1
|
Qu L, Lei D, Bai Y, Xiang M, Bai W, Guo J, Yang X, Yang Z. MgO nanoparticle-decorated in situ nitrogen-doped porous carbon hybrid materials as advanced sulfur hosts in Li-S batteries. Dalton Trans 2025; 54:8601-8611. [PMID: 40326212 DOI: 10.1039/d5dt00475f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Porous carbon combined with metal oxide modification shows great potential applications in lithium-sulfur batteries owing to various merits, including high encapsulation capacity for active sulfur, short transport path for lithium ions and good trapping capability of lithium polysulfides. Herein, inspired from waste biomass from passion fruit peels, an in situ nitrogen-doped porous carbon hybrid material decorated with MgO nanoparticles was designed and constructed via hydrothermal treatment and synchronous activation/carbonization method. The as-prepared porous carbon exhibited abundant pore structure with a notable large specific surface area of 2221.8 m2 g-1, mainly consisting of meso- and micro-pores. Even after modification with MgO nanoparticles, a high specific surface area of 1063.2 m2 g-1 was retained for sulfur loading and electrolyte penetration. In particular, the combination of rich pores, moderate MgO nanoparticles and nitrogen doping exhibited a good physicochemical synergistic effect for alleviating the shuttle dissolution of polysulfides. When the carbon hybrid material was evaluated as a sulfur host, the optimized battery delivered an initial discharge capacity of 792.5 mA h g-1 at 0.2 C and a high reversible capacity of 668 mA h g-1 after 200 cycles. Moreover, a stable long cycle performance of up to 1000 cycles was achieved at a high current rate of 1.0 C.
Collapse
Affiliation(s)
- Linyue Qu
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China.
| | - Dongyuan Lei
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China.
| | - Yang Bai
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China.
| | - Mingwu Xiang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China.
| | - Wei Bai
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China.
| | - Junming Guo
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, China.
| | - Xinzhou Yang
- Institute of Science and Technology, Dehong Teachers college, Dehong, 678400, China.
| | - Zixian Yang
- Institute of Science and Technology, Dehong Teachers college, Dehong, 678400, China.
| |
Collapse
|
2
|
Ardhra S, Prakash P, Siva Dev R, Wunder SL, Venkatnathan A. Interatomic Interactions and Ion-Transport in a Polyoligomeric Silsesquioxane-Based Multi-Ionic Salt Electrolyte for Lithium-Ion Batteries. Chemphyschem 2025; 26:e202400983. [PMID: 40008986 DOI: 10.1002/cphc.202400983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 02/27/2025]
Abstract
Polyoligomeric silsesquioxane (POSS) tailored with trifluoromethanesulfonylimide-lithium and solvated in tetraglyme (G4) is a potential electrolyte for Li-ion batteries. Using classical MD simulations, at different G4/POSS(-LiNSO2CF3)8 molar ratios, the interactions of Li+ ions with the oxygen atoms of G4 and, oxygen/nitrogen sites of the pendant tails, the behaviour of POSS(--NSO2CF3)8, and the mobility of species are investigated. The RDFs showed that there exist competing interactions of the O(G4), O(POSS), and N(POSS) sites with Li+ ions. The lifetime analysis indicated that Li+- - -O(POSS) and Li+- - -N(POSS) interactions are longer-lived compared to Li+- - -O(G4). The morphological changes of the POSS tails upon interaction with Li+ ions were analysed using rotational lifetimes, coiling, and end-to-end distances. The ion-speciation analysis indicated the presence of solvent-separated ion pairs (SSIPs), contact ion pairs (CIPs), and higher-order ion clusters, with SSIPs being the more dominant species at 32/1. The self-diffusion coefficients for the 32/1 system, which showed the least cation-anion interaction, followed the trend:D G 4 > D L i + > D F P O S S > D P O S S ${{D}_{G4}\char62 {D}_{Li+}\char62 {D}_{F\left(POSS\right)}\char62 {D}_{POSS}}$ . The computed cationic transference number (t+) using theD F P O S S ${{D}_{F\left(POSS\right)}}$ is consistent with NMR experimental data. The t+ (and the trends with temperature) computed using theD P O S S ${{D}_{POSS}}$ and ionic conductivities are in good agreement.
Collapse
Affiliation(s)
- Shylendran Ardhra
- Department Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research Pune, Pune, 411008, India
| | - Prabhat Prakash
- Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Rabin Siva Dev
- Department Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research Pune, Pune, 411008, India
| | | | - Arun Venkatnathan
- Department Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research Pune, Pune, 411008, India
| |
Collapse
|
3
|
Sun B, Zhang M, Yuan H, Wei W, Lin Z, Chang J, Hao Y. A Three-Dimensional, Flexible Conductive Network Based on an MXene/Rubber Composite for Lithium Metal Anodes. ACS APPLIED MATERIALS & INTERFACES 2025; 17:3248-3256. [PMID: 39736139 DOI: 10.1021/acsami.4c15406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2025]
Abstract
Flexibility enhancement is a pressing issue in the current development of advanced lithium-metal battery applications. Many types of organic polymers are inherently flexible, which can form a composite structure enhancing electrode flexibility. However, organic polymers have a negative influence on the plating and stripping of lithium-metal anodes, and the large number of polymers block the pore of the material, reducing the utilization of the active site. Herein, we report a flexible porous substrate as an anode host based on a serine-modified three-dimensional structure of MXene and epoxidized natural rubber composite (3D/MXene-S-ENR), in which lithium ions can uniformly deposit in the interconnected pore structure. The 3D/MXene-S-ENR, having more nucleation sites, can effectively improve the uniformity of lithium metal, which effectively reduces the local current density and inhibits lithium dendrites. Compared with the serine-modified MXene and the epoxidized natural rubber electrode (MXene-S-ENR), the 3D/MXene-S-ENR electrode has lower overpotential and stable cycling. The lithium-sulfur batteries (Li-S) based on the 3D/MXene-S-ENR anode and sulfur cathode (3D/MXene-S-ENR@Li|S/C) deliver a stable discharge capacity of 316.2 mAh g-1 after 350 cycles, with a Coulombic efficiency of 98.05%. Finally, we assembled a flexible pack battery, which demonstrates the potential value of the 3D/MXene-S-ENR anode in high-performance flexible lithium-sulfur batteries.
Collapse
Affiliation(s)
- Bin Sun
- Academy of Advanced Interdisciplinary Research, Xidian University, 2 South Taibai Road, Xi'an 710071, People's Republic of China
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, P. R. China
| | - Miao Zhang
- Academy of Advanced Interdisciplinary Research, Xidian University, 2 South Taibai Road, Xi'an 710071, People's Republic of China
| | - Hongxin Yuan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Wei Wei
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, P. R. China
| | - Zhenhua Lin
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, P. R. China
| | - Jingjing Chang
- Academy of Advanced Interdisciplinary Research, Xidian University, 2 South Taibai Road, Xi'an 710071, People's Republic of China
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, P. R. China
| | - Yue Hao
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, P. R. China
| |
Collapse
|
4
|
Liu Y, Li M, Yang R, Meng Q, Baek DH, Lim HT, Kim JK, Ahn JH. Immobilization and Catalytic Conversion of Polysulfide by In-Situ Generated Nickel in Hollow Carbon Fibers for High-Rate Lithium-Sulfur Batteries. CHEMSUSCHEM 2025; 18:e202401178. [PMID: 39108218 DOI: 10.1002/cssc.202401178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/12/2024] [Indexed: 09/25/2024]
Abstract
Lithium-sulfur (Li-S) batteries are considered promising energy-storage systems because of their high theoretical energy density, low cost, and eco-friendliness. However, problems such as the shuttle effect can result in the loss of active materials, poor cyclability, and rapid capacity degradation. The utilization of a structural configuration that enhances electrochemical performance via dual adsorption-catalysis strategies can overcome the limitations of Li-S batteries. In this study, an integrated interlayer structure, in which hollow carbon fibers (HCFs) were modified with in-situ-generated Ni nanoparticles, was prepared by scalable one-step carbonization. Highly hierarchically porous HCFs act as the carbon skeleton and provide a continuous three-dimensional conductive network that enhances ion/electron diffusion. Ni nanoparticles with superior anchoring and catalytic abilities can prevent the shuttle effect and increase the conversion rate, thereby promoting the electrochemical performance. This synergistic effect resulted in a high capacity retention of 582 mAh g-1 at 1 C after 100 cycles, providing an excellent rate capability of up to 3 C. The novel structure, wherein Ni nanoparticles are embedded in cotton-tissue-derived HCFs, provides a new avenue for enhancing electrochemical performance at high C rates. This results in a low-cost, sustainable, and high-performance hybrid material for the development of practical Li-S batteries.
Collapse
Affiliation(s)
- Ying Liu
- Department of Chemical Engineering, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
- Department of Energy Convergence Engineering, Cheongju University, 285 Daseong-ro, Cheongju, 28503, Republic of Korea
| | - Mingxu Li
- Department of Materials Engineering and Convergence Technology, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Rong Yang
- International Research Center for Composite and Intelligent Manufacturing Technology, Institute of Chemical Power Sources, Xi'an University of Technology, Jinhua Road, Xi'an, 710048, People's Republic of China
| | - Qinglong Meng
- International Research Center for Composite and Intelligent Manufacturing Technology, Institute of Chemical Power Sources, Xi'an University of Technology, Jinhua Road, Xi'an, 710048, People's Republic of China
| | - Dong-Ho Baek
- Department of Chemical Engineering, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
- Swemeka. Co. Ltd., 111 Taejeong-ro, Maengdong-myeon, Eumseong-gun, Chungcheongbuk-do, Republic of Korea
| | - Hyung-Tae Lim
- Department of Materials Convergence System Engineering, Changwon National University, Changwon, Gyeongnam, 51140, Republic of Korea
| | - Jae-Kwang Kim
- Department of Energy Convergence Engineering, Cheongju University, 285 Daseong-ro, Cheongju, 28503, Republic of Korea
- Swemeka. Co. Ltd., 111 Taejeong-ro, Maengdong-myeon, Eumseong-gun, Chungcheongbuk-do, Republic of Korea
| | - Jou-Hyeon Ahn
- Department of Chemical Engineering, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
- Department of Materials Engineering and Convergence Technology, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| |
Collapse
|
5
|
Sun B, Wang D, Jiang Y, Wang R, Lyu L, Diao G, Zhang W, Pang H. Cyclodextrin Metal-Organic Framework Functionalized Carbon Materials with Optimized Interface Electronics and Selective Supramolecular Channels for High-Performance Lithium-Sulfur Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2415633. [PMID: 39501988 DOI: 10.1002/adma.202415633] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Indexed: 12/29/2024]
Abstract
During the reaction process in lithium-sulfur batteries, Lewis acidic lithium polysulfides (LiPSs) affect ion distribution and overall electrolyte stability, degrading battery performance and product distribution (e.g., Li2S). Here, a microenvironment regulation strategy with optimized interface electronics and selective supramolecular channels, is proposed to enhance LiPS reaction kinetics through Lewis basic γ-cyclodextrin metal-organic framework (γ-CDMOF). To validate this concept, γ-CDMOF is rapidly synthesized on 3D graphene foam (GF) via a microwave-assisted method, resulting in a γ-CDMOF/GF cathode for high-performance Li-S batteries. A range of analytical techniques combined with density functional theory (DFT) calculations confirm that introducing a Lewis basic supramolecular microenvironment mitigates the LiPSs shuttle effect, enhances polysulfide capture, and improves sulfur redox conversion. Additionally, COMSOL simulations reveal that the γ-CDMOF framework and oxygen sites significantly reduce volumetric expansion stress during the LiPS solid-liquid phase transition. Impressively, the γ-CDMOF/GF cathode exhibits exceptional performance, including a high specific capacity (1253.01 mAh g⁻¹ at 0.1C), excellent rate performance (589.68 mAh g⁻¹ at 5C), and long cycle life (over 1200 cycles). This study introduces a new concept of supramolecular microenvironment regulation and interfacial interaction strategy, offering a unique approach for the development of multifunctional electrode materials.
Collapse
Affiliation(s)
- Bingxin Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, China
| | - Dan Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, China
| | - Yuxuan Jiang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, China
| | - Rui Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, China
| | - Lulu Lyu
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Guowang Diao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, China
| | - Wang Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, China
| |
Collapse
|
6
|
Bai Y, Nguyen TT, Song H, Chu R, Tran DT, Kim NH, Lee JH. Ru Single Atom Dispersed on MoS 2/MXene for Enhanced Sulfur Reduction Reaction in Lithium-Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402074. [PMID: 38794990 DOI: 10.1002/smll.202402074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/07/2024] [Indexed: 05/27/2024]
Abstract
The high theoretical energy density (2600 Wh kg-1) and low cost of lithium-sulfur batteries (LSBs) make them an ideal alternative for the next-generation energy storage system. Nevertheless, severe capacity degradation and low sulfur utilization resulting from shuttle effect hinder their commercialization. Herein, Single-atom Ru-doped 1T/2H MoS2 with enriched defects decorates V2C MXene (Ru-MoS2/MXene) produced by a new phase-engineering strategy employed as sulfur host to promote polysulfide adsorption and conversion reaction kinetics. The Ru single atom-doped adjusts the chemical environment of the MoS2/MXene to anchor polysulfide and acts as an efficient center to motivate the redox reaction. In addition, the rich defects of the MoS2 and ternary boundary among 1T/2H MoS2 and V2C accelerate the charge transfer and ion movements for the reaction. As expected, the Ru-MoS2/MXene/S cathode-based cell exhibits a high-rate capability of 684.3 mAh g-1 at 6 C. After 1000 cycles, the Ru-MoS2/MXene/S cell maintains an excellent cycling stability of 696 mAh g-1 at 2 C with a capacity degradation as low as 0.02% per cycle. Despite a high sulfur loading of 9.5 mg cm-2 and a lean electrolyte-to-sulfur ratio of 4.3, the cell achieves a high discharge capacity of 726 mAh g-1.
Collapse
Affiliation(s)
- Yanqun Bai
- Advanced Materials Institute of Nano Convergence Engineering (BK21 FOUR), Dept. of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
- AHES Co., 445 Techno Valley-ro, Bongdong-eup, Wanju-gun, Jeonbuk, 55314, Republic of Korea
| | - Thanh Tuan Nguyen
- Advanced Materials Institute of Nano Convergence Engineering (BK21 FOUR), Dept. of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Hewei Song
- Advanced Materials Institute of Nano Convergence Engineering (BK21 FOUR), Dept. of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Rongrong Chu
- Advanced Materials Institute of Nano Convergence Engineering (BK21 FOUR), Dept. of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Duy Thanh Tran
- Advanced Materials Institute of Nano Convergence Engineering (BK21 FOUR), Dept. of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Nam Hoon Kim
- Advanced Materials Institute of Nano Convergence Engineering (BK21 FOUR), Dept. of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Joong Hee Lee
- Advanced Materials Institute of Nano Convergence Engineering (BK21 FOUR), Dept. of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
- AHES Co., 445 Techno Valley-ro, Bongdong-eup, Wanju-gun, Jeonbuk, 55314, Republic of Korea
- Carbon Composite Research Centre, Department of Polymer-Nano Science and Technology, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| |
Collapse
|
7
|
Shi J, Jiang K, Fan Y, Zhao L, Cheng Z, Yu P, Peng J, Wan M. Advancing Metallic Lithium Anodes: A Review of Interface Design, Electrolyte Innovation, and Performance Enhancement Strategies. Molecules 2024; 29:3624. [PMID: 39125029 PMCID: PMC11314291 DOI: 10.3390/molecules29153624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Lithium (Li) metal is one of the most promising anode materials for next-generation, high-energy, Li-based batteries due to its exceptionally high specific capacity and low reduction potential. Nonetheless, intrinsic challenges such as detrimental interfacial reactions, significant volume expansion, and dendritic growth present considerable obstacles to its practical application. This review comprehensively summarizes various recent strategies for the modification and protection of metallic lithium anodes, offering insight into the latest advancements in electrode enhancement, electrolyte innovation, and interfacial design, as well as theoretical simulations related to the above. One notable trend is the optimization of electrolytes to suppress dendrite formation and enhance the stability of the electrode-electrolyte interface. This has been achieved through the development of new electrolytes with higher ionic conductivity and better compatibility with Li metal. Furthermore, significant progress has been made in the design and synthesis of novel Li metal composite anodes. These composite anodes, incorporating various additives such as polymers, ceramic particles, and carbon nanotubes, exhibit improved cycling stability and safety compared to pure Li metal. Research has used simulation computing, machine learning, and other methods to achieve electrochemical mechanics modeling and multi-field simulation in order to analyze and predict non-uniform lithium deposition processes and control factors. In-depth investigations into the electrochemical reactions, interfacial chemistry, and physical properties of these electrodes have provided valuable insights into their design and optimization. It systematically encapsulates the state-of-the-art developments in anode protection and delineates prospective trajectories for the technology's industrial evolution. This review aims to provide a detailed overview of the latest strategies for enhancing metallic lithium anodes in lithium-ion batteries, addressing the primary challenges and suggesting future directions for industrial advancement.
Collapse
Affiliation(s)
- Junwei Shi
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (J.S.); (K.J.)
| | - Kailin Jiang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (J.S.); (K.J.)
| | - Yameng Fan
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, Wollongong, NSW 2522, Australia; (Y.F.); (L.Z.); (Z.C.)
| | - Lingfei Zhao
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, Wollongong, NSW 2522, Australia; (Y.F.); (L.Z.); (Z.C.)
| | - Zhenxiang Cheng
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, Wollongong, NSW 2522, Australia; (Y.F.); (L.Z.); (Z.C.)
| | - Peng Yu
- State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jian Peng
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, Wollongong, NSW 2522, Australia; (Y.F.); (L.Z.); (Z.C.)
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Min Wan
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430048, China; (J.S.); (K.J.)
| |
Collapse
|
8
|
Wang Q, Wang C, Qiao Y, Zhou H, Yu J. Hybrid-Electrolytes System Established by Dual Super-lyophobic Membrane Enabling High-Voltage Aqueous Lithium Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401486. [PMID: 38607186 DOI: 10.1002/adma.202401486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/02/2024] [Indexed: 04/13/2024]
Abstract
Aqueous electrolytes and related aqueous rechargeable batteries own unique advantage on safety and environmental friendliness, but coupling high energy density Li-metal batteries with aqueous electrolyte still represent challenging and not yet reported. Here, this work makes a breakthrough in "high-voltage aqueous Li-metal batteries" (HVALMBs) by adopting a brilliant hybrid-electrolytes strategy. Concentrated ternary-salts ether-based electrolyte (CTE) acts as the anolyte to ensure the stability and reversibility of Li-metal plating/stripping. Eco-friendly water-in-salt (WiS) electrolyte acts as catholyte to support the healthy operation of high-voltage cathodes. Most importantly, the aqueous catholyte and non-aqueous anolyte are isolated in each independent chamber without any crosstalk. Aqueous catholyte permeation toward Li anode can be completely prohibited without proton-induced corrosion, which is enabled by the introduction of under-liquid dual super-lyophobic membrane-based separator, which can realize the segregation of the most effective immiscible electrolytes with a surface tension difference as small as 6 mJ m-2. As a result, the aqueous electrolyte can be successfully coupled with Li-metal anode and achieve the fabrication of HVALMBs (hybrid-electrolytes system), which presents long-term cycle stability with a capacity retention of 81.0% after 300 cycles (LiNi0.8Mn0.1Co0.1O2 || Li (limited) cell) and high energy density (682 Wh kg-1).
Collapse
Affiliation(s)
- Qifei Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Changhao Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Yu Qiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Haoshen Zhou
- Center of Energy Storage Materials & Technology, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
9
|
Xie Q, Lu C, Yi C, Shui T, Moloto N, Liu J, Kure-Chu SZ, Hihara T, Zhang W, Sun Z. Interfacial integration of ultra-thin flexible electrochemical capacitors via vacuum filtration based on gelatinized fibrous membranes. JOURNAL OF MATERIALS CHEMISTRY A 2024; 12:28056-28065. [DOI: 10.1039/d4ta05110f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
We developed a hydroxyl-rich fibrous membrane that can undergo controllable in situ gelation to create a porous integrated interface between hydrogel electrolytes and electrode, resulting in ultra-thin all-in-one electrochemical capacitors.
Collapse
Affiliation(s)
- Qian Xie
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| | - Chengjie Lu
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| | - Chengjie Yi
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| | - Tao Shui
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| | - Nosipho Moloto
- Molecular Science Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa
| | - Jiacheng Liu
- Department of Materials Function and Design, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, 466-8555, Japan
| | - Song-Zhu Kure-Chu
- Department of Materials Function and Design, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, 466-8555, Japan
| | - Takehiko Hihara
- Department of Materials Function and Design, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, 466-8555, Japan
| | - Wei Zhang
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| | - ZhengMing Sun
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| |
Collapse
|
10
|
Wang M, Yang B, Yu T, Yu X, Rizwan M, Yuan X, Nie X, Zhou X. Research progress in the preparation of mesophase pitch from fluid catalytic cracking slurry. RSC Adv 2023; 13:18676-18689. [PMID: 37346963 PMCID: PMC10281006 DOI: 10.1039/d3ra01726e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023] Open
Abstract
For the preparation of high-performance pitch-based carbon fibers and other carbon materials, mesophase pitch serves as a high-quality precursor. Since FCC (Fluid Catalytic Cracking) oil slurry is abundant in aromatic hydrocarbons and saturated hydrocarbons (about 95% in total), it has become an ideal choice for developing new carbon material products. This paper details the research progress of preparing mesophase asphalt with FCC oil slurry as a raw material from perspectives including the preparation method of synthesizing mesophase asphalt from FCC oil slurry, the impact factors of the formation process of mesophase asphalt and the industrial application of mesophase asphalt.
Collapse
Affiliation(s)
- Mingzhi Wang
- International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology China
| | - Bei Yang
- International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology China
| | - Tao Yu
- International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology China
| | - Xiaoyan Yu
- International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology China
| | - Muhammad Rizwan
- International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology China
| | - Xulu Yuan
- Baowu Carbon Technology Co., Ltd. China
| | - Xinyao Nie
- Liaoning Qingyang Chemical Industry Corporation China
| | - Xiaolong Zhou
- International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology China
| |
Collapse
|
11
|
Sun H, Li X, Chen T, Xia S, Yuan T, Yang J, Pang Y, Zheng S. In Situ Trapping Strategy Enables a High-Loading Ni Single-Atom Catalyst as a Separator Modifier for a High-Performance Li-S Battery. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19043-19054. [PMID: 37027815 DOI: 10.1021/acsami.3c02153] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The poor electrochemical reaction kinetics of Li polysulfides is a key barrier that prevents the Li-S batteries from widespread applications. Ni single atoms dispersed on carbon matrixes derived from ZIF-8 are a promising type of catalyst for accelerating the conversion of active sulfur species. However, Ni favors a square-planar coordination that can only be doped on the external surface of ZIF-8, leading to a low loading amount of Ni single atoms after pyrolysis. Herein, we demonstrate an in situ trapping strategy to synthesize Ni and melamine-codoped ZIF-8 precursor (Ni-ZIF-8-MA) by simultaneously introducing melamine and Ni during the synthesis of ZIF-8, which can remarkably decrease the particle size of ZIF-8 and further anchor Ni via Ni-N6 coordination. Consequently, a novel high-loading Ni single-atom (3.3 wt %) catalyst implanted in an N-doped nanocarbon matrix (Ni@NNC) is obtained after high-temperature pyrolysis. This catalyst as a separator modifier shows a superior catalytic effect on the electrochemical transitions of Li polysulfides, which endows the corresponding Li-S batteries with a high specific capacity of 1232.4 mA h g-1 at 0.3 C and an excellent rate capability of 814.9 mA h g-1 at 3 C. Furthermore, a superior areal capacity of 4.6 mA h cm-2 with stable cycling over 160 cycles can be achieved under a critical condition with a low electrolyte/sulfur ratio (8.4 μL mg-1) and high sulfur loading (4.85 mg cm-2). The outstanding electrochemical performances can be attributed to the strong adsorption and fast conversion of Li polysulfides on the highly dense active sites of Ni@NNC. This intriguing work provides new inspirations for designing high-loading single-atom catalysts applied in Li-S batteries.
Collapse
Affiliation(s)
- Hao Sun
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xin Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Taiqiang Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shuixin Xia
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Tao Yuan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Junhe Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuepeng Pang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shiyou Zheng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
12
|
Tomer VK, Malik R, Tjong J, Sain M. State and future implementation perspectives of porous carbon-based hybridized matrices for lithium sulfur battery. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
13
|
Chen T, Xue L, Shi Z, Qiu C, Sun M, Zhao Y, Liu J, Ni M, Li H, Xu J, Xia H. Interlayer Modulation of Layered Transition Metal Compounds for Energy Storage. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54369-54388. [PMID: 36459661 DOI: 10.1021/acsami.2c08690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Layered transition metal compounds are one of the most important electrode materials for high-performance electrochemical energy storage devices, such as batteries and supercapacitors. Charge storage in these materials can be achieved via intercalation of ions into the interlayer channels between the layer slabs. With the development of lithium-beyond batteries, larger carrier ions require optimized interlayer space for the unrestricted diffusion in the two-dimensional channels and effectively shielded electrostatic interaction between the slabs and interlayer ions. Therefore, interlayer modulation has become an efficient and promising approach to overcome the problems of sluggish kinetics, structural distortion, irreversible phase transition, dissolution of some transition metal elements, and air instability faced by these materials and thus enhance the overall electrochemical performance. In this review, we focus on the interlayer modulation of layered transition metal compounds for various batteries and supercapacitors. Merits of interlayer modulation on the charge storage procedures of charge transfer, ion diffusion, and structural transformation are first discussed, with emphasis on the state-of-art strategies of intercalation and doping with foreign species. Following the obtained insights, applications of modified layered electrode materials in various batteries and supercapacitors are summarized, which may guide the future development of high-performance and low-cost electrode materials for energy storage.
Collapse
Affiliation(s)
- Tingting Chen
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing210094, China
| | - Liang Xue
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing210094, China
| | - Zhengyi Shi
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing210094, China
| | - Ce Qiu
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing210094, China
| | - Mingqing Sun
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing210094, China
| | - Yang Zhao
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing210094, China
| | - Juntao Liu
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing210094, China
| | - Mingzhu Ni
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing210094, China
| | - Hao Li
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing210094, China
| | - Jing Xu
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing210094, China
| | - Hui Xia
- Herbert Gleiter Institute of Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing210094, China
| |
Collapse
|
14
|
Chen Y, Lu Z, Chen T, Liu Y, Han G, Xu G. Template-free hydrothermal synthesis of δ-MnO2 hierarchical nanoflowers with potassium ions intercalation as cathodes for high-performing aqueous zinc ion batteries. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Lin Y, Li J, Xie W, Ouyang Z, Zhao J, Xiao Y, Lei S, Cheng B. FeCoNi Ternary Nano-Alloys Embedded in a Nitrogen-Doped Porous Carbon Matrix with Enhanced Electrocatalysis for Stable Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51001-51009. [PMID: 36318543 DOI: 10.1021/acsami.2c15918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The application of composite materials that combine the advantages of carbonaceous material and metal alloy proves to be a valid method for improving the performance of lithium-sulfur batteries (LSBs). Herein iron-cobalt-nickel (FeCoNi) ternary alloy nanoparticles (FNC) that spread on nitrogen-doped carbon (NC) are obtained by a strategy of low-temperature sol-gel followed by annealing at 800 °C under an argon/hydrogen atmosphere. Benefiting from the synergistic effect of different components of FNC and the conductive network provided by the NC, not only can the "shuttle effect" of lithium polysulfides (LiPS) be suppressed, but also the conversion of LiPS, the diffusion of Li+, and the deposition of Li2S can be accelerated. Taking advantage of those merits, the batteries assembled with an FNC@NC-modified polypropylene (PP) separator (FNC@NC//PP) can deliver a high reversible specific capacity of 1325 mAh g-1 at 0.2 C and maintain 950 mAh g-1 after 200 cycles, and they can also achieve a low capacity fading rate of 0.06% per cycle over 500 cycles at 1 C. More impressively, even under harsh test conditions (the ratio of electrolyte to sulfur (E/S) = 6 μL mg-1 and sulfur loading = 4.7 mg cm-2 and E/S = 10 μL mg-1 and sulfur loading = 5.9 mg cm-2), the area capacity of batteries is still much higher than 4 mAh cm-2.
Collapse
Affiliation(s)
- Yang Lin
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Jiangxi 330031, P. R. China
| | - Jianchao Li
- School of Physics and Materials, Nanchang University, Jiangxi 330031, P. R. China
| | - Wenju Xie
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Jiangxi 330031, P. R. China
- College of Ecology and Resources Engineering, Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyi University, Fujian 354300, P. R. China
| | - Zhiyong Ouyang
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Jiangxi 330031, P. R. China
| | - Jie Zhao
- School of Physics and Materials, Nanchang University, Jiangxi 330031, P. R. China
| | - Yanhe Xiao
- School of Physics and Materials, Nanchang University, Jiangxi 330031, P. R. China
| | - Shuijin Lei
- School of Physics and Materials, Nanchang University, Jiangxi 330031, P. R. China
| | - Baochang Cheng
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Jiangxi 330031, P. R. China
- School of Physics and Materials, Nanchang University, Jiangxi 330031, P. R. China
| |
Collapse
|
16
|
Wang Y, Ren L, Liu J, Lu X, Wang Q, Zhou M, Liu W, Sun X. In Situ Construction of Composite Artificial Solid Electrolyte Interphase for High-Performance Lithium Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50982-50991. [PMID: 36322052 DOI: 10.1021/acsami.2c15662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Lithium metal is considered as the most promising anode material for high energy density secondary batteries due to its high theoretical specific capacity and low redox potential. However, poor interfacial stability and uncontrollable dendrite growth seriously hinder the commercial application of Li metal anodes. Herein, we constructed a composite artificial solid-electrolyte interphase (ASEI) utilizing the in situ reaction between polyacrylic acid (PAA)/stannous fluoride (SnF2) and lithium metal, which spontaneously generates LiPAA, LiF, and Li5Sn2 alloys. The in situ formed LiPAA as a flexible matrix can accommodate the volume change of the lithium anode. Meanwhile, LiF and Li5Sn2 play the roles for improving the mechanical properties and boosting Li-ion flux in the interfacial layer, respectively. Benefiting from the ingenious design, the PAA-SnF2@Li anodes remain stable and dendrite-free morphology in symmetric cells for over 2000 h and exhibit excellent cycling stability in high-area loading (10.52 mg cm-2) Li||LiFePO4 full cells with a N/P of 1.68, which endures only 0.11% average capacity decay per cycle in 200 cycles. This simple and low-cost method supplies a route for the commercial application of lithium metal anodes with fresh eyes.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Longtao Ren
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jun Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiwen Lu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qian Wang
- Institute of Science and Technology, China Three Gorges Corporation, Beijing 100038, China
| | - Mingyue Zhou
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Wen Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
17
|
Guan M, Huang Y, Meng Q, Zhang B, Chen N, Li L, Wu F, Chen R. Stabilization of Lithium Metal Interfaces by Constructing Composite Artificial Solid Electrolyte Interface with Mesoporous TiO 2 and Perfluoropolymers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202981. [PMID: 36058646 DOI: 10.1002/smll.202202981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/25/2022] [Indexed: 06/15/2023]
Abstract
The next generation of high-energy-density storage devices is expected to be rechargeable lithium metal batteries. However, unstable metal-electrolyte interfaces, dendrite growth, and volume expansion will compromise lithium metal batteries (LMB) safety and life. A simple drop-casting method is used to create a double-layer functional interface composed of inorganic mesoporous TiO2 and F-rich organics PFDMA. For high-quality lithium deposition, TiO2 can provide uniform mechanical pressure, abundant mesoporous channels, and increased ionic conductivity, while PFDMA provides enough F to form LiF in the first cycle and improves Li-electrolyte compatibility. Experiments and simulations are combined to investigate the optimized mechanism of the LiF-rich solid electrolyte interface (SEI). The high binding energy of organic matter and Li demonstrates that Li+ preferentially binds with the F atom in organic matter. As a result, the tightly bound double-layer structure can inhibit lithium dendrite growth and slow electrolyte decomposition. Consequently, the symmetric Li||Li cell has a high stability performance of over 800 h. The assembled LiFePO4 ||Li cell can sustain 300 cycles at a 1 C rate and has a reversible capacity of 136.7 mAh g-1 .
Collapse
Affiliation(s)
- Minrong Guan
- Beijing Key Laboratory of Environmental, Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yongxin Huang
- Beijing Key Laboratory of Environmental, Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Institute of Advanced Technology, Beijing Institute of Technology, Jinan, 250101, P. R. China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, P. R. China
| | - Qianqian Meng
- Beijing Key Laboratory of Environmental, Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Botao Zhang
- Beijing Key Laboratory of Environmental, Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Nuo Chen
- Beijing Key Laboratory of Environmental, Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Li Li
- Beijing Key Laboratory of Environmental, Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Institute of Advanced Technology, Beijing Institute of Technology, Jinan, 250101, P. R. China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, P. R. China
| | - Feng Wu
- Beijing Key Laboratory of Environmental, Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Institute of Advanced Technology, Beijing Institute of Technology, Jinan, 250101, P. R. China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, P. R. China
| | - Renjie Chen
- Beijing Key Laboratory of Environmental, Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Institute of Advanced Technology, Beijing Institute of Technology, Jinan, 250101, P. R. China
- Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing, 100081, P. R. China
| |
Collapse
|
18
|
CoCl2 encapsulated in nitrogen-doped carbon hollow cubic nanobox enabling long-life and high-rate lithium storage. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Chen L, Yuan YF, Zhu M, Yin SM, Du PF, Mo CL. Hierarchical hollow superstructure cobalt selenide bird nests for high-performance lithium storage. J Colloid Interface Sci 2022; 627:449-458. [PMID: 35868040 DOI: 10.1016/j.jcis.2022.07.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/26/2022]
Abstract
The inferior cycling performance caused by large volume variation is the main problem that restricts the application of cobalt selenides in lithium-ion batteries. Herein, we synthesize raspberry-like Co-ethylene glycol precursor. It is further selenized into the hierarchical hollow superstructure CoSe2/CoSe bird nests that are assembled by the hollow nanosphere units of CoSe2 and CoSe nanocrystalline. CoSe2/CoSe bird nests achieve excellent cycling performance, high reversible capacity and satisfactory rate capability (1361 mAh/g at 1 A/g after 1000 cycles, 579 mAh/g at 2 A/g after 2000 cycles, 315 mAh/g at 5 A/g after 1000 cycles). Electrochemical kinetics analyses and ex-situ material characterization reveal that the surface capacitive behavior controls the electrochemical reaction, and the composite has low reaction impedance, fast and stable Li+ diffusion, and superior structural stability. The superior lithium storage performance is attributed to the unique superstructure bird nest. Large specific surface area, abundant hierarchical pores and the opening mouth result in high electrochemical activity, which induces high reversible capacity. The small hollow nanosphere units, the sufficiently thick hierarchical porous superstructure shell and the large hollow interior bring about the strong synergistic effect to improve cycling performance. The intimately coupling of CoSe2/CoSe nanocrystalline and the hollow nanosphere units guarantees high conductivity. This work has greatly enriched the understanding of structure design of high-performance cobalt selenide anodes.
Collapse
Affiliation(s)
- L Chen
- College of Machinery and Automation, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Y F Yuan
- College of Machinery and Automation, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - M Zhu
- College of Machinery and Automation, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - S M Yin
- College of Machinery and Automation, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - P F Du
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - C L Mo
- College of Machinery and Automation, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
20
|
Wang Z, Zhu H, Yu H, Zhang T, Hu Y, Jiang H, Li C. Complementary dual-doping of LiNi0.8Co0.1Mn0.1O2 cathode enhances ion-diffusion and stability for Li-ion batteries. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Zhang T, Li C, Wang F, Noori A, Mousavi MF, Xia X, Zhang Y. Recent Advances in Carbon Anodes for Sodium-Ion Batteries. CHEM REC 2022; 22:e202200083. [PMID: 35670500 DOI: 10.1002/tcr.202200083] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 01/05/2023]
Abstract
Sodium-ion batteries (SIBs) have gained tremendous attention for large-scale energy storage applications due to the natural abundance, low cost, and even geographic distribution of sodium resources as well as a similar working mechanism to lithium-ion batteries (LIBs). One of the critical bottlenecks, however, is the design of high-performance and low-cost anode materials. Graphite anode that has dominated the market share of LIBs does not properly intercalate sodium ions. However, other carbonaceous materials are still considered as one of the most promising anode materials for SIBs in virtue of their high electronic conductivity, abundant active sites, hierarchical porosity, and excellent mechanical stability. In this review, we have tried to summarize the latest progresses made on the development of carbon-based negative electrodes (including hard carbons, soft carbons, and synthetic carbon allotropes) for SIBs. We also have provided a comprehensive understanding of their physical properties, the sodium ions storage mechanisms, and the improvement measures to cope with the current challenges. In addition, we have proposed future research directions for SIBs that will provide important insights into further development of carbon-based materials for SIBs.
Collapse
Affiliation(s)
- Tengfei Zhang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313002, China.,Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Chen Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Fan Wang
- Key Laboratory of Engineering Dielectric and Applications (Ministry of Education), School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin, 150080, P. R. China
| | - Abolhassan Noori
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, 14117-13116, Iran
| | - Mir F Mousavi
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, 14117-13116, Iran
| | - Xinhui Xia
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313002, China.,State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yongqi Zhang
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313002, China.,Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| |
Collapse
|
22
|
Zheng Y, Ji H, Liu J, Wang Z, Zhou J, Qian T, Yan C. Surpassing the Redox Potential Limit of Organic Cathode Materials via Extended p-π Conjugation of Dioxin. NANO LETTERS 2022; 22:3473-3479. [PMID: 35426684 DOI: 10.1021/acs.nanolett.2c00965] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The key to enabling high energy density of organic energy-storage systems is the development of high-voltage organic cathodes; however, the redox voltage (<4.0 V vs Li/Li+) of state-of-the-art organic electrode materials (OEMs) remains unsatisfactory. Herein, we propose a novel dibromotetraoxapentacene (DBTOP) redox center to surpass the redox potential limit of OEMs, achieving ultrahigh discharge plateaus of approximately 4.4 V (vs Li+/Li). As theoretically analyzed, electron delocalization between dioxin active centers and benzene rings as well as electron-withdrawing bromine atoms endows the molecule with a low occupied molecular orbital level by diluting the electron density of dioxin in the whole p-π conjugated skeleton, and the strong π-π interactions among the DBTOP molecules provide a faster electrochemical kinetic pathway. This tetraoxapentacene redox center makes the working voltage of OEMS closer to the high-voltage inorganic electrodes, and its chemical and structural tunability may stimulate the further development of high-voltage organic cathodes.
Collapse
Affiliation(s)
- Yiwei Zheng
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, College of Energy, Soochow University, Suzhou 215006, China
| | - Haoqing Ji
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, College of Energy, Soochow University, Suzhou 215006, China
| | - Jie Liu
- College of Chemistry and Chemical Engineering, Nantong University, Seyuan 9, Nantong 226000, China
| | - Zhenkang Wang
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, College of Energy, Soochow University, Suzhou 215006, China
| | - Jinqiu Zhou
- College of Chemistry and Chemical Engineering, Nantong University, Seyuan 9, Nantong 226000, China
| | - Tao Qian
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, College of Energy, Soochow University, Suzhou 215006, China
- College of Chemistry and Chemical Engineering, Nantong University, Seyuan 9, Nantong 226000, China
- Light Industry Institute of Electrochemical Power Sources, Suzhou 215600, China
| | - Chenglin Yan
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, College of Energy, Soochow University, Suzhou 215006, China
- Light Industry Institute of Electrochemical Power Sources, Suzhou 215600, China
| |
Collapse
|