1
|
Feng T, Xu W, Lin D, Xia J, Wu Q. Excellent Gas-Sensitive Capabilities of Co 3(HXTP) 2 for Detecting Combustion Process Gases: A Theoretical Study. ACS OMEGA 2025; 10:18380-18390. [PMID: 40385140 PMCID: PMC12079276 DOI: 10.1021/acsomega.4c10559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/21/2025] [Accepted: 04/11/2025] [Indexed: 05/20/2025]
Abstract
Combustion processes produce noxious gases, causing environmental pollution and health risks, which require high-performance sensing materials. Herein, metal-organic framework structures (MOFs) Co3(HXTP)2 (X = H, I, T) with superior conductivity and sensing properties are employed based on density functional theory (DFT) calculations. Adsorption energies of Co3(HXTP)2@gas are exceptionally outstanding in the realm of gas-sensitive material. Co3(HXTP)2 bases exhibit a responsive behavior toward the gas by comparing the work function and have a short recovery time (τ). Our results demonstrate that Co3(HHTP)2 (τ = 1.226 s) and Co3(HITP)2 (τ = 19.441 s) can serve as gas-sensitive materials for detecting O2 at 298 K, whereas Co3(HTTP)2 (τ = 694.226 s) can be used for CO at 498 K. Moreover, excellent gas-sensitive properties arise from chemical interactions, such as the electron "donation-backdonation" mechanism between gas and substrate (σ → 3d z 2 and 3d xz , 3d yz → π*), and the simultaneous refilling of the d-suborbitals (3d z 2 → 3d xz , 3d yz ) within Co atoms. The descriptor φ demonstrates excellent predictive capability for both the adsorption and response of gas-sensitive materials. Our findings provide valuable insights into the design of gas-sensitive materials in this class of TM3(HXTP)2 structures.
Collapse
Affiliation(s)
- Tengrui Feng
- College
of Science, Tibet University, Lhasa 850000, China
- Tibet
Key Laboratory of Plateau Oxygen and Living Environment, College of
Science, Tibet University, Lhasa 850000, China
| | - Wanlin Xu
- College
of Science, Tibet University, Lhasa 850000, China
- Tibet
Key Laboratory of Plateau Oxygen and Living Environment, College of
Science, Tibet University, Lhasa 850000, China
| | - Degui Lin
- College
of Science, Tibet University, Lhasa 850000, China
- Tibet
Key Laboratory of Plateau Oxygen and Living Environment, College of
Science, Tibet University, Lhasa 850000, China
| | - Jiezhen Xia
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College
of Chemistry and Chemical Engineering, Xiamen
University, Xiamen 361005, China
| | - Qi Wu
- College
of Science, Tibet University, Lhasa 850000, China
- Tibet
Key Laboratory of Plateau Oxygen and Living Environment, College of
Science, Tibet University, Lhasa 850000, China
| |
Collapse
|
2
|
Elashery SEA, Attia NF, El Badry Mohamed M. Exploitation of 2D Mn-MOF nanosheets for developing rapid, sensitive, and selective sensor for determination of Mn(II) ions in food and biological samples. Talanta 2025; 294:128217. [PMID: 40327983 DOI: 10.1016/j.talanta.2025.128217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/28/2025] [Accepted: 04/24/2025] [Indexed: 05/08/2025]
Abstract
Herein, for the first time, a sensitive potentiometric sensor exploiting ultrathin two-dimensional nanosheets of Mn metal-organic framework (2D Mn-MOF-NSs) was prepared to determine Mn(II) ion content with accuracy and precision. Furthermore, a comparative study between the 2D Mn-MOF-NSs-based sensor and the 3D Mn-MOF-based one has been established which proves the superiority of 2D Mn-MOF-NSs as a sensing material achieving a slope of 29.50 mV decade-1 within a wide linear range of 3.2 × 10-6 - 1.0 × 10-1 mol L-1. The 2D Mn-MOF-NSs-based sensor can be applied for measuring the Mn(II) ion content rapidly (3 s) without being affected by the sample pH within a range from 2.0 to 8.5. Additionally, the sensor demonstrates high selectivity towards Mn(II) ion compared to numerous other cations. To prove the broad and effective application of the proposed sensor in diverse sectors, it was applied successfully for the determination of Mn(II) ions content in different food samples in addition to biological sample. Notably, the results attained by the sensor align well with those of the inductively coupled plasma (ICP) technique. Therefore, this article presented the first Mn(II) ion selective sensor based on ultrathin nanosheets of 2D Mn-MOF as a unique sensing material which can be regarded as one of the few sensors currently available for monitoring Mn(II) levels in various food samples in addition to biological samples with a high reliability and sensitivity.
Collapse
Affiliation(s)
- Sally E A Elashery
- Chemistry Department, Faculty of Science, Cairo University, Gamaa Str., 12613, Giza, Egypt.
| | - Nour F Attia
- Gas Analysis and Fire Safety Laboratory, Chemistry Division, National Institute for Standards, 136, Giza, 12211, Egypt
| | - Marwa El Badry Mohamed
- Chemistry Department, Faculty of Science, Cairo University, Gamaa Str., 12613, Giza, Egypt.
| |
Collapse
|
3
|
Damacet P, Hannouche K, Gouda A, Hmadeh M. Controlled Growth of Highly Defected Zirconium-Metal-Organic Frameworks via a Reaction-Diffusion System for Water Remediation. ACS APPLIED MATERIALS & INTERFACES 2025; 17:17741-17750. [PMID: 38230659 PMCID: PMC11955948 DOI: 10.1021/acsami.3c16327] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024]
Abstract
The relentless growth of metal-organic framework (MOF) chemistry is paralleled by the persistent urge to control the MOFs physical and chemical properties. While this control is mostly achieved by solvothermal syntheses, room temperature procedures stand out as more convenient and sustainable pathways for the production of MOF materials. Herein, a novel approach to control the crystal size and defect numbers of a dihydroxy-functionalized zirconium-based metal-organic framework (UiO-66(OH)2) at room temperature is reported. Through a reaction-diffusion method in a 1D system, zirconium salt was diffused into an agar gel matrix containing the organic linker to form nanocrystals of UiO-66(OH)2 with tailored structural features that include crystal size distribution, surface area, and defect number. By variation of the synthesis parameters of the system, hierarchical MOF nanocrystals with an average size ranging from 30 nm up to 270 nm and surface areas between 201 and 500 m2 g-1 were obtained in a one-pot synthetic route. To stress the importance of crystal size, morphology, and structural defects on the adsorption properties of UiO-66(OH)2, the adsorption capacity of the MOF toward methylene blue dye was tested with the largest and most defected crystals achieving the best performance of 202 mg/g. The distinctive structural characteristics including the hierarchical micromesoporous frameworks, the nanosized particles, and the highly defective crystals obtained by our synthesis procedure are deemed challenging through the conventional synthesis methods. This work paves the way for engineering MOF crystals with tunable physical and chemical properties, using a green synthesis procedure, for their advantageous use in many desirable applications.
Collapse
Affiliation(s)
- Patrick Damacet
- Department
of Chemistry, Faculty of Arts and Sciences, American University of Beirut, Beirut 1107 2020, Lebanon
- Department
of Chemistry, Burke Laboratory, Dartmouth
College, Hanover, New Hampshire 03755, United States
| | - Karen Hannouche
- Department
of Chemistry, Faculty of Arts and Sciences, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Abdelaziz Gouda
- Department
of Chemistry, University of Toronto, 80 St. George Street, M5S 3H6 Toronto, Canada
| | - Mohamad Hmadeh
- Department
of Chemistry, Faculty of Arts and Sciences, American University of Beirut, Beirut 1107 2020, Lebanon
| |
Collapse
|
4
|
Ambrogi EK, Mirica KA. Electronic Chemical Sensors Based on Conductive Framework Materials. Anal Chem 2025; 97:4253-4274. [PMID: 39960215 DOI: 10.1021/acs.analchem.4c02522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The development of portable electronic chemical sensors is key to solving a number of challenges, including monitoring environmental and industrial hazards, as well as understanding and improving human health. Framework materials possess several desirable characteristics that make them well-suited for electroanalytical applications, including high surface area, atomically precise distribution of active sites, and tunable properties that can be leveraged through modular reticular chemistry. This review highlights the emergence of conductive framework materials as active components in electrically transduced chemical sensors, including the development of new materials for the detection of a wide variety of analytes in both gas and liquid phase. The efforts to gain fundamental understanding of the molecular interactions and sensing mechanisms between framework materials and analytes are described, along with applications of these materials on portable and flexible substrates. The review suggests areas for further study, including the study of material-analyte interactions at the molecular level and the continued development of scalable methods for the integration of framework materials into low-power, portable sensing devices.
Collapse
Affiliation(s)
- Emma K Ambrogi
- Department of Chemistry, Burke Laboratory, Dartmouth College, 41 College Street, Hanover, New Hampshire 03755, United States
| | - Katherine A Mirica
- Department of Chemistry, Burke Laboratory, Dartmouth College, 41 College Street, Hanover, New Hampshire 03755, United States
| |
Collapse
|
5
|
Qu L, Xu Y, Cui W, Wu L, Feng Y, Gu Y, Pan H. Trends in conductive MOFs for sensing: A review. Anal Chim Acta 2025; 1336:343307. [PMID: 39788646 DOI: 10.1016/j.aca.2024.343307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 01/12/2025]
Abstract
Metal-organic frameworks (MOFs) are porous, ordered arrays formed by coordination bonds between organic ligands and metal ions or clusters. The highly tunable properties of the MOF structure and performance make it possible to meet the needs of many applications. Conductive MOFs are essential in the domain of sensing due to their electrical conductivity, porosity, and catalytic properties, offering an effective platform for detection. Numerous sensing devices that utilize conductive MOFs have been created. This text presents a thorough overview of the diverse applications of conductive MOFs within the sensing field. The results of this work provide insights into the properties and synthesis methods of conductive MOFs and the working mechanisms of sensors based on conductive MOFs, which will help to deepen the study of such materials, provide a new vision for the design and production of novel functional materials, and promote the development and application of sensors based on conductive MOFs.
Collapse
Affiliation(s)
- Lingli Qu
- Shanghai Urban Construction Vocational College, Shanghai, 201999, China; Institute of Urban Food Safety, Shanghai Urban Construction Vocational College, Shanghai, 201999, China.
| | - Yiwen Xu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China; Southeast University-Monash University Joint Graduate School, Suzhou, 215123, China
| | - Weikang Cui
- Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Lingjuan Wu
- Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Yi Feng
- Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Yangyang Gu
- Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Hongzhi Pan
- Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China.
| |
Collapse
|
6
|
Fathy MA, Bühlmann P. Next-Generation Potentiometric Sensors: A Review of Flexible and Wearable Technologies. BIOSENSORS 2025; 15:51. [PMID: 39852102 PMCID: PMC11764208 DOI: 10.3390/bios15010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/26/2025]
Abstract
In recent years, the field of wearable sensors has undergone significant evolution, emerging as a pivotal topic of research due to the capacity of such sensors to gather physiological data during various human activities. Transitioning from basic fitness trackers, these sensors are continuously being improved, with the ultimate objective to make compact, sophisticated, highly integrated, and adaptable multi-functional devices that seamlessly connect to clothing or the body, and continuously monitor bodily signals without impeding the wearer's comfort or well-being. Potentiometric sensors, leveraging a range of different solid contact materials, have emerged as a preferred choice for wearable chemical or biological sensors. Nanomaterials play a pivotal role, offering unique properties, such as high conductivity and surface-to-volume ratios. This article provides a review of recent advancements in wearable potentiometric sensors utilizing various solid contacts, with a particular emphasis on nanomaterials. These sensors are employed for precise ion concentration determinations, notably sodium, potassium, calcium, magnesium, ammonium, and chloride, in human biological fluids. This review highlights two primary applications, that is, (1) the enhancement of athletic performance by continuous monitoring of ion levels in sweat to gauge the athlete's health status, and (2) the facilitation of clinical diagnosis and preventive healthcare by monitoring the health status of patients, in particular to detect early signs of dehydration, fatigue, and muscle spasms.
Collapse
Affiliation(s)
- Mahmoud Abdelwahab Fathy
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455, USA
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbasia, Cairo 11566, Egypt
| | - Philippe Bühlmann
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455, USA
| |
Collapse
|
7
|
Ambrogi EK, Damacet P, Stolz RM, Mirica KA. Mechanistic Insight into the Formation and Deposition of Conductive, Layered Metal-Organic Framework Nanocrystals. ACS NANO 2025; 19:1383-1395. [PMID: 39719031 DOI: 10.1021/acsnano.4c14018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
This paper describes the use of the layered conductive metal-organic framework (MOF) (nickel)3-(hexahydroxytriphenylene)2 [Ni3(HHTP)2] as a model system for understanding the process of self-assembly within this class of materials. We confirm and quantify experimentally the role of the oxidant in the synthetic process. Monitoring the deposition of Ni3(HHTP)2 with in situ infrared spectroscopy revealed that MOF formation is characterized by an initial induction period, followed by linear growth with respect to time. The presence and identity of oxidizing agents is critical for the coordination-driven self-assembly of these materials and impacts both the length of the induction period and the observed rate of MOF growth. A large excess of hydrogen peroxide results in a 2× increase in the observed deposition rate (9.6 ± 6.8 × 10-4 vs 5.0 ± 2.8 × 10-4 min-1) over standard reaction conditions, but leads to the formation of large, irregularly shaped particles. Slower deposition rates in the presence of oxygen favor the formation of uniformly sized nanorods (98 ± 38 × 25 ± 6 nm). These quantitative insights into the mechanism of HHTP-based MOF formation provide valuable information about the fundamental aspects of coordination and polymerization that are critical for nanoscale crystal engineering of structure-property relationships in this class of materials.
Collapse
Affiliation(s)
- Emma K Ambrogi
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Patrick Damacet
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Robert M Stolz
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Katherine A Mirica
- Department of Chemistry, Burke Laboratory, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
8
|
Hua Y, Mai J, Su R, Ma C, Liu J, Zhao C, Zhang Q, Liao C, Wang Y. A Highly Stable Electrochemical Sensor Based on a Metal-Organic Framework/Reduced Graphene Oxide Composite for Monitoring the Ammonium in Sweat. BIOSENSORS 2024; 14:617. [PMID: 39727882 DOI: 10.3390/bios14120617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
The demand for non-invasive, real-time health monitoring has driven advancements in wearable sensors for tracking biomarkers in sweat. Ammonium ions (NH4+) in sweat serve as indicators of metabolic function, muscle fatigue, and kidney health. Although current ion-selective all-solid-state printed sensors based on nanocomposites typically exhibit good sensitivity (~50 mV/log [NH4+]), low detection limits (LOD ranging from 10-6 to 10-7 M), and wide linearity ranges (from 10-5 to 10-1 M), few have reported the stability test results necessary for their integration into commercial products for future practical applications. This study presents a highly stable, wearable electrochemical sensor based on a composite of metal-organic frameworks (MOFs) and reduced graphene oxide (rGO) for monitoring NH4+ in sweat. The synergistic properties of Ni-based MOFs and rGO enhance the sensor's electrochemical performance by improving charge transfer rates and expanding the electroactive surface area. The MOF/rGO sensor demonstrates high sensitivity, with a Nernstian response of 59.2 ± 1.5 mV/log [NH4+], an LOD of 10-6.37 M, and a linearity range of 10-6 to 10-1 M. Additionally, the hydrophobic nature of the MOF/rGO composite prevents water layer formation at the sensing interface, thereby enhancing long-term stability, while its high double-layer capacitance minimizes potential drift (7.2 µV/s (i = ±1 nA)) in short-term measurements. Extensive testing verified the sensor's exceptional stability, maintaining consistent performance and stable responses across varying NH4+ concentrations over 7 days under ambient conditions. On-body tests further confirmed the sensor's suitability for the continuous monitoring of NH4+ levels during physical activities. Further investigations are required to fully elucidate the impact of interference from other sweat components (such as K+, Na+, Ca2+, etc.) and the influence of environmental factors (including the subject's physical activity, posture, etc.). With a clearer understanding of these factors, the sensor has the potential to emerge as a promising tool for wearable health monitoring applications.
Collapse
Affiliation(s)
- Yunzhi Hua
- School of Information and Communication, Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Junhao Mai
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518107, China
| | - Rourou Su
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518107, China
| | - Chengwei Ma
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518107, China
| | - Jiayi Liu
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518107, China
| | - Cong Zhao
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518107, China
| | - Qian Zhang
- Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Changrui Liao
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fiber Sensors, Shenzhen University, Shenzhen 518060, China
| | - Yiping Wang
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518107, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fiber Sensors, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
9
|
Mirabootalebi SO, Liu Y. Recent advances in nanomaterial-based solid-contact ion-selective electrodes. Analyst 2024; 149:3694-3710. [PMID: 38885067 DOI: 10.1039/d4an00334a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Solid-contact ion-selective electrodes (SC-ISEs) are advanced potentiometric sensors with great capability to detect a wide range of ions for the monitoring of industrial processes and environmental pollutants, as well as the determination of electrolytes for clinical analysis. Over the past decades, the innovative design of ion-selective electrodes (ISEs), specifically SC-ISEs, to improve potential stability and miniaturization for in situ/real-time analysis, has attracted considerable interest. Recently, the utilisation of nanomaterials was particularly prominent in SC-ISEs due to their excellent physical and chemical properties. In this article, we review the recent applications of various types of nanostructured materials that are composed of carbon, metals and polymers for the development of SC-ISEs. The challenges and opportunities in this field, along with the prospects for future applications of nanomaterials in SC-ISEs are also discussed.
Collapse
Affiliation(s)
| | - Yang Liu
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia.
| |
Collapse
|
10
|
Gao L, Tian Y, Gao W, Xu G. Recent Developments and Challenges in Solid-Contact Ion-Selective Electrodes. SENSORS (BASEL, SWITZERLAND) 2024; 24:4289. [PMID: 39001071 PMCID: PMC11244314 DOI: 10.3390/s24134289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/15/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024]
Abstract
Solid-contact ion-selective electrodes (SC-ISEs) have the advantages of easy miniaturization, even chip integration, easy carrying, strong stability, and more favorable detection in complex environments. They have been widely used in conjunction with portable, wearable, and intelligent detection devices, as well as in on-site analysis and timely monitoring in the fields of environment, industry, and medicine. This article provides a comprehensive review of the composition of sensors based on redox capacitive and double-layer capacitive SC-ISEs, as well as the ion-electron transduction mechanisms in the solid-contact (SC) layer, particularly focusing on strategies proposed in the past three years (since 2021) for optimizing the performance of SC-ISEs. These strategies include the construction of ion-selective membranes, SC layer, and conductive substrates. Finally, the future research direction and possibilities in this field are discussed and prospected.
Collapse
Affiliation(s)
- Lili Gao
- School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China;
| | - Ye Tian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Wenyue Gao
- Shandong Provincial Center for In-Situ Marine Sensors, Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China;
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
11
|
Saha R, Gupta K, Gómez García CJ. Strategies to Improve Electrical Conductivity in Metal-Organic Frameworks: A Comparative Study. CRYSTAL GROWTH & DESIGN 2024; 24:2235-2265. [PMID: 38463618 PMCID: PMC10921413 DOI: 10.1021/acs.cgd.3c01162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 03/12/2024]
Abstract
Metal-organic frameworks (MOFs), formed by the combination of both inorganic and organic components, have attracted special attention for their tunable porous structures, chemical and functional diversities, and enormous applications in gas storage, catalysis, sensing, etc. Recently, electronic applications of MOFs like electrocatalysis, supercapacitors, batteries, electrochemical sensing, etc., have become a major research topic in MOF chemistry. However, the low electrical conductivity of most MOFs represents a major handicap in the development of these emerging applications. To overcome these limitations, different strategies have been developed to enhance electrical conductivity of MOFs for their implementation in electronic devices. In this review, we outline all these strategies employed to increase the electronic conduction in both intrinsically (framework-modulated) and extrinsically (guests-modulated) conducting MOFs.
Collapse
Affiliation(s)
- Rajat Saha
- Departamento
de Química Inorgánica, Universidad
de Valencia, C/Dr. Moliner
50, 46100 Burjasot, Valencia, Spain
| | - Kajal Gupta
- Department
of Chemistry, Nistarini College, Purulia, 723101, WB India
| | - Carlos J. Gómez García
- Departamento
de Química Inorgánica, Universidad
de Valencia, C/Dr. Moliner
50, 46100 Burjasot, Valencia, Spain
| |
Collapse
|
12
|
Rousseau CR, Chipangura YE, Stein A, Bühlmann P. Effect of Ion Identity on Capacitance and Ion-to-Electron Transduction in Ion-Selective Electrodes with Nanographite and Carbon Nanotube Solid Contacts. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1785-1792. [PMID: 38198594 DOI: 10.1021/acs.langmuir.3c03027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The use of large surface area carbon materials as transducers in solid-contact ion-selective electrodes (ISEs) has become widespread. Desirable qualities of ISEs, such as a small long-term drift, have been associated with a high capacitance that arises from the formation of an electrical double layer at the interface of the large surface area carbon material and the ion-selective membrane. The capacitive properties of these ISEs have been observed using a variety of techniques, but the effects of the ions present in the ion-selective membrane on the measured value of the capacitance have not been studied in detail. Here, it is shown that changes in the size and concentration of the ions in the ion-selective membrane as well as the polarity of the polymeric matrix result in capacitances that can vary by up to several hundred percent. These data illustrate that the interpretation of comparatively small differences in capacitance for different types of solid contacts is not meaningful unless the composition of the ion-selective membrane is taken into account.
Collapse
Affiliation(s)
- Celeste R Rousseau
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Yevedzo E Chipangura
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Andreas Stein
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Philippe Bühlmann
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
13
|
Shoaib Ahmad Shah S, Altaf Nazir M, Mahmood A, Sohail M, Ur Rehman A, Khurram Tufail M, Najam T, Sufyan Javed M, Eldin SM, Rezaur Rahman M, Rahman MM. Synthesis of Electrical Conductive Metal-Organic Frameworks for Electrochemical Applications. CHEM REC 2024; 24:e202300141. [PMID: 37724006 DOI: 10.1002/tcr.202300141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/29/2023] [Indexed: 09/20/2023]
Abstract
Electrical conductivity is very important property of nanomaterials for using wide range of applications especially energy applications. Metal-organic frameworks (MOFs) are notorious for their low electrical conductivity and less considered for usage in pristine forms. However, the advantages of high surface area, porosity and confined catalytic active sites motivated researchers to improve the conductivity of MOFs. Therefore, 2D electrical conductive MOFs (ECMOF) have been widely synthesized by developing the effective synthetic strategies. In this article, we have summarized the recent trends in developing the 2D ECMOFs, following the summary of potential applications in the various fields with future perspectives.
Collapse
Affiliation(s)
- Syed Shoaib Ahmad Shah
- Department of Chemistry, School of natural sciences, National University of sciences and technology, 44000, Islamabad, Pakistan
| | - Muhammad Altaf Nazir
- Institute of Chemistry, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Azhar Mahmood
- Department of Chemistry, School of natural sciences, National University of sciences and technology, 44000, Islamabad, Pakistan
| | - Manzar Sohail
- Department of Chemistry, School of natural sciences, National University of sciences and technology, 44000, Islamabad, Pakistan
| | - Aziz Ur Rehman
- Institute of Chemistry, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | | | - Tayyaba Najam
- Institute of Chemistry, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan
| | - Muhammad Sufyan Javed
- School of Physical Sciences and Technology, Lanzhou University, 730000, Lanzhou, China
| | - Sayed M Eldin
- Faculty of Engineering and Technology, Future University in Egypt, New Cairo, 11835, Egypt
| | - Md Rezaur Rahman
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) &, Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
14
|
De S, Mouchaham G, Liu F, Affram M, Abeykoon B, Guillou N, Jeanneau E, Grenèche JM, Khrouz L, Martineau-Corcos C, Boudjema L, Salles F, Salcedo-Abraira P, Valente G, Souto M, Fateeva A, Devic T. Expanding the horizons of porphyrin metal-organic frameworks via catecholate coordination: exploring structural diversity, material stability and redox properties. JOURNAL OF MATERIALS CHEMISTRY. A 2023; 11:25465-25483. [PMID: 38037625 PMCID: PMC10683559 DOI: 10.1039/d3ta04490d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023]
Abstract
Porphyrin based Metal-Organic Frameworks (MOFs) have generated high interest because of their unique combination of light absorption, electron transfer and guest adsorption/desorption properties. In this study, we expand the range of available MOF materials by focusing on the seldom studied porphyrin ligand H10TcatPP, functionalized with tetracatecholate coordinating groups. A systematic evaluation of its reactivity with M(iii) cations (Al, Fe, and In) led to the synthesis and isolation of three novel MOF phases. Through a comprehensive characterization approach involving single crystal and powder synchrotron X-ray diffraction (XRD) in combination with the local information gained from spectroscopic techniques, we elucidated the structural features of the solids, which are all based on different inorganic secondary building units (SBUs). All the synthesized MOFs demonstrate an accessible porosity, with one of them presenting mesopores and the highest reported surface area to date for a porphyrin catecholate MOF (>2000 m2 g-1). Eventually, the redox activity of these solids was investigated in a half-cell vs. Li with the aim of evaluating their potential as electrode positive materials for electrochemical energy storage. One of the solids displayed reversibility during cycling at a rather high potential (∼3.4 V vs. Li+/Li), confirming the interest of redox active phenolate ligands for applications involving electron transfer. Our findings expand the library of porphyrin-based MOFs and highlight the potential of phenolate ligands for advancing the field of MOFs for energy storage materials.
Collapse
Affiliation(s)
- Siddhartha De
- Laboratoire des Multimatériaux et Interfaces, Université Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5615 F-69622 Villeurbanne France
| | - Georges Mouchaham
- Institut Lavoisier de Versailles, UMR 8180 CNRS UVSQ, Université Paris-Saclay 45 Avenue des Etats-Unis 78035 Versailles France
| | - Fangbing Liu
- Laboratoire des Multimatériaux et Interfaces, Université Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5615 F-69622 Villeurbanne France
| | - Maame Affram
- Institut Lavoisier de Versailles, UMR 8180 CNRS UVSQ, Université Paris-Saclay 45 Avenue des Etats-Unis 78035 Versailles France
| | - Brian Abeykoon
- Laboratoire des Multimatériaux et Interfaces, Université Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5615 F-69622 Villeurbanne France
| | - Nathalie Guillou
- Institut Lavoisier de Versailles, UMR 8180 CNRS UVSQ, Université Paris-Saclay 45 Avenue des Etats-Unis 78035 Versailles France
| | - Erwann Jeanneau
- Laboratoire des Multimatériaux et Interfaces, Université Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5615 F-69622 Villeurbanne France
| | - Jean-Marc Grenèche
- Institut des Molécules et Matériaux du Mans, IMMM UMR CNRS 6283, Le Mans Université Le Mans Cedex 9 F-72085 France
| | - Lhoussain Khrouz
- ENS de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182 F-69342 Lyon France
| | - Charlotte Martineau-Corcos
- Institut Lavoisier de Versailles, UMR 8180 CNRS UVSQ, Université Paris-Saclay 45 Avenue des Etats-Unis 78035 Versailles France
| | | | | | - Pablo Salcedo-Abraira
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN F-44000 Nantes France
| | - Gonçalo Valente
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro Aveiro 3810-393 Portugal
| | - Manuel Souto
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro Aveiro 3810-393 Portugal
| | - Alexandra Fateeva
- Laboratoire des Multimatériaux et Interfaces, Université Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5615 F-69622 Villeurbanne France
| | - Thomas Devic
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN F-44000 Nantes France
| |
Collapse
|
15
|
Kammoun AK, Abdelrahman MH, Khayyat AN, Elbaramawi SS, Ibrahim TS, Abdallah NA. Exploitation of multi-walled carbon nanotubes/Cu(ii)-metal organic framework based glassy carbon electrode for the determination of orphenadrine citrate. RSC Adv 2023; 13:31017-31026. [PMID: 37876650 PMCID: PMC10591296 DOI: 10.1039/d3ra06710f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 10/18/2023] [Indexed: 10/26/2023] Open
Abstract
Metal organic frameworks (MOFs), with structural tunability, high metal content and large surface area have recently attracted the attention of researchers in the field of electrochemistry. In this work, an unprecedented use of multi-walled carbon nanotubes (MWCNTs)/copper-based metal-organic framework (Cu-BTC MOF) composite as an ion-to-electron transducer in a potentiometric sensor is proposed for the determination of orphenadrine citrate. A comparative study was conducted between three proposed glassy carbon electrodes, Cu-MOF, (MWCNTs) and MWCNTs/Cu-MOF composite based sensors, where Cu-MOF, MWCNTs and their composite were utilized as the ion-to-electron transducers. The sensors were developed for accurate and precise determination of orphenadrine citrate in pharmaceutical dosage form, spiked real human plasma and artificial cerebrospinal fluid (ACSF). The sensors employed β-cyclodextrin as a recognition element with the aid of potassium tetrakis(4-chlorophenyl)borate (KTpCIPB) as a lipophilic ion exchanger. The sensors that were assessed based on the guidelines recommended by IUPAC and demonstrated a linear response within the concentration range of 10-7 M to 10-3 M, 10-6 M to 10-2 M and 10-8 M to 10-2 M for Cu-MOF, MWCNTs and MWCNTs/Cu-MOF composite based sensors, respectively. MWCNTs/Cu-MOF composite based sensor showed superior performance over other sensors regarding lower limit of detection (LOD), wider linearity range and faster response. The sensors demonstrated their potential as effective options for the analysis of orphenadrine citrate in quality control laboratories and in different healthcare activities.
Collapse
Affiliation(s)
- Ahmed K Kammoun
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Mona H Abdelrahman
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Ain Shams University Cairo 11566 Egypt
| | - Ahdab N Khayyat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Samar S Elbaramawi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University Zagazig 44519 Egypt
| | - Tarek S Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Nehad A Abdallah
- Pharmacognosy and Pharmaceutical Chemistry Department, Faculty of Pharmacy, Taibah University Al-Madinah Al-Munawarah 41477 Kingdom of Saudi Arabia
- Experimental and Advanced Pharmaceutical Research Unit (EAPRU), Faculty of Pharmacy, Ain Shams University Cairo 11566 Egypt
| |
Collapse
|
16
|
Guo J, Wu L, Ye YX, Zhu F, Xu J, Ouyang G. Two-Dimensional Conductive Metal-Organic Framework for Small-Molecule Sensing in Aqueous Solution. Anal Chem 2023; 95:13412-13416. [PMID: 37624146 DOI: 10.1021/acs.analchem.3c02417] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Two-dimensional (2D) conductive metal-organic frameworks (cMOFs) have emerged as powerful transducers for electrochemical sensing. However, electrochemical sensing in aqueous solutions remains at a very early stage for 2D cMOFs. Herein, the interfacial capacitances of a 2D cMOF are utilized for electrochemical sensing for the first time. Various redox-innocent compounds along with redox-active compounds in aqueous solutions are successfully detected based on the responses of two capacitance peaks at low voltages. The quantitative sensitivity to ascorbic acid is even an order of magnitude higher than the previous voltammetric method. Further investigation demonstrates that the responses are rooted in the pseudocapacitances of the 2D cMOF, i.e., the transitions among the multiple redox states of the ligands. The analytes are suggested to alert the d-p conjugation and exchange electrons with the 2D cMOF. These deep insights in response mechanisms represent an important step for promoting the application of 2D cMOFs in chemical sensing.
Collapse
Affiliation(s)
- Jing Guo
- Ministry of Education Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Lihua Wu
- Ministry of Education Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Yu-Xin Ye
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Fang Zhu
- Ministry of Education Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Jianqiao Xu
- Ministry of Education Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Gangfeng Ouyang
- Ministry of Education Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
17
|
Wardak C, Pietrzak K, Morawska K, Grabarczyk M. Ion-Selective Electrodes with Solid Contact Based on Composite Materials: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:5839. [PMID: 37447689 DOI: 10.3390/s23135839] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Potentiometric sensors are the largest and most commonly used group of electrochemical sensors. Among them, ion-selective electrodes hold a prominent place. Since the end of the last century, their re-development has been observed, which is a consequence of the introduction of solid contact constructions, i.e., electrodes without an internal electrolyte solution. Research carried out in the field of potentiometric sensors primarily focuses on developing new variants of solid contact in order to obtain devices with better analytical parameters, and at the same time cheaper and easier to use, which has been made possible thanks to the achievements of material engineering. This paper presents an overview of new materials used as a solid contact in ion-selective electrodes over the past several years. These are primarily composite and hybrid materials that are a combination of carbon nanomaterials and polymers, as well as those obtained from carbon and polymer nanomaterials in combination with others, such as metal nanoparticles, metal oxides, ionic liquids and many others. Composite materials often have better mechanical, thermal, electrical, optical and chemical properties than the original components. With regard to their use in the construction of ion-selective electrodes, it is particularly important to increase the capacitance and surface area of the material, which makes them more effective in the process of charge transfer between the polymer membrane and the substrate material. This allows to obtain sensors with better analytical and operational parameters. Brief characteristics of electrodes with solid contact, their advantages and disadvantages, as well as research methods used to assess their parameters and analytical usefulness were presented. The work was divided into chapters according to the type of composite material, while the data in the table were arranged according to the type of ion. Selected basic analytical parameters of the obtained electrodes have been collected and summarized in order to better illustrate and compare the achievements that have been described till now in this field of analytical chemistry, which is potentiometry. This comprehensive review is a compendium of knowledge in the research area of functional composite materials and state-of-the-art SC-ISE construction technologies.
Collapse
Affiliation(s)
- Cecylia Wardak
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Square. 3, 20-031 Lublin, Poland
| | - Karolina Pietrzak
- Department of Food and Nutrition, Medical University of Lublin, 4a Chodzki Str., 20-093 Lublin, Poland
| | - Klaudia Morawska
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Square. 3, 20-031 Lublin, Poland
| | - Malgorzata Grabarczyk
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Square. 3, 20-031 Lublin, Poland
| |
Collapse
|
18
|
Min J, Tu J, Xu C, Lukas H, Shin S, Yang Y, Solomon SA, Mukasa D, Gao W. Skin-Interfaced Wearable Sweat Sensors for Precision Medicine. Chem Rev 2023; 123:5049-5138. [PMID: 36971504 PMCID: PMC10406569 DOI: 10.1021/acs.chemrev.2c00823] [Citation(s) in RCA: 187] [Impact Index Per Article: 93.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Wearable sensors hold great potential in empowering personalized health monitoring, predictive analytics, and timely intervention toward personalized healthcare. Advances in flexible electronics, materials science, and electrochemistry have spurred the development of wearable sweat sensors that enable the continuous and noninvasive screening of analytes indicative of health status. Existing major challenges in wearable sensors include: improving the sweat extraction and sweat sensing capabilities, improving the form factor of the wearable device for minimal discomfort and reliable measurements when worn, and understanding the clinical value of sweat analytes toward biomarker discovery. This review provides a comprehensive review of wearable sweat sensors and outlines state-of-the-art technologies and research that strive to bridge these gaps. The physiology of sweat, materials, biosensing mechanisms and advances, and approaches for sweat induction and sampling are introduced. Additionally, design considerations for the system-level development of wearable sweat sensing devices, spanning from strategies for prolonged sweat extraction to efficient powering of wearables, are discussed. Furthermore, the applications, data analytics, commercialization efforts, challenges, and prospects of wearable sweat sensors for precision medicine are discussed.
Collapse
Affiliation(s)
- Jihong Min
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Jiaobing Tu
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Changhao Xu
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Heather Lukas
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Soyoung Shin
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Yiran Yang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Samuel A. Solomon
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Daniel Mukasa
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| |
Collapse
|
19
|
Abdallah NA. Exploitation of Metal-Organic Framework/ Polyaniline Composite as an Efficient Transducer for Potentiometric Determination of Epinastine Hydrochloride. INT J ELECTROCHEM SC 2023. [DOI: 10.1016/j.ijoes.2023.100140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
20
|
Zhang W, Li J, Qin W. Solid-contact polymeric membrane ion-selective electrodes using a covalent organic framework@reduced graphene oxide composite as ion-to-electron transducer. Talanta 2023; 258:124444. [PMID: 36934662 DOI: 10.1016/j.talanta.2023.124444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023]
Abstract
A solid-contact ion-selective electrode (SC-ISE) based on a covalent organic framework@reduced graphene oxide (rGO) composite is proposed. The composite can be synthesized through the polycondensation of 1,3,5-triformylphloroglucinol (TFP) and 2,6-diaminoanthraquinone (DAAQ) on the rGO nanosheets, which shows high capacitance and good redox-active properties. By applying Cd2+-ISE as a model, the electrode exhibits a Nernstian slope of 29.7 ± 0.4 mV/decade in the activity range of 1.0 × 10-7 - 7.9 × 10-4 M and the limit of detection is 6.8 × 10-8 M. Particularly, the electrode based on DAAQ-TFP@rGO exhibits a low potential drift of 1.2 ± 0.2 μV/h over 70 h due to the large capacitance of 2.0 mF. Moreover, the DAAQ-TFP@rGO-based Cd2+-ISE shows good reproducibility and the standard deviations of the standard potentials for single batch and batch-to-batch are 0.28 (n = 4) and 0.30 mV (n = 4), respectively. The developed SC-Cd2+-ISE is not disturbed by light or gas and no aqueous layer occurs between the sensing membrane and DAAQ-TFP@rGO layer. The DAAQ-TFP@rGO composite is highly promising for construction of calibration-free SC-ISEs.
Collapse
Affiliation(s)
- Wenting Zhang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, Shandong, 264005, PR China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong, 264003, PR China
| | - Jinghui Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong, 264003, PR China.
| | - Wei Qin
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, Shandong, 264003, PR China; Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, PR China.
| |
Collapse
|
21
|
Eagleton A, Ko M, Stolz RM, Vereshchuk N, Meng Z, Mendecki L, Levenson AM, Huang C, MacVeagh KC, Mahdavi-Shakib A, Mahle JJ, Peterson GW, Frederick BG, Mirica KA. Fabrication of Multifunctional Electronic Textiles Using Oxidative Restructuring of Copper into a Cu-Based Metal-Organic Framework. J Am Chem Soc 2022; 144:23297-23312. [PMID: 36512516 PMCID: PMC9801431 DOI: 10.1021/jacs.2c05510] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Indexed: 12/15/2022]
Abstract
This paper describes a novel synthetic approach for the conversion of zero-valent copper metal into a conductive two-dimensional layered metal-organic framework (MOF) based on 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) to form Cu3(HHTP)2. This process enables patterning of Cu3(HHTP)2 onto a variety of flexible and porous woven (cotton, silk, nylon, nylon/cotton blend, and polyester) and non-woven (weighing paper and filter paper) substrates with microscale spatial resolution. The method produces conductive textiles with sheet resistances of 0.1-10.1 MΩ/cm2, depending on the substrate, and uniform conformal coatings of MOFs on textile swatches with strong interfacial contact capable of withstanding chemical and physical stresses, such as detergent washes and abrasion. These conductive textiles enable simultaneous detection and detoxification of nitric oxide and hydrogen sulfide, achieving part per million limits of detection in dry and humid conditions. The Cu3(HHTP)2 MOF also demonstrated filtration capabilities of H2S, with uptake capacity up to 4.6 mol/kgMOF. X-ray photoelectron spectroscopy and diffuse reflectance infrared spectroscopy show that the detection of NO and H2S with Cu3(HHTP)2 is accompanied by the transformation of these species to less toxic forms, such as nitrite and/or nitrate and copper sulfide and Sx species, respectively. These results pave the way for using conductive MOFs to construct extremely robust electronic textiles with multifunctional performance characteristics.
Collapse
Affiliation(s)
- Aileen
M. Eagleton
- Department
of Chemistry, Burke Laboratory, Dartmouth
College, Hanover, New Hampshire 03755, United States
| | - Michael Ko
- Department
of Chemistry, Burke Laboratory, Dartmouth
College, Hanover, New Hampshire 03755, United States
| | - Robert M. Stolz
- Department
of Chemistry, Burke Laboratory, Dartmouth
College, Hanover, New Hampshire 03755, United States
| | - Nataliia Vereshchuk
- Department
of Chemistry, Burke Laboratory, Dartmouth
College, Hanover, New Hampshire 03755, United States
| | - Zheng Meng
- Department
of Chemistry, Burke Laboratory, Dartmouth
College, Hanover, New Hampshire 03755, United States
| | - Lukasz Mendecki
- Department
of Chemistry, Burke Laboratory, Dartmouth
College, Hanover, New Hampshire 03755, United States
| | - Adelaide M. Levenson
- Department
of Chemistry, Burke Laboratory, Dartmouth
College, Hanover, New Hampshire 03755, United States
| | - Connie Huang
- Department
of Chemistry, Burke Laboratory, Dartmouth
College, Hanover, New Hampshire 03755, United States
| | - Katherine C. MacVeagh
- Department
of Chemistry, Burke Laboratory, Dartmouth
College, Hanover, New Hampshire 03755, United States
| | - Akbar Mahdavi-Shakib
- Department
of Chemistry, Frontier Institute for Research
in Sensor Technology (FIRST), University of Maine, Orono, Maine 04469, United States
| | - John J. Mahle
- DEVCOM
Chemical Biological Center, 8198 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010-5424, United States
| | - Gregory W. Peterson
- DEVCOM
Chemical Biological Center, 8198 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010-5424, United States
| | - Brian G. Frederick
- Department
of Chemistry, Frontier Institute for Research
in Sensor Technology (FIRST), University of Maine, Orono, Maine 04469, United States
| | - Katherine A. Mirica
- Department
of Chemistry, Burke Laboratory, Dartmouth
College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
22
|
Maeda H, Takada K, Fukui N, Nagashima S, Nishihara H. Conductive coordination nanosheets: Sailing to electronics, energy storage, and catalysis. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Solid-contact polymeric membrane ion-selective electrodes based on electrodeposited NiCo2S4 nanosheet arrays. Talanta 2022; 251:123797. [DOI: 10.1016/j.talanta.2022.123797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/30/2022] [Accepted: 07/26/2022] [Indexed: 11/19/2022]
|
24
|
Zhu X, Huang H, Zhang H, Zhang Y, Shi P, Qu K, Cheng SB, Wang AL, Lu Q. Filling Mesopores of Conductive Metal-Organic Frameworks with Cu Clusters for Selective Nitrate Reduction to Ammonia. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32176-32182. [PMID: 35802788 DOI: 10.1021/acsami.2c09241] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The electrocatalytic nitrate reduction reaction (NO3-RR) to ammonia (NH3) under ambient conditions not only has the benefit of lowering energy consumption, but also helps remove nitrate contamination. Inspired by the unique structure of nitrate/nitrite reductase with the active spheroproteins encapsulated by larger enzymes, herein, we develop an in situ synthetic strategy for the construction of metal cluster-conductive metal-organic framework (MOF) composite electrocatalysts. The metallic Cu clusters are filled into the mesopores of a conductive copper-based MOF (i.e., CuHHTP); meanwhile, CuHHTP with a porous structure provides an internal environment to limit the growth of metallic Cu clusters with an ultrasmall size (i.e., 1.5 ± 0.2 nm) and restrains their aggregation. The obtained Cu@CuHHTP exhibits superb performance for NO3-RR. In a neutral electrolyte with 500 ppm NO3-, Cu@CuHHTP shows a high NO3- conversion of 85.81% and a selectivity for NH3 of 96.84%. 15N isotope labeling experiments confirm that the formation of NH3 originates from the process of NO3-RR. Theoretical calculations confirm that Cu clusters are the active sites in the composite electrocatalysts, in which the proper d-band center and the "accept-donate" mechanism in charge transfer are the key factors for the improvement of the electrocatalytic performance.
Collapse
Affiliation(s)
- Xiaojuan Zhu
- Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, State Key Laboratory of Crystal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
- Suzhou Research Institute, Shandong University, Suzhou 215123, Jiangsu, China
| | - Haicai Huang
- Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, State Key Laboratory of Crystal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
| | - Huaifang Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Yu Zhang
- Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, State Key Laboratory of Crystal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
- Suzhou Research Institute, Shandong University, Suzhou 215123, Jiangsu, China
| | - Peidong Shi
- Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, State Key Laboratory of Crystal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
- Suzhou Research Institute, Shandong University, Suzhou 215123, Jiangsu, China
| | - Kaiyu Qu
- Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, State Key Laboratory of Crystal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
- Suzhou Research Institute, Shandong University, Suzhou 215123, Jiangsu, China
| | - Shi-Bo Cheng
- Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, State Key Laboratory of Crystal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
| | - An-Liang Wang
- Key Laboratory for Colloid and Interface Chemistry, Ministry of Education, State Key Laboratory of Crystal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
- Suzhou Research Institute, Shandong University, Suzhou 215123, Jiangsu, China
| | - Qipeng Lu
- School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| |
Collapse
|
25
|
Pham HTB, Choi JY, Huang S, Wang X, Claman A, Stodolka M, Yazdi S, Sharma S, Zhang W, Park J. Imparting Functionality and Enhanced Surface Area to a 2D Electrically Conductive MOF via Macrocyclic Linker. J Am Chem Soc 2022; 144:10615-10621. [PMID: 35653721 DOI: 10.1021/jacs.2c03793] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The development of 2D electrically conductive metal-organic frameworks (EC-MOFs) has significantly expanded the scope of MOFs' applications into energy storage, electrocatalysis, and sensors. Despite growing interest in EC-MOFs, they often show low surface area and lack functionality due to the limited ligand motifs available. Herein we present a new EC-MOF using 2,3,8,9,14,15-hexahydroxyltribenzocyclyne (HHTC) linker and Cu nodes, featuring a large surface area. The MOF exhibits an electrical conductivity up to 3.02 × 10-3 S/cm and a surface area up to 1196 m2/g, unprecedentedly high for 2D EC-MOFs. We also demonstrate the utilization of alkyne functionality in the framework by postsynthetically hosting heterometal ions (e.g., Ni2+, Co2+). Additionally, we investigated particle size tunability, facilitating the study of size-property relationships. We believe that these results not only contribute to expanding the library of EC-MOFs but shed light on the new opportunities to explore electronic applications.
Collapse
Affiliation(s)
- Hoai T B Pham
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Ji Yong Choi
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Shaofeng Huang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Xubo Wang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Adam Claman
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Michael Stodolka
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Sadegh Yazdi
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Sandeep Sharma
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Jihye Park
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
26
|
|
27
|
Development of MOF-based PVC membrane potentiometric sensor for determination of imipramine hydrochloride. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02210-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Huang X, Gong Z, Lv Y. Advances in Metal-Organic Frameworks-based Gas Sensors for Hazardous Substances. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Elashery SE, Attia NF, Oh H. Design and fabrication of novel flexible sensor based on 2D Ni-MOF nanosheets as a preliminary step toward wearable sensor for onsite Ni (II) ions detection in biological and environmental samples. Anal Chim Acta 2022; 1197:339518. [DOI: 10.1016/j.aca.2022.339518] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/07/2022] [Accepted: 01/17/2022] [Indexed: 11/27/2022]
|
30
|
Li Y, Li J, Qin W. All-Solid-State Polymeric Membrane Ion-Selective Electrodes Based on NiCo 2S 4 as a Solid Contact. Anal Chem 2022; 94:3574-3580. [PMID: 35175037 DOI: 10.1021/acs.analchem.1c04748] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The performance criteria for the design of all-solid-state ion-selective electrodes mainly include high electrode-to-electrode reproducibility and a low potential drift. Here, we introduce nickel cobalt sulfide (NiCo2S4) as a solid contact for ion-to-electron transduction based on multiple redox couples. NiCo2S4 materials with different morphologies can be prepared through a facile hydrothermal/solvothermal method. A NiCo2S4-based solid-contact Ca2+-ISE has been developed, which exhibits a Nernstian slope of 27.5 ± 0.2 mV/dec in the activity range from 1.0 × 10-6 to 2.9 × 10-2 M with a detection limit of 5.0 × 10-7 M. A variation of the standard potential E° for eight individual solid-contact electrodes can be obtained as low as 0.35 mV. Due to the synergistic effect of cobalt and nickel ions in the ternary sulfide, an excellent redox capacitance (565 μF) of the buried solid contact coated with the ion-selective membrane can be achieved and is much larger than those obtained from other redox solid-contact materials reported so far, thus yielding a high potential stability of 2.2 ± 0.4 μV/h. In addition, the NiCo2S4-based solid-contact Ca2+-ISE shows a reduced water layer at the sensing membrane/NiCo2S4 interface and provides an excellent resistance to the interferences from light, O2, and CO2. The proposed strategy utilizing NiCo2S4 as a solid contact is a promising alternative for the fabrication of calibration-free ASS-ISEs.
Collapse
Affiliation(s)
- Yanhong Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai Institute of Coastal Zone Research (YIC), Yantai 264003, Shandong, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jinghui Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai Institute of Coastal Zone Research (YIC), Yantai 264003, Shandong, P.R. China
| | - Wei Qin
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai Institute of Coastal Zone Research (YIC), Yantai 264003, Shandong, P.R. China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, Shandong, P.R. China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, Shandong, P.R. China
| |
Collapse
|
31
|
Tekce S, Subasi Y, Coldur F, Kanberoglu GS, Zahmakiran M. Development of a PVC Membrane Potentiometric Sensor with Low Detection Limit and Wide Linear Range for the Determination of Maprotiline in Pharmaceutical Formulations. ChemistrySelect 2022. [DOI: 10.1002/slct.202103553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Serkan Tekce
- Chemistry Graduate School of Natural and Applied Sciences Van Yuzuncu Yil University Van Turkey
| | - Yaver Subasi
- Chemistry Graduate School of Natural and Applied Sciences Van Yuzuncu Yil University Van Turkey
| | - Fatih Coldur
- Chemistry Faculty of Arts and Sciences Erzincan Binali Yildirim University Erzincan Turkey
| | | | | |
Collapse
|
32
|
Kościelniak P, Dębosz M, Wieczorek M, Migdalski J, Szufla M, Matoga D, Kochana J. The Use of an Acylhydrazone-Based Metal-Organic Framework in Solid-Contact Potassium-Selective Electrode for Water Analysis. MATERIALS 2022; 15:ma15020579. [PMID: 35057298 PMCID: PMC8781722 DOI: 10.3390/ma15020579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/16/2021] [Accepted: 01/10/2022] [Indexed: 01/27/2023]
Abstract
A solid-contact ion-selective electrode was developed for detecting potassium in environmental water. Two versions of a stable cadmium acylhydrazone-based metal organic framework, i.e., JUK-13 and JUK-13_H2O, were used for the construction of the mediation layer. The potentiometric and electrochemical characterizations of the proposed electrodes were carried out. The implementation of the JUK-13_H2O interlayer is shown to improve the potentiometric response and stability of measured potential. The electrode exhibits a good Nernstian slope (56.30 mV/decade) in the concentration range from 10−5 to 10−1 mol L−1 with a detection limit of 2.1 µmol L−1. The long-term potential stability shows a small drift of 0.32 mV h−1 over 67 h. The electrode displays a good selectivity comparable to ion-selective electrodes with the same membrane. The K-JUK-13_H2O-ISE was successfully applied for the determination of potassium in three certified reference materials of environmental water with great precision (RSD < 3.00%) and accuracy (RE < 3.00%).
Collapse
Affiliation(s)
- Paweł Kościelniak
- Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (M.D.); (M.W.); (J.K.)
- Correspondence:
| | - Marek Dębosz
- Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (M.D.); (M.W.); (J.K.)
| | - Marcin Wieczorek
- Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (M.D.); (M.W.); (J.K.)
| | - Jan Migdalski
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials and Ceramics, AGH University of Science and Technology, A. Mickiewicza 30, 30-059 Kraków, Poland;
| | - Monika Szufla
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (M.S.); (D.M.)
| | - Dariusz Matoga
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (M.S.); (D.M.)
| | - Jolanta Kochana
- Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (M.D.); (M.W.); (J.K.)
| |
Collapse
|
33
|
Xu L, Gan S, Zhong L, Sun Z, Tang Y, Han T, Lin K, Liao C, He D, Ma Y, Wang W, Niu L. Conductive metal organic framework for ion-selective membrane-free solid-contact potentiometric Cu2+ sensing. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Freund R, Zaremba O, Arnauts G, Ameloot R, Skorupskii G, Dincă M, Bavykina A, Gascon J, Ejsmont A, Goscianska J, Kalmutzki M, Lächelt U, Ploetz E, Diercks CS, Wuttke S. Der derzeitige Stand von MOF‐ und COF‐Anwendungen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ralph Freund
- Institut für Physik Universität Augsburg Deutschland
| | - Orysia Zaremba
- BCMaterials, Basque Center for Materials, UPV/EHU Science Park Leioa 48940 Spanien
- Department of Chemistry University of California-Berkeley USA
| | - Giel Arnauts
- Center for Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS) KU Leuven Belgien
| | - Rob Ameloot
- Center for Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS) KU Leuven Belgien
| | | | - Mircea Dincă
- Department of Chemistry Massachusetts Institute of Technology Cambridge USA
| | - Anastasiya Bavykina
- King Abdullah University of Science and Technology KAUST Catalysis Center (KCC) Advanced Catalytic Materials Saudi Arabien
| | - Jorge Gascon
- King Abdullah University of Science and Technology KAUST Catalysis Center (KCC) Advanced Catalytic Materials Saudi Arabien
| | | | | | | | - Ulrich Lächelt
- Department für Pharmazie und Center for NanoScience (CeNS) LMU München Deutschland
| | - Evelyn Ploetz
- Department Chemie und Center for NanoScience (CeNS) LMU München Deutschland
| | - Christian S. Diercks
- Materials Sciences Division Lawrence Berkeley National Laboratory Kavli Energy NanoSciences Institute Berkeley CA 94720 USA
| | - Stefan Wuttke
- BCMaterials, Basque Center for Materials, UPV/EHU Science Park Leioa 48940 Spanien
- IKERBASQUE, Basque Foundation for Science Bilbao Spanien
| |
Collapse
|
35
|
Huang NY, He H, Liu S, Zhu HL, Li YJ, Xu J, Huang JR, Wang X, Liao PQ, Chen XM. Electrostatic Attraction-Driven Assembly of a Metal-Organic Framework with a Photosensitizer Boosts Photocatalytic CO 2 Reduction to CO. J Am Chem Soc 2021; 143:17424-17430. [PMID: 34637290 DOI: 10.1021/jacs.1c05839] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Reducing CO2 into fuels via photochemical reactions relies on highly efficient photocatalytic systems. Herein, we report a new and efficient photocatalytic system for CO2 reduction. Driven by electrostatic attraction, an anionic metal-organic framework Cu-HHTP (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene) as host and a cationic photosensitizer [Ru(phen)3]2+ (phen = 1,10-phenanthroline) as guest were self-assembled into a photocatalytic system Ru@Cu-HHTP, which showed high activity for photocatalytic CO2 reduction under laboratory light source (CO production rate of 130(5) mmol g-1 h-1, selectivity of 92.9%) or natural sunlight (CO production rate of 69.5 mmol g-1 h-1, selectivity of 91.3%), representing the remarkable photocatalytic CO2 reduction performance. More importantly, the photosensitizer [Ru(phen)3]2+ in Ru@Cu-HHTP is only about 1/500 in quantity reported in the literature. Theoretical calculations and control experiments suggested that the assembly of the catalysts and photosensitizers via electrostatic attraction interactions can provide a better charge transfer efficiency, resulting in high performance for photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Ning-Yu Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hai He
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - ShouJie Liu
- Chemistry and Chemical Engineering of Guangdong Laboratory, Shantou 515063, China
| | - Hao-Lin Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ying-Jian Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jing Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jia-Run Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xi Wang
- Department of Physics, School of Science, Beijing Jiaotong University, Beijing 100044, China
| | - Pei-Qin Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiao-Ming Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
36
|
Elashery SEA, Oh H. Exploitation of 2D Cu-MOF nanosheets as a unique electroactive material for ultrasensitive Cu(II) ion estimation in various real samples. Anal Chim Acta 2021; 1181:338924. [PMID: 34556233 DOI: 10.1016/j.aca.2021.338924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/11/2021] [Accepted: 08/07/2021] [Indexed: 01/17/2023]
Abstract
Herein, hybrid carbon sensor has been developed with graphite sheets as a matrix, tricresyl phosphate (TCP) as a plasticizer and nanosheets of 2D Cu-MOF (metal-organic framework) as an electroactive material for the ultrasensitive Cu(II) ion detection in various real samples. Where, the present study proves the efficiency of 2D Cu-MOF as a promising sensing material for the development of Cu(II) ion selective carbon sensor. The developed 2D Cu-MOF nanosheets based sensor containing 2D Cu-MOF: TCP: graphite in the ratio of 2.67: 30.54: 66.79 (% wt/wt) displayed unique Nernstian behavior over two linearity ranges of 1.0 × 10-11-1.0 × 10-9 and 1.0 × 10-5-1.0 × 10-1 mol L-1 with slopes of 29.5 ± 0.25 and 29.6 ± 0.13 mV decade-1, respectively. The fabricated carbon sensor achieved a widely pH independency, fast response time and superior thermal stability with highly selective and ultrasensitive performance. Moreover, It has been efficiently applied for the Cu(II) ion potentiometric estimation in human hair, sesames seeds, two different tea infusions and tap water real samples.
Collapse
Affiliation(s)
- Sally E A Elashery
- Chemistry Department, Faculty of Science, Cairo University, Gamaa Str., 12613, Giza, Egypt.
| | - Hyunchul Oh
- Department of Energy Engineering, Gyeongsang National University (GNU), Jinju, Gyeongnam, 52849, Republic of Korea; Future Convergence Technology Research Institute, Gyeongsang National University (GNU), Junju, 52725, Republic of Korea
| |
Collapse
|
37
|
Nath A, Asha KS, Mandal S. Conductive Metal-Organic Frameworks: Electronic Structure and Electrochemical Applications. Chemistry 2021; 27:11482-11538. [PMID: 33857340 DOI: 10.1002/chem.202100610] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 12/14/2022]
Abstract
Smarter and minimization of devices are consistently substantial to shape the energy landscape. Significant amounts of endeavours have come forward as promising steps to surmount this formidable challenge. It is undeniable that material scientists were contemplating smarter material beyond purely inorganic or organic materials. To our delight, metal-organic frameworks (MOFs), an inorganic-organic hybrid scaffold with unprecedented tunability and smart functionalities, have recently started their journey as an alternative. In this review, we focus on such propitious potential of MOFs that was untapped over a long time. We cover the synthetic strategies and (or) post-synthetic modifications towards the formation of conductive MOFs and their underlying concepts of charge transfer with structural aspects. We addressed theoretical calculations with the experimental outcomes and spectroelectrochemistry, which will trigger vigorous impetus about intrinsic electronic behaviour of the conductive frameworks. Finally, we discussed electrocatalysts and energy storage devices stemming from conductive MOFs to meet energy demand in the near future.
Collapse
Affiliation(s)
- Akashdeep Nath
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, 695551, India
| | - K S Asha
- School of Chemistry and Biochemistry, M. S. Ramaiah College of Arts Science and Commerce, Bangaluru, 560054, India
| | - Sukhendu Mandal
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, 695551, India
| |
Collapse
|
38
|
Li G, Wang T, Zhou S, Wang J, Lv H, Han M, Singh DP, Kumar A, Jin J. New highly luminescent 3D Tb(III)-MOF as selective sensor for antibiotics. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108756] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
39
|
Gittins JW, Balhatchet CJ, Chen Y, Liu C, Madden DG, Britto S, Golomb MJ, Walsh A, Fairen-Jimenez D, Dutton SE, Forse AC. Insights into the electric double-layer capacitance of two-dimensional electrically conductive metal-organic frameworks. JOURNAL OF MATERIALS CHEMISTRY. A 2021; 9:16006-16015. [PMID: 34354834 PMCID: PMC8315177 DOI: 10.1039/d1ta04026j] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/24/2021] [Indexed: 05/27/2023]
Abstract
Two-dimensional electrically conductive metal-organic frameworks (MOFs) have emerged as promising model electrodes for use in electric double-layer capacitors (EDLCs). However, a number of fundamental questions about the behaviour of this class of materials in EDLCs remain unanswered, including the effect of the identity of the metal node and organic linker molecule on capacitive performance, and the limitations of current conductive MOFs in these devices relative to traditional activated carbon electrode materials. Herein, we address both these questions via a detailed study of the capacitive performance of the framework Cu3(HHTP)2 (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene) with an acetonitrile-based electrolyte, finding a specific capacitance of 110-114 F g-1 at current densities of 0.04-0.05 A g-1 and a modest rate capability. By directly comparing its performance with the previously reported analogue, Ni3(HITP)2 (HITP = 2,3,6,7,10,11-hexaiminotriphenylene), we illustrate that capacitive performance is largely independent of the identity of the metal node and organic linker molecule in these nearly isostructural MOFs. Importantly, this result suggests that EDLC performance in general is uniquely defined by the 3D structure of the electrodes and the electrolyte, a significant finding not demonstrated using traditional electrode materials. Finally, we probe the limitations of Cu3(HHTP)2 in EDLCs, finding a limited stable double-layer voltage window of 1 V and only a modest capacitance retention of 81% over 30 000 cycles, both significantly lower than state-of-the-art porous carbons. These important insights will aid the design of future conductive MOFs with greater EDLC performances.
Collapse
Affiliation(s)
- Jamie W Gittins
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Chloe J Balhatchet
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Yuan Chen
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
- Department of Chemistry, Imperial College London Exhibition Road London SW7 2AZ UK
- The Faraday Institution Quad One, Harwell Science and Innovation Campus Didcot OX11 0RA UK
| | - Cheng Liu
- Cavendish Laboratory, University of Cambridge JJ Thomson Avenue Cambridge CB3 0HE UK
| | - David G Madden
- Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering & Biotechnology, University of Cambridge Philippa Fawcett Drive Cambridge CB3 0AS UK
| | - Sylvia Britto
- Diamond Light Source, Harwell Science and Innovation Campus Didcot OX11 0DE UK
| | - Matthias J Golomb
- Department of Materials, Imperial College London Exhibition Road London SW7 2AZ UK
| | - Aron Walsh
- Department of Materials, Imperial College London Exhibition Road London SW7 2AZ UK
| | - David Fairen-Jimenez
- Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering & Biotechnology, University of Cambridge Philippa Fawcett Drive Cambridge CB3 0AS UK
| | - Siân E Dutton
- Cavendish Laboratory, University of Cambridge JJ Thomson Avenue Cambridge CB3 0HE UK
| | - Alexander C Forse
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
40
|
Freund R, Zaremba O, Arnauts G, Ameloot R, Skorupskii G, Dincă M, Bavykina A, Gascon J, Ejsmont A, Goscianska J, Kalmutzki M, Lächelt U, Ploetz E, Diercks CS, Wuttke S. The Current Status of MOF and COF Applications. Angew Chem Int Ed Engl 2021; 60:23975-24001. [DOI: 10.1002/anie.202106259] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Ralph Freund
- Solid State Chemistry University of Augsburg Germany
| | - Orysia Zaremba
- BCMaterials, Basque Center for Materials UPV/EHU Science Park Leioa 48940 Spain
- Department of Chemistry University of California-Berkeley USA
| | - Giel Arnauts
- Center for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS) KU Leuven Belgium
| | - Rob Ameloot
- Center for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS) KU Leuven Belgium
| | | | - Mircea Dincă
- Department of Chemistry Massachusetts Institute of Technology Cambridge USA
| | - Anastasiya Bavykina
- King Abdullah University of Science and Technology KAUST Catalysis Center (KCC) Advanced Catalytic Materials Saudi Arabia
| | - Jorge Gascon
- King Abdullah University of Science and Technology KAUST Catalysis Center (KCC) Advanced Catalytic Materials Saudi Arabia
| | | | | | | | - Ulrich Lächelt
- Department of Pharmacy and Center for NanoScience (CeNS) LMU Munich Germany
| | - Evelyn Ploetz
- Department of Chemistry and Center for NanoScience (CeNS) LMU Munich Germany
| | - Christian S. Diercks
- Materials Sciences Division Lawrence Berkeley National Laboratory Kavli Energy NanoSciences Institute Berkeley CA 94720 USA
| | - Stefan Wuttke
- BCMaterials, Basque Center for Materials UPV/EHU Science Park Leioa 48940 Spain
- IKERBASQUE, Basque Foundation for Science Bilbao Spain
| |
Collapse
|
41
|
Rousseau CR, Bühlmann P. Calibration-free potentiometric sensing with solid-contact ion-selective electrodes. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116277] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
42
|
Wang F, Liu Y, Zhang M, Zhang F, He P. Home Detection Technique for Na + and K + in Urine Using a Self-Calibrated all-Solid-State Ion-Selective Electrode Array Based on Polystyrene-Au Ion-Sensing Nanocomposites. Anal Chem 2021; 93:8318-8325. [PMID: 34096282 DOI: 10.1021/acs.analchem.1c01203] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An all-solid-state ion-selective electrode (ASS-ISE) array that is portable and easily miniaturized can meet the needs of home sensing devices for long-term health monitoring. However, their stability and accuracy are affected by the multistep modification required for ASS-ISE manufacturing and the complex background signal of real samples. In this study, a four-channel ISE array with the integration of a calibration channel has been developed based on polystyrene-Au (PS-Au) ion-sensing nanocomposites (PS-Au ISE array) for the home detection of Na+ and K+. The nanocomposites combine target recognition function and ion-electron transduction function and could be modified on the channel surface by direct drop-casting, thus simplifying the preparation process and then improving the stability. Meanwhile, the integrated calibration channel could automatically deduct complex background signals in real sample analysis and thus improve the accuracy. As a result, the proposed self-calibrated PS-Au ISE array showed a near Nernstian behavior for Na+ and K+ in the range of 1 × 10-2 M-1 × 10-4 M, and the detection limits were 6.8 × 10-5 M and 5.5 × 10-5 M in artificial urine. The linear equations can be obtained according to the slopes and intercepts of Na+ and K+, and thus, the concentration of the target ions can be directly read out by combining this PS-Au ISE array with the smart electronic device. Furthermore, the detection results of Na+ and K+ in human urine agreed well with those obtained by ICP-AES, suggesting that this proposed self-calibrated PS-Au ISE array is very suitable for home smart sensing devices, facilitating the health monitoring.
Collapse
Affiliation(s)
- Fan Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P.R. China
| | - Yujing Liu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P.R. China
| | - Mengdi Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P.R. China
| | - Fan Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P.R. China
| | - Pingang He
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P.R. China
| |
Collapse
|
43
|
Zhang Z, Dell'Angelo D, Momeni MR, Shi Y, Shakib FA. Metal-to-Semiconductor Transition in Two-Dimensional Metal-Organic Frameworks: An Ab Initio Dynamics Perspective. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25270-25279. [PMID: 34015222 DOI: 10.1021/acsami.1c04636] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two-dimensional (2D) π-stacked layered metal-organic frameworks (MOFs) are permanently porous and electrically conductive materials with easily tunable crystal structures. Here, we provide an accurate examination of the correlation between structural features and electronic properties of Ni3(HITP)2, HITP = 2,3,6,7,10,11-hexaiminotriphenylene, as an archetypical 2D MOF. The main objective of this work is to unravel the responsive nature of the layered architecture to external stimuli such as temperature and show how the layer flexibility translates to different conductive behaviors. To this end, we employ a combination of quantum mechanical tools, ab initio molecular dynamics (AIMD) simulations, and electronic band structure calculations. We compare the band structure and projected density of states of equilibrated system at 293 K to that of the 0 K optimized structure. Effect of interlayer π-π and intralayer d-π interactions on charge mobility is disentangled and studied by increasing the distance between layers of Ni3(HITP)2 and comparison to an exemplary case of Zn3(HITP)2 2D MOF. Our findings show how a structural change, which can be deformations along the layers, slipping of layers, or change of the interlayer distance, can induce metal-to-semiconductor or indirect-to-direct semiconductor transition, suggesting a way to adjust or even switch between the intralayer vs interlayer conductive anisotropy in Ni3(HITP)2, in particular, and 2D MOFs in general.
Collapse
Affiliation(s)
- Zeyu Zhang
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - David Dell'Angelo
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Mohammad R Momeni
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Yuliang Shi
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Farnaz A Shakib
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| |
Collapse
|
44
|
Martin CR, Leith GA, Shustova NB. Beyond structural motifs: the frontier of actinide-containing metal-organic frameworks. Chem Sci 2021; 12:7214-7230. [PMID: 34163816 PMCID: PMC8171348 DOI: 10.1039/d1sc01827b] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022] Open
Abstract
In this perspective, we feature recent advances in the field of actinide-containing metal-organic frameworks (An-MOFs) with a main focus on their electronic, catalytic, photophysical, and sorption properties. This discussion deviates from a strictly crystallographic analysis of An-MOFs, reported in several reviews, or synthesis of novel structural motifs, and instead delves into the remarkable potential of An-MOFs for evolving the nuclear waste administration sector. Currently, the An-MOF field is dominated by thorium- and uranium-containing structures, with only a few reports on transuranic frameworks. However, some of the reported properties in the field of An-MOFs foreshadow potential implementation of these materials and are the main focus of this report. Thus, this perspective intends to provide a glimpse into the challenges, triumphs, and future directions of An-MOFs in sectors ranging from the traditional realm of gas sorption and separation to recently emerging areas such as electronics and photophysics.
Collapse
Affiliation(s)
- Corey R Martin
- Department of Chemistry and Biochemistry, University of South Carolina Columbia South Carolina 29208 USA
| | - Gabrielle A Leith
- Department of Chemistry and Biochemistry, University of South Carolina Columbia South Carolina 29208 USA
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina Columbia South Carolina 29208 USA
| |
Collapse
|
45
|
Usman M, Helal A, Abdelnaby MM, Alloush AM, Zeama M, Yamani ZH. Trends and Prospects in UiO-66 Metal-Organic Framework for CO 2 Capture, Separation, and Conversion. CHEM REC 2021; 21:1771-1791. [PMID: 33955166 DOI: 10.1002/tcr.202100030] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/19/2022]
Abstract
Among thousands of known metal-organic frameworks (MOFs), the University of Oslo's MOF (UiO-66) exhibits unique structure topology, chemical and thermal stability, and intriguing tunable properties, that have gained incredible research interest. This paper summarizes the structural advancement of UiO-66 and its role in CO2 capture, separation, and transformation into chemicals. The first part of the review summarizes the fast-growing literature related to the CO2 capture reported by UiO-66 during the past ten years. The second part provides an overview of various advancements in UiO-66 membranes in CO2 purification. The third part describes the role of UiO-66 and its composites as catalysts for CO2 conversion into useful products. Despite many achievements, significant challenges associated with UiO-66 are addressed, and future perspectives are comprehensively presented to forecast how UiO-66 might be used further for CO2 management.
Collapse
Affiliation(s)
- Muhammad Usman
- Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Aasif Helal
- Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Mahmoud M Abdelnaby
- King Abdulaziz City for Science and Technology - Technology Innovation Center on Carbon Capture and Sequestration (KACST-TIC on CCS) at, KFUPM, Dhahran, 31261, Saudi Arabia
| | - Ahmed M Alloush
- King Abdulaziz City for Science and Technology - Technology Innovation Center on Carbon Capture and Sequestration (KACST-TIC on CCS) at, KFUPM, Dhahran, 31261, Saudi Arabia
| | - Mostafa Zeama
- King Abdulaziz City for Science and Technology - Technology Innovation Center on Carbon Capture and Sequestration (KACST-TIC on CCS) at, KFUPM, Dhahran, 31261, Saudi Arabia
| | - Zain H Yamani
- Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
46
|
Liu H, Wang Y, Qin Z, Liu D, Xu H, Dong H, Hu W. Electrically Conductive Coordination Polymers for Electronic and Optoelectronic Device Applications. J Phys Chem Lett 2021; 12:1612-1630. [PMID: 33555195 DOI: 10.1021/acs.jpclett.0c02988] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Electrically conductive coordination polymers (generally known as metal-organic frameworks, MOFs) are a class of crystalline hybrid materials produced by the reasonable self-assembly of metal nodes and organic linkers. The unique and intriguing combination of inorganic and organic components endows coordination polymers with superior optical and electrical properties, which have recently aroused much attention in several electronic and optoelectronic technological applications. However, there are many challenging obstacles and issues that need to be addressed in this burgeoning field. In this Perspective, we first provide a fundamental understanding about the electronic design strategies that provide better guidance for realizing high conductivities and good mobilities in coordination polymers. We then examine the current established synthetic approaches to construct high-quality working samples of electrically conductive coordination polymers for device integration. This is followed by a discussion of the current state-of-the-art progress toward the preliminary achievements in (opto)electronic devices spanning chemiresistive sensors, field-effect transistors, organic photovoltaics, photodetectors, etc. Finally, we conclude this Perspective with the existing hurdles and limitations in this area, along with the critical directions and opportunities for future research.
Collapse
Affiliation(s)
- Hao Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Hunan Province for Chemical Power Source, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Yongshuai Wang
- Key Laboratory of Hunan Province for Chemical Power Source, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengsheng Qin
- Key Laboratory of Hunan Province for Chemical Power Source, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Liu
- Key Laboratory of Hunan Province for Chemical Power Source, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hai Xu
- Key Laboratory of Hunan Province for Chemical Power Source, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|
47
|
Cheong YH, Ge L, Lisak G. Highly reproducible solid contact ion selective electrodes: Emerging opportunities for potentiometry - A review. Anal Chim Acta 2021; 1162:338304. [PMID: 33926699 DOI: 10.1016/j.aca.2021.338304] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/20/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023]
Abstract
The solid contact ion-selective electrodes (SC-ISEs) have been extensively studied in the field of ion sensing as they offer the possibility of miniaturization, are relatively inexpensive in comparison to other analytical techniques and allow straightforward and routine analyses of ions in a number of clinical, environmental and industrial process samples. In recent years, significant interest has grown in the development of SC-ISEs with well-defined interfacialpotentials at the membrane, solid contact, and substrate electrode interfaces. This has resulted in interesting SC-ISEs exhibiting high electrode-to-electrode potential reproducibility, for those made in a single batch of electrodes, some approaching or exceeding those observed in liquid-contact ISEs. The advancement in the potential reproducibility of SC-ISEs has been partially achieved by scrutinizing insufficiently reproducible fabrication methods of SC-ISEs, or by introducing novel control measures or modifiers to components of the ISEs. This paper provides an overview of the methods as well as the challenges in establishing and maintaining reproducible potentials during the fabrication and use of novel SC-ISEs. The rules outlined in the works reviewed may form the basis of further development of cost-effective, user-friendly, limited calibration or calibration-free potentiometric SC-ISEs to achieve reliable ion analyses here and now.
Collapse
Affiliation(s)
- Yi Heng Cheong
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore; Robert Bosch (South East Asia) Pte Ltd, 11 Bishan Street 21, Singapore, 573943, Singapore; Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore
| | - Liya Ge
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore
| | - Grzegorz Lisak
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore; Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore.
| |
Collapse
|
48
|
Momeni MR, Zhang Z, Dell'Angelo D, Shakib FA. Gauging van der Waals interactions in aqueous solutions of 2D MOFs: when water likes organic linkers more than open-metal sites. Phys Chem Chem Phys 2021; 23:3135-3143. [PMID: 33491712 DOI: 10.1039/d0cp05923d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular dynamics simulations combined with periodic electronic structure calculations are performed to decipher structural, thermodynamical and dynamical properties of the interfaced vs. confined water adsorbed in hexagonal 1D channels of the 2D layered electrically conductive Cu3(HHTP)2 and Cu3(HTTP)2 metal-organic frameworks (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene and HTTP = 2,3,6,7,10,11-hexathiotriphenylene). Comparing water adsorption in bulk vs. slab models of the studied 2D MOFs shows that water is preferentially adsorbed on the framework walls via forming hydrogen bonds to the organic linkers rather than by coordinating to the coordinatively unsaturated open-Cu2+ sites. Theory predicts that in Cu3(HTTP)2 the van der Waals interactions are stronger which helps the MOF maintain its layered morphology with allowing very little water molecules to diffuse into the interlayer space. Data presented in this work are general and helpful in implementing new strategies for preserving the integrity as well as electrical conductivity of porous materials in aqueous solutions.
Collapse
Affiliation(s)
- Mohammad R Momeni
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark 07102, NJ, USA.
| | - Zeyu Zhang
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark 07102, NJ, USA.
| | - David Dell'Angelo
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark 07102, NJ, USA.
| | - Farnaz A Shakib
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark 07102, NJ, USA.
| |
Collapse
|
49
|
Momeni MR, Zhang Z, Shakib FA. Deterministic role of structural flexibility on catalytic activity of conductive 2D layered metal-organic frameworks. Chem Commun (Camb) 2021; 57:315-318. [PMID: 33332494 DOI: 10.1039/d0cc07430f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combined quantum mechanics and classical molecular dynamics approach is used to unravel the effects of structural deformations and heterogeneity on catalytic activity of 2D π-stacked layered metal-organic frameworks. Theory predicts that the flexible nature of these materials creates a complex array of catalytically active sites for oxidative dehydrogenation of propane. Using an ensemble approach and oxygen bond formation energy, as an excellent probe, we investigate the catalytic activity down to the single active site level.
Collapse
Affiliation(s)
- Mohammad R Momeni
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark 07102, NJ, USA.
| | | | | |
Collapse
|
50
|
Jiang Y, Heinke L. Photoswitchable Metal-Organic Framework Thin Films: From Spectroscopy to Remote-Controllable Membrane Separation and Switchable Conduction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2-15. [PMID: 33347762 DOI: 10.1021/acs.langmuir.0c02859] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The preparation of functional materials from photoswitchable molecules where the molecular changes multiply to macroscopic effects presents a great challenge in material science. An attractive approach is the incorporation of the photoswitches in nanoporous, crystalline metal-organic frameworks, MOFs, often showing remote-controllable chemical and physical properties. Because of the short light-penetration depth, thin MOF films are particularly interesting, allowing the entire illumination of the material. In the present progress report, we review and discuss the status of photoswitchable MOF films. These films may serve as model systems for quantifying the isomer switching yield by infrared and UV-vis spectroscopy as well as for uptake experiments exploring the switching effects on the host-guest interaction, especially on guest adsorption and diffusion. In addition, the straightforward device integration facilitates various experiments. In this way, unique features were demonstrated, such as photoswitchable membrane separation with continuously tunable selectivity, light-switchable proton conductivity of the guests in the pores, and remote-controllable electronic conduction.
Collapse
Affiliation(s)
- Yunzhe Jiang
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Lars Heinke
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|