1
|
Cheng X, Li C, Hong H, Zhou Z, Wu Z. Macrocyclic RGD-peptides with high selectivity for α vβ 3 integrin in cancer imaging and therapy. RSC Med Chem 2025:d5md00280j. [PMID: 40370651 PMCID: PMC12070224 DOI: 10.1039/d5md00280j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Accepted: 04/27/2025] [Indexed: 05/16/2025] Open
Abstract
Integrins, particularly the αvβ3 subtype, are critical receptors involved in cell adhesion, migration, and signaling, playing a significant role in tumor progression and metastasis. Despite extensive research into integrin-targeted therapies, challenges remain in developing ligands that exhibit high selectivity for αvβ3 over other integrin subtypes, such as αvβ5. This study employs a one-pot sortase A-mediated on-resin peptide cleavage and in situ cyclization method to synthesize two generations of macrocyclic RGD-peptide libraries. Systematic screening through surface plasmon resonance and cell-based competition assays identified the lead compound, c-(G5RGDKcLPET), which demonstrated high affinity and selectivity for αvβ3. Additionally, the optimized cyclic peptide was functionalized with a fluorescent dye (Cy5) and the cytotoxic drug monomethyl auristatin E (MMAE), enhancing its potential for cancer imaging and targeted therapy. This work contributes a novel platform for developing integrin-targeted diagnostics and therapeutics, highlighting the importance of macrocyclic peptides in cancer treatment strategies.
Collapse
Affiliation(s)
- Xiaozhong Cheng
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University Wuxi 214122 China
- School of Biological and Food Engineering, Hefei Normal University Hefei 230601 China
| | - Chen Li
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University Wuxi 214122 China
| | - Haofei Hong
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University Wuxi 214122 China
| | - Zhifang Zhou
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University Wuxi 214122 China
| | - Zhimeng Wu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University Wuxi 214122 China
| |
Collapse
|
2
|
Kumar K, Saini M, Rani V, Mishra M, Priya, Jatin, Tiwari S, Mishra B, Chawla R. Crafting a Molecular Trojan Horse: Sialic Acid-Modified PLGA Nanoparticles for Targeted Lung Cancer Therapy. Mol Pharm 2025; 22:1816-1830. [PMID: 40021483 DOI: 10.1021/acs.molpharmaceut.4c00957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
The glycan receptors prominently expressed on the surface of lung cancer cells offers promising targets for drug delivery. The prepared gemcitabine (GB)-loaded PLGA-NPs and sialic acid (Siac)-modified PLGA-NPs exhibited a uniform polydispersity index (PDI) value below 0.3, a particle size under 200 nm, and negative zeta potentials ranging from -17.45 to -21.45 mV. Entrapment efficiency (% EE) and drug loading values exceeded 70% and 8%, respectively. SEM and TEM showed that the particles were uniformly dispersed with a spherical shape. FTIR, XRD, TGA, and DSC analyses indicated the physiochemical stability of the drug within the nanoformulations. Controlled (26.92 to 31.64% within 24 h at pH 7.4) and pH-sensitive (36.80 to 40.25% within 24 h at pH 5.5) GB release were observed for the different formulations of PLGA-NPs. The MTT cytotoxicity assay revealed IC50 values for the GB control, GB-PLGA-NPs, and GB-PLGA-Siac-NPs as 13.65 ± 1.20, 8.14 ± 1.24, and 4.16 ± 1.05 μg/mL, respectively. The Co6-GB-PLGA-Siac-NPs showed significantly higher cellular uptake than that of the Co6-GB control (p < 0.001) and Co6-GB-PLGA-NPs (p < 0.01) respectively. Pharmacokinetic profiles indicated higher AUC values (ng·h/mL) for GB-PLGA-Siac-NPs (8355.07 ± 2006.45) compared to GB-PLGA-NPs (6145.58 ± 969.25) and the GB control (1510.72 ± 81.08), resulting in higher bioavailability of GB-PLGA-Siac-NPs. Biodistribution studies confirmed superior localization of DiD-GB-PLGA-Siac-NPs, indicated by radiant efficiency signal on B[a]P induced lung cancerous tissues relative to DiD-GB-PLGA-NPs after 1 h (p < 0.001), 4 h (p < 0.01), and 12 h (p < 0.001), which could be attributed to their ability to target glycans. In vivo anticancer efficacy in a B[a]P-induced lung cancer mice model depicted that GB-PLGA-Siac-NPs effectively inhibited lung cancer cells and reduced systemic toxicity, as evidenced by the average number of lung cancer cells, body weight values, survival analysis, biochemical parameters associated with organs (such as the liver and kidney), and histopathological analysis. Therefore, GB-loaded Siac-coated PLGA nanoparticles could serve as an efficient vehicle for GB delivery via targeting glycan receptors in lung cancer therapy.
Collapse
Affiliation(s)
- Krishan Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Manjit Saini
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India
| | - Varsha Rani
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India
- Jichi Medical University Shimostuke, Shimotsuke, Tochigi Pefecture 329-0431, Japan
| | - Mohini Mishra
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India
| | - Priya
- Department of Pharmacy, Barkatullah University, Bhopal, Madhya Pradesh 462026, India
| | - Jatin
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India
| | - Siddharth Tiwari
- School of Pharmaceutical Sciences, CSJM University, Kanpur, Uttar Pradesh 208024, India
| | - Brahmeshwar Mishra
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India
| | - Ruchi Chawla
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
3
|
Omidian H, Cubeddu LX, Wilson RL. Peptide-Functionalized Nanomedicine: Advancements in Drug Delivery, Diagnostics, and Biomedical Applications. Molecules 2025; 30:1572. [PMID: 40286158 PMCID: PMC11990896 DOI: 10.3390/molecules30071572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Peptide-functionalized nanomedicine has emerged as a transformative approach in precision therapeutics and diagnostics, leveraging the specificity of peptides to enhance the performance of nanocarriers, including gold nanoparticles, polymeric nanoparticles, liposomes, mesoporous silica nanoparticles, and quantum dots. These systems enable targeted drug delivery, molecular imaging, biosensing, and regenerative medicine, offering unparalleled advantages in bioavailability, cellular uptake, and therapeutic selectivity. This review provides a comprehensive analysis of peptide-functionalization strategies, nanocarrier design, and their applications across oncology, neurodegenerative disorders, inflammatory diseases, infectious diseases, and tissue engineering. We further discuss the critical role of physicochemical characterization, in vitro and in vivo validation, and regulatory considerations in translating these technologies into clinical practice. Despite the rapid progress in peptide-functionalized platforms, challenges related to stability, immune response, off-target effects, and large-scale reproducibility remain key obstacles to their widespread adoption. Addressing these through advanced peptide engineering, optimized synthesis methodologies, and regulatory harmonization will be essential for their clinical integration. By bridging fundamental research with translational advancements, this review provides an interdisciplinary roadmap for the next generation of peptide-functionalized nanomedicines poised to revolutionize targeted therapy and diagnostics.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | - Luigi X. Cubeddu
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | | |
Collapse
|
4
|
Raj M, Meena A, Seth R, Mathur A, Luqman S. An update on nanoformulations with FDA approved drugs for female reproductive cancer. J Microencapsul 2025:1-34. [PMID: 40114400 DOI: 10.1080/02652048.2025.2474457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/26/2025] [Indexed: 03/22/2025]
Abstract
Female reproductive cancers, including ovarian, cervical, breast, gestational trophoblastic and endometrial cancer, present significant challenges in therapy and patient prognosis. Conventional chemotherapy often lacks selectivity, leading to systemic toxicity and reduced treatment efficacy. Nanotechnology has emerged as a promising approach to improve drug delivery and therapeutic outcomes. Encapsulation of FDA-approved drugs within nanocarriers such as liposomes, polymeric nanoparticles, and lipid nanoparticles enables controlled drug release, reduces off-target effects, and enhances drug accumulation at tumor sites. This targeted delivery minimizes damage to healthy tissues and improves patient survival rates. Additionally, nanoformulations facilitate combination therapy, overcoming drug resistance and maximizing therapeutic efficacy. Despite promising results, challenges like scalability, reproducibility, and regulatory approvals hinder widespread clinical applications. Developing personalized nanoformulations tailored to individual patient profiles offers potential for precision cancer therapy. This study explores the role of nanoformulations in enhancing the therapeutic potential of FDA-approved drugs for treating female reproductive cancers.
Collapse
Affiliation(s)
- Mahima Raj
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Richa Seth
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anurag Mathur
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
5
|
Han S, Lee G, Kim D, Kim J, Kim I, Kim H, Kim D. Selective Suppression of Integrin-Ligand Binding by Single Molecular Tension Probes Mediates Directional Cell Migration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306497. [PMID: 38311584 PMCID: PMC11005741 DOI: 10.1002/advs.202306497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/04/2024] [Indexed: 02/06/2024]
Abstract
Cell migration interacting with continuously changing microenvironment, is one of the most essential cellular functions, participating in embryonic development, wound repair, immune response, and cancer metastasis. The migration process is finely tuned by integrin-mediated binding to ligand molecules. Although numerous biochemical pathways orchestrating cell adhesion and motility are identified, how subcellular forces between the cell and extracellular matrix regulate intracellular signaling for cell migration remains unclear. Here, it is showed that a molecular binding force across integrin subunits determines directional migration by regulating tension-dependent focal contact formation and focal adhesion kinase phosphorylation. Molecular binding strength between integrin αvβ3 and fibronectin is precisely manipulated by developing molecular tension probes that control the mechanical tolerance applied to cell-substrate interfaces. This data reveals that integrin-mediated molecular binding force reduction suppresses cell spreading and focal adhesion formation, attenuating the focal adhesion kinase (FAK) phosphorylation that regulates the persistence of cell migration. These results further demonstrate that manipulating subcellular binding forces at the molecular level can recapitulate differential cell migration in response to changes of substrate rigidity that determines the physical condition of extracellular microenvironment. Novel insights is provided into the subcellular mechanics behind global mechanical adaptation of the cell to surrounding tissue environments featuring distinct biophysical signatures.
Collapse
Affiliation(s)
- Seong‐Beom Han
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
| | - Geonhui Lee
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
| | - Daesan Kim
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
| | - Jeong‐Ki Kim
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
| | - In‐San Kim
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
- Biomedical Research CenterKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Hae‐Won Kim
- Institute of Tissue Regeneration Engineering (ITREN)Dankook UniversityCheonan31116Republic of Korea
- Department of Biomaterials Science in College of Dentistry & Department of Nanobiomedical Science in Graduate SchoolDankook UniversityCheonan31116Republic of Korea
| | - Dong‐Hwee Kim
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
- Biomedical Research CenterKorea Institute of Science and TechnologySeoul02792Republic of Korea
- Department of Integrative Energy EngineeringCollege of EngineeringKorea UniversitySeoul02841Republic of Korea
| |
Collapse
|
6
|
Guo S, Wang J, Wang Q, Wang J, Qin S, Li W. Advances in peptide-based drug delivery systems. Heliyon 2024; 10:e26009. [PMID: 38404797 PMCID: PMC10884816 DOI: 10.1016/j.heliyon.2024.e26009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 02/27/2024] Open
Abstract
Drug delivery systems (DDSs) are designed to deliver drugs to their specific targets to minimize their toxic effects and improve their susceptibility to clearance during targeted transport. Peptides have high affinity, low immunogenicity, simple amino acid composition, and adjustable molecular size; therefore, most peptides can be coupled to drugs via linkers to form peptide-drug conjugates (PDCs) and act as active pro-drugs. PDCs are widely thought to be promising DDSs, given their ability to improve drug bio-compatibility and physiological stability. Peptide-based DDSs are often used to deliver therapeutic substances such as anti-cancer drugs and nucleic acid-based drugs, which not only slow the degradation rate of drugs in vivo but also ensure the drug concentration at the targeted site and prolong the half-life of drugs in vivo. This article provides an profile of the advancements and future development in functional peptide-based DDSs both domestically and internationally in recent years, in the expectation of achieving targeted drug delivery incorporating functional peptides and taking full advantage of synergistic effects.
Collapse
Affiliation(s)
- Sijie Guo
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Jing Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Qi Wang
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Jinxin Wang
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Wenjun Li
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| |
Collapse
|
7
|
Kouhjani M, Jaafari MR, Kamali H, Abbasi A, Tafaghodi M, Mousavi Shaegh SA. Microfluidic-assisted preparation of PLGA nanoparticles loaded with insulin: a comparison with double emulsion solvent evaporation method. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:306-329. [PMID: 38100556 DOI: 10.1080/09205063.2023.2287247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023]
Abstract
Poly lactic-co-glycolic acid (PLGA) is an ideal polymer for the delivery of small and macromolecule drugs. Conventional preparation methods of PLGA nanoparticles (NPs) result in poor control over NPs properties. In this research, a microfluidic mixer was designed to produce insulin-loaded PLGA NPs with tuned properties. Importantly; aggregation of the NPs through the mixer was diminished due to the coaxial mixing of the precursors. The micromixer allowed for the production of NPs with small size and narrow size distribution compared to the double emulsion solvent evaporation (DESE) method. Furthermore, encapsulation efficiency and loading capacity indicated a significant increase in optimized NPs produced through the microfluidic method in comparison to DESE method. NPs prepared by the microfluidic method were able to achieve a more reduction of trans-epithelial electrical resistance values in the Caco-2 cells compared to those developed by the DESE technique that leads to greater paracellular permeation. Compatibility and interaction between components were evaluated by differential scanning calorimetry and fourier transform infrared analysis. Also, the effect of NPs on cell toxicity was investigated using MTT test. Numerical simulations were conducted to analyze the effect of mixing patterns on the properties of the NPs. It was revealed that by decreasing flow rate ratio, i.e. flow rate of the organic phase to the flow rate of the aqueous phase, mixing of the two streams increases. As an alternative to the DESE method, high flexibility in modulating hydrodynamic conditions of the microfluidic mixer allowed for nanoassembly of NPs with superior insulin encapsulation at smaller particle sizes.
Collapse
Affiliation(s)
- Maryam Kouhjani
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology and Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Kamali
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Abbasi
- Laboratory of Microfluidics and Medical Microsystems, BuAli Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Orthopedic Research Center, Ghaem Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Tafaghodi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Nanotechnology and Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ali Mousavi Shaegh
- Laboratory of Microfluidics and Medical Microsystems, BuAli Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Orthopedic Research Center, Ghaem Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Clinical Research Unit, Ghaem Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Jain P, Jangid AK, Pooja D, Kulhari H. Design of manganese-based nanomaterials for pharmaceutical and biomedical applications. J Mater Chem B 2024; 12:577-608. [PMID: 38116805 DOI: 10.1039/d3tb00779k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
In the past few years, manganese-based nanostructures have been extensively investigated in the biomedical field particularly to design highly biocompatible theranostics, which can not only act as efficient diagnostic imaging contrast agents but also deliver the drugs to the target sites. The nanoscale size, large surface area-to-volume ratio, availability of cheap precursors, flexibility to synthesize nanostructures with reproducible properties and high yield, and easy scale up are the major reasons for the attraction towards manganese nanostructures. Along with these properties, the nontoxic nature, pH-sensitive degradation, and easy surface functionalization are additional benefits for the use of manganese nanostructures in biomedical and pharmaceutical sciences. Therefore, in this review, we discuss the recent progress made in the synthesis of manganese nanostructures, describe the attempts made to modify their surfaces to impart biocompatibility and stability in biological fluids, and critically discuss their use in magnetic resonance imaging, drug and gene delivery, hyperthermia, photothermal/photodynamic, immunotherapy, biosensing and tumor diagnosis.
Collapse
Affiliation(s)
- Poonam Jain
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, 382030, India.
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Limda Road, Vadodara, Gujarat, 391760, India
| | - Ashok Kumar Jangid
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, 382030, India.
| | - Deep Pooja
- School of Pharmacy, National Forensic Sciences University, Sector 9, Gandhinagar, 382007, Gujarat, India.
| | - Hitesh Kulhari
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, 382030, India.
| |
Collapse
|
9
|
Singh V, Vihal S, Rana R, Rathore C. Nanocarriers for Cannabinoid Delivery: Enhancing Therapeutic Potential. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2024; 18:247-261. [PMID: 39356097 DOI: 10.2174/0126673878300347240718100814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 10/03/2024]
Abstract
Medical cannabis has potential therapeutic benefits in managing pain, anxiety, depression, and neurological and movement disorders. Phytocannabinoids derived from the cannabis plant are responsible for their pharmacological and therapeutic properties. However, the complexity of cannabis components, especially cannabinoids, poses a challenge to effective medicinal administration. Even with the increasing acceptance of cannabis-based medicines, achieving consistent bioavailability and targeted distribution remains difficult. Conventional administration methods are plagued by solubility and absorption problems requiring innovative solutions. After conducting a thorough review of research papers and patents, it has become evident that nanotechnology holds great promise as a solution. The comprehensive review of 36 research papers has yielded valuable insights, with 7 papers reporting enhanced bioavailability, while others have focused on improvements in release, solubility, and stability. Additionally, 19 patents have been analyzed, of which 7 specifically claim enhanced bioavailability, while the remaining patents describe various formulation methods. These patents outline effective techniques for encapsulating cannabis using nanocarriers, effectively addressing solubility and controlled release. Studies on the delivery of cannabis using nanocarriers focus on improving bioavailability, prolonging release, and targeting specific areas. This synthesis highlights the potential of nanotechnology to enhance cannabis therapies and pave the way for innovative interventions and precision medicine.
Collapse
Affiliation(s)
- Varun Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Samar Vihal
- School of Pharmaceutical Sciences, Shoolini University, Solan, India
| | - Rupali Rana
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Charul Rathore
- University Institute of Pharma Sciences, Chandigarh University, Ajitgarh, Punjab, 160036, India
| |
Collapse
|
10
|
Sepahi S, Kiaei L, Kiaei M, Ghorani-Azam A. A systematic review of emerging technologies to enhance the treatment of ovarian cancer. Pharm Dev Technol 2023; 28:660-677. [PMID: 37417773 DOI: 10.1080/10837450.2023.2233588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
The efficacy and safety of chemotherapy are two major challenges when it comes to treating ovarian cancer. The associated undesirable side effects of chemotherapy agents jeopardize the clinical intent and the efficiency of the therapy. Multiple studies have been published describing new developments and novel strategies utilizing the latest therapeutic and drug delivery technologies to address the efficacy and safety of chemotherapeutics in ovarian cancers. We have identified five novel technologies that are available and, if used, have the potential to mitigate the above-mentioned challenges. Nanocarriers in different forms (Nano-gel, Aptamer, peptide medicated formulations, Antibody-drug conjugation, surface charge, and nanovesicle technologies) are developed and available to be employed to target the cancerous tissue. These strategies are promising to improve clinical efficacy and reduce side effects. We have systematically searched and analyzed published data, as well as the authors intent for the described technology on each publication. We narrowed to 81 key articles and extracted their data to be discussed in this review. In summary, the selected articles investigated the pharmacokinetic properties of drugs combined with nanocarriers and found significant improvement in efficacy and safety by reducing the IC50 values and drug doses. These key papers described promising novel technologies in anti-cancer therapeutic approaches to enable sustained drug release and achieve prolonged drug performance near the tumor site or target tissue.
Collapse
Affiliation(s)
- Samaneh Sepahi
- Food and Beverages Safety Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Lily Kiaei
- RockGen Therapeutics, LLC, Little Rock, AR, USA
- University of California Los Angeles, Los Angeles, CA, USA
| | - Mahmoud Kiaei
- RockGen Therapeutics, LLC, Little Rock, AR, USA
- Department of Pharmacology and Toxicology, Department of Neurology, Department of Geriatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Adel Ghorani-Azam
- Department of Forensic Medicine and Toxicology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
11
|
Sharma A, Bomzan P, Roy N, Dakua VK, Roy K, Barman A, Dey R, Chhetri A, Dewan R, Dutta A, Kumar A, Roy MN. Exploring the Inclusion Complex of an Anticancer Drug with β-Cyclodextrin for Reducing Cytotoxicity Toward the Normal Human Cell Line by an Experimental and Computational Approach. ACS OMEGA 2023; 8:29388-29400. [PMID: 37599964 PMCID: PMC10433473 DOI: 10.1021/acsomega.3c02783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023]
Abstract
The toxicity of any drug against normal cells is a health hazard for all humans. At present, health and disease researchers from all over the world are trying to synthesize designer drugs with diminished toxicity and side effects. The purpose of the present study is to enhance the bioavailability and biocompatibility of gemcitabine (GEM) by decreasing its toxicity and reducing deamination during drug delivery by incorporating it inside the hydrophobic cavity of β-cyclodextrin (β-CD) without affecting the drug ability of the parent compound (GEM). The newly synthesized inclusion complex (IC) was characterized by different physical and spectroscopic techniques, thereby confirming the successful incorporation of the GEM molecule into the nanocage of β-CD. The molecular docking study revealed the orientation of the GEM molecule into the β-CD cavity (-5.40 kcal/mol) to be stably posed for ligand binding. Photostability studies confirmed that the inclusion of GEM using β-CD could lead to better stabilization of GEM (≥96%) for further optical and clinical applications. IC (GEM-β-CD) and GEM exhibited effective antibacterial and antiproliferative activities without being metabolized in a dose-dependent manner. The CT-DNA analysis showed sufficiently strong IC (GEM-β-CD) binding (Ka = 8.1575 × 1010), and this interaction suggests that IC (GEM-β-CD) may possibly exert its biological effects by targeting nucleic acids in the host cell. The newly synthesized biologically active IC (GEM-β-CD), a derivative of GEM, has pharmaceutical development potentiality.
Collapse
Affiliation(s)
- Antara Sharma
- Department
of Chemistry, University of North Bengal, Darjeeling 734013, India
- Department
of Chemistry, St. Joseph’s College, Darjeeling 734104, India
| | - Pranish Bomzan
- Department
of Chemistry, Gorubathan Government College, Kalimpong 735231, India
| | - Niloy Roy
- Department
of Chemistry, University of North Bengal, Darjeeling 734013, India
| | - Vikas Kumar Dakua
- Department
of Chemistry, Alipurduar University, Alipurduar 736122, India
| | - Kanak Roy
- Department
of Chemistry, Alipurduar University, Alipurduar 736122, India
| | - Abhinath Barman
- Department
of Physics, Alipurduar University, Alipurduar 736122, India
| | - Rabindra Dey
- Department
of Chemistry, Cooch Behar College, Cooch Behar 736101, India
| | - Abhijit Chhetri
- Department
of Microbiology, St. Joseph’s College, Darjeeling 734104, India
| | - Rajani Dewan
- Department
of Chemistry, St. Joseph’s College, Darjeeling 734104, India
| | - Ankita Dutta
- Department
of Biotechnology, University of North Bengal, Darjeeling 734013, India
| | - Anoop Kumar
- Department
of Biotechnology, University of North Bengal, Darjeeling 734013, India
| | - Mahendra Nath Roy
- Department
of Chemistry, University of North Bengal, Darjeeling 734013, India
| |
Collapse
|
12
|
Reddy TS, Zomer R, Mantri N. Nanoformulations as a strategy to overcome the delivery limitations of cannabinoids. Phytother Res 2023; 37:1526-1538. [PMID: 36748949 DOI: 10.1002/ptr.7742] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 02/08/2023]
Abstract
Medical cannabis has received significant interest in recent years due to its promising benefits in the management of pain, anxiety, depression and neurological and movement disorders. Specifically, the major phytocannabinoids derived from the cannabis plant such as (-) trans-Δ9 -tetrahydrocannabinol (THC) and cannabidiol (CBD), have been shown to be responsible for the pharmacological and therapeutic properties. Recently, these phytocannabinoids have also attracted special attention in cancer treatment due to their well-known palliative benefits in chemotherapy-induced nausea, vomiting, pain and loss of appetite along with their anticancer activities. Despite the enormous pharmacological benefits, the low aqueous solubility, high instability (susceptibility to extensive first pass metabolism) and poor systemic bioavailability restrict their utilization at clinical perspective. Therefore, drug delivery strategies based on nanotechnology are emerging to improve pharmacokinetic profile and bioavailability of cannabinoids as well as enhance their targeted delivery. Here, we critically review the nano-formulation systems engineered for overcoming the delivery limitations of native phytocannabinoids including polymeric and lipid-based nanoparticles (lipid nano capsules (LNCs), nanostructured lipid carriers (NLCs), nanoemulsions (NE) and self-emulsifying drug delivery systems (SEDDS)), ethosomes and cyclodextrins as well as their therapeutic applications.
Collapse
Affiliation(s)
- T Srinivasa Reddy
- The Pangenomics Group, Biosciences and Food Technology, School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Roby Zomer
- MGC Pharmaceuticals Limited, West Perth, Western Australia, Australia
| | - Nitin Mantri
- The Pangenomics Group, Biosciences and Food Technology, School of Science, RMIT University, Melbourne, Victoria, Australia.,The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
13
|
Guo L, Wang J, Li N, Cui J, Su Y. Peptides for diagnosis and treatment of ovarian cancer. Front Oncol 2023; 13:1135523. [PMID: 37213272 PMCID: PMC10196167 DOI: 10.3389/fonc.2023.1135523] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/24/2023] [Indexed: 05/23/2023] Open
Abstract
Ovarian cancer is the most deadly gynecologic malignancy, and its incidence is gradually increasing. Despite improvements after treatment, the results are unsatisfactory and survival rates are relatively low. Therefore, early diagnosis and effective treatment remain two major challenges. Peptides have received significant attention in the search for new diagnostic and therapeutic approaches. Radiolabeled peptides specifically bind to cancer cell surface receptors for diagnostic purposes, while differential peptides in bodily fluids can also be used as new diagnostic markers. In terms of treatment, peptides can exert cytotoxic effects directly or act as ligands for targeted drug delivery. Peptide-based vaccines are an effective approach for tumor immunotherapy and have achieved clinical benefit. In addition, several advantages of peptides, such as specific targeting, low immunogenicity, ease of synthesis and high biosafety, make peptides attractive alternative tools for the diagnosis and treatment of cancer, particularly ovarian cancer. In this review, we focus on the recent research progress regarding peptides in the diagnosis and treatment of ovarian cancer, and their potential applications in the clinical setting.
Collapse
|
14
|
Jat S, Bhatt M, Roychowdhury S, Dixit VA, Pawar SD, Kulhari H, Alexander A, Kumar P. Preparation and characterization of amoxapine- and naringin-loaded solid lipid nanoparticles: drug-release and molecular-docking studies. Nanomedicine (Lond) 2022; 17:2133-2144. [PMID: 36786368 DOI: 10.2217/nnm-2022-0167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/19/2022] [Indexed: 02/15/2023] Open
Abstract
Aim: Amoxapine (AMX) has been reported to be metabolized by CYP3A4 and CYP2D6. Naringin (NG) has been reported to inhibit CYP enzymes. Therefore, the current work was designed to develop AMX solid lipid nanoparticles (AMX-SLNs) and NG-SLNs for better therapeutic performance. Materials & methods: AMX-SLNs and NG-SLNs were prepared and characterized. AMX and NG interactions with CYP450s were studied with molecular docking to rationalize the effectiveness of the combination. Results: AMX-SLNs and NG-SLNs showed nanometric size with a sustained in vitro drug-release profile. NG showed a higher predicted binding affinity for CYP3A4 and CYP2D6, suggesting the potential for inhibition. Conclusion: The developed formulations were thoroughly characterized along with molecular docking data indicating promising AMX and NG combinations that may show good therapeutic activity.
Collapse
Affiliation(s)
- Sandeep Jat
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research, Guwahati, Sila Katamur (Halugurisuk), Changsari, Dist. Kamrup, Assam, 781101, India
| | - Manini Bhatt
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education & Research, Guwahati, Sila Katamur (Halugurisuk), Changsari, Dist. Kamrup, Assam, 781101, India
| | - Sanjana Roychowdhury
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education & Research, Guwahati, Sila Katamur (Halugurisuk), Changsari, Dist. Kamrup, Assam, 78110, India
| | - Vaibhav A Dixit
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education & Research, Guwahati, Sila Katamur (Halugurisuk), Changsari, Dist. Kamrup, Assam, 78110, India
| | - Sachin Dattram Pawar
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, 382030, India
| | - Hitesh Kulhari
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education & Research, Guwahati, Sila Katamur (Halugurisuk), Changsari, Dist. Kamrup, Assam, 781101, India
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, 382030, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research, Guwahati, Sila Katamur (Halugurisuk), Changsari, Dist. Kamrup, Assam, 781101, India
| | - Pramod Kumar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research, Guwahati, Sila Katamur (Halugurisuk), Changsari, Dist. Kamrup, Assam, 781101, India
| |
Collapse
|
15
|
Tunki L, Ganthala PD, Kulhari DP, Andugulapati SB, Kulhari H, Sistla R, Bhargava SK. Ameliorating the antitumor activity of gemcitabine against breast tumor using α vβ 3 integrin-targeting lipid nanoparticles. Drug Dev Ind Pharm 2022; 48:384-396. [PMID: 36047536 DOI: 10.1080/03639045.2022.2120492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE The main objective is to formulate solid lipid nanoparticles conjugated with cyclic RGDfk peptide encapsulated with gemcitabine hydrochloride drug for targeting breast cancer. SIGNIFICANCE The hydrophilic nature of gemcitabine hampers passive transport by cell membrane permeation that may lead to drug resistance as it has to enter the cells via nucleoside transporters. The art of encapsulating the drug in nanovesicle and then anchoring it with targeting ligand is one of the present areas of research in cancer chemotherapy. METHODS In this study solid lipid nanoparticles were prepared by double emulsification and solvent evaporation method. Cyclic RGDfk and gemcitabine hydrochloride were used as targeting ligand and chemotherapeutic drug, respectively, for targeting breast cancer. The prepared nanoparticles were evaluated for in vitro and in vivo performance to showcase the targeting efficiency and therapeutic benefits of the gemcitabine loaded ligand conjugated nanoparticles. RESULTS When compared with gemcitabine (GEM) and GEM loaded nanoparticles (GSLN), the ligand conjugated GEM nanoparticles (cGSLN) showed superior cytotoxicity, apoptosis and inhibition of 3D multicellular spheroids in human breast cancer cells (MDA MB 231). The in vivo tumor regression studies in orthotopic breast cancer induced Balb/C mice showed that cGSLN displayed superior tumor suppression and also the targeting potential of the cGSLN towards induced breast cancer. CONCLUSION Prepared nanoformulations showed enhanced anticancer activity in both 2D and 3D cell culture models along with antitumor efficacy in orthotopic breast cancer mouse models.
Collapse
Affiliation(s)
- Lakshmi Tunki
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India.,Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, VIC, 3001, Australia
| | - Parimala Devi Ganthala
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India
| | - Deep Pooja Kulhari
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India.,Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, VIC, 3001, Australia
| | - Sai Balaji Andugulapati
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India
| | - Hitesh Kulhari
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, Gujarat 302030, India
| | - Ramakrishna Sistla
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India
| | - Suresh K Bhargava
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, VIC, 3001, Australia
| |
Collapse
|
16
|
Park K, Jeong J, Kim J. Synthesis and biological evaluation of cilengitide derivatives on
TGF
‐β1‐induced epithelial‐to‐mesenchymal transition in human non‐small cell lung cancer cells. Pept Sci (Hoboken) 2022. [DOI: 10.1002/pep2.24285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kyeong‐Yong Park
- Department of Integrated Material's Development CHA Meditech Co., Ltd Daejeon South Korea
| | - Jisu Jeong
- Department of Medical Laboratory Science, College of Health Science Dankook University Cheonan Republic of Korea
| | - Jiyeon Kim
- Department of Medical Laboratory Science, College of Health Science Dankook University Cheonan Republic of Korea
| |
Collapse
|
17
|
Using GPCRs as Molecular Beacons to Target Ovarian Cancer with Nanomedicines. Cancers (Basel) 2022; 14:cancers14102362. [PMID: 35625966 PMCID: PMC9140059 DOI: 10.3390/cancers14102362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
The five-year survival rate for women with ovarian cancer is very poor despite radical cytoreductive surgery and chemotherapy. Although most patients initially respond to platinum-based chemotherapy, the majority experience recurrence and ultimately develop chemoresistance, resulting in fatal outcomes. The current administration of cytotoxic compounds is hampered by dose-limiting severe adverse effects. There is an unmet clinical need for targeted drug delivery systems that transport chemotherapeutics selectively to tumor cells while minimizing off-target toxicity. G protein-coupled receptors (GPCRs) are the largest family of membrane receptors, and many are overexpressed in solid tumors, including ovarian cancer. This review summarizes the progress in engineered nanoparticle research for drug delivery for ovarian cancer and discusses the potential use of GPCRs as molecular entry points to deliver anti-cancer compounds into ovarian cancer cells. A newly emerging treatment paradigm could be the personalized design of nanomedicines on a case-by-case basis.
Collapse
|
18
|
Combination Effect of Cilengitide with Erlotinib on TGF-β1-Induced Epithelial-to-Mesenchymal Transition in Human Non-Small Cell Lung Cancer Cells. Int J Mol Sci 2022; 23:ijms23073423. [PMID: 35408781 PMCID: PMC8999066 DOI: 10.3390/ijms23073423] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is important for morphogenesis during development and is mainly induced by transforming growth factor (TGF)-β. In lung cancer, EMT is characterized by the transformation of cancer cells into a mobile, invasive form that can transit to other organs. Here, using a non–small cell lung cancer (NSCLC) cell line, we evaluated the EMT-related effects of the epidermal growth factor receptor inhibitor erlotinib alone and in combination with cilengitide, a cyclic RGD-based integrin antagonist. Erlotinib showed anti-proliferative and inhibitory effects against the TGF-β1–induced EMT phenotype in NSCLC cells. Compared with erlotinib alone, combination treatment with cilengitide led to an enhanced inhibitory effect on TGF-β1–induced expression of mesenchymal markers and invasion in non–small cell lung cancer A549 cells. These results suggest that cilengitide could improve anticancer drug efficacy and contribute to improved treatment strategies to inhibit and prevent EMT-based cancer progression.
Collapse
|
19
|
Wang Z, Meng F, Zhong Z. Emerging targeted drug delivery strategies toward ovarian cancer. Adv Drug Deliv Rev 2021; 178:113969. [PMID: 34509574 DOI: 10.1016/j.addr.2021.113969] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 12/11/2022]
Abstract
Ovarian cancer is a high-mortality malignancy in women. The contemporary clinical chemotherapy with classic cytotoxic drugs, targeted molecular inhibitors would mostly fail when ovarian cancer cells become drug-resistant or metastasize through the body or when patients bare no more toleration because of strong adverse effects. The past decade has spotted varying targeted delivery systems including antibody-drug conjugates (ADCs), peptide/folate/aptamer-drug conjugates, polymer-drug conjugates, ligand-functionalized nanomedicines, and dual-targeted nanomedicines that upgrade ovarian cancer chemo- and molecular therapy effectively in preclinical/clinical settings via endowing therapeutic agents selectivity and bypassing drug resistance as well as lessening systemic toxicity. The targeted delivery approaches further provide means to potentiate emergent treatment modalities such as molecular therapy, gene therapy, protein therapy, photodynamic therapy, dual-targeting therapy and combination therapy for ovarian cancer. This review highlights up-to-date development of targeted drug delivery strategies toward advanced, metastatic, relapsed, and drug resistant ovarian cancers.
Collapse
|
20
|
Zhang M, Gao S, Yang D, Fang Y, Lin X, Jin X, Liu Y, Liu X, Su K, Shi K. Influencing factors and strategies of enhancing nanoparticles into tumors in vivo. Acta Pharm Sin B 2021; 11:2265-2285. [PMID: 34522587 PMCID: PMC8424218 DOI: 10.1016/j.apsb.2021.03.033] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/05/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023] Open
Abstract
The administration of nanoparticles (NPs) first faces the challenges of evading renal filtration and clearance of reticuloendothelial system (RES). After that, NPs infiltrate through the expanded endothelial space and penetrated the dense stroma of tumor microenvironment to tumor cells. As long as possible to prolong the time of NPs remaining in tumor tissue, NPs release active agent and induce pharmacological action. This review provides a comprehensive summary of the physical and chemical properties of NPs and the influence of various biological factors in tumor microenvironment, and discusses how to improve the final efficacy through adjusting the characteristics and structure of NPs. Perspectives and future directions are also provided.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Kai Shi
- Corresponding author. Tel./fax: +86 24 43520557.
| |
Collapse
|
21
|
Biotinylated Mn 3O 4 nanocuboids for targeted delivery of gemcitabine hydrochloride to breast cancer and MRI applications. Int J Pharm 2021; 606:120895. [PMID: 34280487 DOI: 10.1016/j.ijpharm.2021.120895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/05/2021] [Accepted: 07/12/2021] [Indexed: 11/22/2022]
Abstract
Multifunctional nanocarriers have been found as potential candidate for the targeted drug delivery and imaging applications. Herein, we have developed a biocompatible and pH-responsive manganese oxide nanocuboid system, surface modified with poly (ethylene glycol) bis(amine) and functionalized with biotin (Biotin-PEG-MNCs), for an efficient and targeted delivery of an anticancer drug (gemcitabine, GEM) to the human breast cancer cells. GEM-loaded Biotin-PEG@MNCs showed high drug loading efficiency, controlled release of GEM and excellent storage stability in the physiological buffers and different temperature conditions. GEM-loaded Biotin-PEG@MNCs showed dose- and time-dependent decrease in the viability of human breast cancer cells. Further, it exhibited significantly higher cell growth inhibition than pure GEM which suggested that Biotin-PEG@MNCs has efficiently delivered the GEM into cancerous cells. The role of biotin in the uptake was proved by the competitive binding-based cellular uptake study. A significant decrease in the amount of manganese was observed in biotin pre-treated cancer cells as compared to biotin untreated cancer cells. In MRI studies, Biotin-PEG-MNCs showed both longitudinal and transverse relaxivity about 0.091 and 7.66 mM-1 s-1 at 3.0 T MRI scanner, respectively. Overall, the developed Biotin-PEG-MNCs presents a significant potential in formulation development for cancer treatment via targeted drug delivery and enhanced MRI contrast imaging properties.
Collapse
|
22
|
Liu J, Wang P, Yan Z, Yan J, Kenry, Zhu Q. Recent Advances in Late-Stage Construction of Stapled Peptides via C-H Activation. Chembiochem 2021; 22:2762-2771. [PMID: 33949069 DOI: 10.1002/cbic.202100044] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/29/2021] [Indexed: 01/09/2023]
Abstract
Stapled peptides have been widely applied in many fields, including pharmaceutical chemistry, diagnostic reagents, and materials science. However, most traditional stapled peptide preparation methods rely on prefunctionalizations, which limit the diversity of stapled peptides. Recently, the emergence of late-stage transition metal-catalyzed C-H activation in amino acids and peptides has attracted wide interest due to its robustness and applicability for peptide stapling. In this review, we summarize the methods for late-stage construction of stapled peptides via transition metal-catalyzed C-H activation.
Collapse
Affiliation(s)
- Jiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Peng Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Zhengqing Yan
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Jiahui Yan
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Kenry
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.,Department of Imaging, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | - Qing Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
23
|
Jangid AK, Pooja D, Jain P, Gupta N, Ramesan S, Kulhari H. Self-assembled and pH-responsive polymeric nanomicelles impart effective delivery of paclitaxel to cancer cells. RSC Adv 2021; 11:13928-13939. [PMID: 35423920 PMCID: PMC8697741 DOI: 10.1039/d1ra01574e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/01/2021] [Indexed: 12/14/2022] Open
Abstract
Chemotherapy is an essential component of breast cancer therapy, but it is associated with serious side effects. Herein, a pluronic F68-based pH-responsive, and self-assembled nanomicelle system was designed to improve the delivery of paclitaxel (PTX) to breast cancer cells. Two pH-responsive pluronic F68-PTX conjugates i.e. succinoyl-linked conjugate (F68-SA-PTX) and cis-aconityl-linked conjugate (F68-CAA-PTX) were designed to respond the varying pH-environment in tumour tissue. Although both the linkers showed pH-sensitivity, the F68-CAA-PTX exhibited superior pH-sensitivity over the F68-SA-PTX and achieved a more selective release of PTX from the self-assembled nanomicelles. The prepared nanomicelles were characterized by dynamic light scattering, transmittance electron microscopy, differential scanning calorimetry and powder X-ray diffraction techniques. The anticancer activity of prepared nanomicelles and pure PTX were evaluated by 2D cytotoxicity assay against breast cancer cell line MDA-MB-231 and in the real tumour environments i.e. 3D tumor spheroids of MDA-MB-231 cells. The highest cytotoxicity effect of PTX was observed with F68-CAA-PTX nanomicelles followed by F68-SA-PTX and free PTX. Further, the F68-CAA-PTX nanomicelles also induced significant apoptosis with a combination of increase in ROS generation, decrease in the depolarisation of MMP and G2/M cell cycle arrest. These observed results provide a new insight for breast cancer treatment using pluronic nanomicelles.
Collapse
Affiliation(s)
- Ashok Kumar Jangid
- School of Nano Sciences, Central University of Gujarat Gandhinagar-382030 Gujarat India
| | - Deep Pooja
- Centre for Advanced Materials and Industrial Chemistry, School of Science, RMIT University 124 La Trobe Street 3000 Melbourne Australia
| | - Poonam Jain
- School of Nano Sciences, Central University of Gujarat Gandhinagar-382030 Gujarat India
| | - Nitin Gupta
- School of Nano Sciences, Central University of Gujarat Gandhinagar-382030 Gujarat India
| | - Shwathy Ramesan
- School of Engineering, RMIT University Melbourne Victoria 3001 Australia
| | - Hitesh Kulhari
- School of Nano Sciences, Central University of Gujarat Gandhinagar-382030 Gujarat India
| |
Collapse
|
24
|
Jeong J, Kim J. Cyclic RGD Pentapeptide Cilengitide Enhances Efficacy of Gefitinib on TGF-β1-Induced Epithelial-to-Mesenchymal Transition and Invasion in Human Non-Small Cell Lung Cancer Cells. Front Pharmacol 2021; 12:639095. [PMID: 33967774 PMCID: PMC8104086 DOI: 10.3389/fphar.2021.639095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
During non-small cell lung cancer (NSCLC) progression, transforming growth factor (TGF)-β mediated epithelial-to-mesenchymal transition (EMT) is an important process leading to high mortality and poor prognosis. The EMT is a fundamental process for morphogenesis characterized by the transformation of cancer cells into invasive forms that can be transferred to other organs during human lung cancer progression. Gefitinib, an epidermal growth factor receptor (EGFR) inhibitor, has shown anti-proliferative effects in EGFR-mutated NSCLC cells and an inhibitory effect on migration and invasion of NSCLC cells to other organs. In this study, we evaluated the combinatorial treatment effect of cilengitide, a cyclic RGD pentapeptide, on TGF-β1-induced EMT phenotype and invasion. Gefitinib suppressed the expression of TGF-β1-induced mesenchymal markers by inhibiting Smad and non-Smad signaling pathways. Cilengitide enhanced the inhibitory effect of gefitinib on TGF-β1-induced expression of mesenchymal markers, phosphorylation of Smad2/3, and invasion of NSCLC A549 cells. We suggested that the use of cilengitide can improve the efficacy of anti-cancer drugs in combination drug-based chemotherapy. These results provide an improved therapeutic strategy for treating and preventing EMT-related disorders, such as NSCLC, lung fibrosis, cancer metastasis, and relapse.
Collapse
Affiliation(s)
- Jisu Jeong
- Department of Medical Laboratory Science, School of Health Science, Dankook University, Cheonan, Korea
| | - Jiyeon Kim
- Department of Medical Laboratory Science, School of Health Science, Dankook University, Cheonan, Korea
| |
Collapse
|
25
|
Hawryłkiewicz A, Ptaszyńska N. Gemcitabine Peptide-Based Conjugates and Their Application in Targeted Tumor Therapy. Molecules 2021; 26:E364. [PMID: 33445797 PMCID: PMC7828243 DOI: 10.3390/molecules26020364] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/29/2020] [Accepted: 01/10/2021] [Indexed: 12/25/2022] Open
Abstract
A major obstacle in tumor treatment is associated with the poor penetration of a therapeutic agent into the tumor tissue and with their adverse influence on healthy cells, which limits the dose of drug that can be safely administered to cancer patients. Gemcitabine is an anticancer drug used to treat a wide range of solid tumors and is a first-line treatment for pancreatic cancer. The effect of gemcitabine is significantly weakened by its rapid plasma degradation. In addition, the systemic toxicity and drug resistance significantly reduce its chemotherapeutic efficacy. Up to now, many approaches have been made to improve the therapeutic index of gemcitabine. One of the recently developed approaches to improve conventional chemotherapy is based on the direct targeting of chemotherapeutics to cancer cells using the drug-peptide conjugates. In this work, we summarize recently published gemcitabine peptide-based conjugates and their efficacy in anticancer therapy.
Collapse
Affiliation(s)
| | - Natalia Ptaszyńska
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland;
| |
Collapse
|
26
|
Jain P, Patel K, Jangid AK, Guleria A, Patel S, Pooja D, Kulhari H. Modulating the Delivery of 5-Fluorouracil to Human Colon Cancer Cells Using Multifunctional Arginine-Coated Manganese Oxide Nanocuboids with MRI Properties. ACS APPLIED BIO MATERIALS 2020; 3:6852-6864. [PMID: 35019347 DOI: 10.1021/acsabm.0c00780] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
5-Fluorouracil (5-FU) is one of the most prescribed drugs and the major component of chemotherapy for the treatment of colorectal cancer. In this study, we have designed arginine-functionalized manganese oxide nanocuboids (Arg@MNCs) for the effective delivery of 5-FU to colon cancer cells. Arginine was used as multifunctional agent to provide stability to MNCs, achieve high drug loading, control the release of loaded drug, and improve delivery to cancer cells. The synthesized Arg@MNCs were characterized by DLS, TEM, XRD, FTIR, XPS, TGA, and VSM analysis. The structural and morphological analysis by TEM showed cuboid-shaped MNCs with average particle size ∼15 nm. Biodegradation studies indicated that the Arg@MNCs were degraded at endolyosomal pH in 24 h while remaining stable at physiological pH. Hemolytic toxicity studies revealed the safety and nontoxic nature of the prepared MNCs. 5-FU-loaded Arg@MNCs showed significant control over the release of 5-FU, decrease in the hemolytic toxicity of loaded 5-FU but higher in vitro anticancer activity against HCT 116 and SW480 human colon cancer cells. Importantly, both the bare MNCs and Arg@MNCs showed excellent T1 and T2MR relaxivity under 3.0 T MRI scanner. Thus, the nanostructures developed in this study, i.e., 5-FU-Arg@MNCs could overcome the issues of both MNCs (stability) and 5-FU (low drug loading and nonspecificity) and may be used as a multifunctional theranostic nanocarrier for colon cancer treatment.
Collapse
Affiliation(s)
| | | | | | - Anupam Guleria
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014, India
| | | | - Deep Pooja
- The Centre for Advanced Materials & Industrial Chemistry, Applied Sciences, RMIT University, 124 La Trobe Street, Melbourne 3000, Australia
| | | |
Collapse
|
27
|
Baicalin encapsulating lipid-surfactant conjugate based nanomicelles: Preparation, characterization and anticancer activity. Chem Phys Lipids 2020; 233:104978. [PMID: 32991905 DOI: 10.1016/j.chemphyslip.2020.104978] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/14/2020] [Accepted: 09/18/2020] [Indexed: 01/17/2023]
Abstract
Lung cancer is one of the most common malignant tumors and emerged as one of the leading causes of cancer-related death worldwide. Surgical resection can be a curative treatment for early stage but the most of lung cancer patients are diagnosed at an advanced stage when the pulmonary tumor has been invaded beyond the respiratory system. Therefore, chemotherapy is suitable for curing metastasized tumor. Baicalin (BL) is a flavonoid which has been studied in the treatment of several types of cancer including lung cancer. However, its low solubility in water and non-specificity impede its practical utilization. Hence, we have reported a stearic acid and pluronic F68 conjugated nanomicelles (PF68-SA) system to improve therapeutic efficacy of BL. Solvent evaporation method was used to prepare the BL-loaded PF68-SA nanomicelles (BLNM). The designed BLNM were characterized for the particle size, surface charge, critical micelle concentration, colloidal stability, morphology, and total drug content. BLNM formulation showed improved toxicity of BL against A549 human lung cancer cells in cytotoxicity assay. Further, apoptosis study also depicted BLNM-induced cell death in A549 cells. Therefore, the synthesized fatty acid-modified polymeric nanomicellar system could be useful in overcoming the stability and low therapeutic efficacy issues of hydrophobic anticancer drugs like BL and delivering them to the cancer cells.
Collapse
|
28
|
Ghalkhani M, Kaya SI, Bakirhan NK, Ozkan Y, Ozkan SA. Application of Nanomaterials in Development of Electrochemical Sensors and Drug Delivery Systems for Anticancer Drugs and Cancer Biomarkers. Crit Rev Anal Chem 2020; 52:481-503. [DOI: 10.1080/10408347.2020.1808442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Masoumeh Ghalkhani
- Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Sariye Irem Kaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
- Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, University of Health Sciences, Ankara, Turkey
| | - Nurgul K. Bakirhan
- Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, University of Health Sciences, Ankara, Turkey
| | - Yalcin Ozkan
- Gulhane Faculty of Pharmacy, Department of Pharmaceutical Technology, University of Health Sciences, Ankara, Turkey
| | - Sibel A. Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
29
|
Park KY, Kim J. Cyclic pentapeptide cRGDfK enhances the inhibitory effect of sunitinib on TGF-β1-induced epithelial-to-mesenchymal transition in human non-small cell lung cancer cells. PLoS One 2020; 15:e0232917. [PMID: 32810161 PMCID: PMC7433881 DOI: 10.1371/journal.pone.0232917] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023] Open
Abstract
In human lung cancer progression, the EMT process is characterized by the transformation of cancer cells into invasive forms that migrate to other organs. Targeting to EMT-related molecules is emerging as a novel therapeutic approach for the prevention of lung cancer cell migration and invasion. Traf2- and Nck-interacting kinase (TNIK) has recently been considered as an anti-proliferative target molecule to regulate the Wnt signaling pathway in several types of cancer cells. In the present study, we evaluated the inhibitory effect of a tyrosine kinase inhibitor sunitinib and the integrin-αⅤβ3 targeted cyclic peptide (cRGDfK) on EMT in human lung cancer cells. Sunitinib strongly inhibited the TGF-β1-activated EMT through suppression of Wnt signaling, Smad and non-Smad signaling pathways. In addition, the cRGDfK also inhibited the expression of TGFβ1-induced mesenchymal marker genes and proteins. The anti-EMT effect of sunitinib was enhanced when cRGDfK was treated together. When sunitinib was treated with cRGDfK, the mRNA and protein expression levels of mesenchymal markers were decreased compared to the treatment with sunitinib alone. Co-treatment of cRGDfK has shown the potential to improve the efficacy of anticancer agents in combination with therapeutic agents that may be toxic at high concentrations. These results provide new and improved therapies for treating and preventing EMT-related disorders, such as lung fibrosis and cancer metastasis, and relapse.
Collapse
Affiliation(s)
- Kyeong-Yong Park
- Department of Integrated Material’s Development, CHA Meditech Co., Ltd, Daejeon, Republic of Korea
| | - Jiyeon Kim
- Department of Medical Laboratory Science, College of Health Science, Dankook University, Cheonan, Republic of Korea
- * E-mail:
| |
Collapse
|
30
|
Tunki L, Jangid AK, Pooja D, Bhargava SK, Sistla R, Kulhari H. Serotonin-Functionalized Vit-E Nanomicelles for Targeting of Irinotecan to Prostate Cancer Cells. ACS APPLIED BIO MATERIALS 2020; 3:5093-5102. [PMID: 35021685 DOI: 10.1021/acsabm.0c00579] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Receptor-mediated endocytosis is key in the success of targeted nanomedicines for the treatment of cancer. Various receptors have been explored for the active targeting of anticancer drugs to avoid the drawbacks of conventional anticancer drugs. This research work aimed to investigate the potential of serotonin (ST)-conjugated Vit-E nanomicelles for the targeted delivery of irinotecan hydrochloride (IRI) to human prostate cancer cells. A ST receptor-targeting conjugate was synthesized by conjugating ST and d-α-tocopheryl polyethylene glycol succinate via a two-step synthesis reaction. The developed formulation demonstrated a size of about 14 nm, a negative zeta potential of around -20 mV, a high drug encapsulation efficiency, and sustained drug release over 48 h. Cytotoxicity studies revealed that ST-conjugated, IRI-loaded nanomicelles (IRI-STNM) were not only toxic to human prostate cancer cells but also eradicate these cells present in the form of 3D spheroids. This cytotoxicity of IRI-STNM was mediated through induction of apoptosis, reactive oxygen species generation, change in mitochondrial membrane potential, and inhibition of cell migration. Further, IRI-STNM performed significantly better than the native IRI and nontargeted nanomicelles, which was led by a higher cellular uptake of IRI-STNM, indicating the role of ST in targeting of drug-loaded nanomicelles.
Collapse
Affiliation(s)
- Lakshmi Tunki
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India.,Centre for Advanced Materials and Industrial Chemistry, School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Ashok Kumar Jangid
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, Gujarat 302030, India
| | - Deep Pooja
- Centre for Advanced Materials and Industrial Chemistry, School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Suresh Kumar Bhargava
- Centre for Advanced Materials and Industrial Chemistry, School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Ramakrishna Sistla
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
| | - Hitesh Kulhari
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, Gujarat 302030, India
| |
Collapse
|
31
|
Jangid AK, Patel K, Jain P, Patel S, Gupta N, Pooja D, Kulhari H. Inulin-pluronic-stearic acid based double folded nanomicelles for pH-responsive delivery of resveratrol. Carbohydr Polym 2020; 247:116730. [PMID: 32829852 DOI: 10.1016/j.carbpol.2020.116730] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/19/2020] [Accepted: 07/04/2020] [Indexed: 02/06/2023]
Abstract
Herein, we introduce a novel amphiphilic bioconjugate (INU-F68-SA), synthesized by functionalization of pluronic F68 with a polysaccharide inulin (INU) and a lipid stearic acid (SA). The synthesis of INU-F68-SA was confirmed by FTIR and 1H-NMR analysis. INU-F68-SA can self-assemble into nanomicelles and therefore, its application in delivering of hydrophobic resveratrol (RSV) was investigated. The RSV-loaded INU-F68-SA nanomicelles (RSNM) had about 172 nm size, spherical shape, 0.237 polydispersity index, and -18 mV zeta potential. More importantly, the RSNM showed high drug entrapment efficiency, controlled drug release and protection of drug during storage. The RSNM significantly enhanced the cytotoxicity of RSV against colorectal cancer cells by inducing apoptosis and changing mitochondrial membrane potential. Further, in-vivo pharmacokinetic experiment indicated an improvement in pharmacokinetics of RSV after administering as RSNM. Thus, the use of self-assembled nanomicelles of amphiphilic INU-F68-SA bioconjugate could be a better alternative to overcome the poor in-vitro and in-vivo performance of RSV.
Collapse
Affiliation(s)
- Ashok Kumar Jangid
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, 382030, Gujarat, India
| | - Krunal Patel
- School of Life Sciences, Central University of Gujarat, Gandhinagar, 382030, Gujarat, India
| | - Poonam Jain
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, 382030, Gujarat, India
| | - Sunita Patel
- School of Life Sciences, Central University of Gujarat, Gandhinagar, 382030, Gujarat, India
| | - Nitin Gupta
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, 382030, Gujarat, India
| | - Deep Pooja
- The Centre for Advanced Materials & Industrial Chemistry, School of Science, RMIT University, Melbourne, 3000, Australia.
| | - Hitesh Kulhari
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, 382030, Gujarat, India.
| |
Collapse
|
32
|
Saravanakumar K, Hu X, Ali DM, Wang MH. Emerging Strategies in Stimuli-Responsive Nanocarriers as the Drug Delivery System for Enhanced Cancer Therapy. Curr Pharm Des 2020; 25:2609-2625. [PMID: 31603055 DOI: 10.2174/1381612825666190709221141] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 07/01/2019] [Indexed: 12/22/2022]
Abstract
The conventional Drug Delivery System (DDS) has limitations such as leakage of the drug, toxicity to normal cells and loss of drug efficiency, while the stimuli-responsive DDS is non-toxic to cells, avoiding the leakage and degradation of the drug because of its targeted drug delivery to the pathological site. Thus nanomaterial chemistry enables - the development of smart stimuli-responsive DDS over the conventional DDS. Stimuliresponsive DDS ensures spatial or temporal, on-demand drug delivery to the targeted cancer cells. The DDS is engineered by using the organic (synthetic polymers, liposomes, peptides, aptamer, micelles, dendrimers) and inorganic (zinc oxide, gold, magnetic, quantum dots, metal oxides) materials. Principally, these nanocarriers release the drug at the targeted cells in response to external and internal stimuli such as temperature, light, ultrasound and magnetic field, pH value, redox potential (glutathione), and enzyme. The multi-stimuli responsive DDS is more promising than the single stimuli-responsive DDS in cancer therapy, and it extensively increases drug release and accumulation in the targeted cancer cells, resulting in better tumor cell ablation. In this regard, a handful of multi-stimuli responsive DDS is in clinical trials for further approval. A comprehensive review is crucial for addressing the existing knowledge about multi-stimuli responsive DDS, and hence, we summarized the emerging strategies in tailored ligand functionalized stimuli-responsive nanocarriers as the DDS for cancer therapies.
Collapse
Affiliation(s)
- Kandasamy Saravanakumar
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, Gangwon, 24341, Korea
| | - Xiaowen Hu
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, Gangwon, 24341, Korea
| | - Davoodbasha M Ali
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai - 600048, Tamil Nadu, India
| | - Myeong-Hyeon Wang
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, Gangwon, 24341, Korea
| |
Collapse
|
33
|
Gupta S, Pathak Y, Gupta MK, Vyas SP. Nanoscale drug delivery strategies for therapy of ovarian cancer: conventional vs targeted. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:4066-4088. [PMID: 31625408 DOI: 10.1080/21691401.2019.1677680] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ovarian cancer is the second most common gynaecological malignancy. It usually occurs in women older than 50 years, and because 75% of cases are diagnosed at stage III or IV it is associated with poor diagnosis. Despite the chemosensitivity of intraperitoneal chemotherapy, the majority of patients is relapsed and eventually dies. In addition to the challenge of early detection, its treatment presents several challenges like the route of administration, resistance to therapy with recurrence and specific targeting of cancer to reduce cytotoxicity and side effects. In ovarian cancer therapy, nanocarriers help overcome problems of poor aqueous solubility of chemotherapeutic drugs and enhance their delivery to the tumour sites either by passive or active targeting, and thus reducing adverse side effects to the healthy tissues. Moreover, the bioavailability to the tumour site is increased by the enhanced permeability and retention (EPR) mechanism. The present review aims to describe the current conventional treatment with special reference to passively and actively targeted drug delivery systems (DDSs) towards specific receptors designed against ovarian cancer to overcome the drawbacks of conventional delivery. Conclusively, targeted nanocarriers would optimise the intra-tumour distribution, followed by drug delivery into the intracellular compartment. These features may contribute to greater therapeutic effect.
Collapse
Affiliation(s)
- Swati Gupta
- Amity Institute of Pharmacy, Amity University Uttar Pradesh , Noida , India
| | - Yashwant Pathak
- College of Pharmacy, University of South Florida Health , Tampa , FL , USA.,Faculty of Pharmacy, University of Airlangga , Surabaya , Indonesia
| | - Manish K Gupta
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute (TERI), Gual Pahari, TERI Gram , Gurugram , India
| | - Suresh P Vyas
- Department of Pharmaceutical Sciences, Dr H.S. Gour University , Sagar , India
| |
Collapse
|
34
|
Jain P, Bhagat S, Tunki L, Jangid AK, Singh S, Pooja D, Kulhari H. Serotonin-Stearic Acid Bioconjugate-Coated Completely Biodegradable Mn 3O 4 Nanocuboids for Hepatocellular Carcinoma Targeting. ACS APPLIED MATERIALS & INTERFACES 2020; 12:10170-10182. [PMID: 32045206 DOI: 10.1021/acsami.0c00331] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, a serotonin-stearic acid (ST-SA)-based bioconjugate was synthesized for the surface modification of manganese oxide-based nanocuboids (MNCs) for delivering of anticancer drug (i.e., doxorubicin hydrochloride (DOX)) to human liver cancer cells. MNCs were synthesized by chemical precipitation method, and their surface was modified with ST-SA bioconjugate for targeting of MNCs to cancer cells. The ST-SA@MNCs along with DOX showed good colloidal stability, high drug encapsulation (98.3%), and drug loading efficiencies (22.9%) as well as pH-responsive biodegradation. Coating with ST-SA conjugate provided a shield to MNCs which sustained their degradation in an acidic environment. The release of DOX was higher (81.4%) in acidic media than under the physiological conditions (20.5%) up to 192 h. The in vitro anti-proliferation assay showed that ST-SA@MNCs exhibit higher cell growth inhibition compared to that of pure DOX after 48 h of treatment. The cellular uptake and apoptosis studies revealed the enhanced uptake of ST-SA@MNCs in contrast to the MNCs due to overexpressed ST receptor on hepatocellular carcinoma cells and triggered the generation of reactive oxygen species in the cells. Therefore, these results indicated that the DOX-loaded, ST-SA stabilized MNCs improved the therapeutic index of DOX and would be a promising therapeutic candidate for tumor therapy.
Collapse
Affiliation(s)
- Poonam Jain
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, 382030 Gujarat, India
| | - Stuti Bhagat
- Division of Biological & Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, 380009 Gujarat, India
| | - Lakshmi Tunki
- Centre for Advanced Materials and Industrial Chemistry, School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Ashok Kumar Jangid
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, 382030 Gujarat, India
| | - Sanjay Singh
- Division of Biological & Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, 380009 Gujarat, India
| | - Deep Pooja
- Centre for Advanced Materials and Industrial Chemistry, School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Hitesh Kulhari
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, 382030 Gujarat, India
| |
Collapse
|
35
|
Li PW, Luo S, Xiao LY, Tian BL, Wang L, Zhang ZR, Zeng YC. A novel gemcitabine derivative-loaded liposome with great pancreas-targeting ability. Acta Pharmacol Sin 2019; 40:1448-1456. [PMID: 31015736 DOI: 10.1038/s41401-019-0227-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 03/14/2019] [Indexed: 02/05/2023]
Abstract
Gemcitabine (Gem) is a standard first-line treatment for pancreatic cancer (PC). However, its chemotherapeutic efficacy is hampered by various limitations such as short half-life, metabolic inactivation, and lack of tumor localizing. We previously synthesized a lipophilic Gem derivative (Gem formyl hexadecyl ester, GemC16) that exhibited improved antitumor activity in vitro. In this study, a target ligand N,N-dimethyl-1,3-propanediamine was conjugated to 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[hydroxyl succinimidyl (polyethylene glycol-2000)] (DSPE-PEG-NHS) to form DSPE-PEG-2N. Then, pancreas-targeting liposomes (2N-LPs) were prepared using the film dispersion-ultrasonic method. GemC16-loaded 2N-LPs displayed near-spherical shapes with an average size distribution of 157.2 nm (polydispersity index (PDI) = 0.201). The encapsulation efficiency of GemC16 was up to 97.3% with a loading capacity of 8.9%. In human PC cell line (BxPC-3) and rat pancreatic acinar cell line (AR42J), cellular uptake of 2N-LPs was significantly enhanced compared with that of unmodified PEG-LPs. 2N-LPs exhibited more potent in vitro cytotoxicity against BxPC-3 and AR42J cell lines than PEG-LPs. After systemic administration in mice, 2N-LPs remarkably increased drug distribution in the pancreas. In an orthotopic tumor mouse model of PC, GemC16-bearing liposomes were more effective in preventing tumor growth than free GemC16. Among these treatments, 2N-LPs showed the best curative effect. Together, 2N-LPs represent a promising nanocarrier to achieve pancreas-targeting drug delivery, and this work would provide new ideas for the chemotherapy of PC.
Collapse
|
36
|
Gupta N, Jangid AK, Singh M, Pooja D, Kulhari H. Designing Two-Dimensional Nanosheets for Improving Drug Delivery to Fucose-Receptor-Overexpressing Cancer Cells. ChemMedChem 2018; 13:2644-2652. [PMID: 30371024 DOI: 10.1002/cmdc.201800575] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/15/2018] [Indexed: 02/06/2023]
Abstract
Targeted drug delivery has shown promise in improving the therapeutic efficacy of anticancer drugs. Gemcitabine hydrochloride (GEM) is a broad-range chemotherapeutic agent for the treatment of various cancers. However, systemic use of free GEM is restricted because of its poor physicochemical properties and nonspecific drug delivery, resulting in dose-dependent adverse effects. In this study, a fucose-conjugated graphene oxide (GO)-based smart targeted nanocarrier system was designed to provide high loading, sustained release, and targeted high concentrations of GEM to cancer cells. Fucose-conjugated GO nanosheets (FGONS) and GEM-loaded fucose-conjugated GO nanosheets (GEM-FGONS) were prepared and characterized by various techniques. About 36.2 % of GEM was loaded to the FGONS, which showed a pH-dependent release over a period of 48 h. A colloidal suspension of GEM-FGONS was found to be physiochemically stable for up to 96 h. In cytotoxicity studies, GEM-FGONS demonstrated time- and dose-dependent high toxicities on fucose-receptor-overexpressing MDA-MB-231 human breast cancer cells and A549 human lung cancer cells. Moreover, targeted formulations were more efficacious than non-targeted or free GEM. Overall, bioconjugation of fucose helps in the stabilizing and targeting of graphene oxide nanosheets.
Collapse
Affiliation(s)
- Nitin Gupta
- School of Nano Sciences, Central University of Gujarat, Sector 30, Gandhinagar, Gujarat, 382030, India
| | - Ashok Kumar Jangid
- School of Nano Sciences, Central University of Gujarat, Sector 30, Gandhinagar, Gujarat, 382030, India
| | - Mandeep Singh
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Deep Pooja
- Applied Biology Division, CSIR - Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India
| | - Hitesh Kulhari
- School of Nano Sciences, Central University of Gujarat, Sector 30, Gandhinagar, Gujarat, 382030, India
| |
Collapse
|
37
|
Rezvantalab S, Drude NI, Moraveji MK, Güvener N, Koons EK, Shi Y, Lammers T, Kiessling F. PLGA-Based Nanoparticles in Cancer Treatment. Front Pharmacol 2018; 9:1260. [PMID: 30450050 PMCID: PMC6224484 DOI: 10.3389/fphar.2018.01260] [Citation(s) in RCA: 331] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/15/2018] [Indexed: 12/18/2022] Open
Abstract
Nanomedicines can be used for a variety of cancer therapies including tumor-targeted drug delivery, hyperthermia, and photodynamic therapy. Poly (lactic-co-glycolic acid) (PLGA)-based materials are frequently used in such setups. This review article gives an overview of the properties of previously reported PLGA nanoparticles (NPs), their behavior in biological systems, and their use for cancer therapy. Strategies are emphasized to target PLGA NPs to the tumor site passively and actively. Furthermore, combination therapies are introduced that enhance the accumulation of NPs and, thereby, their therapeutic efficacy. In this context, the huge number of reports on PLGA NPs used as drug delivery systems in cancer treatment highlight the potential of PLGA NPs as drug carriers for cancer therapeutics and encourage further translational research.
Collapse
Affiliation(s)
- Sima Rezvantalab
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.,Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Natascha Ingrid Drude
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany.,Department of Nuclear Medicine, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Mostafa Keshavarz Moraveji
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Nihan Güvener
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Emily Kate Koons
- Department of Pharmacology and Toxicology, College of Pharmacy & UA Cancer Center, University of Arizona, Tucson, AZ, United States
| | - Yang Shi
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
38
|
Hoosen Y, Pradeep P, Kumar P, du Toit LC, Choonara YE, Pillay V. Nanotechnology and Glycosaminoglycans: Paving the Way Forward for Ovarian Cancer Intervention. Int J Mol Sci 2018; 19:E731. [PMID: 29510526 PMCID: PMC5877592 DOI: 10.3390/ijms19030731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/16/2018] [Accepted: 02/23/2018] [Indexed: 12/31/2022] Open
Abstract
Ovarian cancer (OC) has gained a great deal of attention due to its aggressive proliferative capabilities, high death rates and poor treatment outcomes, rendering the disease the ultimate lethal gynaecological cancer. Nanotechnology provides a promising avenue to combat this malignancy by the niche fabrication of optimally-structured nanomedicines that ensure potent delivery of chemotherapeutics to OC, employing nanocarriers to act as "intelligent" drug delivery vehicles, functionalized with active targeting approaches for precision delivery of chemotherapeutics to overexpressed biomarkers on cancer cells. Recently, much focus has been implemented to optimize these active targeting mechanisms for treatment/diagnostic purposes employing nanocarriers. This two-part article aims to review the latest advances in active target-based OC interventions, where the impact of the newest antibody, aptamer and folate functionalization on OC detection and treatment is discussed in contrast to the limitations of this targeting mechanism. Furthermore, we discuss the latest advances in nanocarrier based drug delivery in OC, highlighting their commercial/clinical viability of these systems beyond the realms of research. Lastly, in the second section of this review, we comprehensively discussed a focus shift in OC targeting from the well-studied OC cells to the vastly neglected extracellular matrix and motivate the potential for glycosaminoglycans (GAGs) as a more focused extracellular molecular target.
Collapse
Affiliation(s)
- Yasar Hoosen
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Priyamvada Pradeep
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Lisa C du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| |
Collapse
|
39
|
Mousavizadeh A, Jabbari A, Akrami M, Bardania H. Cell targeting peptides as smart ligands for targeting of therapeutic or diagnostic agents: a systematic review. Colloids Surf B Biointerfaces 2017; 158:507-517. [PMID: 28738290 DOI: 10.1016/j.colsurfb.2017.07.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/30/2017] [Accepted: 07/05/2017] [Indexed: 12/13/2022]
Abstract
Cell targeting peptides (CTP) are small peptides which have high affinity and specificity to a cell or tissue targets. They are typically identified by using phage display and chemical synthetic peptide library methods. CTPs have attracted considerable attention as a new class of ligands to delivery specifically therapeutic and diagnostic agents, because of the fact they have several advantages including easy synthesis, smaller physical sizes, lower immunogenicity and cytotoxicity and their simple and better conjugation to nano-carriers and therapeutic or diagnostic agents compared to conventional antibodies. In this systematic review, we will focus on the basic concepts concerning the use of cell-targeting peptides (CTPs), following the approaches of selecting them from peptide libraries. We discuss several developed strategies for cell-specific delivery of different cargos by CTPs, which are designed for drug delivery and diagnostic applications.
Collapse
Affiliation(s)
- Ali Mousavizadeh
- Social Determinants of Health Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Ali Jabbari
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mohammad Akrami
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| |
Collapse
|
40
|
Kulhari H, Telukutla SR, Pooja D, Shukla R, Sistla R, Bansal V, Adams DJ. Peptide grafted and self-assembled poly(γ-glutamic acid)-phenylalanine nanoparticles targeting camptothecin to glioma. Nanomedicine (Lond) 2017. [DOI: 10.2217/nnm-2017-0067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To synthesize cRGDfK peptide conjugated poly(γ-glutamic acid)-phenylalanine nanoparticles to improve the therapeutic efficacy of camptothecin (CPT) against glioblastoma multiforme. Methods: Peptide-conjugated, drug-loaded nanoparticles (cRGDfK-conjugated camptothecin-loaded PGA–PA nanoparticles [RCPN]) were prepared and physico-chemically characterized using different techniques. Nanoparticles were evaluated for in vitro anticancer activity, cellular uptake, induction of apoptosis and wound healing cell migration against U87MG human glioblastoma cells. Results: RCPN, with a particle size of <100 nm and 65% CPT encapsulation efficiency, exhibited a dose- and time-dependent cytotoxicity to glioblastoma cells. Compared with native CPT or unconjugated nanoparticles, RCPN induced apoptosis, increased reactive oxygen species generation and inhibited U87MG cell migration. Conclusion: cRGDfK-mediated and amphiphilic copolymer-based nanomedicines represent a new approach for improved delivery of anticancer drugs to and treatment of glioblastoma multiforme.
Collapse
Affiliation(s)
- Hitesh Kulhari
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3001, Australia
- Health Innovations Research Institute, RMIT University, Melbourne, VIC 3083, Australia
- IICT-RMIT Research Centre, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500607, India
- Medicinal Chemistry & Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500607, India
| | - Srinivasa R Telukutla
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3001, Australia
- IICT-RMIT Research Centre, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500607, India
- Medicinal Chemistry & Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500607, India
| | - Deep Pooja
- Medicinal Chemistry & Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500607, India
| | - Ravi Shukla
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3001, Australia
- Health Innovations Research Institute, RMIT University, Melbourne, VIC 3083, Australia
| | - Ramakrishna Sistla
- Medicinal Chemistry & Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500607, India
| | - Vipul Bansal
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC 3001, Australia
- Health Innovations Research Institute, RMIT University, Melbourne, VIC 3083, Australia
| | - David J Adams
- Health Innovations Research Institute, RMIT University, Melbourne, VIC 3083, Australia
- Illawarra Health & Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
41
|
Zhou JE, Yu J, Gao L, Sun L, Peng T, Wang J, Zhu J, Lu W, Zhang L, Yan Z, Yu L. iNGR-Modified Liposomes for Tumor Vascular Targeting and Tumor Tissue Penetrating Delivery in the Treatment of Glioblastoma. Mol Pharm 2017; 14:1811-1820. [DOI: 10.1021/acs.molpharmaceut.7b00101] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jing-e Zhou
- Institute of Biomedical
Engineering, Technology, Shanghai Engineering Research Center of Molecular
Therapeutics, New Drug Development, School of Chemistry, Molecular
Engineering, East China Normal University, Shanghai 200062, China
| | - Jing Yu
- Institute of Biomedical
Engineering, Technology, Shanghai Engineering Research Center of Molecular
Therapeutics, New Drug Development, School of Chemistry, Molecular
Engineering, East China Normal University, Shanghai 200062, China
| | - Lipeng Gao
- Institute of Biomedical
Engineering, Technology, Shanghai Engineering Research Center of Molecular
Therapeutics, New Drug Development, School of Chemistry, Molecular
Engineering, East China Normal University, Shanghai 200062, China
| | - Lei Sun
- Institute of Biomedical
Engineering, Technology, Shanghai Engineering Research Center of Molecular
Therapeutics, New Drug Development, School of Chemistry, Molecular
Engineering, East China Normal University, Shanghai 200062, China
| | - Ting Peng
- Institute of Biomedical
Engineering, Technology, Shanghai Engineering Research Center of Molecular
Therapeutics, New Drug Development, School of Chemistry, Molecular
Engineering, East China Normal University, Shanghai 200062, China
| | - Jing Wang
- Institute of Biomedical
Engineering, Technology, Shanghai Engineering Research Center of Molecular
Therapeutics, New Drug Development, School of Chemistry, Molecular
Engineering, East China Normal University, Shanghai 200062, China
| | - Jianzhong Zhu
- Institute of Biomedical
Engineering, Technology, Shanghai Engineering Research Center of Molecular
Therapeutics, New Drug Development, School of Chemistry, Molecular
Engineering, East China Normal University, Shanghai 200062, China
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Fudan University, Ministry of Education, Shanghai 201203, China
| | - Lin Zhang
- Department of Pharmacy, Shaoxing People’s
Hospital, Shaoxing Hospital of ZheJiang University, Shaoxing 312000 People’s Republic of China
| | - Zhiqiang Yan
- Institute of Biomedical
Engineering, Technology, Shanghai Engineering Research Center of Molecular
Therapeutics, New Drug Development, School of Chemistry, Molecular
Engineering, East China Normal University, Shanghai 200062, China
| | - Lei Yu
- Institute of Biomedical
Engineering, Technology, Shanghai Engineering Research Center of Molecular
Therapeutics, New Drug Development, School of Chemistry, Molecular
Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
42
|
Surwase SS, Munot NM, Idage BB, Idage SB. Tailoring the properties of mPEG-PLLA nanoparticles for better encapsulation and tuned release of the hydrophilic anticancer drug. Drug Deliv Transl Res 2017; 7:416-427. [DOI: 10.1007/s13346-017-0372-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
43
|
Devulapally R, Foygel K, Sekar TV, Willmann JK, Paulmurugan R. Gemcitabine and Antisense-microRNA Co-encapsulated PLGA-PEG Polymer Nanoparticles for Hepatocellular Carcinoma Therapy. ACS APPLIED MATERIALS & INTERFACES 2016; 8:33412-33422. [PMID: 27960411 PMCID: PMC5206908 DOI: 10.1021/acsami.6b08153] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Hepatocellular carcinoma (HCC) is highly prevalent, and the third most common cause of cancer-associated deaths worldwide. HCC tumors respond poorly to chemotherapeutic anticancer agents due to inherent and acquired drug resistance, and low drug permeability. Targeted drug delivery systems with significant improvement in therapeutic efficiency are needed for successful HCC therapy. Here, we report the results of a technique optimized for the synthesis and formulation of antisense-miRNA-21 and gemcitabine (GEM) co-encapsulated PEGylated-PLGA nanoparticles (NPs) and their in vitro therapeutic efficacy in human HCC (Hep3B and HepG2) cells. Water-in-oil-in-water (w/o/w) double emulsion method was used to coload antisense-miRNA-21 and GEM in PEGylated-PLGA-NPs. The cellular uptake of NPs displayed time dependent increase of NPs concentration inside the cells. Cell viability analyses in HCC (Hep3B and HepG2) cells treated with antisense-miRNA-21 and GEM co-encapsulated NPs demonstrated a nanoparticle concentration dependent decrease in cell proliferation, and the maximum therapeutic efficiency was attained in cells treated with nanoparticles co-encapsulated with antisense-miRNA-21 and GEM. Flow cytometry analysis showed that control NPs and antisense-miRNA-21-loaded NPs are not cytotoxic to both HCC cell lines, whereas treatment with free GEM and GEM-loaded NPs resulted in ∼9% and ∼15% apoptosis, respectively. Cell cycle status analysis of both cell lines treated with free GEM or NPs loaded with GEM or antisense-miRNA-21 displayed a significant cell cycle arrest at the S-phase. Cellular pathway analysis indicated that Bcl2 expression was significantly upregulated in GEM treated cells, and as expected, PTEN expression was noticeably upregulated in cells treated with antisense-miRNA-21. In summary, we successfully synthesized PEGylated-PLGA nanoparticles co- encapsulated with antisense-miRNA-21 and GEM. These co-encapsulated nanoparticles revealed increased treatment efficacy in HCC cells, compared to cells treated with either antisense-miRNA-21- or GEM-loaded NPs at equal concentration, indicating that down-regulation of endogenous miRNA-21 function can reduce HCC cell viability and proliferation in response to GEM treatment.
Collapse
|