1
|
Behera R, Nag A. Semiconductor-Bimetallic Plasmonic Heterojunction ZnO-Ag-Cu as Reusable SERS Substrate with Attomolar Detection Limit. Chem Asian J 2025; 20:e202401580. [PMID: 39908163 PMCID: PMC12067856 DOI: 10.1002/asia.202401580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 02/07/2025]
Abstract
Semiconductor-bimetallic ZnO-Ag-Cu (ZAC) heterojunction of different compositions were fabricated as highly sensitive SERS substrates. ZnO nanorods were synthesized using a facile hydrothermal route. ZAC composites were synthesized via impregnation method by keeping ZnO content same and varying the mole fractions of Ag and Cu. The ZnO matrix, known for its stability and photocatalytic properties, was decorated with Ag and Cu nanoparticles to enhance plasmonic activity and boost SERS. Introducing semiconductor oxide as SERS substrate reduces the substrate cost due to its self-cleaning property upon exposure to UV light. When SERS activity of ZAC composites were compared with either ZnO-Ag (ZA) or ZnO-Cu (ZC) composites, the best SERS performance was recorded with ZAC55, where the Ag and Cu content are same. ZAC55 produced a SERS enhancement factor of 6.2×10⁶ and a limit of detection of 10-18 M and 10-15 M for the analyte molecules Rhodamine 6 G (R6G) and Methylene Blue (MB), respectively, using 532 nm laser excitation. The enhanced SERS performance is attributed to the synergistic effects of ZnO, Ag, and Cu, unveiling ZAC55 as a promising next-generation SERS substrate. Along with remarkable sensitivity, ZAC55 showed promising reusability and reproducibility, indicating its potential for practical applications in chemical sensing.
Collapse
Affiliation(s)
- Rojalin Behera
- Department of ChemistryBirla Institute of Technology and Science (BITS) PilaniHyderabad CampusJawahar Nagar, Kapra Mandal, Hyderabad500078India
| | - Amit Nag
- Department of ChemistryBirla Institute of Technology and Science (BITS) PilaniHyderabad CampusJawahar Nagar, Kapra Mandal, Hyderabad500078India
| |
Collapse
|
2
|
Sánchez-Carrillo K, Panikar SS, Mota-Morales JD. Protocol for preparing cellulose-based aerogels in a deep eutectic solvent as surface-enhanced Raman scattering substrates. STAR Protoc 2025; 6:103795. [PMID: 40286273 PMCID: PMC12056392 DOI: 10.1016/j.xpro.2025.103795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/06/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025] Open
Abstract
There is an increasing need to detect and identify analytes of diverse origins in low molar concentrations and from complex matrices. Here, we introduce a protocol for preparing surface-enhanced Raman scattering (SERS) substrates that enable the detection of aqueous analytes in ultralow concentrations. We describe the procedure for synthesizing plasmonic aerogels using L-ascorbic acid as a reductor and eutectic solvents as reaction media. We then detail procedures for measurements using these substrates. For complete details on the use and execution of this protocol, please refer to Panikar et al.1.
Collapse
Affiliation(s)
- Kaori Sánchez-Carrillo
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico.
| | - Sandeep Surendra Panikar
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Josué D Mota-Morales
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico.
| |
Collapse
|
3
|
Qiu T, Liu C, Ding Y, Wang L, Liu Y, Sun Y, Mao Z, Chen P, Sun H, Chen F, Cao Y. SERS-based simplified analysis of paraquat in poisoning cases: Bypassing complicated pretreatment with antioxidant sensor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 329:125593. [PMID: 39756248 DOI: 10.1016/j.saa.2024.125593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/01/2024] [Accepted: 12/10/2024] [Indexed: 01/07/2025]
Abstract
Applying antioxidant coating materials to prepare surface-enhanced Raman spectroscopy (SERS) sensing substrates can effectively enhance the sensitivity and stability for the analysis of molecules. In this study, we have leveraged SERS to develop an innovative sensor for the swift identification of Paraquat (PQ), enabling on-site detection of this herbicide. The newly devised sensor distinguishes itself through its exceptional oxidation resistance. This resistance is attributed to the physical properties of the nanoparticles, specifically the silver shell coating and loading on the molybdenum disulfide (MoS2). By the creation of "hot spots" of the composite nanoparticles (Ag@AuBPs on flower-like MoS2), the kit achieves a remarkably low detection limit as low as 1.0 × 10-10 M for Paraquat in lake water, soil, and clothing samples, allowing for rapid and direct identification of PQ in complex environments.
Collapse
Affiliation(s)
- Tianyu Qiu
- Department of Forensic Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Cheng Liu
- Department of Forensic Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Yan Ding
- Department of Forensic Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Lixiang Wang
- Department of Forensic Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Yuhui Liu
- National Key Laboratory of Uranium Resources Exploration-Mining and Nuclear Remote Sensing, East China University of Technology, Nanchang, 330013, China
| | - Yang Sun
- Department of Forensic Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Zhengsheng Mao
- Department of Forensic Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Peng Chen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Hao Sun
- Department of Emergency Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China; Institute of Poisoning, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, China.
| | - Feng Chen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing 211166, China.
| | - Yue Cao
- Department of Forensic Medicine, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
4
|
Fan R, Chen S, Lan F, Li W, Zhu Y, Zhang L, Zhang Y, Li L. Surface-Enhanced Raman Scattering (SERS)-based biosensors for advanced extracellular vesicle detection: A review. Anal Chim Acta 2025; 1336:343264. [PMID: 39788643 DOI: 10.1016/j.aca.2024.343264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Extracellular Vesicles (EVs), as nano-scale vesicles rich in biological information, hold an indispensable status in the biomedical field. However, due to the intrinsic small size and low abundance of EVs, their effective detection presents significant challenges. Although various EV detection techniques exist, their sensitivity and ease of operation still need enhancement. RESULTS Surface-Enhanced Raman Scattering (SERS) is known for its high sensitivity and specificity. It stands out in tackling the challenges that traditional EV detection methods face. In this review, we focus on the application of SERS-based biosensors in EV detection. It provides a detailed introduction to the recognition and capture of EVs, strategies for mediating signal amplification, and detection of EV biomarkers. Finally, the challenges and prospects of SERS-based biosensors are discussed. SIGNIFICANCE SERS-based biosensor enhances the Raman signal, allowing for the detection of biomarkers at low concentrations. This capability reveals its substantial potential in identifying EVs and analyzing molecular data. It paves the path for advanced EV detection.
Collapse
Affiliation(s)
- Rui Fan
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China; Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China
| | - Siting Chen
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China; School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Fei Lan
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China
| | - Wenbin Li
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China
| | - Yitong Zhu
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China; School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Lifeng Zhang
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China; Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China
| | - Ye Zhang
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China.
| | - Ling Li
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China; School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
5
|
Wang Q, Zhang M, Chen S, Yu Q, Wang R, Guo J, Kong X. Anti-counterfeiting labels with controllable and anti-interference coding information based on core-shell Ag@SiO 2 nanomaterials for ink printing. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125113. [PMID: 39270368 DOI: 10.1016/j.saa.2024.125113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/16/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024]
Abstract
The core-shell structured Ag@SiO2 nanomaterial integrated with surface-enhanced Raman scattering (SERS) spectroscopy promises a critical application in anti-counterfeiting. Security labels have been fabricated based on Ag@SiO2 embedded with Raman reporters. The Ag@SiO2 nanomaterial shows good stability and excellent anti-interference property for anti-counterfeiting. Multiple kinds of Raman probe molecules have been anchored in the Ag@SiO2 labels to provide specific and abundant encoding information. The flexible encoding security information could be controlled conveniently by adjusting probe molecules, which not only enrich the SERS information but also improve the level of anti-counterfeiting. Furthermore, the Ag@SiO2 shown excellent stability in organic solvent, and successfully used in ink for the anti-counterfeiting application.
Collapse
Affiliation(s)
- Qiang Wang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Meizhen Zhang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Siru Chen
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China; International Education College, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Qian Yu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China
| | - Rui Wang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China.
| | - Jiaqi Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xianming Kong
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China; International Education College, Liaoning Petrochemical University, Fushun, Liaoning 113001, PR China.
| |
Collapse
|
6
|
Han S, Park J, Moon S, Eom S, Jin CM, Kim S, Ryu YS, Choi Y, Lee JB, Choi I. Label-free and liquid state SERS detection of multi-scaled bioanalytes via light-induced pinpoint colloidal assembly. Biosens Bioelectron 2024; 264:116663. [PMID: 39167886 DOI: 10.1016/j.bios.2024.116663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/17/2024] [Accepted: 08/10/2024] [Indexed: 08/23/2024]
Abstract
Surface-enhanced Raman scattering (SERS) has been extensively applied to detect complex analytes due to its ability to enhance the fingerprint signals of molecules around nanostructured metallic surfaces. Thus, it is essential to design SERS-active nanostructures with abundant electromagnetic hotspots in a probed volume according to the dimensions of the analytes, as the analytes must be located in their hotspots for maximum signal enhancement. Herein, we demonstrate a simple method for detecting robust SERS signals from multi-scaled bioanalytes, regardless of their dimensions in the liquid state, through a photothermally driven co-assembly with colloidal plasmonic nanoparticles as signal enhancers. Under resonant light illumination, plasmonic nanoparticles and analytes in the solution quickly assemble at the focused surface area by convective movements induced by the photothermal heating of the plasmonic nanoparticles without any surface modification. Such collective assemblies of plasmonic nanoparticles and analytes were optimized by varying the optical density and surface charge of the nanoparticles, the viscosity of the solvent, and the light illumination time to maximize the SERS signals. Using these light-induced co-assemblies, the intrinsic SERS signals of small biomolecules can be detected down to nanomolar concentrations based on their fingerprint spectra. Furthermore, large-sized biomarkers, such as viruses and exosomes, were successfully detected without labels, and the complexity of the collected spectra was statistically analyzed using t-distributed stochastic neighbor embedding combined with support vector machine (t-SNE + SVM). The proposed method is expected to provide a robust and convenient method to sensitively detect biologically and environmentally relevant analytes at multiple scales in liquid samples.
Collapse
Affiliation(s)
- Seungyeon Han
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Junhee Park
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Sunghyun Moon
- Department of Chemical Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Seonghyeon Eom
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Chang Min Jin
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Seungmin Kim
- School of Biomedical Engineering, Korea University, Seoul, 02481, Republic of Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02481, Republic of Korea
| | - Yong-Sang Ryu
- School of Biomedical Engineering, Korea University, Seoul, 02481, Republic of Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02481, Republic of Korea
| | - Yeonho Choi
- School of Biomedical Engineering, Korea University, Seoul, 02481, Republic of Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02481, Republic of Korea; Exopert Corporation, Seoul, 02580, Republic of Korea
| | - Jong Bum Lee
- Department of Chemical Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Inhee Choi
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea; Department of Applied Chemistry, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
7
|
Liu X, Pant U, Logan N, He Q, Greer B, Elliott CT, Cao C. Non-linear responses via agglomeration and aggregation of gold nanoparticles for surface-enhanced Raman spectroscopy (SERS) coupled with chemometric analysis for chlorpyrifos detection. Food Chem 2024; 455:139944. [PMID: 38850989 DOI: 10.1016/j.foodchem.2024.139944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
This study investigates the behaviour of gold nanoparticles (AuNPs) when exposed to chlorpyrifos, an agricultural pesticide, and its application in detecting the pesticide via surface-enhanced Raman spectroscopy (SERS). Under synergistic addition of NaCl, AuNPs undergo agglomeration at lower chlorpyrifos concentrations but aggregation at higher concentrations, resulting in a distinctive nonlinear SERS response. A linear relationship is obtained between 0.001 and 1 ppm with detection limit (LOD) of 0.009 ppm, while an inverse response is observed at higher concentrations (1-1000 ppm) with a LOD of 1 ppm. Combining the colorimetric response of AuNP solutions, their absorbance spectra, and principal component analysis can improve detection reliability. The assay, coupled with a simple recovery method using acetonitrile swabbing, achieves high reproducibility in detecting chlorpyrifos in cucumber, even at concentrations as low as 0.11 ppm. This approach can be tailored for various chlorpyrifos concentrations not only in cucumbers but also in different food matrices.
Collapse
Affiliation(s)
- Xiaotong Liu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, United Kingdom
| | - Udit Pant
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, United Kingdom
| | - Natasha Logan
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, United Kingdom
| | - Qiqi He
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, United Kingdom
| | - Brett Greer
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, United Kingdom
| | - Christopher T Elliott
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, United Kingdom; School of Food Science and Technology, Faculty of Science and Technology, Thammasat University (Rangsit Campus), Khlong Luang, Pathum Thani 12120, Thailand
| | - Cuong Cao
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, United Kingdom; Material and Advanced Technologies for Healthcare, Queen's University of Belfast, - 18-30 Malone Road Belfast, BT9 5DL, United Kingdom.
| |
Collapse
|
8
|
Wang B, Han Y, Zhang L, Chen Z, Zhang W, Ren M, Shi J, Xu X, Yang Y. Surface-enhanced Raman scattering based on noble metal nanoassemblies for detecting harmful substances in food. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 39388195 DOI: 10.1080/10408398.2024.2413656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Residues of harmful substances in food can severely damage human health. The content of these substances in food is generally low, making detection difficult. Surface-enhanced Raman scattering (SERS), based on noble metal nanomaterials, mainly gold (Au) and silver (Ag), has exhibited excellent capabilities for trace detection of various substances. Noble metal nanoassemblies, in particular, have extraordinary flexibility and tunable optical properties, which cannot be offered by single nanoparticles (NPs). These nanoassemblies, with their various morphologies synthesized using NPs through artificially induced self-assembly or template-driven preparation, can significantly enhance the local electric field and create "hot spots" due to the gaps between adjacent NPs. Consequently, the SERS properties of NPs become more prominent, leading to improved performance in the trace detection of various substances and detection limits that are considerably lower than the current relevant standards. Noble metal nanoassemblies show promising potential in ensuring food safety. This review discusses the synthesis methods and SERS properties of noble metal nanoassemblies and then concentrates on their application in detecting biotoxins, drug residues, illegal additives, and heavy metals. The study provides valuable references for further research into the application of nanoassemblies in food safety detection.
Collapse
Affiliation(s)
- Baojun Wang
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Yue Han
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Lu Zhang
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Zikuo Chen
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Wenqi Zhang
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Mengyu Ren
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xiaoguang Xu
- College of Traditional Chinese Medicine, Hebei University, Baoding, China
| | - Ying Yang
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| |
Collapse
|
9
|
Shi Y, Zhu Y, Sun J, Yin H, Yin J. SERS detection of thiram using a 3D sea cucumber-like composite flexible porous substrate. Analyst 2024; 149:5041-5051. [PMID: 39193646 DOI: 10.1039/d4an00610k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Nowadays, trace detection of thiram is in urgent demand due to its widespread application in agriculture and significant harmful effects on public health. In this work, a three-dimensional (3D) sea cucumber-like flexible porous surface-enhanced Raman scattering (SERS) substrate composed of a poly(vinylidene fluoride) (PVDF) membrane, ZnO nanorods, gold films, and Ag nanoparticles (Ag/Au/ZnO/P) has been established for the highly sensitive detection of thiram. The substrate takes advantage of the 3D morphology of the Ag/Au/ZnO system on a flexible porous PVDF membrane to produce abundant plasmonic hot spots. Meanwhile, the employment of an AgNPs/Au shell system combined the benefits of both gold and silver metals, thus guaranteeing stable and sensitive detection. With 4-mercaptobenzoic acid (4-MBA) as a probe molecule, the Ag/Au/ZnO/P substrate exhibited excellent linear detection in the range of 10-11-10-5 M, with a correlation coefficient (R2) of 0.99 and an enhancement cofactor of 7.09 × 107. The substrate exhibited excellent uniformity with a related standard deviation (RSD) value of 3.82% and demonstrated high stability during a 15 d-storage test. In addition, the substrate could detect thiram in an aqueous solution at concentrations as low as 10-10 M with excellent selectivity. Meanwhile, thiram on the surface of apple peel could be easily detected by the Ag/Au/ZnO/P substrate with the "paste-and-peel" method in less than 10 s, and the detection limit could be as low as 0.48 ng cm-2. Overall, the remarkable performance of the Ag/Au/ZnO/P SERS substrate demonstrated its great potential for the environmental monitoring of thiram.
Collapse
Affiliation(s)
- Yimeng Shi
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, Jiangsu 215163, PR China.
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China
| | - Yan Zhu
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu 210098, PR China
| | - Jiaojiao Sun
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China
| | - Huancai Yin
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, Jiangsu 215163, PR China.
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China
| | - Jian Yin
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, Jiangsu 215163, PR China.
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China
| |
Collapse
|
10
|
Horne J, Beckers P, Sacré PY, De Bleye C, Francotte P, Thelen N, Hubert P, Ziemons E, Hubert C. Optimisation of a Microwave Synthesis of Silver Nanoparticles by a Quality by Design Approach to Improve SERS Analytical Performances. Molecules 2024; 29:3442. [PMID: 39065020 PMCID: PMC11280077 DOI: 10.3390/molecules29143442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
A major limitation preventing the use of surface-enhanced Raman scattering (SERS) in routine analyses is the signal variability due to the heterogeneity of metallic nanoparticles used as SERS substrates. This study aimed to robustly optimise a synthesis process of silver nanoparticles to improve the measured SERS signal repeatability and the protocol synthesis repeatability. The process is inspired by a chemical reduction method associated with microwave irradiation to guarantee better controlled and uniform heating. The innovative Quality by Design strategy was implemented to optimise the different parameters of the process. A preliminary investigation design was firstly carried out to evaluate the influence of four parameters selected by means of an Ishikawa diagram. The critical quality attributes were to maximise the intensity of the SERS response and minimise its variance. The reaction time, temperature and stirring speed are critical process parameters. These were optimised using an I-optimal design. A robust operating zone covering the optimal reaction conditions (3.36 min-130 °C-600 rpm) associated with a probability of success was modelled. Validation of this point confirmed the prediction with intra- and inter-batch variabilities of less than 15%. In conclusion, this study successfully optimised silver nanoparticles by a rapid, low cost and simple technique enhancing the quantitative perspectives of SERS.
Collapse
Affiliation(s)
- Julie Horne
- Laboratory of Pharmaceutical Analytical Chemistry, Department of Pharmacy, CIRM, ViBra-Sante Hub, University of Liege (ULiege), 4000 Liege, Belgium
| | - Pierre Beckers
- Laboratory of Pharmaceutical Analytical Chemistry, Department of Pharmacy, CIRM, ViBra-Sante Hub, University of Liege (ULiege), 4000 Liege, Belgium
| | - Pierre-Yves Sacré
- Research Support Unit in Chemometrics, Department of Pharmacy, CIRM, University of Liege (ULiege), 4000 Liege, Belgium
| | - Charlotte De Bleye
- Laboratory of Pharmaceutical Analytical Chemistry, Department of Pharmacy, CIRM, ViBra-Sante Hub, University of Liege (ULiege), 4000 Liege, Belgium
| | - Pierre Francotte
- Laboratory of Medicinal Chemistry, Department of Pharmacy, CIRM, University of Liege (ULiege), 4000 Liege, Belgium
| | - Nicolas Thelen
- GIGA-Neurosciences, Cell Biology, University of Liege (ULiege), 4000 Liege, Belgium
| | - Philippe Hubert
- Laboratory of Pharmaceutical Analytical Chemistry, Department of Pharmacy, CIRM, ViBra-Sante Hub, University of Liege (ULiege), 4000 Liege, Belgium
| | - Eric Ziemons
- Laboratory of Pharmaceutical Analytical Chemistry, Department of Pharmacy, CIRM, ViBra-Sante Hub, University of Liege (ULiege), 4000 Liege, Belgium
| | - Cédric Hubert
- Laboratory of Pharmaceutical Analytical Chemistry, Department of Pharmacy, CIRM, ViBra-Sante Hub, University of Liege (ULiege), 4000 Liege, Belgium
| |
Collapse
|
11
|
Lu X, Lu W, Hua D. A novel SERS-lateral flow assay (LFA) tray for monitoring of miR-155-5p during pyroptosis in breast cancer cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3878-3894. [PMID: 38828902 DOI: 10.1039/d4ay00363b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
In the study, a novel surface-enhanced Raman scattering (SERS)-lateral flow assay (LFA) tray for the real-time detection of pyroptosis-associated miR-155-5p in breast cancer cells was established and validated. The SERS probe modified with monoclonal antibodies and functionalized HP1@5-FAM was first synthesized. When miR-155-5p was present, HP1@5-FAM on the SERS probe specifically recognized target miRNAs and hybridized with them, resulting in HP2 on the T line only capturing some SERS probes that were not bound to miR-155-5p. The T line appeared as a light orange band or there was no color change, and the corresponding Raman detection result showed a weak or insignificant Raman signal. The SERS probe showed high selectivity, satisfactory stability, and excellent reproducibility, and the limit of detection (LOD) for miR-155-5p was 7.26 aM. Finally, the proposed SERS-LFA tray was applied to detect miR-155-5p in MBA-MD-468 cells that underwent varying degrees of pyroptosis, and the detection results of SERS were consistent with those of the conventional real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay. The study demonstrated that the SERS-LFA tray was a convenient and ultrasensitive method for miR-155-5p real-time detection, which could provide more detailed information for pyroptosis and be of potential value in guiding the treatment of breast cancer.
Collapse
Affiliation(s)
- Xiaoxia Lu
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 214122, China.
- Department of Oncology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Wenlong Lu
- Department of Pharmacy and Equipment, Taizhou Women's and Children's Hospital, Taizhou, Jiangsu Province, 225300, China
| | - Dong Hua
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, 214122, China.
- Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu Province, 21411, China
| |
Collapse
|
12
|
Xu D, Su W, Luo Y, Wang Z, Yin C, Chen B, Zhang Y. Cellulose Nanofiber Films with Gold Nanoparticles Electrostatically Adsorbed for Facile Surface-Enhanced Raman Scattering Detection. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38657211 DOI: 10.1021/acsami.4c03255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Cellulose nanofiber (CNF) holds great promise in applications such as surface-enhanced Raman scattering (SERS), catalysis, esthesia, and detection. This study aimed to build novel CNF-based SERS substrates through a facile synthetic method. Citrate-reduced gold nanoparticles (AuNPs) were adsorbed on the cationized CNF surface due to electrostatic interactions, and uniform AuNPs@(2,3-epoxypropyl trimethylammonium chloride)EPTMAC@CNF flexible SERS substrates were prepared by a simple vacuum-assisted filtration method. The probe molecule methylene blue was chosen to assess the performance of the CNF-based SERS substrate with a sensitivity up to 10-9 M, superior signal reproducibility (relative standard deviation (RSD) = 4.67%), and storage stability (more than 30 days). Tensile strength tests indicated that the CNF-based films had good mechanical properties. In addition, CNF-based substrates can easily capture and visually identify microplastics in water. These results demonstrate the potential application of the flexible, self-assembled AuNPs@EPTMAC@CNF flexible SERS substrate for prompt and sensitive detection of trace substances.
Collapse
Affiliation(s)
- Dewen Xu
- College of Mechanics and Engineering Science, Hohai University, Changzhou 213022, China
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Wei Su
- College of Mechanics and Engineering Science, Hohai University, Changzhou 213022, China
| | - Yinlong Luo
- College of Mechanics and Engineering Science, Hohai University, Changzhou 213022, China
| | - Zhenfeng Wang
- College of Mechanics and Engineering Science, Hohai University, Changzhou 213022, China
| | - Cheng Yin
- College of Mechanics and Engineering Science, Hohai University, Changzhou 213022, China
| | - Bingyan Chen
- College of Mechanics and Engineering Science, Hohai University, Changzhou 213022, China
| | - Yunhai Zhang
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| |
Collapse
|
13
|
Leong N, Yaacob MH, Md Zain AR, Tengku Abdul Aziz TH, Christianus A, Chong CM, Mahdi MA. Colloidal surface-enhanced Raman spectroscopic study of grouper epidermal mucus using acidified sodium sulphate as the aggregating agent. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:123974. [PMID: 38377639 DOI: 10.1016/j.saa.2024.123974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/22/2024]
Abstract
Fish epidermal mucus is an important reservoir of antipathogenic compounds which serves as the first line of the immune defence. Despite its significant role in the physiology and health of fish, detailed profiling of fish epidermal mucus has yet to be explored. Therefore, this study investigates a label-free colloidal surface-enhanced Raman spectroscopic (SERS) method for profiling grouper mucus. Gold nanoparticles were first synthesised using the standard citrate reduction and characterised using ultraviolet-visible spectroscopy, transmission electron microscopy and dynamic light scattering. The influence of acidified sodium sulphate (Na2SO4) at pH 3 as the aggregating agent on the enhancement of the SERS spectrum of different analyte samples including rhodamine 6G (R6G) dye, lysozyme solution and hybrid grouper (Epinephelus fuscoguttatus × Epinephelus lanceolatus) mucus was observed. Based on the results, an optimal Na2SO4 concentration of 1 M was recorded to achieve the highest enhancement of the SERS signal for R6G and grouper mucus, while the optimal concentration for lysozyme was 0.1 M. The results indicated a higher degree of aggregation induced by lysozyme than R6G and grouper mucus. A few overlapping peaks of the SERS spectra of lysozyme and grouper mucus made it possible to confirm the presence of lysozyme as potential biomarkers.
Collapse
Affiliation(s)
- Nathaniel Leong
- Wireless and Photonics Networks Research Centre, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohd Hanif Yaacob
- Wireless and Photonics Networks Research Centre, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Ahmad Rifqi Md Zain
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | | | - Annie Christianus
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Chou Min Chong
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Laboratory of Sustainable Aquaculture (AquaLab), International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia
| | - Mohd Adzir Mahdi
- Wireless and Photonics Networks Research Centre, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
14
|
Xie J, Zhang B, Gui X, Ma J, Chu J, Guo Z, Wang W, Qin W, Qin Z, Yao H, Bai J. Planting gold nanoflower for harvesting reproducible SERS substrate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123793. [PMID: 38141506 DOI: 10.1016/j.saa.2023.123793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/21/2023] [Accepted: 12/16/2023] [Indexed: 12/25/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is an ultrasensitive analytical method which has been applied in many fields, and the reproducibility of the substrate is important for reliable SERS analysis. In present work, an innovative method inspired by the flower planting process is put forward to acquire gold nanoflower (AuNF) SERS substrate. Three steps (digging holes, sowing the gold nanoseeds and seeds grow into gold nanoflowers) are included in the substrate fabrication process, and the influence of preparing conditions (like reacting time and Na3Au(SO3)2 concentration) on the substrate morphology and SERS performance are investigated. The acquired AuNF substrate not only exhibits good SERS performance but also possesses excellent reproducibility while being used to detect the rhodamine 6G (R6G) molecular. The relative standard deviation (RSD) of Raman signals among substrates acquired in distinct batches (substrate-to-substrate) is as low as 6.67 %. Since the AuNF substrate is prepared by the wet chemistry route based on seed-mediated growth and there are no expensive reagents or complicated process used, the new process to obtain AuNF substrate is cost-effective and easy to scale up.
Collapse
Affiliation(s)
- Jianjun Xie
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baitong Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyu Gui
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyi Ma
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Chu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Nuclear Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Zaichao Guo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wentao Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Wei Qin
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi Qin
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China
| | - Huijun Yao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China.
| | - Jing Bai
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China.
| |
Collapse
|
15
|
Michałowska A, Kudelski A. Plasmonic substrates for biochemical applications of surface-enhanced Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123786. [PMID: 38128327 DOI: 10.1016/j.saa.2023.123786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Due to its great practical importance, the detection and determination of many biomolecules in body fluids and other samples is carried out in a large number of laboratories around the world. One of the most promising analytical techniques now being widely introduced into medical analysis is surface-enhanced Raman scattering (SERS) spectroscopy. SERS is one of the most sensitive analytical methods, and in some cases, a good quality SERS spectrum dominated by the contribution of even a single molecule can be obtained. Highly sensitive SERS measurements can only be carried out on substrates generating a very high SERS enhancement factor and a low Raman spectral background, and so using of right nanomaterials is a key element in the success of SERS biochemical analysis. In this review article, we present progress that has been made in the preparation of nanomaterials used in SERS spectroscopy for detecting various kinds of biomolecules. We describe four groups of nanomaterials used in such measurements: nanoparticles of plasmonic metals and deposits of plasmonic nanoparticles on macroscopic substrates, nanocomposites containing plasmonic and non-plasmonic parts, nanostructured macroscopic plasmonic metals, and nanostructured macroscopic non-plasmonic materials covered by plasmonic films. We also describe selected SERS biochemical analyses that utilize the nanomaterials presented. We hope that this review will be useful for researchers starting work in this fascinating field of science and technology.
Collapse
Affiliation(s)
| | - Andrzej Kudelski
- Faculty of Chemistry, University of Warsaw, Pasteura 1 Str., PL 02-093 Warsaw, Poland.
| |
Collapse
|
16
|
Zhang S, Jin K, Xu J, Ding L, Huang Y, Liu G, Liu X, Jiang S. Aramid nanofiber membrane decorated with monodispersed silver nanoparticles as robust and flexible SERS chips for trace detection of multiple toxic substances. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123720. [PMID: 38091650 DOI: 10.1016/j.saa.2023.123720] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/07/2023] [Accepted: 11/28/2023] [Indexed: 01/13/2024]
Abstract
Aramid nanofibers (ANFs) as an innovative nanoscale building block exhibit great potential for novel high-performance multifunctional membranes attributed to their extraordinary performance. However, the application of aramid nanofibers in the field of surface enhanced Raman scattering (SERS) sensing has been rarely reported. In this work, aramid nanofibers derived from commercial Kevlar fibers were synthesized by a facile dimethyl sulfoxide/potassium hydroxide (DMSO/KOH) solution treatment. The monodispersed silver nanoparticle-decorated aramid nanofiber (m-Ag@ANF) membranes were constructed by an efficient vacuum filtration technique. Taking advantages of unique intrinsic properties of ANF, the m-Ag@ANF substrates exhibit good flexibility, excellent mechanical properties and prominent thermal stability. Besides, due to the abundance of positively charged amino-group on the ANF substrates, the negatively charged m-AgNPs were uniformly and firmly deposited on the surface of ANF substrate through electrostatic interactions. As a result, the optimal flexible m-Ag-9@ANF SERS substrate exhibits high sensitivity of 10-9 M for methylene blue (MB) and excellent signal reproducibility (RSD = 6.37 %), as well as outstanding signal stability (up to 15 days). Besides, the 2D Raman mapping and FDTD simulations further reveal prominent signal homogeneity and strong electric field distribution for flexible m-Ag-9@ANF SERS substrate. Finally, it is demonstrated that the flexible m-Ag-9@ANF SERS substrate can also be used for detection of toxic molecules on irregular surfaces by a feasible paste-and-read process. The m-Ag@ANF paper exhibits potential applications as a flexible, low-cost, robust and stable SERS sensing platform for trace detection of toxic materials.
Collapse
Affiliation(s)
- Sihang Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou, 570228, China; School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China; Hainan Institute for Food Control, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou 570314, China
| | - Kejun Jin
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Jiangtao Xu
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Lei Ding
- Shandong Key Laboratory of Chemical Energy Storage and New Battery Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
| | - Yingying Huang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Guilian Liu
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Xing Liu
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou, 570228, China
| | - Shouxiang Jiang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China; Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China.
| |
Collapse
|
17
|
Wang H, Chen Y, Yang Y, Xu P, Zhang B, Lu Y, He W, Liu Y, Zhang JH, Xiao X, You R. Preparation of cellulose-based flexible SERS and its application for rapid and ultra-sensitive detection of thiram on fruits and vegetables. Int J Biol Macromol 2024; 262:129941. [PMID: 38342254 DOI: 10.1016/j.ijbiomac.2024.129941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/18/2024] [Accepted: 02/01/2024] [Indexed: 02/13/2024]
Abstract
In response to the prevalent issue of thiram as a common pesticide residue on the surface of fruits and vegetables, our research team employed an acidic hydrated metal salt low co-fusion solvent to dissolve cellulose lysis slurry. Subsequently, a regenerated cellulose membrane (RCM) was successfully prepared via sol-gel method. Uniformly sized Ag nanoparticles (NPs) were deposited on RCM utilizing the continuous ion layer adsorption and reaction (SILAR) technique. The resulting Ag NPs/RCM flexible surface-enhanced Raman spectroscopy (SERS) substrates exhibited a minimum detection limit of 5 × 10-9 M for Rhodamine 6G (R6G), demonstrating good uniformity (RSD = 4.86 %) and reproducibility (RSD = 3.07 %). Moreover, the substrate displayed a remarkable sensitivity of 10-10 M toward thiram standard solution. Given its inherent flexibility, the substrate proves advantageous for the detection of three-dimensional environments such as fruit and vegetable surfaces, and its practicality has been confirmed in the detection of thiram residue on apples, tomatoes, pears, and other fruits and vegetables.
Collapse
Affiliation(s)
- Haonan Wang
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian 350007, China; School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian 365004, China
| | - Yujia Chen
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Yixuan Yang
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Peipei Xu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Bohan Zhang
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Yudong Lu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Wenjin He
- College of Life Science, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China.
| | - Yunzhen Liu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Jian-Han Zhang
- School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian 365004, China.
| | - Xiufeng Xiao
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Ruiyun You
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, Fujian Normal University, Fuzhou, Fujian 350007, China.
| |
Collapse
|
18
|
Verma AK, Singh J, Nguyen-Tri P. Gold-Deposited Graphene Nanosheets for Self-Cleaning Graphene Surface-Enhanced Raman Spectroscopy with Superior Charge-Transfer Contribution. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10969-10983. [PMID: 38355426 DOI: 10.1021/acsami.3c17303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The interaction of graphene with metals initiates charge-transfer interaction-induced chemical enhancements, which critically depend on the doping effect from deposited metallic configurations. In this paper, we have explored the gold nanoparticle-decorated monolayer graphene nanosheets for the large graphene-induced Raman enhancement of adsorbed analytes, indicating the surface-enhanced Raman spectroscopy (SERS) capabilities of metal-doped graphene (G-SERS). Here, the systematically sputtered Au thickness optimization procedure revealed noticeable modifications in the graphene Raman spectra and photoluminescence (PL) background quenching, which indicated favorable charge transfer through n-type doping of chemical vapor deposition-grown graphene nanosheets. The highly consistent, individually distributed morphology of the gold nanoislands over graphene nanosheets depicted a reproducibly uniform G-SERS signal with excellent relative standard deviation values (<5%), resulting in the strongest Raman intensity enhancement factors of ∼108 (MB) (methylene blue) and 107 (DPA) (2,6-pyridinedicarboxylic acid) composed of the weakest PL background. The combined charge-transfer-induced chemical enhancement and electromagnetic enhancement from individual Au nanoislands result in a lowering of detectability down to 10-16 M (MB) and 10-11 M (DPA) concentrations with efficient time-dependent signal stability. Additionally, the GAu demonstrated its effective (∼94.4%) photocatalytic degradation capabilities by decomposing MB dye molecules from a concentration of 1 μM to 2.52 fM within 60 min. Therefore, the prominent charge-transfer contribution through controlled Au decoration over graphene nanosheets provides a potential strategy for fabricating superior SERS sensors and photocatalysts exhibiting adequate signal consistency, stability, and photodegradation efficiency through overcoming the limitations of the traditional sensing platforms.
Collapse
Affiliation(s)
- Ashwani Kumar Verma
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Jaspal Singh
- Laboratory of Advanced Materials for Energy and Environment, Université Du Québec à Trois-Rivières (UQTR), 3351, Boul. des Forges, C.P. 500, Trois-Rivières, Québec G9A 5H7, Canada
| | - Phuong Nguyen-Tri
- Laboratory of Advanced Materials for Energy and Environment, Université Du Québec à Trois-Rivières (UQTR), 3351, Boul. des Forges, C.P. 500, Trois-Rivières, Québec G9A 5H7, Canada
| |
Collapse
|
19
|
Barveen NR, Chinnapaiyan S, Wang TJ, Huang CH. Photochemical decoration of gold nanoparticles on MoS 2 nanoflowers grafted onto the flexible carbon cloth as a recyclable SERS sensor for the detection of antibiotic residues on curved surfaces. CHEMOSPHERE 2024; 346:140677. [PMID: 37949183 DOI: 10.1016/j.chemosphere.2023.140677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/24/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS)-based flexible substrate has recently been demonstrated to be effective in detecting molecules on curved surfaces, however a suitable method for fabricating the flexible SERS substrate still remains a hurdle. In this paper, we fabricated a flexible SERS substrate by anchoring the plasmonic gold nanoparticles (Au-NPs) onto the hydrothermally grown flower-like molybdenum disulfide (MoS2) grafted onto carbon cloth (CC) via a facile photoreduction route. Benefitting from the abundant hotspots generation of the Au-NPs and photo-induced charge-transfer ability of MoS2, the constructed Au-NPs/MoS2/CC substrate exhibit a superior SERS sensing ability, excellent SERS enhancement factor, high flexibility and mechanical stability towards the nitrofurantoin (NFT) with an ultra-low detection limit of 10-11 M. As a trial for practical applications, the flexible substrate was used to detect NFT (10-4 M) in the curved surfaces of meat samples via swab technique. The ability of the flexible Au-NPs/MoS2/CC substrate to sustain the robust Raman signals of NFT even after recycling up to 4 cycles validated its reusability. The proposed flexible SERS substrate with reusable capability indicates its great potential in practical applications for the detection of target molecules on the curved surfaces.
Collapse
Affiliation(s)
- Nazar Riswana Barveen
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Sathishkumar Chinnapaiyan
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
| | - Tzyy-Jiann Wang
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Chi-Hsien Huang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan; Biochemical Technology R&D Center, Ming Chi University of Technology, New Taipei City, 24301, Taiwan.
| |
Collapse
|
20
|
Oh MK, Kim H, Gupta P, Kim K. Ultrahighly Sensitive Surface-Enhanced Raman Spectroscopy Film of Silver Nanoparticles Dispersed in Three Dimensions on a Thin Alumina Nanowire Framework. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3169. [PMID: 38133065 PMCID: PMC10745398 DOI: 10.3390/nano13243169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
To develop highly sensitive surface-enhanced Raman spectroscopy (SERS) films, various types of aggregated Ag nanowire (NW) and nanoparticle (NP) complex structures were fabricated using anodic aluminum oxide (AAO) templates and thermal evaporation. Aggregated AgNW structures with numerous tapered nanogaps were fabricated via Ag deposition on aggregated thin alumina nanowires of different lengths. AgNP complex structures were obtained by collapsing vertically aligned thin alumina nanowires 1 μm in length and depositing AgNPs on their tops and sides using surface tension during ethanol drying after functionalization. The Raman signal enhancement factors (EFs) of the samples were evaluated by comparing the SERS signal of the thiophenol (TP) self-assembled monolayer (SAM) on the nanostructures with the Raman signal of neat TP. EFs as high as ~2.3 × 107 were obtained for the optimized aggregated AgNW structure (NW length of 1 μm) and ~3.5 × 107 for the optimized AgNP complex structure. The large EF of the AgNP complex film is attributed mainly to the AgNPs dispersed in three dimensions on the sides of the thin alumina nanowires, strongly implying some important, relevant physics yet to be discovered and also a very promising nanostructure scheme for developing ultrahighly sensitive SERS films with EF > 108.
Collapse
Affiliation(s)
- Myoung-Kyu Oh
- Advanced Photonics Research Institute (APRI), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea;
| | - Hyeonju Kim
- Advanced Photonics Research Institute (APRI), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea;
| | - Prince Gupta
- Carnot de Bourgogne Interdisciplinary Laboratory (Laboratoire Interdisciplinaire Carnot de Bourgogne), CNRS UMR 6303, University of Burgundy Franche-Comté (Université de Bourgogne Franche-Comté), 21000 Dijon, France;
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Kyoungsik Kim
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
21
|
Mahar N, Al-Saadi AA. Light-induced synthesis of silver nanoprisms as a surface-enhanced Raman scattering substrate for N-acetyl procainamide drug quantification. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:122996. [PMID: 37327727 DOI: 10.1016/j.saa.2023.122996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/18/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
Triangle-shaped silver nanoprisms (AgNPMs) were prepared by a photo-induced method through a seed-mediated growth process and were successfully employed as an ultra-sensitive surface-enhanced Raman scattering (SERS) substrate for the detection of the chemotherapeutic N-acetyl procainamide (NAPA) compound. The transformation of the morphology of the nanoprisms substrate could be noted with a remarkable change in color, possessing an average size of 95 nm. The shape-modified AgNPMs exhibited interesting optical characteristics owing to the truncated dual edges, which led to a pronounced longitudinal localized surface plasmonic resonance (LLSPR) behavior. The nanoprisms-based SERS substrate demonstrated an outstanding sensitivity for NAPA in aqueous solutions with the lowest ever reported detection limit of 0.5 × 10-13 M corresponding to excellent recovery and stability. A steady linear response with a broad dynamic range (10-4-10-12 M) and an R2 of 0.945 was also achieved. The results proved that the NPMs demonstrated excellent efficiency, reproducibility (97%), and stability (30 days) with a superior Raman signal enhancement reaching an ultralow detection limit of 0.5 × 10-13 M compared to the nanosphere particles which could show an LOD of 0.5 × 10-9 M.
Collapse
Affiliation(s)
- Nasurullah Mahar
- Department of Chemistry, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Abdulaziz A Al-Saadi
- Department of Chemistry, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Refining and Advanced Chemicals, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
| |
Collapse
|
22
|
Bulut Y, Sochor B, Harder C, Reck K, Drewes J, Xu Z, Jiang X, Meinhardt A, Jeromin A, Kohantorabi M, Noei H, Keller TF, Strunskus T, Faupel F, Müller-Buschbaum P, Roth SV. Diblock copolymer pattern protection by silver cluster reinforcement. NANOSCALE 2023; 15:15768-15774. [PMID: 37740389 DOI: 10.1039/d3nr03215a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Pattern fabrication by self-assembly of diblock copolymers is of significant interest due to the simplicity in fabricating complex structures. In particular, polystyrene-block-poly-4-vinylpyridine (PS-b-P4VP) is a fascinating base material as it forms an ordered micellar structure on silicon surfaces. In this work, silver (Ag) is applied using direct current magnetron sputter deposition and high-power impulse magnetron sputter deposition on an ordered micellar PS-b-P4VP layer. The fabricated hybrid materials are structurally analyzed by field emission scanning electron microscopy, atomic force microscopy, and grazing incidence small angle X-ray scattering. When applying simple aqueous posttreatment, the pattern is stable and reinforced by Ag clusters, making micellar PS-b-P4VP ordered layers ideal candidates for lithography.
Collapse
Affiliation(s)
- Yusuf Bulut
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany
| | - Benedikt Sochor
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
| | - Constantin Harder
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany
| | - Kristian Reck
- Chair for Multicomponent Materials, Department of Materials Science, Faculty of Engineering, Christian-Albrechts Universität zu Kiel, Kaiserstr. 2, 24143 Kiel, Germany
| | - Jonas Drewes
- Chair for Multicomponent Materials, Department of Materials Science, Faculty of Engineering, Christian-Albrechts Universität zu Kiel, Kaiserstr. 2, 24143 Kiel, Germany
| | - Zhuijun Xu
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany
| | - Xiongzhuo Jiang
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany
| | - Alexander Meinhardt
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchtrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Department of Physics, University of Hamburg, Notkestr. 9-11, 22607 Hamburg, Germany
| | - Arno Jeromin
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchtrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Mona Kohantorabi
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchtrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Heshmat Noei
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchtrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Thomas F Keller
- Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchtrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Department of Physics, University of Hamburg, Notkestr. 9-11, 22607 Hamburg, Germany
| | - Thomas Strunskus
- Chair for Multicomponent Materials, Department of Materials Science, Faculty of Engineering, Christian-Albrechts Universität zu Kiel, Kaiserstr. 2, 24143 Kiel, Germany
| | - Franz Faupel
- Chair for Multicomponent Materials, Department of Materials Science, Faculty of Engineering, Christian-Albrechts Universität zu Kiel, Kaiserstr. 2, 24143 Kiel, Germany
| | - Peter Müller-Buschbaum
- Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergerstraße 1, 85748 Garching, Germany
| | - Stephan V Roth
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
- KTH Royal Institute of Technology, Teknikringen 56-58, 100 44 Stockholm, Sweden
| |
Collapse
|
23
|
Ma H, Zhang S, Yuan G, Liu Y, Cao X, Kong X, Wang Y. Surface-Enhanced Raman Spectroscopy (SERS) Activity of Gold Nanoparticles Prepared Using an Automated Loop Flow Reactor. APPLIED SPECTROSCOPY 2023; 77:1163-1172. [PMID: 37654053 DOI: 10.1177/00037028231196907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
This study used automatic control methods to prepare gold nanoparticles (AuNPs) as the substrate and rhodamine 6G molecule as the probe to investigate the enhancement effect, stability, and consistency of surface-enhanced Raman spectroscopy (SERS). The gold nanosols were prepared via automatic control using loop flow-reactor technology, and the synthesis of nanoparticles with different sizes was precisely controlled by optimizing the ratio of the solution required for the reaction between sodium citrate and chloroauric acid during the preparation process. The morphology, structure, and optical properties of the prepared AuNPs were investigated using field-emission scanning electron microscopy, transmission electron microscopy, and ultraviolet visible spectroscopy. Using the proposed method, AuNPs with average particle sizes of 72, 85, 93, and 103 nm were synthesized in a precisely controlled manner. The 93 nm particles exhibited good SERS activity for rhodamine 6G under 785 nm excitation with a detection limit of 2.5 × 10-10 M. The relative standard deviation of the SERS spectra synthesized multiple times was <3.5%, indicating their good sensitivity and reproducibility. The results showed that the AuNPs prepared by the automatic control of the loop-flow method have high sensitivity, stability, and reproducibility. Moreover, they exhibited notable potential for in situ measurement and quantitative analysis using SERS.
Collapse
Affiliation(s)
- Haikuan Ma
- College of Information Science and Engineering, Ocean University of China, Qingdao, China
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao, China
- Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, Qingdao, China
- National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao, China
| | - Shuwei Zhang
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao, China
- Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, Qingdao, China
- National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao, China
| | - Guang Yuan
- College of Information Science and Engineering, Ocean University of China, Qingdao, China
| | - Yan Liu
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao, China
- Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, Qingdao, China
- National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao, China
| | - Xuan Cao
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao, China
- Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, Qingdao, China
- National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao, China
| | - Xiangfeng Kong
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao, China
- Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, Qingdao, China
- National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao, China
| | - Yang Wang
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao, China
- Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, Qingdao, China
- National Engineering and Technological Research Center of Marine Monitoring Equipment, Qingdao, China
| |
Collapse
|
24
|
Zhang Y, Xu Z, Wen J, Zhao X, Gao R, Wang Y. Honeycomb-like Ag Nanocavity Array for SERS Observations Using Plasmon-Mediated Chemical Reactions. MICROMACHINES 2023; 14:1811. [PMID: 37893248 PMCID: PMC10609216 DOI: 10.3390/mi14101811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023]
Abstract
Organized two-dimensional polystyrene bead arrays perform ion etching, and protruding nanostructures are created on polystyrene beads due to the shadow effects from the ring beads, leading to nucleus selection and growth in Au nanostructure deposition. Ag nanostructures are prepared via plasmon-mediated chemical reactions (PMCRs), leading to the Ag nanocavity geometry of the honeycomb pattern when the etching time and Ag growth time are tuned. Due to the strong electromagnetic coupling, the Ag honeycomb-shaped nanocavity array works as the SERS substrate with high sensitivity and good repeatability, which is used to detect thiram pesticide residues with a concentration down to 10-9 M.
Collapse
Affiliation(s)
- Yongjun Zhang
- School of Material and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (Y.Z.)
| | - Zhen Xu
- School of Material and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (Y.Z.)
| | - Jiahong Wen
- The College of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Xiaoyu Zhao
- School of Material and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (Y.Z.)
- Zhejiang Laboratory, Hangzhou 311100, China
| | - Renxian Gao
- Department of Physics, Xiamen University, Xiamen 361005, China;
| | - Yaxin Wang
- School of Material and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (Y.Z.)
- Zhejiang Laboratory, Hangzhou 311100, China
| |
Collapse
|
25
|
Ke X, Chen J, Chang L, Zhou Z, Zhang W. Casting liquid PDMS on self-assembled bilayer polystyrene nanospheres to prepare a SERS substrate with two layers of nanopits for detection of p-nitrophenol. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4582-4590. [PMID: 37655547 DOI: 10.1039/d3ay00628j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
p-Nitrophenol (PNP) is widely used in pesticides, pharmaceuticals, and dyestuffs. It is vital to detect trace PNP in the environment, because it poses significant environmental hazards due to its high toxicity. In this paper, a new method was reported for preparing a SERS substrate with excellent SERS activity by combining self-assembly techniques and flexible materials. First, the three-dimensional (3D) polystyrene (PS) photonic crystal (PC) structural master was fabricated by stacking two layers of self-assembled PS nanospheres with different diameters. Polydimethylsiloxane (PDMS) with a complementary structure to the master was obtained by casting, curing and peeling off. Finally, the PDMS-Ag substrate was fabricated by sputtering a thin Ag layer on the PDMS structure. The enhancement factor (EF) of the PDMS-Ag substrate was calculated to be 2.90 × 109 by using 4-amino thiophenol (ATP) as the probe molecule, and the limit of detection (LOD) for ATP can reach 10-11 M. And the RSD of the SERS intensity for the peak at 1078 cm-1 on the PDMS-Ag substrates from batch to batch was within 2%, indicating the high reproducibility of the as-prepared substrate. The quantitative analysis of PNP was achieved with a LOD of 10-8 M. Therefore, the PDMS-Ag substrate exhibits high sensitivity and reproducibility, and it can detect PNP in trace amounts, with great potential for detecting other contaminants.
Collapse
Affiliation(s)
- Xiurui Ke
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China.
| | - Jinran Chen
- Chongqing Jiaotong University, Chongqing, 400074, China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China.
| | - Lin Chang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China.
| | - Zhou Zhou
- The University of Manchester, Department of Materials, Oxford Road, Manchester M13 9PL, UK
| | - Wei Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China.
| |
Collapse
|
26
|
Wang Y, Yang Y, Cao X, Liu Z, Chen B, Du Q, Lu X. Simple and Ultrasensitive Detection of Glioma-Related ctDNAs in Mice Serum by SERS-Based Catalytic Hairpin Assembly Signal Amplification Coupled with Magnetic Aggregation. Int J Nanomedicine 2023; 18:3211-3230. [PMID: 37337576 PMCID: PMC10276994 DOI: 10.2147/ijn.s410080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023] Open
Abstract
Purpose Circulating tumor DNA (ctDNA) is more representative and accurate than biopsy and is also conducive to dynamic monitoring, facilitating accurate diagnosis and prognosis of glioma. Therefore, the present study aimed to establish and validate a novel amplified method for the detection of IDH1 R132H and BRAF V600E, which were associated with the genetic diagnosis of glioma. Patients and Methods A dual-signal amplification method based on magnetic aggregation and catalytic hairpin assembly (CHA) was constructed for the simultaneous detection of ctDNAs. When target ctDNAs are present, the CHA reaction is initiated and leads to the assembly of Au-Ag nanoshuttles (Au-Ag NSs) onto magnetic beads (MBs). Further enrichment of MBs under an external magnetic field facilitated the dual-signal amplification of SERS. Results The limit of detection (LOD) for IDH1 R132H and BRAF V600E in serum was as low as 6.01 aM and 5.48 aM. The reproducibility and selectivity of the proposed SERS analysis platform was satisfactory. Finally, the platform was applied to quantify IDH1 R132H and BRAF V600E in the serum of subcutaneous-tumor‑bearing nude mice, and the results obtained by SERS were consistent with those from quantitative real-time polymerase chain reaction (qRT-PCR). Conclusion The present study showed that the dual-signal amplification method is a simple and ultrasensitive strategy for gliomas-associated ctDNAs detection, which is crucial for early diagnosis and dynamic monitoring.
Collapse
Affiliation(s)
- Youwei Wang
- Department of Neurosurgery, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, People’s Republic of China
| | - Yang Yang
- Department of Clinical Laboratory, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, People’s Republic of China
| | - Xiaowei Cao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu Province, People’s Republic of China
| | - Zhensheng Liu
- Department of Interventional Radiology, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, People’s Republic of China
| | - Bing Chen
- Department of neurosurgery, The Affiliated hospital of Qingdao University, Qingdao, Shandong Province, People’s Republic of China
| | - Qiu Du
- Department of Neurosurgery, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, People’s Republic of China
| | - Xiaoxia Lu
- Department of Oncology, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, People’s Republic of China
| |
Collapse
|
27
|
Zheng C, Yu J, Dou L, Wang Z, Huang Z, Li X, Hu X, Li Y. Flexible 3D Substrate of Ag Nanoparticle-Loaded Carbon Aerogels with Outstanding Surface-Enhanced Raman Scattering Performance. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37285222 DOI: 10.1021/acsami.3c04414] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Surface-enhanced Raman scattering (SERS), an ultra-sensitive and non-destructive analytic technique, has attracted wide attention from the scientific community. Despite its rapid development, limited hotspots on the SERS substrates have restricted their potential in practical applications. Herein, we developed a facile method to fabricate a flexible three-dimensional (3D) SERS substrate composed of silver nanoparticles (Ag NPs)-loaded carbon aerogels (CAs). Such a flexible Ag NPs/CAs substrate exhibited numerous hotspots, which can facilely be adjusted not only by tuning the density of Ag NPs but also by controlling the bending degree of the flexible substrate. In addition, the influence of hotspots on the local electric field enhancement was investigated by theoretical calculations. Moreover, the 3D network structure of the CAs with a large specific surface area and strong adsorption ability can improve the capture of target molecules. Consequently, the optimal Ag NPs/CAs substrate has a low detection limit of 10-12 M for rhodamine 6G molecules as well as good repeatability. Furthermore, based on the good performance of SERS detection of the Ag NPs/CAs substrate, it can also be practically used for the detection of thiram molecules on the surface of cherry tomatoes. Such a flexible 3D Ag NPs/CAs substrate has great potential for practical environmental monitoring applications.
Collapse
Affiliation(s)
- Chunxue Zheng
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jie Yu
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Liguang Dou
- Beijing International S&T Cooperation Base for Plasma Science and Energy Conversion, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Zhen Wang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zhulin Huang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xinyang Li
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Xiaoye Hu
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yue Li
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
28
|
Pang Y, Jin M. Self-Assembly of Silver Nanowire Films for Surface-Enhanced Raman Scattering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1358. [PMID: 37110942 PMCID: PMC10146873 DOI: 10.3390/nano13081358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
The development of SERS detection technology is challenged by the difficulty in obtaining SERS active substrates that are easily prepared, highly sensitive, and reliable. Many high-quality hotspot structures exist in aligned Ag nanowires (NWs) arrays. This study used a simple self-assembly method with a liquid surface to prepare a highly aligned AgNW array film to form a sensitive and reliable SERS substrate. To estimate the signal reproducibility of the AgNW substrate, the RSD of SERS intensity of 1.0 × 10-10 M Rhodamine 6G (R6G) in an aqueous solution at 1364 cm-1 was calculated to be as low as 4.7%. The detection ability of the AgNW substrate was close to the single molecule level, and even the R6G signal of 1.0 × 10-16 M R6G could be detected with a resonance enhancement factor (EF) as high as 6.12 × 1011 under 532 nm laser excitation. The EF without the resonance effect was 2.35 × 106 using 633 nm laser excitation. FDTD simulations have confirmed that the uniform distribution of hot spots inside the aligned AgNW substrate amplifies the SERS signal.
Collapse
Affiliation(s)
- Yanzhao Pang
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
- International Academy of Optoelectronics at Zhaoqing, South China Normal University, Zhaoqing 526060, China
| | - Mingliang Jin
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
- International Academy of Optoelectronics at Zhaoqing, South China Normal University, Zhaoqing 526060, China
| |
Collapse
|
29
|
Trinh BT, Cho H, Lee D, Omelianovych O, Kim T, Nguyen SK, Choi HS, Kim H, Yoon I. Dual-Functional Solar-to-Steam Generation and SERS Detection Substrate Based on Plasmonic Nanostructure. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1003. [PMID: 36985897 PMCID: PMC10054297 DOI: 10.3390/nano13061003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Solar-to-steam (STS) generation based on plasmonic materials has attracted significant attention as a green method for producing fresh water. Herein, a simple in situ method is introduced to fabricate Au nanoparticles (AuNPs) on cellulose filter papers as dual-functional substrates for STS generation and surface-enhanced Raman spectroscopy (SERS) sensing. The substrates exhibit 90% of broadband solar absorption between 350 and 1800 nm and achieve an evaporation rate of 0.96 kg·m-2·h-1 under 1-sun illumination, room temperature of 20 °C, and relative humidity of 40%. The STS generation of the substrate is stable during 30 h continuous operation. Enriched SERS hotspots between AuNPs endow the substrates with the ability to detect chemical contamination in water with ppb limits of detection for rhodamine 6G dye and melamine. To demonstrate dual-functional properties, the contaminated water was analyzed with SERS and purified by STS. The purified water was then analyzed with SERS to confirm its purity. The developed substrate can be an improved and suitable candidate for fresh water production and qualification.
Collapse
Affiliation(s)
- Ba Thong Trinh
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hanjun Cho
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Deunchan Lee
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Oleksii Omelianovych
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Taehun Kim
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sy Khiem Nguyen
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ho-Suk Choi
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hongki Kim
- Department of Chemistry, Kongju National University, Gongju 32588, Republic of Korea
| | - Ilsun Yoon
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
30
|
Chen R, Wang H, Sun C, Zhao Y, He Y, Nisar MS, Wei W, Kang H, Xie X, Du C, Luo Q, Yang L, Tang X, Xiong B. Au@SiO 2 SERS nanotags based lateral flow immunoassay for simultaneous detection of aflatoxin B 1 and ochratoxin A. Talanta 2023; 258:124401. [PMID: 36867957 DOI: 10.1016/j.talanta.2023.124401] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 03/03/2023]
Abstract
Agricultural products are frequently contaminated by mycotoxins. Multiplex, ultrasensitive, and rapid determination of mycotoxins is still a challenging problem, which is of great significance to food safety and public health. Herein, a surface-enhanced Raman scattering (SERS) based lateral flow immunoassay (LFA) for the simultaneous on-site determination of aflatoxin B1 (AFB1) and ochratoxin A (OTA) on the same test line (T line) was developed, in this study. In practice, two kinds of Raman reporters 4-mercaptobenzoic acid (4-MBA), and 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) encoded silica-encapsulated gold nanotags (Au4-MBA@SiO2 and AuDNTB@SiO2) were used as detection markers to identify the two different mycotoxins. Through systematic optimization of the experimental conditions, this biosensor has high sensitivity and multiplexing with the limits of detection (LODs) at 0.24 pg mL-1 for AFB1 and 0.37 pg mL-1 for OTA. These are far below the regulatory limits set by the European Commission, in which the minimum LODs for AFB1 and OTA are 2.0 and 3.0 μg kg-1. In the spiked experiment, the food matrix are corn, rice, and wheat, and the mean recoveries of the two mycotoxins ranged from 91.0% ± 6.3%-104.8% ± 5.6% for AFB1 and 87.0% ± 4.2%-112.0% ± 3.3% for OTA. These results demonstrate that the developed immunoassay has good stability, selectivity, and reliability, which can be used for routine monitoring of mycotoxin contamination.
Collapse
Affiliation(s)
- Ruipeng Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hui Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chaoqun Sun
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yiguang Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yue He
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Muhammad Shemyal Nisar
- Sino-British College, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Wensong Wei
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Haiqi Kang
- College of Economics and Management, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiulan Xie
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chunmei Du
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qingyao Luo
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Liang Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Xiangfang Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
31
|
Zhang Q, Liu Z, Zhang H, Han C, Wu Y, Yan C, Liu Y, Wu B, Yang G, Duan P. Highly sensitive AuNSs@AgNR SERS substrates for rapid determination of aromatic amines. Analyst 2023; 148:814-822. [PMID: 36632825 DOI: 10.1039/d2an01817a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The leakage of aromatic amines will pose a great threat to human health and the ecological environment. Therefore, there is an urgent need to achieve rapid and high-sensitivity detection of such substances. In this study, a simple surface-enhanced Raman scattering (SERS) method based on gold nanostars-modified silver nanorods (AuNSs@AgNRs) was established for the detection of benzidine and 4-aminobiphenyl (4-ABP). The enhancement factors of the substrate towards rhodamine 6G (R6G) and crystal violet (CV) were 4.67 × 108 and 1.11 × 108, respectively. Combined with density functional theory (DFT), the AuNSs@AgNR substrate achieved the rapid detection of benzidine and 4-ABP and obtained low detection limits (LODbenzidine = 7.09 × 10-9 M; LOD4-ABP = 1.20 × 10-9 M). Furthermore, the AuNSs@AgNR substrate can realize the high-sensitivity detection of benzidine and 4-ABP in the spiked river water samples within 3 min, which means that the AuNSs@AgNR-based SERS method can be used as a portable platform to realize the on-site rapid detection of environmental pollutants.
Collapse
Affiliation(s)
- Qian Zhang
- Jiangsu Key Laboratory of Advanced Lasser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China.
| | - Zhenglin Liu
- Jiangsu Key Laboratory of Advanced Lasser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China.
| | - Hengchang Zhang
- Jiangsu Key Laboratory of Advanced Lasser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China.
| | - Caiqin Han
- Jiangsu Key Laboratory of Advanced Lasser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China.
| | - Ying Wu
- Jiangsu Key Laboratory of Advanced Lasser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China.
| | - Changchun Yan
- Jiangsu Key Laboratory of Advanced Lasser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China.
| | - Ying Liu
- Jiangsu Key Laboratory of Advanced Lasser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China.
| | - Bin Wu
- The 41st Institute of China Electronics Technology Group Corporation, Qingdao 266555, China.
| | - Guohai Yang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| | - Peitong Duan
- Jiangsu Key Laboratory of Advanced Lasser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China. .,National University Science Park, Jiangsu Normal University, Xuzhou 221009, China
| |
Collapse
|
32
|
Liu B, Tang H, Liu Q, Wang W, Li H, Zheng S, Sun F, Zhao X. Core-shell SERS nanotags-based western blot. Talanta 2023; 253:123888. [PMID: 36087412 DOI: 10.1016/j.talanta.2022.123888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 12/13/2022]
Abstract
Western blot (WB) is the most commonly used scheme for protein identification in life science, but it still faces great challenges in the accurate quantitative detection of low-abundance proteins. Here, we proposed a novel surface-enhanced Raman scattering-based Western blot (SERS-WB) to solve this challenge. SERS nanotags were used as quantitative labels of proteins, which were composed of gold-silver core-shell nanoparticles, and Nile blue A (NBA) molecules were anchored on the interface of the core and shell. The results show that the SERS-WB possessed excellent sensitivity with detection limit of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) protein of 0.15 pg, as well as wide linear dynamic range (LDR) of 382 fg to 382 ng. In addition, the target protein on nitrocellulose (NC) membrane could be directly identified by colorimetric signal due to the aggregation effect of nanoparticles, which greatly simplifies the procedure. This as-proposed strategy will bring new thoughts to technological innovation of WB.
Collapse
Affiliation(s)
- Bing Liu
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, 226001, China.
| | - Hanyu Tang
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, 226001, China
| | - Qian Liu
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, 226001, China
| | - Wenwen Wang
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Haitao Li
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, 226001, China
| | - Shiya Zheng
- Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Fei Sun
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, 226001, China.
| | - Xiangwei Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China; Southeast University Shenzhen Research Institute, Shenzhen, 518000, China.
| |
Collapse
|
33
|
Peng D, Hu Z, Zheng W, Pang X, Wang D, Fan M. Ameliorating SERS Sensitivity for Pesticide Malathion Detection with Synergistic Boosting Effect by Hydrogen Cations and Chloride Anions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15656-15661. [PMID: 36482674 DOI: 10.1021/acs.langmuir.2c02463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Although SERS has been widely recognized as one of the highly sensitive analytical methods that can be deployed in the field with high sensitivity and short analysis time, reports regarding the fast determination of malathion at low concentrations are still scarce. Here, in this work, the solution pH and various halogen co-adsorbates were explored to promote the SERS signal of malathion using the citrate-reduced Ag NPs. It was found that chloride anions were the most efficient signal booster among the three halogen ions screened. Further examination of the SERS profile of the malathion in the presence of different halogen species found that the stretching mode of the P-S bond shifted to a lower frequency with Cl-, which may imply closer (and stronger) binding of malathion to the Ag NPs. This concurs with literature reports that halogen ions could facilitate the adsorption of a certain analyte onto the SERS substrate. In addition, hydrogen ions showed a synergistic effect on SERS signal enhancement when combined with chloride anions. At optimum conditions, the malathion could be detected with a limit of detection (LOD) of 3 ppb. Malathion-spiked cherry tomatoes and oranges were analyzed, and the recovery rates were found to be within 85-100%.
Collapse
Affiliation(s)
- Dandan Peng
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Zhangmei Hu
- The Analytical and Testing Center of Southwest Jiaotong University, Chengdu 610031, China
| | - Wenxu Zheng
- School of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Xiaobing Pang
- College of the Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dongmei Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Meikun Fan
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
34
|
Premachandran S, Haldavnekar R, Das S, Venkatakrishnan K, Tan B. DEEP Surveillance of Brain Cancer Using Self-Functionalized 3D Nanoprobes for Noninvasive Liquid Biopsy. ACS NANO 2022; 16:17948-17964. [PMID: 36112671 DOI: 10.1021/acsnano.2c04187] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Brain cancers, one of the most fatal malignancies, require accurate diagnosis for guided therapeutic intervention. However, conventional methods for brain cancer prognosis (imaging and tissue biopsy) face challenges due to the complex nature and inaccessible anatomy of the brain. Therefore, deep analysis of brain cancer is necessary to (i) detect the presence of a malignant tumor, (ii) identify primary or secondary origin, and (iii) find where the tumor is housed. In order to provide a diagnostic technique with such exhaustive information here, we attempted a liquid biopsy-based deep surveillance of brain cancer using a very minimal amount of blood serum (5 μL) in real time. We hypothesize that holistic analysis of serum can act as a reliable source for deep brain cancer surveillance. To identify minute amounts of tumor-derived material in circulation, we synthesized an ultrasensitive 3D nanosensor, adopted SERS as a diagnostic methodology, and undertook a DEEP neural network-based brain cancer surveillance. Detection of primary and secondary tumor achieved 100% accuracy. Prediction of intracranial tumor location achieved 96% accuracy. This modality of using patient sera for deep surveillance is a promising noninvasive liquid biopsy tool with the potential to complement current brain cancer diagnostic methodologies.
Collapse
Affiliation(s)
- Srilakshmi Premachandran
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Rupa Haldavnekar
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Sunit Das
- Scientist, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Institute of Medical Sciences, Neurosurgery, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Krishnan Venkatakrishnan
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario M5B 1W8, Canada
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Bo Tan
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, Ontario M5B 1W8, Canada
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University (formerly Ryerson University) and St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Nano Characterization Laboratory, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
- Nano-Bio Interface facility, Faculty of Engineering and Architectural Sciences, Toronto Metropolitan University (formerly Ryerson University), 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| |
Collapse
|
35
|
Zhang H, Zhao N, Li H, Wang M, Hao X, Sun M, Li X, Yang Z, Yu H, Tian C, Wang C. 3D Flexible SERS Substrates Integrated with a Portable Raman Analyzer and Wireless Communication for Point-of-Care Application. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51253-51264. [PMID: 36322068 DOI: 10.1021/acsami.2c12201] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
With the development of flexible surface-enhanced Raman spectroscopy (SERS) substrates that can realize rapid in situ detection, the SERS technique accompanied by miniaturized Raman spectrometers holds great promise for point-of-care testing (POCT). For an in situ detection strategy, constructing high-performance flexible and transparent SERS substrates through a facile and cost-effective fabrication method is critically important. Herein, we present a simple method for fabricating a large-area flexible and transparent SERS substrate consisting of a silver-nanoparticle-grafted wrinkled polydimethylsiloxane (Ag NPs@W-PDMS) film, using a surface-wrinkling technique and magnetron sputtering technology. By characterizing rhodamine 6G as a probe molecule with a portable Raman spectrometer, the flexible SERS substrate shows a low detection limit (10-7 M), a high enhancement factor (6.11 × 106), and excellent spot-spot and batch-batch reproducibilities (9.0% and 4.2%, respectively). Moreover, the Ag NPs@W-PDMS substrate maintains high SERS activity under bending and twisting mechanical deformations of over 100 cycles, as well as storage in air for 30 days. To evaluate its practical feasibility, in situ detection of malachite green on apple and tomato peels is performed with a detection limit of 10-6 M. In addition, for point-of-care analysis, we develop a wireless transmission system to transmit the collected SERS spectral data to a computer in real time for signal processing and analysis. Therefore, the proposed Ag NPs@W-PDMS SERS substrate fabricated through a simple and mass-producible method, combined with the utilization of a portable Raman spectrometer and wireless communication, offers a promising opportunity to extend the SERS technique from the laboratory to POCT applications.
Collapse
Affiliation(s)
- Houjia Zhang
- Key Laboratory of Optical Communication Science and Technology of Shandong Province, School of Physical Science and Information Engineering, Liaocheng University, Liaocheng 252000, People's Republic of China
| | - Nan Zhao
- Key Laboratory of Optical Communication Science and Technology of Shandong Province, School of Physical Science and Information Engineering, Liaocheng University, Liaocheng 252000, People's Republic of China
| | - Hefu Li
- Key Laboratory of Optical Communication Science and Technology of Shandong Province, School of Physical Science and Information Engineering, Liaocheng University, Liaocheng 252000, People's Republic of China
| | - Minghong Wang
- Key Laboratory of Optical Communication Science and Technology of Shandong Province, School of Physical Science and Information Engineering, Liaocheng University, Liaocheng 252000, People's Republic of China
| | - Xuehui Hao
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, People's Republic of China
| | - Meng Sun
- Key Laboratory of Optical Communication Science and Technology of Shandong Province, School of Physical Science and Information Engineering, Liaocheng University, Liaocheng 252000, People's Republic of China
| | - Xiaojian Li
- Key Laboratory of Optical Communication Science and Technology of Shandong Province, School of Physical Science and Information Engineering, Liaocheng University, Liaocheng 252000, People's Republic of China
| | - Zhenshan Yang
- Key Laboratory of Optical Communication Science and Technology of Shandong Province, School of Physical Science and Information Engineering, Liaocheng University, Liaocheng 252000, People's Republic of China
| | - Huishan Yu
- Key Laboratory of Optical Communication Science and Technology of Shandong Province, School of Physical Science and Information Engineering, Liaocheng University, Liaocheng 252000, People's Republic of China
| | - Cunwei Tian
- Key Laboratory of Optical Communication Science and Technology of Shandong Province, School of Physical Science and Information Engineering, Liaocheng University, Liaocheng 252000, People's Republic of China
| | - Changzheng Wang
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, People's Republic of China
| |
Collapse
|
36
|
Yan X, Shi H, Jia P, Sun X. LSPR Tunable Ag@PDMS SERS Substrate for High Sensitivity and Uniformity Detection of Dye Molecules. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3894. [PMID: 36364670 PMCID: PMC9658649 DOI: 10.3390/nano12213894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
At present, the use of efficient and cost-effective methods to construct plasmonic surface-enhanced Raman scattering (SERS) substrates of high sensitivity, uniformity and reproducibility is still crucial to satisfy the practical application of SERS technology. In this paper, a localized surface plasmonic resonance (LSPR) tunable flexible Ag@PDMS substrate was successfully constructed by the low-cost bio-template-stripping method and magnetron sputtering technology. The theory proves that the local electromagnetic field enhancement and "hot spot" distribution is adjustable by modifying the size of the optical cavity unit in the periodicity nanocavity array structure. Experimentally, using rhodamine 6G (R6G) as the target analyte, the SERS performance of optimal Ag@PDMS substrate (Ag film thickness for 315 nm) was researched in detail, which the minimum detection limit was 10-11 M and the enhancement factor was calculated as 8.03 × 108, indicating its high sensitivity. The relative standard deviation (RSD) was calculated as 10.38%, showing that the prepared substrate had excellent electromagnetic field enhancement uniformity. At last, the trace detection of Crystal violet (CV, LOD = 10-9 M) and the simultaneous detection of three common dyes (R6G, CV and Methylene blue (MB) mixture) were also realized. This result suggests that the SERS substrate has a good application prospect in the quantitative and qualitative detection of dye molecules.
Collapse
Affiliation(s)
- Xiaoya Yan
- School of Physics, Harbin Institute of Technology, Harbin 150001, China
- Key Laboratory of Micro-Nano Optoelectronic Information System of Ministry of Industry and Information Technology, Harbin 150001, China
- Key Laboratory of Micro-Optics and Photonic Technology of Heilongjiang Province, Harbin Institute of Technology, Harbin 150001, China
| | - Hongyan Shi
- School of Physics, Harbin Institute of Technology, Harbin 150001, China
- Key Laboratory of Micro-Nano Optoelectronic Information System of Ministry of Industry and Information Technology, Harbin 150001, China
- Key Laboratory of Micro-Optics and Photonic Technology of Heilongjiang Province, Harbin Institute of Technology, Harbin 150001, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Pengxue Jia
- School of Physics, Harbin Institute of Technology, Harbin 150001, China
- Key Laboratory of Micro-Nano Optoelectronic Information System of Ministry of Industry and Information Technology, Harbin 150001, China
- Key Laboratory of Micro-Optics and Photonic Technology of Heilongjiang Province, Harbin Institute of Technology, Harbin 150001, China
| | - Xiudong Sun
- School of Physics, Harbin Institute of Technology, Harbin 150001, China
- Key Laboratory of Micro-Nano Optoelectronic Information System of Ministry of Industry and Information Technology, Harbin 150001, China
- Key Laboratory of Micro-Optics and Photonic Technology of Heilongjiang Province, Harbin Institute of Technology, Harbin 150001, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
37
|
Wang X, Chen C, Waterhouse GIN, Qiao X, Xu Z. Ultra-sensitive detection of streptomycin in foods using a novel SERS switch sensor fabricated by AuNRs array and DNA hydrogel embedded with DNAzyme. Food Chem 2022; 393:133413. [PMID: 35751206 DOI: 10.1016/j.foodchem.2022.133413] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 11/18/2022]
Abstract
Detrimental health effects caused by the intake of food contaminated with streptomycin have drawn concerns on effective monitoring using sensitive and selective methods. In this work, a DNA hydrogel surface enhanced Raman spectroscopy (SERS) sensor was successfully developed for the ultrasensitive determination of streptomycin residues in foods. The sensor used a DNA hydrogel containing DNAzyme (Pb-DNAzyme), triggering release of the Raman reporter 4-mercaptobenzonitrile, which was detected using a gold nanorods (AuNRs) array. The linear range of the sensor was 0.01-150 nM and the limit of detection was 4.85 × 10-3 nM. Tests conducted with four streptomycin structural analogues confirmed the sensor was specific. Milk and honey samples spiked with streptomycin were analysed, resulting in standard recoveries in the range 98.2-117.3%. These findings demonstrated that such a sensor can be used for ultrasensitive detection of streptomycin in foods.
Collapse
Affiliation(s)
- Ximo Wang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Chen Chen
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | | | - Xuguang Qiao
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, People's Republic of China
| | - Zhixiang Xu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, People's Republic of China.
| |
Collapse
|
38
|
Wu HY, Lin HC, Liu YH, Chen KL, Wang YH, Sun YS, Hsu JC. Highly Sensitive, Robust, and Recyclable TiO 2/AgNP Substrate for SERS Detection. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196755. [PMID: 36235289 PMCID: PMC9571145 DOI: 10.3390/molecules27196755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/26/2022]
Abstract
Label-free biosensors provide an important platform for detecting chemical and biological substances without needing extra labeling agents. Unlike surface-based techniques such as surface plasmon resonance (SPR), interference, and ellipsometry, surface-enhanced Raman spectroscopy (SERS) possesses the advantage of monitoring analytes both on surfaces and in solutions. Increasing the SERS enhancement is crucial to preparing high-quality substrates without quickly losing their stability, sensitivity, and repeatability. However, fabrication methods based on wet chemistry, nanoimprint lithography, spark discharge, and laser ablation have drawbacks of waste of time, complicated processes, or nonreproducibility in surface topography. This study reports the preparation of recyclable TiO2/Ag nanoparticle (AgNP) substrates by using simple arc ion plating and direct-current (dc) magnetron sputtering technologies. The deposited anatase-phased TiO2 ensured the photocatalytic degradation of analytes. By measuring the Raman spectra of rhodamine 6G (R6G) in titrated concentrations, a limit of detection (LOD) of 10−8 M and a SERS enhancement factor (EF) of 1.01 × 109 were attained. Self-cleaning was performed via UV irradiation, and recyclability was achieved after at least five cycles of detection and degradation. The proposed TiO2/AgNP substrates have the potential to serve as eco-friendly SERS enhancers for label-free detection of various chemical and biological substances.
Collapse
Affiliation(s)
- Hsing-Yu Wu
- System Manufacturing Center, National Chung-Shan Institute of Science and Technology, New Taipei City 237209, Taiwan
- Center for Astronomical Physics and Engineering, Department of Optics and Photonics, National Central University, Taoyuan City 320317, Taiwan
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Hung-Chun Lin
- Department of Physics, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Yung-Hsien Liu
- System Manufacturing Center, National Chung-Shan Institute of Science and Technology, New Taipei City 237209, Taiwan
- Department of Chemical and Materials Engineering, Chung Cheng Institute of Technology, National Defense University, Taoyuan City 335009, Taiwan
| | - Kai-Lin Chen
- System Manufacturing Center, National Chung-Shan Institute of Science and Technology, New Taipei City 237209, Taiwan
| | - Yu-Hsun Wang
- Department of Physics, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Yung-Shin Sun
- Department of Physics, Fu Jen Catholic University, New Taipei City 242062, Taiwan
- Correspondence: (Y.-S.S.); (J.-C.H.)
| | - Jin-Cherng Hsu
- Department of Physics, Fu Jen Catholic University, New Taipei City 242062, Taiwan
- Graduate Institute of Applied Science and Engineering, Fu Jen Catholic University, New Taipei City 242062, Taiwan
- Correspondence: (Y.-S.S.); (J.-C.H.)
| |
Collapse
|
39
|
Uslu O, Osman Ay K, Dikmen G. Synthesis of silver nanowires and their utilization as a SERS substrate for the detection of Lidocaine. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
40
|
Atta S, Vo-Dinh T. Bimetallic Gold Nanostars Having High Aspect Ratio Spikes for Sensitive Surface-Enhanced Raman Scattering Sensing. ACS APPLIED NANO MATERIALS 2022; 5:12562-12570. [PMID: 36185168 PMCID: PMC9513749 DOI: 10.1021/acsanm.2c02234] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/17/2022] [Indexed: 05/09/2023]
Abstract
There has been increasing interest in evolution of plasmonic nanoplatforms based on noble metal nanoparticles to achieve ultrasensitive detection of trace analyte molecules through solution-based surface-enhanced Raman spectroscopy (SERS). This work presents a surfactant-free synthesis method of bimetallic gold nanostars coated with silver (BGNS-Ag) having sharp, high aspect-ratio spikes for achieving ultrahigh detection sensitivity and high reproducibility. Specifically, the unique BGNS-Ag platform combines both the strong SERS enhancement effects of gold nanostar sharp spikes and the high scattering feature of the silver-gold bimetallic structure. To achieve SERS reproducibility, this solution-based SERS measurement requires minimal sample preparation without addition of any external reagents, which can cause irregular aggregation of nanoparticles and reduce the reproducibility of SERS measurements. Moreover, we have streamlined our SERS sensing procedure by using standard well-plates and a portable Raman device for SERS measurements, which could be utilized for rapid on-site detection. This solution-based SERS performance was studied using methylene blue (MB) as a model analyte system. The detection limit of MB was as low as 42 pM, indicating high sensitivity of detection using BGNS-Ag. To illustrate the usefulness for environmental sensing, we showed that the SERS sensor can detect a pesticide, thiram, at a concentration as low as 0.8 nM. This study demonstrated that the BGNS-Ag system could serve as an effective and versatile plasmonic-active platform for reproducible, fast, and in-field detection of small organic analytes at trace levels.
Collapse
Affiliation(s)
- Supriya Atta
- Fitzpatrick
Institute for Photonics, Duke University, Durham, North Carolina 27708, United States
- Department
of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Tuan Vo-Dinh
- Fitzpatrick
Institute for Photonics, Duke University, Durham, North Carolina 27708, United States
- Department
of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
41
|
Li F, Shan B, Zhao X, Ji C, Li Z, Yu J, Xu S, Jiao Y, Zhang C, Man B. Plasmonic enhanced piezoelectric photoresponse with flexible PVDF@Ag-ZnO/Au composite nanofiber membranes. OPTICS EXPRESS 2022; 30:32509-32527. [PMID: 36242311 DOI: 10.1364/oe.469182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
The coordination of piezoelectric and plasmonic effects to regulate the separation and migration of photo-generated carriers is still a significant method to improve the performance of visible-light photoresponse. Herein, we propose the PVDF@Ag-ZnO/Au composite nanofiber membranes utilizing the piezoelectric and plasmonic effects to promote the photocatalytic degradation of organic dyes. Here, ZnO nanorods can generate a built-in electric field under vibration to separate electron-hole pairs. The Schottky junction formed by noble metal/semiconductor can not only inhibit the recombination of photo-generated carriers and accelerate the migration of carriers, but also enhance the utilization of visible light. In addition, the structure has excellent flexibility and easy recycling characteristics. We demonstrate that the plasmonic effect of noble metal can enhance the light response of membranes and broaden light absorption from ultraviolet to visible light region. With the help of the surface-enhanced Raman scattering (SERS), modulation effects of the piezoelectric effect on light response is proved. For catalytic processes, rhodamine B (98.8%) can be almost completely degraded using PVDF@Ag-ZnO/Au within 120 minutes in the piezoelectric photocatalysis process, which is 2.2 and 2.8 times higher than photocatalysis and piezoelectric catalysis, respectively. This work provides a promising strategy for harnessing solar and mechanical energy.
Collapse
|
42
|
Wang BX, Duan G, Xu W, Xu C, Jiang J, Yang Z, Wu Y, Pi F. Flexible surface-enhanced Raman scatting substrates: recent advances in their principles, design strategies, diversified material selections and applications. Crit Rev Food Sci Nutr 2022; 64:472-516. [PMID: 35930338 DOI: 10.1080/10408398.2022.2106547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Surface-enhanced Raman scattering (SERS) is widely used as a powerful analytical technology in cutting-edge areas such as food safety, biology, chemistry, and medical diagnosis, providing ultra-fast, ultra-sensitive, nondestructive characterization and achieving ultra-high detection sensitivity even down to the single-molecule level. Development of Raman spectroscopy is strongly dependent on high-performance SERS substrates, which have long evolved from the early days of rough metal electrodes to periodic nanopatterned arrays building on solid supporting substrates. For rigid SERS substrates, however, their applications are restricted by sophisticated pretreatments for detecting solid samples with non-planar surfaces. It is therefore essential to reassert the principles in constructing flexible SERS substrates. Herein, we comprehensively review the state-of-the-art in understanding, preparing and using flexible SERS. The basic mechanisms behind the flexible SERS are briefly outlined, typical design strategies are highlighted and diversified selection of materials in preparing flexible SERS substrates are reviewed. Then the recent achievements of various interdisciplinary applications based on flexible SERS substrates are summarized. Finally, the challenges and perspectives for future evolution of flexible SERS and their applications are demonstrated. We propose new research directions focused on stimulating the real potential of SERS as an advanced analytical technique for commercialization.
Collapse
Affiliation(s)
- Ben-Xin Wang
- School of Science, Jiangnan University, Wuxi, China
| | - Guiyuan Duan
- School of Science, Jiangnan University, Wuxi, China
| | - Wei Xu
- School of Science, Jiangnan University, Wuxi, China
| | - Chongyang Xu
- School of Science, Jiangnan University, Wuxi, China
| | | | | | - Yangkuan Wu
- School of Science, Jiangnan University, Wuxi, China
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
43
|
Su W, Zhang H, Yang S, Xu Y, Zhang C, Cheng X, Zhou C. One-pot synthesis of multifunctional silicone elastomer: ring-opening copolymerization of D4 and Dual-D4Vi. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Li J, Li Y, Chen S, Duan W, Kong X, Wang Y, Zhou L, Li P, Zhang C, Du L, Wang C. Highly Sensitive Exosome Detection for Early Diagnosis of Pancreatic Cancer Using Immunoassay Based on Hierarchical Surface-Enhanced Raman Scattering Substrate. SMALL METHODS 2022; 6:e2200154. [PMID: 35460217 DOI: 10.1002/smtd.202200154] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Exosomes have emerged as potential biomarkers for pancreatic cancer (PaC). However, it is still challenging to get quantitative detection of exosomes with the specific surface receptors. In this study, a highly sensitive detection system is first constructed for the direct quantitation of specific exosomes in real samples using hierarchical surface-enhanced Raman scattering substrate (H-SERS substrate) and rapid enrichment strategy magnetic beads @ exosomes @ SERS detection probes (MEDP). It is found that the detection system (MEDP @ H-SERS substrate) could provide a 3.5 times higher SERS intensity compared with MEDP sandwich immunocomplex only. Moreover, LRG1-positive exosomes (LRG1-Exos) and GPC1-positive exosomes (GPC1-Exos) are chosen to distinguish PaC through exosome proteomics and database screening. The lower limit of detection (LOD) is 15 particles µL-1 using the MEDP @ H-SERS substrate. Significantly, the detection in clinical samples shows that the innovative combination of LRG1-Exos and GPC1-Exos could improve the diagnostic efficiency of PaC, with an area under the operating characteristic curve (AUC) of 0.95. Even for the early-stage PaC, the diagnostic accuracy is still high (AUC = 0.95). Collectively, the findings indicate that the MEDP @ H-SERS substrate has great potential for the early diagnosis of PaC.
Collapse
Affiliation(s)
- Juan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247, Beiyuan Street, Jinan, 250033, China
| | - Yanru Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247, Beiyuan Street, Jinan, 250033, China
| | - Shuai Chen
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, No. 17923, Jingshi Road Jinan, Shandong, 250061, China
| | - Weili Duan
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247, Beiyuan Street, Jinan, 250033, China
| | - Xue Kong
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247, Beiyuan Street, Jinan, 250033, China
| | - Yunshan Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247, Beiyuan Street, Jinan, 250033, China
| | - Lianqun Zhou
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No. 88, Keling Road Suzhou, Suzhou, 215163, China
| | - Peilong Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247, Beiyuan Street, Jinan, 250033, China
| | - Chengpeng Zhang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, No. 17923, Jingshi Road Jinan, Shandong, 250061, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247, Beiyuan Street, Jinan, 250033, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, The Second Hospital of Shandong University, No. 247, Beiyuan Street, Jinan, 250033, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, The Second Hospital of Shandong University, No. 247, Beiyuan Street, Jinan, 250033, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247, Beiyuan Street, Jinan, 250033, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, The Second Hospital of Shandong University, No. 247, Beiyuan Street, Jinan, 250033, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, The Second Hospital of Shandong University, No. 247, Beiyuan Street, Jinan, 250033, China
| |
Collapse
|
45
|
Ji J, Zhang C, Yang S, Liu Y, Wang J, Shi Z. High Sensitivity and a Wide Sensing Range Flexible Strain Sensor Based on the V-Groove/Wrinkles Hierarchical Array. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24059-24066. [PMID: 35544950 DOI: 10.1021/acsami.2c04773] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Flexible strain sensors occupying a large part of human body detection and wearable electronics, which have a wide sensing range and high sensitivity, are crucial in fully monitoring human motion signals. This study proposed a strategy to construct flexible strain sensors based on the V-groove/wrinkles hierarchical array. The V-groove array was prepared on a polydimethylsiloxane (PDMS) substrate through mold transfer printing. The gold film was sputtered on the prestretching PDMS substrate, and the V-groove/wrinkles hierarchical array was formed after strain release. Compared with the sensors based on single-scale wrinkle structures and a V-groove array, the fabricated strain sensor with the hierarchical array showed high sensitivity (maximum gauge factor up to 2,557.71) and a wide sensing range (up to 45%). In addition, the dynamic characteristics of the sensor were investigated in detail, indicating that the sensor had a fast response (less than 130 ms), a low detection limit (0.1% strain), and good stability (almost no performance loss after 10,000 cycles). In practical applications, the sensor was used to detect sizable physical motion and weak physiological signals, demonstrating great potential application value in human motion detection. This study could provide new ideas for preparing high-performance flexible strain sensors.
Collapse
Affiliation(s)
- Jin Ji
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Chengpeng Zhang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
- National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan, Shandong 250061, China
| | - Shaohua Yang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Yongzhi Liu
- Shandong Institute of Nonmetallic Materials, Jinan 250031, Shandong, China
| | - Jilai Wang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
- National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan, Shandong 250061, China
| | - Zhenyu Shi
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
- National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan, Shandong 250061, China
| |
Collapse
|
46
|
Rathod J, Byram C, Kanaka RK, Sree Satya Bharati M, Banerjee D, Akkanaboina M, Soma VR. Hybrid Surface-Enhanced Raman Scattering Substrates for the Trace Detection of Ammonium Nitrate, Thiram, and Nile Blue. ACS OMEGA 2022; 7:15969-15981. [PMID: 35571848 PMCID: PMC9096967 DOI: 10.1021/acsomega.2c01095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
We report the fabrication and performance evaluation of hybrid surface-enhanced Raman scattering (SERS) substrates involving laser ablation and chemical routes for the trace-level detection of various analyte molecules. Initially, picosecond laser ablation experiments under ambient conditions were performed on pure silver (Ag) and gold (Au) substrates to achieve distinct nanosized features on the surface. The properties of the generated surface features on laser-processed portions of Ag/Au targets were systematically analyzed using UV-visible reflection and field emission scanning electron microscopy studies. Later, hybrid-SERS substrates were achieved by grafting the chemically synthesized Au nanostars on the plain and laser-processed plasmonic targets. Subsequently, we employed these as SERS platforms for the detection of a pesticide (thiram), a molecule used in explosive compositions [ammonium nitrate (AN)], and a dye molecule [Nile blue (NB)]. A comparative SERS study between the Au nanostar-decorated bare glass, silicon, Ag, Au, and laser-processed Ag and Au targets has been established. Our studies and the obtained data have unambiguously determined that laser-processed Ag structures have demonstrated reasonably good enhancements in the Raman signal intensities for distinct analytes among other substrates. Importantly, the fabricated hybrid SERS substrate of "Au nanostar-decorated laser-processed Ag" exhibited up to eight times enhancement in the SERS intensity compared to laser-processed Ag (without nanostars), as well as up to three times enhancement than the Au nanostar-loaded plain Ag substrates. Additionally, the achieved detection limits from the Au nanostar-decorated laser-processed Ag SERS substrate were ∼50 pM, ∼5 nM, and ∼5 μM for NB, thiram, and AN, respectively. The estimated enhancement factors accomplished from the Au nanostar-decorated laser-processed Ag substrate were ∼106, ∼106, and ∼104 for NB, thiram, and AN, respectively.
Collapse
Affiliation(s)
- Jagannath Rathod
- Advanced
Centre of Research in High Energy Materials (ACRHEM), University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Chandu Byram
- Advanced
Centre of Research in High Energy Materials (ACRHEM), University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Ravi Kumar Kanaka
- School
of Physics, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Moram Sree Satya Bharati
- Advanced
Centre of Research in High Energy Materials (ACRHEM), University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Dipanjan Banerjee
- Advanced
Centre of Research in High Energy Materials (ACRHEM), University of Hyderabad, Hyderabad 500046, Telangana, India
| | | | - Venugopal Rao Soma
- Advanced
Centre of Research in High Energy Materials (ACRHEM), University of Hyderabad, Hyderabad 500046, Telangana, India
| |
Collapse
|
47
|
Exosome detection via surface-enhanced Raman spectroscopy for cancer diagnosis. Acta Biomater 2022; 144:1-14. [PMID: 35358734 DOI: 10.1016/j.actbio.2022.03.036] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/10/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
As nanoscale extracellular vesicles, exosomes are secreted by various cell types, and they are widely distributed in multiple biological fluids. Studies have shown that tumor-derived exosomes can carry a variety of primary tumor-specific molecules, which may represent a novel tool for the early detection of cancer. However, the clinical translation of exosomes remains a challenge due to the requirement of large quantities of samples when enriching the cancer-related exosomes in biological fluids, the insufficiency of traditional techniques for exosome subpopulations, and the complex exosome isolation of the current commercially available exosome phenotype profiling approaches. The evolving surface-enhanced Raman scattering (SERS) technology, with properties of unique optoelectronics, easy functionalization, and the particular interaction between light and nanoscale metallic materials, can achieve sensitive detection of exosomes without large quantities of samples and multiplexed phenotype profiling, providing a new mode of real-time and noninvasive analysis for cancer patients. In the present review, we mainly discussed exosome detection based on SERS, especially SERS immunoassay. The basic structure and function of exosomes were firstly introduced. Then, recent studies using the SERS technique for cancer detection were critically reviewed, which mainly included various SERS substrates, biological modification of SERS substrates, SERS-based exosome detection, and the combination of SERS and other technologies for cancer diagnosis. This review systematically discussed the essential aspects, limitations, and considerations of applying SERS technology in the detection and analysis of cancer-derived exosomes, which could provide a valuable reference for the early diagnosis of cancer through SERS technology. STATEMENT OF SIGNIFICANCE: Surface-enhanced Raman scattering (SERS) has been applied to exosomes detection to obtain better diagnostic results. In past three years, several reviews have been published in exosome detection, which were narrowly focus on methods of exosome detection. Selection and surface functionalization of the substrate and the combination detection with different methods based on SERS will provide new strategies for the detection of exosomes. This review will focus on the above aspects. This emerging detection method is constantly evolving and contributing to the early discovery of diseases in the future.
Collapse
|
48
|
Jiao S, Liu Y, Wang S, Wang S, Ma F, Yuan H, Zhou H, Zheng G, Zhang Y, Dai K, Liu C. Face-to-Face Assembly of Ag Nanoplates on Filter Papers for Pesticide Detection by Surface-Enhanced Raman Spectroscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1398. [PMID: 35564107 PMCID: PMC9104380 DOI: 10.3390/nano12091398] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) technology has been regarded as a most efficient and sensitive strategy for the detection of pollutants at ultra-low concentrations. Fabrication of SERS substrates is of key importance in obtaining the homogeneous and sensitive SERS signals. Cellulose filter papers loaded with plasmonic metal NPs are well known as cost-effective and efficient paper-based SERS substrates. In this manuscript, face-to-face assembly of silver nanoplates via solvent-evaporation strategies on the cellulose filter papers has been developed for the SERS substrates. Furthermore, these developed paper-based SERS substrates are utilized for the ultra-sensitive detection of the rhodamine 6G dye and thiram pesticides. Our theoretical studies reveal the creation of high density hotspots, with a huge localized and enhanced electromagnetic field, near the corners of the assembled structures, which justifies the ultrasensitive SERS signal in the fabricated paper-based SERS platform. This work provides an excellent paper-based SERS substrate for practical applications, and one which can also be beneficial to human health and environmental safety.
Collapse
Affiliation(s)
- Sulin Jiao
- School of Materials Science and Engineering, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou 450001, China; (S.J.); (S.W.); (C.L.)
- Henan Key Laboratory of Advanced Nylon Materials and Application (Zhengzhou University), Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Material Physics, School of Physics and Microelectronics, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China; (Y.L.); (F.M.)
| | - Yixin Liu
- Key Laboratory of Material Physics, School of Physics and Microelectronics, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China; (Y.L.); (F.M.)
| | - Shenli Wang
- School of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, China;
| | - Shuo Wang
- School of Materials Science and Engineering, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou 450001, China; (S.J.); (S.W.); (C.L.)
- Henan Key Laboratory of Advanced Nylon Materials and Application (Zhengzhou University), Zhengzhou University, Zhengzhou 450001, China
| | - Fengying Ma
- Key Laboratory of Material Physics, School of Physics and Microelectronics, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China; (Y.L.); (F.M.)
| | - Huiyu Yuan
- Henan Key Laboratory of High Temperature Functional Ceramics, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China;
| | - Haibo Zhou
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Guangchao Zheng
- Key Laboratory of Material Physics, School of Physics and Microelectronics, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China; (Y.L.); (F.M.)
| | - Yuan Zhang
- Key Laboratory of Material Physics, School of Physics and Microelectronics, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China; (Y.L.); (F.M.)
| | - Kun Dai
- School of Materials Science and Engineering, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou 450001, China; (S.J.); (S.W.); (C.L.)
- Henan Key Laboratory of Advanced Nylon Materials and Application (Zhengzhou University), Zhengzhou University, Zhengzhou 450001, China
| | - Chuntai Liu
- School of Materials Science and Engineering, Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou 450001, China; (S.J.); (S.W.); (C.L.)
- Henan Key Laboratory of Advanced Nylon Materials and Application (Zhengzhou University), Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
49
|
Influence of Material Microstructure on Machining Characteristics of OFHC Copper C102 in Orthogonal Micro-Turning. Processes (Basel) 2022. [DOI: 10.3390/pr10040741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Micro-cutting is different from conventional cutting in its mechanics. The workpiece material is not considered to be homogeneous in the micro-cutting process. As a result, it is critical to comprehend how microstructure affects surface integrity, cutting forces, and chip formation. In this paper, we experimented with micro-turning on oxygen-free high-conductivity (OFHC) copper with different microstructures after annealing. Feed rate parameters were smaller than, larger than, and equal to the grain size, respectively. Experimental results show that when the feed rates are equivalent to the grain size, the surface roughness of the machined surface is low and the width of the flake structure on the free surface of chips is minimal, and the explanations for these occurrences are connected to dislocation slip.
Collapse
|
50
|
Terry LR, Sanders S, Potoff RH, Kruel JW, Jain M, Guo H. Applications of surface-enhanced Raman spectroscopy in environmental detection. ANALYTICAL SCIENCE ADVANCES 2022; 3:113-145. [PMID: 38715640 PMCID: PMC10989676 DOI: 10.1002/ansa.202200003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 06/11/2024]
Abstract
As the human population grows, the anthropogenic impacts from various agricultural and industrial processes produce unwanted contaminants in the environment. The accurate, sensitive and rapid detection of such contaminants is vital for human health and safety. Surface-enhanced Raman spectroscopy (SERS) is a valuable analytical tool with wide applications in environmental contaminant monitoring. The aim of this review is to summarize recent advancements within SERS research as it applies to environmental detection, with a focus on research published or accessible from January 2021 through December 2021 including early-access publications. Our goal is to provide a wide breadth of information that can be used to provide background knowledge of the field, as well as inform and encourage further development of SERS techniques in protecting environmental quality and safety. Specifically, we highlight the characteristics of effective SERS nanosubstrates, and explore methods for the SERS detection of inorganic, organic, and biological contaminants including heavy metals, pharmaceuticals, plastic particles, synthetic dyes, pesticides, viruses, bacteria and mycotoxins. We also discuss the current limitations of SERS technologies in environmental detection and propose several avenues for future investigation. We encourage researchers to fill in the identified gaps so that SERS can be implemented in a real-world environment more effectively and efficiently, ultimately providing reliable and timely data to help and make science-based strategies and policies to protect environmental safety and public health.
Collapse
Affiliation(s)
- Lynn R. Terry
- Department of ChemistryState University of New York at BinghamtonBinghamtonNew YorkUSA
| | - Sage Sanders
- Department of ChemistryState University of New York at BinghamtonBinghamtonNew YorkUSA
| | - Rebecca H. Potoff
- Department of ChemistryState University of New York at BinghamtonBinghamtonNew YorkUSA
| | - Jacob W. Kruel
- Department of ChemistryState University of New York at BinghamtonBinghamtonNew YorkUSA
| | - Manan Jain
- Department of ChemistryState University of New York at BinghamtonBinghamtonNew YorkUSA
| | - Huiyuan Guo
- Department of ChemistryState University of New York at BinghamtonBinghamtonNew YorkUSA
| |
Collapse
|