1
|
Zhang S, Wang S, Zhang B, Yang S, Wang J. Different concentrations of carbon nanotubes promote or inhibit organogenesis of Arabidopsis explants by regulating endogenous hormone homeostasis. PLANTA 2025; 261:55. [PMID: 39922983 DOI: 10.1007/s00425-025-04633-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/29/2025] [Indexed: 02/10/2025]
Abstract
MAIN CONCLUSION Carbon nanotubes concentration modulates endogenous hormone balance, influencing callogenesis and organogenesis efficiency, with potential for optimizing plant transformation programs. A unique feature of plant somatic cells is their remarkable ability to regenerate new organs and even an entire plant in vitro. In this work, we investigated how an important group of environmental factors, carbon nanotubes (CNTs) (both single-walled nanotubes as SWCNTs and multi-walled nanotubes as MWCNTs), affect the regenerative capacity of plants and the underlying molecular mechanisms. Our data show that both the induction of pluripotent callus from Arabidopsis root explants and the frequency of de novo shoot regeneration were influenced by the concentration, but not the type of CNTs. Raman analyses show that CNTs can be transported and accumulate in the callus tissue and in the newly formed seedlings. The contrasting effects of CNTs at 0.1 mg L-1 and 50 mg L-1 were reflected not only in the concentrations of endogenous auxin and trans-zeatin (tZT), but also in the changes in the expression levels of positive cell cycle regulators and transcriptional regulators that control callus pluripotency and the establishment of shoot apical meristem (SAM). Since most existing plant transformation strategies involve the conversion of dedifferentiated calli into regenerated plantlets and are very time consuming and inefficient, this work suggests that CNTs could be used as an additive to optimize plant micropropagation and genetic engineering systems by modulating hormone balance and stimulating the intrinsic totipotency of plants, thus overcoming organogenic recalcitrance.
Collapse
Affiliation(s)
- Sainan Zhang
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300350, China
| | - Shuaiqi Wang
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300350, China
| | - Bing Zhang
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300350, China
| | - Shaohui Yang
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300350, China
| | - Jiehua Wang
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
2
|
Zhou X, El-Sappah AH, Khaskhoussi A, Huang Q, Atif AM, Elhamid MAA, Ihtisham M, El-Maati MFA, Soaud SA, Tahri W. Nanoparticles: a promising tool against environmental stress in plants. FRONTIERS IN PLANT SCIENCE 2025; 15:1509047. [PMID: 39931338 PMCID: PMC11808028 DOI: 10.3389/fpls.2024.1509047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/16/2024] [Indexed: 02/13/2025]
Abstract
With a focus on plant tolerance to environmental challenges, nanotechnology has emerged as a potent instrument for assisting crops and boosting agricultural production in the face of a growing worldwide population. Nanoparticles (NPs) and plant systems may interact molecularly to change stress response, growth, and development. NPs may feed nutrients to plants, prevent plant diseases and pathogens, and detect and monitor trace components in soil by absorbing their signals. More excellent knowledge of the processes of NPs that help plants survive various stressors would aid in creating more long-term strategies to combat these challenges. Despite the many studies on NPs' use in agriculture, we reviewed the various types of NPs and their anticipated molecular and metabolic effects upon entering plant cells. In addition, we discussed different applications of NPs against all environmental stresses. Lastly, we introduced agricultural NPs' risks, difficulties, and prospects.
Collapse
Affiliation(s)
- Xu Zhou
- International Faculty of Applied Technology, Yibin University, Yibin, Sichuan, China
| | - Ahmed H. El-Sappah
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Amani Khaskhoussi
- Key Laboratory for Green and Advanced Civil Engineering Materials and Application Technology of Hunan Province, College of Civil Engineering, Hunan University, Changsha, China
| | - Qiulan Huang
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Amr M. Atif
- Department of Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Muhammad Ihtisham
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Mohamed F. Abo El-Maati
- Agriculture Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Salma A. Soaud
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Walid Tahri
- International Faculty of Applied Technology, Yibin University, Yibin, Sichuan, China
| |
Collapse
|
3
|
Fonseca JDS, Wojciechowska E, Kulesza J, Barros BS. Carbon Nanomaterials in Seed Priming: Current Possibilities. ACS OMEGA 2024; 9:44891-44906. [PMID: 39554415 PMCID: PMC11561606 DOI: 10.1021/acsomega.4c07230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/30/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024]
Abstract
The prevailing agricultural system has become deeply ingrained and insufficient due to outdated practices inherited from the Green Revolution, necessitating innovative approaches for sustainable agricultural development. Nanomaterials possess the potential to significantly improve the efficient utilization of resources while simultaneously encouraging sustainability. Among these, carbonaceous nanomaterials have found diverse applications in agriculture, exhibiting remarkable capabilities in this domain. Notably, using biowaste to produce these materials makes them both cost-effective and environmentally friendly for seed priming. Seed priming is a technique that can potentially enhance germination rates and stress tolerance by effectively regulating gene pathways and metabolism. This review provides a comprehensive summary of recent progress in the field, highlighting the challenges and opportunities of applying carbonaceous materials in seed priming to advance sustainable agriculture practices. The existing reviews provide a general overview of using carbonaceous materials (graphene and derivatives) in agriculture. Yet, they often lack a comprehensive examination of their specific application in seed-related contexts. In this review, we aim to offer a detailed analysis of the application of carbonaceous materials in seed priming and elucidate their influence on germination. Furthermore, the review shows that crop response to carbonaceous nanomaterials is linked to material concentration and crop species.
Collapse
Affiliation(s)
- José
Daniel da Silva Fonseca
- Programa
de Pós-graduação em Ciência de Materiais,
Centro de Ciências Exatas e da Natureza-CCEN, Universidade Federal de Pernambuco, Av. Prof. Morais Rego, 1235-Cidade Universitária, Recife, Pernambuco 50670-901, Brasil
| | - Ewa Wojciechowska
- Gdansk
University of Technology, Faculty of Civil
and Environmental Engineering, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Joanna Kulesza
- Departamento
de Química Fundamental, Centro de Ciências Exatas e
da Natureza-CCEN, Universidade Federal de
Pernambuco, Av. Prof. Morais Rego, 1235-Cidade Universitária, Recife, Pernambuco 50670-901, Brasil
| | - Bráulio Silva Barros
- Departamento
de Engenharia Mecânica, Centro de Tecnologia e Geociências-CTG, Universidade Federal de Pernambuco, Av. Prof. Morais Rego, 1235-Cidade
Universitária, Recife, Pernambuco 50670-901, Brasil
| |
Collapse
|
4
|
Cabrera-Peralta J, Peña-Alvarez A. GC-MS metabolomics of French lettuce (Lactuca Sativa L. var capitata) leaves exposed to bisphenol A via the hydroponic media. Metabolomics 2024; 20:106. [PMID: 39306645 PMCID: PMC11416399 DOI: 10.1007/s11306-024-02168-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024]
Abstract
INTRODUCTION Bisphenol A (BPA), an organic compound used to produce polycarbonate plastics and epoxy resins, has become a ubiquitous contaminant due to its high-volume production and constant release to the environment. Plant metabolomics can trace the stress effects induced by environmental contaminants to the variation of specific metabolites, making it an alternative way to study pollutants toxicity to plants. Nevertheless, there is an important knowledge gap in metabolomics applications in this area. OBJECTIVE Evaluate the influence of BPA in French lettuce (Lactuca Sativa L. var capitata) leaves metabolic profile by gas chromatography coupled to mass spectrometry (GC-MS) using a hydroponic system. METHODS Lettuces were cultivated in the laboratory to minimize biological variation and were analyzed 55 days after sowing (considered the plant's adult stage). Hexanoic and methanolic extracts with and without derivatization were prepared for each sample and analyzed by GC-MS. RESULTS The highest number of metabolites was obtained from the hexanoic extract, followed by the derivatized methanolic extract. Although no physical differences were observed between control and contaminated lettuce leaves, the multivariate analysis determined a statistically significant difference between their metabolic profiles. Pathway analysis of the most affected metabolites showed that galactose metabolism, starch and fructose metabolism and steroid biosynthesis were significantly affected by BPA exposure. CONCLUSIONS The preparation of different extracts from the same sample permitted the determination of metabolites with different physicochemical properties. BPA alters the leaves energy and membrane metabolism, plant growth could be affected at higher concentrations and exposition times.
Collapse
Affiliation(s)
| | - Araceli Peña-Alvarez
- Universidad Nacional Autónoma de México, Av. Universidad, 3000, Mexico City, Mexico.
| |
Collapse
|
5
|
Sigala-Aguilar NA, López MG, Fernández-Luqueño F. Carbon-based nanomaterials as inducers of biocompounds in plants: Potential risks and perspectives. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108753. [PMID: 38781637 DOI: 10.1016/j.plaphy.2024.108753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
Biocompounds are metabolites synthesized by plants, with clinically proven capacity in preventing and treating degenerative diseases in humans. Carbon-based nanomaterials (CNMs) are atomic structures that assume different hybridization and shape. Due to the reactive property, CNMs can induce the synthesis of metabolites, such as biocompounds in cells and various plant species, by generating reactive oxygen species (ROS). In response, plants positively or negatively regulate the expression of various families of genes and enzymes involved in physiological and metabolomic pathways of plants, such as carbon and nitrogen metabolism, which are directly involved in plant development and growth. Likewise, ROS can modulate the expression of enzymes and genes related to the adaptation of plants to stress, such as the glutathione ascorbate cycle, the shikimic acid, and phenylpropanoid pathways, from which the largest amount of biocompounds in plants are derived. This document exposes the ability of three CNMs (fullerene, graphene, and carbon nanotubes) to positively or negatively regulate the activity of enzymes and genes involved in various plant species' primary and secondary metabolism. The mechanism of action of CNMs on the production of biocompounds and the effect of the translocation of CNMs on the growth and content of primary metabolites in plants are described. Adverse effects of CNMs on plants, prospects, and possible risks involved are also discussed. The use of CNMs as inducers of biocompounds in plants could have implications and relevance for human health, crop quality, and plant adaptation and resistance to biotic and abiotic stress.
Collapse
Affiliation(s)
- Nayelli Azucena Sigala-Aguilar
- Sustainability of Natural Resources and Energy Programs, Center for Research and Advanced Studies of the IPN, Saltillo, 25900, Coahuila, Mexico
| | - Mercedes G López
- Department of Biotechnology and Biochemistry, Center for Research and Advanced Studies of the IPN, Irapuato, 36824, Guanajuato, Mexico.
| | - Fabián Fernández-Luqueño
- Sustainability of Natural Resources and Energy Programs, Center for Research and Advanced Studies of the IPN, Saltillo, 25900, Coahuila, Mexico.
| |
Collapse
|
6
|
Ahmadi SZ, Zahedi B, Ghorbanpour M, Mumivand H. Comparative morpho-physiological and biochemical responses of Capsicum annuum L. plants to multi-walled carbon nanotubes, fullerene C60 and graphene nanoplatelets exposure under water deficit stress. BMC PLANT BIOLOGY 2024; 24:116. [PMID: 38365618 PMCID: PMC10874085 DOI: 10.1186/s12870-024-04798-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/05/2024] [Indexed: 02/18/2024]
Abstract
Water deficit stress is one of the most significant environmental abiotic factors influencing plant growth and metabolism globally. Recently, encouraging outcomes for the use of nanomaterials in agriculture have been shown to reduce the adverse effects of drought stress on plants. The present study aimed to investigate the impact of various carbon nanomaterials (CNMs) on the physiological, morphological, and biochemical characteristics of bell pepper plants subjected to water deficit stress conditions. The study was carried out as a factorial experiment using a completely randomized design (CRD) in three replications with a combination of three factors. The first factor considered was irrigation intensity with three levels [(50%, 75%, and 100% (control) of the field capacity (FC)] moisture. The second factor was the use of carbon nanomaterials [(fullerene C60, multi-walled carbon nanotubes (MWNTs) and graphene nanoplatelets (GNPs)] at various concentrations [(control (0), 100, 200, and 1000 mg/L)]. The study confirmed the foliar uptake of CNMs using the Scanning Electron Microscopy (SEM) technique. The effects of the CNMs were observed in a dose-dependent manner, with both stimulatory and toxicity effects being observed. The results revealed that exposure to MWNTs (1000 mg/L) under well-watered irrigation, and GNPs treatment (1000 mg/L) under severe drought stress (50% FC) significantly (P < 0.01) improved fruit production and fruit dry weight by 76.2 and 73.2% as compared to the control, respectively. Also, a significant decrease (65.9%) in leaf relative water content was obtained in plants subjected to soil moisture of 50% FC over the control. Treatment with GNPs at 1000 mg/L under 50% FC increased electrolyte leakage index (83.6%) compared to control. Foliar applied MWNTs enhanced the leaf gas exchange, photosynthesis rate, and chlorophyll a and b concentrations, though decreased the oxidative shock in leaves which was demonstrated by the diminished electrolyte leakage index and upgrade in relative water content and antioxidant capacity compared to the control. Plants exposed to fullerene C60 at 100 and 1000 mg/L under soil moisture of 100 and 75% FC significantly increased total flavonoids and phenols content by 63.1 and 90.9%, respectively, as compared to the control. A significant increase (184.3%) in antioxidant activity (FRAP) was observed in plants exposed to 200 mg/L MWCNTs under irrigation of 75% FC relative to the control. The outcomes proposed that CNMs could differentially improve the plant and fruit characteristics of bell pepper under dry conditions, however, the levels of changes varied among CNMs concentrations. Therefore, both stimulatory and toxicity effects of employed CNMs were observed in a dose-dependent manner. The study concludes that the use of appropriate (type/dose) CNMs through foliar application is a practical tool for controlling the water shortage stress in bell pepper. These findings will provide the basis for more research on CNMs-plant interactions, and with help to ensure their safe and sustainable use within the agricultural chains.
Collapse
Affiliation(s)
- Seyede Zahra Ahmadi
- Department of Horticultural Sciences, Faculty of Agriculture, Lorestan University, P.O. Box 465, Khorramabad, Iran
| | - Bahman Zahedi
- Department of Horticultural Sciences, Faculty of Agriculture, Lorestan University, P.O. Box 465, Khorramabad, Iran
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
- Institute of Nanoscience and Nanotechnology, Arak University, Arak, 38156-8-8349, Iran.
| | - Hasan Mumivand
- Department of Horticultural Sciences, Faculty of Agriculture, Lorestan University, P.O. Box 465, Khorramabad, Iran
| |
Collapse
|
7
|
Samadi S, Saharkhiz MJ, Azizi M, Samiei L, Ghorbanpour M. Exposure to single-walled carbon nanotubes differentially affect in vitro germination, biochemical and antioxidant properties of Thymus daenensis celak. seedlings. BMC PLANT BIOLOGY 2023; 23:579. [PMID: 37981681 PMCID: PMC10658928 DOI: 10.1186/s12870-023-04599-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
Carbon nanomaterials such as single-walled carbon nanotubes (SWCNTs) offer a new possibility for phyto-nanotechnology and biotechnology to improve the quality and quantity of secondary metabolites in vitro. The current study aimed to determine the SWCNTs effects on Thyme (Thymus daenensis celak.) seed germination. The seedlings were further assessed in terms of morphological and phytochemical properties. Sterile seeds were cultured in vitro and treated with various concentrations of SWCNTs. Biochemical analyses were designed on seedling sample extracts for measuring antioxidant activities (AA), total flavonoids (TFC) and phenolic contents, and the main enzymes involved in oxidative reactions under experimental treatments. The results indicated that an increase in SWCNTs concentration can enhance the total percentage of seed germination. The improvement was observed in samples that received SWCNTs levels of up to 125 µg ml-1, even though seedling height and biomass accumulation decreased. Seedling growth parameters in the control samples were higher than those of grown in SWCNT-fortified media. This may have happened because of more oxidative damage as well as a rise in POD and PPO activities in tissues. Additionally, secondary metabolites and relevant enzyme activities showed that maximum amounts of TPC, TFC, AA and the highest PAL enzyme activity were detected in samples exposed to 62.5 µg ml-1 SWCNTs. Our findings reveal that SWCNTs in a concentration-dependent manner has different effects on T. daenensis morphological and phytochemical properties. Microscopic images analysis revealed that SWCNTs pierce cell walls, enter the plant cells and agglomerate in the cellular cytoplasm and cell walls. The findings provide insights into the regulatory mechanisms of SWCNTs on T. daenensis growth, germination and secondary metabolites production.
Collapse
Affiliation(s)
- Saba Samadi
- Department of Horticultural Science, Faculty of Agriculture, Shiraz University, Shiraz, Iran
| | - Mohammad Jamal Saharkhiz
- Department of Horticultural Science, Faculty of Agriculture, Shiraz University, Shiraz, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Azizi
- Department of Horticulture, College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Leila Samiei
- Department of Ornamental Plants, Research Center for Plant Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
- Institute of Nanoscience and Nanotechnology, Arak University, Arak, 38156-8-8349, Iran.
| |
Collapse
|
8
|
Ijaz M, Khan F, Ahmed T, Noman M, Zulfiqar F, Rizwan M, Chen J, H.M. Siddique K, Li B. Nanobiotechnology to advance stress resilience in plants: Current opportunities and challenges. Mater Today Bio 2023; 22:100759. [PMID: 37600356 PMCID: PMC10433128 DOI: 10.1016/j.mtbio.2023.100759] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023] Open
Abstract
A sustainable and resilient crop production system is essential to meet the global food demands. Traditional chemical-based farming practices have become ineffective due to increased population pressures and extreme climate variations. Recently, nanobiotechnology is considered to be a promising approach for sustainable crop production by improving the targeted nutrient delivery, pest management efficacy, genome editing efficiency, and smart plant sensor implications. This review provides deeper mechanistic insights into the potential applications of engineered nanomaterials for improved crop stress resilience and productivity. We also have discussed the technology readiness level of nano-based strategies to provide a clear picture of our current perspectives of the field. Current challenges and implications in the way of upscaling nanobiotechnology in the crop production are discussed along with the regulatory requirements to mitigate associated risks and facilitate public acceptability in order to develop research objectives that facilitate a sustainable nano-enabled Agri-tech revolution. Conclusively, this review not only highlights the importance of nano-enabled approaches in improving crop health, but also demonstrated their roles to counter global food security concerns.
Collapse
Affiliation(s)
- Munazza Ijaz
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China
| | - Fahad Khan
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect, TAS 7250, Australia
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China
- Xianghu Laboratory, Hangzhou, 311231, China
| | - Muhammad Noman
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Kadambot H.M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Petrth, WA, 6001, Australia
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China
| |
Collapse
|
9
|
Petersen E, Barrios AC, Bjorkland R, Goodwin DG, Li J, Waissi G, Henry T. Evaluation of bioaccumulation of nanoplastics, carbon nanotubes, fullerenes, and graphene family materials. ENVIRONMENT INTERNATIONAL 2023; 173:107650. [PMID: 36848829 DOI: 10.1016/j.envint.2022.107650] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/15/2022] [Accepted: 11/19/2022] [Indexed: 06/18/2023]
Abstract
Bioaccumulation is a key factor in understanding the potential ecotoxicity of substances. While there are well-developed models and methods to evaluate bioaccumulation of dissolved organic and inorganic substances, it is substantially more challenging to assess bioaccumulation of particulate contaminants such as engineered carbon nanomaterials (CNMs; carbon nanotubes (CNTs), graphene family nanomaterials (GFNs), and fullerenes) and nanoplastics. In this study, the methods used to evaluate bioaccumulation of different CNMs and nanoplastics are critically reviewed. In plant studies, uptake of CNMs and nanoplastics into the roots and stems was observed. For multicellular organisms other than plants, absorbance across epithelial surfaces was typically limited. Biomagnification was not observed for CNTs and GFNs but were observed for nanoplastics in some studies. However, the reported absorption in many nanoplastic studies may be a consequence of an experimental artifact, namely release of the fluorescent probe from the plastic particles and subsequent uptake. We identify that additional work is needed to develop analytical methods to provide robust, orthogonal methods that can measure unlabeled (e.g., without isotopic or fluorescent labels) CNMs and nanoplastics.
Collapse
Affiliation(s)
- Elijah Petersen
- Biosystems and Biomaterials Division, NIST, Gaithersburg, MD 20899, United States.
| | - Ana C Barrios
- Biosystems and Biomaterials Division, NIST, Gaithersburg, MD 20899, United States
| | | | - David G Goodwin
- Engineering Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, United States
| | - Jennifer Li
- Biosystems and Biomaterials Division, NIST, Gaithersburg, MD 20899, United States
| | - Greta Waissi
- University of Eastern Finland, School of Pharmacy, POB 1627 70211, Kuopio, Finland
| | - Theodore Henry
- Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| |
Collapse
|
10
|
da Costa Siqueira JT, Reis AC, Lopes JML, Ladeira LO, Viccini LF, de Mello Brandão H, Munk M, de Sousa SM. Chromosomal aberrations and changes in the methylation patterns of Lactuca sativa L. (Asteraceae) exposed to carbon nanotubes. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-023-01325-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
11
|
Alsherif EA, Almaghrabi O, Elazzazy AM, Abdel-Mawgoud M, Beemster GTS, AbdElgawad H. Carbon nanoparticles improve the effect of compost and arbuscular mycorrhizal fungi in drought-stressed corn cultivation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:29-40. [PMID: 36371897 DOI: 10.1016/j.plaphy.2022.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Drought is an important threat worldwide, therefore, it is vital to create workable solutions to mitigate the negative effects of drought stress. To this end, we investigated the interactive effect of compost (Comp), arbuscular mycorrhizal fungi (AMF) and carbon nanoparticles (CNPs) on maize plant crops under drought stress. The combined treatments were more effective at increasing soil fertility and promoting the growth of maize plants under both control and drought stress conditions by 20.1% and 39.4%, respectively. The interactions between treatments, especially the effects of Comp-AMF-CNPs mixture, reduce the activity of photorespiration induced H2O2 production that consequently reduces drought-related oxidative damages (lipid peroxidation and protein oxidation). Plants treated with Comp-AMF or Comp-AMF-CNPs showed an increase in their antioxidant defense system. Comp-AMF-CNPs increased enzyme activities by 50.3%, 30.1%, and 71% for ascorbate peroxidase (APX), dehydro-ASC reductase (DHAR), and monodehydro-ASC reductase (MDHAR), respectively. Comp-AMF-CNPs also induced the highest increase in anthocyanins (69.5%) compared to the control treatment. This increase was explained by increased anthocyanin percussor, by 37% and 13% under control and drought, respectively. While the increases in biosynthetic key enzymes, phenylalanine aminolayse (PAL) and chalcone synthase (CHS) were 77% and 5% under control and 69% and 89% under drought, respectively. This work advanced our understanding on how Comp-AMF-CNPs improve growth, physiology, and biochemistry of maize plants under drought stress conditions. Overall, this study suggests the effectiveness of Comp-AMF-CNPs as a promising approach to enhance the growth of maize plants in dry areas.
Collapse
Affiliation(s)
- Emad A Alsherif
- Biology Department, College of Science and Arts at Khulis, University of Jeddah, Jeddah, Saudi Arabia; Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni Suef, Egypt.
| | - Omar Almaghrabi
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Ahmed M Elazzazy
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia; Chemistry of Natural and Microbial Products Dept, Pharmaceutical and Drug Industries Research Division National Research Centre, Dokki, Giza, Egypt
| | - Mohamed Abdel-Mawgoud
- National Natural Products Research Center, College of Pharmacy, University of Mississippi, USA; Department of Medicinal Plants and Natural Products, Desert Research Center, Egypt
| | - Gerrit T S Beemster
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2000, Antwerp, Belgium
| | - Hamada AbdElgawad
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni Suef, Egypt; Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2000, Antwerp, Belgium.
| |
Collapse
|
12
|
Zhao R, Ren W, Wang H, Li Z, Teng Y, Luo Y. Nontargeted metabolomic analysis to unravel alleviation mechanisms of carbon nanotubes on inhibition of alfalfa growth under pyrene stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158405. [PMID: 36058326 DOI: 10.1016/j.scitotenv.2022.158405] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Carbon nanotubes have displayed great potential in enhancing phytoremediation of PAHs polluted soils. However, the response of plants to the coexistence of carbon nanotubes and PAHs and the associated influencing mechanisms remain largely unknown. Here, the effect of carbon nanotubes on alfalfa growth and pyrene uptake under exposure to pyrene was evaluated through sand culture experiment and gas chromatography time-of-flight mass spectrometer (GC-TOF-MS) based metabolomics. Results showed that pyrene at 10 mg kg-1 obviously reduced the shoot fresh weight of alfalfa by 18.3 %. Multiwall carbon nanotubes (MWCNTs) at 25 and 50 mg kg-1 significantly enhanced the shoot fresh weight in a dose-dependent manner, nearly by 80 % at 50 mg kg-1. Pyrene was mainly accumulated in alfalfa roots, in which the concentration was 35 times as much as that in shoots. MWCNTs greatly enhanced the accumulation of pyrene in alfalfa roots, almost by two times at 50 mg kg-1, while decreased pyrene concentration in shoots, from 0.11 mg kg-1 to 0.044 mg kg-1 at MWCNTs concentration of 50 mg kg-1. Metabolomics data revealed that pyrene at 10 mg kg-1 trigged significant metabolic changes in alfalfa root exudates, downregulating 27 metabolites. MWCNTs generated an increase in the contents of some downregulated metabolites caused by pyrene stress, which were restored to the original level or even higher, mainly including organic acids and amino acids. MWNCTs significantly enriched some metabolic pathways positively correlated with shoot growth and pyrene accumulation in shoots under exposure to pyrene, including TCA cycle, glyoxylate and dicarboxylate metabolism, cysteine and methione metabolism as well as alanine, aspartate and glutamate metabolism. This work highlights the regulation effect of MWCNTs on the metabolism of root exudates, which are helpful for alfalfa to alleviate the stress from pyrene contamination.
Collapse
Affiliation(s)
- Rui Zhao
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science & Technology, Nanjing 210044, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Wenjie Ren
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Huimin Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhenxuan Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Subotić A, Jevremović S, Milošević S, Trifunović-Momčilov M, Đurić M, Koruga Đ. Physiological Response, Oxidative Stress Assessment and Aquaporin Genes Expression of Cherry Tomato ( Solanum lycopersicum L.) Exposed to Hyper-Harmonized Fullerene Water Complex. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212810. [PMID: 36365262 PMCID: PMC9655305 DOI: 10.3390/plants11212810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 05/30/2023]
Abstract
The rapid production and numerous applications of nanomaterials warrant the necessity and importance of examining nanoparticles in terms to their environmental and biological effects and implications. In this study, the effects of a water-soluble hyper-harmonized hydroxyl-modified fullerene (3HFWC) on cherry tomato seed germination, seedlings growth, physiological response and fruiting was evaluated. Changes in the photosynthetic pigments content, oxidative stress assessment, and aquaporin genes expression in cherry tomato plants were studied after during short- and long-term continuous exposure to 3HFWC nanosubstance (200 mg/L). Increased levels of photosynthetic pigments in leaves, lycopene in fruits, decreased levels of hydrogen peroxide content, activation of cellular antioxidant enzymes such as superoxide dismutase, catalase and peroxidase and increased aquaporin gene expression (PIP1;3, PIP1;5 and PIP2;4) were observed in 3HFWC nanosubstance-exposed plants in comparison to control, untreated cherry tomato plants. The 3HFWC nanosubstance showed positive effects on cherry tomato seed germination, plantlet growth and lycopene content in fruits and may be considered as a promising nanofertilizer.
Collapse
Affiliation(s)
- Angelina Subotić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Slađana Jevremović
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Snežana Milošević
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Milana Trifunović-Momčilov
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Marija Đurić
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Đuro Koruga
- TFT Nano Center, Vojislava Ilića 88, 11050 Belgrade, Serbia
| |
Collapse
|
14
|
Chen X, Wang J, Wang R, Zhang D, Chu S, Yang X, Hayat K, Fan Z, Cao X, Ok YS, Zhou P. Insights into growth-promoting effect of nanomaterials: Using transcriptomics and metabolomics to reveal the molecular mechanisms of MWCNTs in enhancing hyperaccumulator under heavy metal(loid)s stress. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129640. [PMID: 35882170 DOI: 10.1016/j.jhazmat.2022.129640] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Carbon nanotubes present potential applications in soil remediation, particularly in phytoremediation. Yet, how multi-walled carbon nanotubes (MWCNTs) induced hyperaccumulator growth at molecular level remains unclear. Here, physio-biochemical, transcriptomic, and metabolomic analyses were performed to determine the effect of MWCNTs on Solanum nigrum L. (S. nigrum) growth under cadmium and arsenic stresses. 500 mg/kg MWCNTs application significantly promoted S. nigrum growth, especially for root tissues. Specially, MWCNTs application yields 1.38-fold, 1.56-fold, and 1.37-fold enhancement in the shoot length, root length, and fresh biomass, respectively. Furthermore, MWCNTs significantly strengthened P and Fe absorption in roots, as well as the activities of antioxidative enzymes. Importantly, the transcriptomic analysis indicated that S. nigrum gene expression was sensitive to MWCNTs, and MWCNTs upregulated advantageous biological processes under heavy metal(loid)s stress. Besides, MWCNTs reprogramed metabolism that related to defense system, leading to accumulation of 4-hydroxyphenylpyruvic acid (amino acid), 4-hydroxycinnamic acid (xenobiotic), and (S)-abscisic acid (lipid). In addition, key common pathways of differentially expressed metabolites and genes, including "tyrosine metabolism" and "isoquinoline alkaloid biosynthesis" were selected via integrating transcriptome and metabolome analyses. Combined omics technologies, our findings provide molecular mechanisms of MWCNTs in promoting S. nigrum growth, and highlight potential application of MWCNTs in soil remediation.
Collapse
Affiliation(s)
- Xunfeng Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China.
| | - Juncai Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China.
| | - Renyuan Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China.
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China; Yunnan Dali Research Institute, Shanghai Jiao Tong University, Dali, Yunnan 671000, China.
| | - Shaohua Chu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China; Yunnan Dali Research Institute, Shanghai Jiao Tong University, Dali, Yunnan 671000, China.
| | - Xijia Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China; Yunnan Dali Research Institute, Shanghai Jiao Tong University, Dali, Yunnan 671000, China.
| | - Kashif Hayat
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China.
| | - Zhengqiu Fan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China.
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea.
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China; Yunnan Dali Research Institute, Shanghai Jiao Tong University, Dali, Yunnan 671000, China.
| |
Collapse
|
15
|
Lastochkina O, Aliniaeifard S, SeifiKalhor M, Bosacchi M, Maslennikova D, Lubyanova A. Novel Approaches for Sustainable Horticultural Crop Production: Advances and Prospects. HORTICULTURAE 2022; 8:910. [DOI: 10.3390/horticulturae8100910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
Reduction of plant growth, yield and quality due to diverse environmental constrains along with climate change significantly limit the sustainable production of horticultural crops. In this review, we highlight the prospective impacts that are positive challenges for the application of beneficial microbial endophytes, nanomaterials (NMs), exogenous phytohormones strigolactones (SLs) and new breeding techniques (CRISPR), as well as controlled environment horticulture (CEH) using artificial light in sustainable production of horticultural crops. The benefits of such applications are often evaluated by measuring their impact on the metabolic, morphological and biochemical parameters of a variety of cultures, which typically results in higher yields with efficient use of resources when applied in greenhouse or field conditions. Endophytic microbes that promote plant growth play a key role in the adapting of plants to habitat, thereby improving their yield and prolonging their protection from biotic and abiotic stresses. Focusing on quality control, we considered the effects of the applications of microbial endophytes, a novel class of phytohormones SLs, as well as NMs and CEH using artificial light on horticultural commodities. In addition, the genomic editing of plants using CRISPR, including its role in modulating gene expression/transcription factors in improving crop production and tolerance, was also reviewed.
Collapse
Affiliation(s)
- Oksana Lastochkina
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre RAS, 450054 Ufa, Russia
| | - Sasan Aliniaeifard
- Photosynthesis Laboratory, Department of Horticulture, Aburaihan Campus, University of Tehran, Tehran 33916-53755, Iran
| | | | | | - Dilara Maslennikova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre RAS, 450054 Ufa, Russia
| | - Alsu Lubyanova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre RAS, 450054 Ufa, Russia
| |
Collapse
|
16
|
Zhao J, Tan S, Li H, Wang Y, Yao T, Liu L, Liu K. Multi-walled Carbon Nanotubes Remediate the Phytotoxicity of Quinclorac to Tomato. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:477-483. [PMID: 35849168 DOI: 10.1007/s00128-022-03582-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
In order to remediate the phytotoxicity of quinclorac to tomato by multi-walled carbon nanotubes (MWCNTs), the adsorption of quinclorac to MWCNTs was monitored and the effect of MWCNTs on the phytotoxicity of quinclorac to tomato in soil were studied. The results showed that the Linear equation and Freundlich equation can well fit the adsorption isotherm of quinclorac in the soil containing MWCNTs. The adsorption of quinclorac in soil was significantly enhanced by the addition of MWCNTs; the Kd of soil (1% MWCNTs) was 28.7 times of pure soil. The quinclorac had an obvious inhibitory effect on the growth of tomatoes; serious phytotoxicity was also induced even at the lowest concentration of 0.025 mg/kg. With the MWCNTs content in soil increased to 0.5% and 1%, the phytotoxicity of quinclorac to tomatoes decreased significantly, and the height and fresh weight of tomatoes were even higher than those of the control group, indicating that MWCNTs can promote the growth of tomato. These results provide a reference for resolving the problem of phytotoxicity induced by residual herbicides in farmland.
Collapse
Affiliation(s)
- Jingyu Zhao
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Shuo Tan
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Hui Li
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Yao Wang
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Ting Yao
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Lejun Liu
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China
| | - Kailin Liu
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
17
|
Rezaei Cherati S, Anas M, Liu S, Shanmugam S, Pandey K, Angtuaco S, Shelton R, Khalfaoui AN, Alena SV, Porter E, Fite T, Cao H, Green MJ, Basnakian AG, Khodakovskaya MV. Comprehensive Risk Assessment of Carbon Nanotubes Used for Agricultural Applications. ACS NANO 2022; 16:12061-12072. [PMID: 35868016 DOI: 10.1021/acsnano.2c02201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Carbon-based nanomaterials (CBNs) are often used for potential agricultural applications. Since CBNs applied to plants can easily enter plant organs and reach the human diet, the consequences of the introduction of CBNs into the food chain need to be investigated. We created a platform for a comprehensive investigation of the possible health risks of multiwalled carbon nanotubes (CNTs) accumulated in the organs of exposed tomato plants. Quantification and visualization of CNTs absorbed by plant organs were determined by microwave-induced heating (MIH) and radio frequency (RF) heating methods. Feeding mice with CNT-contaminated tomatoes showed an absence of toxicity for all assessed animal organs. The amount of CNTs accumulated inside the organs of mice fed with CNT-containing fruits was assessed by an RF heating technique and was found to be negligible. Our work provides the experimental evidence that the amount of CNTs accumulated in plant organs as a result of nanofertilization is not sufficient to induce toxicity in mice.
Collapse
Affiliation(s)
- Sajedeh Rezaei Cherati
- Department of Biology, University of Arkansas at Little Rock, Little Rock, Arkansas 72204, United States
| | - Muhammad Anas
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Shijie Liu
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Sudha Shanmugam
- Department of Biology, University of Arkansas at Little Rock, Little Rock, Arkansas 72204, United States
| | - Kamal Pandey
- Department of Biology, University of Arkansas at Little Rock, Little Rock, Arkansas 72204, United States
| | - Steven Angtuaco
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Randal Shelton
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Aida N Khalfaoui
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Savenka V Alena
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Erin Porter
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Todd Fite
- Central Arkansas Veterans Healthcare System, Little Rock, Arkansas 72207, United States
| | - Huaixuan Cao
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Micah J Green
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Alexei G Basnakian
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
- Central Arkansas Veterans Healthcare System, Little Rock, Arkansas 72207, United States
| | - Mariya V Khodakovskaya
- Department of Biology, University of Arkansas at Little Rock, Little Rock, Arkansas 72204, United States
| |
Collapse
|
18
|
Gelaw TA, Sanan-Mishra N. Nanomaterials coupled with microRNAs for alleviating plant stress: a new opening towards sustainable agriculture. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:791-818. [PMID: 35592477 PMCID: PMC9110591 DOI: 10.1007/s12298-022-01163-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/21/2021] [Accepted: 03/06/2022] [Indexed: 06/15/2023]
Abstract
Plant growth and development is influenced by their continuous interaction with the environment. Their cellular machinery is geared to make rapid changes for adjusting the morphology and physiology to withstand the stressful changes in their surroundings. The present scenario of climate change has however intensified the occurrence and duration of stress and this is getting reflected in terms of yield loss. A number of breeding and molecular strategies are being adopted to enhance the performance of plants under abiotic stress conditions. In this context, the use of nanomaterials is gaining momentum. Nanotechnology is a versatile field and its application has been demonstrated in almost all the existing fields of science. In the agriculture sector, the use of nanoparticles is still limited, even though it has been found to increase germination and growth, enhance physiological and biochemical activities and impact gene expression. In this review, we have summarized the use and role of nanomaterial and small non-coding RNAs in crop improvement while highlighting the potential of nanomaterial assisted eco-friendly delivery of small non-coding RNAs as an innovative strategy for mitigating the effect of abiotic stress.
Collapse
Affiliation(s)
- Temesgen Assefa Gelaw
- Group Leader, Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, 110067 New Delhi, India
- Department of Biotechnology, College of Natural and Computational Science, Debre Birhan University, 445, Debre Birhan, Ethiopia
| | - Neeti Sanan-Mishra
- Group Leader, Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, 110067 New Delhi, India
| |
Collapse
|
19
|
Yao T, Liu L, Tan S, Li H, Liu X, Zeng A, Pan L, Li X, Bai L, Liu K, Xing B. Can the multi-walled carbon nanotubes be used to alleviate the phytotoxicity of herbicides in soils? CHEMOSPHERE 2021; 283:131304. [PMID: 34467944 DOI: 10.1016/j.chemosphere.2021.131304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Herbicides are commonly used globally. However, residual herbicides in soils for ages often result in phytotoxicity and serious yield loss to subsequent crops. In this paper, the multi-walled carbon nanotubes (MWCNTs) were utilized to amend the herbicide polluted soil, and the adsorption performance of herbicides to MWCNTs amended soil was studied. Results indicate efficient alleviation of herbicide-induced phytotoxicity to rice and tobacco due to MWCNTs amendment. When 0.4% MWCNTs were applied, the concentration of sulfentrazone that inhibited the same rice height by 50% (IC50) increased to more than 3 times that of pure soil. When the MWCNTs were used to alleviate the phytotoxicity of quinclorac to tobacco, the MWCNTs not only alleviated the phytotoxicity of quinclorac but also promoted the growth of tobacco. The MWCNTs amended soil significantly increased the adsorption of herbicide to soil than biochar. The soil microbial analysis shows that MWCNTs had no significant effect on soil microbial community diversity, but the long-term exposure to MWCNTs could change the structure of the soil microbial community. Above all, our results highlighted the potential implication of the MWCNTs to ensure crop production by promoting crop growth and reducing the residual bioavailability of herbicides.
Collapse
Affiliation(s)
- Ting Yao
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, PR China
| | - Lejun Liu
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, PR China
| | - Shuo Tan
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, PR China
| | - Hui Li
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, United States
| | - Xiangying Liu
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, PR China; Hunan Weed Science Key Laboratory, Hunan Academy of Agriculture Science, Changsha, 410125, PR China
| | - Aiping Zeng
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, PR China
| | - Lang Pan
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, PR China
| | - Xiaogang Li
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, PR China
| | - Lianyang Bai
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, PR China; Hunan Weed Science Key Laboratory, Hunan Academy of Agriculture Science, Changsha, 410125, PR China
| | - Kailin Liu
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, PR China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, United States.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, United States
| |
Collapse
|
20
|
Dutta S, Pal S, Sharma RK, Panwar P, Kant V, Khola OPS. Implication of Wood-Derived Hierarchical Carbon Nanotubes for Micronutrient Delivery and Crop Biofortification. ACS OMEGA 2021; 6:23654-23665. [PMID: 34568645 PMCID: PMC8459368 DOI: 10.1021/acsomega.1c03215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/27/2021] [Indexed: 05/03/2023]
Abstract
A similarity of metal alloy encapsulation with the micronutrient loading in carbon nanoarchitecture can be fueled by exploring carbon nanocarriers to load micronutrient and controlled delivery for crop biofortification. A wood-derived nanoarchitecture model contains a few-graphene-layer that holds infiltrated alloy nanoparticles. Such wood-driven carbonized framework materials with legions of open porous architectures and minimized-tortuosity units further decorated carbon nanotubes (CNTs), which originate from heat treatment to carbonized wood samples. These wood-derived samples can alleviate micronutrient nanoparticle permeation and delivery to the soil. A rapid heat shock treatment can help in distributing N-C-NiFe metal alloy encapsulation in carbon frameworks uniformly in that case; higher heating and rapid extinction of heat shock have led to formation of good dispersion of nanoparticles. The wood-carbon framework decorated with metal alloys displays promising electrocatalytic features and cyclic stability for hydrogen evolution. Envisaged from this strategy, we obtain enough evidence to form an opinion that a singular heat shock process can even lead to a strategy of faster growth of a wood-carbon network with well-dispersed micronutrient metal salts in porous matrices for high-efficiency delivery to the soil. Having envisaged the formation of ultrafine nanoparticles with a good dispersion profile in the case of transition metals and alloy encapsulation in the carbon network due to the rapid heating and quenching rates, we anticipate that the loading of micronutrients in the wood-derived nanoarchitecture of carbonized wood derived carbon nanotube (CW-CNT), which can offer an application in seed germination and enhance growth rates of crops. The experience of controlled experiments on germination of tomato seeds on a medium containing CW-CNT that can diffuse the seed coat with the promotion of water uptake inside seeds for enhanced germination and growth of tomato seedlings can be further extended to cereal crops.
Collapse
Affiliation(s)
- Saikat Dutta
- Amity
Institute of Click Chemistry Research & Studies Amity University, Noida 201303, India
| | - Sharmistha Pal
- ICAR-Indian
Institute of Soil & Water Conservation Research Center Sector 27 A Madhya Marg Chandigarh 160019, India
| | - Rakesh K. Sharma
- Sustainable
Materials and Catalysis Research Laboratory (SMCRL), Department of
Chemistry, Indian Institute of Technology
Jodhpur Jodhpur 342037, Rajasthan, India
| | - Pankaj Panwar
- ICAR-Indian
Institute of Soil & Water Conservation Research Center Sector 27 A Madhya Marg Chandigarh 160019, India
| | - Vishav Kant
- Sustainable
Materials and Catalysis Research Laboratory (SMCRL), Department of
Chemistry, Indian Institute of Technology
Jodhpur Jodhpur 342037, Rajasthan, India
| | - Om Pal Singh Khola
- ICAR-Indian
Institute of Soil & Water Conservation Research Center Sector 27 A Madhya Marg Chandigarh 160019, India
| |
Collapse
|
21
|
Liné C, Manent F, Wolinski A, Flahaut E, Larue C. Comparative study of response of four crop species exposed to carbon nanotube contamination in soil. CHEMOSPHERE 2021; 274:129854. [PMID: 33581396 DOI: 10.1016/j.chemosphere.2021.129854] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 05/16/2023]
Abstract
Crop plants are exposed to a variety of contaminants through sewage sludge spreading but very little is known about the impact of emerging contaminants such as nanomaterials. To date their impact on plants is still very controversial with many works claiming negative impacts while some authors suggest their use as plant growth regulator in agriculture. In this study, aiming to better understand where these discrepancies may come from, we investigated the influence of plant species (tomato, rapeseed, cucumber and maize) on plant response to a carbon nanotube contamination in soil condition. Our results demonstrate that the same CNT contamination can lead to different effects depending on plant species with positive impacts on cucumber and rapeseed (more than 50% increase in leaf biomass and surface area and 29% increase in chlorophyll for cucumber) but negative impact on maize (-14% for plant height), while tomato was insensitive. FTIR analysis of biomacromolecule composition suggested that these differences could be related with plant cell wall composition (in particular: pectins, xyloglucans and lignins). As a summary, no overall conclusion can be drawn about the toxicity of a specific nanomaterial for all plant species.
Collapse
Affiliation(s)
- Clarisse Liné
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France; CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, UMR CNRS-UPS-INP N°5085, Université Toulouse 3 Paul Sabatier, Bât. CIRIMAT, 118, route de Narbonne, 31062, Toulouse cedex 9, France
| | - Fanny Manent
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | - Adèle Wolinski
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | - Emmanuel Flahaut
- CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, UMR CNRS-UPS-INP N°5085, Université Toulouse 3 Paul Sabatier, Bât. CIRIMAT, 118, route de Narbonne, 31062, Toulouse cedex 9, France
| | - Camille Larue
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France.
| |
Collapse
|
22
|
Basavegowda N, Baek KH. Current and future perspectives on the use of nanofertilizers for sustainable agriculture: the case of phosphorus nanofertilizer. 3 Biotech 2021; 11:357. [PMID: 34268065 DOI: 10.1007/s13205-021-02907-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 06/21/2021] [Indexed: 11/25/2022] Open
Abstract
Over the last century, the demand for food resources has been continuously increasing with the rapid population growth. Therefore, it is critically important to adopt sustainable farming practices that can enhance crop production without the excessive use of fertilizers. In this regard, there is a growing interest in the use of nanomaterials for improving plant nutrition as an alternative to traditional chemical or mineral fertilizers. Using this technology, the efficiency of micro- and macro-nutrients in plants can increase. Various nanomaterials have been successfully applied in agricultural production, compared to conventional fertilizers. Among the major plant nutrients, phosphorus (P) is the least accessible since most farmlands are frequently P deficient. Hence, P use efficiency should be maximized to conserve the resource base and maintain agricultural productivity. This review summarizes the current research and the future possibilities of nanotechnology in the biofortification of plant nutrition, with a focus on P fertilizers. In addition, it covers the challenges, environmental impacts, and toxic effects that have been explored in the area of nanotechnology to improve crop production. The potential uses and benefits of nanoparticle-based fertilizers in precision and sustainable agriculture are also discussed.
Collapse
Affiliation(s)
- Nagaraj Basavegowda
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38451 Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38451 Republic of Korea
| |
Collapse
|
23
|
Jain N, Gupta E, Kanu NJ. Plethora of Carbon Nanotubes Applications in Various Fields – A State-of-the-Art-Review. SMART SCIENCE 2021. [DOI: 10.1080/23080477.2021.1940752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Nidhi Jain
- Department of Engineering Science, Bharati Vidyapeeth College of Engineering, Lavale, Pune, India
| | - Eva Gupta
- Department of Electrical Engineering, ASET, Amity University, Noida, India
- Department of Electrical Engineering, TSSM’s Bhivrabai Sawant College of Engineering and Research, Pune, Maharashtra, India
| | - Nand Jee Kanu
- Department of Mechanical Engineering, S. V. National Institute of Technology, Surat, India
- Department of Mechanical Engineering, JSPM Narhe Technical Campus, Pune, India
| |
Collapse
|
24
|
Sharma S, Muddassir M, Muthusamy S, Vaishnav PK, Singh M, Sharma D, Kanagarajan S, Shanmugam V. A non-classical route of efficient plant uptake verified with fluorescent nanoparticles and root adhesion forces investigated using AFM. Sci Rep 2020; 10:19233. [PMID: 33159139 PMCID: PMC7648022 DOI: 10.1038/s41598-020-75685-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/19/2020] [Indexed: 11/15/2022] Open
Abstract
Classical plant uptake is limited to hydrophilic or water-dispersible material. Therefore, in order to test the uptake behaviour of hydrophobic particles, here, we tested the fate of hydrophobic particles (oleylamine coated Cu2-xSe NPs (CS@OA)) in comparison to hydrophilic particles (chitosan-coated Cu2-xSe NPs (CS@CH)) by treatment on the plant roots. Surprisingly, hydrophobic CS@OA NPs have been found to be ~ 1.3 times more efficient than hydrophilic CS@CH NPs in tomato plant root penetration. An atomic force microscopy (AFM) adhesion force experiment confirms that hydrophobic NPs experience non-spontaneous yet energetically favorable root trapping and penetration. Further, a relative difference in the hydrophobic vs. hydrophilic NPs movement from roots to shoots has been observed and found related to the change in protein corona as identified by two dimensional-polyacrylamide gel electrophoresis (2D-PAGE) analysis. Finally, the toxicity assays at the give concentration showed that Cu2-xSe NPs lead to non-significant toxicity as compared to control. This technology may find an advantage in fertilizer application.
Collapse
Affiliation(s)
- Sandeep Sharma
- Institute of Nano Science and Technology, Habitat Centre, Phase- 10, Sector- 64, Mohali, Punjab, 160062, India
| | - Mohd Muddassir
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | | | | | - Manish Singh
- Institute of Nano Science and Technology, Habitat Centre, Phase- 10, Sector- 64, Mohali, Punjab, 160062, India
| | - Deepak Sharma
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Selvaraju Kanagarajan
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | - Vijayakumar Shanmugam
- Institute of Nano Science and Technology, Habitat Centre, Phase- 10, Sector- 64, Mohali, Punjab, 160062, India.
| |
Collapse
|
25
|
Jordan JT, Oates RP, Subbiah S, Payton PR, Singh KP, Shah SA, Green MJ, Klein DM, Cañas-Carrell JE. Carbon nanotubes affect early growth, flowering time and phytohormones in tomato. CHEMOSPHERE 2020; 256:127042. [PMID: 32450352 DOI: 10.1016/j.chemosphere.2020.127042] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/01/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Carbon nanotube (CNT) applications are increasing in consumer products, including agriculture devices, making them an important contaminant to study in the field of plant nanotoxicology. Several studies have observed the uptake and effects of CNTs in plants. However, in other studies differing results were observed on growth and physiology depending on the plant species and type of CNT. This study focused on the effects of CNTs on plant phenotype with growth, time to flowering, fruiting time as endpoints, and physiology, through amino acid and phytohormone content, in tomato after exposure to multiple types of CNTs. Plants grown in CNT-contaminated soil exhibited a delay in early growth and flowering (especially in treatments of 1 mg/kg multi-walled nanotubes (MWNTs), 10 mg/kg MWNTs, and 1 mg/kg MWNTs-COOH). However, CNTs did not affect plant growth or height later in the life cycle. No significant differences in abscisic acid (ABA) and citrulline content were observed between the treated and control plants. However, single-walled nanotube (SWNT) exposure significantly increased salicylic acid (SA) content in tomato. These results suggest that SWNTs may elicit a stress response in tomatoes. Results from this study offer more insight into how plants respond and acclimate to CNTs. These results will lead to a better understanding of CNT impact on plant phenotype and physiology.
Collapse
Affiliation(s)
- Juliette T Jordan
- Department of Environmental Toxicology, The Institute for Environmental and Human Health, Texas Tech University, P.O. Box 41163, Lubbock, Texas, 79409, USA
| | - R P Oates
- Department of Environmental Toxicology, The Institute for Environmental and Human Health, Texas Tech University, P.O. Box 41163, Lubbock, Texas, 79409, USA
| | - Seenivasan Subbiah
- Department of Environmental Toxicology, The Institute for Environmental and Human Health, Texas Tech University, P.O. Box 41163, Lubbock, Texas, 79409, USA
| | - Paxton R Payton
- United State Department of Agriculture- Agriculture Research Service-Cropping Systems Research Laboratory, 3810 4th St, Lubbock, TX, 79415, USA
| | - Kamaleshwar P Singh
- Department of Environmental Toxicology, The Institute for Environmental and Human Health, Texas Tech University, P.O. Box 41163, Lubbock, Texas, 79409, USA
| | - Smit A Shah
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, TAMU Chemical Engineering Dept. 3122 TAMU Room 200, College Station, Texas, 77843, USA
| | - Micah J Green
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, TAMU Chemical Engineering Dept. 3122 TAMU Room 200, College Station, Texas, 77843, USA
| | - David M Klein
- Department of Environmental Toxicology, The Institute for Environmental and Human Health, Texas Tech University, P.O. Box 41163, Lubbock, Texas, 79409, USA
| | - Jaclyn E Cañas-Carrell
- Department of Environmental Toxicology, The Institute for Environmental and Human Health, Texas Tech University, P.O. Box 41163, Lubbock, Texas, 79409, USA.
| |
Collapse
|
26
|
Technology readiness and overcoming barriers to sustainably implement nanotechnology-enabled plant agriculture. ACTA ACUST UNITED AC 2020. [DOI: 10.1038/s43016-020-0110-1] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Juárez-Cisneros G, Gómez-Romero M, Reyes de la Cruz H, Campos-García J, Villegas J. Multi-walled carbon nanotubes produced after forest fires improve germination and development of Eysenhardtia polystachya. PeerJ 2020; 8:e8634. [PMID: 32351779 PMCID: PMC7183754 DOI: 10.7717/peerj.8634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/26/2020] [Indexed: 12/14/2022] Open
Abstract
Background Multi-walled carbon nanotubes (MWCNTs) are nanoparticles with countless applications. MWCNTs are typically of synthetic origin. However, recently, the formation of MWCNTs in nature after forest fires has been documented. Previous reports have demonstrated the positive effects of synthetic MWCNTs on the germination and development of species of agronomic interest; nevertheless, there is practically no information on how synthetic or natural MWCNTs affect forest plant development. In this report, based on insights from dose-response assays, we elucidate the comparative effects of synthetic MWCNTs, amorphous carbon, and natural MWCNTs obtained after a forest fire on Eysenhardtia polystachya plant. Methods E. polystachya seeds were sown in peat moss-agrolite substrate and conserved in a shade house. Germination was recorded daily up to 17 days after sowing, and plant development (manifested in shoot and root length, stem diameter, foliar area, and root architecture parameters) was recorded 60 days after sowing. Results The treatments with natural MWCNTs accelerated the emergence and improved the germination of this plant, thus while untreated seeds achieve 100% of germination within 16th day, seeds supplemented with natural MWCNTs at doses of 20 µg/mL achieve the above percentage within the 4th day. Natural MWCNTs also promoted fresh and dry biomass in all applied treatments, specially at doses of 40 µg/mL where natural MWCNTs significantly promoted leaf number, root growth, and the dry and fresh weights of shoots and roots of seedlings. Seeds supplemented with doses between 20 and 40 µg/mL of amorphous carbon achieving 100% of germination within the 6th day; however, seeds supplemented either with doses of 60 µg/mL of the above carbon or with synthetic MWCNTs at all the tested concentrations could achieve at most 80 % and 70% of germination respectively within the 17 days. Finally, neither treatments added with amorphous carbon nor those added with synthetic MWCNTs, showed significant increases in the fresh and dry biomass of the tested plant. Likewise, the survival of seedlings was reduced between 10 and 20 % with 40 and 60 µg/mL of amorphous carbon, and with synthetic MWCNTs in all the doses applied was reduced at 30% of survival plants. Conclusions These findings indicate that MWCNTs produced by wildfire act as plant growth promoters, contributing to the germination and development of adapted to fire-prone conditions species such as E. polystachya.
Collapse
Affiliation(s)
- Gladys Juárez-Cisneros
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Mariela Gómez-Romero
- Cátedras CONACYT-Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Homero Reyes de la Cruz
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Jesús Campos-García
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Javier Villegas
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| |
Collapse
|
28
|
Sun L, Wang R, Ju Q, Xu J. Physiological, Metabolic, and Transcriptomic Analyses Reveal the Responses of Arabidopsis Seedlings to Carbon Nanohorns. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4409-4420. [PMID: 32182044 DOI: 10.1021/acs.est.9b07133] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Carbon-based nanomaterials have potential applications in nanoenabled agriculture. However, the physiological and molecular mechanisms underlying single-walled carbon nanohorn (SWCNH)-mediated plant growth remain unclear. Here, we investigated the effects of SWCNHs on Arabidopsis grown in 1/4-strength Murashige and Skoog medium via physiological, genetic, and molecular analyses. Treatment with 0.1 mg/L SWCNHs promoted primary root (PR) growth and lateral root (LR) formation; 50 and 100 mg/L SWCNHs inhibited PR growth. Treatment with 0.1 mg/L SWCNHs increased the lengths of the meristematic and elongation zones, and transcriptomic and genetic analyses confirmed the positive effects of SWCNHs on root tip stem cell niche activity and meristematic cell division potential. Increased expression of YUC3 and YUC5 and increased PIN2 abundance improved PR growth and LR development in 0.1 mg/L SWCNH-treated seedlings. Metabolomic analyses revealed that SWCNHs altered the levels of sugars, amino acids, and organic acids, suggesting that SWCNHs reprogrammed carbon/nitrogen metabolism in plants. SWCNHs also regulate plant growth and development by increasing the levels of several secondary metabolites; transcriptomic analyses further supported these results. The present results are valuable for continued use of SWCNHs in agri-nanotechnology, and these molecular approaches could serve as examples for studies on the effects of nanomaterials in plants.
Collapse
Affiliation(s)
- Liangliang Sun
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla Yunnan 666303, China
| | - Ruting Wang
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla Yunnan 666303, China
| | - Qiong Ju
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla Yunnan 666303, China
| | - Jin Xu
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla Yunnan 666303, China
- Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla Yunnan 666303, China
| |
Collapse
|
29
|
Li X, Ban Z, Yu F, Hao W, Hu X. Untargeted Metabolic Pathway Analysis as an Effective Strategy to Connect Various Nanoparticle Properties to Nanoparticle-Induced Ecotoxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3395-3406. [PMID: 32097552 DOI: 10.1021/acs.est.9b06096] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Elucidation of the relationships between nanoparticle properties and ecotoxicity is a fundamental issue for environmental applications and risk assessment of nanoparticles. However, effective strategies to connect the various properties of nanoparticles with their ecotoxicity remain largely unavailable. Herein, an untargeted metabolic pathway analysis was employed to investigate the environmental risk posed by 10 typical nanoparticles (AgNPs, CuNPs, FeNPs, ZnONPs, SiO2NPs, TiO2NPs, GO, GOQDs, SWCNTs, and C60) to rice (a staple food for half of the world's population). Downregulation of carbohydrate metabolism and upregulation of amino acid metabolism were the two dominant metabolic effects induced by all tested nanoparticles. Partial least-squares regression analysis indicated that a zerovalent metal and high specific surface area positively contributed to the downregulation of carbohydrate metabolism, indicating strong abiotic stress. In contrast, the carbon type, the presence of a spherical or sheet shape, and the absence of oxygen functional groups in the nanoparticles positively contributed to the upregulation of amino acid metabolism, indicating adaptation to abiotic stress. Moreover, network relationships among five properties of nanoparticles were established for these metabolic pathways. The results of the present study will aid in the understanding and prediction of environmental risks and in the design of environmentally friendly nanoparticles.
Collapse
Affiliation(s)
- Xiaokang Li
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China
| | - Zhan Ban
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China
| | - Fubo Yu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China
| | - Weidan Hao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, People's Republic of China
| |
Collapse
|
30
|
Hossain A, Kerry RG, Farooq M, Abdullah N, Tofazzal Islam M. Application of Nanotechnology for Sustainable Crop Production Systems. NANOTECHNOLOGY IN THE LIFE SCIENCES 2020:135-159. [DOI: 10.1007/978-3-030-31938-0_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
|
31
|
Improvement of Commercially Valuable Traits of Industrial Crops by Application of Carbon-based Nanomaterials. Sci Rep 2019; 9:19358. [PMID: 31852946 PMCID: PMC6920410 DOI: 10.1038/s41598-019-55903-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/03/2019] [Indexed: 01/27/2023] Open
Abstract
Carbon-based nanomaterials (CBNs) have great potential as a powerful tool to improve plant productivity. Here, we investigated the biological effects of graphene and carbon nanotubes (CNTs) on fiber-producing species (cotton, Gossypium hirsutum) and ornamental species (vinca, Catharanthus roseus). The exposure of seeds to CNTs or graphene led to the activation of early seed germination in Catharanthus and overall higher germination in cotton and Catharanthus seeds. The application of CBNs resulted in higher root and shoot growth of young seedlings of both tested species. Cultivation of Catharanthus plants in soil supplemented with CBNs resulted in the stimulation of plant reproductive system by inducing early flower development along with higher flower production. Catharanthus plants cultivated in CNTs or graphene supplemented soil accelerated total flower production by 37 and 58%, respectively. Additionally, CBNs reduced the toxic effects caused by NaCl. Long-term application of CBNs to crops cultivated under salt stress conditions improved the desired phenotypical traits of Catharanthus (higher flower number and leaf number) and cotton (increased fiber biomass) compared to untreated plants of both species cultivated at the same stress condition. The drought stress experiments revealed that introduction of CBNs to matured Catharanthus plant increased the plant survival with no symptoms of leaf wilting as compared to untreated Catharanthus growing in water deficit conditions.
Collapse
|
32
|
Li X, Peng T, Mu L, Hu X. Phytotoxicity induced by engineered nanomaterials as explored by metabolomics: Perspectives and challenges. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 184:109602. [PMID: 31493589 DOI: 10.1016/j.ecoenv.2019.109602] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Given the wide applications of engineered nanomaterials (ENMs) in various fields, the ecotoxicology of ENMs has attracted much attention. The traditional plant physiological activity (e.g., reactive oxygen species and antioxidant enzymes) are limited in that they probe one specific process of nanotoxicity, which may result in the loss of understanding of other important biological reactions. Metabolites, which are downstream of gene and protein expression, are directly related to biological phenomena. Metabolomics is an easily performed and efficient tool for solving the aforementioned problems because it involves the comprehensive exploration of metabolic profiles. To understand the roles of metabolomics in phytotoxicity, the analytical methods for metabolomics should be organized and discussed. Moreover, the dominant metabolites and metabolic pathways are similar in different plants, which determines the universal applicability of metabolomics analysis. The analysis of regulated metabolism will globally and scientifically help determine the ecotoxicology that is induced by ENMs. In the past several years, great developments in nanotoxicology have been achieved using metabolomics. However, many knowledge gaps remain, such as the relationships between biological responses that are induced by ENMs and the regulation of metabolism (e.g., carbohydrate, energy, amino acid, lipid and secondary metabolism). The phytotoxicity that is induced by ENMs has been explored by metabolomics, which is still in its infancy. The detrimental and defence mechanisms of plants in their response to ENMs at the level of metabolomics also deserve much attention. In addition, owing to the regulation of metabolism in plants by ENMs affected by multiple factors, it is meaningful to uniformly identify the key influencing factor.
Collapse
Affiliation(s)
- Xiaokang Li
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Ting Peng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Li Mu
- Tianjin Key Laboratory of Agro-environment and Safe-product, Key Laboratory for Environmental Factors Control of Agro-product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-environmental Protection, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| |
Collapse
|
33
|
McGehee DL, Alimohammadi M, Khodakovskaya MV. Carbon-based nanomaterials as stimulators of production of pharmaceutically active alkaloids in cell culture of Catharanthus roseus. NANOTECHNOLOGY 2019; 30:275102. [PMID: 30901766 DOI: 10.1088/1361-6528/ab1286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Carbon-based nanomaterials (CBNs) were previously described as regulators of plant cell division. Here, we demonstrated the ability of multi-walled carbon nanotubes (MWCNT) and graphene to enhance biomass production in callus culture of the medicinal plant Catharanthus roseus cultivated in dark conditions. Furthermore, both tested CBNs were able to stimulate biosynthesis of total produced alkaloids in CBN-exposed callus culture of Catharanthus. In one case, total alkaloids in CBN-exposed Catharanthus were double that of unexposed Catharanthus. Analysis of metabolites by HPLC revealed that production of the pharmaceutically active alkaloids vinblastine and vincristine was dramatically enhanced in callus exposed to MWCNT or graphene in both dark and light conditions of callus cultivation. In vitro assays (MTT, flow cytometry) demonstrated that total alkaloid extracts derived from Catharanthus callus treated with CBNs significantly reduced cell proliferation of breast cancer (MCF-7) and lung cancer (A549) cell lines compared to the application of extracts derived from untreated Catharanthus callus.
Collapse
Affiliation(s)
- Diamond L McGehee
- Department of Biology, University of Arkansas at Little Rock, Little Rock, United States of America
| | | | | |
Collapse
|
34
|
Matich EK, Chavez Soria NG, Aga DS, Atilla-Gokcumen GE. Applications of metabolomics in assessing ecological effects of emerging contaminants and pollutants on plants. JOURNAL OF HAZARDOUS MATERIALS 2019; 373:527-535. [PMID: 30951997 DOI: 10.1016/j.jhazmat.2019.02.084] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/23/2019] [Indexed: 05/21/2023]
Abstract
Metabolomics, the global profiling of metabolite composition, is a powerful technique that can be applied to answer a diverse set of research questions concerning effects of toxicants on organisms. It has recently emerged as a tool to understand complex environmental perturbations in biological systems, especially at sub-lethal concentrations. Organisms can be affected by different stressors such as xenobiotics or increase in concentration of natural compounds such as nitrogen, phosphorous, and sulfur. Metabolomics has facilitated a better understanding of the effects of these perturbations on organisms such as plants, animals, and humans providing phenotypic and biological information in a high throughput manner. In this review, we will discuss recent applications of metabolomics to study the ecological effects of different environmental perturbations, including nanoparticles, pharmaceuticals and personal care products, pesticides, as well as the changes in natural compounds found in the environment with a focus on plant systems.
Collapse
Affiliation(s)
- Eryn K Matich
- Department of Chemistry, University at Buffalo, State University of New York (SUNY), Buffalo, NY, 14260, USA
| | - Nita G Chavez Soria
- Department of Chemistry, University at Buffalo, State University of New York (SUNY), Buffalo, NY, 14260, USA
| | - Diana S Aga
- Department of Chemistry, University at Buffalo, State University of New York (SUNY), Buffalo, NY, 14260, USA.
| | - G Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, State University of New York (SUNY), Buffalo, NY, 14260, USA.
| |
Collapse
|
35
|
Kah M, Tufenkji N, White JC. Nano-enabled strategies to enhance crop nutrition and protection. NATURE NANOTECHNOLOGY 2019; 14:532-540. [PMID: 31168071 DOI: 10.1038/s41565-019-0439-5] [Citation(s) in RCA: 376] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 03/28/2019] [Indexed: 05/18/2023]
Abstract
Various nano-enabled strategies are proposed to improve crop production and meet the growing global demands for food, feed and fuel while practising sustainable agriculture. After providing a brief overview of the challenges faced in the sector of crop nutrition and protection, this Review presents the possible applications of nanotechnology in this area. We also consider performance data from patents and unpublished sources so as to define the scope of what can be realistically achieved. In addition to being an industry with a narrow profit margin, agricultural businesses have inherent constraints that must be carefully considered and that include existing (or future) regulations, as well as public perception and acceptance. Directions are also identified to guide future research and establish objectives that promote the responsible and sustainable development of nanotechnology in the agri-business sector.
Collapse
Affiliation(s)
- Melanie Kah
- School of Environment, University of Auckland, Auckland, New Zealand.
| | - Nathalie Tufenkji
- Department of Chemical Engineering, McGill University, Montreal, Quebec, Canada
| | - Jason C White
- Center for Sustainable Nanotechnology, Department of Analytical Chemistry, Connecticut Agricultural Experiment Station, New Haven, CT, USA.
| |
Collapse
|
36
|
Verma SK, Das AK, Gantait S, Kumar V, Gurel E. Applications of carbon nanomaterials in the plant system: A perspective view on the pros and cons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 667:485-499. [PMID: 30833247 DOI: 10.1016/j.scitotenv.2019.02.409] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 05/20/2023]
Abstract
With the remarkable development in the field of nanotechnology, carbon-based nanomaterials (CNMs) have been widely used for numerous applications in different areas of the plant system. The current understanding about the CNMs' accumulation, translocation, plant growth responses, and stress modulations in the plant system is far from complete. There have been relentless efforts by the researchers worldwide in order to acquire newer insights into the plant-CNMs interactions and the consequences. The present review intends to update the reader with the status of the impacts of the different CNMs on plant growth. Research reports from the plant biotechnologists have documented mixed effects (which are dependent on CNMs' concentration) of the CNMs' exposure on plants ranging from enhanced crop yield to acute cytotoxicity. The growth and yield pattern vary from species to species and are dependent on the dosage of the CNMs applied. Studies found an increase in vegetative growth and yield of fruit/seed at lower concentration of CNMs, but a decrease in these observables were also noted when higher concentrations of CNMs were used. In general, at lower concentrations, CNMs were found to be effective in enhancing (water uptake, water transport, seed germination, nitrogenase, photosystem and antioxidant activities), activating (water channels proteins) and promoting (nutrition absorption); all these change when concentrations are raised. All these aspects have been reviewed thoroughly in this article, with a focus on the recent updates on the role of the CNMs in augmenting or retarding plant growth. Sections have been devoted to the various features of the CNMs and their roles in inducing plant growth, phytotoxic responses of the plants and overall crop improvement. Concluding remarks have been added to propose future directions of research on the CNMs-plant interactions and also to sound a warning on the use of CNMs in agriculture.
Collapse
Affiliation(s)
- Sandeep Kumar Verma
- Institute of Biological Science, SAGE University, Baypass Road, Kailod Kartal, Indore 452020, Madhya Pradesh, India; Biotechnology Laboratory, Department of Biology, Bolu Abant Izzet Baysal University, 14030 Bolu, Turkey.
| | - Ashok Kumar Das
- Department of Industrial Chemistry, College of Applied Sciences, Addis Ababa Science and Technology University, Addis Ababa 16417, Ethiopia
| | - Saikat Gantait
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia 741252, West Bengal, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College, Savitribai Phule Pune University, Ganeshkhind, Pune 411016, Maharashtra, India
| | - Ekrem Gurel
- Biotechnology Laboratory, Department of Biology, Bolu Abant Izzet Baysal University, 14030 Bolu, Turkey
| |
Collapse
|
37
|
Lahiani MH, Khare S, Cerniglia CE, Boy R, Ivanov IN, Khodakovskaya M. The impact of tomato fruits containing multi-walled carbon nanotube residues on human intestinal epithelial cell barrier function and intestinal microbiome composition. NANOSCALE 2019; 11:3639-3655. [PMID: 30741296 DOI: 10.1039/c8nr08604d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Carbon nanomaterials (CNMs) can positively regulate seed germination and enhance plant growth. However, clarification of the impact of plant organs containing absorbed CNMs on animal and human health is a critical step of risk assessment for new nano-agro-technology. In this study, we have taken a comprehensive approach to studying the effect tomato fruits derived from plants exposed to multi-walled carbon nanotubes (CNTs) have on gastrointestinal epithelial barrier integrity and their impact on the human commensal intestinal microbiota using an in vitro cell culture and batch human fecal suspension models. The effects of CNTs on selected pure cultures of Salmonella enterica Typhimurium and Lactobacillus acidophilus were also evaluated. This study demonstrated that CNT-containing fruits or the corresponding residual level of pure CNTs (0.001 μg ml-1) was not sufficient to initiate a significant change in transepithelial resistance and on gene expression of the model T-84 human intestinal epithelial cells. However, at 10 μg ml-1 concentration CNTs were able to penetrate the cell membrane and change the gene expression profile of exposed cells. Moreover, extracts from CNT-containing fruits had minimal to no effect on human intestinal microbiota as revealed by culture-based analysis and 16S rRNA sequencing.
Collapse
MESH Headings
- Cell Line
- Feces/microbiology
- Fruit/chemistry
- Fruit/metabolism
- Gastrointestinal Microbiome/drug effects
- Humans
- Intestinal Mucosa/cytology
- Intestinal Mucosa/drug effects
- Intestinal Mucosa/metabolism
- Lactobacillus acidophilus/drug effects
- Lactobacillus acidophilus/genetics
- Solanum lycopersicum/chemistry
- Solanum lycopersicum/metabolism
- Nanotubes, Carbon/chemistry
- Nanotubes, Carbon/toxicity
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Salmonella typhimurium/drug effects
- Salmonella typhimurium/genetics
- Sequence Analysis, DNA
- Spectrum Analysis, Raman
Collapse
Affiliation(s)
- Mohamed H Lahiani
- Department of Biology, University of Arkansas at Little Rock, Little Rock, AR 72204, USA.
| | | | | | | | | | | |
Collapse
|