Germany.,Fraunhofer Institute of Applied Polymer Research IAP, 14476, Potsdam, Germany
| | - Axel Rosenhahn
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, 44801, Bochum, Germany
| |
Collapse
|
26
|
Beyer CD, Thavalingam S, Guseva T, Schardt L, Zimmermann R, Werner C, Dietze P, Bandow JE, Metzler-Nolte N, Rosenhahn A. Zwitterionic Peptides Reduce Accumulation of Marine and Freshwater Biofilm Formers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49682-49691. [PMID: 34663068 DOI: 10.1021/acsami.1c13459] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Zwitterionic peptides are facile low-fouling compounds for environmental applications as they are biocompatible and fully biodegradable as their degradation products are just amino acids. Here, a set of histidine (H) and glutamic acid (E), as well as lysine (K) and glutamic acid (E) based peptide sequences with zwitterionic properties were synthesized. Both oligopeptides (KE)4K and (HE)4H were synthesized in d and l configurations to test their ability to resist the nonspecific adsorption of the proteins lysozyme and fibrinogen. The coatings were additionally tested against the attachment of the marine organisms Navicula perminuta and Cobetia marina as well as the freshwater bacterium Pseudomonas fluorescens on the developed coatings. While the peptides containing lysine performed better in protein resistance assays and against freshwater bacteria, the sequences containing histidine were generally more resistant against marine organisms. The contribution of amino acid-intrinsic properties such as side chain pKa values and hydrophobicity, as well as external parameters such as pH and salinity of fresh water and seawater on the resistance of the coatings is discussed. In this way, a detailed picture emerges as to which zwitterionic sequences show advantages in future generations of biocompatible, sustainable, and nontoxic fouling release coatings.
Collapse
Affiliation(s)
- Cindy D Beyer
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, 44801 Bochum, Germany
| | - Sugina Thavalingam
- Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Tatiana Guseva
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, 44801 Bochum, Germany
| | - Lisa Schardt
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, 44801 Bochum, Germany
| | - Ralf Zimmermann
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, 01069 Dresden, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, 01069 Dresden, Germany
| | - Pascal Dietze
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Julia Elisabeth Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Nils Metzler-Nolte
- Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Axel Rosenhahn
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
27
|
Liu F, Qu W, Zhang J, Liu J, Zhu Q, Yue T, Xu X, Ma N, Ma J, Sun Y, Tang Y, Zhang W, Chu PK. Cationic Alternating Polypeptide Fixed on Polyurethane at Multiple Sites for Excellent Antibacterial and Antifouling Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10657-10667. [PMID: 34449220 DOI: 10.1021/acs.langmuir.1c00997] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bacterial infection and blockage are severe problems for polyurethane (PU) catheters and there is an urgent demand for surface-functionalized polyurethane. Herein, a cationic alternating copolymer comprising allyl-substituted ornithine and glycine (allyl-substituted poly(Orn-alter-Gly)) with abundant carbon-carbon double bond functional groups (C═C) is designed. Polyurethane is prepared with a large quantity of C═C groups (PU-D), and different amounts of allyl-substituted poly(Orn-alter-Gly) are grafted onto the PU-D surface (PU-D-2%AMPs and PU-D-20%AMPs) via the C═C functional groups. The chemical structures of the allyl-substituted poly(Orn-alter-Gly) and polyurethane samples (PU, PU-D, PU-D-2%AMPs, and PU-D-20%AMPs) are characterized and the results reveal that allyl-substituted poly(Orn-alter-Gly) is decorated on the polyurethane. PU-D-20%AMPs shows excellent antibacterial activity against Escherichia coli, Enterococcus faecalis, and Staphylococcus aureus because of the high surface potential caused by cationic allyl-substituted poly(Orn-alter-Gly), and it also exhibits excellent long-term antibacterial activity and antibiofilm properties. PU-D-20%AMPs also has excellent antifouling properties because the cationic copolymer is fixed at multiple reactive sites, thus avoiding the formation of movable long chain brush. A strong surface hydration barrier is also formed to prevent adsorption of proteins and ions, and in vivo experiments reveal excellent biocompatibility. This flexible strategy to prepare dual-functional polyurethane surfaces with antibacterial and antifouling properties has large potential in biomedical implants.
Collapse
Affiliation(s)
- Fuqiang Liu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Qu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jie Zhang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jun Liu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qiongqiong Zhu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ting Yue
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiangmei Xu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Nan Ma
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Junhui Ma
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifan Sun
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yan Tang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wei Zhang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
28
|
Roeven E, Scheres L, Smulders MM, Zuilhof H. Zwitterionic dendrimer – Polymer hybrid copolymers for self-assembling antifouling coatings. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Paschke S, Prediger R, Lavaux V, Eickenscheidt A, Lienkamp K. Stimulus-Responsive Polyelectrolyte Surfaces: Switching Surface Properties from Polycationic/Antimicrobial to Polyzwitterionic/Protein-Repellent. Macromol Rapid Commun 2021; 42:e2100051. [PMID: 34028928 DOI: 10.1002/marc.202100051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/20/2021] [Indexed: 12/30/2022]
Abstract
Surfaces coated with polyzwitterions are most well-known for their ability to resist protein adsorption. In this article, a surface-attached hydrophobically modified poly(carboxybetaine) is presented. When protonated by changes of the pH of the surrounding medium, this protein-repellent polyzwitterion switches to a polycationic state in which it is antimicrobially active and protein-adhesive. The pH range in which these two states exist are recorded by zeta potential measurements. Adsorption studies at different pH values (monitored by surface plasmon resonance spectroscopy) confirm that the adhesion of protein is pH dependent and reversible, that is, protein can be released upon a pH change from pH 3 to pH 7.4. At physiological pH, the poly(carboxyzwitterion) is antimicrobially active, presumably because it becomes protonated by bacterial metabolites during the antimicrobial activity assay. Stability studies confirm that the here presented material is storage-stable, yet hydrolyses after longer incubation in aqueous media.
Collapse
Affiliation(s)
- Stefan Paschke
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany.,Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
| | - Richard Prediger
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany.,Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
| | - Valentine Lavaux
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany.,Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
| | - Alice Eickenscheidt
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany.,Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
| | - Karen Lienkamp
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany.,Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany.,Institut für Materialwissenschaft und Werkstoffkunde, Universität des Saarlandes, Campus, 66123, Saarbrücken, Germany
| |
Collapse
|
30
|
Gnanasampanthan T, Beyer CD, Yu W, Karthäuser JF, Wanka R, Spöllmann S, Becker HW, Aldred N, Clare AS, Rosenhahn A. Effect of Multilayer Termination on Nonspecific Protein Adsorption and Antifouling Activity of Alginate-Based Layer-by-Layer Coatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5950-5963. [PMID: 33969986 DOI: 10.1021/acs.langmuir.1c00491] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Layer-by-layer (LbL) assembly is a versatile platform for applying coatings and studying the properties of promising compounds for antifouling applications. Here, alginate-based LbL coatings were fabricated by alternating the deposition of alginic acid and chitosan or polyethylenimine to form multilayer coatings. Films were prepared with either odd or even bilayer numbers to investigate if the termination of the LbL coatings affects the physicochemical properties, resistance against the nonspecific adsorption (NSA) of proteins, and antifouling efficacy. The hydrophilic films, which were characterized using spectroscopic ellipsometry, water contact angle goniometry, ATR-FTIR spectroscopy, AFM, XPS, and SPR spectroscopy, revealed high swelling in water and strongly reduced the NSA of proteins compared to the hydrophobic reference. While the choice of the polycation was important for the protein resistance of the LbL coatings, the termination mattered less. The attachment of diatoms and settling of barnacle cypris larvae revealed good antifouling properties that were controlled by the termination and the charge density of the LbL films.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Nick Aldred
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, United Kingdom
| | - Anthony S Clare
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | | |
Collapse
|
31
|
Koschitzki F, Wanka R, Sobota L, Gardner H, Hunsucker KZ, Swain GW, Rosenhahn A. Amphiphilic Zwitterionic Acrylate/Methacrylate Copolymers for Marine Fouling-Release Coatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5591-5600. [PMID: 33930274 DOI: 10.1021/acs.langmuir.1c00428] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Methacrylate and acrylate monomers are popular building blocks for antifouling (AF) and fouling-release (FR) coatings to counteract marine biofouling. They are used in various combinations and often combined into amphiphilic materials. This study investigated the FR properties of amphiphilic ethylene glycol dicyclopentenyl ether acrylate (DCPEA) and the corresponding methacrylate (DCPEMA) blended with 5 wt % zwitterionic carboxybetaine acrylate (CBA) and the corresponding methacrylate (CBMA). A series of (co)polymers with different acrylate/methacrylate compositions were synthesized and tested against the attachment of the diatom Navicula perminuta and in short-term dynamic field exposure experiments. The more hydrophobic methacrylate DCPEMA homopolymer outperformed its acrylate counterpart DCPEA. Incorporated zwitterionic functionality of both CBMA and CBA imparted ultralow fouling capability in the amphiphilic polymers toward diatom attachment, whereas in the real ocean environment, only the employment of CBMA reduced marine biofouling. Moreover, it was observed that CBA-containing coatings showed different surface morphologies and roughnesses compared to the CBMA analogues. Particularly, a high impact was found when acrylic CBA was mixed with methacrylic DCPEMA. While the wettability of the coatings was comparable, investigated methacrylates in general exhibited superior fouling resistance compared to the acrylates.
Collapse
Affiliation(s)
- Florian Koschitzki
- Analytical Chemistry-Biointerfaces, Ruhr University Bochum, Bochum, NRW 44780, Germany
| | - Robin Wanka
- Analytical Chemistry-Biointerfaces, Ruhr University Bochum, Bochum, NRW 44780, Germany
| | - Lennart Sobota
- Analytical Chemistry-Biointerfaces, Ruhr University Bochum, Bochum, NRW 44780, Germany
| | - Harrison Gardner
- Center for Corrosion & Biofouling, Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Kelli Z Hunsucker
- Center for Corrosion & Biofouling, Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Geoffrey W Swain
- Center for Corrosion & Biofouling, Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Axel Rosenhahn
- Analytical Chemistry-Biointerfaces, Ruhr University Bochum, Bochum, NRW 44780, Germany
| |
Collapse
|
32
|
Chen L, Duan Y, Cui M, Huang R, Su R, Qi W, He Z. Biomimetic surface coatings for marine antifouling: Natural antifoulants, synthetic polymers and surface microtopography. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:144469. [PMID: 33422842 DOI: 10.1016/j.scitotenv.2020.144469] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/20/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Marine biofouling is a ubiquitous problem that accompanies human marine activities and marine industries. It exerts detrimental impacts on the economy, environment, ecology, and safety. Traditionally, mainstream approaches utilize metal ions to prevent biological contamination, but this also leads to environmental pollution and damage to the ecosystem. Efficient and environmentally friendly coatings are urgently needed to prevent marine devices from biofouling. Since nature is always the best teacher for humans, it offers us delightful thoughts on the research and development of high-efficiency, broad-spectrum and eco-friendly antifouling coatings. In this work, we focus on the research frontier of marine antifouling coatings from a bionic perspective. Enlightened by three distinctive dimensions of bionics: chemical molecule bionic, physiological mechanism bionic, and physical structure bionic, the research status of three main bioinspired strategies, which are natural antifoulants, bioinspired polymeric antifouling coatings, and biomimetic surface microtopographies, respectively, are demonstrated. The antifouling mechanisms are further interpreted based on biomimetic comprehension. The main fabrication methods and antifouling performances of these coatings are presented along with their advantages and drawbacks. Finally, the challenges are summarized, and future research prospects are proposed. It is believed that biomimetic antifouling strategies will contribute to the development of nontoxic antifouling techniques with exceptional repellency and stability.
Collapse
Affiliation(s)
- Liren Chen
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, People's Republic of China; School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yanyi Duan
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineeringand Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Mei Cui
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineeringand Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | - Renliang Huang
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, People's Republic of China.
| | - Rongxin Su
- School of Marine Science and Technology, Tianjin University, Tianjin 300072, People's Republic of China; State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineeringand Technology, Tianjin University, Tianjin 300072, People's Republic of China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China.
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineeringand Technology, Tianjin University, Tianjin 300072, People's Republic of China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, People's Republic of China
| | - Zhimin He
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineeringand Technology, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
33
|
Yu W, Wang Y, Gnutt P, Wanka R, Krause LMK, Finlay JA, Clare AS, Rosenhahn A. Layer-by-Layer Deposited Hybrid Polymer Coatings Based on Polysaccharides and Zwitterionic Silanes with Marine Antifouling Properties. ACS APPLIED BIO MATERIALS 2021; 4:2385-2397. [PMID: 35014359 DOI: 10.1021/acsabm.0c01253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Polyelectrolyte multilayer (PEM) assembly is a versatile tool to construct low-fouling coatings. For application in the marine environment, their structure needs to be stabilized by covalent linkage. Here, we introduce an approach for spin coating of silane-based sol-gel chemistries using layer-by-layer assembly of polysaccharide-based hybrid polymer coatings (LBLHPs). The silane sol-gel chemistry allows the films to be cross-linked under water-based and mild reaction conditions. Two different silanes were used for this purpose, a conventional triethoxymethyl silane and a de novo synthesized zwitterionic silane. The polysaccharide-silane hybrid polymer coatings were thoroughly characterized with spectroscopic ellipsometry, water contact angle (WCA) goniometry, attenuated total reflection-Fourier transform infrared spectroscopy, and atomic force microscopy. The coatings showed good stability in seawater, smooth surfaces, a high degree of hydration, and WCAs below or close to the Berg limit. LBLHPs showed low-fouling properties in biological assays against nonspecific protein adsorption, attachment of the diatom Navicula perminuta, and settlement of zoospores of the macroalga Ulva linza.
Collapse
Affiliation(s)
- Wenfa Yu
- Analytical Chemistry-Biointerfaces, Ruhr University Bochum, 44801 Bochum, Germany
| | - Yongxiang Wang
- Analytical Chemistry-Biointerfaces, Ruhr University Bochum, 44801 Bochum, Germany
| | - Patricia Gnutt
- Analytical Chemistry-Biointerfaces, Ruhr University Bochum, 44801 Bochum, Germany
| | - Robin Wanka
- Analytical Chemistry-Biointerfaces, Ruhr University Bochum, 44801 Bochum, Germany
| | - Lutz M K Krause
- Analytical Chemistry-Biointerfaces, Ruhr University Bochum, 44801 Bochum, Germany
| | - John A Finlay
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Anthony S Clare
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Axel Rosenhahn
- Analytical Chemistry-Biointerfaces, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
34
|
Schönemann E, Koc J, Karthäuser JF, Özcan O, Schanzenbach D, Schardt L, Rosenhahn A, Laschewsky A. Sulfobetaine Methacrylate Polymers of Unconventional Polyzwitterion Architecture and Their Antifouling Properties. Biomacromolecules 2021; 22:1494-1508. [PMID: 33709699 DOI: 10.1021/acs.biomac.0c01705] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Combining high hydrophilicity with charge neutrality, polyzwitterions are intensely explored for their high biocompatibility and low-fouling properties. Recent reports indicated that in addition to charge neutrality, the zwitterion's segmental dipole orientation is an important factor for interacting with the environment. Accordingly, a series of polysulfobetaines with a novel architecture was designed, in which the cationic and anionic groups of the zwitterionic moiety are placed at equal distances from the backbone. They were investigated by in vitro biofouling assays, covering proteins of different charges and model marine organisms. All polyzwitterion coatings reduced the fouling effectively compared to model polymer surfaces of poly(butyl methacrylate), with a nearly equally good performance as the reference polybetaine poly(3-(N-(2-(methacryloyloxy)ethyl)-N,N-dimethylammonio)propanesulfonate). The specific fouling resistance depended on the detailed chemical structure of the polyzwitterions. Still, while clearly affecting the performance, the precise dipole orientation of the sulfobetaine group in the polyzwitterions seems overall to be only of secondary importance for their antifouling behavior.
Collapse
Affiliation(s)
- Eric Schönemann
- Department of Chemistry, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Julian Koc
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany
| | - Jana F Karthäuser
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany
| | - Onur Özcan
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany
| | - Dirk Schanzenbach
- Department of Chemistry, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Lisa Schardt
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany
| | - Axel Rosenhahn
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany
| | - André Laschewsky
- Department of Chemistry, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany.,Fraunhofer Institute of Applied Polymer Research IAP, Geiselbergstr. 69, 14476 Potsdam-Golm, Germany
| |
Collapse
|
35
|
Wanka R, Koschitzki F, Puzovic V, Pahl T, Manderfeld E, Hunsucker KZ, Swain GW, Rosenhahn A. Synthesis and Characterization of Dendritic and Linear Glycol Methacrylates and Their Performance as Marine Antifouling Coatings. ACS APPLIED MATERIALS & INTERFACES 2021; 13:6659-6669. [PMID: 33497184 DOI: 10.1021/acsami.0c21212] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Dendritic polyglycerol (PG) was covalently coupled to 2-hydroxyethyl methacrylate (HEMA) by an anionically catalyzed ring-opening polymerization generating a dendritic PG-HEMA with four PG repetition units (PG4MA). Coatings of the methacrylate monomer were prepared by grafting-through and compared against commercially available hydrophilic monomers of HEMA, poly(ethylene) glycol methacrylate (PEGMA), and poly(propylene) glycol methacrylate (PPGMA). The obtained coatings were characterized by modern surface analytical techniques, including water contact angle goniometry (sessile and captive bubble), attenuated total internal reflection Fourier transform infrared spectroscopy, and atomic force microscopy. The antifouling (AF) and fouling-release (FR) properties of the coatings were tested against the model organisms Cobetia marina and Navicula perminuta in laboratory-scale dynamic accumulation assays as well as in a dynamic short-term field exposure (DSFE) in the marine environment. In addition, the hydration of the coatings and their susceptibility toward silt uptake were evaluated, revealing a strong correlation between water uptake, silt incorporation, and field assay performance. While all glycol derivatives showed good resistance in laboratory settlement experiments, PPGMA turned out to be less susceptible to silt incorporation and outperformed PEGMA and PG4MA in the DSFE assay.
Collapse
Affiliation(s)
- Robin Wanka
- Analytical Chemistry - Biointerfaces, Ruhr-University Bochum, 44780 Bochum, Germany
- Center for Protein Diagnostics (ProDi), Ruhr-University Bochum, 44780 Bochum, Germany
| | - Florian Koschitzki
- Analytical Chemistry - Biointerfaces, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Vuk Puzovic
- Analytical Chemistry - Biointerfaces, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Thorben Pahl
- Analytical Chemistry - Biointerfaces, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Emily Manderfeld
- Analytical Chemistry - Biointerfaces, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Kelli Z Hunsucker
- Center for Corrosion & Biofouling, Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Geoffrey W Swain
- Center for Corrosion & Biofouling, Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Axel Rosenhahn
- Analytical Chemistry - Biointerfaces, Ruhr-University Bochum, 44780 Bochum, Germany
| |
Collapse
|
36
|
Guo H, Chen P, Tian S, Ma Y, Li Q, Wen C, Yang J, Zhang L. Amphiphilic Marine Antifouling Coatings Based on a Hydrophilic Polyvinylpyrrolidone and Hydrophobic Fluorine-Silicon-Containing Block Copolymer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14573-14581. [PMID: 33206529 DOI: 10.1021/acs.langmuir.0c02329] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of environmentally friendly and highly efficient antifouling coatings is vastly desirable in the marine industry. Herein, we prepared a novel amphiphilic block copolymer that combined hydrophilic polyvinylpyrrolidone (PVP) with hydrophobic poly(1-(1H,1H,2H,2H-perfluorodecyloxy)-3-(3,6,9-trioxadecyloxy)-propan-2-yl acrylate) (PFA) and polydimethylsiloxane (PDMS). The amphiphilic copolymer (PVP-PFA-PDMS) was blended into a cross-linked PDMS matrix to form a set of controlled surface composition and surface-renewal coatings with efficient antifouling and fouling-release properties. These coatings incorporated the biofouling settlement resistance ability attributed to the hydrophilic PVP segments and the reduced adhesion strength attributed to the low surface energy of fluorine-silicon-containing segments. As expected, the coatings showed an excellent antifouling performance against bacteria and marine unicellular Navicula parva diatoms (98.1 and 98.5% of reduction, respectively) and fouling-release performance against pseudobarnacle adhesion (84.3% of reduction) compared to the pristine PDMS coating. Moreover, a higher-content PVP-based coatings presented higher ability to resist biofouling adhesion. The nontoxic antifouling coating developed in this paper hold the potential to be applied in a variety of marine industrial facilities.
Collapse
Affiliation(s)
- Hongshuang Guo
- Department of Biochemical Engineering, Tianjin University, Tianjin 300350, P. R. China
- School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, P. R. China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao 266235, P. R. China
| | - Pengguang Chen
- Department of Biochemical Engineering, Tianjin University, Tianjin 300350, P. R. China
- School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, P. R. China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao 266235, P. R. China
| | - Shu Tian
- Department of Biochemical Engineering, Tianjin University, Tianjin 300350, P. R. China
- School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, P. R. China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao 266235, P. R. China
| | - Yiming Ma
- Department of Biochemical Engineering, Tianjin University, Tianjin 300350, P. R. China
- School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, P. R. China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao 266235, P. R. China
| | - Qingsi Li
- Department of Biochemical Engineering, Tianjin University, Tianjin 300350, P. R. China
- School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, P. R. China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao 266235, P. R. China
| | - Chiyu Wen
- Department of Biochemical Engineering, Tianjin University, Tianjin 300350, P. R. China
- School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, P. R. China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao 266235, P. R. China
| | - Jing Yang
- Department of Biochemical Engineering, Tianjin University, Tianjin 300350, P. R. China
- School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, P. R. China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao 266235, P. R. China
| | - Lei Zhang
- Department of Biochemical Engineering, Tianjin University, Tianjin 300350, P. R. China
- School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, P. R. China
- Qingdao Institute for Marine Technology of Tianjin University, Qingdao 266235, P. R. China
| |
Collapse
|
37
|
Koc J, Schardt L, Nolte K, Beyer C, Eckhard T, Schwiderowski P, Clarke JL, Finlay JA, Clare AS, Muhler M, Laschewsky A, Rosenhahn A. Effect of Dipole Orientation in Mixed, Charge-Equilibrated Self-assembled Monolayers on Protein Adsorption and Marine Biofouling. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50953-50961. [PMID: 33112127 DOI: 10.1021/acsami.0c11580] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
While zwitterionic interfaces are known for their excellent low-fouling properties, the underlying molecular principles are still under debate. In particular, the role of the zwitterion orientation at the interface has been discussed recently. For elucidation of the effect of this parameter, self-assembled monolayers (SAMs) on gold were prepared from stoichiometric mixtures of oppositely charged alkyl thiols bearing either a quaternary ammonium or a carboxylate moiety. The alkyl chain length of the cationic component (11-mercaptoundecyl)-N,N,N-trimethylammonium, which controls the distance of the positively charged end group from the substrate's surface, was kept constant. In contrast, the anionic component and, correspondingly, the distance of the negatively charged carboxylate groups from the surface was varied by changing the alkyl chain length in the thiol molecules from 7 (8-mercaptooctanoic acid) to 11 (12-mercaptododecanoic acid) to 15 (16-mercaptohexadecanoic acid). In this way, the charge neutrality of the coating was maintained, but the charged groups exposed at the interface to water were varied, and thus, the orientation of the dipoles in the SAMs was altered. In model biofouling studies, protein adsorption, diatom accumulation, and the settlement of zoospores were all affected by the altered charge distribution. This demonstrates the importance of the dipole orientation in mixed-charged SAMs for their inertness to nonspecific protein adsorption and the accumulation of marine organisms. Overall, biofouling was lowest when both the anionic and the cationic groups were placed at the same distance from the substrate's surface.
Collapse
Affiliation(s)
- Julian Koc
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, Bochum 44801, Germany
| | - Lisa Schardt
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, Bochum 44801, Germany
| | - Kim Nolte
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, Bochum 44801, Germany
| | - Cindy Beyer
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, Bochum 44801, Germany
| | - Till Eckhard
- Laboratory of Industrial Chemistry, Ruhr University Bochum, Bochum 44801, Germany
| | | | - Jessica L Clarke
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - John A Finlay
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Anthony S Clare
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Martin Muhler
- Laboratory of Industrial Chemistry, Ruhr University Bochum, Bochum 44801, Germany
| | - Andre Laschewsky
- Institut für Chemie, Universität Potsdam, Potsdam 14469, Germany
- Fraunhofer Institute of Applied Polymer Research IAP, Potsdam 14476, Germany
| | - Axel Rosenhahn
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, Bochum 44801, Germany
| |
Collapse
|
38
|
Koschitzki F, Wanka R, Sobota L, Koc J, Gardner H, Hunsucker KZ, Swain GW, Rosenhahn A. Amphiphilic Dicyclopentenyl/Carboxybetaine-Containing Copolymers for Marine Fouling-Release Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34148-34160. [PMID: 32567832 DOI: 10.1021/acsami.0c07599] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Zwitterionic materials received great attention in recent studies due to their high antifouling potential, though their application in practical coatings is still challenging. Amphiphilic polymers have been proven to be an effective method to combat fouling in the marine environment. This study reports the incorporation of small amounts of zwitterionic carboxybetaine methacrylate (CBMA) into hydrophobic ethylene glycol dicyclopentenyl ether acrylate (DCPEA). A new set of copolymers with varying amphiphilicities was synthesized and coated on chemically modified glass substrates. The antifouling capabilities were assessed against the diatom Navicula perminuta and multiple species in the field. Unsurprisingly, high diatom densities were observed on the hydrophobic control coatings. The integration of small zwitterionic contents of only ∼5 wt % was already sufficient to rapidly form a hydrophilic interface that led to a strong reduction of fouling. Ultralow fouling was also observed for the pure zwitterionic coatings in laboratory experiments, but it failed when tested in the real ocean environment. We noticed that the ability to absorb large amounts of water and the diffuse nature of the interphase correlate with the adsorption of silt, which can mask the hydrophilic chemistries and facilitate the settlement of organisms. The amphiphilic coatings showed low fouling in dynamic short-term field exposures, which could be explained by the reduced tendency of the coatings for sediment adsorption.
Collapse
Affiliation(s)
- Florian Koschitzki
- Analytical Chemistry-Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany
| | - Robin Wanka
- Analytical Chemistry-Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany
| | - Lennart Sobota
- Analytical Chemistry-Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany
| | - Julian Koc
- Analytical Chemistry-Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany
| | - Harrison Gardner
- Center for Corrosion and Biofouling Control, Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Kelli Z Hunsucker
- Center for Corrosion and Biofouling Control, Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Geoffrey W Swain
- Center for Corrosion and Biofouling Control, Florida Institute of Technology, Melbourne, Florida 32901, United States
| | - Axel Rosenhahn
- Analytical Chemistry-Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany
| |
Collapse
|
39
|
Xiang Y, Xu RG, Leng Y. Molecular Understanding of Ion Effect on Polyzwitterion Conformation in an Aqueous Environment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7648-7657. [PMID: 32506917 DOI: 10.1021/acs.langmuir.0c01287] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polyzwitterions (PZs) are promising materials for the antifouling in reverse osmosis and nanofiltration membrane technology for water treatment. Fundamental understanding of the structure and molecular interactions involving zwitterions is crucial to the optimal design of antifouling in membrane separation. Here we employ the umbrella sampling and molecular dynamics simulations to investigate molecular interactions between sulfobetaine/carboxybetaine zwitterions and different metal ions (Na+, K+, and Ca2+) in an aqueous solution. The simulation results show that these ions can form stable or metastable contact ionic/solvent-shared-ionic pairs with zwitterions. Simulations at different grafting densities of PZ brush arrays reveal complex competitive association mechanisms, which are attributed to nonbonded electrostatic and van der Waals interactions among zwitterions, water molecules, and different metal ions in an aqueous environment. While the high-grafting density of the PZ brush array leads to a strong branch association between different zwitterions in water, this association is decreased at intermediate- and low-grafting densities due to strong zwitterion-water interactions. More importantly, adding ions into water at intermediate- and low-grafting densities further breaks down the zwitterion branch association, resulting in a randomly oriented and dispersed branch configuration with significant swelling of the polymers. The degree of swelling depends on the type of ions, which further changes the surface electrostatic potential of PZ coatings.
Collapse
Affiliation(s)
- Yuan Xiang
- Department of Mechanical & Aerospace Engineering, The George Washington University, Washington, District of Columbia 20052, United States
| | - Rong-Guang Xu
- Department of Mechanical & Aerospace Engineering, The George Washington University, Washington, District of Columbia 20052, United States
| | - Yongsheng Leng
- Department of Mechanical & Aerospace Engineering, The George Washington University, Washington, District of Columbia 20052, United States
| |
Collapse
|
40
|
Koc J, Schönemann E, Wanka R, Aldred N, Clare AS, Gardner H, Swain GW, Hunsucker K, Laschewsky A, Rosenhahn A. Effects of crosslink density in zwitterionic hydrogel coatings on their antifouling performance and susceptibility to silt uptake. BIOFOULING 2020; 36:646-659. [PMID: 32718200 DOI: 10.1080/08927014.2020.1796983] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/08/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
Hydrogel coatings effectively reduce the attachment of proteins and organisms in laboratory assays, in particular when made from zwitterionic monomers. In field experiments with multiple species and non-living material, such coatings suffer from adsorption of particulate matter. In this study, the zwitterionic monomer 3-[N-(2-methacryloyloxyethyl)-N,N-dimethylammonio] propanesulfonate (SPE) was copolymerized with increasing amounts of the photo-crosslinker benzophenon-4-yloxyethyl methacrylate (BPEMA) to systematically alter the density of crosslinks between the polymer chains. The effect of increasing crosslink density on the antifouling (AF) performance of the coatings was investigated in laboratory assays and fields tests. In both cases, the AF performance was improved by increasing the crosslinker content. The coatings reduced protein, diatom, and barnacle accumulation, and showed better resistance to biomass accumulation. The findings underline that the marine AF performance of hydrogel coatings does not only depend on the specific chemical structure of the polymers, but also on their physico-chemical properties such as rigidity and swelling.
Collapse
Affiliation(s)
- Julian Koc
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, Bochum, Germany
| | - Eric Schönemann
- Institute of Chemistry, Universität Potsdam, Potsdam, Germany
| | - Robin Wanka
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, Bochum, Germany
| | - Nick Aldred
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
- School of Life Sciences, University of Essex, Wivenhoe Park, UK
| | - Anthony S Clare
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Harrison Gardner
- Center for Corrosion & Biofouling, Florida Institute of Technology, Melbourne, FL, USA
| | - Geoffrey W Swain
- Center for Corrosion & Biofouling, Florida Institute of Technology, Melbourne, FL, USA
| | - Kelli Hunsucker
- Center for Corrosion & Biofouling, Florida Institute of Technology, Melbourne, FL, USA
| | - Andre Laschewsky
- Institute of Chemistry, Universität Potsdam, Potsdam, Germany
- Fraunhofer Institute of Applied Polymer Research IAP, Potsdam, Germany
| | - Axel Rosenhahn
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
41
|
Tsagdi A, Druvari D, Panagiotaras D, Avramidis P, Bekiari V, Kallitsis JK. Polymeric Coatings Based on Water-Soluble Trimethylammonium Copolymers for Antifouling Applications. Molecules 2020; 25:molecules25071678. [PMID: 32268518 PMCID: PMC7180454 DOI: 10.3390/molecules25071678] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 01/12/2023] Open
Abstract
Crosslinked polymeric materials based on a quaternary trimethylammonium compound were developed and evaluated as potential antifouling coatings. For this purpose, two water-soluble random copolymers, poly(4-vinylbenzyltrimethylammonium chloride-co-acrylic acid) P(VBCTMAM-co-AAx) and poly(N,N-dimethylacrylamide-co-glycidylmethacrylate) P(DMAm-co-GMAx), were synthesized via free radical polymerization. A water based approach for the synthesis of P(VBCTMAM-co-AAx) copolymer was used. Coatings of the complementary reactive copolymers in different compositions were obtained by curing at 120 °C for one day and were used to coat aquaculture nets. These nets were evaluated in respect to their release rate using Total Organic Carbon (TOC) and Total Nitrogen (TN) measurements. Finally, the antifouling efficacy of these newly-composed durable coatings was investigated for 14 days in accelerated conditions. The results showed that this novel polymeric material provides contact-killing antifouling activity for a short time period, whereas it functions efficiently in biofouling removal after high-pressure cleaning.
Collapse
Affiliation(s)
- Artemis Tsagdi
- Department of Chemistry, University of Patras, GR–26504 Patras, Greece; (A.T.); (D.D.)
| | - Denisa Druvari
- Department of Chemistry, University of Patras, GR–26504 Patras, Greece; (A.T.); (D.D.)
| | - Dionisios Panagiotaras
- Department of Environment, Ionian University, M. Minotou-Giannopoulou 26, Zakynthos 29100, Greece;
- Department of Geology, University of Patras, GR-26504 Patras, Greece;
| | - Pavlos Avramidis
- Department of Geology, University of Patras, GR-26504 Patras, Greece;
| | - Vlasoula Bekiari
- Department of Animal Production, Fisheries and Aquaculture, University of Patras, 30200 Messolonghi, Greece;
| | - Joannis K. Kallitsis
- Department of Chemistry, University of Patras, GR–26504 Patras, Greece; (A.T.); (D.D.)
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Stadiou Str., Platani, P.O. Box 1414, GR-265 04 Rio-Patras, Greece
- Correspondence: ; Tel.: (+302610) 962952; Fax: (+302610) 997122
| |
Collapse
|
42
|
Wanka R, Aldred N, Finlay JA, Amuthalingam A, Clarke JL, Clare AS, Rosenhahn A. Antifouling Properties of Dendritic Polyglycerols against Marine Macrofouling Organisms. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:16568-16575. [PMID: 31746204 DOI: 10.1021/acs.langmuir.9b02720] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dendritic polyglycerols (PGs) were synthesized and postmodified by grafting of poly(ethylene glycol) (PEG) and polypropylene glycol (PPG) diglycidyl ether groups, and their antifouling and fouling-release properties were tested. Coating characterization by spectroscopic ellipsometry, contact angle goniometry, attenuated total internal reflection-Fourier transform infrared spectroscopy (ATR-FTIR), and atomic force microscopy showed brushlike morphologies with a high degree of microscale roughness and the ability to absorb large amounts of water within seconds. PGs with three different thicknesses were tested in laboratory assays against settlement of larvae of the barnacle Balanus improvisus and against the settlement and removal of zoospores of the alga Ulva linza. Very low coating thicknesses, e.g., 11 nm, reduced the settlement of barnacles, under static conditions, to 2% compared with 55% for an octadecyltrichlorosilane reference surface. In contrast, zoospores of U. linza settled readily but the vast majority were removed by exposure to a shear force of 52 Pa. Both PEG and PPG modification increased the antifouling properties of the PG films, providing a direct comparison of the ultralow fouling properties of all three polymers. Both, the modified and the nonmodified PGs are promising components for incorporation into amphiphilic fouling-resistant coatings.
Collapse
Affiliation(s)
- Robin Wanka
- Analytical Chemistry-Biointerfaces , Ruhr University Bochum , Bochum 44780 , Germany
| | - Nick Aldred
- School of Natural and Environmental Sciences , Newcastle University , Newcastle upon Tyne NE1 7RU , United Kingdom
| | - John A Finlay
- School of Natural and Environmental Sciences , Newcastle University , Newcastle upon Tyne NE1 7RU , United Kingdom
| | - Ajitha Amuthalingam
- Analytical Chemistry-Biointerfaces , Ruhr University Bochum , Bochum 44780 , Germany
| | - Jessica L Clarke
- School of Natural and Environmental Sciences , Newcastle University , Newcastle upon Tyne NE1 7RU , United Kingdom
| | - Anthony S Clare
- School of Natural and Environmental Sciences , Newcastle University , Newcastle upon Tyne NE1 7RU , United Kingdom
| | - Axel Rosenhahn
- Analytical Chemistry-Biointerfaces , Ruhr University Bochum , Bochum 44780 , Germany
| |
Collapse
|
43
|
Schönemann E, Koc J, Aldred N, Clare AS, Laschewsky A, Rosenhahn A, Wischerhoff E. Synthesis of Novel Sulfobetaine Polymers with Differing Dipole Orientations in Their Side Chains, and Their Effects on the Antifouling Properties. Macromol Rapid Commun 2019; 41:e1900447. [DOI: 10.1002/marc.201900447] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/29/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Eric Schönemann
- Department of Chemistry Universität Potsdam Karl‐Liebknecht‐Str. 24‐25 14476 Potsdam‐Golm Germany
| | - Julian Koc
- Analytical Chemistry ‐ Biointerfaces Ruhr University Bochum 44780 Bochum Germany
| | - Nick Aldred
- School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Anthony S. Clare
- School of Natural and Environmental Sciences Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - André Laschewsky
- Department of Chemistry Universität Potsdam Karl‐Liebknecht‐Str. 24‐25 14476 Potsdam‐Golm Germany
- Fraunhofer Institute of Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam‐Golm Germany
| | - Axel Rosenhahn
- Analytical Chemistry ‐ Biointerfaces Ruhr University Bochum 44780 Bochum Germany
| | - Erik Wischerhoff
- Fraunhofer Institute of Applied Polymer Research IAP 14476 Potsdam‐Golm Germany
| |
Collapse
|
44
|
Molle E, Le D, Norizadeh Abbariki T, Akdemir MS, Takamiya M, Miceli E, Kassel O, Delaittre G. Access to Photoreactive Core‐Shell Nanomaterials by Photoinitiated Polymerization‐Induced Self‐Assembly. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Edgar Molle
- Institute of Toxicology and Genetics (ITG)Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76244 Eggenstein-Leopoldshafen Germany
- Institute for Chemical Technology and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT) Engesserstrasse 18 76131 Karlsruhe Germany
| | - Dao Le
- Institute of Toxicology and Genetics (ITG)Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76244 Eggenstein-Leopoldshafen Germany
- Institute for Chemical Technology and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT) Engesserstrasse 18 76131 Karlsruhe Germany
| | - Tannaz Norizadeh Abbariki
- Institute of Toxicology and Genetics (ITG)Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76244 Eggenstein-Leopoldshafen Germany
| | - Meryem S. Akdemir
- Institute of Toxicology and Genetics (ITG)Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76244 Eggenstein-Leopoldshafen Germany
- Institute for Chemical Technology and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT) Engesserstrasse 18 76131 Karlsruhe Germany
| | - Masanari Takamiya
- Institute of Toxicology and Genetics (ITG)Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76244 Eggenstein-Leopoldshafen Germany
| | - Enrico Miceli
- Institute of Toxicology and Genetics (ITG)Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76244 Eggenstein-Leopoldshafen Germany
- Institute for Chemical Technology and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT) Engesserstrasse 18 76131 Karlsruhe Germany
| | - Olivier Kassel
- Institute of Toxicology and Genetics (ITG)Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76244 Eggenstein-Leopoldshafen Germany
| | - Guillaume Delaittre
- Institute of Toxicology and Genetics (ITG)Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76244 Eggenstein-Leopoldshafen Germany
- Institute for Chemical Technology and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT) Engesserstrasse 18 76131 Karlsruhe Germany
- Institute for Applied Polymer ChemistryUniversity of Applied Sciences Aachen Heinrich-Mussmann-Strasse 1 52428 Jülich Germany
- Deutsches Textilforschungszentrum Nord-West (DTNW) gGmbH Adlerstrasse 1 47798 Krefeld Germany
| |
Collapse
|
45
|
Schönemann E, Laschewsky A, Wischerhoff E, Koc J, Rosenhahn A. Surface Modification by Polyzwitterions of the Sulfabetaine-Type, and Their Resistance to Biofouling. Polymers (Basel) 2019; 11:E1014. [PMID: 31181764 PMCID: PMC6631746 DOI: 10.3390/polym11061014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/22/2022] Open
Abstract
Films of zwitterionic polymers are increasingly explored for conferring fouling resistance to materials. Yet, the structural diversity of polyzwitterions is rather limited so far, and clear structure-property relationships are missing. Therefore, we synthesized a series of new polyzwitterions combining ammonium and sulfate groups in their betaine moieties, so-called poly(sulfabetaine)s. Their chemical structures were varied systematically, the monomers carrying methacrylate, methacrylamide, or styrene moieties as polymerizable groups. High molar mass homopolymers were obtained by free radical polymerization. Although their solubilities in most solvents were very low, brine and lower fluorinated alcohols were effective solvents in most cases. A set of sulfabetaine copolymers containing about 1 mol % (based on the repeat units) of reactive benzophenone methacrylate was prepared, spin-coated onto solid substrates, and photo-cured. The resistance of these films against the nonspecific adsorption by two model proteins (bovine serum albumin-BSA, fibrinogen) was explored, and directly compared with a set of references. The various polyzwitterions reduced protein adsorption strongly compared to films of poly(nbutyl methacrylate) that were used as a negative control. The poly(sulfabetaine)s showed generally even somewhat higher anti-fouling activity than their poly(sulfobetaine) analogues, though detailed efficacies depended on the individual polymer-protein pairs. Best samples approach the excellent performance of a poly(oligo(ethylene oxide) methacrylate) reference.
Collapse
Affiliation(s)
- Eric Schönemann
- Department of Chemistry, University Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany.
| | - André Laschewsky
- Department of Chemistry, University Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany.
- Fraunhofer Institute of Applied Polymer Research IAP, 14476 Potsdam-Golm, Germany.
| | - Erik Wischerhoff
- Fraunhofer Institute of Applied Polymer Research IAP, 14476 Potsdam-Golm, Germany.
| | - Julian Koc
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany.
| | - Axel Rosenhahn
- Analytical Chemistry - Biointerfaces, Ruhr University Bochum, 44780 Bochum, Germany.
| |
Collapse
|
46
|
Koc J, Simovich T, Schönemann E, Chilkoti A, Gardner H, Swain GW, Hunsucker K, Laschewsky A, Rosenhahn A. Sediment challenge to promising ultra-low fouling hydrophilic surfaces in the marine environment. BIOFOULING 2019; 35:454-462. [PMID: 31088166 DOI: 10.1080/08927014.2019.1611790] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 06/09/2023]
Abstract
Hydrophilic coatings exhibit ultra-low fouling properties in numerous laboratory experiments. In stark contrast, the antifouling effect of such coatings in vitro failed when performing field tests in the marine environment. The fouling release performance of nonionic and zwitterionic hydrophilic polymers was substantially reduced compared to the controlled laboratory environment. Microscopy and spectroscopy revealed that a large proportion of the accumulated material in field tests contains inorganic compounds and diatomaceous soil. Diatoms adhered to the accumulated material on the coating, but not to the pristine polymer. Simulating field tests in the laboratory using sediment samples collected from the test sites showed that incorporated sand and diatomaceous earth impairs the fouling release characteristics of the coatings. When exposed to marine sediment from multiple locations, particulate matter accumulated on these coatings and served as attachment points for diatom adhesion and enhanced fouling. Future developments of hydrophilic coatings should consider accumulated sediment and its potential impact on the antifouling performance.
Collapse
Affiliation(s)
- Julian Koc
- a Analytical Chemistry - Biointerfaces, Ruhr University Bochum , Bochum , Germany
| | - Tomer Simovich
- a Analytical Chemistry - Biointerfaces, Ruhr University Bochum , Bochum , Germany
| | - Eric Schönemann
- b Institute of Chemistry, Universität Potsdam , Potsdam , Germany
| | - Ashutosh Chilkoti
- c Biomedical Engineering , Duke University , Durham , North Carolina , USA
| | - Harrison Gardner
- d Center for Corrosion & Biofouling Control, Florida Institute of Technology , Melbourne , FL , USA
| | - Geoffrey W Swain
- d Center for Corrosion & Biofouling Control, Florida Institute of Technology , Melbourne , FL , USA
| | - Kelli Hunsucker
- d Center for Corrosion & Biofouling Control, Florida Institute of Technology , Melbourne , FL , USA
| | - André Laschewsky
- b Institute of Chemistry, Universität Potsdam , Potsdam , Germany
- e Fraunhofer Institute of Applied Polymer Research IAP , Potsdam , Germany
| | - Axel Rosenhahn
- a Analytical Chemistry - Biointerfaces, Ruhr University Bochum , Bochum , Germany
| |
Collapse
|
47
|
Laschewsky A, Rosenhahn A. Molecular Design of Zwitterionic Polymer Interfaces: Searching for the Difference. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1056-1071. [PMID: 30048142 DOI: 10.1021/acs.langmuir.8b01789] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The widespread occurrence of zwitterionic compounds in nature has incited their frequent use in designing biomimetic materials. Therefore, zwitterionic polymers are a thriving field. A particular interest for this particular polymer class has currently focused on their use in establishing neutral, low-fouling surfaces. After highlighting strategies to prepare model zwitterionic surfaces as well as those that are more suitable for practical purposes relying strongly on radical polymerization methods, we present recent efforts to diversify the structure of the hitherto quite limited variety of zwitterionic monomers and of the derived polymers. We identify key structural variables, consider their influence on essential properties such as overall hydrophilicity and long-term stability, and discuss promising targets for the synthesis of new variants.
Collapse
Affiliation(s)
- André Laschewsky
- Institut für Chemie, Universität Potsdam , Karl-Liebknechtstr. 24-25 , 14476 Potsdam-Golm , Germany
- Fraunhofer Institute for Applied Polymer Research IAP , Geiselbergstr. 69 , 14476 Potsdam-Golm , Germany
| | - Axel Rosenhahn
- Analytische Chemie-Biogrenzflächen , Ruhr-Universität Bochum , Universitätsstr. 150 NC , 44801 Bochum , Germany
| |
Collapse
|
48
|
Shen J, Du M, Wu Z, Song Y, Zheng Q. Strategy to construct polyzwitterionic hydrogel coating with antifouling, drag-reducing and weak swelling performance. RSC Adv 2019; 9:2081-2091. [PMID: 35516104 PMCID: PMC9059740 DOI: 10.1039/c8ra09358j] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/08/2019] [Indexed: 01/01/2023] Open
Abstract
Biological fouling, where marine microorganisms attach densely to various submerged surfaces, has been a serious economic problem worldwide. Different from most antifouling approaches based on stiff and solid materials or coatings, a soft and wet coating composed of zwitterionic polymer was prepared in this paper. With the combination of the anti-polyelectrolyte effect of poly-N-(3-sulfopropyl)-N-(methacryloxyethyl)-N,N-dimethylammonium betaine (PSBMA) and the typical polyelectrolyte effect of polyacrylic acid (PAA), a bicomponent hydrogel coating with weak swelling in saline solution was achieved, which could avoid peeling from solid substrates. The bicomponent hydrogel coating showed strong tensile properties and good compression performance and slipperiness. Although the large Young's modulus of the coating relatively weakens the drag reduction effect, entering the mixed lubrication region in low sliding rate is easy and a low friction coefficient at a high rate could thus be obtained. With the aid of silane coupling agent and weak deformation in water and saline solution, the hydrogel coating could be bound tightly on solid surfaces. After strong sandy water abrasion, the bicomponent hydrogel coating could maintain its original state without any cracks and peeling. The hydrogel coating exhibits good anti-bacterial adhesion and anti-protein adsorption. The bicomponent zwitterionic hydrogel coating reported here provides a new strategy for marine antifouling and drag reduction studies.
Collapse
Affiliation(s)
- Jiajia Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310027 China
| | - Miao Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310027 China
| | - Ziliang Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310027 China
| | - Yihu Song
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310027 China
| | - Qiang Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310027 China
| |
Collapse
|
49
|
Yuan L, Qu B, Chen J, Lv H, Yang X. Engineering modifiers bearing benzophenone with enhanced reactivity to construct surface microstructures. Polym Chem 2019. [DOI: 10.1039/c9py00764d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel strategy is proposed to construct a patterned surface with controllable thickness by designing the chain backbone of BP-capped modifiers.
Collapse
Affiliation(s)
- Liguang Yuan
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Baoliu Qu
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Jiayue Chen
- Wego Holding Company Limited
- Weihai 264210
- P.R. China
| | - Hongying Lv
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Xiaoniu Yang
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| |
Collapse
|