1
|
Men G, Niu W, Liu X. Hydrogen-Bond-Mediated Polymers: Strengthening, Toughening, and Stabilizing Effects. Chemistry 2025; 31:e202500674. [PMID: 40167175 DOI: 10.1002/chem.202500674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
Traditionally, the design and synthesis of polymers have centered on engineering their covalent chain or network structures. However, noncovalent interactions between polymer chains can influence the properties of polymers to a degree comparable to or even greater than their covalent structures. Therefore, shifting the focus of polymer design from covalent structure engineering to noncovalent interaction modulation represents a new paradigm for polymer innovation. This concept article summarizes our recent advances in H-bond-mediated polymers (HBMPs), fabricated by meticulously tuning the interchain/intersegment H-bonding interactions, in conjunction with rational design of the covalent polymer chain or network structures. We demonstrate that H-bond-mediated assembly provides an effective strategy to fabricate new polymers with unprecedented properties and sustainability, using commodity polymers as building blocks. Importantly, the synergy of multivalence cooperativity and dynamic nature of the H-bonding interactions in HBMPs can reconcile the intrinsic trade-off between mechanical strength and toughness of polymers, achieving both superhigh strength and superhigh toughness. Moreover, optimizing multivalence cooperativity can make the H-bonded crosslinks exhibit a covalent crosslinking effect, offering thermoset-like stability while preserving thermoplastic-like recyclability. The concept of HBMPs can be extended to noncovalent-bond-mediated systems, opening new avenues for polymer innovation and expanding the potential for creating functional and sustainable materials.
Collapse
Affiliation(s)
- Guangwen Men
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Wenwen Niu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Xiaokong Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| |
Collapse
|
2
|
Hao LT, Lee S, Hwang DS, Jeon H, Park J, Kim HJ, Oh DX. Self-Healing Scaffolding Technology with Strong, Reversible Interactions under Physiological Conditions for Engineering Marbled Cultured Meat. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40317268 DOI: 10.1021/acsami.5c03479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Cultured meat offers a sustainable alternative to animal farming, with the potential to reduce environmental impacts and improve food security. However, recapitulating natural meat marbling remains a significant challenge. This study presents a straightforward technology for achieving precise marbling patterns in large-scale cultured meat using self-healing hydrogels containing boronic acid-conjugated chitosan. Unlike conventional hydrogels, which require nonphysiological conditions for strong, reversible bonding, our system achieves robust reversible bonding at neutral pH through a unique mechanism: the nucleophilic groups of chitosan facilitate boronic acid-diol bond formation, exhibiting half the strength of a typical covalent bond, as demonstrated by nanomechanics analysis. The hydrogels form dual reversible networks of boronic acid-diol and hydrogen bonds, enabling self-healing and tunable stiffness. Biocompatibility studies confirm that they support the growth of mouse-derived cells and bovine-derived primary muscle cells. Each hydrogel variant optimizes mechanotransduction for the distinct requirements of fat or muscle cell culture and differentiation. This self-healing scaffolding technology enables the seamless assembly of muscle and fat monocultures into centimeter-thick meat with micrometer-scale marbling patterns, tailoring organoleptic properties and nutritional profiles without the need for meat glues or processing equipment.
Collapse
Affiliation(s)
- Lam Tan Hao
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
| | - Seunghyeon Lee
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Dong Soo Hwang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyeonyeol Jeon
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
- Advanced Materials and Chemical Engineering, Korea National University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Jeyoung Park
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Hyo Jeong Kim
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44429, Republic of Korea
- Advanced Materials and Chemical Engineering, Korea National University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Dongyeop X Oh
- Department of Polymer Science and Engineering and Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
3
|
Tang Z, Chowdhury IF, Yang J, Li S, Mondal AK, Wu H. Recent advances in tannic acid-based gels: Design, properties, and applications. Adv Colloid Interface Sci 2025; 339:103425. [PMID: 39970605 DOI: 10.1016/j.cis.2025.103425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/14/2024] [Accepted: 02/01/2025] [Indexed: 02/21/2025]
Abstract
With the flourishing of mussel-inspired chemistry, the fast-growing development for environmentally friendly materials, and the need for inexpensive and biocompatible analogues to PDA in gel design, TA has led to its gradual emergence as a research focus due to its remarkable biocompatible, renewable, sustainable and particular physicochemical properties. As a natural building block, TA can be used as a substrate or crosslinker, ensuring versatile functional polymeric networks for various applications. In this review, the design of TA-based gels is summarized in detail (i.e., different interactions such as: metal coordination, electrostatic, hydrophobic, host-guest, cation-π and π-π stacking interactions, hydrogen bonding and various reactions including: phenol-amine Michael and Schiff base, phenol-thiol Michael addition, phenol-epoxy ring opening reaction, etc.). Subsequently, TA-based gels with a variety of functionalities, including mechanical, adhesion, conductive, self-healing, UV-shielding, anti-swelling, anti-freezing, shape memory, antioxidant, antibacterial, anti-inflammatory and responsive properties are introduced in detail. Then, a summary of recent developments in the use of TA-based gels is provided, including bioelectronics, biomedicine, energy, packaging, water treatment and other fields. Finally, the difficulties that TA-based gels are currently facing are outlined, and an original yet realistic viewpoint is provided in an effort to spur future development.
Collapse
Affiliation(s)
- Zuwu Tang
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China
| | - Ilnaz Fargul Chowdhury
- Institute of National Analytical Research and Service, Bangladesh Council of Scientific and Industrial Research, Dhanmondi, Dhaka 1205, Bangladesh
| | - Jinbei Yang
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China
| | - Shi Li
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, PR China.
| | - Ajoy Kanti Mondal
- Institute of National Analytical Research and Service, Bangladesh Council of Scientific and Industrial Research, Dhanmondi, Dhaka 1205, Bangladesh.
| | - Hui Wu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, Fujian 350108, PR China.
| |
Collapse
|
4
|
Feng Z, Xie M, Lai J, Wang Z, Xia H. Stereochemistry-Tuned Hydrogen-Bonding Synergistic Covalent Adaptable Networks: Towards Recycled Elastomers with Excellent Creep-Resistant Performance. Angew Chem Int Ed Engl 2025; 64:e202423712. [PMID: 39834149 DOI: 10.1002/anie.202423712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 01/22/2025]
Abstract
Covalent adaptable networks (CANs) offer innovative solutions for the reprocessing and recycling of thermoset polymers. However, achieving a balance between easy reprocessing and creep resistance remains a challenge. This study focuses on designing and synthesizing polyurethane (PU) materials with tailored properties by manipulating the stereochemistry of diamine chain extenders. By employing cis- and trans-configurations of diamine extenders, we developed a series of PU materials with varying mechanical properties and creep resistance. The trans-configured materials (R,R-DAC-PU or S,S-DAC-PU) exhibited superior creep resistance and mechanical strength due to dense hydrogen bonding networks. The cis-configured materials (Cis-DAC-PU) exhibited enhanced processability and elasticity. Under 0.1 MPa stress, R,R-DAC-PU showed a mere 3.5 % strain change at 170 °C over 60 minutes, highlighting its superior creep resistance. Both configurations can be recycled via urea bond exchange reactions using hot pressing or solvothermal methods. Density Functional Theory (DFT) calculations indicate that both the (R,R-DCA-UB-U)2 and (S,S-DCA-UB-U)2 segments form six hydrogen bonds with shorter bond lengths, leading to stronger hydrogen-bonding interactions. Conversely, the (Cis-DCA-UB-U)2 segment forms four hydrogen bonds with longer bond lengths, resulting in weaker interactions. This work highlights the critical role of stereochemistry in designing high-performance, recyclable polymer materials with tailored properties.
Collapse
Affiliation(s)
- Zhenghuai Feng
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Miao Xie
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning, 113001, China
| | - Jialiang Lai
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Zhanhua Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Hesheng Xia
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
5
|
Liu H, Ren D, Geng H, Tian Y, Li M, Wang N, Yuan S, Hao J, Cui J. Coacervate-Derived Assembly of Poly(ethylene glycol) Nanoparticles for Combinational Tumor Therapy. Adv Healthc Mater 2025; 14:e2403865. [PMID: 39748607 DOI: 10.1002/adhm.202403865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/18/2024] [Indexed: 01/04/2025]
Abstract
Coacervates have garnered significant attention as potential drug carriers. However, the instability resulting from their intrinsic membrane-free nature restricts the application of coacervates in drug delivery. Herein, the engineering of poly(ethylene glycol) nanoparticles (PEG NPs) is reported using coacervates composed of PEG and polyphenols as the templates, where PEG is subsequently cross-linked based on different chemistries (e.g., thiol-disulfide exchange, click chemistry, and Schiff base reaction). The reported assembly strategy avoids the template removal process and the resultant PEG NPs exhibit excellent stability in the physiological environment compared to coacervates. The presence of polyphenols in PEG NPs enables the loading of various cargos including metal ions (i.e., Ru, Gd, Mn, Fe) and drug molecules (i.e., doxorubicin), which demonstrates their promise in magnetic resonance imaging and combinational tumor therapy. This work provides a promising strategy to promote the development of coacervate-derived NPs as a drug delivery system for biomedical applications.
Collapse
Affiliation(s)
- Hanru Liu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Dandan Ren
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Huimin Geng
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Yuan Tian
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Mengqi Li
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Ning Wang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Shiling Yuan
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
- Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, Shandong University, Jinan, Shandong, 250100, China
| |
Collapse
|
6
|
Lu X, Zhang W. Recyclable thermo-responsive elastin-based adhesives with tough underwater adhesion and rapid hemostasis ability. Colloids Surf A Physicochem Eng Asp 2024; 702:135086. [DOI: 10.1016/j.colsurfa.2024.135086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Jin H, Wu Z, Lin W, Cai Y, He L, Cao C, Wang X, Qian Q, Chen Q, Yan Y. A Highly Sustainable Supramolecular Bioplastic Film with Superior Hydroplasticity and Biodegradability. CHEMSUSCHEM 2024; 17:e202400512. [PMID: 38878218 DOI: 10.1002/cssc.202400512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/02/2024] [Indexed: 08/07/2024]
Abstract
Massive accumulation of postconsumer plastic waste in eco-system has raised growing environmental concerns. Sustainable end-of-life managements of the indispensable plastic are highly demanding and challenging in modern society. To relieve the plastic menace, herein we present a full life cycle sustainable supramolecular bioplastic made from biomass-derived polyelectrolyte (chitosan quaternary ammonium salt, QCS) and natural sodium fatty acid (sodium laurate, SL) through solid-phase molecular self-assembly (SPMSA), by which the QCS-SL complexes, precipitated from mixing the aqueous solutions, self-assemble to form bioplastic film by mildly pressing at room temperature. The QCS-SL bioplastic films display superior hydroplasticity owing to the water-activated molecular rearrangement and electrostatic bond reconstruction, which allows facile self-healing and reprocessing at room temperature to significantly extend the service lifetime of both products and raw materials. With higher water content, the dynamic electrostatic interactions and precipitation-dissolution equilibrium endow the QCS-SL bioplastic films with considerable solubility in water, which is promising to mitigate the plastic accumulation in aquatic environment. Because both QCS and SL are biocompatible and biodegradable, the dissolved QCS-SL films are nontoxic and environmentally friendly. Thus, this novel supramolecular bioplastic is highly sustainable throughout the whole life cycle, which is expected to open a new vista in sustainable plastic materials.
Collapse
Affiliation(s)
- Hongjun Jin
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Ziyan Wu
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Weilin Lin
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Yiteng Cai
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Lianbo He
- Fujian Provincial University Engineering Research Center of Industrial Biocatalysis, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Changlin Cao
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Xuejiao Wang
- Fujian Provincial University Engineering Research Center of Industrial Biocatalysis, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Qingrong Qian
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Qinghua Chen
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Yun Yan
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
8
|
Guo P, Zhang Z, Qian C, Wang R, Cheng L, Tian Y, Wu H, Zhu S, Liu A. Programming Hydrogen Bonds for Reversible Elastic-Plastic Phase Transition in a Conductive Stretchable Hydrogel Actuator with Rapid Ultra-High-Density Energy Conversion and Multiple Sensory Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410324. [PMID: 39308311 DOI: 10.1002/adma.202410324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/12/2024] [Indexed: 11/16/2024]
Abstract
Smart hydrogels have recently garnered significant attention in the fields of actuators, human-machine interaction, and soft robotics. However, when constructing large-scale actuated systems, they usually exhibit limited actuation forces (≈2 kPa) and actuation speeds. Drawing inspiration from hairspring energy conversion mechanism, an elasticity-plasticity-controllable composite hydrogel (PCTA) with robust contraction capabilities is developed. By precisely manipulating intermolecular and intramolecular hydrogen-bonding interactions, the material's elasticity and plasticity can be programmed to facilitate efficient energy storage and release. The proposed mechanism enables rapid generation of high contraction forces (900 kPa) at ultra-high working densities (0.96 MJ m-3). Molecular dynamics simulations reveal that modifications in the number and nature of hydrogen bonds lead to a distinct elastic-plastic transition in hydrogels. Furthermore, the conductive PCTA hydrogel exhibits multimodal sensing capabilities including stretchable strain sensing with a wide sensing range (1-200%), fast response time (180 ms), and excellent linearity of the output signal. Moreover, it demonstrates exceptional temperature and humidity sensing capabilities with high detection accuracy. The strong actuation power and real-time sensory feedback from the composite hydrogels are expected to inspire novel flexible driving materials and intelligent sensing systems.
Collapse
Affiliation(s)
- Ping Guo
- Zhejiang Key Laboratory of Quantum State Control and Optical Field Manipulation, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhaoxin Zhang
- Center for X-Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Institute of Applied Mechanics, Zhejiang University, Hangzhou, 310000, China
| | - Chengnan Qian
- Zhejiang Key Laboratory of Quantum State Control and Optical Field Manipulation, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ruofei Wang
- Zhejiang Key Laboratory of Quantum State Control and Optical Field Manipulation, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Lin Cheng
- Zhejiang Key Laboratory of Quantum State Control and Optical Field Manipulation, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ye Tian
- Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Huaping Wu
- Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province, College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Shuze Zhu
- Center for X-Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Institute of Applied Mechanics, Zhejiang University, Hangzhou, 310000, China
| | - Aiping Liu
- Zhejiang Key Laboratory of Quantum State Control and Optical Field Manipulation, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
9
|
Sun M, Li S, Wang Q, Li Y, Jing H, Li X, Liu Y, Ren W, Xin X. Supramolecular Luminescent Copper-Nanocluster-Based Dough with Excellent Electrical Conductivity Sensing Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59327-59335. [PMID: 39422563 DOI: 10.1021/acsami.4c13501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
In recent years, the rapid advancement of flexible conductive materials has significantly increased the demand for dough materials that offer high flexibility and conductivity for diverse applications. Here, we developed a flexible, stretchable, and self-healing dough utilizing hydrogen-bonding interactions between glutathione-stabilized copper nanoclusters (GSH-Cu NCs) and poly(acrylic acid) (PAA). The dough materials can be kneaded, readily reshaped, and further processed to create bulk materials of arbitrary form factors. The incorporation of PAA not only preserved the vibrant blue emission of GSH-Cu NCs but also enhanced their electrical conductivity and stretchability. The dough can be stretched up to 25 times its initial length and achieves complete self-healing in a short time. Moreover, the dough can automatically repair physical damage and return to its initial conductivity levels after healing. Surprisingly, the electrical conductivity of the dough can reach as high as 2.97 S/m, which is relatively superior compared to that of conventional conductive materials. This study presents a dough that serves as a highly sensitive strain sensor, capable of effectively monitoring human movement across a broad range of strains.
Collapse
Affiliation(s)
- Mengdi Sun
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Shulin Li
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Qingdong Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Ying Li
- Department of Dermatology, Qilu Hospital of Shandong University, Jinan, Shandong 250012 P. R China
| | - Houchao Jing
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Xin Li
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Yaqing Liu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Weijia Ren
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Xia Xin
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
10
|
Ding Y, Ikura R, Yamaoka K, Nishida K, Sugawara A, Uyama H, Nara S, Takashima Y. Reinforcement and Controlling the Stability of Poly(ε-caprolactone)-Based Polymeric Materials via Reversible and Movable Cross-Links Employing Cyclic Polyphenylene Sulfide. ACS Macro Lett 2024; 13:1265-1271. [PMID: 39283043 DOI: 10.1021/acsmacrolett.4c00495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
Due to its biodegradation ability, poly(ε-caprolactone) (PCL) is a suitable alternative for packaging materials; however, its biodegradation can also lead to instability in its usage. Cyclic polyphenylene sulfide (7U) has been shown to form rotaxane structures with PCL by simple blending to generate the π-π stacking effect and movable cross-link. A 2-fold increase in toughness and no decrease in Young's modulus for the PCL-based polyurethane with 7U are observed. The rotaxane structures mainly exist in the amorphous regions and have no impact on the crystallinity of PCL. Under the catalysis of lipase in aqueous solution, the stability of PCL is improved due to the 7U's suppression of the attack from the enzymes on PCL. After dissolution of the PCL films in the organic solvent, the dispersion of 7U and the breakage of the cross-links lead to little suppression on degradation during the catalysis of lipase. Thus, the controlled stability of PCL using 7U can prolong the life span of the biodegraded PCL materials.
Collapse
Affiliation(s)
- Yuyang Ding
- Department of Macromolecular Science, Graduate School of Science, Osaka University 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Ryohei Ikura
- Department of Macromolecular Science, Graduate School of Science, Osaka University 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Kenji Yamaoka
- Department of Macromolecular Science, Graduate School of Science, Osaka University 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Koki Nishida
- Department of Macromolecular Science, Graduate School of Science, Osaka University 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Akihide Sugawara
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University 2-1, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University 2-1, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Saori Nara
- DIC Corporation, 12 Yawatakaigandori, Ichihara, Chiba 290-8585, Japan
| | - Yoshinori Takashima
- Department of Macromolecular Science, Graduate School of Science, Osaka University 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
11
|
Chen T, Shao M, Zhang Y, Zhang X, Xu J, Li J, Wang T, Wang Q. Ultratough Supramolecular Polyurethane Featuring an Interwoven Network with Recyclability, Ideal Self-Healing and Editable Shape Memory Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46822-46833. [PMID: 39178220 DOI: 10.1021/acsami.4c10805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Developing multifunctional polymers with excellent mechanical properties, outstanding shape memory characteristics, and good self-healing properties is a formidable challenge. Inspired by the woven cross-linking strategy, a series of supramolecular polyurethane (PU) with an interwoven network structure composed of covalent and supramolecular cross-linking nodes have been successfully synthesized by introducing the ureido-pyrimidinone (UPy) motifs into the PU skeleton. The best-performing sample exhibited ultrahigh strength (∼77.2 MPa) and toughness (∼312.7 MJ m-3), along with an ideal self-healing efficiency (up to 90.8% for 6 h) and satisfactory temperature-responsive shape memory effect (shape recovery rates up to 96.9%). Furthermore, it ensured recyclability. These favorable properties are mainly ascribed to the effective dissipation of strain energy due to the disassembly and reconfiguration of supramolecular nodes (i.e., quadruple hydrogen bonds (H-bonds) between UPy units), as well as the covalent cross-linking nodes that maintain the integrity of the polymer network structure. Thus, our work provides a universal strategy that breaks through the traditional contradictions and paves the way for the commercialization of high-performance multifunctional PU elastomers.
Collapse
Affiliation(s)
- Tianze Chen
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Mingchao Shao
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yaoming Zhang
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xinrui Zhang
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jing Xu
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jianming Li
- Petro China Lubricating Oil R&D Institute, Lanzhou 730060, China
| | - Tingmei Wang
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Qihua Wang
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
12
|
Bercea M. Recent Advances in Poly(vinyl alcohol)-Based Hydrogels. Polymers (Basel) 2024; 16:2021. [PMID: 39065336 PMCID: PMC11281164 DOI: 10.3390/polym16142021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Poly(vinyl alcohol) (PVA) is a versatile synthetic polymer, used for the design of hydrogels, porous membranes and films. Its solubility in water, film- and hydrogel-forming capabilities, non-toxicity, crystallinity and excellent mechanical properties, chemical inertness and stability towards biological fluids, superior oxygen and gas barrier properties, good printability and availability (relatively low production cost) are the main aspects that make PVA suitable for a variety of applications, from biomedical and pharmaceutical uses to sensing devices, packaging materials or wastewater treatment. However, pure PVA materials present low stability in water, limited flexibility and poor biocompatibility and biodegradability, which restrict its use alone in various applications. PVA mixed with other synthetic polymers or biomolecules (polysaccharides, proteins, peptides, amino acids etc.), as well as with inorganic/organic compounds, generates a wide variety of materials in which PVA's shortcomings are considerably improved, and new functionalities are obtained. Also, PVA's chemical transformation brings new features and opens the door for new and unexpected uses. The present review is focused on recent advances in PVA-based hydrogels.
Collapse
Affiliation(s)
- Maria Bercea
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
13
|
Mo J, Lei J, Wang H, Kang Q, Liu W, Qiu X. Melt-processable polyvinyl alcohol/lignin composites with improved strength via synergistic plasticization of lignin. Int J Biol Macromol 2024; 267:131726. [PMID: 38688791 DOI: 10.1016/j.ijbiomac.2024.131726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/29/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
The characteristics of multi-hydroxyl structure and strong hydrogen bonding in polyvinyl alcohol (PVA) make its melting point close to its decomposition temperature, causing melt-processing difficulty. In this work, following the plasticization of small-molecule primary plasticizer acetamide, lignin was demonstrated as a green secondary plasticizer in realizing the melt processing and simultaneous reinforcement of PVA. During the plasticization process, lignin was able to combine with the hydroxyl groups of PVA, so as to destroy the hydrogen bonds and regularity of the PVA chains. The synergistic plasticization effect of lignin dramatically reduced the melting point of PVA from 185 °C to 151 °C. The thermal processing window of PVA composites was expanded from 50 °C to roughly 80 °C after introducing lignin. In contrast to acetamide, the addition of lignin significantly increased the tensile strength and Young's modulus of the composites to 71 MPa and 1.34 GPa, respectively. Meanwhile, lignin helped to hinder the migration of acetamide via hydrogen bonds. With the addition of lignin, the composites also displayed enhanced hydrophobicity and excellent UV shielding performance. The strategy of synergistic plasticization of lignin provides a feasible basis for the practical application of lignin in melt-processable PVA materials with good comprehensive properties.
Collapse
Affiliation(s)
- Jianbin Mo
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, PR China
| | - Junjie Lei
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, PR China
| | - Haixu Wang
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, PR China
| | - Qingpeng Kang
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, PR China
| | - Weifeng Liu
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, PR China.
| | - Xueqing Qiu
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, PR China; School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, PR China
| |
Collapse
|
14
|
Lee JY, Shin HH, Cho C, Ryu JH. Effect of Tannic Acid Concentrations on Temperature-Sensitive Sol-Gel Transition and Stability of Tannic Acid/Pluronic F127 Composite Hydrogels. Gels 2024; 10:256. [PMID: 38667675 PMCID: PMC11048884 DOI: 10.3390/gels10040256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Recently, interest in polyphenol-containing composite adhesives for various biomedical applications has been growing. Tannic acid (TA) is a polyphenolic compound with advantageous properties, including antioxidant and antimicrobial properties. Additionally, TA contains multiple hydroxyl groups that exhibit biological activity by forming hydrogen bonds with proteins and biomacromolecules. Furthermore, TA-containing polymer composites exhibit excellent tissue adhesion properties. In this study, the gelation behavior and adhesion forces of TA/Pluronic F127 (TA/PluF) composite hydrogels were investigated by varying the TA and PluF concentrations. PluF (above 16 wt%) alone showed temperature-responsive gelation behavior because of the closely packed micelle aggregates. After the addition of a small amount of TA, the TA/PluF hydrogels showed thermosensitive behavior similar to that of PluF hydrogels. However, the TA/PluF hydrogels containing more than 10 wt% TA completely suppressed the thermo-responsive gelation kinetics of PluF, which may have been due to the hydrogen bonds between TA and PluF. In addition, TA/PluF hydrogels with 40 wt% TA showed excellent tissue adhesion properties and bursting pressure in porcine intestinal tissues. These results are expected to aid in understanding the use of mixtures of TA and thermosensitive block copolymers to fabricate adhesive hydrogels for versatile biomedical applications.
Collapse
Affiliation(s)
- Jeong Yun Lee
- Department of Carbon Convergence Engineering, Wonkwang University, Iksan 54538, Jeonbuk, Republic of Korea;
| | - Hyun Ho Shin
- Department of Chemical Engineering, Wonkwang University, Iksan 54538, Jeonbuk, Republic of Korea;
| | - Chungyeon Cho
- Department of Carbon Convergence Engineering, Wonkwang University, Iksan 54538, Jeonbuk, Republic of Korea;
- Department of Chemical Engineering, Wonkwang University, Iksan 54538, Jeonbuk, Republic of Korea;
- Smart Convergence Materials Analysis Center, Wonkwang University, Iksan 54538, Jeonbuk, Republic of Korea
| | - Ji Hyun Ryu
- Department of Carbon Convergence Engineering, Wonkwang University, Iksan 54538, Jeonbuk, Republic of Korea;
- Department of Chemical Engineering, Wonkwang University, Iksan 54538, Jeonbuk, Republic of Korea;
- Smart Convergence Materials Analysis Center, Wonkwang University, Iksan 54538, Jeonbuk, Republic of Korea
| |
Collapse
|
15
|
Niu W, Li Z, Liang F, Zhang H, Liu X. Ultrastable, Superrobust, and Recyclable Supramolecular Polymer Networks. Angew Chem Int Ed Engl 2024; 63:e202318434. [PMID: 38234012 DOI: 10.1002/anie.202318434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 01/19/2024]
Abstract
Supramolecular polymer networks (SPNs), crosslinked by noncovalent bonds, have emerged as reorganizable and recyclable polymeric materials with unique functionality. However, poor stability is an imperative challenge faced by SPNs, because SPNs are susceptible to heat, water, and/or solvents due to the dynamic and reversible nature of noncovalent bonds. Herein, the design of a noncovalent cooperative network (NCoN) to simultaneously stabilize and reinforce SPNs is reported, resulting in an ultrastable, superrobust, and recyclable SPN. The NCoN is constructed by multiplying the H-bonding sites and tuning the conformation/geometry of the H-bonding segment to optimize the multivalence cooperativity of H-bonds. The rationally designed H-bonding segment with high conformational compliance favors the formation of tightly packed H-bond arrays comprising higher-density and stronger H-bonds. Consequently, the H-bonded crosslinks in the NCoN display a covalent crosslinking effect but retain on-demand dynamics and reversibility. The resultant ultrastable SPN not only displays remarkable resistance to heat up to 120 °C, water soaking, and a broad spectrum of solvents, but also possesses a superhigh true stress at break (1.1 GPa) and an ultrahigh toughness (406 MJ m-3 ). Despite the covalent-network-like stability, the SPN is recyclable through activating its reversibility in a high-polarity solvent heated to a threshold temperature.
Collapse
Affiliation(s)
- Wenwen Niu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Zequan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, P. R. China
| | - Fengli Liang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Houyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiaokong Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
16
|
Chen Q, Yang ZR, Du S, Chen S, Zhang L, Zhu J. Polyphenol-sodium alginate supramolecular injectable hydrogel with antibacterial and anti-inflammatory capabilities for infected wound healing. Int J Biol Macromol 2024; 257:128636. [PMID: 38065459 DOI: 10.1016/j.ijbiomac.2023.128636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/21/2023] [Accepted: 12/03/2023] [Indexed: 01/26/2024]
Abstract
Injectable hydrogel has attracted appealing attention for skin wound treatment. Although multifunctional injectable hydrogels can be prepared by introducing bioactive ingredients with antibacterial and anti-inflammatory capabilities, their preparation remains complicated. Herein, a polyphenol-based supramolecular injectable hydrogel (PBSIH) based on polyphenol gallic acid and biological macromolecule sodium alginate is developed as a wound dressing to accelerate wound healing. We show that such PBSIH can be rapidly formed within 15 s by mixing the sodium alginate and gallic acid solutions based on the hydrogen bonding and hydrophobic interactions. The PBSIH shows excellent cytocompatibility, antibacterial, and antioxidant properties, which enhance infected wound healing by inhibiting bacterial infection and alleviating inflammation after treatment of 11 days. Moreover, we show that the preparative strategies of injectable supramolecular hydrogels can be extended to other polyphenols, including protocatechuic and tannic acids. This study provides a facile yet highly effective method to design injectable polyphenol- sodium alginate hydrogel for wound dressing based on naturally bioactive ingredients.
Collapse
Affiliation(s)
- Qiang Chen
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhuo-Ran Yang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shuo Du
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Senbin Chen
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lianbin Zhang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jintao Zhu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
17
|
Wan H, Wu B, Hou L, Wu P. Amphibious Polymer Materials with High Strength and Superb Toughness in Various Aquatic and Atmospheric Environments. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307290. [PMID: 37683287 DOI: 10.1002/adma.202307290] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/06/2023] [Indexed: 09/10/2023]
Abstract
Herein, the fabrication of amphibious polymer materials with outstanding mechanical performances, both underwater and in the air is reported. A polyvinyl alcohol/poly(2-methoxyethylacrylate) (PVA/PMEA) composite with multiscale nanostructures is prepared by combining solvent exchange and thermal annealing strategies, which contributes to nanophase separation with rigid PVA-rich and soft PMEA-rich phases and high-density crystalline domains of PVA chains, respectively. Benefiting from the multiscale nanostructure, the PVA/PMEA hydrogel demonstrates excellent stability in harsh (such as acidic, alkaline, and saline) aqueous solutions, as well as superior mechanical behavior with a breaking strength of up to 34.8 MPa and toughness of up to 214.2 MJ m-3 . Dehydrating the PVA/PMEA hydrogel results in an extremely robust plastic with a breaking strength of 65.4 MPa and toughness of 430.9 MJ m-3 . This study provides a promising phase-structure engineering route for constructing high-performance polymer materials for complex load-bearing environments.
Collapse
Affiliation(s)
- Hongbo Wan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Baohu Wu
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich, Lichtenbergstr. 1, 85748, Garching, Germany
| | - Lei Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Peiyi Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
18
|
Dou X, Gao S, Lu Z, Huang J, Yan Y. Effect of the Molecular Weight of Polyelectrolyte and Surfactant Chain Length on the Solid-Phase Molecular Self-Assembly. J Phys Chem B 2023; 127:10923-10930. [PMID: 38082415 DOI: 10.1021/acs.jpcb.3c07071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Solid-phase molecular self-assembly (SPMSA) is emerging as an efficient approach, leading to scale-span self-assembled supramolecular films. With SPMSA, freestanding macroscopic supramolecular films can be formed upon mechanically pressing the precipitates formed with polyelectrolytes and oppositely charged surfactants. Herein, we report that the film formation ability and the mechanical strength of the resultant film depend highly on the surfactant chain lengths and the molecular weight of polyelectrolytes. A coarse-grained molecular dynamics study revealed that the longer surfactant chains are beneficial for the ordered assembly of surfactant bilayers in the film, whereas the larger molecular weight of PE favors the enhanced mechanical strength of the film by promoting the long-range order of the surfactant bilayers. The current results disclosed the physical insight of the surfactant chain length and the molecular weight of polyelectrolytes into the film structure and mechanical strength, which is of practical importance in guiding the creation of SPMSA materials.
Collapse
Affiliation(s)
- Xiangyu Dou
- Beijing National Laboratory for Molecular Sciences (BNLMS), Zhongguancun North First Street NO. 2, Beijing 100190, China
- College of Chemistry and Molecular Engineering, Peking University, Chengfu Road NO. 292, Beijing 100871, China
| | - Shuitao Gao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Zhongguancun North First Street NO. 2, Beijing 100190, China
- College of Chemistry and Molecular Engineering, Peking University, Chengfu Road NO. 292, Beijing 100871, China
| | - Zekang Lu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Zhongguancun North First Street NO. 2, Beijing 100190, China
- College of Chemistry and Molecular Engineering, Peking University, Chengfu Road NO. 292, Beijing 100871, China
| | - Jianbin Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Zhongguancun North First Street NO. 2, Beijing 100190, China
- College of Chemistry and Molecular Engineering, Peking University, Chengfu Road NO. 292, Beijing 100871, China
| | - Yun Yan
- Beijing National Laboratory for Molecular Sciences (BNLMS), Zhongguancun North First Street NO. 2, Beijing 100190, China
- College of Chemistry and Molecular Engineering, Peking University, Chengfu Road NO. 292, Beijing 100871, China
| |
Collapse
|
19
|
Zhang X, Zhou S, Wang Z, Wei X, Zhang S, Jin J. Facile Preparation of Hydrogel-Coated Surfaces with Antifouling and Salt Resistance for Efficient Solar-Driven Water Evaporation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:50196-50205. [PMID: 37870122 DOI: 10.1021/acsami.3c11299] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Hydrogel-based evaporators are a promising strategy to obtain freshwater from seawater and sewage. However, the time-consuming and energy-consuming methods used in hydrogel preparation, as well as their limited scalability, are major factors that hinder the development of a hydrogel-based evaporator. Herein, a facile and scalable strategy was designed to prepare a hydrogel-coated evaporator to realize efficient solar-driven water evaporation. The hydrogel coating layer is composed of a robust 3D network formed by tannic acid (TA) and poly(vinyl alcohol) (PVA) through a hydrogen bond. With the assistance of TA surface modifier, carbon black (CB) is uniformly distributed within the hydrogel matrix, endowing the coating with remarkable photothermal properties. In addition, Fe3+ is deposited on the surface of the hydrogel coating through metal coordination with TA, further improving the light absorption of the coating. Due to the synergistic effect of CB and Fe3+, the hydrogel-coated foam exhibited excellent photothermal properties. The water evaporation rate reached 3.64 kg m-2 h-1 under 1 sun irradiation. Because of the hydration ability of PVA hydrogel and the large porous structure of the foam, the hydrogel-coated foam demonstrated excellent antifouling performance and salt resistance. This study provides a facile method for designing and manufacturing high-performance solar-driven water evaporation materials.
Collapse
Affiliation(s)
- Xingzhen Zhang
- School of Chemistry and Chemical Engineering, Jiangsu Engineering Laboratory for Environment Functional Materials, Huaiyin Normal University, Huaian 223300, China
- College of Chemistry, Chemical Engineering and Materials Science; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, China
| | - Shouyong Zhou
- School of Chemistry and Chemical Engineering, Jiangsu Engineering Laboratory for Environment Functional Materials, Huaiyin Normal University, Huaian 223300, China
| | - Zhigang Wang
- College of Chemistry, Chemical Engineering and Materials Science; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, China
| | - Xian Wei
- College of Chemistry, Chemical Engineering and Materials Science; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, China
| | - Shenxiang Zhang
- College of Chemistry, Chemical Engineering and Materials Science; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, China
| | - Jian Jin
- School of Chemistry and Chemical Engineering, Jiangsu Engineering Laboratory for Environment Functional Materials, Huaiyin Normal University, Huaian 223300, China
- College of Chemistry, Chemical Engineering and Materials Science; Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application; Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, China
| |
Collapse
|
20
|
Luo Y, Zheng S, Wang K, Luo H, Shi H, Cui Y, Li B, He H, Wu J. Drug cross-linking electrospun fiber for effective infected wound healing. Bioeng Transl Med 2023; 8:e10540. [PMID: 38023724 PMCID: PMC10658581 DOI: 10.1002/btm2.10540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 12/01/2023] Open
Abstract
The management of infected wounds is still an intractable challenge in clinic. Development of antibacterial wound dressing is of great practical significance for wound management. Herein, a natural-derived antibacterial drug, tannic acid (TA), was incorporated into the electrospun polyvinyl alcohol (PVA) fiber (TA/PVA fiber, 952 ± 40 nm in diameter). TA worked as a cross-linker via hydrogen bonding with PVA to improve the physicochemical properties of the fiber and to reach a sustained drug release (88% release of drug at 48 h). Improved mechanical property (0.8-1.2 MPa) and computational simulation validated the formation of the hydrogen bonds between TA and PVA. Moreover, the antibacterial and anti-inflammatory characteristics of TA laid the foundation for the application of TA/PVA fiber in repairing infected wounds. Meanwhile, in vitro studies proved the high hemocompatibility and cytocompatibility of TA/PVA fiber. Further in vivo animal investigation showed that the TA/PVA fiber promoted the repair of infected wound by inhibiting the bacterial growth, promoting granulation formation, and collagen matrix deposition, accelerating angiogenesis, and inducing M2 macrophage polarization within 14 days. All the data demonstrated that the TA cross-linked fiber would be a potent dressing for bacteria-infected wound healing.
Collapse
Affiliation(s)
- Yuting Luo
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical EngineeringWenzhou Medical UniversityWenzhouZhejiangPeople's Republic of China
| | - Sen Zheng
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical EngineeringWenzhou Medical UniversityWenzhouZhejiangPeople's Republic of China
| | - Kun Wang
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical EngineeringWenzhou Medical UniversityWenzhouZhejiangPeople's Republic of China
| | - Hangqi Luo
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical EngineeringWenzhou Medical UniversityWenzhouZhejiangPeople's Republic of China
| | - Huiling Shi
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical EngineeringWenzhou Medical UniversityWenzhouZhejiangPeople's Republic of China
| | - Yanna Cui
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical EngineeringWenzhou Medical UniversityWenzhouZhejiangPeople's Republic of China
| | - Bingxin Li
- College of Chemistry and Materials EngineeringWenzhou UniversityWenzhouZhejiangPeople's Republic of China
| | - Huacheng He
- College of Chemistry and Materials EngineeringWenzhou UniversityWenzhouZhejiangPeople's Republic of China
| | - Jiang Wu
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical EngineeringWenzhou Medical UniversityWenzhouZhejiangPeople's Republic of China
| |
Collapse
|
21
|
Li Y, Miao R, Yang Y, Han L, Han Q. A zinc-ion battery-type self-powered strain sensing system by using a high-performance ionic hydrogel. SOFT MATTER 2023; 19:8022-8032. [PMID: 37830392 DOI: 10.1039/d3sm00993a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Flexible strain sensors based on conductive hydrogels have profound implications for wearable electronics and health-monitoring systems. However, such sensors still need to integrate with energy providing devices to drive their functions. Herein, we develop a soaking-free polyacrylamide/carboxymethyl cellulose/tannic acid (PAAM/CMC/TA) hydrogel containing 2 M ZnSO4 + 0.1 M MnSO4 electrolyte for a novel zinc-ion battery-type self-powered strain sensing system. The synthesized hydrogel possesses desirable stretchability (tensile strain/stress of 622%/132 kPa), self-healing and self-adhesive properties, as well as good ionic conductivity (0.76 ± 0.04 S m-1). A mechanically durable Zn-MnO2 battery is developed using the PAAM/CMC/TA hydrogel and it can deliver a high specific capacity (223.0 mA h g-1) and maintain stable energy outputs under severe mechanical deformations. The electrochemical behavior of the battery can recover even after several self-healing cycles. Due to the excellent strain and pressure sensing properties of the PAAM/CMC/TA hydrogel, the battery combined with a fixed resistor served as a self-powered wearable sensing device, which could translate different human movements into distinguishable electrical signals without an external power supply. Our work provides guidance for the development of next-generation self-powered sensors.
Collapse
Affiliation(s)
- Yueqin Li
- Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Runtian Miao
- Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Yong Yang
- Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Lin Han
- Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Qiangshan Han
- Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
22
|
Sui B, Zhu Y, Jiang X, Wang Y, Zhang N, Lu Z, Yang B, Li Y. Recastable assemblies of carbon dots into mechanically robust macroscopic materials. Nat Commun 2023; 14:6782. [PMID: 37880261 PMCID: PMC10600192 DOI: 10.1038/s41467-023-42516-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 10/12/2023] [Indexed: 10/27/2023] Open
Abstract
Assembly of nanoparticles into macroscopic materials with mechanical robustness, green processability, and recastable ability is an important and challenging task in materials science and nanotechnology. As an emerging nanoparticle with superior properties, macroscopic materials assembled from carbon dots will inherit their properties and further offer collective properties; however, macroscopic materials assembled from carbon dots solely remain unexplored. Here we report macroscopic films assembled from carbon dots modified by ureido pyrimidinone. These films show tunable fluorescence inherited from carbon dots. More importantly, these films exhibit collective properties including self-healing, re-castability, and superior mechanical properties, with Young's modulus over 490 MPa and breaking strength over 30 MPa. The macroscopic films maintain original mechanical properties after several cycles of recasting. Through scratch healing and welding experiments, these films show good self-healing properties under mild conditions. Moreover, the molecular dynamics simulation reveals that the interplay of interparticle and intraparticle hydrogen bonding controls mechanical properties of macroscopic films. Notably, these films are processed into diverse shapes by an eco-friendly hydrosetting method. The methodology and results in this work shed light on the exploration of functional macroscopic materials assembled from nanoparticles and will accelerate innovative developments of nanomaterials in practical applications.
Collapse
Affiliation(s)
- Bowen Sui
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Youliang Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xuemei Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yifan Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Niboqia Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zhongyuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yunfeng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
23
|
Yang L, Wang Y, Zhang W, Liu X. One-Pot Preparation of Skin-Inspired Multifunctional Hybrid Hydrogel with Robust Wound Healing Capacity. ACS Biomater Sci Eng 2023; 9:5855-5870. [PMID: 37748138 DOI: 10.1021/acsbiomaterials.3c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Bioinspired hydrogels have demonstrated multiple superiorities over traditional wound dressings for wound healing applications. However, the fabrication of bioinspired hydrogel-based wound dressings with desired functionalities always requires multiple successive steps, time-consuming processes, and/or sophisticated protocols, plaguing their clinical applications. Here, a facile one-pot strategy is developed to prepare a skin-inspired multifunctional hydrogel within 30 min by incorporating elastin (an essential functional component of the dermal extracellular matrix), tannic acid, and chitosan into the covalently cross-linked poly(acrylamide) network through noncovalent interactions. The resulting hydrogel exhibits a Young's modulus (ca. 36 kPa) comparable to that of human skin, a high elongation-at-break (ca. 1550%), a satisfactory tensile strength (ca. 61 kPa), and excellent elastic self-restorability, enabling the hydrogel to synchronously and conformally deform with human skin when used as wound dressings. Importantly, the hydrogel displays a self-adhesive property to skin tissues with an appropriate bonding strength (ca. 55 kPa measured on intact porcine skin), endowing the hydrogel with the ability to rapidly self-adhere to intact human skin, sealing the wound surface and also easily being removed without residue left or trauma caused to the skin. The hydrogel also possesses remarkable antibacterial activity, antioxidant capability, and hemocompatibility. All of these collective beneficial properties enable the hydrogel to significantly accelerate the wound healing process, outperforming the commercial wound dressings.
Collapse
Affiliation(s)
- Liangliang Yang
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Yue Wang
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China
| | - Wei Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
- Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Xiaokong Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| |
Collapse
|
24
|
Luo Y, Pauer W, Luinstra GA. Tough, Stretchable, and Thermoresponsive Smart Hydrogels. Gels 2023; 9:695. [PMID: 37754376 PMCID: PMC10528277 DOI: 10.3390/gels9090695] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023] Open
Abstract
Self-healing, thermoresponsive hydrogels with a triple network (TN) were obtained by copolymerizing N-isopropyl acryl amide (NiPAAm) with polyvinyl alkohol (PVA) functionalized with methacrylic acid and N,N'-methylene bis(acryl amide) crosslinker in the presence of low amounts (<1 wt.%) of tannic acid (TA). The final gels were obtained by crystalizing the PVA in a freeze-thaw procedure. XRD, DCS, and SEM imaging indicate that the crystallinity is lower and the size of the PVA crystals is smaller at higher TA concentrations. A gel with 0.5 wt.% TA has an elongation at a break of 880% at a tension of 1.39 MPa. It has the best self-healing efficiency of 81% after cutting and losing the chemical network. Step-sweep strain experiments show that the gel has thixotropic properties, which are related to the TA/PVA part of the triple network. The low amount of TA leaves the gel with good thermal responsiveness (equilibrium swelling ratio of 13.3). Swelling-deswelling loop tests show enhanced dimensional robustness of the hydrogel, with a substantial constancy after two cycles.
Collapse
Affiliation(s)
| | | | - Gerrit A. Luinstra
- Institut für Technische und Makromolekulare Chemie, Universität Hamburg, 20146 Hamburg, Germany; (Y.L.); (W.P.)
| |
Collapse
|
25
|
Zhang S, Deng Y, Libanori A, Zhou Y, Yang J, Tat T, Yang L, Sun W, Zheng P, Zhu YL, Chen J, Tan SC. In Situ Grown Silver-Polymer Framework with Coordination Complexes for Functional Artificial Tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207916. [PMID: 37119438 DOI: 10.1002/adma.202207916] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Self-sensing actuators are critical to artificial robots with biomimetic proprio-/exteroception properties of biological neuromuscular systems. Existing add-on approaches, which physically blend heterogeneous sensor/actuator components, fall short of yielding satisfactory solutions, considering their suboptimal interfaces, poor adhesion, and electronic/mechanical property mismatches. Here, a single homogeneous material platform is reported by creating a silver-polymer framework (SPF), thus realizing the seamless sensing-actuation unification. The SPF-enabled elastomer is highly stretchable (1200%), conductive (0.076 S m-1 ), and strong (0.76 MPa in-strength), where the stretchable polymer matrix synthesis and in situ silver nanoparticles reduction are accomplished simultaneously. Benefiting from the multimodal sensing capability from its architecture itself (mechanical and thermal cues), self-sensing actuation (proprio-deformations and external stimuli perceptions) is achieved for the SPF-based pneumatic actuator, alongside an excellent load-lifting attribute (up to 3700 times its own weight), substantiating its advantage of the unified sensing-actuation feature in a single homogenous material. In view of its human somatosensitive muscular systems imitative functionality, the reported SPF bodes well for use with next-generation functional tissues, including artificial skins, human-machine interfaces, self-sensing robots, and otherwise dynamic materials.
Collapse
Affiliation(s)
- Songlin Zhang
- Department of Materials Science and Engineering, National University of Singapore, 117574, 9 Engineering Drive 1, Singapore, Singapore
| | - Yibing Deng
- School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Alberto Libanori
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yihao Zhou
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jiachen Yang
- Department of Materials Science and Engineering, National University of Singapore, 117574, 9 Engineering Drive 1, Singapore, Singapore
| | - Trinny Tat
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Lin Yang
- Department of Materials Science and Engineering, National University of Singapore, 117574, 9 Engineering Drive 1, Singapore, Singapore
| | - Wanxin Sun
- Bruker Nano Surface and Metrology, 138671, 30 Biopolis Street #09-01, Singapore, Singapore
| | - Peng Zheng
- School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - You-Liang Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, China
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Swee Ching Tan
- Department of Materials Science and Engineering, National University of Singapore, 117574, 9 Engineering Drive 1, Singapore, Singapore
| |
Collapse
|
26
|
Liu H, Fu S, Tao Y, Miao J, Li X, Qi X, Zhang X, Liu Y. Exciting-frequency-adaptive amplitude/phase hybrid holographic inscription in plasmonic polymers. OPTICS LETTERS 2023; 48:2515-2518. [PMID: 37186696 DOI: 10.1364/ol.487126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Plasmonic holography is generally regarded as an effective technology for 3D display that meets the requirements of the human visual system. However, low readout stability and large cross talk in the frequency field during a plasmonic photo-dissolution reaction set a huge obstacle for application of color holography. Herein, we propose a new, to the best of our knowledge, route toward producing exciting frequency sensitive holographic-inscription based on plasmonic nano-Ag adaptive growth. Donor-molecule-doped plasmonic polymers on polyethylene terephthalate substrates exhibit wide spectral response range, accurate optical frequency sensing, and bending durability. The resonant plasmonic particles act as optical antennas and transfer energy to surrounding organic matrices for nanocluster production and non-resonant particle growth. The surface relief hologram is also highly dependent on the excitation frequency, so we successfully obtain a controllable cross-periodic structure with amplitude/phase mixed information, as well as color holographic display. This work provides a bright way to high-density storage, information steganography, and virtual/augmented reality.
Collapse
|
27
|
Guo Z, Lu X, Wang X, Li X, Li J, Sun J. Engineering of Chain Rigidity and Hydrogen Bond Cross-Linking toward Ultra-Strong, Healable, Recyclable, and Water-Resistant Elastomers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300286. [PMID: 36854256 DOI: 10.1002/adma.202300286] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/21/2023] [Indexed: 05/26/2023]
Abstract
High-performance elastomers have gained significant interest because of their wide applications in industry and our daily life. However, it remains a great challenge to fabricate elastomers simultaneously integrating ultra-high mechanical strength, toughness, and excellent healing and recycling capacities. In this study, ultra-strong, healable, and recyclable elastomers are fabricated by dynamically cross-linking copolymers composed of rigid polyimide (PI) segments and soft poly(urea-urethane) (PUU) segments with hydrogen bonds. The elastomers, which are denoted as PIPUU, have a record-high tensile strength of ≈142 MPa and an extremely high toughness of ≈527 MJ m-3 . The structure of the PIPUU elastomer contains hydrogen-bond-cross-linked elastic matrix and homogenously dispersed rigid nanostructures. The rigid PI segments self-assemble to generate phase-separated nanostructures that serve as nanofillers to significantly strengthen the elastomers. Meanwhile, the elastic matrix is composed of soft PUU segments cross-linked with reversible hydrogen bonds, which largely enhance the strength and toughness of the elastomer. The dynamically cross-linked PIPUU elastomers can be healed and recycled to restore their original mechanical strength. Moreover, because of the excellent mechanical performance and the hydrophobic PI segments, the PIPUU elastomers are scratch-, puncture-, and water-resistant.
Collapse
Affiliation(s)
- Zhiwei Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xingyuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiaohan Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiang Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jian Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Junqi Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
28
|
Yamada S. A Transient Pseudo-Capacitor Using a Bioderived Ionic Liquid with Na Ions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205598. [PMID: 36651124 DOI: 10.1002/smll.202205598] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/30/2022] [Indexed: 06/17/2023]
Abstract
A pseudo-capacitor with transient behavior is applied in implantable, disposable, and bioresorbable devices, incorporating an Na ion-doped bioderived ionic liquid, molybdenum trioxide (MoO3 )-covered molybdenum foil, and silk sheet as the electrolyte, electrode, and separator, respectively. Sodium lactate is dissolved in choline lactate as a source of Na ions. The Experimental results reveal that the Na ions are intercalated into the van der Waals gaps in MoO3 , and the pseudo-capacitor shows an areal capacitance (1.5 mF cm-2 ) that is three times larger than that without the Na ion. The fast ion diffusion of the electrolyte and the low resistance of the MoO3 and Mo interface result in an equivalent series resistance of 96 Ω. A cycle test indicates that the pseudo-capacitor exhibited a high capacitance retention of 82.8% after 10 000 cycles. The transient behavior is confirmed by the dissolution of the pseudo-capacitor into phosphate-buffered saline solution after 101 days. Potential applications of transient pseudo-capacitors include electronics without the need for device retrieval after use, including smart agriculture, implantable, and wearable devices.
Collapse
Affiliation(s)
- Shunsuke Yamada
- Department of Robotics, Division of Mechanical Engineering, Tohoku University, 6-6-01 Aoba, Aramakiaza, Aobaku, Sendaishi, Miyagi, 980-8579, Japan
| |
Collapse
|
29
|
Park J, Kim JY, Heo JH, Kim Y, Kim SA, Park K, Lee Y, Jin Y, Shin SR, Kim DW, Seo J. Intrinsically Nonswellable Multifunctional Hydrogel with Dynamic Nanoconfinement Networks for Robust Tissue-Adaptable Bioelectronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207237. [PMID: 36799540 PMCID: PMC10131858 DOI: 10.1002/advs.202207237] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Developing bioelectronics that retains their long-term functionalities in the human body during daily activities is a current critical issue. To accomplish this, robust tissue adaptability and biointerfacing of bioelectronics should be achieved. Hydrogels have emerged as promising materials for bioelectronics that can softly adapt to and interface with tissues. However, hydrogels lack toughness, requisite electrical properties, and fabrication methodologies. Additionally, the water-swellable property of hydrogels weakens their mechanical properties. In this work, an intrinsically nonswellable multifunctional hydrogel exhibiting tissue-like moduli ranging from 10 to 100 kPa, toughness (400-873 J m-3 ), stretchability (≈1000% strain), and rapid self-healing ability (within 5 min), is developed. The incorporation of carboxyl- and hydroxyl-functionalized carbon nanotubes (fCNTs) ensures high conductivity of the hydrogel (≈40 S m-1 ), which can be maintained and recovered even after stretching or rupture. After a simple chemical modification, the hydrogel shows tissue-adhesive properties (≈50 kPa) against the target tissues. Moreover, the hydrogel can be 3D printed with a high resolution (≈100 µm) through heat treatment owing to its shear-thinning capacity, endowing it with fabrication versatility. The hydrogel is successfully applied to underwater electromyography (EMG) detection and ex vivo bladder expansion monitoring, demonstrating its potential for practical bioelectronics.
Collapse
Affiliation(s)
- Jae Park
- School of Electrical and Electronic EngineeringYonsei UniversitySeoul03722Republic of Korea
- LYNK Solutec inc.Seoul03722Republic of Korea
| | - Ju Yeon Kim
- Department of Chemical and Biomolecular EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Jeong Hyun Heo
- Department of PhysiologyYonsei University College of MedicineSeoul03722Republic of Korea
| | - Yeonju Kim
- School of Electrical and Electronic EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Soo A Kim
- School of Electrical and Electronic EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Kijun Park
- School of Electrical and Electronic EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Yeontaek Lee
- School of Electrical and Electronic EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Yoonhee Jin
- Department of PhysiologyYonsei University College of MedicineSeoul03722Republic of Korea
| | - Su Ryon Shin
- Division of Engineering in MedicineDepartment of MedicineBrigham and Women's HospitalHarvard Medical School65 Lansdowne StreetCambridgeMA02139USA
| | - Dae Woo Kim
- Department of Chemical and Biomolecular EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Jungmok Seo
- School of Electrical and Electronic EngineeringYonsei UniversitySeoul03722Republic of Korea
- LYNK Solutec inc.Seoul03722Republic of Korea
| |
Collapse
|
30
|
Ruppitsch LA, Ecker J, Koch T, Ehrmann K, Stampfl J, Liska R. Dynamic monomers for Hot Lithography: The
UPy
motif as a versatile tool towards stress relaxation, reprocessability, and
3D
printing. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
31
|
Lang S, Du Y, Ma L, Bai Y, Ji Y, Liu G. Multifunctional and Tunable Coacervate Powders to Enable Rapid Hemostasis and Promote Infected Wound Healing. Biomacromolecules 2023; 24:1839-1854. [PMID: 36924317 DOI: 10.1021/acs.biomac.3c00043] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Hemostatic powders provide an important treatment approach for time-sensitive hemorrhage control. Conventional hemostatic powders are challenged by the lack of tissue adhesiveness, insufficient hemostatic efficacy, limited infection control, and so forth. This study develops a hemostatic powder from tricomponent GTP coacervates consisting of gelatin, tannic acid (TA), and poly(vinyl alcohol) (PVA). The physical cross-linking by TA results in facile preparation, good storage stability, ease of application to wounds, and removal, which provide good potential for clinical translation. When rehydrated, the coacervate powders rapidly form a cohesive layer with interconnected microporous structure, competent flexibility, switchable wet adhesiveness, and antibacterial properties, which facilitate the hemostatic efficacy for treating irregular, noncompressible, or bacteria-infected wounds. Compared to commercial hemostats, GTP treatment results in significantly accelerated hemostasis in a liver puncture model (∼19 s, >30% reduction in the hemostatic time) and in a tail amputation model (∼38 s, >60% reduction in the hemostatic time). In the GTP coacervates, gelatin functioned as the biodegradable scaffold, while PVA introduced the flexible segments to enable shape-adaptability and interfacial interactions. Furthermore, TA contributed to the physical cross-linking, adhesiveness, and antibacterial performance of the coacervates. The study explores the tunability of GTP coacervate powders to enhance their hemostatic and wound healing performances.
Collapse
Affiliation(s)
- Shiying Lang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yangrui Du
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Li Ma
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yangjing Bai
- West China School of Nursing, Sichuan University/Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ying Ji
- Institute of Textiles and Clothing, Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Gongyan Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
32
|
Shen SC, Khare E, Lee NA, Saad MK, Kaplan DL, Buehler MJ. Computational Design and Manufacturing of Sustainable Materials through First-Principles and Materiomics. Chem Rev 2023; 123:2242-2275. [PMID: 36603542 DOI: 10.1021/acs.chemrev.2c00479] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Engineered materials are ubiquitous throughout society and are critical to the development of modern technology, yet many current material systems are inexorably tied to widespread deterioration of ecological processes. Next-generation material systems can address goals of environmental sustainability by providing alternatives to fossil fuel-based materials and by reducing destructive extraction processes, energy costs, and accumulation of solid waste. However, development of sustainable materials faces several key challenges including investigation, processing, and architecting of new feedstocks that are often relatively mechanically weak, complex, and difficult to characterize or standardize. In this review paper, we outline a framework for examining sustainability in material systems and discuss how recent developments in modeling, machine learning, and other computational tools can aid the discovery of novel sustainable materials. We consider these through the lens of materiomics, an approach that considers material systems holistically by incorporating perspectives of all relevant scales, beginning with first-principles approaches and extending through the macroscale to consider sustainable material design from the bottom-up. We follow with an examination of how computational methods are currently applied to select examples of sustainable material development, with particular emphasis on bioinspired and biobased materials, and conclude with perspectives on opportunities and open challenges.
Collapse
Affiliation(s)
- Sabrina C Shen
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Avenue 1-165, Cambridge, Massachusetts 02139, United States.,Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Eesha Khare
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Avenue 1-165, Cambridge, Massachusetts 02139, United States.,Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Nicolas A Lee
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Avenue 1-165, Cambridge, Massachusetts 02139, United States.,School of Architecture and Planning, Media Lab, Massachusetts Institute of Technology, 75 Amherst Street, Cambridge, Massachusetts 02139, United States
| | - Michael K Saad
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Avenue 1-165, Cambridge, Massachusetts 02139, United States.,Center for Computational Science and Engineering, Schwarzman College of Computing, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
33
|
Xue Y, Lin J, Wan T, Luo Y, Ma Z, Zhou Y, Tuten BT, Zhang M, Tao X, Song P. Stretchable, Ultratough, and Intrinsically Self-Extinguishing Elastomers with Desirable Recyclability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207268. [PMID: 36683185 PMCID: PMC10037964 DOI: 10.1002/advs.202207268] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Advanced elastomers are increasingly used in emerging areas, for example, flexible electronics and devices, and these real-world applications often require elastomers to be stretchable, tough and fire safe. However, to date there are few successes in achieving such a performance portfolio due to their different governing mechanisms. Herein, a stretchable, supertough, and self-extinguishing polyurethane elastomers by introducing dynamic π-π stacking motifs and phosphorus-containing moieties are reported. The resultant elastomer shows a large break strain of ≈2260% and a record-high toughness (ca. 460 MJ m-3 ), which arises from its dynamic microphase-separated microstructure resulting in increased entropic elasticity, and strain-hardening at large strains. The elastomer also exhibits a self-extinguishing ability thanks to the presence of both phosphorus-containing units and π-π stacking interactions. Its promising applications as a reliable yet recyclable substrate for strain sensors are demonstrated. The work will help to expedite next-generation sustainable advanced elastomers for flexible electronics and devices applications.
Collapse
Affiliation(s)
- Yijiao Xue
- Institute of Chemical Industry of Forest ProductsChinese Academy of Forestry (CAF)Nanjing210042China
| | - Jinyou Lin
- Shanghai Advanced Research InstituteChinese Academy of SciencesShanghai201204China
| | - Tao Wan
- School of Materials Science and EngineeringThe University of New South WalesSydneyNSW2502Australia
| | - Yanlong Luo
- College of ScienceNanjing Forestry UniversityNanjing210037China
| | - Zhewen Ma
- Department of Polymer MaterialsSchool of Materials Science and EngineeringTongji UniversityShanghai201804China
| | - Yonghong Zhou
- Institute of Chemical Industry of Forest ProductsChinese Academy of Forestry (CAF)Nanjing210042China
| | - Bryan T. Tuten
- Centre for Materials ScienceSchool of Chemistry and PhysicsQueensland University of TechnologyBrisbaneQLD4000Australia
| | - Meng Zhang
- Institute of Chemical Industry of Forest ProductsChinese Academy of Forestry (CAF)Nanjing210042China
| | - Xinyong Tao
- College of Materials Science and EngineeringZhejiang University of TechnologyHangzhou310014China
| | - Pingan Song
- Centre for Future MaterialsUnviersity of Southern QueenslandSpringfield4300Australia
- School of Agriculture and Environmental ScienceUnviersity of Southern QueenslandSpringfield4300Australia
| |
Collapse
|
34
|
Zhang Z, Lei D, Zhang C, Wang Z, Jin Y, Zhang W, Liu X, Sun J. Strong and Tough Supramolecular Covalent Adaptable Networks with Room-Temperature Closed-Loop Recyclability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208619. [PMID: 36367361 DOI: 10.1002/adma.202208619] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Development of closed-loop chemically recyclable plastics (CCRPs) that can be widely used in daily life can be a fundamental solution to the global plastic waste crisis. Hence, it is of great significance to develop easy-to-recycle CCRPs that possess superior or comparable material properties to the commodity plastics. Here, a novel dual crosslinked CCRP, namely, supramolecular covalent adaptable networks (supra-CANs), is reported, which not only displays mechanical properties higher than the strong and tough commodity polycarbonate, but also exhibits excellent solvent resistance as thermosets. The supra-CANs are constructed by introducing reversible noncovalent crosslinks into the dynamic covalent polymer networks, resulting in highly stiff and strong thermosets that also exhibit thermoplastic-like ductile and tough behaviors as well as reprocessability and rehealability. In great contrast, the analogs that do not have noncovalent crosslinks (CANs) show elastomeric properties with significantly decreased mechanical strength. Importantly, the developed supra-CANs and CANs can be converted back into the initial monomers in high yields and purity at room temperature, even with additives, which enables the sustainable polymer-monomer-polymer circulation. This work provides new design principles for high-performance chemically recyclable polymers as sustainable substitutes for the conventional plastics.
Collapse
Affiliation(s)
- Zhuoqiang Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Dong Lei
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Chenxuan Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Zhenyu Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yinghua Jin
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Xiaokong Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Junqi Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
35
|
Wang C, Song Y, Cong W, Yan Y, Wang M, Zhou J. From surface loading to precise confinement of polyoxometalates for electrochemical energy storage. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
36
|
Jin H, Lin W, Wu Z, Cheng X, Chen X, Fan Y, Xiao W, Huang J, Qian Q, Chen Q, Yan Y. Surface Hydrophobization Provides Hygroscopic Supramolecular Plastics Based on Polysaccharides with Damage-Specific Healability and Room-Temperature Recyclability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207688. [PMID: 36373548 DOI: 10.1002/adma.202207688] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Supramolecular materials with room-temperature healability and recyclability are highly desired because they can extend materials lifetimes and reduce resources consumption. Most approaches toward healing and recycling rely on the dynamically reversible supramolecular interactions, such as hydrogen, ionic and coordinate bonds, which are hygroscopic and vulnerable to water. The general water-induced plasticization facilitates the healing and reprocessing process but cause a troubling problem of random self-adhesion. To address this issue, here it is reported that by modifying the hygroscopic surfaces with hydrophobic alkyl chains of dodecyltrimethoxysilane (DTMS), supramolecular plastic films based on commercial raw materials of sodium alginate (SA) and cetyltrimethylammonium bromide (CTAB) display extraordinary damage-specific healability. Owing to the hydrophobic surfaces, random self-adhesion is eliminated even under humid environment. When damage occurs, the fresh surfaces with ionic groups and hydroxyl groups expose exclusively at the damaged site. Thus, damage-specific healing can be readily facilitated by water-induced plasticization. Moreover, the films display excellent room-temperature recyclability. After multiple times of reprocessing and re-modifying with DTMS, the rejuvenated films exhibit fatigueless mechanical properties. It is anticipated that this approach to damage-specific healing and room-temperature recycling based on surface hydrophobization can be applied to design various of supramolecular plastic polysaccharides materials for building sustainable societies.
Collapse
Affiliation(s)
- Hongjun Jin
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350007, China
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Weilin Lin
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350007, China
- School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, 365004, China
| | - Ziyan Wu
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Xinyu Cheng
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350007, China
- School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, 365004, China
| | - Xinyuan Chen
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350007, China
- School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, 365004, China
| | - Yingjie Fan
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350007, China
- School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, 365004, China
| | - Wangchuan Xiao
- School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, 365004, China
| | - Jianbin Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Qingrong Qian
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Qinghua Chen
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Yun Yan
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
37
|
Yang X, Shi N, Liu J, Cheng Q, Li G, Lyu J, Ma F, Zhang X. 3D Printed Hybrid Aerogel Gauzes Enable Highly Efficient Hemostasis. Adv Healthc Mater 2023; 12:e2201591. [PMID: 36165237 PMCID: PMC11468894 DOI: 10.1002/adhm.202201591] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/21/2022] [Indexed: 02/03/2023]
Abstract
Hemostatic materials have played a significant role in mitigating traumatic injury by controlling bleeding, however, the fabrication of the desirable material's structure to enhance the accumulation of blood cells and platelets for highly efficient hemostasis is still a great challenge. In this work, directed assembly of poly(vinyl alcohol) (PVA) macromolecules covering the rigid Kevlar nanofiber (KNF) network during 3D printing process is utilized to fabricate hydrophilic, biocompatible, and mechanically stable KNF-PVA aerogel filaments for effective enriching blood components by fast water absorption. As such, KNF-PVA aerogel gauzes demonstrate remarkable water permeability (338 mL cm-2 s-1 bar-1 ), water absorption speed (as high as 9.64 g g-1 min-1 ) and capacity (more than ten times of self-weight), and ability to enrich micron-sized particles when contacting aqueous solution. All these properties favor efficient hemostasis and the resulting KNF-PVA aerogel gauzes significantly outperform the commercial product Quikclot Gauze (Z-Medica) during in vivo experiments with the rat liver laceration model, reducing the hemostasis time by half (60 ± 4 s) and the blood loss by two thirds (0.07 ± 0.01 g). These results demonstrate a robust strategy to design various aerogel gauzes for hemostasis applications.
Collapse
Affiliation(s)
- Xiaoxu Yang
- Key Laboratory of Rubber‐Plastics (Ministry of Education)School of Polymer Science and EngineeringQingdao University of Science and TechnologyQingdao266042P. R. China
- Suzhou Institute of Nano‐tech and Nano‐bionicsChinese Academy of SciencesSuzhou215123P. R. China
| | - Nan Shi
- Suzhou Institute of Nano‐tech and Nano‐bionicsChinese Academy of SciencesSuzhou215123P. R. China
| | - Jian Liu
- Suzhou Institute of Nano‐tech and Nano‐bionicsChinese Academy of SciencesSuzhou215123P. R. China
| | - Qingqing Cheng
- Suzhou Institute of Nano‐tech and Nano‐bionicsChinese Academy of SciencesSuzhou215123P. R. China
| | - Guangyong Li
- Suzhou Institute of Nano‐tech and Nano‐bionicsChinese Academy of SciencesSuzhou215123P. R. China
| | - Jing Lyu
- Suzhou Institute of Nano‐tech and Nano‐bionicsChinese Academy of SciencesSuzhou215123P. R. China
| | - Fengguo Ma
- Key Laboratory of Rubber‐Plastics (Ministry of Education)School of Polymer Science and EngineeringQingdao University of Science and TechnologyQingdao266042P. R. China
| | - Xuetong Zhang
- Suzhou Institute of Nano‐tech and Nano‐bionicsChinese Academy of SciencesSuzhou215123P. R. China
- Division of Surgery & Interventional ScienceUniversity College LondonLondonNW3 2PFUK
| |
Collapse
|
38
|
Bonafé Allende JC, Schmarsow RN, Matxinandiarena E, García Schejtman SD, Coronado EA, AlvarezIgarzabal CI, Picchio ML, Müller AJ. Crystallization-Driven Supramolecular Gelation of Poly(vinyl alcohol) by a Small Catechol Derivative. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Juan Cruz Bonafé Allende
- Departamento de Química Orgánica, Facultad de Ciencias Químicas (Universidad Nacional de Córdoba), IPQA−CONICET, Haya de la Torre y Medina Allende, CórdobaX5000HUA, Argentina
| | - Ruth N. Schmarsow
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry, and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018Donostia-San Sebastián, Spain
| | - Eider Matxinandiarena
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry, and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018Donostia-San Sebastián, Spain
| | - Sergio D. García Schejtman
- Facultad de Ciencias Químicas (Universidad Nacional de Córdoba), INFIQC−CONICET, Haya de la Torre y Medina Allende, CórdobaX5000HUA, Argentina
| | - Eduardo A. Coronado
- Facultad de Ciencias Químicas (Universidad Nacional de Córdoba), INFIQC−CONICET, Haya de la Torre y Medina Allende, CórdobaX5000HUA, Argentina
| | - Cecilia I. AlvarezIgarzabal
- Departamento de Química Orgánica, Facultad de Ciencias Químicas (Universidad Nacional de Córdoba), IPQA−CONICET, Haya de la Torre y Medina Allende, CórdobaX5000HUA, Argentina
| | - Matías L. Picchio
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry, and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018Donostia-San Sebastián, Spain
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), CONICET, Güemes 3450, Santa Fe3000, Argentina
| | - Alejandro J. Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry, and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009Bilbao, Spain
| |
Collapse
|
39
|
Recyclable Polyurea-Urethane Thermosets with De-Crosslinking Capability in Acetic Acid. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2872-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
40
|
Carnicero A, González A, Dalosto SD, Passeggi MCG, Minari RJ, Alvarez Igarzabal CI, Martinelli M, Picchio ML. Ascidian-Inspired Supramolecular Cellulose Nanocomposite Hydrogels with Antibacterial Activity. ACS Biomater Sci Eng 2022; 8:5027-5037. [DOI: 10.1021/acsbiomaterials.2c00935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Anabela Carnicero
- Departamento de Química Orgánica, Facultad de Ciencias Químicas (Universidad Nacional de Córdoba), IPQA−CONICET, Haya de la Torre y Medina Allende, Córdoba X5000HUA, Argentina
| | - Agustín González
- Departamento de Química Orgánica, Facultad de Ciencias Químicas (Universidad Nacional de Córdoba), IPQA−CONICET, Haya de la Torre y Medina Allende, Córdoba X5000HUA, Argentina
| | - Sergio D. Dalosto
- Instituto de Física del Litoral (IFIS-Litoral, CONICET-UNL), Güemes 3450, Santa Fe 3000, Argentina
| | - Mario C. G. Passeggi
- Instituto de Física del Litoral (IFIS-Litoral, CONICET-UNL), Güemes 3450, Santa Fe 3000, Argentina
| | - Roque J. Minari
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), CONICET, Güemes 3450, Santa Fe 3000, Argentina
- Facultad de Ingeniería Química (Universidad Nacional del Litoral), Santiago del Estero 2829, Santa Fe 3000, Argentina
| | - Cecilia I. Alvarez Igarzabal
- Departamento de Química Orgánica, Facultad de Ciencias Químicas (Universidad Nacional de Córdoba), IPQA−CONICET, Haya de la Torre y Medina Allende, Córdoba X5000HUA, Argentina
| | - Marisa Martinelli
- Departamento de Química Orgánica, Facultad de Ciencias Químicas (Universidad Nacional de Córdoba), IPQA−CONICET, Haya de la Torre y Medina Allende, Córdoba X5000HUA, Argentina
| | - Matías L. Picchio
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), CONICET, Güemes 3450, Santa Fe 3000, Argentina
| |
Collapse
|
41
|
Pei M, Zhu D, Yang J, Yang K, Yang H, Gu S, Li W, Xu W, Xiao P, Zhou Y. Multi-crosslinked Flexible Nanocomposite Hydrogel Fibers with Excellent Strength and Knittability. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
42
|
Tang S, Ke X, Wang H, Xie J, Yang J, Luo J, Li J. Biomineralization-Inspired Intermediate Precursor for the Controllable Gelation of Polyphenol-Macromolecule Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44890-44901. [PMID: 36136038 DOI: 10.1021/acsami.2c15068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hydrogels composed of polyphenols and various macromolecules have been widely reported to have the advantage of facile preparation, mainly through the formation of hydrogen bonds. However, the traditional preparation method involves the direct mixing of polyphenols and macromolecules, which generally occurs too quickly and uncontrollably, and results in poor homogeneity, injectability, and shape designability. Here, inspired by the intermediate precursor during biomineralization, to facilitate transformation in a controllable way, we propose a novel and universal internal gelation method that creates an intermediate precursor by controlling the pH value to manipulate the elimination and generation of hydrogen bonds between a polyphenol and macromolecules. The precursor strategy greatly improves the homogeneity, injectability, and shape designability of the hydrogel while also achieving a controllable gelation process, and the gelation time can be accurately adjusted. The hydrogels prepared with this method exhibited superior capability to seal leaks, provided complete wound coverage, and showed the potential to be a shape-designable wearable strain sensor. Our study opens up a new way to construct and apply polyphenol-macromolecule hydrogels in a more controllable manner.
Collapse
Affiliation(s)
- Shuxian Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xiang Ke
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Hao Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Jing Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Med-X Center for Materials, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
43
|
Dou X, Jin H, Wu T, Huang J, Zhang B, Liu Z, Chen T, Yan Y. Physical Insight into the Conditions Required in the Solid-Phase Molecular Self-Assembly of SDS Revealed by Coarse-Grained Molecular Dynamics Simulation. J Phys Chem B 2022; 126:6345-6353. [PMID: 35971652 DOI: 10.1021/acs.jpcb.2c04421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular self-assembled materials have attracted considerable interest in recent years. As part of the efforts to overcome the shortcoming that the solution-based methods were hardly applicable in preparing bulk macroscopic molecular self-assemblies, Yan [ CCS Chem. 2020, 2, 98-106] developed a strategy of solid-phase molecular self-assembly (SPMSA) that allows scaling up the generation of massive supramolecular films. It is highly desired to understand the physical insight into the SPMSA at a molecular level. Here, in combination with the experimental study, we report molecular dynamics (MD) simulations on the SPMSA of the surfactant sodium dodecyl sulfate (SDS) using a coarse-grained method with the Martini force field model. The MD simulations clearly manifest that a small amount of water is required to endow the SDS molecules with sufficient mobility to self-assemble, and the smaller size of the preassembled SDS particles favors their further fusion into mesophases by reducing the total surface Gibbs free energy, while the smaller interparticle distance decreases the time for the particle fusion. The simulation results agree well with the conditions required in the experiment, confirming that SMPSA is a free-energy-favored process leading to bulk self-assembled materials.
Collapse
Affiliation(s)
- Xiangyu Dou
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hongjun Jin
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Tongyue Wu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jianbin Huang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Bin Zhang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhirong Liu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tao Chen
- College of Chemistry and Materials Science, Northwest University, Xian 710127, China
| | - Yun Yan
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
44
|
Li Y, Wang X, Fang X, Sun J. Noncovalently Cross-Linked Polymeric Materials Reinforced by Well-Designed In Situ-Formed Nanofillers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9050-9063. [PMID: 35863752 DOI: 10.1021/acs.langmuir.2c01380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Noncovalently cross-linked polymeric materials generally exhibit lower mechanical robustness than traditional polymeric materials. Therefore, it is important to improve the mechanical properties of noncovalently cross-linked polymeric materials using an efficient and generalized approach. In this Perspective, we systematically summarized the recent development of noncovalently cross-linked polymeric materials reinforced by in situ-formed nanofillers. The synergy of high-density noncovalent interactions and in situ-formed rigid nanofillers provided an effective means for the fabrication of noncovalently cross-linked plastics with high mechanical strength. The design of in situ-formed tough nanofillers, which could deform and dissociate, endowed the noncovalently cross-linked hydrogels and elastomers with high toughness, excellent stretchability, elasticity, damage resistance, and damage tolerance. Benefiting from the well-designed in situ-formed nanofillers, these noncovalently cross-linked polymeric materials with enhanced mechanical strength still exhibited satisfactory healing, recycling, and reprocessing properties. Outlooks were provided to envision the remaining challenges to the further development and practical application of noncovalently cross-linked polymeric materials reinforced with in situ-formed nanofillers.
Collapse
Affiliation(s)
- Yixuan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Xiaohan Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Xu Fang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Junqi Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
45
|
Ren W, Qiang T, Chen L. Recyclable and biodegradable pectin-based film with high mechanical strength. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
46
|
Bao Y, Huang X, Xu D, Xu J, Jiang L, Lu ZY, Cui S. Bound water governs the single-chain property of Poly(vinyl alcohol) in aqueous environments. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Cheng Y, Ueda M, Iwasaki Y. Polyphosphoester/tannic acid composite sticky coacervates as adhesives. CHEM LETT 2022. [DOI: 10.1246/cl.220217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yichen Cheng
- Department of Chemistry and Materials Engineering, Kansai University, 3-3-35, Yamate-cho, Suita-shi, Osaka 564-8680
| | - Masato Ueda
- Department of Chemistry and Materials Engineering, Kansai University, 3-3-35, Yamate-cho, Suita-shi, Osaka 564-8680
- ORDIST, Kansai University, 3-3-35, Yamate-cho, Suita-shi, Osaka 564-8680
| | - Yasuhiko Iwasaki
- Department of Chemistry and Materials Engineering, Kansai University, 3-3-35, Yamate-cho, Suita-shi, Osaka 564-8680
- ORDIST, Kansai University, 3-3-35, Yamate-cho, Suita-shi, Osaka 564-8680
| |
Collapse
|
48
|
Li YM, Zhang ZP, Rong MZ, Zhang MQ. Tailored modular assembly derived self-healing polythioureas with largely tunable properties covering plastics, elastomers and fibers. Nat Commun 2022; 13:2633. [PMID: 35551199 PMCID: PMC9098433 DOI: 10.1038/s41467-022-30364-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/27/2022] [Indexed: 12/19/2022] Open
Abstract
To impart self-healing polymers largely adjustable dynamicity and mechanical performance, here we develop libraries of catalyst-free reversible polythioureas directly from commodity 1,4-phenylene diisothiocyanate and amines via facile click chemistry based modular assembly. By using the amine modules with various steric hindrances and flexibilities, the reversible thiourea units acquire triggering temperatures from room temperature to 120 °C. Accordingly, the derived self-healable, recyclable and controlled degradable dynamically crosslinked polythioureas can take effect within wide temperature range. Moreover, mechanical properties of the materials can be tuned covering plastics, elastomers and fibers using (i) different assemble modules or (ii) solid-state stretching. Particularly, unidirectional stretching leads to the record-high tensile strength of 266 MPa, while bidirectional stretching provides the materials with biaxial strengths up to over 120 MPa. The molecular mechanism and technological innovations discussed in this work may benefit promotion and application of self-healing polymers towards greatly diverse demands and scenarios. Intrinsic self-healing polymers attract increasing attention but often suffer from a narrow self-healing temperature range and unsatisfactory mechanical performance. Here, the authors use click chemistry to develop a library of catalyst-free reversible polythioureas and demonstrate that the self-healing temperature and mechanical properties can be adjusted by controlling the flexibility and the steric environment.
Collapse
Affiliation(s)
- Yan Mei Li
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ze Ping Zhang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Min Zhi Rong
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ming Qiu Zhang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
49
|
Gao H, Shi R, Zhu Y, Qian H, Lu Z. Coarse-grained Dynamics Simulation in Polymer Systems: from Structures to Material Properties. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2080-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Shao XH, Yang X, Zhou Y, Xia QC, Lu YP, Yan X, Chen C, Zheng TT, Zhang LL, Ma YN, Ma YX, Gao SZ. Antibacterial, wearable, transparent tannic acid-thioctic acid-phytic acid hydrogel for adhesive bandages. SOFT MATTER 2022; 18:2814-2828. [PMID: 35322837 DOI: 10.1039/d2sm00058j] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Making a hydrogel-based first-aid bandage with green resources, desirable biocompatibility, universal adhesive properties, low cost and simple production is a long-standing research aspiration. Considering this, three naturally existing organic acids, namely tannic acid, thioctic acid and phytic acid, were used to construct a novel adhesive gel (TATAPA hydrogel) for epidermal tissue bandage applications. This hydrogel could be synthesized under mild conditions with no need for a freeze-thawing shaping procedure, and was transparent, moldable and stretchable with good stability under continuous water immersion. In lap-shear tests, the TATAPA hydrogel could adhere to various hydrophilic and hydrophobic surfaces. Moreover, in the case of skin tissue adhesion, the hydrogel could be easily peeled off from the skin, meeting wearability requirements. Rheological tests showed that the hydrogel possessed thermal sensitive properties derived from multi-supramolecular interactions. The methicillin-resistant Staphylococcus aureus (MRSA)-infected burn wound test demonstrated that the hydrogel had desirable antibacterial activity and was beneficial for wound healing. A femoral artery bleeding assay was also used to reveal that the TATAPA hydrogel could be directly pasted onto the bleeding site for hemostasis. Overall, this hydrogel demonstrates potential as a surgical bioadhesive for a broad range of medical applications.
Collapse
Affiliation(s)
- Xian-Hui Shao
- Key Laboratory of New Material Research Institute, Department of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Xiao Yang
- The First Affiliated Hospital of Shandong First Medical University (Shandong Qianfoshan Hospital), Jinan 250014, China
| | - Yue Zhou
- Key Laboratory of New Material Research Institute, Department of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Qing-Chang Xia
- Key Laboratory of New Material Research Institute, Department of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Yun-Ping Lu
- Key Laboratory of New Material Research Institute, Department of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Xiao Yan
- Key Laboratory of New Material Research Institute, Department of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Chen Chen
- Key Laboratory of New Material Research Institute, Department of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Ting-Ting Zheng
- Key Laboratory of New Material Research Institute, Department of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Lin-Lin Zhang
- Key Laboratory of New Material Research Institute, Department of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Yu-Ning Ma
- Key Laboratory of New Material Research Institute, Department of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Yu-Xia Ma
- Key Laboratory of New Material Research Institute, Department of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Shu-Zhong Gao
- Key Laboratory of New Material Research Institute, Department of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|