1
|
Hao L, Luan J. Visible Light-Driven Direct Z-Scheme Ho 2SmSbO 7/YbDyBiNbO 7 Heterojunction Photocatalyst for Efficient Degradation of Fenitrothion. Molecules 2024; 29:5930. [PMID: 39770019 PMCID: PMC11678090 DOI: 10.3390/molecules29245930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/14/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
A highly versatile Z-scheme heterostructure, Ho2SmSbO7/YbDyBiNbO7 (HYO), was synthesized using an ultrasonic-assisted solvent thermal method. The HYO heterojunction, composed of dual A2B2O7 compounds, exhibits superior separation of photogenerated carriers due to its efficient Z-scheme mechanism. The synergistic properties of Ho2SmSbO7 and YbDyBiNbO7, particularly the excellent visible light absorption, enable HYO to achieve exceptional photocatalytic performance in the degradation of fenitrothion (FNT). Specifically, HYO demonstrated an outstanding removal efficiency of 99.83% for FNT and a mineralization rate of 98.77% for total organic carbon (TOC) during the degradation process. Comparative analyses revealed that HYO significantly outperformed other photocatalysts, including Ho2SmSbO7, YbDyBiNbO7, and N-doped TiO2, achieving removal rates that were 1.10, 1.20, and 2.97 times higher for FNT, respectively. For TOC mineralization, HYO exhibited even greater enhancements, with rates 1.13, 1.26, and 3.37 times higher than those of the aforementioned catalysts. Additionally, the stability and durability of HYO were systematically evaluated, confirming its potential applicability in practical scenarios. Trapping experiments and electron paramagnetic resonance analyses were conducted to identify the active species generated by HYO, specifically hydroxyl radicals (•OH), superoxide anions (•O2-), and holes (h+). This facilitated a comprehensive understanding of the degradation mechanisms and pathways associated with FNT. In conclusion, this study represents a substantial contribution to the advancement of efficient Z-scheme heterostructure and offers critical insights for the development of sustainable remediation approaches aimed at mitigating FNT contamination.
Collapse
Affiliation(s)
- Liang Hao
- School of Physics, Changchun Normal University, Changchun 130032, China;
| | - Jingfei Luan
- School of Physics, Changchun Normal University, Changchun 130032, China;
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| |
Collapse
|
2
|
Mashkoor F, Shoeb M, Khan MN, Choo G, Baek SS, Jeong C. CNT functionalized GdCoBi ternary metal oxide nanocomposite for electrochemical detection of perfluorooctanoic acid and energy storage applications. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136421. [PMID: 39536345 DOI: 10.1016/j.jhazmat.2024.136421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Perfluorooctanoic acid "Forever Chemical" presents substantial ecological challenges owing to its persistence and resistance to degradation. The study introduces a novel approach by integrating ternary metal oxides-Gd2O3, Co3O4, and Bi2O3 with carbon nanotubes to develop a versatile electrode material, CNT@GdCoBi NCs, which demonstrates dual functionality as both an electrochemical sensor for PFOA and a component for energy storage devices. The electrode exhibits outstanding electrochemical sensing performance, with a detection limit for PFOA of 4.9 ppb. Interference tests reveal the electrode's high selectivity for PFOA, with a tolerance limit of ≤ 5 %. Practical application on various fruits, vegetables, and water samples shows an average relative standard deviation (%RSD) between 4.8 % and 5.6 %, underscoring the practical effectiveness of the CNT@GdCoBi NCs electrode. Furthermore, the CNT@GdCoBi NCs exhibit remarkable supercapacitor performance, achieving a specific capacitance of 1197 F/g at 2 A/g, which is 1.5 times higher than that of GdCoBi NCs. At a current density of 2 A/g, the symmetric supercapacitor device demonstrates a specific capacitance of 269 F/g, along with a high energy density of 52 Wh/kg at a power density of 500 W/kg. Additionally, the CNT@GdCoBi NCs electrode maintains good durability, retaining 94 % of its capacitance after 10,000 cycles.
Collapse
Affiliation(s)
- Fouzia Mashkoor
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541 Republic of Korea
| | - Mohd Shoeb
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541 Republic of Korea
| | - Mohammed Naved Khan
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541 Republic of Korea
| | - Gyojin Choo
- School of Natural Resources and Environmental Science, Kangwon National University, Chuncheon 24341, South Korea
| | - Sang-Soo Baek
- Department of Environment Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541,Republic of Korea.
| | - Changyoon Jeong
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541 Republic of Korea.
| |
Collapse
|
3
|
Zhang C, Liu R, Liu R, Cui W, Sun Y, Yang WD. Ultrasonically assisted fabrication of electrochemical platform for tinidazole detection. ULTRASONICS SONOCHEMISTRY 2024; 110:107056. [PMID: 39232289 PMCID: PMC11403520 DOI: 10.1016/j.ultsonch.2024.107056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/25/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Based on sonochemistry, green synthesis methods play an important role in the development of nanomaterials. In this work, a novel chitosan modified MnMoO4/g-C3N4 (MnMoO4/g-C3N4/CHIT) was developed using ultrasonic cell disruptor (500 W, 30 kHz) for ultra-sensitive electrochemical detection of tinidazole (TNZ) in the environment. The morphology and surface properties of the synthesized MnMoO4/g-C3N4/CHIT electrode were characterized using X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM) and transmission electron microscope (TEM). Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques were utilized to assess the electrochemical performance of TNZ. The results indicate that the electrochemical detection performance of TNZ is highly efficient, with a detection limit (LOD) of 3.78 nM, sensitivity of 1.320 µA·µM-1·cm-2, and a detection range of 0.1-200 μM. Additionally, the prepared electrode exhibits excellent selectivity, desirable anti-interference capability, and decent stability. MnMoO4/g-C3N4/CHIT can be successfully employed to detect TNZ in both the Songhua River and tap water, achieving good recovery rates within the range of 93.0 % to 106.6 %. Consequently, MnMoO4/g-C3N4/CHIT's simple synthesis might provide a new electrode for the sensitive, repeatable, and selective measurement of TNZ in real-time applications. Using the MnMoO4/g-C3N4/CHIT electrode can effectively monitor and detect the concentration of TNZ in environmental water, guiding the sewage treatment process and reducing the pollution level of antibiotics in the water environment.
Collapse
Affiliation(s)
- Chaojun Zhang
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China
| | - Rui Liu
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China.
| | - Rijia Liu
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China
| | - Wenyu Cui
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Yuan Sun
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China.
| | - Wein-Duo Yang
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
| |
Collapse
|
4
|
Balasubramanian K, Karuppiah C, Alagarsamy S, Mohandoss S, Arunachalam P, Govindasamy C, Velmurugan M, Yang CC, Lee HJ, Ramaraj SK. Highly sensitive detection of environmental toxic fenitrothion in fruits and water using a porous graphene oxide nanosheets based disposable sensor. ENVIRONMENTAL RESEARCH 2024; 259:119500. [PMID: 38950814 DOI: 10.1016/j.envres.2024.119500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/03/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
Monitoring fenitrothion (FNT) residues in food and the environment is crucial due to its high environmental toxicity. In this study, we developed a sensitive, reliable electrochemical method for detecting FNT by using screen-printed carbon electrodes (SPCE) modified with porous graphene oxide (PGO) nanosheets. PGO surface properties have been meticulously characterized using advanced spectroscopic techniques. Electrochemical impedance spectroscopy and cyclic voltammetry were used to test the electrochemical properties of the PGO-modified sensor. The PGO-modified sensor exhibited remarkable sensitivity, achieving a detection limit as low as 0.061 μM and a broad linear range of 0.02-250 μM. Enhanced performance is due to PGO's high surface area and excellent electrocatalytic properties, which greatly improved electron transfer. Square wave voltammetry was used to demonstrate the sensor's efficacy as a real-time, on-site monitoring tool for FNT residues in fruit and water. The outstanding performance of the PGO/SPCE sensor underscores its applicability in ensuring food safety and environmental protection.
Collapse
Affiliation(s)
- Kavitha Balasubramanian
- PG and Research Department of Chemistry, Thiagarajar College affiliated to Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Chelladurai Karuppiah
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu-city, 41566, Republic of Korea.
| | - Saranvignesh Alagarsamy
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | - Sonaimuthu Mohandoss
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Prabhakarn Arunachalam
- Department of Chemistry, College of Science, King Saud University, P.O. Box. 2455, Riyadh, 11451, Saudi Arabia
| | - Chandramohan Govindasamy
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | - Murugan Velmurugan
- Department of Chemistry, K. Ramakrishnan College of Technology, Samayapuram, Tiruchirappalli, 621112, Tamil Nadu, India
| | - Chun-Chen Yang
- Battery Research center of Green Energy, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
| | - Hye Jin Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu-city, 41566, Republic of Korea.
| | - Sayee Kannan Ramaraj
- PG and Research Department of Chemistry, Thiagarajar College affiliated to Madurai Kamaraj University, Madurai, Tamil Nadu, India.
| |
Collapse
|
5
|
Zhang H, Wang J, Li K, Yang R, Cai S, Li Y, Zhan T. Highly conductive Ti 3C 2 MXene-supported CoAl-layered double hydroxide nanosheets for ultrasensitive electrochemical detection of organophosphate pesticide fenitrothion. Mikrochim Acta 2024; 191:475. [PMID: 39037453 DOI: 10.1007/s00604-024-06549-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024]
Abstract
A novel electrochemical method is presented for ultrasensitive detection of the organophosphate pesticide (OPP) fenitrothion by using Ti3C2 MXene/CoAl-LDH nanocomposite as the electrode modifier. The Ti3C2 MXene/CoAl-LDH nanocomposite is synthesized by growing CoAl-LDH in situ on MXene nanosheets. The combination of two ultrathin 2D materials provides more active sites, larger specific surface area, superior adsorption properties, and better electrical conductivity, which leads to rapid electron-transfer and mass-transfer between the substrate electrode and analytes when it is acted as the electrochemical sensing material. In addition, through the chelation of phosphate groups with the Ti defect sites enriched in MXene, OPP is adsorbed on the electrode. Consequently, the corresponding modified electrode gives rise to a wide linear response range of 0.03 ~ 120 μmol/L for the differential pulse voltammetry detection of fenitrothion with a low detection limit of 5.8 nmol/L (3σ). The method offers good repeatability, stability, selectivity, and practicability for real samples. This strategy provides a reference platform for the electrochemical monitoring of trace OPPs residue by using MXene/LDH-based nanocomposites.
Collapse
Affiliation(s)
- Hui Zhang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Jun Wang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Kaili Li
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Ruixue Yang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Shifeng Cai
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Yang Li
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Tianrong Zhan
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China.
| |
Collapse
|
6
|
Karthik R, Sukanya R, Chavan PR, Hasan M, Kamaraj E, Breslin CB, Lee J, Shim JJ. Temperature-Induced Conversion of 2D Vanadium-Doped MoSe 2 Nanosheets to 1D V 2MoO 8 Rods: Enhanced Performance in Electrochemical Antibiotic Detection in Biological and Environmental Samples. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29374-29389. [PMID: 38781311 DOI: 10.1021/acsami.4c02022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
In this work, new strategies were developed to prepare 1D-V2MoO8 (VMO) rods from 2D V-doped MoSe2 nanosheets (VMoSe2) with good control over morphology and crystallinity by a facile hydrothermal and calcination process. The morphological changes from 2D to 1D rods were controlled by changing the calcination temperature from 300 to 600 °C. The elimination of Se and the incorporation of O into the V-Mo structure were evaluated by TGA, p-XRD, Raman, FE-SEM, EDAX, FE-TEM, and XPS analyses. These results prove that the optimization of the physical parameters leads to changes in the crystal phase and textural properties of the prepared material. The VMoSe2 and its calcined products were investigated as electrochemical sensors for the detection of the antibacterial drug nitrofurantoin (NFT). At a calcination temperature of 500 °C, the modified screen-printed carbon electrodes (SPCE) proved to be an excellent electrochemical sensor for the detection of NFT in neutral media. Under the optimized conditions, VMO-500 °C/SPCE exhibits low detection limit (LOD) (0.015 μM), wide linear ranges (0.1-31, 47-1802 μM), good sensitivity, and selectivity. The proposed sensor was successfully used for the analysis of NFT in real samples with good recovery results. Moreover, the reduction potential of NFT agreed well with the theoretical analysis using quantum chemical calculations, with the B3LYP with 6-31G(d,p) basis set predicting an E0 value of -0.45 V. The interaction between the electrode surface and NFT via the LUMO diagram and the electrostatic potential surface is also discussed.
Collapse
Affiliation(s)
- Raj Karthik
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, The Republic of Korea
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600 077, India
| | - Ramaraj Sukanya
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Prajakta R Chavan
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, The Republic of Korea
| | - Mahmudul Hasan
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, The Republic of Korea
| | - Eswaran Kamaraj
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, The Republic of Korea
| | - Carmel B Breslin
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, The Republic of Korea
| | - Jae-Jin Shim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, The Republic of Korea
| |
Collapse
|
7
|
Berkal MA, Toulme JJ, Nardin C. Rapid and specific detection of thiabendazole: enzymatic digestion-enabled fluorescent aptasensor. Anal Bioanal Chem 2024; 416:3295-3303. [PMID: 38696128 DOI: 10.1007/s00216-024-05309-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 05/21/2024]
Abstract
Thiabendazole, a widely used broad-spectrum fungicide in agriculture, poses risks to human health. To monitor its presence in water, we propose a fluorescent aptasensor utilizing Escherichia coli exonuclease I (Exo I). The findings demonstrate a linear correlation between thiabendazole concentrations and digestion percentage, with a detection limit (LOD) exceeding 1 µM and a determination coefficient (R2) of 0.959. This aptamer-based fluorescence spectroscopy detection system holds promise for a rapid, specific, and sensitive analysis of thiabendazole in environmental waters and food matrices.
Collapse
Affiliation(s)
| | | | - Corinne Nardin
- Universite de Pau Et Des Pays de L'Adour, E2S UPPA, CNRS, IPREM, Pau, France.
| |
Collapse
|
8
|
Đurđić S, Vlahović F, Ognjanović M, Gemeiner P, Sarakhman O, Stanković V, Mutić J, Stanković D, Švorc Ľ. Nano-size cobalt-doped cerium oxide particles embedded into graphitic carbon nitride for enhanced electrochemical sensing of insecticide fenitrothion in environmental samples: An experimental study with the theoretical elucidation of redox events. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168483. [PMID: 37977380 DOI: 10.1016/j.scitotenv.2023.168483] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/18/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
In the present work, a nanocomposite, based on embedding Co-doped CeO2 nanoparticles into graphitic carbon nitride (g-C3N4), was applied to functionalize commercial glassy carbon paste. This is the first application of the electrochemical sensor, developed through the proposed procedure, in electrochemical sensing. The sensor was utilized for the electrochemical determination of organophosphate pesticide fenitrothion (FNT). Cyclic voltammetry identified reversible oxidation of FNT (oxidation at 0.18 V and reduction at 0.13 V) and additional reduction at -0.62 V vs. Ag/AgCl in HCl solution (pH = 1). Theoretical calculations were carried out to model and elucidate experimentally observed redox processes. Special attention was devoted to modeling experimental conditions, and based on the obtained results, a detailed redox mechanism of the investigated analyte was proposed. This represents the first complete and unambiguous elucidation of the FNT redox mechanism, supported by joined experimental and theoretical data. Square wave voltammetry (SWV) was utilized for quantification, whereby the FNT oxidation peak was chosen for monitoring the analyte concentration. The developed sensor provided a nanomolar detection limit (3.2 nmol L-1), a wide linear concentration range (from 0.01 to 13.7 μmol L-1), and good precision, repeatability, and selectivity towards FNT. Practical application possibility was explored by testing the sensor performance for examining tap water and apple samples. Recovery tests, conducted during the FNT-spiked sample assays, showed a great application capability of the developed sensor for real-time monitoring of FNT traces in environmental samples.
Collapse
Affiliation(s)
- Slađana Đurđić
- University of Belgrade - Faculty of Chemistry, Studenstki trg 12-16, 11000 Belgrade, Serbia; Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovak Republic.
| | - Filip Vlahović
- Scientific Institution, Institute of Chemistry, Technology and Metallurgy, National Institute University of Belgrade, 11000 Belgrade, Serbia
| | - Miloš Ognjanović
- "VINČA" Institute of Nuclear Sciences, University of Belgrade, National Institute of the Republic of Serbia, Belgrade, Serbia
| | - Pavol Gemeiner
- Department of Graphic Arts Technology and Applied Photochemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Olha Sarakhman
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovak Republic
| | - Vesna Stanković
- Scientific Institution, Institute of Chemistry, Technology and Metallurgy, National Institute University of Belgrade, 11000 Belgrade, Serbia
| | - Jelena Mutić
- University of Belgrade - Faculty of Chemistry, Studenstki trg 12-16, 11000 Belgrade, Serbia
| | - Dalibor Stanković
- University of Belgrade - Faculty of Chemistry, Studenstki trg 12-16, 11000 Belgrade, Serbia; "VINČA" Institute of Nuclear Sciences, University of Belgrade, National Institute of the Republic of Serbia, Belgrade, Serbia
| | - Ľubomír Švorc
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovak Republic
| |
Collapse
|
9
|
Kumar JV, Saravanan V, Lee D, Muthukutty B. Sense and Shoot: Unveiling the Electro-/Photocatalytic Potential of 2D White Graphene-Supported Perovskite Strontium Cobaltite from Detection to Remediation of Oxidative Stress Herbicide (Mesotrione). Anal Chem 2023; 95:17776-17789. [PMID: 37997913 DOI: 10.1021/acs.analchem.3c03812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
In this research, we employed a strategy akin to "Feeding Two Birds with One Stone" aiming for the dual objectives of highly selective electrochemical detection and photocatalytic degradation of the environmentally hazardous herbicide mesotrione (MTN). We achieved this by utilizing hexagonal boron nitride (BN)-supported strontium cobaltite perovskite nanocomposites (SrCoO3/BN). The fabrication of the innovative bifunctional SrCoO3/BN nanocomposites involved a straightforward process of precipitation, followed by an annealing treatment and ultrasonication. The successful formation of these nanocomposites was corroborated through the application of diverse spectroscopic tools. Notably, as-prepared SrCoO3/BN nanocomposites exhibited a remarkable sensing platform for MTN, characterized by a notably low detection limit (11 nm), considerable sensitivity (3.782 μA μM-1 cm-2), and outstanding selectivity, alongside remarkable stability. Concurrently, these SrCoO3/BN nanocomposites demonstrated exceptional visible-light-driven photocatalytic efficacy for MTN degradation (99%) and complete mineralization. Our investigation systematically delved into the influence of operational parameters, including catalyst loading and the involvement of reactive oxidative species, in both the electrocatalytic and photocatalytic reactions. Drawing from these comprehensive studies, we have proposed plausible mechanisms for detecting and degrading MTN. Our findings pave the way for catalyst development, offering a unified solution for detecting and eliminating toxic organic compounds from the environment.
Collapse
Affiliation(s)
- Jeyaraj Vinoth Kumar
- Nano Inspired Laboratory, School of Integrated Technology, Yonsei University, Incheon 21983, Republic of Korea
| | - Vadivel Saravanan
- Department of Chemistry, Kalasalingam Academy of Research and Education, Krishnankoil 626 126, Tamilnadu, India
| | - Daeho Lee
- Department of Mechanical Engineering, Gachon University, Seongnam 13120, South Korea
| | | |
Collapse
|
10
|
Berkal MA, Palas Q, Ricard E, Lartigau-Dagron C, Ronga L, Toulmé JJ, Parat C, Nardin C. Glyphosate-Exonuclease Interactions: Reduced Enzymatic Activity as a Route to Glyphosate Biosensing. Macromol Biosci 2023; 23:e2200508. [PMID: 36808212 DOI: 10.1002/mabi.202200508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/13/2023] [Indexed: 02/23/2023]
Abstract
N-phosphonomethyle-glycine (glyphosate) is the most widely used pesticide worldwide due to its effectiveness in killing weeds at a moderate cost, bringing significant economic benefits. However, owing to its massive use, glyphosate and its residues contaminate surface waters. On site, fast monitoring of contamination is therefore urgently needed to alert local authorities and raise population awareness. Here the hindrance of the activity of two enzymes, the exonuclease I (Exo I) and the T5 exonuclease (T5 Exo) by glyphosate, is reported. These two enzymes digest oligonucleotides into shorter sequences, down to single nucleotides. The presence of glyphosate in the reaction medium hampers the activity of both enzymes, slowing down enzymatic digestion. It is shown by fluorescence spectroscopy that the inhibition of ExoI enzymatic activity is specific to glyphosate, paving the way for the development of a biosensor to detect this pollutant in drinking water at suitable detection limits, i.e., 0.6 nm.
Collapse
Affiliation(s)
| | - Quentin Palas
- E2S UPPA, CNRS, IPREM, Université de Pau et des Pays de l'Adour, Pau, France
| | - Estelle Ricard
- E2S UPPA, CNRS, IPREM, Université de Pau et des Pays de l'Adour, Pau, France
| | | | - Luisa Ronga
- E2S UPPA, CNRS, IPREM, Université de Pau et des Pays de l'Adour, Pau, France
| | - Jean-Jacques Toulmé
- ARNA Laboratory, Inserm U1212, CNRS UMR5320, University of Bordeaux, Bordeaux, 33076, France
- Novaptech, 146 rue Léo Saignat, Bordeaux, 33076, France
| | - Corinne Parat
- E2S UPPA, CNRS, IPREM, Université de Pau et des Pays de l'Adour, Pau, France
| | - Corinne Nardin
- E2S UPPA, CNRS, IPREM, Université de Pau et des Pays de l'Adour, Pau, France
| |
Collapse
|
11
|
Jiang W, Li Z, Yang Q, Hou X. Integration of Metallic Nanomaterials and Recognition Elements for the Specifically Monitoring of Pesticides in Electrochemical Sensing. Crit Rev Anal Chem 2023; 54:2636-2657. [PMID: 36971430 DOI: 10.1080/10408347.2023.2189955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Although all countries have been controlling the excessive use of pesticides, incidents of pesticide residues still existed. Electrochemical biosensors are extensively applied detection techniques to monitor pesticides with the help of different types of biorecognition components mainly including, antibodies, aptamers, enzymes (i.e., acetylcholinesterase, organophosphorus hydrolase, etc.), and synthetic molecularly imprinted polymers. Besides, the electrode materials mainly affected the sensitivity of electrochemical biosensors. Metallic nanomaterials with various structures and excellent electrical conductivity were desirable choice to construct electrochemical platforms to achieve the detection with high sensitivity and good specificity toward the target. This work reviewed the developed metallic materials including monometallic nanoparticles, bimetallic nanomaterials, metal atoms, metal oxides, metal molybdates, metal-organic frameworks, MXene, etc. Integration of recognition elements endowed the electrode materials with higher specificity toward the target pesticide. Besides, future challenges of metallic nanomaterials-based electrochemical biosensors for the detection of pesticides are also discussed and described.
Collapse
Affiliation(s)
- Wenpeng Jiang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Zhaojie Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Xiudan Hou
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, China
| |
Collapse
|
12
|
Basu SS, Dhar D, Sengupta S, Basu JK. Controlled synthesis of Gd2MoO6 nanoflakes for enhanced charge kinetics in electrocatalytic oxygen evolution. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
13
|
In-situ fabrication of AgI/AgnMoxO3x+n/2/g-C3N4 ternary composite photocatalysts for benzotriazole degradation: Tuning the heterostructure, photocatalytic activity and photostability by the degree of molybdate polymerization. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Tailored architecture of molybdenum carbide/iron oxide micro flowers with graphitic carbon nitride: An electrochemical platform for nano-level detection of organophosphate pesticide in food samples. Food Chem 2022; 397:133791. [DOI: 10.1016/j.foodchem.2022.133791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/27/2022] [Accepted: 07/24/2022] [Indexed: 11/23/2022]
|
15
|
Optical and Electrochemical Techniques for Point-of-Care Water Quality Monitoring: A review. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
16
|
Keyan AK, Sakthinathan S, Vasu D, Yu CL, Vinothini S, Chiu TW. Gadolinium molybdate decorated graphitic carbon nitride composite: highly visualized detection of nitrofurazone in water samples. RSC Adv 2022; 12:34066-34079. [PMID: 36505718 PMCID: PMC9704353 DOI: 10.1039/d2ra05579a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/18/2022] [Indexed: 11/30/2022] Open
Abstract
In this work, a graphitic carbon nitride/gadolinium molybdate (g-C3N4/Gd2MoO6) composite manufactured glassy carbon electrode (GCE) was used to detect nitrofurazone (NFZ) at the trace level. A quick and inexpensive electrochemical sensor for NFZ analysis is described in this paper. The material structure and properties were determined by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, and transmission electron microscopy. The GCE/g-C3N4/Gd2MoO6 electrode was studied using cyclic voltammetry and amperometry. The electrocatalytic studies of the GCE/g-C3N4/Gd2MoO6 electrode showed significantly improved detection of NFZ. The electrocatalytic studies of the GCE/g-C3N4/Gd2MoO6 electrode was significantly improved for the detection of NFZ than bare GCE, GCE/g-C3N4, and GCE/Gd2MoO6 modified electrodes. The linear response and the detection limit of NFZ were 0.006 μM (S/N = 3) and 0.02-2000 μM, respectively. The electrode sensitivity was identified as 2.057 μA μM-1 cm-2 under ideal experimental conditions. The modified electrode was able to detect NFZ even when there were 500-fold as many interfering ions present. The practical applicability of the electrode was tested in a variety of water samples, with satisfactory results. Overall, the NFZ sensor demonstrated satisfactory repeatability, stability, and reproducibility. Meanwhile, it has proven to be a reliable, stable, and practical platform for the analysis of NFZ in various water samples, with acceptable recoveries.
Collapse
Affiliation(s)
- Arjunan Karthi Keyan
- Department of Materials and Mineral Resources Engineering, National Taipei University of TechnologyNo. 1, Section 3, Zhongxiao E. RdTaipei 106Taiwan,Institute of Materials Science and Engineering, National Taipei University of TechnologyNo. 1, Section 3, Zhongxiao E. RdTaipei 106Taiwan
| | - Subramanian Sakthinathan
- Department of Materials and Mineral Resources Engineering, National Taipei University of TechnologyNo. 1, Section 3, Zhongxiao E. RdTaipei 106Taiwan,Institute of Materials Science and Engineering, National Taipei University of TechnologyNo. 1, Section 3, Zhongxiao E. RdTaipei 106Taiwan
| | - Dhanabal Vasu
- Department of Materials and Mineral Resources Engineering, National Taipei University of TechnologyNo. 1, Section 3, Zhongxiao E. RdTaipei 106Taiwan,Institute of Materials Science and Engineering, National Taipei University of TechnologyNo. 1, Section 3, Zhongxiao E. RdTaipei 106Taiwan
| | - Chung-Lun Yu
- Department of Materials and Mineral Resources Engineering, National Taipei University of TechnologyNo. 1, Section 3, Zhongxiao E. RdTaipei 106Taiwan,Institute of Materials Science and Engineering, National Taipei University of TechnologyNo. 1, Section 3, Zhongxiao E. RdTaipei 106Taiwan
| | - Sivaramakrhishnan Vinothini
- Department of Materials and Mineral Resources Engineering, National Taipei University of TechnologyNo. 1, Section 3, Zhongxiao E. RdTaipei 106Taiwan,Institute of Materials Science and Engineering, National Taipei University of TechnologyNo. 1, Section 3, Zhongxiao E. RdTaipei 106Taiwan
| | - Te-Wei Chiu
- Department of Materials and Mineral Resources Engineering, National Taipei University of TechnologyNo. 1, Section 3, Zhongxiao E. RdTaipei 106Taiwan,Institute of Materials Science and Engineering, National Taipei University of TechnologyNo. 1, Section 3, Zhongxiao E. RdTaipei 106Taiwan
| |
Collapse
|
17
|
Luo L, Lin SQ, Wu ZY, Wang H, Chen ZJ, Deng H, Shen YD, Zhang WF, Lei HT, Xu ZL. Nanobody-based fluorescent immunoassay using carbon dots anchored cobalt oxyhydroxide composite for the sensitive detection of fenitrothion. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129701. [PMID: 36104918 DOI: 10.1016/j.jhazmat.2022.129701] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Fenitrothion (FN) residue in food is a serious threat to public health. Consequently, a sensitive, cost-effective, and convenient immunoassay for FN urgently needs to be fabricated to safeguard human health. Herein, a nanobody-alkaline phosphatase fusion protein (Nb-ALP)-based fluorescent ELISA using red emissive carbon dots (r-CDs) anchored cobalt oxyhydroxide nanosheet (CoOOH NS) composite was developed for detecting FN. Briefly, a Nb-ALP was obtained by autoinduction expression and employed as a recognition, signal transduction, and amplification element. As the fluorescence signal source, r-CDs were assembled with CoOOH NS to yield the r-CDs@CoOOH NS composite, leading to the fluorescence quenching of r-CDs via Förster resonance energy transfer (FRET). After competitive immunoreaction, the Nb-ALP bounded to the immobilized antigen can mediate the production of ascorbic acid, which can reduce the CoOOH NS to Co2+, breaking the FRET between r-CDs and CoOOH NS, accompanied by the fluorescence recovery of r-CDs. This fluorescent ELISA is highly sensitive to FN with a detection limit of 0.14 ng mL-1, which is 25-fold lower than that of conventional colorimetric ELISAs. The recovery test of food samples and the validation by GC-MS/MS further demonstrated the proposed assay was an ideal tool for detecting FN.
Collapse
Affiliation(s)
- Lin Luo
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Shi-Qi Lin
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhuo-Yu Wu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zi-Jian Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Hao Deng
- Key Laboratory of Tropical Fruit and Vegetable Cold-chain of Hainan Province / Institute of Agro-products Processing and Design, Hainan Academy of Agricultural Sciences, Haikou 570100, China
| | - Yu-Dong Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Wen-Feng Zhang
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center of Rapid Testing Instrument for Food Nutrition and Safety, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China
| | - Hong-Tao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Guangdong Laboratory of Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
18
|
Zheng W, Sun Y, Gu Y. Assembly of UiO-66 onto Co-doped Fe 3O 4 nanoparticles to activate peroxymonosulfate for efficient degradation of fenitrothion and simultaneous in-situ adsorption of released phosphate. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129058. [PMID: 35526342 DOI: 10.1016/j.jhazmat.2022.129058] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/15/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
Although sulfate radical-based advanced oxidation processes (SR-AOPs) have shown great potential for the efficient degradation of various organic contaminants, there is few research on the removal of organophosphorus pesticides (OPPs) through SR-AOPs. In this work, Co-doped Fe3O4 magnetic particles encapsulated by zirconium-based metal-organic frameworks (Co-Fe3O4@UiO-66) were prepared and employed to activate peroxymonosulfate (PMS) for the elimination of fenitrothion (FNT) and the simultaneous in-situ adsorption of produced phosphate. The catalyst exhibited efficient catalytic performance, achieving above 90.0% removal of FNT (10 mg/L) in the presence of PMS (1 mM) within 60 min. Moreover, the produced phosphate during the degradation process was also completely adsorbed onto the catalyst. Both sulfate and hydroxyl radicals were responsible for the degradation of FNT. The degradation products of FNT in the system were identified and the possible pathways were proposed. This study represents a promising and adoptable strategy to develop other versatile composite nanomaterials in a green manner hence broadening its environmental application range, as it can not only remove OPPs by catalytic oxidation but also immobilize degraded phosphorus by adsorption.
Collapse
Affiliation(s)
- Weisheng Zheng
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Yue Sun
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China.
| | - Yingpeng Gu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
19
|
A Review on Recent Trends in Advancement of Bio-Sensory Techniques Toward Pesticide Detection. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02382-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
20
|
Improved mechanically induced synthesis of nanocrystalline gadolinium oxymolybdate. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Ganesan M, Keerthika Devi R, Liao AH, Lee KY, Gopalakrishnan G, Chuang HC. 3D-flower-like porous neodymium molybdate nanostructure for trace level detection of organophosphorus pesticide in food samples. Food Chem 2022; 396:133722. [PMID: 35870247 DOI: 10.1016/j.foodchem.2022.133722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/04/2022]
Abstract
Herein we report (i) designing of porous 3D flower-like neodymium molybdate nanosheets (pf-NdM NSs) and (ii) attaining reasonable selectivity towards methyl parathion (MP, organophosphate pesticide) in the presence of structurally comparable interferents. Herein the pf-NdM NSs as a catalyst for electrochemical detection of MP in food samples is reported for the first time. Because of porous morphology, and high surface area, the proposed catalyst offers a high electrocatalytic activity toward MP reduction. As a result, a low detection limit (5.7 nM), wide linear range (0.5 - 300 μM), and good sensitivity (1.88 µA µM-1 cm-2), with decent selectivity were achieved. Further, the real sample analysis in tomato juice, and paddy grains, yielded good recovery results, demonstrating the practicability of the proposed sensor. Overall, our study presents a method for designing a novel-nanostructured material for trace-level detection of pesticides that is simple to fabricate, and also delivers a good performance.
Collapse
Affiliation(s)
- Muthusankar Ganesan
- Department of Mechanical Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan, ROC; Department of Industrial Chemistry, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Ramadhass Keerthika Devi
- Department of Chemical Engineering and Biotechnology, College of Engineering, National Taipei University of Technology, Taipei 106, Taiwan, ROC
| | - Ai-Ho Liao
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan; Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Yu Lee
- SV Probe Technology Taiwan, Co., Ltd., Zhubei, Taiwan
| | - Gopu Gopalakrishnan
- Department of Industrial Chemistry, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Ho-Chiao Chuang
- Department of Mechanical Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan, ROC.
| |
Collapse
|
22
|
Fang N, Lu Z, Hou Z, Zhang C, Zhao X. Hydrolysis and photolysis of flupyradifurone in aqueous solution and natural water: Degradation kinetics and pathway. CHEMOSPHERE 2022; 298:134294. [PMID: 35283145 DOI: 10.1016/j.chemosphere.2022.134294] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/11/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Flupyradifurone (FPO) easily spreads to the water environment after application because of its high solubility in water (3200 mg/L, 20 °C), but as a novel neonicotinoid pesticide, its environmental fate study is still lacking. Here, laboratory experiments were conducted to investigate the degradation kinetics and pathways of FPO in aqueous solutions and natural waters. The results showed that FPO was fairly stable in water under natural conditions (the hydrolysis half-lives at 15 °C, 25 °C, and 35 °C were >150 d, and the photolysis half-lives under sunlight were >168 h). However, FPO was photodegraded rapidly under ultraviolet (UV) light (half-lives of 2.37-3.81 min). Then, indirect photolysis under UV light was examined with the addition of photosensitizers, revealing that direct photolysis is the main FPO degradation pathway in water, and the contribution of indirect photolysis was limited. Moreover, two photoproducts were separated, purified and collected via preparative HPLC, and identified via high resolution mass spectrometry. Then, the plausible photolysis pathway was proposed. The results of this study will contribute to a better understanding of the fate of FPO in the water environment.
Collapse
Affiliation(s)
- Nan Fang
- Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China; College of Plant Protection, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Zhongbin Lu
- College of Plant Protection, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Zhiguang Hou
- College of Plant Protection, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Changpeng Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Xueping Zhao
- Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
23
|
Yogesh Kumar K, Prashanth MK, Parashuram L, Palanivel B, Alharti FA, Jeon BH, Raghu MS. Gadolinium sesquisulfide anchored N-doped reduced graphene oxide for sensitive detection and degradation of carbendazim. CHEMOSPHERE 2022; 296:134030. [PMID: 35189195 DOI: 10.1016/j.chemosphere.2022.134030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/29/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Agriculture is having a major role in solving issues associated with food shortages across the globe. Carbendazim (CZM) is one of the fungicides which is commonly used in agriculture to grow crops in large quantities and fast. Monitoring CZM content is in high demand for environmental remediation. The present work deals with the synthesis of gadolinium sesquisulfide anchored Nitrogen-doped reduced graphene oxide (Gd2S3/NRGO) through a simple microwave-assisted method. X-ray diffraction and morphological studies confirm the formation of the nanocomposite. Gd2S3/NRGO showed enhanced activity both in electrochemical detection and light-driven degradation of CZM compared to Gd2S3 and NRGO. Gd2S3/NRGO modified glassy carbon electrode (GCE) exhibit a wide linear range of 0.01-450 μM CZM with 0.009 μM LOD using differential pulse voltammetry (DPV). Gd2S3/NRGO@GCE showed good selectivity, stability, and recovery (98.13-99.10%) in the river water sample. In addition, Gd2S3/NRGO has been explored towards the visible-light-induced degradation of CZM. The reactions conditions were optimized to achieve maximum efficiency. 94% of CZM was degraded within 90 min in presence of Gd2S3/NRGO. Mechanism of electrochemical redox reaction and degradation of CZM in presence of Gd2S3/NRGO has been explored to the maximum extent possible. Degradation intermediates were identified using LC-MS.
Collapse
Affiliation(s)
- K Yogesh Kumar
- Department of Chemistry, Faculty of Engineering and Technology, Jain University, Bangalore, 562112, India
| | - M K Prashanth
- Department of Chemistry, BNM Institute of Technology, Banashankari, Bangalore, 560070, India
| | - L Parashuram
- Department of Chemistry, New Horizon College of Engineering, Outer Ring Road, Bangalore, 560103, India
| | - Baskaran Palanivel
- Department of Physics, King Engineering College, Sriperumbudur, Kancheepuram, 602117, India
| | - Fahad A Alharti
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| | - M S Raghu
- Department of Chemistry, New Horizon College of Engineering, Outer Ring Road, Bangalore, 560103, India.
| |
Collapse
|
24
|
Synthesis and Characterization of Gadolinium-Doped Zirconia as a Potential Electrolyte for Solid Oxide Fuel Cells. ENERGIES 2022. [DOI: 10.3390/en15082826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Zirconia-based composites with high thermochemical stability and electrochemical activity are the most promising solid electrolytes for manufacturing solid oxide fuel cells (SOFCs). In the present work, nanocrystalline composite powders of gadolinium-doped zirconia (GDZ: Gd2xZr2(1−x)O4−x) with various doping fractions (0.01 ≤ x ≤ 0.16) were synthesized by the Pechini method and applied for the fabrication of several electrolyte pellets to evaluate their physicochemical properties, sinterability, and conductivity. The X-ray diffraction (XRD) patterns and the thermogravimetry/differential thermal analysis (TGA/DTA) of the synthesized powders confirmed the successful formation of nanocrystalline GDZ in the tetragonal phase with complete substitution of gadolinium phase into the zirconia (ZrO2) lattice. The synthesized gadolinium zirconate powders were then shaped into pellet forms using the tape casting method, followed by sintering at 1300 °C (for 2.5 h). The microstructural analysis of the electrolyte pellets showed suitable grain boundary welding at the surface with an acceptable grain growth at the bulk of the T-phase GDZ samples. The impedance measurements indicated that the T-phase GDZ-8 could provide a comparably higher ionic conductivity (with 7.23 × 10−2 S/cm in the air at 800 °C) than the other dopant fractions. The results of this work can help better understand the characteristics and electrochemical performance of the T-phase gadolinium zirconate as a potential electrolyte for the fabrication of SOFCs.
Collapse
|
25
|
Protein-assisted biomimetic synthesis of nanoscale gadolinium-integrated polypyrrole for synergetic and ultrasensitive electrochemical assays of nicardipine in biological samples. Anal Chim Acta 2022; 1199:339567. [DOI: 10.1016/j.aca.2022.339567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/10/2022] [Accepted: 01/31/2022] [Indexed: 01/01/2023]
|
26
|
Bhunia SK, UshaVipinachandran V, Rajendran S. Degradation of emergent pollutants using visible light-triggered photocatalysts. NANOSTRUCTURED MATERIALS FOR VISIBLE LIGHT PHOTOCATALYSIS 2022:433-465. [DOI: 10.1016/b978-0-12-823018-3.00004-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
27
|
Santhoshkumar P, Hussain S, Vikraman D, Karuppasamy K, Hussain T, Ramesh S, Kim HS, Kim HS. Bifunctional iron molybdate as highly effective heterogeneous electro-Fenton catalyst and Li-ion battery anode. CHEMOSPHERE 2022; 286:131846. [PMID: 34388868 DOI: 10.1016/j.chemosphere.2021.131846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/01/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Three-dimensional materials have attracted considerable interest in energy and environmental remediation fields. Iron molybdate (FMO) materials have prepared via a facile hydrothermal technique with glycerol assistance, and their structural and chemical composition confirmed using various physico-chemical techniques. The prepared bi-functional material is a strong candidate for energy storage and electrocatalytic degradation of Methylene blue and Congo red. Experimental results confirmed the synthesized FMO-10 catalyst was extremely efficient for methylene blue and Congo red breakdown, achieving 91 % and 96 % degradation in 36 h, respectively. This high catalytic activity was attributed to FMO significant visible light absorption, and reactive OH formation from H2O2 synergistically triggered by both Fe3+ and MoO42-. Prepared FMO samples demonstrated excellent potential as negative electrode material for lithium ion batteries. Electrode specific capacity initially dropped then rebounded to 1265 mAh g-1 after 100 cycles at 100 mA g-1 change rate between 0.01 and 3.0 V.
Collapse
Affiliation(s)
- P Santhoshkumar
- Millimeter-Wave Innovation Technology (MINT) Research Centre, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Sajjad Hussain
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, 05006, Republic of Korea
| | - Dhanasekaran Vikraman
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - K Karuppasamy
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Tassawar Hussain
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, 05006, Republic of Korea
| | - Sivalingam Ramesh
- Department of Mechanical, Robotics and Energy Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Heung Soo Kim
- Department of Mechanical, Robotics and Energy Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea.
| |
Collapse
|
28
|
Raja A, Son N, Kang M. Reduced graphene oxide supported on Gd2MoO6-ZnO nanorod photocatalysts used for the effective reduction of hexavalent chromium. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119872] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Vilian ATE, Hwang SK, Lee MJ, Bagavathi M, Huh YS, Han YK. Facile synthesis of petal-like VS 2 anchored onto graphene nanosheets for the rapid sensing of toxic pesticide in polluted water. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:113021. [PMID: 34856486 DOI: 10.1016/j.ecoenv.2021.113021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Fenitrothion (FT) is a toxic phosphorothioate insecticide that can easily contaminate aquatic environments, leading to a detrimental effect on the aquatic species and harmful endocrine disrupter effects on human health. Therefore, it is vital to develop a reliable methodology for the accurate and precise real-time sensing of carcinogenic FT in water samples at trace concentration to ensure environmental safety. We aim to fabricate the low-cost VS2-attached reduced graphene oxide (RGO) sheets via a simple hydrothermal approach. It was further applied for the rapid and accurate sensing of toxic FT. The VS2/RGO-composite delivers a more favorable microenvironment for the rapid electrocatalytic sensing performance towards toxic FT reduction than the VS2 and RGO modified electrodes. The electron transfer rate constant (ks) and the saturating absorption capacity (Γ) value of FT was evaluated to be 1.52 s-1 and 2.18 × 10-10 mol cm-2, respectively. The constructed sensor exhibits a wide linear relationship after amperometry between the cathodic current densities and the concentrations of FT in the range of 5-90 nM and high sensitivity (5.569 μA nM-1 cm-2); moreover, the detection limit was 0.07 nM (S/N = 3). The fabricated sensor has excellent anti-interference ability and reproducibility for the direct sensing of FT in river water, seawater, and lake water samples with acceptable recoveries. It is a promising sensing device for in-situ quantification of FT in agricultural products and ecological systems.
Collapse
Affiliation(s)
- A T Ezhil Vilian
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 100-715, Republic of Korea
| | - Seung-Kyu Hwang
- Department of Biological Engineering, Inha University, Incheon 402-751, Republic of Korea
| | - Min Ji Lee
- Department of Biological Engineering, Inha University, Incheon 402-751, Republic of Korea
| | | | - Yun Suk Huh
- Department of Biological Engineering, Inha University, Incheon 402-751, Republic of Korea.
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 100-715, Republic of Korea.
| |
Collapse
|
30
|
Lingamdinne LP, Koduru JR, Chang YY, Naushad M, Yang JK. Polyvinyl Alcohol Polymer Functionalized Graphene Oxide Decorated with Gadolinium Oxide for Sequestration of Radionuclides from Aqueous Medium: Characterization, Mechanism, and Environmental Feasibility Studies. Polymers (Basel) 2021; 13:3835. [PMID: 34771391 PMCID: PMC8587516 DOI: 10.3390/polym13213835] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
Uranium (U(VI)) and thorium (Th(IV)) ions produced by the nuclear and mining industries cause water pollution, thereby harming the environment and human health. In this study, gadolinium oxide-decorated polyvinyl alcohol-graphene oxide composite (PGO-Gd) was developed using a simple hydrothermal process to treat U(VI) and Th(IV) ions in water. The developed material was structurally characterized by highly advanced spectroscopy and microscopy techniques. The effects of pH, equilibration time and temperature on both radionuclides (U(VI) and Th(IV)) adsorption by PGO-Gd were examined. The PGO-Gd composite adsorbed both metal ions satisfactorily, with adsorption capacities of 427.50 and 455.0 mg g-1 at pH 4.0, respectively. The adsorption properties of both metal ions were found to be compatible with the Langmuir and pseudo-second-order kinetic models. Additionally, based on the thermodynamic characteristics, the adsorption was endothermic and spontaneous. Furthermore, the environmental viability of PGO-Gd and its application was demonstrated by studying its reusability in treating spiked surface water. PGO-Gd shows promise as an adsorbent in effectively removing both radionuclides from aqueous solutions.
Collapse
Affiliation(s)
| | - Janardhan Reddy Koduru
- Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Korea; (L.P.L.); (Y.-Y.C.)
| | - Yoon-Young Chang
- Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Korea; (L.P.L.); (Y.-Y.C.)
| | - Mu. Naushad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Jae-Kyu Yang
- Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Korea; (L.P.L.); (Y.-Y.C.)
| |
Collapse
|
31
|
Haidyrah AS, Sundaresan P, Venkatesh K, Ramaraj SK, Thirumalraj B. Fabrication of functionalized carbon nanofibers/carbon black composite for electrochemical investigation of antibacterial drug nitrofurantoin. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127112] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
32
|
Zheng X, Khaoulani S, Ktari N, Lo M, Khalil AM, Zerrouki C, Fourati N, Chehimi MM. Towards Clean and Safe Water: A Review on the Emerging Role of Imprinted Polymer-Based Electrochemical Sensors. SENSORS (BASEL, SWITZERLAND) 2021; 21:4300. [PMID: 34201852 PMCID: PMC8271813 DOI: 10.3390/s21134300] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/09/2021] [Accepted: 06/17/2021] [Indexed: 12/20/2022]
Abstract
This review critically summarizes the knowledge of imprinted polymer-based electrochemical sensors for the detection of pesticides, metal ions and waterborne pathogenic bacteria, focusing on the last five years. MIP-based electrochemical sensors exhibit low limits of detection (LOD), high selectivity, high sensitivity and low cost. We put the emphasis on the design of imprinted polymers and their composites and coatings by radical polymerization, oxidative polymerization of conjugated monomers or sol-gel chemistry. Whilst most imprinted polymers are used in conjunction with differential pulse or square wave voltammetry for sensing organics and metal ions, electrochemical impedance spectroscopy (EIS) appears as the chief technique for detecting bacteria or their corresponding proteins. Interestingly, bacteria could also be probed via their quorum sensing signaling molecules or flagella proteins. If much has been developed in the past decade with glassy carbon or gold electrodes, it is clear that carbon paste electrodes of imprinted polymers are more and more investigated due to their versatility. Shortlisted case studies were critically reviewed and discussed; clearly, a plethora of tricky strategies of designing selective electrochemical sensors are offered to "Imprinters". We anticipate that this review will be of interest to experts and newcomers in the field who are paying time and effort combining electrochemical sensors with MIP technology.
Collapse
Affiliation(s)
- Xiaofeng Zheng
- Université de Paris, CNRS, ITODYS (UMR 7086), 75013 Paris, France;
| | - Sohayb Khaoulani
- SATIE, UMR CNRS 8029, Cnam, 75003 Paris, France; (S.K.); (C.Z.); (N.F.)
| | - Nadia Ktari
- Laboratoire Matériaux, Traitement et Analyse, INRAP, BiotechPole Sidi-Thabet, Ariana 2032, Tunisia;
| | - Momath Lo
- Département de Chimie, Laboratoire de Chimie Physique Organique & Analyse Instrumentale, Faculté des Sciences, Université Cheikh Anta Diop, Dakar 5005, Senegal;
| | - Ahmed M. Khalil
- Photochemistry Department, National Research Centre, Dokki, Giza 12622, Egypt;
- Université Paris Est, CNRS, ICMPE, UMR7182, 94320 Thiais, France
| | - Chouki Zerrouki
- SATIE, UMR CNRS 8029, Cnam, 75003 Paris, France; (S.K.); (C.Z.); (N.F.)
| | - Najla Fourati
- SATIE, UMR CNRS 8029, Cnam, 75003 Paris, France; (S.K.); (C.Z.); (N.F.)
| | - Mohamed M. Chehimi
- Université de Paris, CNRS, ITODYS (UMR 7086), 75013 Paris, France;
- Université Paris Est, CNRS, ICMPE, UMR7182, 94320 Thiais, France
| |
Collapse
|
33
|
Kokulnathan T, Wang TJ, Duraisamy N, Kumar EA. Hierarchical nanoarchitecture of zirconium phosphate/graphene oxide: Robust electrochemical platform for detection of fenitrothion. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125257. [PMID: 33548779 DOI: 10.1016/j.jhazmat.2021.125257] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/18/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
We report the rational design of nanocomposite with zirconium phosphate encapsulated on graphene oxide (ZrP/GO) for the highly sensitive and selective analysis of fenitrothion (FT). The characteristics of ZrP/GO nanocomposite are systematically analyzed by various in-depth electron microscopic, spectroscopic and analytical techniques. The ZrP/GO nanocomposite modified electrodes show better electrochemical response towards FT than other electrodes. The improved electrochemical activity of nanocomposite is attributed to large surface area, high conductivity, numerous active surface sites, GO nanosheets served as the conductivity matrix while preventing ZrP from agglomeration and the synergistic effect of ZrP and GO. Benefitting from the unique features, our fabricated sensor exhibits the superior performance in terms of wide working range (0.008-26 μM), appropriate peak potential (-0.61 V), low limit of detection (0.001 µM), high sensitivity (6 µA µM-1 cm-2) with the regression coefficient of 0.999. Additionally, the electrochemical sensor also displays good selectivity, excellent stability (99.6%), reproducibility (4.9%) and reusability (6.1%). The practical applicability of ZrP/GO sensor is shown by performing the detection of FT in water samples. These results clearly suggest that the ZrP/GO nanocomposite is an efficient electrode material for the future real-time environmental monitoring of FT.
Collapse
Affiliation(s)
- Thangavelu Kokulnathan
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan, ROC
| | - Tzyy-Jiann Wang
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan, ROC.
| | | | - Elumalai Ashok Kumar
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan, ROC
| |
Collapse
|
34
|
Venkatesh K, Rajakumaran R, Chen SM, Karuppiah C, Yang CC, Ramaraj SK, Ali MA, Al-Hemaid FMA, El-Shikh MS, Almunqedhi BMA. A novel hybrid construction of MnMoO 4 nanorods anchored graphene nanosheets; an efficient electrocatalyst for the picomolar detection of ecological pollutant ornidazole in water and urine samples. CHEMOSPHERE 2021; 273:129665. [PMID: 33508687 DOI: 10.1016/j.chemosphere.2021.129665] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Nitroimidazole compounds are widely used antibiotics to encounter anaerobic bacterial and parasitic infections. The wide usage of antibiotic drugs became an ecological contaminant which in turn into potential monitoring. In this regards, we have designed and developed a new electrochemical sensing probe to monitor an antiprotozoal drug, ornidazole (ODZ), with the aid of a glassy carbon electrode (GCE) integrated with manganese molybdate nanorods (MnMoO4) decorated graphene nanosheets (GNS) hybrid materials that prepared by feasible probe sonochemical method (parameters: 2-4 W, 5 mV amp, 20 kHz). The electrochemical investigations of the developed probe were performed by using rapid scan electrochemical workstations namely cyclic voltammetry (CV) and amperometric (i-t) techniques. The as-prepared MnMoO4/GNS nanocomposite was characterized and its purity of nanocomposite formation was confirmed by various analytical techniques like X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and Raman spectroscopy. In addition to that, the textural morphology of the MnMoO4/GNS nanocomposite was examined with the aid of field emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HR-TEM). The MnMoO4/GNS nanocomposite rotating disk glassy carbon electrode (RDGCE) plays a crucial role in electrochemical detection of ODZ, which results in excellent anti-interference ability, a lower detection limit of 845 pM, massive linear ranges from 10 to 770 nM, and good sensitivity of about 104.62 μA μM-1 cm-2. From the acquired electrochemical studies, we have developed a disposable electrochemical sensor probe using a low-cost screen-printed carbon electrode (SPCE) with MnMoO4/GNS nanocomposite. The MnMoO4/GNS/SPCE are capably employed in real-time sensing of ODZ in water and urine samples. These electrochemical studies revealed the integral new vision on the electrocatalytic performance of the modified SPCE and also shown excellent amplification results in ultra-trace levels.
Collapse
Affiliation(s)
- Krishnan Venkatesh
- PG and Research Department of Chemistry, Thiagarajar College, Madurai, Tamil Nadu, India
| | - Ramachandran Rajakumaran
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan, ROC
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan, ROC.
| | - Chelladurai Karuppiah
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan, ROC
| | - Chun-Chen Yang
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan, ROC
| | - Sayee Kannan Ramaraj
- PG and Research Department of Chemistry, Thiagarajar College, Madurai, Tamil Nadu, India.
| | - Mohammad Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Fahad M A Al-Hemaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammad Suliman El-Shikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - B M A Almunqedhi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
35
|
Nam D, Kim Y, Kim M, Nam J, Kim S, Jin E, Lee CY, Choe W. Role of Zr 6 Metal Nodes in Zr-Based Metal-Organic Frameworks for Catalytic Detoxification of Pesticides. Inorg Chem 2021; 60:10249-10256. [PMID: 34037384 DOI: 10.1021/acs.inorgchem.1c00653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pesticides are chemicals widely used for agricultural industry, despite their negative impact on health and environment. Although various methods have been developed for pesticide degradation to remedy such adverse effects, conventional materials often take hours to days for complete decomposition and are difficult to recycle. Here, we demonstrate the rapid degradation of organophosphate pesticides with a Zr-based metal-organic framework (MOF), showing complete degradation within 15 min. MOFs with different active site structures (Zr node connectivity and geometry) were compared, and a porphyrin-based MOF with six-connected Zr nodes showed remarkable degradation efficiency with half-lives of a few minutes. Such a high efficiency was further confirmed in a simple flow system for several cycles. This study reveals that MOFs can be highly potent heterogeneous catalysts for organophosphate pesticide degradation, suggesting that coordination geometry of the Zr node significantly influences the catalytic activity.
Collapse
Affiliation(s)
- Dongsik Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Yeongjin Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Miyeon Kim
- Department of Energy and Chemical Engineering/Innovation Center for Chemical Engineering, Incheon National University, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Joohan Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Seonghoon Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Eunji Jin
- Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Chang Yeon Lee
- Department of Energy and Chemical Engineering/Innovation Center for Chemical Engineering, Incheon National University, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Wonyoung Choe
- Department of Chemistry, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, Republic of Korea
| |
Collapse
|
36
|
Wang T, Liu Y. A lanthanide-based ratiometric fluorescent biosensor for the enzyme-free detection of organophosphorus pesticides. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2005-2010. [PMID: 33956006 DOI: 10.1039/d1ay00345c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Organophosphorus pesticides (OPs) residues have caused great concern as they cause great harm to public health. Herein, a ratiometric fluorescent sensing system was developed for the OPs detection with the merits of enzyme-free, simple operation, short-time and sensitivity. The change in the fluorescence signal in the sensing system was provided by guanine-rich DNA (G-DNA) and silver nanoparticles (AgNPs) with terbium ion (Tb3+) and dured. Tb3+ coordinated with the G-DNA to form a DNA-Tb complex to emit green fluorescence, which can be significantly enhanced by AgNPs based on the mechanism of metal enhanced fluorescence. Dured embedded into the G-DNA emits red fluorescence as the built-in fluorescence signal. After adding OPs into the DNA-Tb-dured-AgNPs sensing system, the fluorescence of Tb3+ quenched, while the fluorescence of dured remained unchanged. The OPs detection is implemented enzyme-free or label-free and has the advantage of high sensitivity and reliability. The limit of detection reaches as low as 0.034 μg L-1, and good recoveries are obtained for the OPs detection in tap water and apple. Moreover, the developed sensing system is simple in preparation and low cost, exhibiting an efficient platform to meet the requirement for in situ application in food safety and environmental monitoring.
Collapse
Affiliation(s)
- Tianlin Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100037, P. R. China and State Key Laboratory of Food Nutrition and Safety, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| | - Yaqing Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100037, P. R. China and State Key Laboratory of Food Nutrition and Safety, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China.
| |
Collapse
|
37
|
Raja IS, Vedhanayagam M, Preeth DR, Kim C, Lee JH, Han DW. Development of Two-Dimensional Nanomaterials Based Electrochemical Biosensors on Enhancing the Analysis of Food Toxicants. Int J Mol Sci 2021; 22:3277. [PMID: 33806998 PMCID: PMC8005143 DOI: 10.3390/ijms22063277] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/25/2022] Open
Abstract
In recent times, food safety has become a topic of debate as the foodborne diseases triggered by chemical and biological contaminants affect human health and the food industry's profits. Though conventional analytical instrumentation-based food sensors are available, the consumers did not appreciate them because of the drawbacks of complexity, greater number of analysis steps, expensive enzymes, and lack of portability. Hence, designing easy-to-use tests for the rapid analysis of food contaminants has become essential in the food industry. Under this context, electrochemical biosensors have received attention among researchers as they bear the advantages of operational simplicity, portability, stability, easy miniaturization, and low cost. Two-dimensional (2D) nanomaterials have a larger surface area to volume compared to other dimensional nanomaterials. Hence, researchers nowadays are inclined to develop 2D nanomaterials-based electrochemical biosensors to significantly improve the sensor's sensitivity, selectivity, and reproducibility while measuring the food toxicants. In the present review, we compile the contribution of 2D nanomaterials in electrochemical biosensors to test the food toxicants and discuss the future directions in the field. Further, we describe the types of food toxicity, methodologies quantifying food analytes, how the electrochemical food sensor works, and the general biomedical properties of 2D nanomaterials.
Collapse
Affiliation(s)
| | | | - Desingh Raj Preeth
- Chemical Biology and Nanobiotechnology Laboratory, AU-KBC Research Centre, Anna University, MIT Campus, Chromepet, Chennai 600 044, India;
| | - Chuntae Kim
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Korea; (I.S.R.); (C.K.)
| | - Jong Hun Lee
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Korea
| | - Dong Wook Han
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Korea; (I.S.R.); (C.K.)
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea
| |
Collapse
|
38
|
Baby JN, Lavanya C, Wang SF, Sriram B, Anantharaman A, George M. Sustainable synthesis of AFe2O4 (A = Mg, Zn, Mn) catalysts: comparing the photooxidative and electrochemical properties towards organic dyes detection and degradation. NEW J CHEM 2021. [DOI: 10.1039/d1nj01367j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
By serving as alternatives to toxic and hazardous solvents, green solvents assist in implementing the idea of sustainability.
Collapse
Affiliation(s)
- Jeena N. Baby
- Department of Chemistry
- Stella Maris College
- Affiliated to the University of Madras
- Chennai-600 086
- India
| | - Chandrasekar Lavanya
- Department of Chemistry
- Stella Maris College
- Affiliated to the University of Madras
- Chennai-600 086
- India
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering
- National Taipei University of Technology
- Taipei 106
- Taiwan
| | - Balasubramanian Sriram
- Department of Materials and Mineral Resources Engineering
- National Taipei University of Technology
- Taipei 106
- Taiwan
| | - Ashwini Anantharaman
- Department of Chemistry
- Stella Maris College
- Affiliated to the University of Madras
- Chennai-600 086
- India
| | - Mary George
- Department of Chemistry
- Stella Maris College
- Affiliated to the University of Madras
- Chennai-600 086
- India
| |
Collapse
|
39
|
Sukanya R, Chen SM. Amorphous cobalt boride nanosheets anchored surface-functionalized carbon nanofiber: An bifunctional and efficient catalyst for electrochemical sensing and oxygen evolution reaction. J Colloid Interface Sci 2020; 580:318-331. [PMID: 32688123 DOI: 10.1016/j.jcis.2020.07.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 10/23/2022]
Abstract
Development of new metal boride with carbon composite is an emerging class of catalyst and it brings enormous curiosity in the material community because of their potential intriguing properties. Here, we describe a new type of amorphous cobalt boride (A-CoB) nanosheet anchored on the surface of functionalized carbon nanofiber (A-CoB/ƒ-CNF) by a simple method. The emerged A-CoB/ƒ-CNF composite was demonstrated to possess great bifunctional electrocatalytic activity for the electrochemical sensing of antibiotic drug nitrofurantoin (NFT) and oxygen evolution reaction (OER). The prepared A-CoB/ƒ-CNF composite was characterized by various analytical and spectroscopic techniques such as XRD, FE-SEM, HR-TEM, Raman, and XPS analysis. The result from the electrochemical impedance spectroscopy confirms that the A-CoB/ƒ-CNF composite shows high electrical conductivity and the number of electron transferability for the NFT sensor and OER which is due to the presence of abundant active sites/large surface area in A-CoB, and synergistic effect between the A-CoB and ƒ-CNF. As an electrochemical sensor, the A-CoB/ƒ-CNF modified electrode shows substantial sensitivity (3.13 μA μM-1 cm-2), wider linear response range (0.01- 527 μM), and lower detection limit (0.003 μM) as-compared to the previously reported noble and non-noble metal-based electrocatalyst for NFT sensor. As well, the A-CoB/ƒ-CNF composite demonstrates superior OER activity with low overpotential and small Tafel slope value of 0.35 V and 173 mV/dec, respectively, which shows advanced kinetics than noble metal catalysts. Based on the results, we believed that the present work gives clear evidence for the preparation of transition metal boride anchored carbon material with an outstanding catalytic activity, and hence, it can be also extended to further electrochemical applications.
Collapse
Affiliation(s)
- Ramaraj Sukanya
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC.
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC.
| |
Collapse
|
40
|
Synthesis of two-dimensional nanosheet like samarium molybdate with abundant active sites: real-time carbendazimin analysis in environmental samples. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105227] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
41
|
Zhao F, Yao Y, Jiang C, Shao Y, Barceló D, Ying Y, Ping J. Self-reduction bimetallic nanoparticles on ultrathin MXene nanosheets as functional platform for pesticide sensing. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121358. [PMID: 31600694 DOI: 10.1016/j.jhazmat.2019.121358] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/29/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023]
Abstract
Two-dimensional (2D) transition metal carbides and nitrides, named MXene, appear promising application prospects in sensor filed. Metal nanoparticles, especially bimetallic nanoparticles, are the superior nanocatalyst, which process excellent features due to the high specific surface area and synergistic catalytic capacity. Using ultrathin MXene nanosheets as the natural reducing agent and support, we prepare the shape-controlled Au-Pd bimetallic nanoparticles via a self-reduction process at room temperature in a short time, which can well enhance the catalytic performance and are benefit for the acetylcholinesterase immobilization. Based on their desired properties, we propose a disposable electrochemical biosensor for the detection of organophosphorus pesticide using the multi-dimensional nanocomposites (MXene/Au-Pd) as the functional platform. Under the optimized conditions, our fabricated biosensor exhibits a favorable linear relationship with the concentration of paraoxon from 0.1 to 1000 μg L-1, with a low detection limit of 1.75 ng L-1. Furthermore, the biosensor can be applied for paraoxon detection in pear and cucumber samples, providing an effective and useful avenue for the applicability of novel 2D nanomaterials in biosensing field.
Collapse
Affiliation(s)
- Fengnian Zhao
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Yao Yao
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Chengmei Jiang
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Yuzhou Shao
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Damià Barceló
- ICRA-Catalan Institute for Water Research, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003 Girona, Spain
| | - Yibin Ying
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China; Zhejiang A&F University, Hangzhou 311300, PR China
| | - Jianfeng Ping
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China.
| |
Collapse
|
42
|
Synthesis and characterization of cadmium-bismuth microspheres for the catalytic and photocatalytic degradation of organic pollutants, with antibacterial, antioxidant and cytotoxicity assay. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 202:111723. [DOI: 10.1016/j.jphotobiol.2019.111723] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/30/2019] [Accepted: 11/22/2019] [Indexed: 11/15/2022]
|
43
|
Xie Y, Gao F, Tu X, Ma X, Dai R, Peng G, Yu Y, Lu L. Flake-like neodymium molybdate wrapped with multi-walled carbon nanotubes as an effective electrode material for sensitive electrochemical detection of carbendazim. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113468] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
44
|
Periyasamy S, Vinoth Kumar J, Chen SM, Annamalai Y, Karthik R, Erumaipatty Rajagounder N. Structural Insights on 2D Gadolinium Tungstate Nanoflake: A Promising Electrocatalyst for Sensor and Photocatalyst for the Degradation of Postharvest Fungicide (Carbendazim). ACS APPLIED MATERIALS & INTERFACES 2019; 11:37172-37183. [PMID: 31566953 DOI: 10.1021/acsami.9b07336] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Gadolinium tungstate (Gd2(WO4)3) has acquired much attention owing to its exclusive transport properties and excellent thermal and chemical stability. In this work, we demonstrate that two-dimensional (2D) gadolinium tungstate nanoflakes (GW Nfs) are synthesized by a coprecipitation method and represent novel architectures for efficient catalysis, which could be used in electrochemical sensing and photocatalytic degradation of the postharvest fungicide carbendazim (CBZ). The physicochemical properties of GW Nfs were studied by using XRD, Raman, TEM, EDX, and XPS, which show the formation of GW as a nanoflake-like structure with a well crystallized nature. The as-prepared GW Nfs revealed an admirable electrochemical response for CBZ detection with an LOD of 0.005 μM, a wide-ranging linear response of 0.02 to 40 μM, and a notable sensitivity of 0.39 μA μM-1 cm-2. Furthermore, the GW-Nf-modified electrode has a good recovery for CBZ in the study of real samples such as rice and soil washed water samples. Moreover, GW Nfs have a promising photocatalytic activity for CBZ degradation. The GW Nfs could degrade CBZ at greater than 98% efficiency and mineralize above 74% of the CBZ molecules in the presence of visible light irradiation with superior stability even after many cycles. Subsequently, the electrochemical and photocatalytic mechanisms were provided in detail.
Collapse
Affiliation(s)
- Sundaresan Periyasamy
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology , National Taipei University of Technology , No.1, Section 3, Chung-Hsiao East Road , Taipei 106 , Taiwan (R.O.C)
| | - Jeyaraj Vinoth Kumar
- Department of Chemistry, Nanomaterials Laboratory, International Research Center , Kalasalingam Academy of Research and Education , Krishnankoil 626 126 , Tamil Nadu , India
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology , National Taipei University of Technology , No.1, Section 3, Chung-Hsiao East Road , Taipei 106 , Taiwan (R.O.C)
| | - Yamuna Annamalai
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology , National Taipei University of Technology , No.1, Section 3, Chung-Hsiao East Road , Taipei 106 , Taiwan (R.O.C)
| | - Raj Karthik
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology , National Taipei University of Technology , No.1, Section 3, Chung-Hsiao East Road , Taipei 106 , Taiwan (R.O.C)
| | - Nagarajan Erumaipatty Rajagounder
- Department of Chemistry, Nanomaterials Laboratory, International Research Center , Kalasalingam Academy of Research and Education , Krishnankoil 626 126 , Tamil Nadu , India
| |
Collapse
|
45
|
Immobilization of Gd(III) complex on Fe3O4: A novel and recyclable catalyst for synthesis of tetrazole and S–S coupling. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.04.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
46
|
Voltammetric determination of fenitrothion based on pencil graphite electrode modified with poly(Purpald®). CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00731-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
47
|
Microwave-assisted synthesis of gadolinium(III) oxide decorated reduced graphene oxide nanocomposite for detection of hydrogen peroxide in biological and clinical samples. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.02.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|