1
|
Chakraborty S, Bansal AK. Application of atomic force microscopy in the development of amorphous solid dispersion. J Pharm Sci 2025; 114:70-81. [PMID: 39481473 DOI: 10.1016/j.xphs.2024.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024]
Abstract
Development of Amorphous Solid Dispersion (ASD) requires an in-depth characterization at different stages due to its structural and functional complexity. Various tools are conventionally used to investigate the processing, stability, and functionality of ASDs. However, many subtle features remain poorly understood due to lack of nano-scale characterization tools in routine practice. Atomic force microscopy (AFM) is a type of scanning probe microscopy, used for high resolution imaging and measuring features at the nano-scale. In recent years AFM has been used increasingly as a characterization tool in different areas of the development of ASD, including drug-polymer miscibility, localized characterization of the phase separated domains, lateral molecular diffusivity on ASD surface, crystallinity and crystallization kinetics in ASD, phase behavior of ASD during dissolution, and conformation of polymer during dissolution. In this review, we have highlighted the current applications of AFM in capturing critical aspects of stability and dissolution behavior of ASD. Potential areas of future development in this domain have been discussed.
Collapse
Affiliation(s)
- Soumalya Chakraborty
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-S.A.S. Nagar, Punjab 160062, India
| | - Arvind K Bansal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-S.A.S. Nagar, Punjab 160062, India.
| |
Collapse
|
2
|
Moseson DE, Li N, Rantanen J, Ueda K, Zhang GGZ. Professor Lynne S. Taylor: Scientist, educator, and adventurer. J Pharm Sci 2025; 114:2-9. [PMID: 39426563 DOI: 10.1016/j.xphs.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
This special edition of the Journal of Pharmaceutical Sciences is dedicated to Professor Lynne S. Taylor (Retter Distinguished Professor of Pharmacy, Department of Industrial and Molecular Pharmaceutics, Purdue University), to honor her distinguished career as a pharmaceutical scientist and educator. The goal of this commentary is to provide an overview of Professor Taylor's career path, summarize her key research contributions, and provide some insight into her personal and professional contributions as an educator, mentor, wife, mother, friend, and adventurer.
Collapse
Affiliation(s)
- Dana E Moseson
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States.
| | - Na Li
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jukka Rantanen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Keisuke Ueda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Geoff G Z Zhang
- ProPhysPharm LLC, Lincolnshire, Illinois 60069, United States; Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
3
|
Zhang J, Guo M, Luo M, Cai T. Advances in the development of amorphous solid dispersions: The role of polymeric carriers. Asian J Pharm Sci 2023; 18:100834. [PMID: 37635801 PMCID: PMC10450425 DOI: 10.1016/j.ajps.2023.100834] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/26/2023] [Accepted: 07/23/2023] [Indexed: 08/27/2023] Open
Abstract
Amorphous solid dispersion (ASD) is one of the most effective approaches for delivering poorly soluble drugs. In ASDs, polymeric materials serve as the carriers in which the drugs are dispersed at the molecular level. To prepare the solid dispersions, there are many polymers with various physicochemical and thermochemical characteristics available for use in ASD formulations. Polymer selection is of great importance because it influences the stability, solubility and dissolution rates, manufacturing process, and bioavailability of the ASD. This review article provides a comprehensive overview of ASDs from the perspectives of physicochemical characteristics of polymers, formulation designs and preparation methods. Furthermore, considerations of safety and regulatory requirements along with the studies recommended for characterizing and evaluating polymeric carriers are briefly discussed.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China
| | - Minshan Guo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Minqian Luo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ting Cai
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
4
|
Krummnow A, Danzer A, Voges K, Kyeremateng SO, Degenhardt M, Sadowski G. Kinetics of Water-Induced Amorphous Phase Separation in Amorphous Solid Dispersions via Raman Mapping. Pharmaceutics 2023; 15:pharmaceutics15051395. [PMID: 37242637 DOI: 10.3390/pharmaceutics15051395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
The poor bioavailability of an active pharmaceutical ingredient (API) can be enhanced by dissolving it in a polymeric matrix. This formulation strategy is commonly known as amorphous solid dispersion (ASD). API crystallization and/or amorphous phase separation can be detrimental to the bioavailability. Our previous work (Pharmaceutics 2022, 14(9), 1904) provided analysis of the thermodynamics underpinning the collapse of ritonavir (RIT) release from RIT/poly(vinylpyrrolidone-co-vinyl acetate) (PVPVA) ASDs due to water-induced amorphous phase separation. This work aimed for the first time to quantify the kinetics of water-induced amorphous phase separation in ASDs and the compositions of the two evolving amorphous phases. Investigations were performed via confocal Raman spectroscopy, and spectra were evaluated using so-called Indirect Hard Modeling. The kinetics of amorphous phase separation were quantified for 20 wt% and 25 wt% drug load (DL) RIT/PVPVA ASDs at 25 °C and 94% relative humidity (RH). The in situ measured compositions of the evolving phases showed excellent agreement with the ternary phase diagram of the RIT/PVPVA/water system predicted by PC-SAFT in our previous study (Pharmaceutics 2022, 14(9), 1904).
Collapse
Affiliation(s)
- Adrian Krummnow
- Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Street 70, D-44227 Dortmund, Germany
- AbbVie Deutschland GmbH & Co. KG, Global Pharmaceutical R&D, Knollstraße, D-67061 Ludwigshafen am Rhein, Germany
| | - Andreas Danzer
- Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Street 70, D-44227 Dortmund, Germany
| | - Kristin Voges
- AbbVie Deutschland GmbH & Co. KG, Global Pharmaceutical R&D, Knollstraße, D-67061 Ludwigshafen am Rhein, Germany
| | - Samuel O Kyeremateng
- AbbVie Deutschland GmbH & Co. KG, Global Pharmaceutical R&D, Knollstraße, D-67061 Ludwigshafen am Rhein, Germany
| | - Matthias Degenhardt
- AbbVie Deutschland GmbH & Co. KG, Global Pharmaceutical R&D, Knollstraße, D-67061 Ludwigshafen am Rhein, Germany
| | - Gabriele Sadowski
- Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Street 70, D-44227 Dortmund, Germany
| |
Collapse
|
5
|
Guner G, Amjad A, Berrios M, Kannan M, Bilgili E. Nanoseeded Desupersaturation and Dissolution Tests for Elucidating Supersaturation Maintenance in Amorphous Solid Dispersions. Pharmaceutics 2023; 15:pharmaceutics15020450. [PMID: 36839772 PMCID: PMC9964794 DOI: 10.3390/pharmaceutics15020450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
The impact of residual drug crystals that are formed during the production and storage of amorphous solid dispersions (ASDs) has been studied using micron-sized seed crystals in solvent-shift (desupersaturation) and dissolution tests. This study examines the impacts of the seed size loading on the solution-mediated precipitation from griseofulvin ASDs. Nanoparticle crystals (nanoseeds) were used as a more realistic surrogate for residual crystals compared with conventional micron-sized seeds. ASDs of griseofulvin with Soluplus (Sol), Kollidon VA64 (VA64), and hydroxypropyl methyl cellulose (HPMC) were prepared by spray-drying. Nanoseeds produced by wet media milling were used in the dissolution and desupersaturation experiments. DLS, SEM, XRPD, and DSC were used for characterization. The results from the solvent-shift tests suggest that the drug nanoseeds led to a faster and higher extent of desupersaturation than the as-received micron-sized crystals and that the higher seed loading facilitated desupersaturation. Sol was the only effective nucleation inhibitor; the overall precipitation inhibition capability was ranked: Sol > HPMC > VA64. In the dissolution tests, only the Sol-based ASDs generated significant supersaturation, which decreased upon an increase in the nanoseed loading. This study has demonstrated the importance of using drug nanocrystals in lieu of conventional coarse crystals in desupersaturation and dissolution tests in ASD development.
Collapse
Affiliation(s)
| | | | | | | | - Ecevit Bilgili
- Correspondence: ; Tel.: +1-973-596-2998; Fax: +1-973-596-8436
| |
Collapse
|
6
|
Zhang J, Khanal D, Banaszak Holl MM. Applications of AFM-IR for drug delivery vector characterization: infrared, thermal, and mechanical characterization at the nanoscale. Adv Drug Deliv Rev 2023; 192:114646. [PMID: 36521685 DOI: 10.1016/j.addr.2022.114646] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 11/15/2022] [Accepted: 12/04/2022] [Indexed: 12/15/2022]
Abstract
The development of effective drug delivery systems requires in-depth characterization of the micro- or nanostructure of the material vectors with high spatial resolution, resulting in a deep understanding of the design-function relationship and maximum therapeutic efficacy. Atomic force microscopy-infrared spectroscopy (AFM-IR) combines the high spatial resolution of AFM and the capabilities of IR spectroscopy to identify chemical composition and it has emerged as a powerful tool for the detailed characterization of a drug delivery system at the nanoscale. In addition, the instruments also allow thermal and mechanical evaluation at the nanoscale. In this review, we highlight the applications of AFM-IR in various drug delivery systems, including polymer-based carriers, lipid-contained nanocarriers, and metal-based nanocarriers. The existing challenges as well as the future perspectives for the application of AFM-IR for drug delivery vector characterization are also discussed.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia.
| | - Dipesh Khanal
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia; The University of Sydney, Sydney Nano Institute, Sydney, New South Wales 2006, Australia.
| | - Mark M Banaszak Holl
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia; Department of Mechanial and Materials Engineering, School of Engineering University of Alabama at Birmingham, Birmingham, AL 35294 USA; Division of Pulmonology, Allergy, and Critical Care Medicine, Heersink Medical School, University of Alabama at Birmingham, Birmingham, AL 35294 USA.
| |
Collapse
|
7
|
Song S, Wang C, Zhang B, Sun CC, Lodge TP, Siegel RA. A Rheological Approach for Predicting Physical Stability of Amorphous Solid Dispersions. J Pharm Sci 2023; 112:204-212. [PMID: 36030843 DOI: 10.1016/j.xphs.2022.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 11/30/2022]
Abstract
Miscibility is an important indicator of physical stability against crystallization of amorphous solid dispersions (ASDs). Currently available methods for miscibility determination have both theoretical and practical limitations. Here we report a method of miscibility determination based on the overlap concentration, c*, which can be conveniently determined from the viscosity-composition diagram. The determined c* values for ASDs of two model drugs, celecoxib and loratadine, with four different grades of polyvinylpyrrolidone (PVP), were correlated strongly with the physical stability of ASDs. This result suggests potential application of the c* concept in guiding the design of stable high drug loaded ASD formulations. A procedure is provided to facilitate broader adoption of this methodology. The procedure is easy to apply and widely applicable for thermally stable binary drug/polymer combinations.
Collapse
Affiliation(s)
- Sichen Song
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, United States; School of Mathematics, University of Minnesota, Minneapolis, MN 55455, United States
| | - Chenguang Wang
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, United States
| | - Bo Zhang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, United States
| | - Changquan Calvin Sun
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, United States
| | - Timothy P Lodge
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, United States; Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Ronald A Siegel
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, United States; Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
8
|
Paladino E, Doerr FJ, Bordos E, Onyemelukwe II, Lamprou DA, Florence AJ, Gilmore IS, Halbert GW. High spatial resolution ToF-SIMS imaging and image analysis strategies to monitor and quantify early phase separation in amorphous solid dispersions. Int J Pharm 2022; 628:122191. [DOI: 10.1016/j.ijpharm.2022.122191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/18/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
|
9
|
Shi Q, Chen H, Wang Y, Wang R, Xu J, Zhang C. Amorphous Solid Dispersions: Role of the Polymer and Its Importance in Physical Stability and In Vitro Performance. Pharmaceutics 2022; 14:pharmaceutics14081747. [PMID: 36015373 PMCID: PMC9413000 DOI: 10.3390/pharmaceutics14081747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 01/25/2023] Open
Abstract
Amorphous solid dispersions stabilized by one or more polymer(s) have been widely used for delivering amorphous drugs with poor water solubilities, and they have gained great market success. Polymer selection is important for preparing robust amorphous solid dispersions, and considerations should be given as to how the critical attributes of a polymer can enhance the physical stability, and the in vitro and in vivo performances of a drug. This article provides a comprehensive overview for recent developments in the understanding the role of polymers in amorphous solid dispersions from the aspects of nucleation, crystal growth, overall crystallization, miscibility, phase separation, dissolution, and supersaturation. The critical properties of polymers affecting the physical stability and the in vitro performance of amorphous solid dispersions are also highlighted. Moreover, a perspective regarding the current research gaps and novel research directions for better understanding the role of the polymer is provided. This review will provide guidance for the rational design of polymer-based amorphous pharmaceutical solids with desired physicochemical properties from the perspective of physical stability and in vitro performance.
Collapse
Affiliation(s)
- Qin Shi
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
- Correspondence: (Q.S.); (C.Z.)
| | - Haibiao Chen
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Yanan Wang
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Ruoxun Wang
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Jia Xu
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Chen Zhang
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
- Correspondence: (Q.S.); (C.Z.)
| |
Collapse
|
10
|
Shi Q, Moinuddin SM, Wang Y, Ahsan F, Li F. Physical stability and dissolution behaviors of amorphous pharmaceutical solids: Role of surface and interface effects. Int J Pharm 2022; 625:122098. [PMID: 35961416 DOI: 10.1016/j.ijpharm.2022.122098] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/28/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022]
Abstract
Amorphous pharmaceutical solids (APS) are single- or multi-component systems in which drugs exist in high-energy states with long-range disordered molecular packing. APSs have become one of the most effective and widely used pharmaceutical delivery approaches for poorly water-soluble drugs in the last several decades. Considerable efforts have been made to investigate the physical stability and dissolution behaviors of APSs, however, the underlying mechanisms remain imperfectly understood. Recent studies reveal that surface and interface properties of APSs could strongly affect the physical stability and dissolution behaviors. This paper provides a comprehensive overview of recent studies focusing on the physical stability and dissolution behaviors of APSs from both surface and interface perspectives. We highlight the role of surface or interface properties in nucleation, crystal growth, phase separation, dissolution, and supersaturation. Meanwhile, the challenges and scope of research on surface and interface properties in the future are also briefly discussed. This review contributes to a better understanding of the surface- and interface-facilitated processes, which will provide more efficient and rational guidance for the design of APSs.
Collapse
Affiliation(s)
- Qin Shi
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China.
| | - Sakib M Moinuddin
- California Northstate University, College of Pharmacy, 9700 West Taron Drive, Elk Grove, CA 95757, USA; East Bay Institute For Research & Education (EBIRE), 10535 Hospital Way, Bldg. 650 2nd Floor, Rm. 2B121A, Mather, CA 95655, USA
| | - Yanan Wang
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Fakhrul Ahsan
- California Northstate University, College of Pharmacy, 9700 West Taron Drive, Elk Grove, CA 95757, USA; East Bay Institute For Research & Education (EBIRE), 10535 Hospital Way, Bldg. 650 2nd Floor, Rm. 2B121A, Mather, CA 95655, USA.
| | - Fang Li
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China.
| |
Collapse
|
11
|
|
12
|
Goh CF, Lane ME. Advanced structural characterisation of pharmaceuticals using nano-thermal analysis (nano-TA). Adv Drug Deliv Rev 2022; 180:114077. [PMID: 34896130 DOI: 10.1016/j.addr.2021.114077] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/12/2021] [Accepted: 12/02/2021] [Indexed: 12/17/2022]
Abstract
The production of drug delivery systems fabricated at the nano scale comes with the challenges of identifying reliable characterisation tools, especially for solid dosage forms. A full understanding of physicochemical properties of solid-state systems at a high spatial resolution is essential to monitor their manufacturability, processability, performance (dissolution) and stability. Nano-thermal analysis (nano-TA), a hybrid of atomic force microscopy (AFM) and thermal analysis, has emerged as a solution to address the need for complete characterisation of samples with surface heterogeneity. Nano-TA provides not only physical information using conventional AFM but also the thermal behaviour of these systems as an additional chemical dimension. In this review, the principles and techniques of nano-TA are discussed with emphasis on recent pharmaceutical applications. Building on nano-TA, the combination of this approach with infrared spectroscopic analysis is briefly introduced. The challenges and considerations for future development of nano-TA characterisation are also outlined.
Collapse
Affiliation(s)
- Choon Fu Goh
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| | - Majella E Lane
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom.
| |
Collapse
|
13
|
Shi SC, Peng YQ. Hydrophobicity and Macroscale Tribology Behavior of Stearic Acid/Hydroxypropyl Methylcellulose Dual-Layer Composite. MATERIALS 2021; 14:ma14247707. [PMID: 34947302 PMCID: PMC8707420 DOI: 10.3390/ma14247707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/31/2022]
Abstract
Hydroxypropyl methylcellulose (HPMC) and stearic acid (SA) are integrated to fabricate a double-layer thin film composite material with potential applications in sustainable packaging and coating materials. The effect of SA concentration on the moisture and wear resistance at the macroscale of the composite are studied. The amount of SA on the surface (>SA5H) is beneficial in increasing anti-wear behavior and reducing the friction coefficient by 25%. The petal-shaped crystals formed by SA are distributed on the surface of the double-layer film, increasing its hydrophobicity. When subjected to wear, the SA crystals on the surface of the double-layer film are fractured into debris-like abrasive particles, forming an optimal third-body of moderate shape and particle size, and imparting anti-wear and lubricating characteristics.
Collapse
|
14
|
Hiew TN, Zemlyanov DY, Taylor LS. Balancing Solid-State Stability and Dissolution Performance of Lumefantrine Amorphous Solid Dispersions: The Role of Polymer Choice and Drug-Polymer Interactions. Mol Pharm 2021; 19:392-413. [PMID: 34494842 DOI: 10.1021/acs.molpharmaceut.1c00481] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Amorphous solid dispersions (ASDs) are of great interest due to their ability to enhance the delivery of poorly soluble drugs. Recent studies have shown that, in addition to acting as a crystallization inhibitor, the polymer in an ASD plays a role in controlling the rate of drug release, notably in congruently releasing formulations, where both the drug and polymer have similar normalized release rates. The aim of this study was to compare the solid-state stability and release performance of ASDs when formulated with neutral and enteric polymers. One neutral (polyvinylpyrrolidone-vinyl acetate copolymer, PVPVA) and four enteric polymers (hypromellose acetate succinate; hypromellose phthalate; cellulose acetate phthalate, CAP; methacrylic acid-methyl methacrylate copolymer, Eudragit L 100) were used to formulate binary ASDs with lumefantrine, a hydrophobic and weakly basic antimalarial drug. The normalized drug and polymer release rates of lumefantrine-PVPVA ASDs up to 35% drug loading (DL) were similar and rapid. No drug release from PVPVA systems was detected when the DL was increased to 40%. In contrast, ASDs formulated with enteric polymers showed a DL-dependent decrease in the release rates of both the drug and polymer, whereby release was slower than for PVPVA ASDs for DLs < 40% DL. Drug release from CAP and Eudragit L 100 systems was the slowest and drug amorphous solubility was not achieved even at 5% DL. Although lumefantrine-PVPVA ASDs showed fast release, they also showed rapid drug crystallization under accelerated stability conditions, while the ASDs with enteric polymers showed much greater resistance to crystallization. This study highlights the importance of polymer selection in the formulation of ASDs, where a balance between physical stability and dissolution release must be achieved.
Collapse
Affiliation(s)
- Tze Ning Hiew
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dmitry Y Zemlyanov
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
15
|
Zhao Z, Higashi K, Ueda K, Moribe K. Revealing the mechanism of morphological variation of amorphous drug nanoparticles formed by aqueous dispersion of ternary solid dispersion. Int J Pharm 2021; 607:120984. [PMID: 34389423 DOI: 10.1016/j.ijpharm.2021.120984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/25/2021] [Accepted: 08/06/2021] [Indexed: 11/26/2022]
Abstract
Probucol (PBC)/hypromellose (HPMC)/sodium dodecyl sulfate (SDS) ternary solid dispersions (SDs) of various weight ratios were prepared and evaluated to unveil the effect of HPMC and SDS on the formation of amorphous PBC nanoparticles. The morphological variation of the PBC nanoparticles prepared using SDs of different compositions was determined using dynamic light scattering and cryogenic transmission electron microscopy (cryo-TEM). Statistical analysis of particle size versus roundness of PBC nanoparticles was carried out based on cryo-TEM images. A clear correlation was observed between the morphologies of the PBC nanoparticles and the amounts of HPMC and SDS, either admixed in SDs or pre-dissolved in an aqueous solution. The admixed HPMC in SDs was demonstrated to play the major role in determining the primary particle sizes of discrete amorphous PBC nanoparticles. Based on 13C solid-state NMR spectroscopy, this phenomenon should be due to the enlarged size of the PBC-rich domains in SDs, which depended on the decreasing amounts of admixed HPMC. Although the pre-dissolved part of HPMC had less impact on the primary particle sizes, it was found to inhibit the particle agglomeration and recrystallization of amorphous PBC nanoparticles. On the other hand, sufficient SDS admixed in SDs could suppress the size enhancement of the PBC-rich domains during water immersion and nanoparticle evolution (agglomeration and crystallization) after aqueous dispersion. The pre-dissolved SDS could restrain the agglomeration of amorphous PBC nanoparticles, ultimately forming hundreds of irregular nanometer-order structures. Since the increase in size during water immersion, their sizes were still slightly larger than those obtained with a high portion of admixed SDS. The findings of this study clarified the usefulness and necessity of adding polymers and surfactants to SDs to fabricate drug nanoparticle formulations.
Collapse
Affiliation(s)
- Zhijing Zhao
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kenjirou Higashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Keisuke Ueda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kunikazu Moribe
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| |
Collapse
|
16
|
Li M, Razumtcev A, Yang R, Liu Y, Rong J, Geiger AC, Blanchard R, Pfluegl C, Taylor LS, Simpson GJ. Fluorescence-Detected Mid-Infrared Photothermal Microscopy. J Am Chem Soc 2021; 143:10809-10815. [PMID: 34270255 DOI: 10.1021/jacs.1c03269] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We demonstrate instrumentation and methods to enable fluorescence-detected photothermal infrared (F-PTIR) microscopy and then demonstrate the utility of F-PTIR to characterize the composition within phase-separated domains of model amorphous solid dispersions (ASDs) induced by water sorption. In F-PTIR, temperature-dependent changes in fluorescence quantum efficiency are shown to sensitively report on highly localized absorption of mid-infrared radiation. The spatial resolution with which infrared spectroscopy can be performed is dictated by fluorescence microscopy, rather than the infrared wavelength. Intrinsic ultraviolet autofluorescence of tryptophan and protein microparticles enabled label-free F-PTIR microscopy. Following proof of concept F-PTIR demonstration on model systems of polyethylene glycol (PEG) and silica gel, F-PTIR enabled the characterization of chemical composition within inhomogeneous ritonavir/polyvinylpyrrolidone-vinyl acetate (PVPVA) amorphous dispersions. Phase separation is implicated in the observation of critical behaviors in ASD dissolution kinetics, with the results of F-PTIR supporting the formation of phase-separated drug-rich domains upon water sorption in spin-cast films.
Collapse
Affiliation(s)
- Minghe Li
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Aleksandr Razumtcev
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ruochen Yang
- Physical and Industrial Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Youlin Liu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jiayue Rong
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Andreas C Geiger
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Romain Blanchard
- Pendar Technologies, 30 Spinelli Pl, Cambridge, Massachusetts 02138, United States
| | - Christian Pfluegl
- Pendar Technologies, 30 Spinelli Pl, Cambridge, Massachusetts 02138, United States
| | - Lynne S Taylor
- Physical and Industrial Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Garth J Simpson
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
17
|
Luo H, Zeng Y, Zhao Y, Xiang Y, Li Y, Pan X. Effects of advanced oxidation processes on leachates and properties of microplastics. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125342. [PMID: 33618270 DOI: 10.1016/j.jhazmat.2021.125342] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/25/2021] [Accepted: 02/03/2021] [Indexed: 05/09/2023]
Abstract
Microplastics (MPs) in natural environments undergo various aging processes. So far, little is known about the effects of chemical oxidation on leachates and properties of MPs. Here, we investigated the removal of pigment red from MPs by ozonation, Fenton, and heat-activated persulfate treatments, and further explored the nanoscale surface properties of treated MPs. Experimental results indicated that advanced oxidation processes effectively degraded pigment red released from MPs and the degradation rate was much faster than the leaching rate of pigments. Dominant reactive oxygen radicals in the ozone, Fenton, and heat-activated persulfate systems were identified as O2•-, HO•, and SO4•-, respectively. Height ranges of untreated, ozone-treated, Fenton-treated, and persulfate-treated MPs were 73 nm, 163 nm, 195 nm, and 206 nm, respectively. Oxidation of the -CH3 and -CH2 bonds occurred on the surface of treated MPs and the persulfate system achieved more serious oxidation degree than the ozone and Fenton systems. Addition of pigment red to the plastic polymer increased the glass transition temperature of MPs, which then showed a decline after advanced oxidation treatments except Fenton. The surface of persulfate-treated MPs was the stiffest, but the stiffness distribution of the ozone-treated and Fenton-treated MPs was more uneven. These research findings provide promising strategies to accelerate the aging process of MPs and contribute to a better understanding of the effects of aging on the environmental behavior of MPs.
Collapse
Affiliation(s)
- Hongwei Luo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yifeng Zeng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yaoyao Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yahui Xiang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yu Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
18
|
Qian K, Stella L, Jones DS, Andrews GP, Du H, Tian Y. Drug-Rich Phases Induced by Amorphous Solid Dispersion: Arbitrary or Intentional Goal in Oral Drug Delivery? Pharmaceutics 2021; 13:889. [PMID: 34203969 PMCID: PMC8232734 DOI: 10.3390/pharmaceutics13060889] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 12/19/2022] Open
Abstract
Among many methods to mitigate the solubility limitations of drug compounds, amorphous solid dispersion (ASD) is considered to be one of the most promising strategies to enhance the dissolution and bioavailability of poorly water-soluble drugs. The enhancement of ASD in the oral absorption of drugs has been mainly attributed to the high apparent drug solubility during the dissolution. In the last decade, with the implementations of new knowledge and advanced analytical techniques, a drug-rich transient metastable phase was frequently highlighted within the supersaturation stage of the ASD dissolution. The extended drug absorption and bioavailability enhancement may be attributed to the metastability of such drug-rich phases. In this paper, we have reviewed (i) the possible theory behind the formation and stabilization of such metastable drug-rich phases, with a focus on non-classical nucleation; (ii) the additional benefits of the ASD-induced drug-rich phases for bioavailability enhancements. It is envisaged that a greater understanding of the non-classical nucleation theory and its application on the ASD design might accelerate the drug product development process in the future.
Collapse
Affiliation(s)
- Kaijie Qian
- Pharmaceutical Engineering Group, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (K.Q.); (D.S.J.); (G.P.A.)
| | - Lorenzo Stella
- Atomistic Simulation Centre, School of Mathematics and Physics, Queen’s University Belfast, 7–9 College Park E, Belfast BT7 1PS, UK;
- David Keir Building, School of Chemistry and Chemical Engineering, Queen’s University Belfast, Stranmillis Road, Belfast BT9 5AG, UK
| | - David S. Jones
- Pharmaceutical Engineering Group, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (K.Q.); (D.S.J.); (G.P.A.)
| | - Gavin P. Andrews
- Pharmaceutical Engineering Group, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (K.Q.); (D.S.J.); (G.P.A.)
- School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Huachuan Du
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
- Simpson Querrey Institute, Northwestern University, 303 East Superior Street, 11th floor, Chicago, IL 60611, USA
| | - Yiwei Tian
- Pharmaceutical Engineering Group, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (K.Q.); (D.S.J.); (G.P.A.)
| |
Collapse
|
19
|
Thakore SD, Akhtar J, Jain R, Paudel A, Bansal AK. Analytical and Computational Methods for the Determination of Drug-Polymer Solubility and Miscibility. Mol Pharm 2021; 18:2835-2866. [PMID: 34041914 DOI: 10.1021/acs.molpharmaceut.1c00141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the pharmaceutical industry, poorly water-soluble drugs require enabling technologies to increase apparent solubility in the biological environment. Amorphous solid dispersion (ASD) has emerged as an attractive strategy that has been used to market more than 20 oral pharmaceutical products. The amorphous form is inherently unstable and exhibits phase separation and crystallization during shelf life storage. Polymers stabilize the amorphous drug by antiplasticization, reducing molecular mobility, reducing chemical potential of drug, and increasing glass transition temperature in ASD. Here, drug-polymer miscibility is an important contributor to the physical stability of ASDs. The current Review discusses the basics of drug-polymer interactions with the major focus on the methods for the evaluation of solubility and miscibility of the drug in the polymer. Methods for the evaluation of drug-polymer solubility and miscibility have been classified as thermal, spectroscopic, microscopic, solid-liquid equilibrium-based, rheological, and computational methods. Thermal methods have been commonly used to determine the solubility of the drug in the polymer, while other methods provide qualitative information about drug-polymer miscibility. Despite advancements, the majority of these methods are still inadequate to provide the value of drug-polymer miscibility at room temperature. There is still a need for methods that can accurately determine drug-polymer miscibility at pharmaceutically relevant temperatures.
Collapse
Affiliation(s)
- Samarth D Thakore
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Junia Akhtar
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Ranjna Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering (RCPE) GmbH, Inffeldgasse 13, 8010 Graz, Austria.,Institute for Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010 Graz, Austria
| | - Arvind K Bansal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| |
Collapse
|
20
|
Recent Progress on the Characterization of Cellulose Nanomaterials by Nanoscale Infrared Spectroscopy. NANOMATERIALS 2021; 11:nano11051353. [PMID: 34065487 PMCID: PMC8190638 DOI: 10.3390/nano11051353] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 01/17/2023]
Abstract
Researches of cellulose nanomaterials have seen nearly exponential growth over the past several decades for versatile applications. The characterization of nanostructural arrangement and local chemical distribution is critical to understand their role when developing cellulose materials. However, with the development of current characterization methods, the simultaneous morphological and chemical characterization of cellulose materials at nanoscale resolution is still challenging. Two fundamentally different nanoscale infrared spectroscopic techniques, namely atomic force microscope based infrared spectroscopy (AFM-IR) and infrared scattering scanning near field optical microscopy (IR s-SNOM), have been established by the integration of AFM with IR spectroscopy to realize nanoscale spatially resolved imaging for both morphological and chemical information. This review aims to summarize and highlight the recent developments in the applications of current state-of-the-art nanoscale IR spectroscopy and imaging to cellulose materials. It briefly outlines the basic principles of AFM-IR and IR s-SNOM, as well as their advantages and limitations to characterize cellulose materials. The uses of AFM-IR and IR s-SNOM for the understanding and development of cellulose materials, including cellulose nanomaterials, cellulose nanocomposites, and plant cell walls, are extensively summarized and discussed. The prospects of future developments in cellulose materials characterization are provided in the final part.
Collapse
|
21
|
Zhang M, Cai Z, Zhang G, Zhang Y, Xue N, Zhang D, Pan X. Effectively reducing antibiotic contamination and resistance in fishery by efficient gastrointestine-blood delivering dietary millispheres. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:125012. [PMID: 33440322 DOI: 10.1016/j.jhazmat.2020.125012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
The overuse of antibiotics during the medication treatment is inevitable in the extensively-applied intensive and semi-intensive aquaculture mode; the accompanied antibiotic contamination and antimicrobial resistance pose threats to the ecosystems and cause great loss to the aquaculture industry. To solve the problem, this work introduced the antibiotic-laden dietary millispheres (DMSs) with internal porous structure for the high availability, attractiveness and digestibility to fish. Two types of antibiotics with distinct solubilities - tetracycline chloride (TCH) and sulfadiazine (SDZ) were made into the DMSs, individually, which were then directly adopted in the feeding of fish. Carassius auratus was chosen as the target fish in this work. The mesocosm study demonstrate that, compared with the regular way of oral administration (feeding the mixture of antibiotics and commercial feed pellets), the DMSs could use much less (i.e. one order of magnitude lower) antibiotic dose to reach the equivalent antibiotic concentration in gastrointestine and blood. As a robust alternative, either TCH- or SDZ-laden DMSs achieved efficient drug delivery in vivo, which importantly facilitated the source reduction of antibiotics, the alleviation of antibiotic contamination in fishery and the control of antibiotic resistance especially in sediments.
Collapse
Affiliation(s)
- Ming Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhongxia Cai
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Guofu Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yin Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Nana Xue
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Luo H, Xiang Y, Tian T, Pan X. An AFM-IR study on surface properties of nano-TiO 2 coated polyethylene (PE) thin film as influenced by photocatalytic aging process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143900. [PMID: 33316515 DOI: 10.1016/j.scitotenv.2020.143900] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Most plastic wastes undergo extensive photo-aging in the environment, and the aged plastics exhibit different surface properties from pristine ones. Here, we investigate the surface properties of a nano-TiO2 coated polyethylene (PE) film as influenced by photocatalytic aging process using an atomic force microscopy coupled with infrared spectroscopy (AFM-IR) technique. Results showed that the height range of the as-prepared samples was about 30 nm, and the equivalent diameter of nano-TiO2 was ~70 nm. The photo-induced oxidation of the CH2 bond occurred on the surface of the PE film. Photo-aging mainly affected the thermal properties of PE film in a local area, especially affecting the components surrounding the nano-TiO2 particle. The glass transition temperature of unaged PE film mainly changed in the range of 93.9-96.5 °C, but after aging the temperature gradually increased with the distance to nano-TiO2 increasing from near to far. The plastic film surrounding the nano-TiO2 particle became stiffer after photo-aging, and the photocatalytic reaction had an effect on the stiffness of the film material. The second characteristic peaks with resonance deviations (i.e., 110, 112, and 115 kHz) were used for Lorentz contact resonance (LCR) measurements. The mechanical properties of PE film after photo-aging were closely related to the distance between nano-TiO2 and film surface. These research findings are conducive for us to understand better the photo-induced aging process of functional plastic film.
Collapse
Affiliation(s)
- Hongwei Luo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yahui Xiang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tian Tian
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
23
|
Luo H, Xiang Y, Li Y, Zhao Y, Pan X. Photocatalytic aging process of Nano-TiO 2 coated polypropylene microplastics: Combining atomic force microscopy and infrared spectroscopy (AFM-IR) for nanoscale chemical characterization. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124159. [PMID: 33080556 DOI: 10.1016/j.jhazmat.2020.124159] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Microplastics (MPs) are considered to have greater environmental hazards than large plastics. Most MPs undergo different degrees of aging and aged MPs exhibit different physicochemical properties from pristine ones. This study successfully prepared a nano-TiO2 coated polypropylene MPs, and explored the nanoscale infrared, thermal, and mechanical properties of MPs before and after photo-aging using a combined AFM-IR technique. Surface height range of MPs was ± 25 nm. The signal intensity of the absorption peak at 1654 cm-1 in terms of vinylidene end groups gradually increased as the irradiation time prolonged. The softening temperature of MPs decreased from 126.7 °C to 108.5 °C as the irradiation time increased from 0 h to 4 h. The MPs after photo-aging became stiffer, especially for the components surrounding the nano-TiO2 particle, indicating that photocatalytic reaction accelerated the aging process of MPs. The resonance frequency of MPs surrounding the nano-TiO2 particle was stronger after photo-aging and the stiffer components were uniformly distributed, confirming that the thermal and mechanical properties of MPs changed after photo-aging. These novel findings are essential to better understand the changes in the surface microstructures, physical properties, and chemical compositions of MPs during aging process.
Collapse
Affiliation(s)
- Hongwei Luo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yahui Xiang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yu Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yaoyao Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
24
|
Hu L, Fu J, Wang S, Xiang Y, Pan X. Microplastics generated under simulated fire scenarios: Characteristics, antimony leaching, and toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:115905. [PMID: 33290952 DOI: 10.1016/j.envpol.2020.115905] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 05/27/2023]
Abstract
Intentional or incidental thermal changes inevitably occur during the lifecycle of plastics. High temperatures accelerate the aging of plastics and promote their fragmentation to microplastics (MPs). However, there is little information available on the release of MPs after fires. In this study, an atomic force microscope combined with nanoscale infrared analysis was used to demonstrate the physicochemical properties of polypropylene (PP) plastics under simulated fire scenarios. Results showed that the chemical composition and relative stiffness of heat-treated plastic surfaces changed, significantly enhancing the generation of MPs under external forces; over (2.1 ± 0.2) × 105 items/kg abundance of MPs released from PP which were burned at 250 °C in air and trampled by a person. The leaching of antimony (Sb) from MPs in different solutions first increased and then decreased with increasing temperature, reaching a maximum at 250 °C. Higher concentrations of humic acid (10 vs 1 mg/L) caused a greater release of Sb. Furthermore, the tap water leachates of PP burned at 250 °C had the greatest effect on the growth and photosynthetic activity of Microcystis aeruginosa. Our results suggest fires as a potential source of MPs and calls for increased focus on burning plastics in future research.
Collapse
Affiliation(s)
- Lingling Hu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Juyang Fu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shuo Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yahui Xiang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
25
|
Palamidi A, Kapourani A, Christodoulou E, Klonos PA, Kontogiannopoulos KN, Kyritsis A, Bikiaris DN, Barmpalexis P. Low Molecular Weight Oligomers of Poly(alkylene succinate) Polyesters as Plasticizers in Poly(vinyl alcohol) Based Pharmaceutical Applications. Polymers (Basel) 2021; 13:polym13010146. [PMID: 33401411 PMCID: PMC7795009 DOI: 10.3390/polym13010146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 01/30/2023] Open
Abstract
The plasticizing effect of three low molecular weight oligomers of aliphatic poly(alkylene succinate) polyesters, namely poly(butylene succinate) (PBSu), poly(ethylene succinate) (PESu), and poly(propylene succinate) (PPSu), on partially hydrolyzed poly(vinyl alcohol) (PVA) used in melt-based pharmaceutical applications, was evaluated for the first time. Initially, the three aliphatic polyesters were prepared by the melt polycondensation process and characterized by differential scanning calorimetry (DSC), 1H NMR, intrinsic viscosity, and size exclusion chromatography (SEC). Subsequently, their effect on the thermophysical and physicochemical properties of PVA was thoroughly evaluated. According to the obtained results, PVA was completely miscible with all three polyesters, while PESu induced PVA’s thermal degradation, with the phenomenon starting from ~220 °C, in contrast to PBSu and PPSu, where a thermal profile similar to PVA was observed. Furthermore, molecular interactions between PVA and the prepared poly(alkylene succinate) polyesters were revealed by DSC, ATR-FTIR, and molecular dynamics simulations. Finally, melt flow index (MFI) measurements showed that, in contrast to PBSu, the use of PESu or PPSu significantly improved PVA’s melt flow properties. Hence, according to findings of the present work, only the use of low molecular weight PPSu is suitable in order to reduce processing temperature of PVA and improve its melt flow properties (plasticizing ability) without affecting its thermal decomposition.
Collapse
Affiliation(s)
- Artemis Palamidi
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.P.); (A.K.); (K.N.K.)
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.C.); (D.N.B.)
| | - Afroditi Kapourani
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.P.); (A.K.); (K.N.K.)
| | - Evi Christodoulou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.C.); (D.N.B.)
| | - Panagiotis A. Klonos
- Department of Physics, Zografou Campus, National Technical University of Athens, 15780 Athens, Greece; (P.A.K.); (A.K.)
| | - Konstantinos N. Kontogiannopoulos
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.P.); (A.K.); (K.N.K.)
| | - Apostolos Kyritsis
- Department of Physics, Zografou Campus, National Technical University of Athens, 15780 Athens, Greece; (P.A.K.); (A.K.)
| | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.C.); (D.N.B.)
| | - Panagiotis Barmpalexis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.P.); (A.K.); (K.N.K.)
- Correspondence: ; Tel.: +30-2310-997629
| |
Collapse
|
26
|
Sarpal K, Munson EJ. Amorphous Solid Dispersions of Felodipine and Nifedipine with Soluplus®: Drug-Polymer Miscibility and Intermolecular Interactions. J Pharm Sci 2020; 110:1457-1469. [PMID: 33359813 DOI: 10.1016/j.xphs.2020.12.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022]
Abstract
The objective of this study was to investigate thermodynamic and kinetic miscibility for two structurally similar model compounds nifedipine (NIF) and felodipine (FEL) when formulated as amorphous solid dispersions (ASDs) with an amphiphilic polymer Soluplus®. Thermodynamic miscibility was studied via melting point depression approach for the two systems. The Flory Huggins theory was used to calculate the interaction parameter and generate the phase diagrams. It was shown that NIF was more miscible in Soluplus® than FEL. The nature of drug polymer interactions was studied by fourier transform infra-red spectroscopy (FTIR) and solid-state nuclear magnetic resonance spectroscopy (ssNMR). The data from spectroscopic analyses showed that both the drugs interacted with Soluplus® through hydrogen bonding interactions. Furthermore, 13C ssNMR data was used to get quantitative estimate of the extent of hydrogen bonding for ASDs samples. Proton relaxation measurements were carried out on ASDs in order to evaluate phase heterogeneity on two different length scales of mixing. The data suggested that better phase homogeneity in NIF:SOL systems especially for lower Soluplus® content ASDs on smaller domains. This could be explained by understanding the extent of hydrogen bonding interactions for these two systems. This study highlights the need to consider thermodynamic and kinetic mixing, when formulating ASDs with the goal of understanding phase mixing between drug and polymer.
Collapse
Affiliation(s)
- Kanika Sarpal
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA
| | - Eric J Munson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA.
| |
Collapse
|
27
|
Luo H, Xiang Y, Zhao Y, Li Y, Pan X. Nanoscale infrared, thermal and mechanical properties of aged microplastics revealed by an atomic force microscopy coupled with infrared spectroscopy (AFM-IR) technique. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140944. [PMID: 32702545 DOI: 10.1016/j.scitotenv.2020.140944] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
Microplastics (MPs) often undergo different degrees of aging, and the aged MPs exhibit different surface properties from pristine MPs. This study explored the nanoscale infrared, thermal and mechanical properties of TiO2-pigmented MPs before and after aging by using an AFM-IR technique. Results showed that the surface of MPs was relatively smooth before aging, and was rough with more granular domains after aging. The stronger band at 1706 cm-1 (assigned to CO) and the weaker band at 1470 cm-1 (assigned to -CH2) were observed in aged MPs due to oxidation of CH bond in low-density polyethylene (LDPE). The softening temperature of MPs was about 209.50 ± 11.48 °C before aging, but after aging it dropped to 94.91 ± 4.40 °C. Aging process mainly reduced the glass transition temperature of the continuous phase (LDPE) rather than the discrete phase (TiO2) in MPs. Resonance deviations of the two characteristic peaks (i.e., 299/645 kHz and 311/670 kHz) between unaged and aged MPs were observed, and these characteristic peaks obviously appeared at higher frequencies in aged MPs, suggesting that the MPs after aging became stiffer. A stronger signal at a high frequency and the uniform signal distribution at this frequency confirmed that the mechanical properties of MPs changed after aging. These findings help to better understand the effects of aging process on the physicochemical properties of MPs.
Collapse
Affiliation(s)
- Hongwei Luo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yahui Xiang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yaoyao Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yu Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
28
|
Shi Q, Li F, Yeh S, Wang Y, Xin J. Physical stability of amorphous pharmaceutical solids: Nucleation, crystal growth, phase separation and effects of the polymers. Int J Pharm 2020; 590:119925. [PMID: 33011255 DOI: 10.1016/j.ijpharm.2020.119925] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 01/03/2023]
Abstract
Compared to their crystalline forms, amorphous pharmaceutical solids present marvelous potential and advantages for effectively improving the oral bioavailability of poorly water-soluble drugs. A central issue in developing amorphous pharmaceutical solids is the stability against crystallization, which is particularly important for maintaining their advantages in solubility and dissolution rate. This review provides a comprehensive overview of recent studies focusing on the physical stability of amorphous pharmaceutical solids affected by nucleation, crystal growth, phase separation and the addition of polymers. Moreover, we highlight the novel technologies and theories in the field of amorphous pharmaceutical solids. Meanwhile, the challenges and strategies in maintaining the physical stability of amorphous pharmaceutical solids are also discussed. With a better understanding of physical stability, the more robust amorphous pharmaceutical formulations with desired pharmaceutical performance would be easier to achieve.
Collapse
Affiliation(s)
- Qin Shi
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China; Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Fang Li
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Stacy Yeh
- Department of Cancer Biology, School of Medicine, Wake Forest University, Winston Salem 27103, USA
| | - Yanan Wang
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Junbo Xin
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| |
Collapse
|
29
|
Li N, Cape JL, Mankani BR, Zemlyanov DY, Shepard KB, Morgen MM, Taylor LS. Water-Induced Phase Separation of Spray-Dried Amorphous Solid Dispersions. Mol Pharm 2020; 17:4004-4017. [PMID: 32931293 PMCID: PMC7539301 DOI: 10.1021/acs.molpharmaceut.0c00798] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Spray
drying is widely used in the manufacturing of amorphous solid
dispersion (ASD) systems due to its fast drying rate, enabling kinetic
trapping of the drug in amorphous form. Spray-drying conditions, such
as solvent composition, can have a profound impact on the properties
of spray-dried dispersions. In this study, the phase behavior of spray-dried
dispersions from methanol and methanol–water mixtures was assessed
using ritonavir and copovidone [poly(vinylpyrrolidone-co-vinyl acetate)
(PVPVA)] as dispersion components. The resultant ASDs were characterized
using differential scanning calorimetry (DSC), fluorescence spectroscopy,
X-ray photoelectron spectroscopy (XPS), as well as surface-normalized
dissolution rate (SNDR) measurements. Quaternary phase diagrams were
calculated using a four-component Flory–Huggins model. It was
found that the addition of water to the solvent system can lead to
phase separation during the spray-drying process. A 10:90 H2O/MeOH solvent system caused a minor extent of phase separation.
Phase heterogeneity in the 50 and 75% drug loading ASDs prepared from
this spray solvent can be detected using DSC but not with other techniques
used. The 25% drug loading system did not show phase heterogeneity
in solid-state characterization but exhibited a compromised dissolution
rate compared to that of the miscible ASD prepared from H2O-free solvent. This is possibly due to the formation of slow-releasing
drug-rich phases upon phase separation. ASDs prepared with a 60:40
H2O/MeOH solvent mixture showed phase heterogeneity with
all analytical methods used. The surface composition of dispersion
particles as measured by fluorescence spectroscopy and XPS showed
good agreement, suggesting surface drug enrichment of the spray-dried
ASD particles prepared from this solvent system. Calculated phase
diagrams and drying trajectories were consistent with experimental
observations, suggesting that small variations in solvent composition
may cause significant changes in ASD phase behavior during drying.
These findings should aid in spray-drying process development for
ASD manufacturing and can be applied broadly to assess the risk of
phase separation for spray-drying systems using mixed organic solvents
or other solvent-based processes.
Collapse
Affiliation(s)
- Na Li
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States.,Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road Unit 3092, Storrs, Connecticut 06269, United States
| | - Jonathan L Cape
- Research & Development, Lonza Pharma and Biotech, 1201 NW Wall Street, Suite 200, Bend, Oregon 97703, United States
| | - Bharat R Mankani
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States.,MarqMetrix Inc., Emerald Landing, 2157 N Northlake Way #240, Seattle, Washington 98103, United States
| | - Dmitry Y Zemlyanov
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kimberly B Shepard
- Research & Development, Lonza Pharma and Biotech, 1201 NW Wall Street, Suite 200, Bend, Oregon 97703, United States
| | - Michael M Morgen
- Research & Development, Lonza Pharma and Biotech, 1201 NW Wall Street, Suite 200, Bend, Oregon 97703, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
30
|
Duan P, Lamm MS, Yang F, Xu W, Skomski D, Su Y, Schmidt-Rohr K. Quantifying Molecular Mixing and Heterogeneity in Pharmaceutical Dispersions at Sub-100 nm Resolution by Spin Diffusion NMR. Mol Pharm 2020; 17:3567-3580. [DOI: 10.1021/acs.molpharmaceut.0c00592] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Pu Duan
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Matthew S. Lamm
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Fengyuan Yang
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Wei Xu
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Daniel Skomski
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Yongchao Su
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Klaus Schmidt-Rohr
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| |
Collapse
|
31
|
Das PP, Guzzinati G, Coll C, Gomez Perez A, Nicolopoulos S, Estrade S, Peiro F, Verbeeck J, Zompra AA, Galanis AS. Reliable Characterization of Organic & Pharmaceutical Compounds with High Resolution Monochromated EEL Spectroscopy. Polymers (Basel) 2020; 12:polym12071434. [PMID: 32605004 PMCID: PMC7408036 DOI: 10.3390/polym12071434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 11/16/2022] Open
Abstract
Organic and biological compounds (especially those related to the pharmaceutical industry) have always been of great interest for researchers due to their importance for the development of new drugs to diagnose, cure, treat or prevent disease. As many new API (active pharmaceutical ingredients) and their polymorphs are in nanocrystalline or in amorphous form blended with amorphous polymeric matrix (known as amorphous solid dispersion—ASD), their structural identification and characterization at nm scale with conventional X-Ray/Raman/IR techniques becomes difficult. During any API synthesis/production or in the formulated drug product, impurities must be identified and characterized. Electron energy loss spectroscopy (EELS) at high energy resolution by transmission electron microscope (TEM) is expected to be a promising technique to screen and identify the different (organic) compounds used in a typical pharmaceutical or biological system and to detect any impurities present, if any, during the synthesis or formulation process. In this work, we propose the use of monochromated TEM-EELS, to analyze selected peptides and organic compounds and their polymorphs. In order to validate EELS for fingerprinting (in low loss/optical region) and by further correlation with advanced DFT, simulations were utilized.
Collapse
Affiliation(s)
- Partha Pratim Das
- NanoMegas SPRL, Boulevard Edmond Machtens 79, B1080 Brussels, Belgium; (A.G.P.); (A.S.G.)
- Electron Crystallography Solutions SL, Calle Orense 8, 28020 Madrid, Spain
- Correspondence: (P.P.D.); (S.N.)
| | - Giulio Guzzinati
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; (G.G.); (J.V.)
| | - Catalina Coll
- LENS-MIND, Department of Electronics and Biomedical Engineering, Universitat de Barcelona, 08028 Barcelona, Spain; (C.C.); (S.E.); (F.P.)
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Alejandro Gomez Perez
- NanoMegas SPRL, Boulevard Edmond Machtens 79, B1080 Brussels, Belgium; (A.G.P.); (A.S.G.)
| | - Stavros Nicolopoulos
- NanoMegas SPRL, Boulevard Edmond Machtens 79, B1080 Brussels, Belgium; (A.G.P.); (A.S.G.)
- Correspondence: (P.P.D.); (S.N.)
| | - Sonia Estrade
- LENS-MIND, Department of Electronics and Biomedical Engineering, Universitat de Barcelona, 08028 Barcelona, Spain; (C.C.); (S.E.); (F.P.)
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Francesca Peiro
- LENS-MIND, Department of Electronics and Biomedical Engineering, Universitat de Barcelona, 08028 Barcelona, Spain; (C.C.); (S.E.); (F.P.)
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Johan Verbeeck
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; (G.G.); (J.V.)
| | | | - Athanassios S. Galanis
- NanoMegas SPRL, Boulevard Edmond Machtens 79, B1080 Brussels, Belgium; (A.G.P.); (A.S.G.)
| |
Collapse
|
32
|
Nguyen-Tri P, Ghassemi P, Carriere P, Nanda S, Assadi AA, Nguyen DD. Recent Applications of Advanced Atomic Force Microscopy in Polymer Science: A Review. Polymers (Basel) 2020; 12:E1142. [PMID: 32429499 PMCID: PMC7284686 DOI: 10.3390/polym12051142] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/26/2022] Open
Abstract
Atomic force microscopy (AFM) has been extensively used for the nanoscale characterization of polymeric materials. The coupling of AFM with infrared spectroscope (AFM-IR) provides another advantage to the chemical analyses and thus helps to shed light upon the study of polymers. This paper reviews some recent progress in the application of AFM and AFM-IR in polymer science. We describe the principle of AFM-IR and the recent improvements to enhance its resolution. We also discuss the latest progress in the use of AFM-IR as a super-resolution correlated scanned-probe infrared spectroscopy for the chemical characterization of polymer materials dealing with polymer composites, polymer blends, multilayers, and biopolymers. To highlight the advantages of AFM-IR, we report several results in studying the crystallization of both miscible and immiscible blends as well as polymer aging. Finally, we demonstrate how this novel technique can be used to determine phase separation, spherulitic structure, and crystallization mechanisms at nanoscales, which has never been achieved before. The review also discusses future trends in the use of AFM-IR in polymer materials, especially in polymer thin film investigation.
Collapse
Affiliation(s)
- Phuong Nguyen-Tri
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC G8Z 4M3, Canada;
| | - Payman Ghassemi
- Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC G8Z 4M3, Canada;
| | - Pascal Carriere
- Laboratoire MAPIEM (EA 4323), Matériaux Polymères Interfaces Environnement Marin, Université de Toulon, CEDEX 9, 83041 Toulon, France;
| | - Sonil Nanda
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada;
| | - Aymen Amine Assadi
- ENSCR—Institut des Sciences Chimiques de Rennes (ISCR)—UMR CNRS 6226, Univ Rennes, 35700 Rennes, France;
| | - Dinh Duc Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam;
- Department of Environmental Energy Engineering, Kyonggi University, Suwon 16227, Korea
| |
Collapse
|
33
|
Pajula K, Hyyryläinen J, Koistinen A, Leskinen JT, Korhonen O. Detection of amorphous-amorphous phase separation in small molecular co-amorphous mixtures with SEM-EDS. Eur J Pharm Biopharm 2020; 150:43-49. [DOI: 10.1016/j.ejpb.2020.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 10/24/2022]
|
34
|
Shi X, Fan N, Zhang G, Sun J, He Z, Li J. Quercetin amorphous solid dispersions prepared by hot melt extrusion with enhanced solubility and intestinal absorption. Pharm Dev Technol 2020; 25:472-481. [DOI: 10.1080/10837450.2019.1709502] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xianbao Shi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Na Fan
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Gang Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Jing Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| |
Collapse
|
35
|
Identification and Characterization Methods for Microplastics Basing on Spatial Imaging in Micro-/Nanoscales. THE HANDBOOK OF ENVIRONMENTAL CHEMISTRY 2020. [DOI: 10.1007/698_2020_446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
Nguyen KTT, Frijlink HW, Hinrichs WLJ. Inhomogeneous Distribution of Components in Solid Protein Pharmaceuticals: Origins, Consequences, Analysis, and Resolutions. J Pharm Sci 2019; 109:134-153. [PMID: 31606540 DOI: 10.1016/j.xphs.2019.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 12/21/2022]
Abstract
Successful development of stable solid protein formulations usually requires the addition of one or several excipients to achieve optimal stability. In these products, there is a potential risk of an inhomogeneous distribution of the various ingredients, specifically the ratio of protein and stabilizer may vary. Such inhomogeneity can be detrimental for stability but is mostly neglected in literature. In the past, it was challenging to analyze inhomogeneous component distribution, but recent advances in analytical techniques have revealed new options to investigate this phenomenon. This paper aims to review fundamental aspects of the inhomogeneous distribution of components of freeze-dried and spray-dried protein formulations. Four key topics will be presented and discussed, including the sources of component inhomogeneity, its consequences on protein stability, the analytical methods to reveal component inhomogeneity, and possible solutions to prevent or mitigate inhomogeneity.
Collapse
Affiliation(s)
- Khanh T T Nguyen
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9700 RB Groningen, the Netherlands
| | - Henderik W Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9700 RB Groningen, the Netherlands
| | - Wouter L J Hinrichs
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, 9700 RB Groningen, the Netherlands.
| |
Collapse
|
37
|
Ricarte RG, Van Zee NJ, Li Z, Johnson LM, Lodge TP, Hillmyer MA. Recent Advances in Understanding the Micro- and Nanoscale Phenomena of Amorphous Solid Dispersions. Mol Pharm 2019; 16:4089-4103. [PMID: 31487183 DOI: 10.1021/acs.molpharmaceut.9b00601] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Many pharmaceutical drugs in the marketplace and discovery pipeline suffer from poor aqueous solubility, thereby limiting their effectiveness for oral delivery. The use of an amorphous solid dispersion (ASD), a mixture of an active pharmaceutical ingredient and a polymer excipient, greatly enhances the aqueous dissolution performance of a drug without the need for chemical modification. Although this method is versatile and scalable, deficient understanding of the interactions between drugs and polymers inhibits ASD rational design. This current Review details recent progress in understanding the mechanisms that control ASD performance. In the solid-state, the use of high-resolution theoretical, computational, and experimental tools resolved the influence of drug/polymer phase behavior and dynamics on stability during storage. During dissolution in aqueous media, novel characterization methods revealed that ASDs can form complex nanostructures, which maintain and improve supersaturation of the drug. The studies discussed here illustrate that nanoscale phenomena, which have been directly observed and quantified, strongly affect the stability and bioavailability of ASD systems, and provide a promising direction for optimizing drug/polymer formulations.
Collapse
Affiliation(s)
- Ralm G Ricarte
- Molecular, Macromolecular Chemistry, and Materials Laboratory, CNRS, ESPCI-Paris , PSL Research University , 10 Rue Vauquelin , 75005 Paris , France
| | | | | | | | | | | |
Collapse
|
38
|
Tian Y, Qian K, Jacobs E, Amstad E, Jones DS, Stella L, Andrews GP. The Investigation of Flory-Huggins Interaction Parameters for Amorphous Solid Dispersion Across the Entire Temperature and Composition Range. Pharmaceutics 2019; 11:pharmaceutics11080420. [PMID: 31430958 PMCID: PMC6722828 DOI: 10.3390/pharmaceutics11080420] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/11/2019] [Accepted: 08/13/2019] [Indexed: 02/06/2023] Open
Abstract
Amorphous solid dispersion (ASD) is one of the most promising enabling formulations featuring significant water solubility and bioavailability enhancements for biopharmaceutical classification system (BCS) class II and IV drugs. An accurate thermodynamic understanding of the ASD should be established for the ease of development of stable formulation with desired product performances. In this study, we report a first experimental approach combined with classic Flory–Huggins (F–H) modelling to understand the performances of ASD across the entire temperature and drug composition range. At low temperature and drug loading, water (moisture) was induced into the system to increase the mobility and accelerate the amorphous drug-amorphous polymer phase separation (AAPS). The binodal line indicating the boundary between one phase and AAPS of felodipine, PVPK15 and water ternary system was successfully measured, and the corresponding F–H interaction parameters (χ) for FD-PVPK15 binary system were derived. By combining dissolution/melting depression with AAPS approach, the relationship between temperature and drug loading with χ (Φ, T) for FD-PVPK15 system was modelled across the entire range as χ = 1.72 − 852/T + 5.17·Φ − 7.85·Φ2. This empirical equation can provide better understanding and prediction for the miscibility and stability of drug-polymer ASD at all conditions.
Collapse
Affiliation(s)
- Yiwei Tian
- Pharmaceutical Engineering Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Kaijie Qian
- Pharmaceutical Engineering Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Esther Jacobs
- Pharmaceutical Engineering Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Esther Amstad
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - David S Jones
- Pharmaceutical Engineering Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Lorenzo Stella
- Atomistic Simulation Centre, School of Mathematics and Physics, Queen's University Belfast, 7-9 College Park E, Belfast BT7 1PS, UK
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, UK
| | - Gavin P Andrews
- Pharmaceutical Engineering Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
39
|
Medarević D, Djuriš J, Barmpalexis P, Kachrimanis K, Ibrić S. Analytical and Computational Methods for the Estimation of Drug-Polymer Solubility and Miscibility in Solid Dispersions Development. Pharmaceutics 2019; 11:pharmaceutics11080372. [PMID: 31374926 PMCID: PMC6722809 DOI: 10.3390/pharmaceutics11080372] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/18/2019] [Accepted: 07/22/2019] [Indexed: 01/21/2023] Open
Abstract
The development of stable solid dispersion formulations that maintain desired improvement of drug dissolution rate during the entire shelf life requires the analysis of drug-polymer solubility and miscibility. Only if the drug concentration is below the solubility limit in the polymer, the physical stability of solid dispersions is guaranteed without risk for drug (re)crystallization. If the drug concentration is above the solubility, but below the miscibility limit, the system is stabilized through intimate drug-polymer mixing, with additional kinetic stabilization if stored sufficiently below the mixture glass transition temperature. Therefore, it is of particular importance to assess the drug-polymer solubility and miscibility, to select suitable formulation (a type of polymer and drug loading), manufacturing process, and storage conditions, with the aim to ensure physical stability during the product shelf life. Drug-polymer solubility and miscibility can be assessed using analytical methods, which can detect whether the system is single-phase or not. Thermodynamic modeling enables a mechanistic understanding of drug-polymer solubility and miscibility and identification of formulation compositions with the expected formation of the stable single-phase system. Advance molecular modeling and simulation techniques enable getting insight into interactions between the drug and polymer at the molecular level, which determine whether the single-phase system formation will occur or not.
Collapse
Affiliation(s)
- Djordje Medarević
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| | - Jelena Djuriš
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Panagiotis Barmpalexis
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Kyriakos Kachrimanis
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Svetlana Ibrić
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| |
Collapse
|
40
|
Poozesh S, Mahdi Jafari S. Are traditional small-scale screening methods reliable to predict pharmaceutical spray drying? Pharm Dev Technol 2019; 24:915-925. [PMID: 31057007 DOI: 10.1080/10837450.2019.1616208] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Driven by the new trend to build quality into products and reducing empiricism, small-scale screening techniques have been frequently used to evaluate, thermodynamic of drug solubility in the polymer, and drug-polymer kinetic amorphous miscibility. In this paper, these methods have been overviewed to shed light on their liabilities in predicting spray-dried amorphous solid dispersions' (ASDs) properties. By scrutinizing relevant open literature, several inconsistencies have been recognized, deemed to be due to the inability of conventional miniaturized means to simulate the spray drying process operations/constraints in formulating active pharmaceutical ingredients (APIs). Given the complex interplay of thermodynamics of mixing, heat and mass transfer, and fluid dynamics in this process, scaling rules have been introduced to remedy arisen issues in conventional miniaturized tools. Accordingly, spray drying process is analyzed considering the fundamental physical transformations involved, i.e. atomization and drying. Each transformation is explored from a scaling perspective with an emphasis on key response factors, and ways to retain them for each transformation across scales. Prospective bifurcated developments may improve the odds of successful formulations/process conditions later on during development stages.
Collapse
Affiliation(s)
- Sadegh Poozesh
- a Mechanical Engineering Department , Tuskegee University , Tuskegee , AL , US
| | - Seid Mahdi Jafari
- b Food Materials and Process Design Engineering Department , Gorgan University of Agricultural Sciences and Natural Resources , Gorgan , Iran
| |
Collapse
|
41
|
Microstructure Formation for Improved Dissolution Performance of Lopinavir Amorphous Solid Dispersions. Mol Pharm 2019; 16:1751-1765. [PMID: 30811205 DOI: 10.1021/acs.molpharmaceut.9b00117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
42
|
Indulkar AS, Lou X, Zhang GGZ, Taylor LS. Insights into the Dissolution Mechanism of Ritonavir-Copovidone Amorphous Solid Dispersions: Importance of Congruent Release for Enhanced Performance. Mol Pharm 2019; 16:1327-1339. [PMID: 30669846 DOI: 10.1021/acs.molpharmaceut.8b01261] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of this study was to probe the dissolution mechanisms of amorphous solid dispersions (ASDs) of a poorly water-soluble drug formulated with a hydrophilic polymer. Ritonavir (RTV) and polyvinylpyrrolidone/vinyl acetate (PVPVA) were used as the model drug and polymer, respectively. ASDs with drug loadings (DLs) from 10 to 50 wt % were prepared by solvent evaporation. Surface-normalized dissolution experiments were carried out using Wood's intrinsic dissolution apparatus, and both drug and polymer release were quantified. ASDs at or below 25% DL showed rapid, complete, and congruent (i.e., simultaneous) release of the drug and polymer with dissolution rates similar to that of the polymer alone. The highest drug loading at which congruent release was observed is termed the limit of congruency (LoC) and occurred at 25% DL for RTV-PVPVA. The ASD with 30% DL showed an initial lag time, followed by a period of congruent release. At later times, the release of drug and polymer became incongruent with polymer releasing faster than drug. Higher DL ASDs (40 and 50%) showed slow release of both drug and polymer, whereby the drug release rate was similar to that of the neat amorphous drug. In cases where the release of the ASD components was congruent or close to congruent, the drug concentration exceeded the amorphous solubility, and liquid-liquid phase separation (LLPS) occurred with the formation of colloidal, drug-rich species. Solid state analyses of the ASD tablet surface by infrared spectroscopy and scanning electron microscopy revealed that the partially dissolved tablet surface remains smooth, and drug-polymer miscibility is retained at low DLs; whereas, at a very high DL, the surface is porous and enriched with amorphous drug. In concert, these observations suggest that ASD dissolution and drug release at low DLs is governed primarily by hydrophilic polymer; whereas, at high DLs, amorphous drug controls dissolution. Fluorescence microscopy images of thin ASD films suggested that ASDs at or below the LoC remain homogeneous even after exposure to water. In contrast ASDs with DL above LoC undergo, to various extents, water-induced amorphous-amorphous phase separation (AAPS) leading to demixing of the drug and polymer. Correlating the observations of the dissolution study with the solid state data suggest that the ASDs with DLs higher than the LoC undergo AAPS in the hydrating matrix on the surface of the dissolving solid during dissolution, leading to separation of drug and polymer, the formation of a drug-rich interface, and hence, incongruent and/or slow release of the components. In contrast, low DL ASDs dissolve before AAPS occurs. The competition between these two parallel and competing processes on the surface of ASD solids, i.e., dissolution and AAPS, thus dictates the overall release characteristics of the ASD formulations, which is one of the most important considerations in designing formulations with superior dissolution and absorption.
Collapse
Affiliation(s)
- Anura S Indulkar
- Drug Product Development, Research and Development , AbbVie Inc. , North Chicago , Illinois 60064 , United States.,Department of Industrial and Physical Pharmacy, College of Pharmacy , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Xiaochun Lou
- Drug Product Development, Research and Development , AbbVie Inc. , North Chicago , Illinois 60064 , United States
| | - Geoff G Z Zhang
- Drug Product Development, Research and Development , AbbVie Inc. , North Chicago , Illinois 60064 , United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy , Purdue University , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
43
|
Aryal UK, Lee J, Kranthiraja K, Reddy SS, Sree VG, Park T, Song M, Jin SH. The effect of irregularity from asymmetric random π-conjugated polymers on the photovoltaic performance of fullerene-free organic solar cells. Polym Chem 2019. [DOI: 10.1039/c9py00461k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We synthesized a new random π-conjugated polymer (asy-PBDTPBT) and investigated the effect of its structural irregularity. The efficiency of non-fullerene OSCs was enhanced, showing the suppressed crystallinity and the smaller domain size.
Collapse
Affiliation(s)
- Um Kanta Aryal
- Department of Chemistry Education
- Graduate Department of Chemical Materials
- Institute for Plastic Information and Energy Materials
- Pusan National University
- Busan
| | - Junwoo Lee
- Department of Chemical Engineering
- Pohang University of Science and Technology
- Gyeongbuk 37673
- Republic of Korea
| | - Kakaraparthi Kranthiraja
- Department of Chemistry Education
- Graduate Department of Chemical Materials
- Institute for Plastic Information and Energy Materials
- Pusan National University
- Busan
| | - Saripally Sudhaker Reddy
- Department of Chemistry Education
- Graduate Department of Chemical Materials
- Institute for Plastic Information and Energy Materials
- Pusan National University
- Busan
| | - Vijaya Gopalan Sree
- Department of Chemistry Education
- Graduate Department of Chemical Materials
- Institute for Plastic Information and Energy Materials
- Pusan National University
- Busan
| | - Taiho Park
- Department of Chemical Engineering
- Pohang University of Science and Technology
- Gyeongbuk 37673
- Republic of Korea
| | - Myungkwan Song
- Surface Technology Division
- Korea Institute of Materials Science
- Gyeongnam 51508
- Republic of Korea
| | - Sung-Ho Jin
- Department of Chemistry Education
- Graduate Department of Chemical Materials
- Institute for Plastic Information and Energy Materials
- Pusan National University
- Busan
| |
Collapse
|
44
|
A Miniaturized Extruder to Prototype Amorphous Solid Dispersions: Selection of Plasticizers for Hot Melt Extrusion. Pharmaceutics 2018; 10:pharmaceutics10020058. [PMID: 29783755 PMCID: PMC6027370 DOI: 10.3390/pharmaceutics10020058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/07/2018] [Accepted: 05/14/2018] [Indexed: 01/18/2023] Open
Abstract
Hot-melt extrusion is an option to fabricate amorphous solid dispersions and to enhance oral bioavailability of poorly soluble compounds. The selection of suitable polymer carriers and processing aids determines the dissolution, homogeneity and stability performance of this solid dosage form. A miniaturized extrusion device (MinEx) was developed and Hypromellose acetate succinate type L (HPMCAS-L) based extrudates containing the model drugs neurokinin-1 (NK1) and cholesterylester transfer protein (CETP) were manufactured, plasticizers were added and their impact on dissolution and solid-state properties were assessed. Similar mixtures were manufactured with a lab-scale extruder, for face to face comparison. The properties of MinEx extrudates widely translated to those manufactured with a lab-scale extruder. Plasticizers, Polyethyleneglycol 4000 (PEG4000) and Poloxamer 188, were homogenously distributed but decreased the storage stability of the extrudates. Stearic acid was found condensed in ultrathin nanoplatelets which did not impact the storage stability of the system. Depending on their distribution and physicochemical properties, plasticizers can modulate storage stability and dissolution performance of extrudates. MinEx is a valuable prototyping-screening method and enables rational selection of plasticizers in a time and material sparing manner. In eight out of eight cases the properties of the extrudates translated to products manufactured in lab-scale extrusion trials.
Collapse
|
45
|
Physical Stability of Amorphous Solid Dispersions: a Physicochemical Perspective with Thermodynamic, Kinetic and Environmental Aspects. Pharm Res 2018; 35:125. [PMID: 29687226 DOI: 10.1007/s11095-018-2408-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/13/2018] [Indexed: 10/17/2022]
Abstract
PURPOSE Amorphous solid dispersions (ASDs) have been widely used in the pharmaceutical industry for solubility enhancementof poorly water-soluble drugs. The physical stability, however, remainsone of the most challenging issues for the formulation development.Many factors can affect the physical stability via different mechanisms, and therefore an in-depth understanding on these factors isrequired. METHODS In this review, we intend to summarize the physical stability of ASDsfrom a physicochemical perspective whereby factors that can influence the physical stability areclassified into thermodynamic, kinetic and environmental aspects. RESULTS The drug-polymer miscibility and solubility are consideredas the main thermodynamicfactors which may determine the spontaneity of the occurrence of the physical instabilityof ASDs. Glass-transition temperature,molecular mobility, manufacturing process,physical stabilityof amorphous drugs, and drug-polymerinteractionsareconsideredas the kinetic factors which areassociated with the kinetic stability of ASDs on aging. Storage conditions including temperature and humidity could significantly affect the thermodynamicand kineticstabilityof ASDs. CONCLUSION When designing amorphous solid dispersions, it isrecommended that these thermodynamic, kinetic and environmental aspects should be completely investigatedand compared to establish rationale formulations for amorphous solid dispersions with high physical stability.
Collapse
|
46
|
Tang F, Bao P, Roy A, Wang Y, Su Z. In-situ spectroscopic and thermal analyses of phase domains in high-impact polypropylene. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.03.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
47
|
Mosquera-Giraldo LI, Li N, Wilson VR, Nichols BLB, Edgar KJ, Taylor LS. Influence of Polymer and Drug Loading on the Release Profile and Membrane Transport of Telaprevir. Mol Pharm 2018. [PMID: 29513538 DOI: 10.1021/acs.molpharmaceut.8b00104] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
During the dissolution of amorphous solid dispersions (ASDs), various phase transformations can occur, which will ultimately impact the degree of supersaturation. This study employed dissolution and diffusion measurements to compare the performance of various ASD formulations based on the maximum amount of free drug in the solution that was able to permeate through a cellulose-based membrane. Telaprevir (TPV) was used as the model drug compound, and ASDs were prepared with different drug loadings and with four different polymers. Four possible scenarios that can influence TPV mass flow rates upon ASD dissolution were described and supported with experimental data: (1) a system dissolves readily and completely undergoes phase separation via glass-liquid phase separation (GLPS), forming drug-rich aggregates, and reaches the maximum anticipated mass flow rate; (2) where the maximum mass flow rate decreases due to substantial mixing of the polymer into the drug-rich phase, and/or due to the formation of soluble polymer-drug complexes; (3) a system does not undergo GLPS due to slow drug release and/or matrix crystallization; and (4) a system does not undergo GLPS due to rapid crystallization from the supersaturated solution generated during dissolution. The results described herein support the importance of the combined use of the dissolution-diffusion measurements to determine the maximum level of supersaturation achievable for diverse drug formulations.
Collapse
Affiliation(s)
- Laura I Mosquera-Giraldo
- Department of Industrial and Physical Pharmacy, College of Pharmacy , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Na Li
- Department of Industrial and Physical Pharmacy, College of Pharmacy , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Venecia R Wilson
- Department of Industrial and Physical Pharmacy, College of Pharmacy , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Brittany L B Nichols
- Department of Chemistry, College of Science , Virginia Tech , Blacksburg , Virginia 24061 , United States.,Department of Sustainable Biomaterials, College of Natural Resources and Environment , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Kevin J Edgar
- Department of Sustainable Biomaterials, College of Natural Resources and Environment , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy , Purdue University , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
48
|
Affiliation(s)
- Lifu Xiao
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Zachary D Schultz
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
49
|
Investigating phase separation in amorphous solid dispersions via Raman mapping. Int J Pharm 2018; 535:245-252. [DOI: 10.1016/j.ijpharm.2017.11.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 11/23/2022]
|
50
|
Tri PN, Prud’homme RE. Nanoscale Lamellar Assembly and Segregation Mechanism of Poly(3-hydroxybutyrate)/Poly(ethylene glycol) Blends. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b02019] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Phuong Nguyen Tri
- Department of Chemistry, Université de Montréal, PO Box 6128
Centre-ville STN, Montréal H3C 3J7, Québec, Canada
| | - Robert E. Prud’homme
- Department of Chemistry, Université de Montréal, PO Box 6128
Centre-ville STN, Montréal H3C 3J7, Québec, Canada
| |
Collapse
|