1
|
He R, Zhao L, Yan W, Guo Y, Dong C, Fan L. Detecting Perfluorooctanoic Acid in Environmental Water Samples by Design of a Novel and Efficient Photoelectrochemical Sensing Platform. ACS Sens 2025; 10:3746-3756. [PMID: 40326235 DOI: 10.1021/acssensors.5c00649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Contrapose the frequent occurrence of perfluorooctanoic acid (PFOA) in the environment and the serious threat to human health, it is urgent to establish effective analytical methods for monitoring PFOA levels in the environment. In this work, a novel and efficient PEC sensing platform was developed for the detection of PFOA based on CuSe/CdSe/TiO2 nanotube arrays (NTs) composites as the photoactive material and anti-PFOA aptamer as the biorecognition element. First, CdSe quantum dots (QDs) with a narrow band gap were decorated on TiO2 NTs surface. Furthermore, CuSe/CdSe/TiO2 NTs composites with a p-n heterojunction structure were designed through modifying p-type semiconductor CuSe on CdSe QDs-decorated TiO2 NTs. The as-prepared composites greatly enhanced visible light absorption and promoted charge separation, exhibiting good PEC activity. Attributed to the specific recognition of aptamer molecules immobilized on the composites toward PFOA, the formed PFOA-aptamer complexes introduced significant steric hindrance at the sensing interface, thereby impeding electron transfer and reducing the photocurrent density, and the variation in photocurrent density enabled quantitative determination of PFOA. The constructed PEC sensing platform has high sensitivity and specificity to PFOA, with a detection limit of 0.053 pg/L. Furthermore, the performance of the sensor in various environmental water samples was studied, yielding satisfactory results. Therefore, a simple and efficient PEC sensing technique has been established, providing a new solution for highly sensitive and specific detection of PFOA in the environment.
Collapse
Affiliation(s)
- Ruoxi He
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Linlin Zhao
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Wenjun Yan
- Analytical Instrumentation Center, Institute of Coal Chemistry, CAS, Taiyuan 030001, P. R. China
| | - Yujing Guo
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Lifang Fan
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| |
Collapse
|
2
|
Mohammadi S, Sandoval-Pauker C, Dorado ZN, Senftle TP, Pankow R, Sharifan H. Fluorescent Sodium Alginate Hydrogel-Carbon Dots Sensor for Detecting Perfluorooctanoic Acid in Potable Water. Anal Chem 2025; 97:10075-10084. [PMID: 40318149 DOI: 10.1021/acs.analchem.5c01991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Per- and polyfluoroalkyl substances (PFASs), especially perfluorooctanoic acid (PFOA), are emerging environmental and health concerns due to their persistence, resistance to degradation, and bioaccumulation. In this study, we developed a sensitive and selective detection platform based on a sodium alginate (SA) hydrogel modified with nitrogen and fluorinated carbon dots (N,F-CDs) to enhance the detection of PFOA in natural and engineered water systems. The SA hydrogel-N,F-CD composite exhibited strong fluorescence at 480 nm after optimization, achieving a detection limit as low as 0.001 ppt. The sensor was characterized by using Scanning Electron Microscopy (SEM), Fourier-Transform Infrared Spectroscopy (FT-IR), Powder X-ray Diffraction (PXRD), X-ray Photoelectron Spectroscopy (XPS), and zeta potential spectroscopy, revealing its structural integrity, functional groups, and the surface charge of the SA hydrogel-N,F-CDs network. Sensitivity assessments demonstrated a linear fluorescence response to PFOA concentrations ranging from 1 to 66 ppq. Selectivity tests confirmed the sensor's ability to distinguish PFOA from other perfluorinated compounds, with minimal interference from other substances. The practical applicability of the sensor was validated using spiked recovery experiments with tap water samples from various locations, achieving recovery rates between 94% and 106.6%. This sensor offers a reliable, efficient, and highly sensitive platform for the detection of PFAS, demonstrating its potential for real-world PFAS-monitoring applications.
Collapse
Affiliation(s)
- Somayeh Mohammadi
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | | | - Zayra N Dorado
- Department of Metallurgical & Materials Engineering, The University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79902, United States
| | - Thomas P Senftle
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Robert Pankow
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Hamidreza Sharifan
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
- Environmental Science and Engineering Program, University of Texas at El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
3
|
Guo Y, Li Z, Li W, Chen X, Cai Z. Hydrophobic SERS substrate for PFOA sensing and cooperative adsorption. Talanta 2025; 294:128244. [PMID: 40319646 DOI: 10.1016/j.talanta.2025.128244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/26/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
The widespread use of perfluorinated organic compounds (PFOA) has posed significant threats to ecosystems and biological health. This study investigates a fluorinated metal-organic framework (F-MOF) for highly sensitive SERS detection and efficient adsorption of PFOA in aqueous environments. Au@MIL-4F, synthesized via a mild thermochemical method using tetrafluoroterephthalic acid and iron (Ⅲ), exhibits exceptional selectivity and sensitivity toward PFOA, achieving a broad detection range with a remarkably low detection limit of 38 pM. The SERS sensor demonstrates excellent reproducibility and stability. Furthermore, adsorption kinetics and thermodynamic studies reveal a maximum adsorption capacity of 254.25 mg/g for PFOA on Au@MIL-4F. The adsorption mechanism, elucidated through spectroscopic and structural analyses, provides critical theoretical insights for developing dual-functional systems that integrate detection and adsorption capabilities. This work not only advances material design for environmental remediation but also offers a practical strategy to address PFOA contamination with precision and sustainability.
Collapse
Affiliation(s)
- Yirong Guo
- Logistics Office, Minnan Normal University, Zhangzhou, 363000, China; Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, Key Laboratory of Pollution Monitoring and Control of Fujian Province, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China
| | - Zheng Li
- Logistics Office, Minnan Normal University, Zhangzhou, 363000, China
| | - Wenqi Li
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, Key Laboratory of Pollution Monitoring and Control of Fujian Province, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China
| | - Xiaoping Chen
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, Key Laboratory of Pollution Monitoring and Control of Fujian Province, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China
| | - Zhixiong Cai
- Key Laboratory of Modern Analytical Science and Separation Technology of Fujian Province, Key Laboratory of Pollution Monitoring and Control of Fujian Province, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China.
| |
Collapse
|
4
|
Lobitz A, Steuber A, Jia S, Guo L. Harnessing Fluorine Chemistry: Strategies for Per- and Polyfluoroalkyl Substances Removal and Enrichment. Chempluschem 2025:e2400784. [PMID: 40194928 DOI: 10.1002/cplu.202400784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous, recalcitrant, bioaccumulative, and toxic. Effective concentration technologies are essential for remediating these compounds, a major focus of environmental science and engineering today. This review provides a comprehensive overview of PFAS, from fundamental chemistry to current research, encompassing fluorine chemistry, PFAS synthesis, and their applications. The review specifically thoroughly examines how fluorine chemistry can be utilized to enhance PFAS removal and enrichment, highlighting examples of aromatic/direct fluorination and aliphatic per- and polyfluorination, where the latter induces the fluorous effect. A comprehensive list of reactions used to design or modify PFAS sorbents is summarized, serving as a resource for ongoing research. Finally, insights are offered into how fluorine chemistry can be studied and employed to further improve PFAS characterization and management.
Collapse
Affiliation(s)
- Anne Lobitz
- Department of Civil Engineering, University of Arkansas, 800 W Dickson St, Bell Engineering Center, Fayetteville, AR, 72701, USA
| | - Alex Steuber
- Department of Chemistry and Biochemistry, University of Arkansas, 345 N. Campus Walk, Fayetteville, AR, 72701, USA
| | - Shang Jia
- Department of Chemistry, Rutgers University - Newark, 73 Warren Street, Newark, NJ, 07102, USA
| | - Lei Guo
- Department of Civil Engineering, University of Arkansas, 800 W Dickson St, Bell Engineering Center, Fayetteville, AR, 72701, USA
| |
Collapse
|
5
|
Anik AH, Basir MS, Sultan MB, Alam M, Rahman MM, Tareq SM. Unveiling the emerging concern of per- and polyfluoroalkyl substances (PFAS) and their potential impacts on estuarine ecosystems. MARINE POLLUTION BULLETIN 2025; 212:117554. [PMID: 39837172 DOI: 10.1016/j.marpolbul.2025.117554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/01/2024] [Accepted: 01/09/2025] [Indexed: 01/23/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have become ubiquitous chemicals that pose potentially serious threats to both human health and the integrity of the ecosystem. This review compiles current knowledge on PFAS contamination in estuaries, focusing on sources, abundance, distribution, fate, and toxic mechanisms. It also addresses the health risks associated with these compounds and identifies research gaps, offering recommendations for future studies. Estuaries are essential for maintaining biodiversity and serve as protective natural buffers against pollution flowing from land to sea. However, PFAS, known for their persistence and bioaccumulation potential, are detected in estuarine waters, sediments, and biota worldwide, with varying concentrations based on geographic locations and environmental matrices. Sources of PFAS in estuaries include routine items like nonstick kitchenware, industrial emissions, landfill sites, civilian and military airfields, and runoff from firefighting activities. The fate of PFAS in estuarine ecosystems is influenced by hydrology, biogeochemical interactions, and proximity to pollution sources.
Collapse
Affiliation(s)
- Amit Hasan Anik
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Dhaka 1216, Bangladesh.
| | - Md Samium Basir
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Dhaka 1216, Bangladesh
| | - Maisha Binte Sultan
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Dhaka 1216, Bangladesh
| | - Mahbub Alam
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Dhaka 1216, Bangladesh; Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | - Md Mostafizur Rahman
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Dhaka 1216, Bangladesh; Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh.
| | - Shafi M Tareq
- Department of Environmental Science, Bangladesh University of Professionals (BUP), Dhaka 1216, Bangladesh; Hydrobiogeochemistry and Pollution Control Laboratory, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh.
| |
Collapse
|
6
|
Dalapati R, Manickam S, Shi J, Hunter M, Zang L. Perylene diimide based fluorescent sensors for aqueous detection of perfluorooctane sulfonate (PFOS). Anal Chim Acta 2025; 1341:343670. [PMID: 39880502 DOI: 10.1016/j.aca.2025.343670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/30/2024] [Accepted: 01/14/2025] [Indexed: 01/31/2025]
Abstract
BACKGROUND Perfluorooctane sulfonate (PFOS), one of the most harmful members of the large group of per- and poly-fluoroalkyl substances (PFAS), is notorious for its environmental persistence, bioaccumulation, and toxic effects, raising serious environmental and health concerns. Developing rapid and sensitive methods to detect PFOS in water is critical for effective monitoring and protection against this hazardous chemical. RESULTS In this study, we developed rapid and highly sensitive fluorometric sensors (PDI-2+ , PDI-6+ ) for detecting PFOS. We also investigated the influence of the sensor's molecular structure on its performance. Our findings reveal that the formation of a supramolecular complex between PFOS and the cationic fluorophores, facilitated by the synergistic interplay of electrostatic, hydrophobic and π-π stacking interactions, enables a quick and efficient fluorometric sensing response for the detection of PFOS in aqueous systems. Remarkably, the detection limit for PFOS was found to be as low as 3.5 nM (1.9 ppb) for PDI-2+ and 2.7 nM (1.4 ppb) for PDI-6+ , showcasing the high sensitivity of the sensor. The PDI sensors also demonstrate a high level of selectivity for PFOS against PFOA (another top two PFAS designated as hazardous substances by the U.S. EPA), other PFAS like GenX, structurally similar detergents, and inorganic salts typically found in water. Furthermore, the sensor's successful detection of PFOS in real water samples underscores its potential for environmental monitoring. SIGNIFICANCE The development of novel, water-soluble fluorometric sensors offers a promising solution for the rapid and sensitive detection of PFOS in water. Their high selectivity and low detection limits make them valuable tools for environmental monitoring and pollution control. The findings of this study contribute to the advancement of analytical techniques for PFAS detection and support ongoing efforts to mitigate the environmental and health risks posed by PFOS contamination.
Collapse
Affiliation(s)
- Rana Dalapati
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Saravanakumar Manickam
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jiangfan Shi
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Matthew Hunter
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Ling Zang
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
7
|
Sabba F, Kassar C, Zeng T, Mallick SP, Downing L, McNamara P. PFAS in landfill leachate: Practical considerations for treatment and characterization. JOURNAL OF HAZARDOUS MATERIALS 2025; 481:136685. [PMID: 39674787 DOI: 10.1016/j.jhazmat.2024.136685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/16/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are widely used in consumer products and are particularly high in landfill leachate. The practice of sending leachate to wastewater treatment plants (WWTPs) is an issue for utilities that have biosolids land application limits based on PFAS concentrations. Moreover, landfills may face their own effluent limit guidelines for PFAS. The purpose of this review is to understand the most appropriate treatment technology combinations for mitigating PFAS in landfill leachate. The first objective is to understand the unique chemical characteristics of landfill leachate. The second objective is to establish the role and importance of known and emerging analytical techniques for PFAS characterization in leachate, including quantification of precursor compounds. Next, an overview of technologies that concentrate PFAS and technologies that destroy PFAS is provided, including fundamental background content and key operating parameters. Finally, practical considerations for PFAS treatment technologies are reviewed, and recommendations for PFAS treatment trains are described. Both pros and cons of treatment trains are noted. In summary, the complex matrix of leachate requires a separation treatment step first, such as foam fractionation, for example, to concentrate the PFAS into a lower-volume stream. Then, a degradation treatment step can be applied to the concentrated PFAS stream.
Collapse
Affiliation(s)
- Fabrizio Sabba
- Black & Veatch, 11401 Lamar Ave, Overland Park, KS 66211, United States; Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY 13244, United States.
| | - Christian Kassar
- Black & Veatch, 11401 Lamar Ave, Overland Park, KS 66211, United States
| | - Teng Zeng
- Department of Civil and Environmental Engineering, Syracuse University, Syracuse, NY 13244, United States
| | - Synthia P Mallick
- Black & Veatch, 11401 Lamar Ave, Overland Park, KS 66211, United States
| | - Leon Downing
- Black & Veatch, 11401 Lamar Ave, Overland Park, KS 66211, United States
| | - Patrick McNamara
- Black & Veatch, 11401 Lamar Ave, Overland Park, KS 66211, United States; Department of Civil, Construction, and Environmental Engineering, Marquette University, Milwaukee, WI 53233, United States
| |
Collapse
|
8
|
Chaix A, Gomri C, Benkhaled BT, Habib M, Dupuis R, Petit E, Richard J, Segala A, Lichon L, Nguyen C, Gary‐Bobo M, Blanquer S, Semsarilar M. Efficient PFAS Removal Using Reusable and Non-Toxic 3D Printed Porous Trianglamine Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2410720. [PMID: 39573853 PMCID: PMC11756047 DOI: 10.1002/adma.202410720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/25/2024] [Indexed: 01/24/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are now a paramount concern in water remediation. Nowadays, urgent action is required for the development of advanced technologies aimed at capturing PFAS and mitigating their impact. To offer a solution, a functional 3D printed hydrogel tailored is designed to trap a broad spectrum of PFAS contaminants. The hydrogel is made of a photo-crosslinked dimethacrylate-ureido-trianglamine (DMU-Δ) and Pluronic P123 dimethacrylate (PDM) fabricated by stereolithography (SLA). With the aid of 3D-printing, porous and nonporous hydrogels (3D-PSHΔ, 3D-SHΔ) as well as quaternized hydrogels (3D-PSHΔQ+) are prepared. These tailored hydrogels, show high uptake capacities and fast removal kinetics for PFAS from aqueous sources. The PFAS removal efficiency of these hydrogels are then compared to P123 hydrogels with no trianglamine (3D-SH). The 3D-SH hydrogel shows no affinity to PFAS, proving that the sorption is due to the interaction between the trianglamine (Δ) and PFAS. Metadynamic simulations also confirmed this interaction. The porous matrices showed the fastest and highest uptake capacity. 3D-PSHΔ is able to capture ≈ 91% of PFAS within 5 h using initial concentrations of 5 and 0.5 ppm in both deionized and river water. The sorption of PFAS is further enhanced by introducing permanent positive charges to the structure of the porous hydrogels, resulting in even faster sorption kinetics for both long and short PFAS chains with diverse polar heads. Besides the remarkable efficiency in capturing PFAS, these designed hydrogels are non-toxic and have outstanding chemical and thermal stability, making them a brilliant candidate for mass use in the combat against PFAS pollution.
Collapse
Affiliation(s)
- Arnaud Chaix
- Institut Européen des Membranes (IEM)Univ MontpellierCNRSENSCMMontpellier34090France
| | - Chaimaa Gomri
- Institut Européen des Membranes (IEM)Univ MontpellierCNRSENSCMMontpellier34090France
| | | | - Michel Habib
- Institut Charles Gerhardt de Montpellier (ICGM)Univ MontpellierCNRSENSCMMontpellier34090France
| | - Romain Dupuis
- Laboratoire de Mécanique et Génie Civil (LMGC)Univ MontpellierCNRS‐UMR 5508Montpellier34090France
| | - Eddy Petit
- Institut Européen des Membranes (IEM)Univ MontpellierCNRSENSCMMontpellier34090France
| | - Jason Richard
- Institut Européen des Membranes (IEM)Univ MontpellierCNRSENSCMMontpellier34090France
| | - Antonin Segala
- Institut Européen des Membranes (IEM)Univ MontpellierCNRSENSCMMontpellier34090France
| | - Laure Lichon
- Institut des Biomolécules Max Mousseron (IBMM)Univ MontpellierCNRSENSCMMontpellier34090France
| | - Christophe Nguyen
- Institut des Biomolécules Max Mousseron (IBMM)Univ MontpellierCNRSENSCMMontpellier34090France
| | - Magali Gary‐Bobo
- Institut des Biomolécules Max Mousseron (IBMM)Univ MontpellierCNRSENSCMMontpellier34090France
| | - Sébastien Blanquer
- Institut Charles Gerhardt de Montpellier (ICGM)Univ MontpellierCNRSENSCMMontpellier34090France
| | - Mona Semsarilar
- Institut Européen des Membranes (IEM)Univ MontpellierCNRSENSCMMontpellier34090France
| |
Collapse
|
9
|
Jrad A, Das G, Alkhatib N, Prakasam T, Benyettou F, Varghese S, Gándara F, Olson M, Kirmizialtin S, Trabolsi A. Cationic covalent organic framework for the fluorescent sensing and cooperative adsorption of perfluorooctanoic acid. Nat Commun 2024; 15:10490. [PMID: 39622838 PMCID: PMC11612209 DOI: 10.1038/s41467-024-53945-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/29/2024] [Indexed: 12/06/2024] Open
Abstract
The contamination of water by per- and polyfluorinated substances (PFAS) is a pressing global issue due to their harmful effects on health and the environment. This study explores a cationic covalent organic framework (COF), TG-PD COF, for the efficient detection and removal of perfluorooctanoic acid (PFOA) from water. Synthesized via a simple sonochemical method, TG-PD COF shows remarkable selectivity and sensitivity to PFOA, with a detection limit as low as 1.8 µg·L⁻¹. It achieves significant PFOA adsorption exceeding 2600 mg·g⁻¹ within seconds over several cycles in batch mode and complete removal at environmentally relevant concentrations in column adsorption. Results reveal unique adsorption behavior characterized by two phases, leveraging PFOA aggregation through hydrophobic interactions. Computer simulations elucidate the mechanisms underlying TG-PD COF's sensing, adsorption, and charge transfer dynamics. Our findings position this COF design strategy as a promising solution for combating PFAS contamination in water bodies worldwide.
Collapse
Affiliation(s)
- Asmaa Jrad
- NYUAD Water Research Center, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
- Chemistry Program, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Gobinda Das
- Chemistry Program, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Nour Alkhatib
- Chemistry Program, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
- Department of Chemistry, New York University, New York, New York, 10003, USA
| | - Thirumurugan Prakasam
- Chemistry Program, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Farah Benyettou
- Chemistry Program, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Sabu Varghese
- Core Technologies Platform, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Felipe Gándara
- Instituto de Ciencia de Materiales de Madrid-CSIC, C. Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
| | - Mark Olson
- Department of Physical and Environmental Sciences, Texas A&M University-Corpus Christi, 6300 Ocean Dr., Corpus Christi, TX, 78412, USA
| | - Serdal Kirmizialtin
- Chemistry Program, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates.
- Department of Chemistry, New York University, New York, New York, 10003, USA.
- Center for Smart Engineering Materials, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates.
| | - Ali Trabolsi
- NYUAD Water Research Center, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates.
- Chemistry Program, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
10
|
Wei X, Choudhary A, Wang LY, Yang L, Uline MJ, Tagliazucchi M, Wang Q, Bedrov D, Liu C. Single-molecule profiling of per- and polyfluoroalkyl substances by cyclodextrin mediated host-guest interactions within a biological nanopore. SCIENCE ADVANCES 2024; 10:eadp8134. [PMID: 39504365 PMCID: PMC11540018 DOI: 10.1126/sciadv.adp8134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024]
Abstract
Biological nanopores are increasingly used in molecular sensing due to their single-molecule sensitivity. The detection of per- and polyfluoroalkyl substances (PFAS) like perfluorooctanoic acid and perfluorooctane sulfonic acid is critical due to their environmental prevalence and toxicity. Here, we investigate selective interactions between PFAS and four cyclodextrin (CD) variants (α-, β-, γ-, and 2-hydroxypropyl-γ-CD) within an α-hemolysin nanopore. We demonstrate that PFAS molecules can be electrochemically sensed by interacting with a γ-CD in a nanopore. Using HP-γ-CDs with increased steric resistance, we can identify homologs of the perfluoroalkyl carboxylic acid and the perfluoroalkyl sulfonic acid families and detect common PFAS in drinking water at 0.4 to 2 parts per million levels, which are further lowered to 400 parts per trillion by sample preconcentration. Molecular dynamics simulations reveal the underlying chemical mechanism of PFAS-CD interactions. These insights pave the way toward nanopore-based in situ detection with promises in environmental protection against PFAS pollution.
Collapse
Affiliation(s)
- Xiaojun Wei
- Department of Biomedical Engineering, University of South Carolina, Columbia, SC 29208, USA
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Aditya Choudhary
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Leon Y. Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Lixing Yang
- Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Mark J. Uline
- Department of Biomedical Engineering, University of South Carolina, Columbia, SC 29208, USA
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Mario Tagliazucchi
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica Analítica y Química Física, Universidad de Buenos Aires, C1428 Ciudad Autónoma de Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Instituto de Quimica de los Materiales, Ambiente y Energia (INQUIMAE), C1428 Ciudad Autonoma de Buenos Aires, Argentina
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Dmitry Bedrov
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Chang Liu
- Department of Biomedical Engineering, University of South Carolina, Columbia, SC 29208, USA
- Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
11
|
Santhanam SD, Ramamurthy K, Priya PS, Sudhakaran G, Guru A, Arockiaraj J. A combinational threat of micro- and nano-plastics (MNPs) as potential emerging vectors for per- and polyfluoroalkyl substances (PFAS) to human health. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1182. [PMID: 39514026 DOI: 10.1007/s10661-024-13292-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Micro- and nano-plastics (MNPs) and per- and polyfluoroalkyl substances (PFAS) are prevalent in ecosystems due to their exceptional properties and widespread use, profoundly affecting both human health and ecosystem. Upon entering the environment, MNPs and PFAS undergo various transformations, such as weathering, transport, and accumulation, potentially altering their characteristics and structural dynamics. Their interactions, governed by factors like hydrogen bonding, hydrophobic interactions, Van der Waals forces, electrostatic attractions, and environmental conditions, can amplify or mitigate their toxicity toward human health within ecological conditions. Several studies demonstrate the in vivo effects of PFAS and MNPs, encompassing growth and reproductive impairments, oxidative stress, neurotoxicity, apoptosis, DNA damage, genotoxicity, immunological responses, behavioral changes, modifications in gut microbiota, and histopathological alterations. Moreover, in vitro investigations highlight impacts on cellular uptake, affecting survival, proliferation, membrane integrity, reactive oxygen species (ROS) generation, and antioxidant responses. This review combines knowledge on the co-existence and adsorption of PFAS and MNPs in the environment, defining their combined in vivo and in vitro impacts. It provides evidence of potential human health implications. While significant research originates from China, Europe, and the USA, studies from other regions are limited. Only freshwater and marine organisms and their impacts are extensively studied in comparison to terrestrial organisms and humans. Nonetheless, detailed investigations are lacking regarding their fate, combined environmental exposure, mode of action, and implications in human health studies. Ongoing research is imperative to comprehensively understand environmental exposures and interaction mechanisms, addressing the need to elucidate these aspects thoroughly.
Collapse
Affiliation(s)
- Sanjai Dharshan Santhanam
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Karthikeyan Ramamurthy
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India
| | - P Snega Priya
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Gokul Sudhakaran
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, SIMATS, Chennai, 600077, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
12
|
Rehman AU, Andreescu D, Tiwari S, Andreescu S. Rapid Single-Step Detection of Polyfluoroalkyl Substances (PFAS) Using Electropolymerized Phenoxazine Dyes. Anal Chem 2024; 96:17506-17516. [PMID: 39405503 DOI: 10.1021/acs.analchem.4c02480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are highly stable ubiquitous contaminants that have been recently added to the list of regulated chemicals. While methods for PFAS detection exist, analysis is difficult, involving a tedious protocol and expensive instrumentation. Here, we demonstrate the first implementation of a phenoxazine dye as a sensing probe that facilitates rapid and inexpensive detection of representative PFAS, e.g., perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), at sensitivity levels covering the recently established Environmental Protection Agency (EPA) limits. The method comprises an electrode modified with a stable redox film of Meldola blue (MB) in its electropolymerized form (epMB), which provides amino sites for electrostatic interactions with PFAS. Long-chain PFAS bind specifically to the epMB, inducing a hydrophobic-type cluster formation through ion-pair and F-F interactions. This binding generates concentration-dependent changes in the epMB/epMB+ oxidation, enabling rapid and sensitive quantification in a single step with high sensitivity, reaching a limit of detection of 0.4 ppt for PFOS and 1.65 ppt for PFOA. The sensor demonstrates good selectivity toward common interfering compounds like humic acid, sodium chloride and fluoride, metallic ions (Cu, Hg, As), as well as pesticides. In addition to PFOS and PFOA, the sensors can measure other perfluoroalkyl compounds, demonstrating potential as a tool for rapid quantification of a total PFAS index, with affinity for long-chain PFAS. This work highlights the integration of redox receptors into an electrochemical sensor to solve the grand challenge of PFAS analysis using a rapid and inexpensive procedure, with potential for field deployment.
Collapse
Affiliation(s)
- Abd Ur Rehman
- Department of Chemistry and Biochemistry, Clarkson University, Potsdam, New York 13699, United States
| | - Daniel Andreescu
- Department of Chemistry and Biochemistry, Clarkson University, Potsdam, New York 13699, United States
| | - Swapnil Tiwari
- Department of Chemistry and Biochemistry, Clarkson University, Potsdam, New York 13699, United States
| | - Silvana Andreescu
- Department of Chemistry and Biochemistry, Clarkson University, Potsdam, New York 13699, United States
- Department of Environmental Health Sciences, Stempel College of Public Health, Florida International University (FIU), Miami, Florida 33199, United States
| |
Collapse
|
13
|
Qian B, Rayner JL, Davis GB, Trinchi A, Collis G, Kyratzis IL, Kumar A. Per- and poly-fluoroalkyl substances (PFAS) sensing: A focus on representatively sampling soil vadose zones linked to nano-sensors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116932. [PMID: 39205356 DOI: 10.1016/j.ecoenv.2024.116932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are a group of organo-fluorine compounds that have been broadly used in consumer and industrial products spanning virtually all sectors. They can be found as surfactants, coatings and liners, polymer additives, fire retardants, adhesives, and many more. The chemical stability of the carbon fluorine bond and amphiphilic nature of PFAS result in their persistence and mobility in the environment via soil porewater, surface water and groundwater, with potential for adverse effects on the environment and human health. There is an emergent and increasing requirement for fast, low-cost, robust, and portable methods to detect PFAS, especially in the field. There may be thousands of PFAS compounds present in soil and water at extremely low concentration (0.01-250 ppb) that require measurement, and traditional technologies for continuous environmental sensing are challenged due to the complexity of soil chemistry. This paper presents a comprehensive review of potentially rapid PFAS measurement methods, focused on techniques for representative sampling of PFAS in porewater from contaminated soil, and approaches for pre-treatment of porewater samples to eliminate these interferences to be ready for PFAS-detecting sensors. The review discusses selectivity, a key factor underlying pre-treatment and sensing performance, and explores the interactions between PFAS and various sensors. PFAS chemical nano-sensors discussed are categorized in terms of the detection mechanism (electrochemical and optical). This review aims to provide guidance and outline the current challenges and implications for future routine PFAS sensing linked to soil porewater collection, to achieve more selective and effective PFAS sensors.
Collapse
Affiliation(s)
- Bin Qian
- CSIRO Environment, 147 Underwood Avenue, Floreat, Western Australia 6014, Australia.
| | - John L Rayner
- CSIRO Environment, 147 Underwood Avenue, Floreat, Western Australia 6014, Australia
| | - Greg B Davis
- CSIRO Environment, 147 Underwood Avenue, Floreat, Western Australia 6014, Australia
| | - Adrian Trinchi
- CSIRO Manufacturing, Research Way , Clayton, Melbourne, Victoria 3168, Australia
| | - Gavin Collis
- CSIRO Manufacturing, Research Way , Clayton, Melbourne, Victoria 3168, Australia
| | - Ilias Louis Kyratzis
- CSIRO Manufacturing, Research Way , Clayton, Melbourne, Victoria 3168, Australia
| | - Anand Kumar
- CSIRO Environment, 147 Underwood Avenue, Floreat, Western Australia 6014, Australia
| |
Collapse
|
14
|
Fu K, Huang J, Luo F, Fang Z, Yu D, Zhang X, Wang D, Xing M, Luo J. Understanding the Selective Removal of Perfluoroalkyl and Polyfluoroalkyl Substances via Fluorine-Fluorine Interactions: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39264176 DOI: 10.1021/acs.est.4c06519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
As regulatory standards for per- and polyfluoroalkyl substances (PFAS) become increasingly stringent, innovative water treatment technologies are urgently demanded for effective PFAS removal. Reported sorbents often exhibit limited affinity for PFAS and are frequently hindered by competitive background substances. Recently, fluorinated sorbents (abbreviated as fluorosorbents) have emerged as a potent solution by leveraging fluorine-fluorine (F···F) interactions to enhance selectivity and efficiency in PFAS removal. This review delves into the designs and applications of fluorosorbents, emphasizing how F···F interactions improve PFAS binding affinity. Specifically, the existence of F···F interactions results in removal efficiencies orders of magnitude higher than other counterpart sorbents, particularly under competitive conditions. Furthermore, we provide a detailed analysis of the fundamental principles underlying F···F interactions and elucidate their synergistic effects with other sorption forces, which contribute to the enhanced efficacy and selectivity. Subsequently, we examine various fluorosorbents and their synthesis and fluorination techniques, underscore the importance of accurately characterizing F···F interactions through advanced analytical methods, and emphasize the significance of this interaction in developing selective sorbents. Finally, we discuss challenges and opportunities associated with employing advanced techniques to guide the design of selective sorbents and advocate for further research in the development of sustainable and cost-effective treatment technologies leveraging F···F interactions.
Collapse
Affiliation(s)
- Kaixing Fu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jinjing Huang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Fang Luo
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhuoya Fang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Deyou Yu
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles (Ministry of Education), Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Xiaolin Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Dawei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, P. R. China
| | - Mingyang Xing
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jinming Luo
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
15
|
Gao TN, Yang Z, Goed JMS, Zuilhof H, Miloserdov FM. Rim-differentiated pillar[5]arene-modified surfaces for rapid PFOA/PFOS detection. Chem Commun (Camb) 2024; 60:9789-9792. [PMID: 39161305 DOI: 10.1039/d4cc02676d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
A new rim-differentiated pillar[5]arene (RD-P5) has been synthesized and immobilized onto an Al2O3 surface for the rapid detection of perfluoroalkyl acids. This P5-Al2O3 surface provides a novel approach for measuring perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) using contact angle measurements, with limits of detection down to 10 ng L-1.
Collapse
Affiliation(s)
- Tu-Nan Gao
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands.
| | - Zhen Yang
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands.
- Imec within OnePlanet Research Center, Bronland 10, 6708 WH Wageningen, The Netherlands
| | - Jesse M S Goed
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands.
- Wetsus, Oostergoweg 4, 8911 MA Leeuwarden, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands.
- School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road 92, 300072 Tianjin, China
| | - Fedor M Miloserdov
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands.
| |
Collapse
|
16
|
Jung J, Park J, Choe JK, Choi Y. Perfluoroalkyl functionalized-Au nanoparticle sensor: Employing rate of spectrum shifting for highly selective and sensitive detection of per- and polyfluoroalkyl substances (PFASs) in aqueous environments. WATER RESEARCH X 2024; 24:100239. [PMID: 39193396 PMCID: PMC11347827 DOI: 10.1016/j.wroa.2024.100239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/29/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are emerging contaminants detected ubiquitously and have negative impacts on human health and ecosystem; thus, developing in-situ sensing technique is important to ensure safety. Herein, we report a novel colorimetric-based sensor with perfluoroalkyl receptor attached to citrate coated gold nanoparticles (Citrate-Au NPs) that can detect several PFASs including perfluorocarboxylates with different chain lengths (PFHxA, PFOA, PFNA, PFDA), perfluorooctanoic sulfonate (PFOS), and perfluorooctanoic phosphonate (PFOPA). The sensor detects PFASs utilizing fluorous interaction between PFASs and the perfluoroalkyl receptor of Citrate-Au NPs in a solution at a fixed salt concentration, inducing changes in nanoparticle dispersity and the solution color. The rate of spectrum shift was linearly dependent on PFASs concentrations. Citrate-Au NPs with size between 29 - 109 nm were synthesized by adjusting citrate/Au molar ratios, and 78 nm showed the best sensitivity to PFOA concentration (with level of detection of 4.96 µM). Citrate-Au NPs only interacted with PFASs with perfluoroalkyl length > 4 and not with non-fluorinated alkyl compound (nonanoic acid). The performance of Citrate-Au NP based sensor was strongly dependent on the chain length of the perfluoroalkyl group and the head functional group; higher sensitivity was observed with longer chain over shorter chain, and with sulfonate functional group over carboxylate and phosphonate. The sensor was tested using real water samples (i.e., tap water, filtered river water), and it was found that the sensor is capable of detecting PFASs in these conditions if calibrated with the corresponding water matrix. While further optimization is needed, this study demonstrated new capability of Citrate-Au NPs based sensor for detection of PFASs in water.
Collapse
Affiliation(s)
- Jihyeun Jung
- Department of Civil & Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Junyoung Park
- Department of Civil & Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
- Institute of Construction and Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jong Kwon Choe
- Department of Civil & Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
- Institute of Construction and Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Yongju Choi
- Department of Civil & Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
- Institute of Construction and Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
17
|
Medina H, Farmer C. Current Challenges in Monitoring Low Contaminant Levels of Per- and Polyfluoroalkyl Substances in Water Matrices in the Field. TOXICS 2024; 12:610. [PMID: 39195712 PMCID: PMC11358922 DOI: 10.3390/toxics12080610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/12/2024] [Accepted: 08/18/2024] [Indexed: 08/29/2024]
Abstract
The Environmental Protection Agency (EPA) of the United States recently released the first-ever federal regulation on per- and polyfluoroalkyl substances (PFASs) for drinking water. While this represents an important landmark, it also brings about compliance challenges to the stakeholders in the drinking water industry as well as concerns to the general public. In this work, we address some of the most important challenges associated with measuring low concentrations of PFASs in drinking water in the field in real drinking water matrices. First, we review the "continuous monitoring for compliance" process laid out by the EPA and some of the associated hurdles. The process requires measuring, with some frequency, low concentrations (e.g., below 2 ppt or 2 ng/L) of targeted PFASs, in the presence of many other co-contaminants and in various conditions. Currently, this task can only (and it is expected to) be accomplished using specific protocols that rely on expensive, specialized, and laboratory-scale instrumentation, which adds time and increases cost. To potentially reduce the burden, portable, high-fidelity, low-cost, real-time PFAS sensors are desirable; however, the path to commercialization of some of the most promising technologies is confronted with many challenges, as well, and they are still at infant stages. Here, we provide insights related to those challenges based on results from ab initio and machine learning studies. These challenges are mainly due to the large amount and diversity of PFAS molecules and their multifunctional behaviors that depend strongly on the conditions of the media. The impetus of this work is to present relevant and timely insights to researchers and developers to accelerate the development of suitable PFAS monitoring systems. In addition, this work attempts to provide water system stakeholders, technicians, and even regulators guidelines to improve their strategies, which could ultimately translate in better services to the public.
Collapse
Affiliation(s)
- Hector Medina
- School of Engineering, Liberty University, Lynchburg, VA 24515, USA
| | | |
Collapse
|
18
|
Hafeez S, Khanam A, Cao H, Chaplin BP, Xu W. Novel Conductive and Redox-Active Molecularly Imprinted Polymer for Direct Quantification of Perfluorooctanoic Acid. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2024; 11:871-877. [PMID: 39156924 PMCID: PMC11325644 DOI: 10.1021/acs.estlett.4c00557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/20/2024]
Abstract
This study developed a novel molecularly imprinted polymer (MIP) that is both conductive and redox-active for directly quantifying perfluorooctanoic acid (PFOA) electrochemically. We synthesized the monomer 3,4-ethylenedioxythiophene-2,2,6,6-tetramethylpiperidinyloxy (EDOT-TEMPO) for electropolymerization on a glassy carbon electrode using PFOA as a template, which was abbreviated as PEDOT-TEMPO-MIP. The redox-active MIP eliminated the need for external redox probes. When exposed to PFOA, both anodic and cathodic peaks of MIP showed a decreased current density. This observation can be explained by the formation of a charge-assisted hydrogen bond between the anionic PFOA and MIP's redox-active moieties (TEMPO) that hinder the conversion between the oxidized and reduced forms of TEMPO. The extent of the current density decrease showed excellent linearity with PFOA concentrations, with a method detection limit of 0.28 ng·L-1. PEDOT-TEMPO-MIP also exhibited high selectivity toward PFOA against other per- and polyfluoroalkyl substances (PFAS) at environmentally relevant concentrations. Our results suggest electropolymerization of MIPs was highly reproducible, with a relative standard deviation of 5.1% among three separate MIP electrodes. PEDOT-TEMPO-MIP can also be repeatedly used with good stability and reproducibility for PFOA detection. This study provides an innovative platform for rapid PFAS quantification using redox-active MIPs, laying the groundwork for developing compact PFAS sensors.
Collapse
Affiliation(s)
- Sumbul Hafeez
- Department
of Civil and Environmental Engineering, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Aysha Khanam
- Department
of Civil and Environmental Engineering, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Han Cao
- Department
of Civil and Environmental Engineering, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Brian P. Chaplin
- Department
of Chemical Engineering, University of Illinois
at Chicago, 929 W. Taylor St., 14, Chicago, Illinois 60607, United States
| | - Wenqing Xu
- Department
of Civil and Environmental Engineering, Villanova University, Villanova, Pennsylvania 19085, United States
| |
Collapse
|
19
|
Guo H, Hu T, Yang X, Liu Z, Cui Q, Qu C, Guo F, Liu S, Sweetman AJ, Hou J, Tan W. Roles of varying carbon chains and functional groups of legacy and emerging per-/polyfluoroalkyl substances in adsorption on metal-organic framework: Insights into mechanism and adsorption prediction. ENVIRONMENTAL RESEARCH 2024; 251:118679. [PMID: 38518904 DOI: 10.1016/j.envres.2024.118679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/21/2024] [Accepted: 03/09/2024] [Indexed: 03/24/2024]
Abstract
Metal-organic frameworks (MOFs) are promising adsorbents for legacy per-/polyfluoroalkyl substances (PFASs), but they are being replaced by emerging PFASs. The effects of varying carbon chains and functional groups of emerging PFASs on their adsorption behavior on MOFs require attention. This study systematically revealed the structure-adsorption relationships and interaction mechanisms of legacy and emerging PFASs on a typical MOF MIL-101(Cr). It also presented an approach reflecting the average electronegativity of PFAS moieties for adsorption prediction. We demonstrated that short-chain or sulfonate PFASs showed higher adsorption capacities (μmol/g) on MIL-101(Cr) than their long-chain or carboxylate counterparts, respectively. Compared with linear PFASs, their branched isomers were found to exhibit a higher adsorption potential on MIL-101(Cr). In addition, the introduction of ether bond into PFAS molecule (e.g., hexafluoropropylene oxide dimeric acid, GenX) increased the adsorption capacity, while the replacement of CF2 moieties in PFAS molecule with CH2 moieties (e.g., 6:2 fluorotelomer sulfonate, 6:2 FTS) caused a decrease in adsorption. Divalent ions (such as Ca2+ and SO42-) and solution pH have a greater effect on the adsorption of PFASs containing ether bonds or more CF2 moieties. PFAS adsorption on MIL-101(Cr) was governed by electrostatic interaction, complexation, hydrogen bonding, π-CF interaction, and π-anion interaction as well as steric effects, which were associated with the molecular electronegativity and chain length of each PFAS. The average electronegativity of individual moieties (named Me) for each PFAS was estimated and found to show a significantly positive correlation with the corresponding adsorption capacity on MIL-101(Cr). The removal rates of major PFASs in contaminated groundwater by MIL-101(Cr) were also correlated with the corresponding Me values. These findings will assist with the adsorption prediction for a wide range of PFASs and contribute to tailoring efficient MOF materials.
Collapse
Affiliation(s)
- Hao Guo
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Tongyu Hu
- Beijing Construction Engineering Environmental Remediation Co., Ltd., Beijing 100101, China
| | - Xiaoman Yang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhaoyang Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | | | - Chenchen Qu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Fayang Guo
- Institute of Resource and Environment, Henan Polytechnic University, Jiaozuo 454000, China
| | - Shun Liu
- The Seventh Geological Brigade of Hubei Geological Bureau, Yichang 443100, China
| | - Andrew J Sweetman
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Jingtao Hou
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
20
|
Lee A, Choe JK, Zoh KD, Lee C, Choi Y. Development of ionic-liquid-impregnated activated carbon for sorptive removal of PFAS in drinking water treatment. CHEMOSPHERE 2024; 355:141872. [PMID: 38570046 DOI: 10.1016/j.chemosphere.2024.141872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/11/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
Adsorption of per- and poly-fluoroalkyl substances (PFAS) on activated carbon (AC) is considerably hindered by the surface water constituents, degrading the ability of the AC adsorption process to remove PFAS in drinking water treatment. Herein, we developed ionic-liquid-impregnated AC (IL/AC) as an alternative to AC for PFAS sorption and demonstrated its performance with real surface water for the first time. Ionic liquids (ILs) of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (IL(C2)) and 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (IL(C6)) were selected from among 272 different ILs using the conductor-like screening model for realistic solvents (COSMO-RS) simulation. Impregnation of the ILs in AC was verified using various analytical techniques. Although the synthesized IL/ACs were less effective than pristine AC in treating PFAS in deionized water, their performances were less impacted by the surface water constituents, resulting in comparable or sometimes better performances than pristine AC for treating PFAS in surface water. The removal efficiencies of 10 wt% IL(C6)/AC for six PFAS were 1.40-1.96 times higher than those of pristine AC in a surface water sample containing 2.6 mg/L dissolved organic carbon and millimolar-level divalent cation concentration. PFAS partitioning from the surface water to ILs was not hindered by dissolved organic matter and was enhanced by the divalent cations, indicating the advantages of IL/ACs for treating significant amounts of PFAS in water. The synthesized IL/ACs were effective at treating coexisting pharmaceutical and personal-care products in surface water, showcasing their versatility for treating a broad range of water micropollutants.
Collapse
Affiliation(s)
- Aleum Lee
- Department of Civil and Environmental Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jong Kwon Choe
- Department of Civil and Environmental Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyung-Duk Zoh
- Department of Civil and Environmental Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Changha Lee
- Department of Civil and Environmental Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yongju Choi
- Department of Civil and Environmental Engineering, Seoul National University, Seoul, 08826, Republic of Korea; Institute of Construction and Environmental Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
21
|
Li J, Jin Y, Yang YY, Song XQ. A Multifunctional Ca II-Eu III Heterometallic Organic Framework with Sensing and Selective Adsorption in Water. Inorg Chem 2024; 63:6871-6882. [PMID: 38557029 DOI: 10.1021/acs.inorgchem.4c00320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
With increasing global industrialization, it is urgent and challenging to develop multifunctional species for detection and adsorption in the environment. For this purpose, a novel anionic heterometallic organic framework, [(CH3)2NH2][CaEu(CAM)2(H2O)2]·4H2O·4DMF (CaEuCAM), is hydrothermally synthesized based on chelidamic acid (H3CAM). Single crystal analysis shows that CaEuCAM features two different oxygen-rich channels along the c-axis in which one CAM3- bridges two sextuple-coordinated Ca2+ and two octuple-coordinated Eu3+ with a μ4-η1: η1: η1: η1: η1: η1 new chelating and bridging mode. The characteristic bright red emission and superior hydrostability of CaEuCAM under harsh acidic and basic conditions benefit it by acting as a highly sensitive sensor for Fe3+ and 3-nitrophenol (3-NP) with extremely low LODs through remarkable quenching. The combination of experiments and theoretical calculations for sensing mechanisms shows that the competitive absorption and interaction are responsible for Fe3+-induced selective emission quenching, while that for 3-NP is the result of the synergism of host-guest chemistry and the inner filter effect. Meanwhile, the assimilation of negative charge plus channels renders CaEuCAM a highly selective adsorbent for methylene blue (MB) due to a synergy of electrostatic affinity, ion-dipole interaction, and size matching. Of note is the reusability of CaEuCAM toward Fe3+/3-NP sensing and MB adsorption besides its fast response. These findings could be very useful in guiding the development of multifunctional Ln-MOFs for sensing and adsorption applications in water media.
Collapse
Affiliation(s)
- Juan Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yan Jin
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yi-Yi Yang
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xue-Qin Song
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| |
Collapse
|
22
|
Zhang M, Qiu W, Nie R, Xia Q, Zhang D, Pan X. Macronutrient and PFOS bioavailability manipulated by aeration-driven rhizospheric organic nanocapsular assembly. WATER RESEARCH 2024; 253:121334. [PMID: 38382293 DOI: 10.1016/j.watres.2024.121334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/31/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
Ubiquitous presence of the extremely persistent pollutants, per- and polyfluoroalkyl substances, is drawing ever-increasing concerns for their high eco-environmental risks which, however, are insufficiently considered based on the assembly characteristics of those amphiphilic molecules in environment. This study investigated the re-organization and self-assembly of perfluorooctane sulfonate (PFOS) and macronutrient molecules from rhizospheric organic (RhO) matter induced with a common operation of aeration. Atomic force microscopy (AFM) with infrared spectroscopy (IR)-mapping clearly showed that, after aeration and stabilization, RhO nanocapsules (∼ 1000 nm or smaller) with a core of PFOS-protein complexes coated by "lipid-carbohydrate" layers were observed whereas the capsule structure with a lipid core surrounded by "protein-carbohydrate-protein" multilayers was obtained in the absence of PFOS. It is aeration that exerted the disassociation of pristine RhO components, after which the environmental concentration PFOS restructured the self-assembly structure in a conspicuous "disorder-to-order" transition. AFM IR-mapping analysis of faeces combined with quantification of component uptake denoted the decreased ingestion and utilization of both PFOS and proteins compared with lipids and carbohydrates when Daphnia magna were fed with RhO nanocapsules. RhO nanocapsules acted as double-edged swords via simultaneously impeding the bioaccessibility of hazardous PFOS molecules and macronutrient proteins; and the latter might be more significant, which caused a malnutrition status within merely 48 h. Elucidating the assembly structure of natural organic matter and environmental concentration PFOS, the finding of this work could be a crucial supplementation to the high-dose-dependent eco-effect investigations on PFOS.
Collapse
Affiliation(s)
- Ming Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Weifeng Qiu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Rui Nie
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qiaoyun Xia
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
23
|
Abaie E, Kumar M, Kumar N, Sun Y, Guelfo J, Shen Y, Reible D. Application of β-Cyclodextrin Adsorbents in the Removal of Mixed Per- and Polyfluoroalkyl Substances. TOXICS 2024; 12:264. [PMID: 38668487 PMCID: PMC11054934 DOI: 10.3390/toxics12040264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/29/2024]
Abstract
The extensive use of per- and polyfluoroalkyl substances (PFASs) in industrial consumer products has led to groundwater contamination, raising concerns for human health and the environment. These persistent chemicals exist in different forms with varying properties, which makes their removal challenging. In this study, we assessed the effectiveness of three different β-cyclodextrin (β-CD) adsorbents at removing a mixture of PFASs, including anionic, neutral, and zwitterionic compounds, at neutral pH. We calculated linear partition coefficient (Kd) values to quantify the adsorption affinity of each PFAS. β-CD polymers crosslinked with hexamethylene diisocyanate (β-CD-HDI) and epichlorohydrin (β-CD-EPI) displayed some adsorption of PFASs. Benzyl chloride β-CD (β-CD-Cl), an adsorbent that had not been previously reported, was also synthesized and tested for PFAS adsorption. β-CD-Cl exhibited higher PFAS adsorption than β-CD-HDI and β-CD-EPI, with log Kd values ranging from 1.9 L·g-1 to 3.3 L·g-1. β-CD-Cl displayed no affinity for zwitterionic compounds, as opposed to β-CD-HDI and β-CD-EPI, which removed N-dimethyl ammonio propyl perfluorohexane sulfonamide (AmPr-FHxSA). A comparison between Kd values and the log Kow of PFAS confirmed the significant role of hydrophobic interactions in thee adsorption mechanism. This effect was stronger in β-CD-Cl, compared to β-CD-HDI and β-CD-EPI. While no effect of PFAS charge was observed in β-CD-Cl, some influence of charge was observed in β-CD-HDI and β-CD-EPI, with less negative compounds being more adsorbed. The adsorption of PFASs by β-CD-Cl was similar in magnitude to that of other adsorbents proposed in literature. However, it offers the advantage of not containing fluorine, unlike many commonly proposed adsorbents.
Collapse
Affiliation(s)
- Elham Abaie
- Civil, Environmental, and Construction Engineering Department, Texas Tech University, Lubbock, TX 79409, USA; (E.A.); (M.K.); (N.K.); (Y.S.); (J.G.)
| | - Manish Kumar
- Civil, Environmental, and Construction Engineering Department, Texas Tech University, Lubbock, TX 79409, USA; (E.A.); (M.K.); (N.K.); (Y.S.); (J.G.)
| | - Naveen Kumar
- Civil, Environmental, and Construction Engineering Department, Texas Tech University, Lubbock, TX 79409, USA; (E.A.); (M.K.); (N.K.); (Y.S.); (J.G.)
| | - Yilang Sun
- Civil, Environmental, and Construction Engineering Department, Texas Tech University, Lubbock, TX 79409, USA; (E.A.); (M.K.); (N.K.); (Y.S.); (J.G.)
| | - Jennifer Guelfo
- Civil, Environmental, and Construction Engineering Department, Texas Tech University, Lubbock, TX 79409, USA; (E.A.); (M.K.); (N.K.); (Y.S.); (J.G.)
| | - Yuexiao Shen
- Civil, Environmental, and Construction Engineering Department, Texas Tech University, Lubbock, TX 79409, USA; (E.A.); (M.K.); (N.K.); (Y.S.); (J.G.)
| | - Danny Reible
- Civil, Environmental, and Construction Engineering Department, Texas Tech University, Lubbock, TX 79409, USA; (E.A.); (M.K.); (N.K.); (Y.S.); (J.G.)
- Chemical Engineering Department, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
24
|
Chen Y, Yang Y, Cui J, Zhang H, Zhao Y. Decoding PFAS contamination via Raman spectroscopy: A combined DFT and machine learning investigation. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133260. [PMID: 38128230 DOI: 10.1016/j.jhazmat.2023.133260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/30/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
In this study, density function theory (DFT) is employed to compute Raman spectra of 40 important Perfluoroalkyl substances (PFASs) as listed in Draft Method 1633 by U.S. Environmental Protection Agent. A systematic comparison of their spectral features is conducted, and Raman peaks and vibrational modes are identified. The Raman spectral regions for the main chemical bonds (such as C-C, CF2 & CF3, O-H) and main functional groups (such as -COOH, -SO3H, -C2H4SO3H, and -SO2NH2) are identified and compared. The impacts of branching location in isomer, molecular chain length, and functional groups on the Raman spectra are analyzed. Particularly, the isomers of PFOA alter the peak locations slightly in wavenumber regions of 200 - 800 and 1000 - 1400 cm-1, while for PFOS, spectral features in the 230 - 360, 470 - 680, and 1030 - 1290 cm-1 regions exhibit significant difference. The carbon chain length can significantly increase the number of Raman peaks, while different functional groups give significantly different peak locations. To facilitate differentiation, a spectral database is constructed by introducing controlled noise into the DFT-computed Raman spectra. Subsequently, two chemometric techniques, principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE), are applied to effectively distinguish among these spectra, both for 40 PFAS compounds and the isomers. The findings demonstrate the promising potential of combining Raman spectroscopy with advanced spectral analysis methods to discriminate between distinct PFAS compounds, holding significant implications for improved PFAS detection and characterization methodologies.
Collapse
Affiliation(s)
- Yangxiu Chen
- College of Physics, Sichuan University, Chengdu, China
| | - Yanjun Yang
- School of Electrical and Computer Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Jiaheng Cui
- School of Electrical and Computer Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Hong Zhang
- College of Physics, Sichuan University, Chengdu, China.
| | - Yiping Zhao
- Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
25
|
Kang KH, Saifuddin M, Chon K, Bae S, Kim YM. Recent advances in the application of magnetic materials for the management of perfluoroalkyl substances in aqueous phases. CHEMOSPHERE 2024; 352:141522. [PMID: 38401865 DOI: 10.1016/j.chemosphere.2024.141522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Perfluoroalkyl substances (PFASs) are a class of artificially synthesised organic compounds extensively used in both industrial and consumer products owing to their unique characteristics. However, their persistence in the environment and potential risk to health have raised serious global concerns. Therefore, developing effective techniques to identify, eliminate, and degrade these pollutants in water are crucial. Owing to their high surface area, magnetic responsiveness, redox sensitivity, and ease of separation, magnetic materials have been considered for the treatment of PFASs from water in recent years. This review provides a comprehensive overview of the recent use of magnetic materials for the detection, removal, and degradation of PFASs in aqueous solutions. First, the use of magnetic materials for sensitive and precise detection of PFASs is addressed. Second, the adsorption of PFASs using magnetic materials is discussed. Several magnetic materials, including iron oxides, ferrites, and magnetic carbon composites, have been explored as efficient adsorbents for PFASs removal from water. Surface modification, functionalization, and composite fabrication have been employed to improve the adsorption effectiveness and selectivity of magnetic materials for PFASs. The final section of this review focuses on the advanced oxidation for PFASs using magnetic materials. This review suggests that magnetic materials have demonstrated considerable potential for use in various environmental remediation applications, as well as in the treatment of PFASs-contaminated water.
Collapse
Affiliation(s)
- Kyeong Hwan Kang
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Md Saifuddin
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Kangmin Chon
- Department of Environmental Engineering, Kangwon National University, Chuncheon-si, Gangwon Province, 24341, Republic of Korea
| | - Sungjun Bae
- Department of Civil and Environmental Engineering, Konkuk University, Gwangjin-gu, Seou, 05029, Republic of Korea.
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
26
|
Zarei A, Khosropour A, Khazdooz L, Amirjalayer S, Khojastegi A, Zadehnazari A, Zhao Y, Abbaspourrad A. Substitution and Orientation Effects on the Crystallinity and PFAS Adsorption of Olefin-Linked 2D COFs. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9483-9494. [PMID: 38319251 DOI: 10.1021/acsami.3c17188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Solid phase adsorbents with high removal affinity for per- and polyfluoroalkyl substances (PFAS) in aqueous environments are sought. We report the synthesis and investigation of COF-I, a new covalent organic framework (COF) with a good affinity for PFAS adsorption. COF-I was synthesized by the condensation reaction between 2,4,6-trimethyl-1,3,5-triazine and 2,3-dimethoxyterephthaldehyde and fully characterized. In addition to the high crystallinity and surface area, COF-I showed high hydrolytic and thermal stability. Further, we converted its hydrophobic surface to a hydrophilic surface by converting the ortho-methoxy groups to hydroxyl derivatives and produced a new hydrophilic olefin-linked two-dimensional (2D) COF. We experimentally measured the crystallinity of both COFs by X-ray diffraction and used atomistic simulations coupled with cross-polarization/magic angle spinning solid-state nuclear magnetic resonance (CP/MAS ssNMR) to determine the relative amounts of AA-stacking and AB-stacking present. COF-I, with its hydrophobic surface and methoxy groups in the ortho positions, showed the best PFAS adsorption. COF-I reduced the concentration of perfluorooctanoic acid from 20 to 0.069 μg L-1 and to 0.052 μg L-1 for perfluorooctanesulfonic acid. These amounts are lower than the U.S. Environmental Protection Agency advisory level (0.070 μg L-1). High efficiency, fast kinetic adsorption, and reusability of COF-I are advantages of COF-I for PFAS removal from water.
Collapse
Affiliation(s)
- Amin Zarei
- Department of Food Science, College of Agriculture & Life Sciences, Cornell University, Stocking Hall, Ithaca, New York 14853, United States
| | - Ahmadreza Khosropour
- Department of Food Science, College of Agriculture & Life Sciences, Cornell University, Stocking Hall, Ithaca, New York 14853, United States
| | - Leila Khazdooz
- Department of Food Science, College of Agriculture & Life Sciences, Cornell University, Stocking Hall, Ithaca, New York 14853, United States
| | - Saeed Amirjalayer
- Westfälische Wilhelms-Universität Münster, Institute for Solid State Theory, Center for Nanotechnology and Center for Multiscale Theory and Computation, Wilhelm-Klemm-Straße 10, Münster 48149, Germany
| | - Anahita Khojastegi
- Department of Food Science, College of Agriculture & Life Sciences, Cornell University, Stocking Hall, Ithaca, New York 14853, United States
| | - Amin Zadehnazari
- Department of Food Science, College of Agriculture & Life Sciences, Cornell University, Stocking Hall, Ithaca, New York 14853, United States
| | - Yu Zhao
- Department of Food Science, College of Agriculture & Life Sciences, Cornell University, Stocking Hall, Ithaca, New York 14853, United States
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agriculture & Life Sciences, Cornell University, Stocking Hall, Ithaca, New York 14853, United States
| |
Collapse
|
27
|
Yadav M, Osonga FJ, Sadik OA. Unveiling nano-empowered catalytic mechanisms for PFAS sensing, removal and destruction in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169279. [PMID: 38123092 DOI: 10.1016/j.scitotenv.2023.169279] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/14/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are organofluorine compounds used to manufacture various industrial and consumer goods. Due to their excellent physical and thermal stability ascribed to the strong CF bond, these are ubiquitously present globally and difficult to remediate. Extensive toxicological and epidemiological studies have confirmed these substances to cause adverse health effects. With the increasing literature on the environmental impact of PFAS, the regulations and research have also expanded. Researchers worldwide are working on the detection and remediation of PFAS. Many methods have been developed for their sensing, removal, and destruction. Amongst these methods, nanotechnology has emerged as a sustainable and affordable solution due to its tunable surface properties, high sorption capacities, and excellent reactivities. This review comprehensively discusses the recently developed nanoengineered materials used for detecting, sequestering, and destroying PFAS from aqueous matrices. Innovative designs of nanocomposites and their efficiency for the sensing, removal, and degradation of these persistent pollutants are reviewed, and key insights are analyzed. The mechanistic details and evidence available to support the cleavage of the CF bond during the treatment of PFAS in water are critically examined. Moreover, it highlights the challenges during PFAS quantification and analysis, including the analysis of intermediates in transitioning nanotechnologies from the laboratory to the field.
Collapse
Affiliation(s)
- Manavi Yadav
- Department of Chemistry and Environmental Sciences, New Jersey Institutes of Technology (NJIT), United States of America
| | - Francis J Osonga
- Department of Chemistry and Environmental Sciences, New Jersey Institutes of Technology (NJIT), United States of America
| | - Omowunmi A Sadik
- Department of Chemistry and Environmental Sciences, New Jersey Institutes of Technology (NJIT), United States of America.
| |
Collapse
|
28
|
Zhang M, Zhao Y, Bui B, Tang L, Xue J, Chen M, Chen W. The Latest Sensor Detection Methods for per- and Polyfluoroalkyl Substances. Crit Rev Anal Chem 2024; 55:542-558. [PMID: 38234139 DOI: 10.1080/10408347.2023.2299233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have emerged as a prominent environmental pollutant in recent years, primarily due to their tendency to accumulate and magnify in both the environment and living organisms. The entry of PFASs into the environment can have detrimental effects on human health. Hence, it is crucial to actively monitor and detect the presence of PFASs. The current standard detection method of PFAS is the combination of chromatography and mass spectrometry. However, this requires expensive instruments, extra sample pretreatment steps, complicated operation and long analysis time. As a result, new methods that do not rely on chromatography and mass spectrometry have been developed and applied. These alternative methods mainly include optical and electrochemical sensor methods, which offer great potential in terms of real-time field detection, instrument miniaturization, shorter analysis time, and reduced detection cost. This review provides a summary of recent advancements in PFAS detection sensors. We categorize and explain the principles and mechanisms of these sensors, and compare their limits of detection and sensitivity. Finally, we discuss the future challenges and improvements needed for PFAS sensors, such as field application, commercialization, and other related issues.
Collapse
Affiliation(s)
- Mingyu Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China
| | - Yanan Zhao
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China
| | - Brian Bui
- Department of Physics, The University of Texas at Arlington, Arlington, Texas, USA
| | - Liming Tang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China
| | - Jiajia Xue
- Beijing Laboratory of Biomedical Materials and State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, China
| | - Mingli Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, China
| | - Wei Chen
- Department of Physics, The University of Texas at Arlington, Arlington, Texas, USA
- School of CHIPS, Xi'an Jiaotong-Loverpool University, Suzhou, China
| |
Collapse
|
29
|
Ahmadi Tabar F, Lowdon JW, Bakhshi Sichani S, Khorshid M, Cleij TJ, Diliën H, Eersels K, Wagner P, van Grinsven B. An Overview on Recent Advances in Biomimetic Sensors for the Detection of Perfluoroalkyl Substances. SENSORS (BASEL, SWITZERLAND) 2023; 24:130. [PMID: 38202993 PMCID: PMC10781331 DOI: 10.3390/s24010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of materials that have been widely used in the industrial production of a wide range of products. After decades of bioaccumulation in the environment, research has demonstrated that these compounds are toxic and potentially carcinogenic. Therefore, it is essential to map the extent of the problem to be able to remediate it properly in the next few decades. Current state-of-the-art detection platforms, however, are lab based and therefore too expensive and time-consuming for routine screening. Traditional biosensor tests based on, e.g., lateral flow assays may struggle with the low regulatory levels of PFAS (ng/mL), the complexity of environmental matrices and the presence of coexisting chemicals. Therefore, a lot of research effort has been directed towards the development of biomimetic receptors and their implementation into handheld, low-cost sensors. Numerous research groups have developed PFAS sensors based on molecularly imprinted polymers (MIPs), metal-organic frameworks (MOFs) or aptamers. In order to transform these research efforts into tangible devices and implement them into environmental applications, it is necessary to provide an overview of these research efforts. This review aims to provide this overview and critically compare several technologies to each other to provide a recommendation for the direction of future research efforts focused on the development of the next generation of biomimetic PFAS sensors.
Collapse
Affiliation(s)
- Fatemeh Ahmadi Tabar
- Laboratory for Soft Matter and Biophysics ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium; (F.A.T.); (S.B.S.); (M.K.)
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands (T.J.C.); (K.E.); (B.v.G.)
| | - Joseph W. Lowdon
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands (T.J.C.); (K.E.); (B.v.G.)
| | - Soroush Bakhshi Sichani
- Laboratory for Soft Matter and Biophysics ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium; (F.A.T.); (S.B.S.); (M.K.)
| | - Mehran Khorshid
- Laboratory for Soft Matter and Biophysics ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium; (F.A.T.); (S.B.S.); (M.K.)
| | - Thomas J. Cleij
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands (T.J.C.); (K.E.); (B.v.G.)
| | - Hanne Diliën
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands (T.J.C.); (K.E.); (B.v.G.)
| | - Kasper Eersels
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands (T.J.C.); (K.E.); (B.v.G.)
| | - Patrick Wagner
- Laboratory for Soft Matter and Biophysics ZMB, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium; (F.A.T.); (S.B.S.); (M.K.)
| | - Bart van Grinsven
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands (T.J.C.); (K.E.); (B.v.G.)
| |
Collapse
|
30
|
Cho S, Kim Y. J-Aggregate-Triggering BODIPYs: an Ultrasensitive Chromogenic and Fluorogenic Sensing Platform for Perfluorooctanesulfonate. Chemistry 2023; 29:e202302897. [PMID: 37864280 DOI: 10.1002/chem.202302897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 10/22/2023]
Abstract
Contamination of water supplies by polyfluoroalkyl substances, notably perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA), has serious health and environmental consequences. Therefore, the development of straightforward and effective means of monitoring and removing PFASs is urgently required. In this study, we report a rapid and sensitive method for the detection of PFOS and PFOA in water that rely on the J-aggregate formation of meso-ester-BODIPY dyes. The dye C10-mim, which contains a hydrophilic methylimidazolium group and a hydrophobic alkylated BODIPY, self-assembles in water into weakly green-emissive micellar assemblies. Upon binding to PFOS or PFOA, a spontaneous disassembly and reorganization forms orange-emissive J-aggregates. The rapid formation (≤5 s) of J-aggregates and the accompanying spectral shifts provide a superior sensing performance, with excellent sensitivity (limit of detection=0.18 ppb for PFOS) and distinct chromogenic and fluorogenic "turn-on" responses.
Collapse
Affiliation(s)
- Siyoung Cho
- Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| | - Youngmi Kim
- Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| |
Collapse
|
31
|
Guo TY, Duncan CL, Li HW, Zhang CX, Mocerino M, Wu Y. Calixarene-based supramolecular assembly with fluorescent gold-nanoclusters for highly selective determination of perfluorooctane sulfonic acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123127. [PMID: 37453384 DOI: 10.1016/j.saa.2023.123127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/27/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
The present study developed an efficient fluorescent approach, based on a supramolecular assembly between gold nanoclusters and calix[4]arene derivatives (C4A-Ds), to detect sever pollutant of perfluorooctane sulfonic acid (PFOS). For that, a series of C4A-Ds with different chain lengths and positive charges at the wider rim were designed and synthesized. Cytidine-5' phosphate protected gold nanoclusters (AuNCs@CMP) were then assembled with calix[4]arene (LC4AP) to form AuNCs/LC4AP assembly, leading to 8-fold luminescence enhancement via the AIEE effect. However, further binding with PFOS reconstituted the as-formed assembly hrough a competitive effect, generating a fluorescence quenching. Particularly, the linear fluorescence response of AuNCs/LC4AP to PFOS realized a highly sensitive determination of the pollutant PFOS in a wide range (2.0-100 μM). In addition, the developed method successfully detected PFOS in pool water near a fire drill field, being good enough for the practical PFOS determination. The calixarene mediated method, based on the fluorescence "on-off" strategy of metal nanoclusters, is sensitive, rapid-responsive, economical, particularly, suitable for the PFOS determination in practice. It takes full advantage of the molecular recognition and self-assembly of artificial macrocyclic host molecules as a promising strategy for the PFOS determination, and will be highlight to develop new detection methods for PFOS and other poisonous compounds in environments.
Collapse
Affiliation(s)
- Tian-Yuan Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, No. 2699, Qianjin Street, Changchun 130012, PR China; Institute of Theoretical Chemistry, College of Chemistry, Jilin University, No. 2 Liutiao Road, Changchun 130023, PR China
| | - Caitlin L Duncan
- School of Molecular and Life Sciences, Curtin University, Perth 6845, Australia
| | - Hong-Wei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, No. 2699, Qianjin Street, Changchun 130012, PR China; Institute of Theoretical Chemistry, College of Chemistry, Jilin University, No. 2 Liutiao Road, Changchun 130023, PR China
| | - Chun-Xia Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, No. 2699, Qianjin Street, Changchun 130012, PR China; Institute of Theoretical Chemistry, College of Chemistry, Jilin University, No. 2 Liutiao Road, Changchun 130023, PR China
| | - Mauro Mocerino
- School of Molecular and Life Sciences, Curtin University, Perth 6845, Australia.
| | - Yuqing Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, No. 2699, Qianjin Street, Changchun 130012, PR China; Institute of Theoretical Chemistry, College of Chemistry, Jilin University, No. 2 Liutiao Road, Changchun 130023, PR China.
| |
Collapse
|
32
|
Concellón A, Swager TM. Detection of Per- and Polyfluoroalkyl Substances (PFAS) by Interrupted Energy Transfer. Angew Chem Int Ed Engl 2023; 62:e202309928. [PMID: 37795918 DOI: 10.1002/anie.202309928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/24/2023] [Accepted: 10/04/2023] [Indexed: 10/06/2023]
Abstract
The ubiquitous presence of per- and polyfluoroalkyl substances (PFAS) in aqueous environments has aroused societal concern. Nonetheless, effective sensing technologies for continuous monitoring of PFAS within water distribution infrastructures currently do not exist. Herein, we describe a ratiometric sensing approach to selectively detect aqueous perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) at concentrations of μg ⋅ L-1 . Our method relies on the excitonic transport in a highly fluorinated poly(p-phenylene ethynylene) to amplify a ratiometric emission signal modulated by an embedded fluorinated squaraine dye. The electronic coupling between the polymer and dye occurs through overlap of π-orbitals and is designed such that energy transfer is dominated by an electron-exchange (Dexter) mechanism. Exposure to aqueous solutions of PFAS perturbs the orbital interactions between the squaraine dye and the polymer backbone, thereby diminishing the efficiency of the energy transfer and producing a "polymer-ON/dye-OFF" response. These polymer/dye combinations were evaluated in spin-coated films and polymer nanoparticles and were able to selectively detect PFAS at concentrations of ca. 150 ppb and ca. 50 ppb, respectively. Both polymer films and nanoparticles are not affected by the type of water, and similar responses to PFAS were found in milliQ and well water.
Collapse
Affiliation(s)
- Alberto Concellón
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Present address: Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-University of Zaragoza, 50009, Zaragoza, Spain
| | - Timothy M Swager
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
33
|
Benmore CJ, Wang Y, Darling SB, Chen J. Molecular interactions in short-chain perfluoroalkyl carboxylic acids and aqueous solutions. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220333. [PMID: 37691465 PMCID: PMC10493550 DOI: 10.1098/rsta.2022.0333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/14/2023] [Indexed: 09/12/2023]
Abstract
The presence of short-chain per- and polyfluoroalkyl substances in water poses a major health and environmental challenge. Here, we have performed high-energy small- and wide-angle X-ray scattering measurements on CF3[CF2]nCOOH (where n = 1, 2, 3 represents the chain length) and their aqueous solutions at 10% mole concentrations to characterize their molecular interactions at the atomic and nanometer length scales. The experimental wide-angle structure factors have been modelled using Empirical Potential Structural Refinement. The oxygen-oxygen partial X-ray pair distribution functions show that the coordination number between the hydroxyl oxygen on the acid and surrounding oxygen water molecules increases significantly with acid chain length, rising from 3.2 for n = 1 to 4.1 for n = 3. The small-angle scattering is dominated by a sharp, high-intensity peak at Q1 ∼ 0.2 Å-1 and a smaller peak at Q2 = 1.2 Å-1 for n = 3, both of which decrease with decreasing chain length. The Q2 peak is attributed to groups of adjacent non-bonded acid molecules, and Q1 has contributions from both correlations between acid molecules and water-water interactions. In all cases, the models show nanoscale aggregation occurs in the form of denser channels of winding hydrogen-bonded chains, approximately 20 water molecules in length, surrounding clusters of acid molecules. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 2)'.
Collapse
Affiliation(s)
- Chris J. Benmore
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont,IL 60439, USA
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago,IL 60637, USA
| | - Yuqin Wang
- Chemical Sciences and Engineering Division, Physical Sciences and Engineering Directorate, Argonne National Laboratory, Lemont,IL 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago,IL 60637, USA
| | - Seth B. Darling
- Chemical Sciences and Engineering Division, Physical Sciences and Engineering Directorate, Argonne National Laboratory, Lemont,IL 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago,IL 60637, USA
| | - Junhong Chen
- Chemical Sciences and Engineering Division, Physical Sciences and Engineering Directorate, Argonne National Laboratory, Lemont,IL 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago,IL 60637, USA
| |
Collapse
|
34
|
Kazi OA, Chen W, Eatman JG, Gao F, Liu Y, Wang Y, Xia Z, Darling SB. Material Design Strategies for Recovery of Critical Resources from Water. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300913. [PMID: 37000538 DOI: 10.1002/adma.202300913] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Population growth, urbanization, and decarbonization efforts are collectively straining the supply of limited resources that are necessary to produce batteries, electronics, chemicals, fertilizers, and other important products. Securing the supply chains of these critical resources via the development of separation technologies for their recovery represents a major global challenge to ensure stability and security. Surface water, groundwater, and wastewater are emerging as potential new sources to bolster these supply chains. Recently, a variety of material-based technologies have been developed and employed for separations and resource recovery in water. Judicious selection and design of these materials to tune their properties for targeting specific solutes is central to realizing the potential of water as a source for critical resources. Here, the materials that are developed for membranes, sorbents, catalysts, electrodes, and interfacial solar steam generators that demonstrate promise for applications in critical resource recovery are reviewed. In addition, a critical perspective is offered on the grand challenges and key research directions that need to be addressed to improve their practical viability.
Collapse
Affiliation(s)
- Omar A Kazi
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Wen Chen
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Jamila G Eatman
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Feng Gao
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Yining Liu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Yuqin Wang
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Zijing Xia
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Seth B Darling
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
35
|
Cardoso IMF, Pinto da Silva L, Esteves da Silva JCG. Nanomaterial-Based Advanced Oxidation/Reduction Processes for the Degradation of PFAS. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101668. [PMID: 37242085 DOI: 10.3390/nano13101668] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
This review focuses on a critical analysis of nanocatalysts for advanced reductive processes (ARPs) and oxidation processes (AOPs) designed for the degradation of poly/perfluoroalkyl substances (PFAS) in water. Ozone, ultraviolet and photocatalyzed ARPs and/or AOPs are the basic treatment technologies. Besides the review of the nanomaterials with greater potential as catalysts for advanced processes of PFAS in water, the perspectives for their future development, considering sustainability, are discussed. Moreover, a brief analysis of the current state of the art of ARPs and AOPs for the treatment of PFAS in water is presented.
Collapse
Affiliation(s)
- Inês M F Cardoso
- Chemistry Research Unit (CIQUP), Institute of Molecular Sciences (IMS), Department of Geosciences, Environment and Territorial Planning, Faculty of Sciences, University of Porto (FCUP), Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Luís Pinto da Silva
- Chemistry Research Unit (CIQUP), Institute of Molecular Sciences (IMS), Department of Geosciences, Environment and Territorial Planning, Faculty of Sciences, University of Porto (FCUP), Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Joaquim C G Esteves da Silva
- Chemistry Research Unit (CIQUP), Institute of Molecular Sciences (IMS), Department of Geosciences, Environment and Territorial Planning, Faculty of Sciences, University of Porto (FCUP), Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
36
|
Concellón A, Castro-Esteban J, Swager TM. Ultratrace PFAS Detection Using Amplifying Fluorescent Polymers. J Am Chem Soc 2023; 145:11420-11430. [PMID: 37167538 DOI: 10.1021/jacs.3c03125] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Per- and poly(fluoroalkyl) substances (PFAS) are environmentally persistent pollutants that are of growing concern due to their detrimental effects at ultratrace concentrations (ng·L-1) in human and environmental health. Suitable technologies for on-site ultratrace detection of PFAS do not exist and current methods require complex and specialized equipment, making the monitoring of PFAS in distributed water infrastructures extremely challenging. Herein, we describe amplifying fluorescent polymers (AFPs) that can selectively detect perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) at concentrations of ng·L-1. The AFPs are highly fluorinated and have poly(p-phenylene ethynylene) and polyfluorene backbones bearing pyridine-based selectors that react with acidic PFAS via a proton-transfer reaction. The fluorinated regions within the polymers partition PFAS into polymers, whereas the protonated pyridine units create lower-energy traps for the excitons, and emission from these pyridinium sites results in red-shifting of the fluorescence spectra. The AFPs are evaluated in thin-film and nanoparticle forms and can selectively detect PFAS concentrations of ∼1 ppb and ∼100 ppt, respectively. Both polymer films and nanoparticles are not affected by the type of water, and similar responses to PFAS were found in milliQ water, DI water, and well water. These results demonstrate a promising sensing approach for on-site detection of aqueous PFAS in the ng·L-1 range.
Collapse
Affiliation(s)
- Alberto Concellón
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jesús Castro-Esteban
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Timothy M Swager
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
37
|
Gogoi P, Yao Y, Li YC. Understanding PFOS Adsorption on a Pt Electrode for Electrochemical Sensing Applications. ChemElectroChem 2022. [DOI: 10.1002/celc.202201006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Pratahdeep Gogoi
- Department of Chemistry University at Buffalo State University of New York Buffalo New York 14260 USA
| | - Yu Yao
- Department of Chemistry University at Buffalo State University of New York Buffalo New York 14260 USA
| | - Yuguang C. Li
- Department of Chemistry University at Buffalo State University of New York Buffalo New York 14260 USA
| |
Collapse
|
38
|
He Y, Luo D, Lynch VM, Ahmed M, Sessler JL, Chi X. Porous adaptive luminescent metallacage for the detection and removal of perfluoroalkyl carboxylic acids. Chem 2022. [DOI: 10.1016/j.chempr.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
Khan R, Andreescu D, Hassan MH, Ye J, Andreescu S. Nanoelectrochemistry Reveals Selective Interactions of Perfluoroalkyl Substances (PFASs) with Silver Nanoparticles. Angew Chem Int Ed Engl 2022; 61:e202209164. [DOI: 10.1002/anie.202209164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Reem Khan
- Chemistry and Biomolecular Science Clarkson University 8 Clarkson Ave. Potsdam NY 13699 USA
| | - Daniel Andreescu
- Chemistry and Biomolecular Science Clarkson University 8 Clarkson Ave. Potsdam NY 13699 USA
| | - Mohamed H. Hassan
- Chemistry and Biomolecular Science Clarkson University 8 Clarkson Ave. Potsdam NY 13699 USA
| | - Jingyun Ye
- Chemistry and Biomolecular Science Clarkson University 8 Clarkson Ave. Potsdam NY 13699 USA
| | - Silvana Andreescu
- Chemistry and Biomolecular Science Clarkson University 8 Clarkson Ave. Potsdam NY 13699 USA
| |
Collapse
|
40
|
Wang Q, Zhang Z, Zhang L, Liu Y, Xie L, Ge S, Yu J. Photoswitchable CRISPR/Cas12a-Amplified and Co 3O 4@Au Nanoemitter Based Triple-Amplified Diagnostic Electrochemiluminescence Biosensor for Detection of miRNA-141. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32960-32969. [PMID: 35839124 DOI: 10.1021/acsami.2c08823] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, a CRISPR/Cas12a initiated switchable ternary electrochemiluminescence (ECL) biosensor combined with a Co3O4@Au nanoemitter is presented for the in vitro monitoring of miRNA-141. Benefiting from the advantages of high-throughput cargo payload capability and superconductivity, three-dimensional reduced graphene oxide (3D-rGO) was designated as an introductory conducting stratum of a paper working electrode (PWE). With the collaborative participation of Co3O4@Au NPs, the transmutation of TPrA in the Ru(bpy)32+/TPrA system can be riotously expedited into exorbitant free radical ions TPrA•, which provoked the exaggeration of the ECL signal. Moreover, the programmable enzyme-free hybrid chain reaction (HCR) amplifier on the PWE surface accurately anchored the assembly of nucleic acid tandem and accomplished the secondary recursion of the signal. Impressively, the multifunctional CRISPR/Cas12a with nonspecific cis/trans-splitting decomposition manipulated the photoswitch of the "on-off" signal state that avoided the false-positive diagnosis. The presented multistrategy cooperative biosensor demonstrated extraordinary sensitivity and specificity, with a low detection limit of 3.3 fM (S/N = 3) in the concentration scope from 10 fM to 100 nM, which fully corresponded to the expectation. Overall, this innovative methodology paved a generous avenue for evaluating multifarious biotransformations and provided a tremendous impetus to the development of real-time diagnosis and clinical detection of other biomarkers.
Collapse
Affiliation(s)
- Qian Wang
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P. R. China
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Zuhao Zhang
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P. R. China
| | - Lu Zhang
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P. R. China
| | - Yunqing Liu
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P. R. China
| | - Li Xie
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, P. R. China
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P. R. China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
41
|
Khan R, Andreescu D, Hassan MH, Ye J, Andreescu S. Nanoelectrochemistry Reveals Selective Interactions of Perfluoroalkyl Substances (PFASs) with Silver Nanoparticles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Reem Khan
- Clarkson University Chemistry and Biomolecular Science UNITED STATES
| | - Daniel Andreescu
- Clarkson University Chemistry and Biomolecular Science 8 Clarkson Ave 13699 Potsdam UNITED STATES
| | - Mohamed H. Hassan
- Clarkson University Chemistry and Biomolecular Science UNITED STATES
| | - Jingyun Ye
- Clarkson University Chemistry and Biomolecular Science UNITED STATES
| | - Silvana Andreescu
- Clarkson University Chemistry and Biomolecular Science 8 Clarskon Ave 13699 Potsdam UNITED STATES
| |
Collapse
|
42
|
Araújo RG, Rodríguez-Hernandéz JA, González-González RB, Macias-Garbett R, Martínez-Ruiz M, Reyes-Pardo H, Hernández Martínez SA, Parra-Arroyo L, Melchor-Martínez EM, Sosa-Hernández JE, Coronado-Apodaca KG, Varjani S, Barceló D, Iqbal HMN, Parra-Saldívar R. Detection and Tertiary Treatment Technologies of Poly-and Perfluoroalkyl Substances in Wastewater Treatment Plants. FRONTIERS IN ENVIRONMENTAL SCIENCE 2022; 10. [DOI: 10.3389/fenvs.2022.864894] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
PFAS are a very diverse group of anthropogenic chemicals used in various consumer and industrial products. The properties that characterize are their low degradability as well as their resistance to water, oil and heat. This results in their high persistence in the environment and bioaccumulation in different organisms, causing many adverse effects on the environment as well as in human health. Some of their effects remain unknown to this day. As there are thousands of registered PFAS, it is difficult to apply traditional technologies for an efficient removal and detection for all. This has made it difficult for wastewater treatment plants to remove or degrade PFAS before discharging the effluents into the environment. Also, monitoring these contaminants depends mostly on chromatography-based methods, which require expensive equipment and consumables, making it difficult to detect PFAS in the environment. The detection of PFAS in the environment, and the development of technologies to be implemented in tertiary treatment of wastewater treatment plants are topics of high concern. This study focuses on analyzing and discussing the mechanisms of occurrence, migration, transformation, and fate of PFAS in the environment, as well the main adverse effects in the environment and human health. The following work reviews the recent advances in the development of PFAS detection technologies (biosensors, electrochemical sensors, microfluidic devices), and removal/degradation methods (electrochemical degradation, enzymatic transformation, advanced oxidation, photocatalytic degradation). Understanding the risks to public health and identifying the routes of production, transportation, exposure to PFAS is extremely important to implement regulations for the detection and removal of PFAS in wastewater and the environment.
Collapse
|
43
|
Ouimet JA, Xu J, Flores‐Hansen C, Phillip WA, Boudouris BW. Design Considerations for Next‐Generation Polymer Sorbents: From Polymer Chemistry to Device Configurations. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jonathan Aubuchon Ouimet
- Department of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame Indiana 46566 United States
| | - Jialing Xu
- Department of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame Indiana 46566 United States
| | - Carsten Flores‐Hansen
- Department of Chemistry Purdue University West Lafayette Indiana 47907 United States
| | - William A. Phillip
- Department of Chemical and Biomolecular Engineering University of Notre Dame Notre Dame Indiana 46566 United States
| | - Bryan W. Boudouris
- Department of Chemistry Purdue University West Lafayette Indiana 47907 United States
- Charles D. Davidson School of Chemical Engineering Purdue University West Lafayette Indiana 47907 United States
| |
Collapse
|