1
|
Arretche I, Lessard JJ, Kaur P, Mills MG, Kim AJ, Liu HJ, Cooper JC, Ewoldt RH, Moore JS, Tawfick S. Active Learning Guided Optimization of Frontal Ring-Opening Metathesis Polymerization via Alkylidene Modification. ACS Macro Lett 2025; 14:525-531. [PMID: 40215180 DOI: 10.1021/acsmacrolett.5c00136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Frontal ring-opening metathesis polymerization (FROMP) offers an energy-efficient method for manufacturing high-performance thermoset resins. However, the background reaction attributed to ring-opening metathesis polymerization (ROMP) results in a complex trade-off between the resin shelf life─necessary for practical manufacturability─and the front velocity. Here, we study the influence of alkylidene ligand selection in Grubbs' second-generation Ru-initiators on the kinetics of FROMP and background ROMP. We reveal that ligand identity differentially affects FROMP and background ROMP reactivity, enabling tunable control over pot life and front speed. Leveraging this insight, we use active learning with multiobjective Bayesian optimization to efficiently explore the FROMP resin design space and identify superior resin formulations. This work advances the rational design of FROMP resins, expanding the range of accessible formulations and accelerating the discovery of high-performance materials for energy-efficient manufacturing applications.
Collapse
Affiliation(s)
- Ignacio Arretche
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Illinois 61801, United States
| | - Jacob J Lessard
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Illinois 61801, United States
- Department of Chemistry, University of Illinois Urbana-Champaign, Illinois 61801, United States
| | - Parmeet Kaur
- Department of Chemistry, University of Illinois Urbana-Champaign, Illinois 61801, United States
| | - Mya G Mills
- Department of Chemistry, University of Illinois Urbana-Champaign, Illinois 61801, United States
| | - Abbie J Kim
- Department of Chemistry, University of Illinois Urbana-Champaign, Illinois 61801, United States
| | - Hannah J Liu
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Illinois 61801, United States
| | - Julian C Cooper
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Illinois 61801, United States
- Department of Chemistry, University of Illinois Urbana-Champaign, Illinois 61801, United States
| | - Randy H Ewoldt
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Illinois 61801, United States
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Illinois 61801, United States
| | - Jeffrey S Moore
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Illinois 61801, United States
- Department of Chemistry, University of Illinois Urbana-Champaign, Illinois 61801, United States
- Department of Material Science and Engineering, University of Illinois Urbana-Champaign, Illinois 61801, United States
| | - Sameh Tawfick
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Illinois 61801, United States
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Illinois 61801, United States
| |
Collapse
|
2
|
Jacky PE, Easley AD, Fors BP. Controlled anionic polymerization mediated by carbon dioxide. Nat Chem 2025:10.1038/s41557-025-01819-7. [PMID: 40360830 DOI: 10.1038/s41557-025-01819-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 03/31/2025] [Indexed: 05/15/2025]
Abstract
Anionic polymerizations of vinyl monomers are powerful synthetic platforms for making well-defined materials. However, these reactions are extremely sensitive to moisture and oxygen, require the use of highly purified reagents, must be run at low temperatures, and use hazardous and difficult-to-handle alkyl lithium initiators. Together, these drawbacks limit the practicality of these polymerizations and impede their widespread usage. On this basis, the development of a user-friendly anionic polymerization process for methacrylates is a grand challenge. Here we report an anionic polymerization of methacrylates mediated by CO2 that can be run at elevated temperatures and uses an easy-to-handle solid initiator. The reversible addition of CO2 to the enolate chain end efficiently tempers the reactivity of the anion, giving polymers with narrow molar mass distributions and excellent molecular weight targeting at elevated temperatures. Our scalable and more user-friendly CO2-mediated method improves the accessibility and safety of anionic polymerizations and facilitates the production of a variety of polymeric materials.
Collapse
Affiliation(s)
- Paige E Jacky
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Alexandra D Easley
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Brett P Fors
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
3
|
Ye P, Wei X, Shen C, Liu X, Xu S, Wang YZ. Iron(III)-Catalyzed C─H Hydroxylation of Low-Density Polyethylene Coupled with Short Chain Branching Growth. Angew Chem Int Ed Engl 2025:e202503405. [PMID: 40260590 DOI: 10.1002/anie.202503405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/30/2025] [Accepted: 04/21/2025] [Indexed: 04/23/2025]
Abstract
Low-density polyethylene (LDPE) is widely used in packaging applications, but after being discarded its environmental impact is a pressing concern due to a lack of effective chemical recycling strategies, especially owing to its chemical inertness and nonpolar nature. To address these challenges, we present a mild iron(III)-catalyzed oxidative upcycling of LDPE in which C─H hydroxylation of LDPE occurs coupled with the growth of methyl short chain branching (Me-SCB) and ethyl shortchain branching (Et-SCB). As a result, the resulting products achieve significant improvements in surface wettability, crystallinity, and mechanical properties despite a concomitant reduction in molecular weight. CH…F interactions and σ-π interactions are found between LDPE and the catalyst. Density functional theory (DFT) calculations elucidate the catalytic mechanism that fluorine on the ligand facilitates hydrogen peroxide activation and subsequent deprotonation, leading to the formation of high-valent ironoxo species. The growth of short-chain branching (SCB) involves the β-scission of CC bonds and a radical-mediated chain-walking mechanism. This work represents a transformative advancement in deep understanding of polyolefin upcycling and opens a new approach of polyolefin functionalization and architecture modulation.
Collapse
Affiliation(s)
- Pengbo Ye
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), National Key Laboratory of Advanced Polymer Materials, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xiangyue Wei
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), National Key Laboratory of Advanced Polymer Materials, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Chengfeng Shen
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), National Key Laboratory of Advanced Polymer Materials, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xuehui Liu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Architecture and Environment, Sichuan University, Chengdu, 610064, China
| | - Shimei Xu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), National Key Laboratory of Advanced Polymer Materials, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), National Key Laboratory of Advanced Polymer Materials, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
4
|
Tang S, Liang X, Li Y, Li YY, Luo G, Hu J, Chen DF. Vinylogous Anionic Ring-Opening Polymerization of Vinylidenecyclopropanes with Native C-H Bonds as the Dormant Species. J Am Chem Soc 2025; 147:7196-7202. [PMID: 39989149 DOI: 10.1021/jacs.4c17911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Since its inception in 2023, the concept of "C-H bonds as the dormant species" to control chain growth has emerged as a promising, though still evolving, strategy for precision polymer synthesis. Beyond offering a simpler polymerization method, this concept is expected to promote unprecedented reaction pathways. In this study, we report the first vinylogous anionic ring-opening polymerization (ROP) of vinylidenecyclopropanes. Cooperative La(OTf)3/DBU catalysis, in conjunction with various sp3 and sp2 C-H bonds, has streamlined the synthesis of well-defined alkyne polymers, which are amenable to further chemical modifications. Control experiments and density functional theory (DFT) calculations provide insights into the origin of selectivity and the role of dormant C-H bonds in the reversible-deactivation equilibrium.
Collapse
Affiliation(s)
- Shuai Tang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xuhui Liang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yuan Li
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Yang-Yang Li
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Gen Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Jinming Hu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Dian-Feng Chen
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
5
|
Huang Z, Dong J, Liu K, Pan X. Oxygen, light, and mechanical force mediated radical polymerization toward precision polymer synthesis. Chem Commun (Camb) 2025; 61:2699-2722. [PMID: 39817502 DOI: 10.1039/d4cc05772d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The synthesis of polymers with well-defined composition, architecture, and functionality has long been a focal area of research in the field of polymer chemistry. The advancement of controlled radical polymerization (CRP) has facilitated the synthesis of precise polymers, which are endowed with new properties and functionalities, thereby exhibiting a wide range of applications. However, radical polymerization faces several challenges, such as oxygen intolerance, and common thermal initiation methods may lead to side reactions and depolymerization. Therefore, we have developed some oxygen-tolerant systems that directly utilize oxygen for initiating and regulating polymerization. We utilize oxygen/alkylborane as an effective radical initiator system in the polymerization, and also as a reductant for the removal of polymer chain ends. Moreover, we employ the gentler photoinduced CRP to circumvent side reactions caused by high temperatures and achieve temporal and spatial control over the polymerization. To enhance the penetration of the light source for polymerization, we have developed near-infrared light-induced atom transfer radical polymerization. Additionally, we have extended photochemistry to reversible addition-fragmentation chain transfer polymerization involving ion-pair inner-sphere electron transfer mechanism, metal-free radical hydrosilylation polymerization, as well as carbene-mediated polymer modification through C-H activation and insertion mechanisms. Furthermore, we propose a new method for polymerization initiation synergistically triggered by oxygen and mechanical energy. This review not only showcases the current advancements in CRP but also outlines future directions, such as the potential for 3D printing and surface coatings, and the exploration of new heteroatom radical polymerizations. By expanding the boundaries of polymer synthesis, these innovations could lead to the creation of new materials with enhanced functionality and applications.
Collapse
Affiliation(s)
- Zhujun Huang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Jin Dong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Kaiwen Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Xiangcheng Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| |
Collapse
|
6
|
Pan Y, Hao M, Li X, Meng Y, Kang X, Zhang G, Sun X, Song XZ, Zhang L, So YM. Anilido-Oxazoline-Ligated Iron Alkoxide Complexes for Living Ring-Opening Polymerization of Cyclic Esters with Controllability. Inorg Chem 2025; 64:530-544. [PMID: 39716360 DOI: 10.1021/acs.inorgchem.4c04028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Anilido-oxazoline-ligated iron complexes, including bis(anilido-oxazolinate) iron(II), mononuclear iron(II) alkyl and aryloxide, as well as the dinuclear analogues, were synthesized, and their catalytic performance on ring-opening polymerization (ROP) has been studied. Transmetalation of FeCl2(THF)1.5 with in situ-generated anilido-oxazolinate lithium afforded the bis(anilido-oxazolinate) iron complexes 1 and 2. Half-sandwich anilido-oxazolinate iron trimethylsilylalkyl complexes 3 and 4 could be synthesized in good yields via taking pyridine as an L-type ligand. Treatment of 3 with benzyl alcohol and 4-phenoxyphenol, respectively, generated the dimeric alkoxide or aryloxide complexes 5 and 6, whereas the reaction with 2,4,6-trimethylphenol and 2,6-di-tert-butyl-4-methylphenol yielded the mononuclear aryloxide complexes 7 and 8, respectively. The iron alkoxide and aryloxide complexes were active single component catalysts for the ROP of ε-caprolactone (CL). Remarkably, the dinuclear complex 5 exhibited excellent controllability, livingness, and high initiation efficiency for ROP of CL. ROP of CL derivatives by 5 produced the corresponding polycyclic esters with good controllability, and the well-defined block copolymers could be generated by sequentially feeding different monomers. The chain initiation and propagation processes were investigated by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and kinetics analysis. In addition, a computational study was conducted to rationalize the mechanism and synergistic effect of the alkoxide-bridged bimetallic iron centers.
Collapse
Affiliation(s)
- Yu Pan
- Institute of Functional Textiles and Advanced Materials, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Mingyang Hao
- Institute of Functional Textiles and Advanced Materials, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Xia Li
- Institute of Functional Textiles and Advanced Materials, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Yi Meng
- Institute of Functional Textiles and Advanced Materials, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Xiaohui Kang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Gangqiang Zhang
- Institute of Functional Textiles and Advanced Materials, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Xingrun Sun
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Xue-Zhi Song
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Lin Zhang
- Institute of Functional Textiles and Advanced Materials, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
- Loftex Industries Limited, Binzhou 256651, China
| | - Yat-Ming So
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| |
Collapse
|
7
|
Ahmetali E, Kocaarslan A, Bräse S, Théato P, Kasım Şener M. Zinc Phthalocyanine Core-First Star Polymers Through Nitroxide Mediated Polymerization and Nitroxide Exchange Reaction. Macromol Rapid Commun 2025; 46:e2400601. [PMID: 39340483 PMCID: PMC11713867 DOI: 10.1002/marc.202400601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Indexed: 09/30/2024]
Abstract
Nitroxide-mediated polymerization (NMP) and nitroxide exchange reaction (NER) are very efficient methodologies that require only suitable alkoxyamine derivatives and create different polymeric architectures in a controlled manner. Herein, the synthesis of star polymers containing TEMPO-substituted symmetric zinc phthalocyanine (ZnPc) is presented via NMP and NER. Moreover, linear polymer formation is conducted in a single arm on TEMPO-substituted asymmetric ZnPc to elucidate the properties of star polymers. All linear and star polymers are characterized by FT-IR, UV-vis, fluorescence, GPC, NMR, and EPR techniques. The results show that the proposed reactions are capable of forming controlled star-shaped polymers. The increasing arm number (from a single to four arms) results in variable dispersity values (Đ) (1.2-3) due to different arm lengths, especially in NMP. However, this difficulty has been overcome via NER, and star polymers have been successfully synthesized with relatively low molecular weight (30 K > 10 K) and low dispersity (1.2-1.9). The results clearly indicate that while styrene and 4-vinyl benzyl chloride monomers are introduced to the structure equally, star polymers with phthalocyanine can be synthesized in a controlled manner, and their quarternized derivatives have the potential to be effective as photoactive agents in photodynamic therapy.
Collapse
Affiliation(s)
- Erem Ahmetali
- Institute of Organic Chemistry (IOC)Karlsruhe Institute of Technology (KIT)Kaiserstraße 1276131KarlsruheGermany
- Department of ChemistryYıldız Technical UniversityIstanbul34210Turkey
| | - Azra Kocaarslan
- Institute for Chemical Technology and Polymer ChemistryKarlsruhe Institute of Technology (KIT)Engesserstraße 1876131KarlsruheGermany
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC)Karlsruhe Institute of Technology (KIT)Kaiserstraße 1276131KarlsruheGermany
- Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS‐FMS)Karlsruhe Institute of TechnologyHermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| | - Patrick Théato
- Institute for Chemical Technology and Polymer ChemistryKarlsruhe Institute of Technology (KIT)Engesserstraße 1876131KarlsruheGermany
- Soft Matter Synthesis Laboratory – Institute for Biological Interfaces III (IBG‐3)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 176344Eggenstein‐LeopoldshafenGermany
| | - M. Kasım Şener
- Department of ChemistryYıldız Technical UniversityIstanbul34210Turkey
| |
Collapse
|
8
|
Jones GR, Antonopoulou MN, Truong NP, Anastasaki A. Initiators for Continuous Activator Regeneration (ICAR) Depolymerization. J Am Chem Soc 2024; 146:35023-35028. [PMID: 39663797 DOI: 10.1021/jacs.4c13785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Chemical recycling of polymers synthesized by atom transfer radical polymerization (ATRP) typically requires high temperatures (i.e., 170 °C) to operate effectively, not only consuming unnecessary energy but also compromising depolymerization yields due to unavoidable end-group deterioration. To overcome this, the concept of initiators for continuous activator regeneration (ICAR) depolymerization is introduced herein as a broadly applicable approach to significantly reduce reaction temperatures for ATRP depolymerizations. Addition of commercially available free radical initiators enables the on-demand increase of depolymerization efficiency from <1% to 96%, achieving monomer generation at 120 °C, with conversions on par with thermal reversible addition-fragmentation chain transfer (RAFT) depolymerizations. Incubation studies confirm the elimination of deleterious side reactions at the milder temperatures employed, while the methodology can be scaled up to 1 g. The robustness and versatility of ICAR depolymerization is further demonstrated by the possibility to effectively depolymerize both chlorine and bromine terminated polymers and its compatibility with both copper and iron catalysts.
Collapse
Affiliation(s)
- Glen R Jones
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Maria-Nefeli Antonopoulou
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Nghia P Truong
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Athina Anastasaki
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| |
Collapse
|
9
|
Jangid P, Punia B, Chaudhury S. Stochastic dynamics of hairballs in single-polymer growth. Phys Chem Chem Phys 2024; 26:29749-29758. [PMID: 39432030 DOI: 10.1039/d4cp02960g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Real-time monitoring of the single-chain growth of synthetic polymers shows that their end-to-end extension during polymerization in living conditions does not increase continuously. Instead, it remains in a non-equilibrium state, exhibiting stochastic wait-and-jump events when one end of the polymer is subjected to a constant force and the other end is clamped. This wait-and-jump observation was attributed to the stochastic formation and unwinding of conformational entanglements, referred to as hairballs, which result from intrachain and non-bonded interactions within the polymer. In this work, we propose a new theoretical approach to investigate the microscopic dynamics of a single hairball formation and unravelling process during single-chain polymerisation. A discrete state stochastic approach is adopted to analyse the respective wait-and-jump events, which provides fully analytical solutions for all dynamic properties under non-equilibrium conditions. Our theory suggests that dynamic conformation fluctuations of the hairball may be responsible for the experimentally observed complex non-exponential behaviour in the waiting times. Excellent quantitative agreements with existing experimental data provide strong support for our theory. Further, using a Monte Carlo simulation approach, we analysed the correlations between the waiting time and extension of polymer in a single jump, which indicates the possibility of more complex dynamics of polymer growth.
Collapse
Affiliation(s)
- Pankaj Jangid
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pune 411008, Maharashtra, India.
| | - Bhawakshi Punia
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pune 411008, Maharashtra, India.
| | - Srabanti Chaudhury
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pune 411008, Maharashtra, India.
| |
Collapse
|
10
|
Mondal P, Sensharma D, Cohen SM. Polymer-Metal-Organic Frameworks (polyMOFs) Based on Tailor-Made Poly(alkenamer)s. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:9696-9703. [PMID: 39398369 PMCID: PMC11467828 DOI: 10.1021/acs.chemmater.4c01794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024]
Abstract
Polymeric linkers used to construct porous, crystalline polymer-metal-organic frameworks (polyMOFs) are predominantly based on macromolecules with metal-coordinating ligand units (e.g., 1,4-benzenedicarboxylic acid, H2bdc) included in the primary polymer backbone. Polymers with ligand units as pendants or dangling side chain substituents have been far less explored for the synthesis of polyMOFs, despite the fact that such systems may have distinct properties and could take advantage of a variety of chain polymerization methods. Prevailing reports are based on nonliving polymerized linkers with H2bdc pendants that generated polyMOFs with key shortcomings in controlling the polymerization, tailoring polymeric linker composition and polyMOF properties, accessing porosity, etc. Herein, polymers containing H2bdc units as pendants were designed and synthesized via controlled olefin-metathesis polymerization. These poly(alkenamer)s were subsequently assembled into porous, crystalline networks with an isoreticular MOF (IRMOF) lattice topology. These polymer architectures and polymerization methodologies provide access to the formation of polyMOFs with tailored characteristics, including controlled composition, narrow dispersity, and side chain functionalization.
Collapse
Affiliation(s)
- Prantik Mondal
- Department of Chemistry and
Biochemistry, University of California,
San Diego, La Jolla, California 92093, United States
| | - Debobroto Sensharma
- Department of Chemistry and
Biochemistry, University of California,
San Diego, La Jolla, California 92093, United States
| | - Seth M. Cohen
- Department of Chemistry and
Biochemistry, University of California,
San Diego, La Jolla, California 92093, United States
| |
Collapse
|
11
|
Hosford BM, Ramos W, Lamb JR. Combining photocontrolled-cationic and anionic-group-transfer polymerizations using a universal mediator: enabling access to two- and three-mechanism block copolymers. Chem Sci 2024; 15:13523-13530. [PMID: 39183918 PMCID: PMC11339941 DOI: 10.1039/d4sc02511c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/19/2024] [Indexed: 08/27/2024] Open
Abstract
An ongoing challenge in polymer chemistry is accessing diverse block copolymers from multiple polymerization mechanisms and monomer classes. One strategy to accomplish this goal without intermediate compatibilization steps is the use of universal mediators. Thiocarbonyl thio (TCT) functional groups are well-known mediators to combine radical with either cationic or anionic polymerization, but a sequential cationic-anionic universal mediator system has never been reported. Herein, we report a TCT universal mediator that can sequentially perform photocontrolled cationic polymerization and thioacyl anionic group transfer polymerization to access poly(ethyl vinyl ether)-block-poly(thiirane) polymers for the first time. Thermal analyses of these block copolymers provide evidence of microphase separation. The success of this system, along with the established compatibility of radical polymerization, enabled us to further chain extend the cationic-anionic diblock using radical polymerization of N-isopropylacrylamide. The resulting terpolymer represents the first example of a triblock made from three different monomer classes incorporated via three different mechanisms without any end-group modification steps. The development of this simple, sequential synthesis using a universal mediator approach opens up new possibilities by providing facile access to diverse block copolymers of vinyl ethers, thiiranes, and acrylamides.
Collapse
Affiliation(s)
- Brandon M Hosford
- Department of Chemistry, University of Minnesota-Twin Cities 207 Pleasant Street SE Minneapolis MN 55455 USA
| | - William Ramos
- Department of Chemistry, University of Minnesota-Twin Cities 207 Pleasant Street SE Minneapolis MN 55455 USA
| | - Jessica R Lamb
- Department of Chemistry, University of Minnesota-Twin Cities 207 Pleasant Street SE Minneapolis MN 55455 USA
| |
Collapse
|
12
|
Zhang J, Lui KH, Zunino R, Jia Y, Morodo R, Warlin N, Hedrick JL, Talarico G, Waymouth RM. Highly Selective O-Phenylene Bisurea Catalysts for ROP: Stabilization of Oxyanion Transition State by a Semiflexible Hydrogen Bond Pocket. J Am Chem Soc 2024; 146:22295-22305. [PMID: 39102651 DOI: 10.1021/jacs.4c04740] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Organocatalyzed ring-opening polymerization (ROP) is a versatile technique for synthesizing biodegradable polymers, including polyesters and polycarbonates. We introduce o-phenylene bisurea (OPBU) (di)anions as a novel class of organocatalysts that are fast, easily tunable, mildly basic, and exceptionally selective. These catalysts surpass previous generations, such as thiourea, urea, and TBD, in selectivity (kp/ktr) by 8 to 120 times. OPBU catalysts facilitate the ROP of various monomers, achieving high conversions (>95%) in seconds to minutes, producing polymers with precise molecular weights and very low dispersities (Đ ≈ 1.01). This performance nearly matches the ideal distribution expected from living polymerization (Poisson distribution). Density functional theory (DFT) calculations reveal that the catalysts stabilize the oxyanion transition state via a hydrogen bond pocket similar to the "oxyanion hole" in enzymatic catalysis. Both experimental and theoretical analyses highlight the critical role of the semirigid o-phenylene linker in creating a hydrogen bond pocket that is tight yet flexible enough to accommodate the oxyanion transition state effectively. These new insights have provided a new class of organic catalysts whose accessibility, moderate basicity, excellent solubility, and unparalleled selectivity and tunability open up new opportunities for controlled polymer synthesis.
Collapse
Affiliation(s)
- Jia Zhang
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Kai Hin Lui
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Rachele Zunino
- Scuola Superiore Meridionale, Largo San Marcellino 10, Napoli 80138, Italy
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cintia, Napoli I-80126, Italy
| | - Yuan Jia
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Romain Morodo
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Niklas Warlin
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - James L Hedrick
- IBM Research-Almaden, 650 Harry Road, San Jose, California 95120, United States
| | - Giovanni Talarico
- Scuola Superiore Meridionale, Largo San Marcellino 10, Napoli 80138, Italy
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cintia, Napoli I-80126, Italy
| | - Robert M Waymouth
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| |
Collapse
|
13
|
Clothier GKK, Guimarães TR, Thompson SW, Howard SC, Muir BW, Moad G, Zetterlund PB. Streamlining the Generation of Advanced Polymer Materials Through the Marriage of Automation and Multiblock Copolymer Synthesis in Emulsion. Angew Chem Int Ed Engl 2024; 63:e202320154. [PMID: 38400586 DOI: 10.1002/anie.202320154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 02/25/2024]
Abstract
Synthetic polymers are of paramount importance in modern life - an incredibly wide range of polymeric materials possessing an impressive variety of properties have been developed to date. The recent emergence of artificial intelligence and automation presents a great opportunity to significantly speed up discovery and development of the next generation of advanced polymeric materials. We have focused on the high-throughput automated synthesis of multiblock copolymers that comprise three or more distinct polymer segments of different monomer composition bonded in linear sequence. The present work has exploited automation to prepare high molar mass multiblock copolymers (typically>100,000 g mol-1) using reversible addition-fragmentation chain transfer (RAFT) polymerization in aqueous emulsion. A variety of original multiblock copolymers have been synthesised via a Chemspeed robot, exemplified by a multiblock copolymer comprising thirteen constituent blocks. Moreover, libraries of copolymers of randomized monomer compositions (acrylates, acrylamides, methacrylates, and styrenes), block orders, and block lengths were also generated, thereby demonstrating the robustness of our synthetic approach. One multiblock copolymer contained all four monomer families listed in the pool, which is unprecedented in the literature. The present work demonstrates that automation has the power to render complex and laborious syntheses of such unprecedented materials not just possible, but facile and straightforward, thus representing the way forward to the next generation of complex macromolecular architectures.
Collapse
Affiliation(s)
- Glenn K K Clothier
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Thiago R Guimarães
- Laboratoire de Chimie des Polymères Organiques (LCPO), CNRS (UMR 5629), ENSCPB, Université de Bordeaux, 16 avenue Pey Berland, 33607, Pessac, France
| | - Steven W Thompson
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Shaun C Howard
- CSIRO Manufacturing, Bag 10, Clayton South, VIC, 3169, Australia
| | - Benjamin W Muir
- CSIRO Manufacturing, Bag 10, Clayton South, VIC, 3169, Australia
| | - Graeme Moad
- CSIRO Manufacturing, Bag 10, Clayton South, VIC, 3169, Australia
| | - Per B Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
14
|
Xie T, Chen SS, Li YY, Chen DF. Leveraging Electron Push-Pull Effect for Catalytic Polymerization and Degradation of a Cyclobutane Monomer System. Angew Chem Int Ed Engl 2024; 63:e202405408. [PMID: 38728168 DOI: 10.1002/anie.202405408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 05/12/2024]
Abstract
Ring-opening polymerization (ROP) offers a striking solution to solve problems encountered in step-growth condensation polymerization, including precise control over molecular weight, molecular weight distribution, and topology. This has inspired our interest in ROP of cycloalkanes with an ultimate goal to rethink polyolefins, which clearly poses a number of challenges. Practicality of ROP of cycloalkanes is actually limited by their low polymerizability and elusive mechanisms which arise from significantly varied ring size and non-polar C-C bonds in monomers. In this work, by using Lewis acid/Brønsted base/C(sp3)-H initiator system previously developed in our laboratory, we focus on cyclobutanes and explore the positional and electronic effects of substituents on the ring, namely electron push-pull effect, in promoting controlled polymerization to afford densely functionalized poly(cyclobutanes), as well as catalytic degradation of obtained polymers for upcycling. More importantly, experiments and DFT calculations unveil considerable population of Lewis-acid-induced thermostabilized 1,4-zwitterions, which distinguish cyclobutanes from cyclopropanes and others. All these findings would shed light on catalytic synthesis and degradation of saturated all-carbon main-chain polymers, as well as small molecule transformations of cyclobutanes.
Collapse
Affiliation(s)
- Teng Xie
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shu-Sen Chen
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yang-Yang Li
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Dian-Feng Chen
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
15
|
Wu T, Wang Z, Yin F, Wang W, Yi Z. Isoporous Membranes by the Symmetric Triblock Copolymer: A Strategy to Improve the Mechanical Strength without Sharply Changing the Pore Size and Permselectivity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37073-37086. [PMID: 38958638 DOI: 10.1021/acsami.4c07113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Isoporous membranes produced from diblock copolymers commonly display a poor mechanical property that shows many negative impacts on their separation application. It is theoretically predicted that dense films produced from symmetric triblock copolymers show much stronger mechanical properties than those of homologous diblock copolymers. However, to the best of our knowledge, symmetric triblock copolymers have rarely been fabricated into isoporous membranes before, and a full understanding of separation as well as mechanical properties of membranes prepared from triblock copolymers and homologous diblock copolymers has not been conducted, either. In this work, a cleavable symmetric triblock copolymer with polystyrene as the side block and poly(4-vinylpyridine) (P4VP) as the middle block was synthesized and designed by the RAFT polymerization using the symmetric chain transfer agent, which located at the center of polymer chains and could be removed to produce homologous diblock copolymers with half-length while having the same composition as that found in triblock copolymers. The self-assembly of these two copolymers in thin films and casting solutions was first investigated, observing that they displayed similar self-organized structures under these two conditions. When fabricated into isoporous membranes, they showed similar pore sizes (5-7% difference) and comparable rejection performance (∼10% difference). However, isoporous membranes produced from triblock copolymers showed significantly improved mechanical strength and higher toughness (2-10 times larger) as evidenced by the compacting resistance, strain-stress determination, and nanoindentation testing, suggesting the unique and novel structure-performance relationship in the isoporous membranes produced from symmetric triblock copolymers. The above finding will guide the way to fabricate mechanically robust isoporous membranes without notably changing the separation performance from rarely used symmetric triblock copolymers, which can be synthesized by the controlled polymerization as facilely as that found for diblock copolymers.
Collapse
Affiliation(s)
- Tao Wu
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Huzhou Institute of Collaborative Innovation Center for Membrane Separation and Water treatment, Hong Feng Road, Huzhou 313000, China
| | - Zixiong Wang
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Fengjie Yin
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wenjing Wang
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhuan Yi
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Huzhou Institute of Collaborative Innovation Center for Membrane Separation and Water treatment, Hong Feng Road, Huzhou 313000, China
| |
Collapse
|
16
|
He ZJ, Huang B, Cai LH. Bottlebrush Polyethylene Glycol Nanocarriers Translocate across Human Airway Epithelium via Molecular Architecture-Enhanced Endocytosis. ACS NANO 2024; 18:17586-17599. [PMID: 38932624 PMCID: PMC11238595 DOI: 10.1021/acsnano.4c01983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Pulmonary drug delivery is critical for the treatment of respiratory diseases. However, the human airway surface presents multiple barriers to efficient drug delivery. Here, we report a bottlebrush poly(ethylene glycol) (PEG-BB) nanocarrier that can translocate across all barriers within the human airway surface. Guided by a molecular theory, we design a PEG-BB molecule consisting of a linear backbone densely grafted by many (∼1000) low molecular weight (∼1000 g/mol) polyethylene glycol (PEG) chains; this results in a highly anisotropic, wormlike nanocarrier featuring a contour length of ∼250 nm, a cross-section of ∼20 nm, and a hydrodynamic diameter of ∼40 nm. Using the classic air-liquid-interface culture system to recapitulate essential biological features of the human airway surface, we show that PEG-BB rapidly penetrates through endogenous airway mucus and periciliary brush layer (mesh size of 20-40 nm) to be internalized by cells across the whole epithelium. By quantifying the cellular uptake of polymeric carriers of various molecular architectures and manipulating cell proliferation and endocytosis pathways, we show that the translocation of PEG-BB across the epithelium is driven by bottlebrush architecture-enhanced endocytosis. Our results demonstrate that large, wormlike bottlebrush PEG polymers, if properly designed, can be used as a carrier for pulmonary and mucosal drug delivery.
Collapse
Affiliation(s)
- Zhi-Jian He
- Department
of Biomedical Engineering, University of
Virginia, Charlottesville, Virginia 22904, United States
| | - Baiqiang Huang
- Soft
Biomatter Laboratory, Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Li-Heng Cai
- Soft
Biomatter Laboratory, Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
- Department
of Biomedical Engineering, University of
Virginia, Charlottesville, Virginia 22904, United States
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
17
|
Liu P, Jimaja S, Immel S, Thomas C, Mayer M, Weder C, Bruns N. Mechanically triggered on-demand degradation of polymers synthesized by radical polymerizations. Nat Chem 2024; 16:1184-1192. [PMID: 38609710 PMCID: PMC11230896 DOI: 10.1038/s41557-024-01508-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/15/2024] [Indexed: 04/14/2024]
Abstract
Polymers that degrade on demand have the potential to facilitate chemical recycling, reduce environmental pollution and are useful in implant immolation, drug delivery or as adhesives that debond on demand. However, polymers made by radical polymerization, which feature all carbon-bond backbones and constitute the most important class of polymers, have proven difficult to render degradable. Here we report cyclobutene-based monomers that can be co-polymerized with conventional monomers and impart the resulting polymers with mechanically triggered degradability. The cyclobutene residues act as mechanophores and can undergo a mechanically triggered ring-opening reaction, which causes a rearrangement that renders the polymer chains cleavable by hydrolysis under basic conditions. These cyclobutene-based monomers are broadly applicable in free radical and controlled radical polymerizations, introduce functional groups into the backbone of polymers and allow the mechanically gated degradation of high-molecular-weight materials or cross-linked polymer networks into low-molecular-weight species.
Collapse
Affiliation(s)
- Peng Liu
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland.
- Swiss National Center of Competence in Research Bio-Inspired Materials, Fribourg, Switzerland.
- Department of Materials, ETH Zürich, Zürich, Switzerland.
| | - Sètuhn Jimaja
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
- Swiss National Center of Competence in Research Bio-Inspired Materials, Fribourg, Switzerland
| | - Stefan Immel
- Department of Chemistry and Centre for Synthetic Biology, University of Darmstadt, Darmstadt, Germany
| | | | - Michael Mayer
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
- Swiss National Center of Competence in Research Bio-Inspired Materials, Fribourg, Switzerland
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
- Swiss National Center of Competence in Research Bio-Inspired Materials, Fribourg, Switzerland
| | - Nico Bruns
- Swiss National Center of Competence in Research Bio-Inspired Materials, Fribourg, Switzerland.
- Department of Chemistry and Centre for Synthetic Biology, University of Darmstadt, Darmstadt, Germany.
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK.
| |
Collapse
|
18
|
Singha S, Pan S, Tallury SS, Nguyen G, Tripathy R, De P. Recent Developments on Cationic Polymerization of Vinyl Ethers. ACS POLYMERS AU 2024; 4:189-207. [PMID: 38882029 PMCID: PMC11177306 DOI: 10.1021/acspolymersau.3c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 06/18/2024]
Abstract
In recent times, the evolution of cationic polymerization has taken a multidirectional approach, with the development of cationic reversible addition-fragmentation chain transfer (RAFT) polymerization. In contrast to the conventional cationic polymerization methods, which were typically carried out under inert atmospheres and low temperatures, various novel polymerization techniques have been developed where the reactions are carried out in open air, operate at room temperature, are cost-effective, and are environmentally friendly. Besides, several external stimuli, such as heat, light, chemicals, electrical potential, etc. have been employed to activate and control the polymerization process. It also enables the combination of cationic polymerization with other polymerization methods in a single reaction vessel, eliminating the necessity for isolation and purification during intermediate steps. In addition, significant advancements have been made through various modifications in catalyst systems, resulting in polymers with an exceptionally high level of stereoregularity. This review article comprehensively analyses the recent developments in cationic polymerization, encompassing their applications and offering insights into future perspectives.
Collapse
Affiliation(s)
- Sourav Singha
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, Nadia, West Bengal, India
| | - Swagata Pan
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, Nadia, West Bengal, India
| | - Syamal S Tallury
- ExxonMobil Chemical Company, 5200 Bayway Drive, Baytown, Texas 77520-2101, United States
| | - Giang Nguyen
- ExxonMobil Chemical Company, 5200 Bayway Drive, Baytown, Texas 77520-2101, United States
| | - Ranjan Tripathy
- ExxonMobil Chemical Company, 5200 Bayway Drive, Baytown, Texas 77520-2101, United States
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, Nadia, West Bengal, India
| |
Collapse
|
19
|
Jagannathan JR, Ma Y, Curole BJ, Grayson SM, Fenton OS, Leibfarth FA. Regioselective Palladium-Catalyzed Chain-Growth Allylic Amination Polymerization of Vinyl Aziridines. J Am Chem Soc 2024; 146:15264-15274. [PMID: 38801413 PMCID: PMC11977030 DOI: 10.1021/jacs.4c02599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Organometallic-mediated chain growth polymerization of readily accessible chemical building blocks is responsible for important commercial and technological advances in polymer science, but the incorporation of heteroatoms into the polymer backbone through these mechanisms remains a challenge. Transition metal π-allyl complexes are well-developed organometallic intermediates for carbon-heteroatom bond formation in small-molecule catalysis yet remain underexplored in polymer science. Here, we developed a regioselective palladium-phosphoramidite-catalyzed chain-growth allylic amination polymerization of vinyl aziridines for the synthesis of novel nitrogen-rich polymers via ambiphilic π-allyl complexes. The polymerization accessed a linear microstructure with four carbons between each nitrogen, which is challenging to achieve through other chain-growth polymerization approaches. The highly regioselective allylic amination polymerization demonstrated the characteristics of a controlled polymerization and was able to achieve molar masses exceeding 20 kg mol-1 with low dispersities (D̵ < 1.3). The identification of the polymer structure and well-defined chain ends were supported by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and chain extension experiments demonstrate opportunities for building more complex materials from this method. A Hammett study was performed to understand the role of the catalyst and monomer structure on regioselectivity, and the data supported a mechanism wherein regioselectivity was primarily controlled by the ligand-metal complex. Postpolymerization desulfonylation provided access to a novel polyamine that demonstrated broad anticancer activity in vitro, which highlights the benefits of unlocking novel polyamine microstructures through regioselective chain-growth allylic amination polymerization.
Collapse
Affiliation(s)
- Jake R. Jagannathan
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Yutian Ma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Brennan J. Curole
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Scott M. Grayson
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Owen S. Fenton
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Frank A. Leibfarth
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
20
|
Medina JT, Tran QH, Hughes RP, Wang X, Brookhart M, Daugulis O. Ethylene Polymerizations Catalyzed by Fluorinated "Sandwich" Diimine-Nickel and Palladium Complexes. J Am Chem Soc 2024; 146:15143-15154. [PMID: 38781282 DOI: 10.1021/jacs.4c01322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Nickel and palladium complexes bearing "sandwich" diimine ligands with perfluorinated aryl caps have been synthesized, characterized, and explored in ethylene polymerization reactions. The X-ray crystallographic analysis of the precatalysts 16 and 6b shows differences from their nonfluorinated analogues 17 and 19, with the perfluorinated aryl caps centered precisely over the nickel and palladium centers, which results in higher buried volumes of the metal centers relative to the nonfluorinated analogues. The sandwich diimine-palladium complexes 5a and 5b containing perfluorinated aryl caps polymerize ethylene in a controlled fashion with activities that are substantially increased compared with their nonfluorinated analogues. Migratory insertion rates in relevant methyl ethylene complexes agree with the activities exhibited in bulk polymerization experiments. DFT studies suggest that facility of ethylene rotation from its preferred orientation perpendicular to the Pd-alkyl bond into a parallel in-plane conformation contributes to the higher polymerization activity for 5b relative to 18a. For these palladium systems, polymer molecular weights can be controlled via hydrogen addition (hydrogenolysis), which is unusual for late-transition-metal-catalyzed olefin polymerizations with no catalyst deactivation occurring. Sandwich diimine-nickel complexes 6a and 6b with perfluorinated aryl caps show ethylene polymerization activities that are about half of those of classical tetraisopropyl-substituted catalyst 2 but again are more active than the analogous nonfluorinated sandwich complexes. Ethylene polymerizations exhibit living behavior, and branched ultrahigh-molecular-weight polyethylenes (UHMWPEs) with very low-molecular-weight distributions (less than 1.1) are obtained. The activated nickel catalysts are stable in the absence of monomer and show good long-term stability at 25 °C.
Collapse
Affiliation(s)
- Joseph T Medina
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Quan H Tran
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Russell P Hughes
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Xiqu Wang
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Maurice Brookhart
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Olafs Daugulis
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| |
Collapse
|
21
|
Çalbaş B, Keobounnam AN, Korban C, Doratan AJ, Jean T, Sharma AY, Wright TA. Protein-polymer bioconjugation, immobilization, and encapsulation: a comparative review towards applicability, functionality, activity, and stability. Biomater Sci 2024; 12:2841-2864. [PMID: 38683585 DOI: 10.1039/d3bm01861j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Polymer-based biomaterials have received a lot of attention due to their biomedical, agricultural, and industrial potential. Soluble protein-polymer bioconjugates, immobilized proteins, and encapsulated proteins have been shown to tune enzymatic activity, improved pharmacokinetic ability, increased chemical and thermal stability, stimuli responsiveness, and introduced protein recovery. Controlled polymerization techniques, increased protein-polymer attachment techniques, improved polymer surface grafting techniques, controlled polymersome self-assembly, and sophisticated characterization methods have been utilized for the development of well-defined polymer-based biomaterials. In this review we aim to provide a brief account of the field, compare these methods for engineering biomaterials, provide future directions for the field, and highlight impacts of these forms of bioconjugation.
Collapse
Affiliation(s)
- Berke Çalbaş
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Ashley N Keobounnam
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Christopher Korban
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ainsley Jade Doratan
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Tiffany Jean
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Aryan Yashvardhan Sharma
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Thaiesha A Wright
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
22
|
Carrow KP, Hamilton HL, Hopps MP, Li Y, Qiao B, Payne NC, Thompson MP, Zhang X, Magassa A, Fattah M, Agarwal S, Vincent MP, Buyanova M, Bertin PA, Mazitschek R, Olvera de la Cruz M, Johnson DA, Johnson JA, Gianneschi NC. Inhibiting the Keap1/Nrf2 Protein-Protein Interaction with Protein-Like Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311467. [PMID: 38241649 PMCID: PMC11257647 DOI: 10.1002/adma.202311467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Successful and selective inhibition of the cytosolic protein-protein interaction (PPI) between nuclear factor erythroid 2-related factor 2 (Nrf2) and Kelch-like ECH-associating protein 1 (Keap1) can enhance the antioxidant response, with the potential for a therapeutic effect in a range of settings including in neurodegenerative disease (ND). Small molecule inhibitors have been developed, yet many have off-target effects, or are otherwise limited by poor cellular permeability. Peptide-based strategies have also been attempted to enhance specificity, yet face challenges due to susceptibility to degradation and lack of cellular penetration. Herein, these barriers are overcome utilizing a polymer-based proteomimetics. The protein-like polymer (PLP) consists of a synthetic, lipophilic polymer backbone displaying water soluble Keap1-binding peptides on each monomer unit forming a brush polymer architecture. The PLPs are capable of engaging Keap1 and displacing the cellular protective transcription factor Nrf2, which then translocates to the nucleus, activating the antioxidant response element (ARE). PLPs exhibit increased Keap1 binding affinity by several orders of magnitude compared to free peptides, maintain serum stability, are cell-penetrant, and selectively activate the ARE pathway in cells, including in primary cortical neuronal cultures. Keap1/Nrf2-inhibitory PLPs have the potential to impact the treatment of disease states associated with dysregulation of oxidative stress, such as NDs.
Collapse
Affiliation(s)
- Kendal P Carrow
- Department of Biomedical Engineering, McCormick School of Engineering, Medical Scientist Training Program, Feinberg School of Medicine, International Institute for Nanotechnology, Northwestern University, Evanston, 60208, IL, USA
| | - Haylee L Hamilton
- School of Pharmacy, University of Wisconsin, Madison, 57305, WI, USA
| | - Madeline P Hopps
- International Institute for Nanotechnology, Department of Chemistry, Chemistry of Life Processes Institute, Northwestern University, Evanston, 60208, IL, USA
| | - Yang Li
- Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, 60208, IL, USA
| | - Baofu Qiao
- Department of Natural Sciences, Baruch College, City University of New York, New York, 10010, NY, USA
| | - N Connor Payne
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, 02138, MA, USA
| | - Matthew P Thompson
- International Institute for Nanotechnology, Department of Chemistry, Chemistry of Life Processes Institute, Northwestern University, Evanston, 60208, IL, USA
| | - Xiaoyu Zhang
- International Institute for Nanotechnology, Department of Chemistry, Chemistry of Life Processes Institute, Northwestern University, Evanston, 60208, IL, USA
| | - Assa Magassa
- International Institute for Nanotechnology, Department of Chemistry, Chemistry of Life Processes Institute, Northwestern University, Evanston, 60208, IL, USA
| | - Mara Fattah
- International Institute for Nanotechnology, Department of Chemistry, Chemistry of Life Processes Institute, Northwestern University, Evanston, 60208, IL, USA
| | - Shivangi Agarwal
- Grove Biopharma, Inc, 1375 W. Fulton St., Ste. 650, Chicago, 60558, IL, USA
| | - Michael P Vincent
- Grove Biopharma, Inc, 1375 W. Fulton St., Ste. 650, Chicago, 60558, IL, USA
| | - Marina Buyanova
- Grove Biopharma, Inc, 1375 W. Fulton St., Ste. 650, Chicago, 60558, IL, USA
| | - Paul A Bertin
- Grove Biopharma, Inc, 1375 W. Fulton St., Ste. 650, Chicago, 60558, IL, USA
| | - Ralph Mazitschek
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, 02142, MA, USA
- Harvard T.H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Monica Olvera de la Cruz
- Department of Materials Science & Engineering, Robert R. McCormick School of Engineering and Applied Science, Center for Computation and Theory of Soft Materials, Northwestern University, Evanston, 60208, IL, USA
| | - Delinda A Johnson
- School of Pharmacy, University of Wisconsin, Madison, 57305, WI, USA
| | - Jeffrey A Johnson
- School of Pharmacy, University of Wisconsin, Madison, 57305, WI, USA
| | - Nathan C Gianneschi
- Departments of Chemistry, Materials Science & Engineering, Biomedical Engineering, Pharmacology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, International Institute for Nanotechnology, Northwestern University, Evanston, 60208, IL, USA
| |
Collapse
|
23
|
Islam F, Zeng Q. Advances in Organosulfur-Based Polymers for Drug Delivery Systems. Polymers (Basel) 2024; 16:1207. [PMID: 38732676 PMCID: PMC11085353 DOI: 10.3390/polym16091207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/07/2024] [Accepted: 04/10/2024] [Indexed: 05/13/2024] Open
Abstract
Organosulfur-based polymers have unique properties that make them useful for targeted and managed drug delivery, which can improve therapy while reducing side effects. This work aims to provide a brief review of the synthesis strategies, characterization techniques, and packages of organosulfur-based polymers in drug delivery. More importantly, this work discusses the characterization, biocompatibility, controlled release, nanotechnology, and targeted therapeutic aspects of these important structural units. This review provides not only a good comprehension of organosulfur-based polymers but also an insightful discussion of potential future prospectives in research. The discovery of novel organosulfur polymers and innovations is highly expected to be stimulated in order to synthesize polymer prototypes with increased functional accuracy, efficiency, and low cost for many industrial applications.
Collapse
Affiliation(s)
| | - Qingle Zeng
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| |
Collapse
|
24
|
Chen J, Bhat V, Hawker CJ. High-Throughput Synthesis, Purification, and Application of Alkyne-Functionalized Discrete Oligomers. J Am Chem Soc 2024; 146:8650-8658. [PMID: 38489842 PMCID: PMC10979451 DOI: 10.1021/jacs.4c00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/17/2024]
Abstract
The development of synthetic oligomers as discrete single molecular entities with accurate control over the number and nature of functional groups along the backbone has enabled a variety of new research opportunities. From fundamental studies of self-assembly in materials science to understanding efficacy and safety profiles in biology and pharmaceuticals, future directions are significantly impacted by the availability of discrete, multifunctional oligomers. However, the preparation of diverse libraries of discrete and stereospecific oligomers remains a significant challenge. We report a novel strategy for accelerating the synthesis and isolation of discrete oligomers in a high-throughput manner based on click chemistry and simplified bead-based purification. The resulting synthetic platform allows libraries of discrete polyether oligomers to be prepared and the impact of variables such as chain length, number, and nature of side chain functionalities and molecular dispersity on antibacterial behavior examined. Significantly, discrete oligomers were shown to exhibit enhanced activity with lower toxicity compared with traditional disperse samples. This work provides a practical and scalable methodology for nonexperts to prepare libraries of multifunctional discrete oligomers and demonstrates the advantages of discrete materials in biological applications.
Collapse
Affiliation(s)
- Junfeng Chen
- Materials
Department, Materials Research Laboratory, and Department of Chemistry
and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Vittal Bhat
- Materials
Department, Materials Research Laboratory, and Department of Chemistry
and Biochemistry, University of California, Santa Barbara, California 93106, United States
- Department
of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Craig J. Hawker
- Materials
Department, Materials Research Laboratory, and Department of Chemistry
and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
25
|
Dykeman-Bermingham PA, Bogen MP, Chittari SS, Grizzard SF, Knight AS. Tailoring Hierarchical Structure and Rare Earth Affinity of Compositionally Identical Polymers via Sequence Control. J Am Chem Soc 2024; 146:8607-8617. [PMID: 38470430 DOI: 10.1021/jacs.4c00440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Macromolecule sequence, structure, and function are inherently intertwined. While well-established relationships exist in proteins, they are more challenging to define for synthetic polymer nanoparticles due to their molecular weight, sequence, and conformational dispersities. To explore the impact of sequence on nanoparticle structure, we synthesized a set of 16 compositionally identical, sequence-controlled polymers with distinct monomer patterning of dimethyl acrylamide and a bioinspired, structure-driving di(phenylalanine) acrylamide (FF). Sequence control was achieved through multiblock polymerizations, yielding unique ensembles of polymer sequences which were simulated by kinetic Monte Carlo simulations. Systematic analysis of the global (tertiary- and quaternary-like) structure in this amphiphilic copolymer series revealed the effect of multiple sequence descriptors: the number of domains, the hydropathy of terminal domains, and the patchiness (density) of FF within a domain, each of which impacted both chain collapse and the distribution of single- and multichain assemblies. Furthermore, both the conformational freedom of chain segments and local-scale, β-sheet-like interactions were sensitive to the patchiness of FF. To connect sequence, structure, and target function, we evaluated an additional series of nine sequence-controlled copolymers as sequestrants for rare earth elements (REEs) by incorporating a functional acrylic acid monomer into select polymer scaffolds. We identified key sequence variables that influence the binding affinity, capacity, and selectivity of the polymers for REEs. Collectively, these results highlight the potential of and boundaries of sequence control via multiblock polymerizations to drive primary sequence ensembles hierarchical structures, and ultimately the functionality of compositionally identical polymeric materials.
Collapse
Affiliation(s)
- Peter A Dykeman-Bermingham
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Matthew P Bogen
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Supraja S Chittari
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Savannah F Grizzard
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Abigail S Knight
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
26
|
Lessard JJ, Mejia EB, Kim AJ, Zhang Z, Berkey MG, Medina-Barreto ZS, Ewoldt RH, Sottos NR, Moore JS. Unraveling Reactivity Differences: Room-Temperature Ring-Opening Metathesis Polymerization (ROMP) versus Frontal ROMP. J Am Chem Soc 2024; 146:7216-7221. [PMID: 38441481 DOI: 10.1021/jacs.4c01578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
In this study, we explore the distinct reactivity patterns between frontal ring-opening metathesis polymerization (FROMP) and room-temperature solventless ring-opening metathesis polymerization (ROMP). Despite their shared mechanism, we find that FROMP is less sensitive to inhibitor concentration than room-temperature ROMP. By increasing the initiator-to-monomer ratio for a fixed inhibitor/initiator quantity, we find reduction in the ROMP background reactivity at room temperature (i.e., increased resin pot life). At elevated temperatures where inhibitor dissociation prevails, accelerated frontal polymerization rates are observed because of the concentrated presence of the initiator. Surprisingly, the strategy of employing higher initiator loading enhances both pot life and front speeds, which leads to FROMP rates exceeding prior reported values by over 5 times. This counterintuitive behavior is attributed to an increase in the proximity of the inhibitor to the initiator within the bulk resin and to whether the temperature favors coordination or dissociation of the inhibitor. A rapid method was developed for assessing resin pot life, and a straightforward model for active initiator behavior was established. Modified resin systems enabled direct ink writing of robust thermoset structures at rates much faster than previously possible.
Collapse
Affiliation(s)
- Jacob J Lessard
- Beckman Institute for Advanced Science and Technology, Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States of America
| | - Edgar B Mejia
- Beckman Institute for Advanced Science and Technology, Department of Material Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States of America
| | - Abbie J Kim
- Beckman Institute for Advanced Science and Technology, Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States of America
| | - Zhang Zhang
- Beckman Institute for Advanced Science and Technology, Department of Material Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States of America
| | - Mya G Berkey
- Beckman Institute for Advanced Science and Technology, Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States of America
| | - Zina S Medina-Barreto
- Beckman Institute for Advanced Science and Technology, Department of Material Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States of America
| | - Randy H Ewoldt
- Beckman Institute for Advanced Science and Technology, Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States of America
| | - Nancy R Sottos
- Beckman Institute for Advanced Science and Technology, Department of Material Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States of America
| | - Jeffrey S Moore
- Beckman Institute for Advanced Science and Technology, Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States of America
- Beckman Institute for Advanced Science and Technology, Department of Material Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States of America
| |
Collapse
|
27
|
Rauscher PM. Renormalized one-loop theory of correlations in disperse polymer blends. J Chem Phys 2023; 159:244906. [PMID: 38156636 DOI: 10.1063/5.0183860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
Polymer blends are critical in many commercial products and industrial processes and their phase behavior is therefore of paramount importance. In most circumstances, such blends are formulated with samples of high dispersity, which have generally only been studied at the mean-field level. Here, we extend the renormalized one-loop theory of concentration fluctuations to account for blends of disperse polymers. Analyzing the short and long length-scale fluctuations in a consistent manner, various measures of polymer molecular weight and dispersity arise naturally in the free energy. Thermodynamic analysis in terms of moments of the molecular weight distribution(s) provides exact results for the inverse susceptibility and demonstrates that the theory is not formally renormalizable. However, physically motivated approximations allow for an "effective" renormalization, yielding (1) an effective interaction parameter, χe, which depends directly on the sample dispersities (i.e., Mw/Mn) and leaves the form of the mean-field spinodal unchanged, and (2) an apparent interaction parameter χa that depends on higher-order dispersity indices, for instance Mz/Mw, and characterizes the true limits of blend stability accounting for long-range off-critical fluctuations. We demonstrate the importance of dispersity on several example systems, including both "toy" models that may be realized in computer simulation and more realistic industrially relevant blends. We find that the effects of long-range fluctuations are particularly prominent in blends where the component dispersities are mismatched, especially when there is a small quantity of the high-dispersity species. This can be understood as a consequence of the shift in the critical concentration(s) from the monodisperse value(s).
Collapse
Affiliation(s)
- P M Rauscher
- Polymer Physics Group, Specialty Polymers Global Business Unit, Syensqo S.A., 4500 McGinnis Ferry Road, Alpharetta, Georgia 30005, USA
| |
Collapse
|
28
|
Zhao R, Wang C, Huang K, Li L, Fan W, Zhu Q, Ma H, Wang X, Wang Z, Huang W. Macromolecular Engineered Multifunctional Room-Temperature Phosphorescent Polymers through Reversible Deactivation Radical Polymerization. J Am Chem Soc 2023. [PMID: 38035385 DOI: 10.1021/jacs.3c10673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Despite the intensive research in room-temperature phosphorescent (RTP) polymers, the synthesis of RTP polymers with well-defined macromolecular structures and multiple functions remains a challenge. Herein, reversible deactivation radical polymerization was demonstrated to offer a gradient copolymer (GCP) architecture with controlled heterogeneities, which combines hard segment and flexible segment. The GCPs would self-assemble into a multiphase nanostructure, featuring tunable stretchability, excellent RTP performance, and intrinsic healability without compromising light emission under stretching. The mechanical performance is tunable on demand with elongation at break ranging from 5.0% to 221.7% and Young's modulus ranging from 0.5 to 225.0 MPa.
Collapse
Affiliation(s)
- Ruoqing Zhao
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Chen Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Keer Huang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Lei Li
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Wenru Fan
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Qixuan Zhu
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Huihui Ma
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Xuewen Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhenhua Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University, Xi'an 710072, China
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
29
|
Ting JM, Tamayo-Mendoza T, Petersen SR, Van Reet J, Ahmed UA, Snell NJ, Fisher JD, Stern M, Oviedo F. Frontiers in nonviral delivery of small molecule and genetic drugs, driven by polymer chemistry and machine learning for materials informatics. Chem Commun (Camb) 2023; 59:14197-14209. [PMID: 37955165 DOI: 10.1039/d3cc04705a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Materials informatics (MI) has immense potential to accelerate the pace of innovation and new product development in biotechnology. Close collaborations between skilled physical and life scientists with data scientists are being established in pursuit of leveraging MI tools in automation and artificial intelligence (AI) to predict material properties in vitro and in vivo. However, the scarcity of large, standardized, and labeled materials data for connecting structure-function relationships represents one of the largest hurdles to overcome. In this Highlight, focus is brought to emerging developments in polymer-based therapeutic delivery platforms, where teams generate large experimental datasets around specific therapeutics and successfully establish a design-to-deployment cycle of specialized nanocarriers. Three select collaborations demonstrate how custom-built polymers protect and deliver small molecules, nucleic acids, and proteins, representing ideal use-cases for machine learning to understand how molecular-level interactions impact drug stabilization and release. We conclude with our perspectives on how MI innovations in automation efficiencies and digitalization of data-coupled with fundamental insight and creativity from the polymer science community-can accelerate translation of more gene therapies into lifesaving medicines.
Collapse
|
30
|
Wang TT, Zhou YN, Luo ZH, Zhu S. Beauty of Explicit Dispersity ( Đ) Equations in Controlled Polymerizations. ACS Macro Lett 2023; 12:1423-1436. [PMID: 37812608 DOI: 10.1021/acsmacrolett.3c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Dispersity (Đ) as a critical parameter indicates the level of uniformity of the polymer molar mass or chain length. In the past several decades, the development of explicit equations for calculating Đ experiences a continual revolution. This viewpoint tracks the historical evolution of the explicit equations from living to reversible-deactivation polymerization systems. Emphasis is laid on displaying the charm of explicit Đ equations in batch reversible-deactivation radical polymerization (RDRP), with highlights of the relevant elegant mathematical manipulations. Some representative emerging applications enabled by the existing explicit equations are shown, involving nitroxide-mediated polymerization (NMP), atom transfer radical polymerization (ATRP), and reversible addition-fragmentation chain transfer (RAFT) polymerization systems. Stemming from the several outlined challenges and outlooks, sustained concerns about the explicit Đ equations are still highly deserved. It is expected that these equations will continue to play an important role not only in traditional polymerization kinetic simulation and design of experiments but also in modern intelligent manufacturing of precision polymers and classroom education.
Collapse
Affiliation(s)
- Tian-Tian Wang
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yin-Ning Zhou
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Zheng-Hong Luo
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shiping Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, PR China
| |
Collapse
|
31
|
Bischoff DJ, Lee T, Kang KS, Molineux J, O'Neil Parker W, Pyun J, Mackay ME. Unraveling the rheology of inverse vulcanized polymers. Nat Commun 2023; 14:7553. [PMID: 37985754 PMCID: PMC10662295 DOI: 10.1038/s41467-023-43117-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023] Open
Abstract
Multiple relaxation times are used to capture the numerous stress relaxation modes found in bulk polymer melts. Herein, inverse vulcanization is used to synthesize high sulfur content (≥50 wt%) polymers that only need a single relaxation time to describe their stress relaxation. The S-S bonds in these organopolysulfides undergo dissociative bond exchange when exposed to elevated temperatures, making the bond exchange dominate the stress relaxation. Through the introduction of a dimeric norbornadiene crosslinker that improves thermomechanical properties, we show that it is possible for the Maxwell model of viscoelasticity to describe both dissociative covalent adaptable networks and living polymers, which is one of the few experimental realizations of a Maxwellian material. Rheological master curves utilizing time-temperature superposition were constructed using relaxation times as nonarbitrary horizontal shift factors. Despite advances in inverse vulcanization, this is the first complete characterization of the rheological properties of this class of unique polymeric material.
Collapse
Affiliation(s)
- Derek J Bischoff
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Taeheon Lee
- Department of Chemistry and Biochemistry & Wyant College of Optical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Kyung-Seok Kang
- Department of Chemistry and Biochemistry & Wyant College of Optical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Jake Molineux
- Department of Chemistry and Biochemistry & Wyant College of Optical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | | | - Jeffrey Pyun
- Department of Chemistry and Biochemistry & Wyant College of Optical Sciences, University of Arizona, Tucson, AZ, 85721, USA.
| | - Michael E Mackay
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA.
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
32
|
Li W. Molecular Dynamics Simulations of Ideal Living Polymerization: Terminal Model and Kinetic Aspects. J Phys Chem B 2023; 127:7624-7635. [PMID: 37642203 DOI: 10.1021/acs.jpcb.3c03126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Living polymerization is an important synthetic approach to achieving precise control of synthesized polymers, which is crucial for their applications. The molecular weight distribution (MWD) prescribes the macroscopic properties of polymers and hence is a key feature to characterize polymerization. In this work, we present a systematic molecular dynamics simulation study of ideal living polymerization in bulk and surface-initiated systems based on a terminal stochastic reaction model. The evolution of polymer dispersity and MWD along with the polymerization process is examined. We demonstrate that MWD is generally well captured by the Schulz-Zimm distribution for bulk and surface-initiated systems with low grafting densities. However, as the grafting density in the surface-initiated case increases, heterogeneity in chain growth emerges due to the kinetic trapping of reactive sites, which causes the starving of short chains and the thriving of minority long chains such that a shoulder region shows up in MWD. This effect can be enhanced by kinetic compressing induced by polymerization. In addition, the interplay of bonding reaction kinetics and other kinetic properties (e.g., mass transfer and polymer relaxation) is further explored, alongside the influences of bonding probability and reactant concentration. We expect that this investigation will aid in our understanding of typical kinetic aspects of living polymerization.
Collapse
Affiliation(s)
- Wei Li
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
33
|
Chae JH, Choi M, Son S, Ko SM, Lee IH. Living Cationic Ring-Opening Polymerization of Hetero Diels-Alder Adducts to Give Multifactor-Controlled and Fast-Photodegradable Vinyl Polymers. Angew Chem Int Ed Engl 2023; 62:e202305414. [PMID: 37259631 DOI: 10.1002/anie.202305414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/02/2023]
Abstract
Precise control of multiple structural parameters associated with vinyl polymers is important for producing materials with the desired properties and functions. While the development of living polymerization methods has provided a way to control the various structural parameters of vinyl polymers, the concomitant control of their sequence and regioregularity remains a challenging task. To overcome this challenge, herein, we report the living cationic ring-opening polymerization of hetero Diels-Alder adducts. The scalable and modular synthesis of the cyclic monomers was achieved by a one-step protocol using readily available vinyl precursors. Subsequently, living polymerization of the cyclic monomers was examined, allowing the synthesis of vinyl polymers while controlling multiple factors, including molecular weight, dispersity, alternating sequence, head-to-head regioregularity, and end-group functionality. The living characteristics of the developed method were further demonstrated by block copolymerization. The synthesized vinyl polymers exhibited unique thermal properties and underwent fast photodegradation even under sunlight.
Collapse
Affiliation(s)
- Ju-Hyung Chae
- Department of Energy System Research, Ajou University, 16499, Suwon, Republic of Korea
| | - Minyeong Choi
- Department of Energy System Research, Ajou University, 16499, Suwon, Republic of Korea
| | - Semin Son
- Department of Energy System Research, Ajou University, 16499, Suwon, Republic of Korea
| | - Su-Min Ko
- Department of Energy System Research, Ajou University, 16499, Suwon, Republic of Korea
| | - In-Hwan Lee
- Department of Chemistry, Ajou University, 16499, Suwon, Republic of Korea
| |
Collapse
|
34
|
Chen YJ, Wu LT, Li TA, Pu MQ, Sun XL, Bao H, Wan WM. Ketyl Radical Anion Mediated Radical Polymerization and Anionic Ring-Opening Polymerization to Give Polymers with Low Molecular Weight Distribution. Angew Chem Int Ed Engl 2023; 62:e202304033. [PMID: 37263979 DOI: 10.1002/anie.202304033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/03/2023]
Abstract
The development of novel polymerization capable of yielding polymers with low molecular weight distribution (Đ) is essential and significant in polymer chemistry, where monofunctional initiator contains only one initiation site in these polymerizations generally. Here, ketyl radical anion species is introduced to develop a novel Ketyl Mediated Polymerization (KMP), which enables radical polymerization at carbon radical site and anionic ring-opening polymerization at oxygen anion site, respectively. Meanwhile, polymerization and corresponding organic synthesis generally couldn't be performed simultaneously in one pot. Through KMP, organic synthesis and polymerization are achieved in one pot, where small molecules (cyclopentane derivates) and polymers with low Đ are successfully prepared under mild condition simultaneously. At the initiation step, both organic synthesis and polymerization are initiated by single electron transfer reaction with ketyl radical anion formation. Cyclopentane derivates are synthesized through 3-3 coupling reaction and cyclization. Polystyrene and polycaprolactone with low Đ and a full monomer conversion are prepared by KMP via radical polymerization and anionic ring-opening polymerization, respectively. This work therefore enables both organic synthesis and two different polymerizations from same initiation system, which saves time, labour, resource and energy and expands the reaction mode and method libraries of organic chemistry and polymer chemistry.
Collapse
Affiliation(s)
- Yu-Jiao Chen
- College of Environment and Resources, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, 350007, P. R. China
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Liang-Tao Wu
- College of Environment and Resources, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, 350007, P. R. China
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Tai-An Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Meng-Qin Pu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Xiao-Li Sun
- College of Environment and Resources, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Wen-Ming Wan
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| |
Collapse
|
35
|
Sui X, Wang C, Gutekunst WR. Sequestration of Ruthenium Residues via Efficient Fluorous-enyne Termination. Polym Chem 2023; 14:3160-3165. [PMID: 38269330 PMCID: PMC10805442 DOI: 10.1039/d3py00456b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
The creation of polymers without metal contamination remains a significant challenge for metathesis-based polymerization techniques and has complicated applications in biomedical and electronic applications. This communication reports a new approach for the removal of ruthenium byproducts through the design of an enyne terminator for metathesis polymerization that contains a fluorous tag. Upon reaction of a living polymer chain with the enyne, the ruthenium center is captured as a stable sulfur-chelated complex that can be efficiently removed after a single filtration through a fluorous cartridge. Levels of ruthenium residues as determined by ICP-MS were found to depend on the monomer structure, eluting solvent, and the degree of polymerization targeted. Ruthenium residues were minimized to low ppm levels (4-75 ppm) for most samples examined and also led to the improved thermal stability of the final materials. This represents the most efficient single method for removal of ruthenium residues from metathesis polymerization products.
Collapse
Affiliation(s)
- Xuelin Sui
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlanta Drive NW, Atlanta, Georgia 30332, United States
| | - Chenxiao Wang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlanta Drive NW, Atlanta, Georgia 30332, United States
| | - Will R Gutekunst
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlanta Drive NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
36
|
Aksakal R, Tonneaux C, Uvyn A, Fossépré M, Turgut H, Badi N, Surin M, De Geest BG, Du Prez FE. Sequence-defined antibody-recruiting macromolecules. Chem Sci 2023; 14:6572-6578. [PMID: 37350815 PMCID: PMC10284026 DOI: 10.1039/d3sc01507f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023] Open
Abstract
Antibody-recruiting molecules represent a novel class of therapeutic agents that mediate the recruitment of endogenous antibodies to target cells, leading to their elimination by the immune system. Compared to single-ligand copies, macromolecular scaffolds presenting multiple copies of an antibody-binding ligand offer advantages in terms of increased complex avidity. In this study, we describe the synthesis of sequence-defined macromolecules designed for antibody recruitment, utilising dinitrophenol (DNP) as a model antibody-recruiting motif. The use of discrete macromolecules gives access to varying the spacing between DNP motifs while maintaining the same chain length. This characteristic enables the investigation of structure-dependent binding interactions with anti-DNP antibodies. Through solid-phase thiolactone chemistry, we synthesised a series of oligomers with precisely localised DNP motifs along the backbone and a terminal biotin motif for surface immobilisation. Utilising biolayer interferometry analysis, we observed that oligomers with adjacent DNP motifs exhibited enhanced avidity for anti-DNP antibodies. Molecular modelling provided insights into the structures and dynamics of the various macromolecules, shedding light on the accessibility of the ligands to the antibodies. Overall, our findings highlight that the use of sequence-defined macromolecules can contribute to our understanding of structure-activity relationships and provide insights for the design of novel antibody-recruiting therapeutic agents.
Collapse
Affiliation(s)
- Resat Aksakal
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University 9000 Ghent Belgium
| | - Corentin Tonneaux
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons-UMONS 7000 Mons Belgium
| | - Annemiek Uvyn
- Department of Pharmaceutics, Ghent University Ottergemsesteenweg 460 9000 Ghent Belgium
| | - Mathieu Fossépré
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons-UMONS 7000 Mons Belgium
| | - Hatice Turgut
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University 9000 Ghent Belgium
| | - Nezha Badi
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University 9000 Ghent Belgium
| | - Mathieu Surin
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons-UMONS 7000 Mons Belgium
| | - Bruno G De Geest
- Department of Pharmaceutics, Ghent University Ottergemsesteenweg 460 9000 Ghent Belgium
| | - Filip E Du Prez
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University 9000 Ghent Belgium
| |
Collapse
|
37
|
Tanaka J, Li J, Clouthier SM, You W. Step-growth polymerization by the RAFT process. Chem Commun (Camb) 2023. [PMID: 37287313 DOI: 10.1039/d3cc01087b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Reversible Addition-Fragmentation Chain Transfer (RAFT) step-growth polymerization is an emerging method that synergistically combines the benefits of RAFT polymerization (functional group and user-friendly nature) and step-growth polymerization (versatility of the polymer backbone). This new polymerization method is generally achieved by using bifunctional reagents of monomer and Chain Transfer Agent (CTA), that efficiently yield Single Monomer Unit Insertion (SUMI) adducts under stoichiometrically balanced conditions. This review covers a brief history of the RAFT-SUMI process and its transformation into RAFT step-growth polymerization, followed by a comprehensive discussion of various RAFT step-growth systems. Furthermore, characterizing the molecular weight evolution of step-growth polymerization is elaborated based on the Flory model. Finally, a formula is introduced to describe the efficiency of the RAFT-SUMI process, assuming rapid chain transfer equilibrium. Examples of reported RAFT step-growth and SUMI systems are then categorized based on the driving force.
Collapse
Affiliation(s)
- Joji Tanaka
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Jiajia Li
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA.
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | | | - Wei You
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
38
|
Xue Y, Cao M, Chen C, Zhong M. Design of Microstructure-Engineered Polymers for Energy and Environmental Conservation. JACS AU 2023; 3:1284-1300. [PMID: 37234122 PMCID: PMC10207122 DOI: 10.1021/jacsau.3c00081] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023]
Abstract
With the ever-growing demand for sustainability, designing polymeric materials using readily accessible feedstocks provides potential solutions to address the challenges in energy and environmental conservation. Complementing the prevailing strategy of varying chemical composition, engineering microstructures of polymer chains by precisely controlling their chain length distribution, main chain regio-/stereoregularity, monomer or segment sequence, and architecture creates a powerful toolbox to rapidly access diversified material properties. In this Perspective, we lay out recent advances in utilizing appropriately designed polymers in a wide range of applications such as plastic recycling, water purification, and solar energy storage and conversion. With decoupled structural parameters, these studies have established various microstructure-function relationships. Given the progress outlined here, we envision that the microstructure-engineering strategy will accelerate the design and optimization of polymeric materials to meet sustainability criteria.
Collapse
Affiliation(s)
- Yazhen Xue
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Mengxue Cao
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Charles Chen
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Mingjiang Zhong
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
- Department
of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
39
|
Abstract
Diffusion-ordered spectroscopy (DOSY) 1H nuclear magnetic resonance (1H NMR) has become a powerful tool to characterize the molecular weights of polymers. Compared to common characterization techniques, such as size exclusion chromatography (SEC), DOSY is faster, uses less solvent, and does not require a purified polymer sample. Poly(methyl methacrylate) (PMMA), polystyrene (PS), and polybutadiene (PB) molecular weights were determined by the linear correlation between the logarithm of their diffusion coefficients (D) and the logarithm of their molecular weights based on SEC molecular weights. Here, we emphasize the importance of the preparation needed to generate the calibration curves, which includes choosing the correct pulse sequence, optimizing parameters, and sample preparation. The limitation of the PMMA calibration curve was investigated by increasing the dispersity of PMMA. Additionally, by accounting for viscosity in the Stokes-Einstein equation, a variety of solvents were used to produce a "universal" calibration curve for PMMA to determine molecular weight. Furthermore, we place a spotlight on the increasing importance of DOSY NMR being incorporated into the polymer chemist's toolbox.
Collapse
Affiliation(s)
- Eric Ruzicka
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter St, Columbia, South Carolina 29203, United States
| | - Perry Pellechia
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter St, Columbia, South Carolina 29203, United States
| | - Brian C Benicewicz
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter St, Columbia, South Carolina 29203, United States
| |
Collapse
|
40
|
Jones GR, Wang HS, Parkatzidis K, Whitfield R, Truong NP, Anastasaki A. Reversed Controlled Polymerization (RCP): Depolymerization from Well-Defined Polymers to Monomers. J Am Chem Soc 2023; 145:9898-9915. [PMID: 37127289 PMCID: PMC10176471 DOI: 10.1021/jacs.3c00589] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Controlled polymerization methods are well-established synthetic protocols for the design and preparation of polymeric materials with a high degree of precision over molar mass and architecture. Exciting recent work has shown that the high end-group fidelity and/or functionality inherent in these techniques can enable new routes to depolymerization under relatively mild conditions. Converting polymers back to pure monomers by depolymerization is a potential solution to the environmental and ecological concerns associated with the ultimate fate of polymers. This perspective focuses on the emerging field of depolymerization from polymers synthesized by controlled polymerizations including radical, ionic, and metathesis polymerizations. We provide a critical review of current literature categorized according to polymerization technique and explore numerous concepts and ideas which could be implemented to further enhance depolymerization including lower temperature systems, catalytic depolymerization, increasing polymer scope, and controlled depolymerization.
Collapse
Affiliation(s)
- Glen R Jones
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Hyun Suk Wang
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Kostas Parkatzidis
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Richard Whitfield
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Nghia P Truong
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Athina Anastasaki
- Laboratory for Polymeric Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| |
Collapse
|
41
|
Ntetsikas K, Ladelta V, Bhaumik S, Hadjichristidis N. Quo Vadis Carbanionic Polymerization? ACS POLYMERS AU 2023; 3:158-181. [PMID: 37065716 PMCID: PMC10103213 DOI: 10.1021/acspolymersau.2c00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022]
Abstract
Living anionic polymerization will soon celebrate 70 years of existence. This living polymerization is considered the mother of all living and controlled/living polymerizations since it paved the way for their discovery. It provides methodologies for synthesizing polymers with absolute control of the essential parameters that affect polymer properties, including molecular weight, molecular weight distribution, composition and microstructure, chain-end/in-chain functionality, and architecture. This precise control of living anionic polymerization generated tremendous fundamental and industrial research activities, developing numerous important commodity and specialty polymers. In this Perspective, we present the high importance of living anionic polymerization of vinyl monomers by providing some examples of its significant achievements, presenting its current status, giving several insights into where it is going (Quo Vadis) and what the future holds for this powerful synthetic method. Furthermore, we attempt to explore its advantages and disadvantages compared to controlled/living radical polymerizations, the main competitors of living carbanionic polymerization.
Collapse
Affiliation(s)
- Konstantinos Ntetsikas
- Polymer Synthesis Laboratory, KAUST
Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Viko Ladelta
- Polymer Synthesis Laboratory, KAUST
Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Saibal Bhaumik
- Polymer Synthesis Laboratory, KAUST
Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Nikos Hadjichristidis
- Polymer Synthesis Laboratory, KAUST
Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| |
Collapse
|
42
|
Kandelhard F, Georgopanos P. A Kinetic and Heat Balance Model for Anionic Batch Block Copolymerization of Styrene and Isoprene. CHEM-ING-TECH 2023. [DOI: 10.1002/cite.202200205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Felix Kandelhard
- Helmoltz-Zentrum Hereon Institute of Membrane Research Max-Planck-Straße 1 21502 Geesthacht Germany
| | - Prokopios Georgopanos
- Helmoltz-Zentrum Hereon Institute of Membrane Research Max-Planck-Straße 1 21502 Geesthacht Germany
| |
Collapse
|
43
|
Tributylborane/p-quinone system: reversible and irreversible inhibition in the styrene polymerization. Macromol Res 2023. [DOI: 10.1007/s13233-023-00136-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
44
|
O'Halloran S, Pandit A, Heise A, Kellett A. Two-Photon Polymerization: Fundamentals, Materials, and Chemical Modification Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204072. [PMID: 36585380 PMCID: PMC9982557 DOI: 10.1002/advs.202204072] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Two-photon polymerization (TPP) has become a premier state-of-the-art method for microscale fabrication of bespoke polymeric devices and surfaces. With applications ranging from the production of optical, drug delivery, tissue engineering, and microfluidic devices, TPP has grown immensely in the past two decades. Significantly, the field has expanded from standard acrylate- and epoxy-based photoresists to custom formulated monomers designed to change the hydrophilicity, surface chemistry, mechanical properties, and more of the resulting structures. This review explains the essentials of TPP, from its initial conception through to standard operating principles and advanced chemical modification strategies for TPP materials. At the outset, the fundamental chemistries of radical and cationic polymerization are described, along with strategies used to tailor mechanical and functional properties. This review then describes TPP systems and introduces an array of commonly used photoresists including hard polyacrylic resins, soft hydrogel acrylic esters, epoxides, and organic/inorganic hybrid materials. Specific examples of each class-including chemically modified photoresists-are described to inform the understanding of their applications to the fields of tissue-engineering scaffolds, micromedical, optical, and drug delivery devices.
Collapse
Affiliation(s)
- Seán O'Halloran
- CÚRAMthe SFI Research Centre for Medical DevicesSchool of Chemical SciencesDublin City UniversityGlasnevinDublin 9Ireland
| | - Abhay Pandit
- CÚRAMthe SFI Research Centre for Medical DevicesUniversity of GalwayGalwayH91 W2TYIreland
| | - Andreas Heise
- RCSIUniversity of Medicine and Health SciencesDepartment of Chemistry123 St. Stephens GreenDublinDublin 2Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER)RCSI University of Medicine and Health Sciences and Trinity College DublinDublinDublin 2Ireland
- CÚRAMthe SFI Research Centre for Medical DevicesRCSI University of Medicine and Health SciencesDublin and National University of Ireland GalwayGalwayH91 W2TYIreland
| | - Andrew Kellett
- CÚRAMthe SFI Research Centre for Medical DevicesSchool of Chemical SciencesDublin City UniversityGlasnevinDublin 9Ireland
- SSPCthe SFI Research Centre for PharmaceuticalsDublin City UniversityGlasnevinDublinDublin 9Ireland
| |
Collapse
|
45
|
Wilding CP, Knox ST, Bourne RA, Warren NJ. Development and Experimental Validation of a Dispersity Model for In Silico RAFT Polymerization. Macromolecules 2023; 56:1581-1591. [PMID: 36874531 PMCID: PMC9979647 DOI: 10.1021/acs.macromol.2c01798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/20/2023] [Indexed: 02/11/2023]
Abstract
The exploitation of computational techniques to predict the outcome of chemical reactions is becoming commonplace, enabling a reduction in the number of physical experiments required to optimize a reaction. Here, we adapt and combine models for polymerization kinetics and molar mass dispersity as a function of conversion for reversible addition fragmentation chain transfer (RAFT) solution polymerization, including the introduction of a novel expression accounting for termination. A flow reactor operating under isothermal conditions was used to experimentally validate the models for the RAFT polymerization of dimethyl acrylamide with an additional term to accommodate the effect of residence time distribution. Further validation is conducted in a batch reactor, where a previously recorded in situ temperature monitoring provides the ability to model the system under more representative batch conditions, accounting for slow heat transfer and the observed exotherm. The model also shows agreement with several literature examples of the RAFT polymerization of acrylamide and acrylate monomers in batch reactors. In principle, the model not only provides a tool for polymer chemists to estimate ideal conditions for a polymerization, but it can also automatically define the initial parameter space for exploration by computationally controlled reactor platforms provided a reliable estimation of rate constants is available. The model is compiled into an easily accessible application to enable simulation of RAFT polymerization of several monomers.
Collapse
Affiliation(s)
- Clarissa.
Y. P. Wilding
- School
of Chemical and Process Engineering, University
of Leeds, LS2 9JT Leeds, U.K.
- Institute
of Process Research and Development, School of Chemistry, University of Leeds, LS2 9JT Leeds, U.K.
| | - Stephen. T. Knox
- School
of Chemical and Process Engineering, University
of Leeds, LS2 9JT Leeds, U.K.
- Institute
of Process Research and Development, School of Chemistry, University of Leeds, LS2 9JT Leeds, U.K.
| | - Richard. A. Bourne
- School
of Chemical and Process Engineering, University
of Leeds, LS2 9JT Leeds, U.K.
- Institute
of Process Research and Development, School of Chemistry, University of Leeds, LS2 9JT Leeds, U.K.
| | - Nicholas. J. Warren
- School
of Chemical and Process Engineering, University
of Leeds, LS2 9JT Leeds, U.K.
- Institute
of Process Research and Development, School of Chemistry, University of Leeds, LS2 9JT Leeds, U.K.
| |
Collapse
|
46
|
Yao Y, Gao L, Cai C, Lin J, Lin S. Supramolecular Polymerization of Polymeric Nanorods Mediated by Block Copolymers. Angew Chem Int Ed Engl 2023; 62:e202216872. [PMID: 36604302 DOI: 10.1002/anie.202216872] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/19/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Introducing a second component is an effective way to manipulate polymerization behavior. However, this phenomenon has rarely been observed in colloidal systems, such as polymeric nanoparticles. Here, we report the supramolecular polymerization of polymeric nanorods mediated by block copolymers. Experimental observations and simulation results illustrate that block copolymers surround the polymeric nanorods and mainly concentrate around the two ends, leaving the hydrophobic side regions exposed. These polymeric nanorods connect in a side-by-side manner through hydrophobic interactions to form bundles. As polymerization progresses, the block copolymers gradually deposit onto the bundles and finally assemble into helical nanopatterns on the outermost surface, which terminates the polymerization. It is anticipated that this work could offer inspiration for a general strategy of controllable supramolecular polymerization.
Collapse
Affiliation(s)
- Yike Yao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Liang Gao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shaoliang Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
47
|
Messina KMM, Woys AM. Random Heteropolymer Excipients Improve the Colloidal Stability of a Monoclonal Antibody for Subcutaneous Administration. Pharm Res 2023; 40:525-536. [PMID: 36380169 DOI: 10.1007/s11095-022-03436-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Developing stable high concentration monoclonal antibody (mAb) formulations is increasingly important to move toward subcutaneous (SC) administration for better patient experience. Challenges stemming from protein-protein interactions in these crowded solutions, such as colloidal instability, limit the feasibility of some formulations because of concerns of safety, product quality, and/or manufacturability. Herein, we report novel random heteropolymer excipients that improve the colloidal stability of a high concentration mAb formulation for SC administration. METHODS A library of polymers was synthesized and screened by a high-throughput, absorbance-based assay. The lead polymers were selected and characterized for their ability to alter the precipitation kinetics of a mAb in physiologically relevant conditions using two model systems. RESULTS Biophysical testing via surface tension measurements, isothermal titration calorimetry (ITC), microscale thermophoresis (MST), and intrinsic fluorescence quenching indicated that the polymers delayed onset of mAb precipitation from a combination of surfactant behaviour and interactions with the protein to prevent protein-protein interactions leading to colloidal instability. CONCLUSIONS The random heteropolymers described are a new class of excipients that may enable development of SC mAb formulations previously inaccessible to patients.
Collapse
Affiliation(s)
- Kathryn M M Messina
- Pharmaceutical Development Department, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Ann Marie Woys
- Pharmaceutical Development Department, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
48
|
Wang TT, Luo ZH, Zhou YN. On the Precise Determination of Molar Mass and Dispersity in Controlled Chain-Growth Polymerization: A Distribution Function-Based Strategy. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c01861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Tian-Tian Wang
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai200240, PR China
| | - Zheng-Hong Luo
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai200240, PR China
| | - Yin-Ning Zhou
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai200240, PR China
| |
Collapse
|
49
|
Wadgaonkar SP, Wagner M, Müller AHE, Frey H. Anionic Polymerization of 4-Allyldimethylsilylstyrene: Versatile Polymer Scaffolds for Post-Polymerization Modification. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Shivani P. Wadgaonkar
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Manfred Wagner
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Axel H. E. Müller
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Holger Frey
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
50
|
Lloyd EM, Vakil JR, Yao Y, Sottos NR, Craig SL. Covalent Mechanochemistry and Contemporary Polymer Network Chemistry: A Marriage in the Making. J Am Chem Soc 2023; 145:751-768. [PMID: 36599076 DOI: 10.1021/jacs.2c09623] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Over the past 20 years, the field of polymer mechanochemistry has amassed a toolbox of mechanophores that translate mechanical energy into a variety of functional responses ranging from color change to small-molecule release. These productive chemical changes typically occur at the length scale of a few covalent bonds (Å) but require large energy inputs and strains on the micro-to-macro scale in order to achieve even low levels of mechanophore activation. The minimal activation hinders the translation of the available chemical responses into materials and device applications. The mechanophore activation challenge inspires core questions at yet another length scale of chemical control, namely: What are the molecular-scale features of a polymeric material that determine the extent of mechanophore activation? Further, how do we marry advances in the chemistry of polymer networks with the chemistry of mechanophores to create stress-responsive materials that are well suited for an intended application? In this Perspective, we speculate as to the potential match between covalent polymer mechanochemistry and recent advances in polymer network chemistry, specifically, topologically controlled networks and the hierarchical material responses enabled by multi-network architectures and mechanically interlocked polymers. Both fundamental and applied opportunities unique to the union of these two fields are discussed.
Collapse
Affiliation(s)
- Evan M Lloyd
- Department of Chemistry, Duke University, Durham, North Carolina27708, United States
| | - Jafer R Vakil
- Department of Chemistry, Duke University, Durham, North Carolina27708, United States.,NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina27708, United States
| | - Yunxin Yao
- Department of Chemistry, Duke University, Durham, North Carolina27708, United States.,NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina27708, United States
| | - Nancy R Sottos
- NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina27708, United States.,Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois61801, United States
| | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, North Carolina27708, United States.,NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina27708, United States
| |
Collapse
|