1
|
Weng K, Li W, Cheng X, Xing Y, Fu X, Wang Y, Wang H, Tian X, Wang Y, Li L, Yao J, Sheng X, Li J, Zhang H. Metal-Organic Frameworks Modified Organic Bulk Heterojunction Interfaces for Effective Nongenetic Neuromodulation. ACS NANO 2025; 19:16813-16828. [PMID: 40279182 DOI: 10.1021/acsnano.5c01516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
Photoactive organic semiconductors, such as bulk heterojunctions (BHJs) of donor-acceptor pairs, are promising for building flexible devices for nongenetic and precise optical neuromodulation. However, the full potential of the diverse compositions and functionalities of BHJs has yet to be explored for neuromodulation due to their unsatisfactory interfaces with soft biotissues, which hinder signal transduction, tissue adhesion, and biocompatibility. Here, we address these challenges by introducing an interfacial layer composed of conductive and porous metal-organic frameworks (MOFs). The MOFs layer enhances charge injection capacity at the interface by >400 times and ensures tight and biocompatible junction between BHJs and biological materials. These improvements enable efficient electrical-to-ionic signal transduction for various BHJs, supporting reliable nongenetic modulation of cultured mouse hippocampal neurons under deep-red and near-infrared light. Moreover, flexible devices made from MOFs-modified BHJs allow for the in vivo stimulation of rat sciatic nerves at an ultralow light intensity threshold (0.01 mW mm-2), 700 times lower than that required for unmodified devices. This interfacial engineering with porous MOFs can expand the material toolbox of BHJs-based photocapacitors and unlock more functionalities for neuromodulation and prosthetic biointerfaces.
Collapse
Affiliation(s)
- Kangkang Weng
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
- School of Optics and Photonics, Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Wenjun Li
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Xinyu Cheng
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Yunyun Xing
- State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xin Fu
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Yinghan Wang
- State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Huachun Wang
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Xiaoli Tian
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Yuqi Wang
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Lizhu Li
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jun Yao
- State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Jinghong Li
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Hao Zhang
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Yao Y, Ahnood A, Chambers A, Tong W, Prawer S. Nitrogen-Doped Ultrananocrystalline Diamond - Optoelectronic Biointerface for Wireless Neuronal Stimulation. Adv Healthc Mater 2025; 14:e2403901. [PMID: 39935067 PMCID: PMC11973940 DOI: 10.1002/adhm.202403901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/28/2024] [Indexed: 02/13/2025]
Abstract
This study presents a semiconducting optoelectronic system for light-controlled non-genetic neuronal stimulation using visible light. The system architecture is entirely wireless, comprising a thin film of nitrogen-doped ultrananocrystalline diamond directly grown on a semiconducting silicon substrate. When immersed in a physiological medium and subjected to pulsed illumination in the visible (595 nm) or near-infrared wavelength (808 nm) range, charge accumulation at the device-medium interface induces a transient ionic displacement current capable of electrically stimulating neurons with high temporal resolution. With a measured photoresponsivity of 7.5 mA W-1, the efficacy of this biointerface is demonstrated through optoelectronic stimulation of degenerate rat retinas using 595 nm irradiation, pulse durations of 50-500 ms, and irradiance levels of 1.1-4.3 mW mm-2, all below the safe ocular threshold. This work presents the pioneering utilization of a diamond-based optoelectronic platform, capable of generating sufficiently large photocurrents for neuronal stimulation in the retina.
Collapse
Affiliation(s)
- Yue Yao
- School of PhysicsThe University of MelbourneParkvilleVictoria3010Australia
| | - Arman Ahnood
- School of EngineeringThe RMIT UniversityMelbourneVictoria3000Australia
| | - Andre Chambers
- Department of Mechanical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Wei Tong
- School of PhysicsThe University of MelbourneParkvilleVictoria3010Australia
| | - Steven Prawer
- School of PhysicsThe University of MelbourneParkvilleVictoria3010Australia
| |
Collapse
|
3
|
Borah R, Diez Clarke D, Upadhyay J, Monaghan MG. From innovation to clinic: Emerging strategies harnessing electrically conductive polymers to enhance electrically stimulated peripheral nerve repair. Mater Today Bio 2025; 30:101415. [PMID: 39816667 PMCID: PMC11733191 DOI: 10.1016/j.mtbio.2024.101415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/07/2024] [Accepted: 12/17/2024] [Indexed: 01/18/2025] Open
Abstract
Peripheral nerve repair (PNR) is a major healthcare challenge due to the limited regenerative capacity of the nervous system, often leading to severe functional impairments. While nerve autografts are the gold standard, their implications are constrained by issues such as donor site morbidity and limited availability, necessitating innovative alternatives like nerve guidance conduits (NGCs). However, the inherently slow nerve growth rate (∼1 mm/day) and prolonged neuroinflammation, delay recovery even with the use of passive (no-conductive) NGCs, resulting in muscle atrophy and loss of locomotor function. Electrical stimulation (ES) has the ability to enhance nerve regeneration rate by modulating the innate bioelectrical microenvironment of nerve tissue while simultaneously fostering a reparative environment through immunoregulation. In this context, electrically conductive polymer (ECP)-based biomaterials offer unique advantages for nerve repair combining their flexibility, akin to traditional plastics, and mixed ionic-electronic conductivity, similar to ionically conductive nerve tissue, as well as their biocompatibility and ease of fabrication. This review focuses on the progress, challenges, and emerging techniques for integrating ECP based NGCs with ES for functional nerve regeneration. It critically evaluates the various approaches using ECP based scaffolds, identifying gaps that have hindered clinical translation. Key challenges discussed include designing effective 3D NGCs with high electroactivity, optimizing ES modules, and better understanding of immunoregulation during nerve repair. The review also explores innovative strategies in material development and wireless, self-powered ES methods. Furthermore, it emphasizes the need for non-invasive ES delivery methods combined with hybrid ECP based neural scaffolds, highlighting future directions for advancing preclinical and clinical translation. Together, ECP based NGCs combined with ES represent a promising avenue for advancing PNR and improving patient outcomes.
Collapse
Affiliation(s)
- Rajiv Borah
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
- Advanced Materials and BioEngineering Research (AMBER), Centre at Trinity College Dublin and the Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Daniel Diez Clarke
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Jnanendra Upadhyay
- Department of Physics, Dakshin Kamrup College, Kamrup, Assam, 781125, India
| | - Michael G. Monaghan
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
- Advanced Materials and BioEngineering Research (AMBER), Centre at Trinity College Dublin and the Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
- CÚRAM, Research Ireland Centre for Research in Medical Devices, University of Galway, H91 W2TY Galway, Ireland
| |
Collapse
|
4
|
Wen N, Jiang Q, Liu D. Polymer semiconductor films and bacteria hybrid artificial bio-leaves. SCIENCE ADVANCES 2024; 10:eadp8567. [PMID: 39485849 PMCID: PMC11529708 DOI: 10.1126/sciadv.adp8567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024]
Abstract
Bio-artificial photosynthetic systems can reduce CO2 into multicarbon compounds by simulating natural photosynthesis. Here, inspired by organic photovoltaic structures, we demonstrate a bio-artificial photosynthetic system based on the hybridization of polymer semiconductor films and bacteria. The study suggests that the polymer-based semiconductor film can efficiently drive the non-photosynthetic bacteria to convert CO2 to acetate. By systematically characterizing the charge transport behavior of the bio-artificial photosynthetic system, the bulk-heterojunction structure and charge transport layers are proven to enhance the system performance markedly. The scalable floating artificial bio-leaf system can produce acetate to gram scale in a week. Notably, the semiconductor film is easy to recycle and maintains stable performance, showing good sustainable production capability of the system. A quasi-solid-state artificial bio-leaf is successfully prepared using agar to simulate the morphology and function of natural leaves. Last, the acetate production converted from CO2 was used to grow yeast for food production, thus achieving a complete simulation of natural photosynthesis.
Collapse
Affiliation(s)
- Na Wen
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, Research Center for Industries of the Future, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Qianqing Jiang
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, Research Center for Industries of the Future, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Dianyi Liu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, Research Center for Industries of the Future, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Zhejiang University, Hangzhou, Zhejiang 310027, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co. Ltd., Hangzhou 310000, Zhejiang, China
| |
Collapse
|
5
|
Sun P, Li C, Yang C, Sun M, Hou H, Guan Y, Chen J, Liu S, Chen K, Ma Y, Huang Y, Li X, Wang H, Wang L, Chen S, Cheng H, Xiong W, Sheng X, Zhang M, Peng J, Wang S, Wang Y, Yin L. A biodegradable and flexible neural interface for transdermal optoelectronic modulation and regeneration of peripheral nerves. Nat Commun 2024; 15:4721. [PMID: 38830884 PMCID: PMC11148186 DOI: 10.1038/s41467-024-49166-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 05/23/2024] [Indexed: 06/05/2024] Open
Abstract
Optoelectronic neural interfaces can leverage the photovoltaic effect to convert light into electrical current, inducing charge redistribution and enabling nerve stimulation. This method offers a non-genetic and remote approach for neuromodulation. Developing biodegradable and efficient optoelectronic neural interfaces is important for achieving transdermal stimulation while minimizing infection risks associated with device retrieval, thereby maximizing therapeutic outcomes. We propose a biodegradable, flexible, and miniaturized silicon-based neural interface capable of transdermal optoelectronic stimulation for neural modulation and nerve regeneration. Enhancing the device interface with thin-film molybdenum significantly improves the efficacy of neural stimulation. Our study demonstrates successful activation of the sciatic nerve in rodents and the facial nerve in rabbits. Moreover, transdermal optoelectronic stimulation accelerates the functional recovery of injured facial nerves.
Collapse
Affiliation(s)
- Pengcheng Sun
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Chaochao Li
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and Injuries PLA, No. 28 Fuxing Road, Beijing, 100853, P. R. China
| | - Can Yang
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Mengchun Sun
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and Injuries PLA, No. 28 Fuxing Road, Beijing, 100853, P. R. China
| | - Hanqing Hou
- School of Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Yanjun Guan
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and Injuries PLA, No. 28 Fuxing Road, Beijing, 100853, P. R. China
| | - Jinger Chen
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Shangbin Liu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Kuntao Chen
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Yuan Ma
- Department of Electronic Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Yunxiang Huang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Xiangling Li
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and Injuries PLA, No. 28 Fuxing Road, Beijing, 100853, P. R. China
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Huachun Wang
- School of Integrated Circuits, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Liu Wang
- School of Biological Science and Medical Engineering, Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, P. R. China
- School of Engineering Medicine, Beihang University, Beijing, 100083, P. R. China
| | - Shengfeng Chen
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and Injuries PLA, No. 28 Fuxing Road, Beijing, 100853, P. R. China
| | - Haofeng Cheng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and Injuries PLA, No. 28 Fuxing Road, Beijing, 100853, P. R. China
| | - Wei Xiong
- Chinese Institute for Brain Research, Beijing, 102206, P. R. China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
- Institute for Precision Medicine, Tsinghua University, Beijing, 100084, P. R. China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, P. R. China
| | - Milin Zhang
- Department of Electronic Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and Injuries PLA, No. 28 Fuxing Road, Beijing, 100853, P. R. China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226007, P. R. China
| | - Shirong Wang
- MegaRobo Technologies Co. ltd, Beijing, 100085, P. R. China.
| | - Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and Injuries PLA, No. 28 Fuxing Road, Beijing, 100853, P. R. China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226007, P. R. China.
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China.
| |
Collapse
|
6
|
Cui H, Zhao S, Hong G. Wireless deep-brain neuromodulation using photovoltaics in the second near-infrared spectrum. DEVICE 2023; 1:100113. [PMID: 37990694 PMCID: PMC10659575 DOI: 10.1016/j.device.2023.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Conventional electrical neuromodulation techniques are constrained by the need for invasive implants in neural tissues, whereas methods using optogenetic are subjected to genetic alterations and hampered by the poor tissue penetration of visible light. Photovoltaic neuromodulation using light from the second near-infrared (NIR-II) spectrum, which minimizes scattering and enhances tissue penetration, shows promise as an alternative to existing neuromodulation technologies. NIR-II light has been used in deep-tissue imaging and in deep-brain photothermal neuromodulation via nanotransducers. This Perspective will provide an overview for the underpinning mechanisms of photovoltaic neuromodulation and identify avenues for future research in materials science and bioengineering that can further advance NIR-II photovoltaic neuromodulation methods.
Collapse
Affiliation(s)
- Han Cui
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
| | - Su Zhao
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
| | - Guosong Hong
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
7
|
Lim J, Shin M, Ha T, Su WW, Yoon J, Choi JW. A Nano-Biohybrid-Based Bio-Solar Cell to Regulate the Electrical Signal Transmission to Living Cells for Biomedical Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303125. [PMID: 37435979 DOI: 10.1002/adma.202303125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/13/2023]
Abstract
Bio-solar cells are studied as sustainable and biocompatible energy sources with significant potential for biomedical applications. However, they are composed of light-harvesting biomolecules with narrow absorption wavelengths and weak transient photocurrent generation. In this study, a nano-biohybrid-based bio-solar cell composed of bacteriorhodopsin, chlorophyllin, and Ni/TiO2 nanoparticles is developed to overcome the current limitations and verify the possibility of biomedical applications. Bacteriorhodopsin and chlorophyllin are introduced as light-harvesting biomolecules to broaden the absorption wavelength. As a photocatalyst, Ni/TiO2 nanoparticles are introduced to generate a photocurrent and amplify the photocurrent generated by the biomolecules. The developed bio-solar cell absorbs a broad range of visible wavelengths and generates an amplified stationary photocurrent density (152.6 nA cm-2 ) with a long lifetime (up to 1 month). Besides, the electrophysiological signals of muscle cells at neuromuscular junctions are precisely regulated by motor neurons excited by the photocurrent of the bio-solar cell, indicating that the bio-solar cell can control living cells by signal transmission through other types of living cells. The proposed nano-biohybrid-based bio-solar cell can be used as a sustainable and biocompatible energy source for the development of wearable and implantable biodevices and bioelectronic medicines for humans.
Collapse
Affiliation(s)
- Joungpyo Lim
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Minkyu Shin
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Taehyung Ha
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Wei Wen Su
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Jinho Yoon
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Jeong-Woo Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea
| |
Collapse
|
8
|
Kaya L, Karatum O, Balamur R, Kaleli HN, Önal A, Vanalakar SA, Hasanreisoğlu M, Nizamoglu S. MnO 2 Nanoflower Integrated Optoelectronic Biointerfaces for Photostimulation of Neurons. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301854. [PMID: 37386797 PMCID: PMC10477844 DOI: 10.1002/advs.202301854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/09/2023] [Indexed: 07/01/2023]
Abstract
Optoelectronic biointerfaces have gained significant interest for wireless and electrical control of neurons. Three-dimentional (3D) pseudocapacitive nanomaterials with large surface areas and interconnected porous structures have great potential for optoelectronic biointerfaces that can fulfill the requirement of high electrode-electrolyte capacitance to effectively transduce light into stimulating ionic currents. In this study, the integration of 3D manganese dioxide (MnO2 ) nanoflowers into flexible optoelectronic biointerfaces for safe and efficient photostimulation of neurons is demonstrated. MnO2 nanoflowers are grown via chemical bath deposition on the return electrode, which has a MnO2 seed layer deposited via cyclic voltammetry. They facilitate a high interfacial capacitance (larger than 10 mF cm-2 ) and photogenerated charge density (over 20 µC cm-2 ) under low light intensity (1 mW mm-2 ). MnO2 nanoflowers induce safe capacitive currents with reversible Faradaic reactions and do not cause any toxicity on hippocampal neurons in vitro, making them a promising material for biointerfacing with electrogenic cells. Patch-clamp electrophysiology is recorded in the whole-cell configuration of hippocampal neurons, and the optoelectronic biointerfaces trigger repetitive and rapid firing of action potentials in response to light pulse trains. This study points out the potential of electrochemically-deposited 3D pseudocapacitive nanomaterials as a robust building block for optoelectronic control of neurons.
Collapse
Affiliation(s)
- Lokman Kaya
- Department of Electrical and Electronics EngineeringKoc University34450IstanbulTurkey
| | - Onuralp Karatum
- Department of Electrical and Electronics EngineeringKoc University34450IstanbulTurkey
| | - Rıdvan Balamur
- Department of Electrical and Electronics EngineeringKoc University34450IstanbulTurkey
| | - Hümeyra Nur Kaleli
- Research Center for Translational MedicineKoc University34450IstanbulTurkey
| | - Asım Önal
- Department of Biomedical Science and EngineeringKoc University34450IstanbulTurkey
| | | | - Murat Hasanreisoğlu
- Research Center for Translational MedicineKoc University34450IstanbulTurkey
- Department of OphthalmologySchool of MedicineKoc University34450IstanbulTurkey
| | - Sedat Nizamoglu
- Department of Electrical and Electronics EngineeringKoc University34450IstanbulTurkey
- Department of Biomedical Science and EngineeringKoc University34450IstanbulTurkey
| |
Collapse
|
9
|
Karatum O, Han M, Erdogan ET, Karamursel S, Nizamoglu S. Physical mechanisms of emerging neuromodulation modalities. J Neural Eng 2023; 20:031001. [PMID: 37224804 DOI: 10.1088/1741-2552/acd870] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/24/2023] [Indexed: 05/26/2023]
Abstract
One of the ultimate goals of neurostimulation field is to design materials, devices and systems that can simultaneously achieve safe, effective and tether-free operation. For that, understanding the working mechanisms and potential applicability of neurostimulation techniques is important to develop noninvasive, enhanced, and multi-modal control of neural activity. Here, we review direct and transduction-based neurostimulation techniques by discussing their interaction mechanisms with neurons via electrical, mechanical, and thermal means. We show how each technique targets modulation of specific ion channels (e.g. voltage-gated, mechanosensitive, heat-sensitive) by exploiting fundamental wave properties (e.g. interference) or engineering nanomaterial-based systems for efficient energy transduction. Overall, our review provides a detailed mechanistic understanding of neurostimulation techniques together with their applications toin vitro, in vivo, and translational studies to guide the researchers toward developing more advanced systems in terms of noninvasiveness, spatiotemporal resolution, and clinical applicability.
Collapse
Affiliation(s)
- Onuralp Karatum
- Department of Electrical and Electronics Engineering, Koc University, Istanbul 34450, Turkey
| | - Mertcan Han
- Department of Electrical and Electronics Engineering, Koc University, Istanbul 34450, Turkey
| | - Ezgi Tuna Erdogan
- Department of Physiology, Koc University School of Medicine, Istanbul 34450, Turkey
| | - Sacit Karamursel
- Department of Physiology, Koc University School of Medicine, Istanbul 34450, Turkey
| | - Sedat Nizamoglu
- Department of Electrical and Electronics Engineering, Koc University, Istanbul 34450, Turkey
- Department of Biomedical Science and Engineering, Koc University, Istanbul 34450, Turkey
| |
Collapse
|
10
|
Ahnood A, Chambers A, Gelmi A, Yong KT, Kavehei O. Semiconducting electrodes for neural interfacing: a review. Chem Soc Rev 2023; 52:1491-1518. [PMID: 36734845 DOI: 10.1039/d2cs00830k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the past 50 years, the advent of electronic technology to directly interface with neural tissue has transformed the fields of medicine and biology. Devices that restore or even replace impaired bodily functions, such as deep brain stimulators and cochlear implants, have ushered in a new treatment era for previously intractable conditions. Meanwhile, electrodes for recording and stimulating neural activity have allowed researchers to unravel the vast complexities of the human nervous system. Recent advances in semiconducting materials have allowed effective interfaces between electrodes and neuronal tissue through novel devices and structures. Often these are unattainable using conventional metallic electrodes. These have translated into advances in research and treatment. The development of semiconducting materials opens new avenues in neural interfacing. This review considers this emerging class of electrodes and how it can facilitate electrical, optical, and chemical sensing and modulation with high spatial and temporal precision. Semiconducting electrodes have advanced electrically based neural interfacing technologies owing to their unique electrochemical and photo-electrochemical attributes. Key operation modalities, namely sensing and stimulation in electrical, biochemical, and optical domains, are discussed, highlighting their contrast to metallic electrodes from the application and characterization perspective.
Collapse
Affiliation(s)
- Arman Ahnood
- School of Engineering, RMIT University, VIC 3000, Australia
| | - Andre Chambers
- School of Physics, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Amy Gelmi
- School of Science, RMIT University, VIC 3000, Australia
| | - Ken-Tye Yong
- School of Biomedical Engineering, University of Sydney, Sydney, NSW 2006, Australia.,The University of Sydney Nano Institute, Sydney, NSW 2006, Australia.
| | - Omid Kavehei
- School of Biomedical Engineering, University of Sydney, Sydney, NSW 2006, Australia.,The University of Sydney Nano Institute, Sydney, NSW 2006, Australia.
| |
Collapse
|
11
|
Ciocca M, Marcozzi S, Mariani P, Lacconi V, Di Carlo A, Cinà L, Rosato-Siri MD, Zanon A, Cattelan G, Avancini E, Lugli P, Priya S, Camaioni A, Brown TM. A Polymer Bio–Photoelectrolytic Platform for Electrical Signal Measurement and for Light Modulation of Ion Fluxes and Proliferation in a Neuroblastoma Cell Line. ADVANCED NANOBIOMED RESEARCH 2023. [DOI: 10.1002/anbr.202200127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Manuela Ciocca
- Department of Electronic Engineering University of Rome Tor Vergata Via del Politecnico 1 00133 Rome Italy
- Faculty of Science and Technology Free University of Bozen-Bolzano Piazza Università 1 39100 Bolzano Italy
| | - Serena Marcozzi
- Department of Biomedicine and Prevention University of Rome Tor Vergata Via Montpellier 1 00133 Rome Italy
| | - Paolo Mariani
- Department of Electronic Engineering University of Rome Tor Vergata Via del Politecnico 1 00133 Rome Italy
| | - Valentina Lacconi
- Department of Biomedicine and Prevention University of Rome Tor Vergata Via Montpellier 1 00133 Rome Italy
| | - Aldo Di Carlo
- Istituto di Struttura della Materia CNR-ISM via Fosso del Cavaliere 100 00133 Rome Italy
| | - Lucio Cinà
- Cicci Research srl., Via Giordania 227 58100 Grosseto Italy
| | - Marcelo D. Rosato-Siri
- Institute for Biomedicine, Eurac Research Affiliated Institute of the University of Lübeck 39100 Bolzano Italy
| | - Alessandra Zanon
- Institute for Biomedicine, Eurac Research Affiliated Institute of the University of Lübeck 39100 Bolzano Italy
| | - Giada Cattelan
- Institute for Biomedicine, Eurac Research Affiliated Institute of the University of Lübeck 39100 Bolzano Italy
| | - Enrico Avancini
- Faculty of Science and Technology Free University of Bozen-Bolzano Piazza Università 1 39100 Bolzano Italy
| | - Paolo Lugli
- Faculty of Science and Technology Free University of Bozen-Bolzano Piazza Università 1 39100 Bolzano Italy
| | - Shashank Priya
- Department of Materials Science and Engineering Pennsylvania State University University Park PA 16802 USA
| | - Antonella Camaioni
- Department of Biomedicine and Prevention University of Rome Tor Vergata Via Montpellier 1 00133 Rome Italy
| | - Thomas M. Brown
- Department of Electronic Engineering University of Rome Tor Vergata Via del Politecnico 1 00133 Rome Italy
| |
Collapse
|
12
|
Muzzio N, Eduardo Martinez-Cartagena M, Romero G. Soft nano and microstructures for the photomodulation of cellular signaling and behavior. Adv Drug Deliv Rev 2022; 190:114554. [PMID: 36181993 PMCID: PMC11610523 DOI: 10.1016/j.addr.2022.114554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/25/2022] [Accepted: 09/23/2022] [Indexed: 01/24/2023]
Abstract
Photoresponsive soft materials are everywhere in the nature, from human's retina tissues to plants, and have been the inspiration for engineers in the development of modern biomedical materials. Light as an external stimulus is particularly attractive because it is relatively cheap, noninvasive to superficial biological tissues, can be delivered contactless and offers high spatiotemporal control. In the biomedical field, soft materials that respond to long wavelength or that incorporate a photon upconversion mechanism are desired to overcome the limited UV-visible light penetration into biological tissues. Upon light exposure, photosensitive soft materials respond through mechanisms of isomerization, crosslinking or cleavage, hyperthermia, photoreactions, electrical current generation, among others. In this review, we discuss the most recent applications of photosensitive soft materials in the modulation of cellular behavior, for tissue engineering and regenerative medicine, in drug delivery and for phototherapies.
Collapse
Affiliation(s)
- Nicolas Muzzio
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | | | - Gabriela Romero
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| |
Collapse
|
13
|
Huang Y, Cui Y, Deng H, Wang J, Hong R, Hu S, Hou H, Dong Y, Wang H, Chen J, Li L, Xie Y, Sun P, Fu X, Yin L, Xiong W, Shi SH, Luo M, Wang S, Li X, Sheng X. Bioresorbable thin-film silicon diodes for the optoelectronic excitation and inhibition of neural activities. Nat Biomed Eng 2022; 7:486-498. [PMID: 36065014 DOI: 10.1038/s41551-022-00931-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 07/25/2022] [Indexed: 11/09/2022]
Abstract
Neural activities can be modulated by leveraging light-responsive nanomaterials as interfaces for exerting photothermal, photoelectrochemical or photocapacitive effects on neurons or neural tissues. Here we show that bioresorbable thin-film monocrystalline silicon pn diodes can be used to optoelectronically excite or inhibit neural activities by establishing polarity-dependent positive or negative photovoltages at the semiconductor/solution interface. Under laser illumination, the silicon-diode optoelectronic interfaces allowed for the deterministic depolarization or hyperpolarization of cultured neurons as well as the upregulated or downregulated intracellular calcium dynamics. The optoelectronic interfaces can also be mounted on nerve tissue to activate or silence neural activities in peripheral and central nervous tissues, as we show in mice with exposed sciatic nerves and somatosensory cortices. Bioresorbable silicon-based optoelectronic thin films that selectively excite or inhibit neural tissue may find advantageous biomedical applicability.
Collapse
Affiliation(s)
- Yunxiang Huang
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, Tsinghua University, Beijing, China.,School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, China.,IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Yuting Cui
- Chinese Institute for Brain Research, Beijing, China.,National Institute of Biological Sciences, Beijing, China
| | - Hanjie Deng
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Jingjing Wang
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Rongqi Hong
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Shuhan Hu
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Hanqing Hou
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuanrui Dong
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, China
| | - Huachun Wang
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, Tsinghua University, Beijing, China
| | - Junyu Chen
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, Tsinghua University, Beijing, China
| | - Lizhu Li
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, Tsinghua University, Beijing, China
| | - Yang Xie
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, Tsinghua University, Beijing, China
| | - Pengcheng Sun
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, China
| | - Xin Fu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, China
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Center for Flexible Electronics Technology, Tsinghua University, Beijing, China
| | - Wei Xiong
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Song-Hai Shi
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Minmin Luo
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.,Chinese Institute for Brain Research, Beijing, China.,National Institute of Biological Sciences, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Shirong Wang
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, China.
| | - Xiaojian Li
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, Tsinghua University, Beijing, China. .,IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
| |
Collapse
|
14
|
Han M, Karatum O, Nizamoglu S. Optoelectronic Neural Interfaces Based on Quantum Dots. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20468-20490. [PMID: 35482955 PMCID: PMC9100496 DOI: 10.1021/acsami.1c25009] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/15/2022] [Indexed: 05/26/2023]
Abstract
Optoelectronic modulation of neural activity is an emerging field for the investigation of neural circuits and the development of neural therapeutics. Among a wide variety of nanomaterials, colloidal quantum dots provide unique optoelectronic features for neural interfaces such as sensitive tuning of electron and hole energy levels via the quantum confinement effect, controlling the carrier localization via band alignment, and engineering the surface by shell growth and ligand engineering. Even though colloidal quantum dots have been frontier nanomaterials for solar energy harvesting and lighting, their application to optoelectronic neural interfaces has remained below their significant potential. However, this potential has recently gained attention with the rise of bioelectronic medicine. In this review, we unravel the fundamentals of quantum-dot-based optoelectronic biointerfaces and discuss their neuromodulation mechanisms starting from the quantum dot level up to electrode-electrolyte interactions and stimulation of neurons with their physiological pathways. We conclude the review by proposing new strategies and possible perspectives toward nanodevices for the optoelectronic stimulation of neural tissue by utilizing the exceptional nanoscale properties of colloidal quantum dots.
Collapse
Affiliation(s)
- Mertcan Han
- Department
of Electrical and Electronics Engineering, Koç University, Istanbul 34450, Turkey
| | - Onuralp Karatum
- Department
of Electrical and Electronics Engineering, Koç University, Istanbul 34450, Turkey
| | - Sedat Nizamoglu
- Department
of Electrical and Electronics Engineering, Koç University, Istanbul 34450, Turkey
- Graduate
School of Biomedical Science and Engineering, Koç University, Istanbul 34450, Turkey
| |
Collapse
|
15
|
Han M, Yildiz E, Kaleli HN, Karaz S, Eren GO, Dogru‐Yuksel IB, Senses E, Şahin A, Nizamoglu S. Tissue-Like Optoelectronic Neural Interface Enabled by PEDOT:PSS Hydrogel for Cardiac and Neural Stimulation. Adv Healthc Mater 2022; 11:e2102160. [PMID: 34969168 DOI: 10.1002/adhm.202102160] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/29/2021] [Indexed: 01/01/2023]
Abstract
Optoelectronic biointerfaces have made a significant impact on modern science and technology from understanding the mechanisms of the neurotransmission to the recovery of the vision for blinds. They are based on the cell interfaces made of organic or inorganic materials such as silicon, graphene, oxides, quantum dots, and π-conjugated polymers, which are dry and stiff unlike a cell/tissue environment. On the other side, wet and soft hydrogels have recently been started to attract significant attention for bioelectronics because of its high-level tissue-matching biomechanics and biocompatibility. However, it is challenging to obtain optimal opto-bioelectronic devices by using hydrogels requiring device, heterojunction, and hydrogel engineering. Here, an optoelectronic biointerface integrated with a poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate), PEDOT:PSS, hydrogel that simultaneously achieves efficient, flexible, stable, biocompatible, and safe photostimulation of cells is demonstrated. Besides their interfacial tissue-like biomechanics, ≈34 kPa, and high-level biocompatibility, hydrogel-integration facilitates increase in charge injection amounts sevenfolds with an improved responsivity of 156 mA W-1 , stability under mechanical bending , and functional lifetime over three years. Finally, these devices enable stimulation of individual hippocampal neurons and photocontrol of beating frequency of cardiac myocytes via safe charge-balanced capacitive currents. Therefore, hydrogel-enabled optoelectronic biointerfaces hold great promise for next-generation wireless neural and cardiac implants.
Collapse
Affiliation(s)
- Mertcan Han
- Department of Electrical and Electronics Engineering Koç University Istanbul 34450 Turkey
| | - Erdost Yildiz
- Koç University Research Center for Translational Medicine Koç University Istanbul 34450 Turkey
| | - Hümeyra Nur Kaleli
- Koç University Research Center for Translational Medicine Koç University Istanbul 34450 Turkey
| | - Selcan Karaz
- Department of Chemical and Biological Engineering Koç University Istanbul 34450 Turkey
| | - Guncem Ozgun Eren
- Graduate School of Biomedical Science and Engineering Koç University Istanbul 34450 Turkey
| | | | - Erkan Senses
- Department of Chemical and Biological Engineering Koç University Istanbul 34450 Turkey
| | - Afsun Şahin
- Koç University Research Center for Translational Medicine Koç University Istanbul 34450 Turkey
- Department of Ophthalmology Medical School Koç University Istanbul 34450 Turkey
| | - Sedat Nizamoglu
- Department of Electrical and Electronics Engineering Koç University Istanbul 34450 Turkey
- Graduate School of Biomedical Science and Engineering Koç University Istanbul 34450 Turkey
| |
Collapse
|
16
|
Manousiouthakis E, Park J, Hardy JG, Lee JY, Schmidt CE. Towards the translation of electroconductive organic materials for regeneration of neural tissues. Acta Biomater 2022; 139:22-42. [PMID: 34339871 DOI: 10.1016/j.actbio.2021.07.065] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
Carbon-based conductive and electroactive materials (e.g., derivatives of graphene, fullerenes, polypyrrole, polythiophene, polyaniline) have been studied since the 1970s for use in a broad range of applications. These materials have electrical properties comparable to those of commonly used metals, while providing other benefits such as flexibility in processing and modification with biologics (e.g., cells, biomolecules), to yield electroactive materials with biomimetic mechanical and chemical properties. In this review, we focus on the uses of these electroconductive materials in the context of the central and peripheral nervous system, specifically recent studies in the peripheral nerve, spinal cord, brain, eye, and ear. We also highlight in vivo studies and clinical trials, as well as a snapshot of emerging classes of electroconductive materials (e.g., biodegradable materials). We believe such specialized electrically conductive biomaterials will clinically impact the field of tissue regeneration in the foreseeable future. STATEMENT OF SIGNIFICANCE: This review addresses the use of conductive and electroactive materials for neural tissue regeneration, which is of significant interest to a broad readership, and of particular relevance to the growing community of scientists, engineers and clinicians in academia and industry who develop novel medical devices for tissue engineering and regenerative medicine. The review covers the materials that may be employed (primarily focusing on derivatives of fullerenes, graphene and conjugated polymers) and techniques used to analyze materials composed thereof, followed by sections on the application of these materials to nervous tissues (i.e., peripheral nerve, spinal cord, brain, optical, and auditory tissues) throughout the body.
Collapse
Affiliation(s)
- Eleana Manousiouthakis
- Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville 32611, FL, United States
| | - Junggeon Park
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - John G Hardy
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom; Materials Science Institute, Lancaster University, Lancaster LA1 4YB, United Kingdom.
| | - Jae Young Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| | - Christine E Schmidt
- Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville 32611, FL, United States.
| |
Collapse
|
17
|
Missey F, Botzanowski B, Migliaccio L, Acerbo E, Głowacki ED, Williamson A. Organic electrolytic photocapacitors for stimulation of the mouse somatosensory cortex. J Neural Eng 2021; 18. [PMID: 34749345 DOI: 10.1088/1741-2552/ac37a6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/08/2021] [Indexed: 12/20/2022]
Abstract
Objective.For decades electrical stimulation has been used in neuroscience to investigate brain networks and been deployed clinically as a mode of therapy. Classically, all methods of electrical stimulation require implanted electrodes to be connected in some manner to an apparatus which provides power for the stimulation itself.Approach. We show the use of novel organic electronic devices, specifically organic electrolytic photocapacitors (OEPCs), which can be activated when illuminated with deep-red wavelengths of light and correspondingly do not require connections with external wires or power supplies when implanted at various depthsin vivo. Main results. We stimulated cortical brain tissue of mice with devices implanted subcutaneously, as well as beneath both the skin and skull to demonstrate a wireless stimulation of the whisker motor cortex. Devices induced both a behavior response (whisker movement) and a sensory response in the corresponding sensory cortex. Additionally, we showed that coating OEPCs with a thin layer of a conducting polymer formulation (PEDOT:PSS) significantly increases their charge storage capacity, and can be used to further optimize the applied photoelectrical stimulation.Significance. Overall, this new technology can provide an on-demand electrical stimulation by simply using an OEPC and a deep-red wavelength illumination. Wires and interconnects to provide power to implanted neurostimulation electrodes are often problematic in freely-moving animal research and with implanted electrodes for long-term therapy in patients. Our wireless brain stimulation opens new perspectives for wireless electrical stimulation for applications in fundamental neurostimulation and in chronic therapy.
Collapse
Affiliation(s)
- Florian Missey
- Institut de Neurosciences des Systèmes (INS), INSERM, UMR_1106, Aix-Marseille Université, Marseille, France
| | - Boris Botzanowski
- Institut de Neurosciences des Systèmes (INS), INSERM, UMR_1106, Aix-Marseille Université, Marseille, France
| | - Ludovico Migliaccio
- Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Emma Acerbo
- Institut de Neurosciences des Systèmes (INS), INSERM, UMR_1106, Aix-Marseille Université, Marseille, France
| | - Eric Daniel Głowacki
- Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic.,Laboratory of Organic Electronics, Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden
| | - Adam Williamson
- Institut de Neurosciences des Systèmes (INS), INSERM, UMR_1106, Aix-Marseille Université, Marseille, France.,Laboratory of Organic Electronics, Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden.,Center for Bioelectronic Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
18
|
Taylor G, Paladines R, Marti A, Jacobs D, Tint S, Fones A, Hamilton H, Yu L, Amini S, Hettinger J. Electrochemical enhancement of reactively sputtered rhodium, ruthenium, and iridium oxide thin films for neural modulation, sensing, and recording applications. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
19
|
Hou K, Yang C, Shi J, Kuang B, Tian B. Nano- and Microscale Optical and Electrical Biointerfaces and Their Relevance to Energy Research. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100165. [PMID: 34142435 DOI: 10.1002/smll.202100165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/13/2021] [Indexed: 06/12/2023]
Abstract
Different research fields in energy sciences, such as photovoltaics for solar energy conversion, supercapacitors for energy storage, electrocatalysis for clean energy conversion technologies, and materials-bacterial hybrid for CO2 fixation have been under intense investigations over the past decade. In recent years, new platforms for biointerface designs have emerged from the energy conversion and storage principles. This paper reviews recent advances in nano- and microscale materials/devices for optical and electrical biointerfaces. First, a connection is drawn between biointerfaces and energy science, and how these two distinct research fields can be connected is summarized. Then, a brief overview of current available tools for biointerface studies is presented. Third, three representative biointerfaces are reviewed, including neural, cardiac, and bacterial biointerfaces, to show how to apply these tools and principles to biointerface design and research. Finally, two possible future research directions for nano- and microscale biointerfaces are proposed.
Collapse
Affiliation(s)
- Kun Hou
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Chuanwang Yang
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Jiuyun Shi
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Boya Kuang
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Bozhi Tian
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
20
|
Karatum O, Aria MM, Eren GO, Yildiz E, Melikov R, Srivastava SB, Surme S, Dogru IB, Bahmani Jalali H, Ulgut B, Sahin A, Kavakli IH, Nizamoglu S. Nanoengineering InP Quantum Dot-Based Photoactive Biointerfaces for Optical Control of Neurons. Front Neurosci 2021; 15:652608. [PMID: 34248476 PMCID: PMC8260855 DOI: 10.3389/fnins.2021.652608] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/21/2021] [Indexed: 11/15/2022] Open
Abstract
Light-activated biointerfaces provide a non-genetic route for effective control of neural activity. InP quantum dots (QDs) have a high potential for such biomedical applications due to their uniquely tunable electronic properties, photostability, toxic-heavy-metal-free content, heterostructuring, and solution-processing ability. However, the effect of QD nanostructure and biointerface architecture on the photoelectrical cellular interfacing remained unexplored. Here, we unravel the control of the photoelectrical response of InP QD-based biointerfaces via nanoengineering from QD to device-level. At QD level, thin ZnS shell growth (∼0.65 nm) enhances the current level of biointerfaces over an order of magnitude with respect to only InP core QDs. At device-level, band alignment engineering allows for the bidirectional photoelectrochemical current generation, which enables light-induced temporally precise and rapidly reversible action potential generation and hyperpolarization on primary hippocampal neurons. Our findings show that nanoengineering QD-based biointerfaces hold great promise for next-generation neurostimulation devices.
Collapse
Affiliation(s)
- Onuralp Karatum
- Department of Electrical and Electronics Engineering, Koc University, Istanbul, Turkey
| | | | - Guncem Ozgun Eren
- Department of Biomedical Science and Engineering, Koc University, Istanbul, Turkey
| | - Erdost Yildiz
- Research Center for Translational Medicine, Koc University, Istanbul, Turkey
| | - Rustamzhon Melikov
- Department of Electrical and Electronics Engineering, Koc University, Istanbul, Turkey
| | | | - Saliha Surme
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Itir Bakis Dogru
- Department of Biomedical Science and Engineering, Koc University, Istanbul, Turkey
| | | | - Burak Ulgut
- Department of Chemistry, Bilkent University, Ankara, Turkey
| | - Afsun Sahin
- Research Center for Translational Medicine, Koc University, Istanbul, Turkey
- Department of Ophthalmology, Medical School, Koc University, Istanbul, Turkey
| | | | - Sedat Nizamoglu
- Department of Electrical and Electronics Engineering, Koc University, Istanbul, Turkey
- Department of Biomedical Science and Engineering, Koc University, Istanbul, Turkey
| |
Collapse
|
21
|
Karatum O, Eren GO, Melikov R, Onal A, Ow-Yang CW, Sahin M, Nizamoglu S. Quantum dot and electron acceptor nano-heterojunction for photo-induced capacitive charge-transfer. Sci Rep 2021; 11:2460. [PMID: 33510322 PMCID: PMC7843732 DOI: 10.1038/s41598-021-82081-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/12/2021] [Indexed: 02/07/2023] Open
Abstract
Capacitive charge transfer at the electrode/electrolyte interface is a biocompatible mechanism for the stimulation of neurons. Although quantum dots showed their potential for photostimulation device architectures, dominant photoelectrochemical charge transfer combined with heavy-metal content in such architectures hinders their safe use. In this study, we demonstrate heavy-metal-free quantum dot-based nano-heterojunction devices that generate capacitive photoresponse. For that, we formed a novel form of nano-heterojunctions using type-II InP/ZnO/ZnS core/shell/shell quantum dot as the donor and a fullerene derivative of PCBM as the electron acceptor. The reduced electron–hole wavefunction overlap of 0.52 due to type-II band alignment of the quantum dot and the passivation of the trap states indicated by the high photoluminescence quantum yield of 70% led to the domination of photoinduced capacitive charge transfer at an optimum donor–acceptor ratio. This study paves the way toward safe and efficient nanoengineered quantum dot-based next-generation photostimulation devices.
Collapse
Affiliation(s)
- Onuralp Karatum
- Department of Electrical and Electronics Engineering, Koc University, Istanbul, Turkey
| | - Guncem Ozgun Eren
- Department of Biomedical Sciences and Engineering, Koc University, Istanbul, Turkey
| | - Rustamzhon Melikov
- Department of Electrical and Electronics Engineering, Koc University, Istanbul, Turkey
| | - Asim Onal
- Graduate School of Materials Science and Engineering, Koc University, Istanbul, Turkey
| | - Cleva W Ow-Yang
- Materials Science and Nano-Engineering Program, Sabanci University, Istanbul, Turkey.,Nanotechnology Research and Application Center, Sabanci University, Istanbul, Turkey
| | - Mehmet Sahin
- Department of Nanotechnology Engineering, Abdullah Gul University, Kayseri, Turkey
| | - Sedat Nizamoglu
- Department of Electrical and Electronics Engineering, Koc University, Istanbul, Turkey. .,Department of Biomedical Sciences and Engineering, Koc University, Istanbul, Turkey. .,Graduate School of Materials Science and Engineering, Koc University, Istanbul, Turkey.
| |
Collapse
|