1
|
Gabelmann A, Mansouri-Ghahnavieh E, Koch M, Shinde P, Guzmán CA, Loretz B, Lehr CM. A novel lipopolyplex platform for dual mRNA delivery via core- and surface-loading. J Control Release 2025; 384:113875. [PMID: 40412659 DOI: 10.1016/j.jconrel.2025.113875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 05/16/2025] [Accepted: 05/20/2025] [Indexed: 05/27/2025]
Abstract
The approval of Onpattro® (2018) and Comirnaty (2020) has driven interest in nanoparticulate nucleotide delivery. Newer concepts in gene therapy however, require not only the delivery of one, but multiple nucleotides. Examples are CRISPR/Cas9 gene editing and cancer immunotherapy. However, the current gold standard for nucleotide delivery - lipid nanoparticles - faces significant challenges, including limitations for co-encapsulation and nucleotide-nucleotide interactions. Aim of this study was to design a core-shell system featuring separate encapsulation of two nucleotides via a two-step formulation process. Six distinct cationic polymers were combined with three anionic polymers, resulting in 18 core compositions. Screening of these formulations identified three potent lipopolyplexes (LPPs), which were further evaluated and compared in terms of transfection efficiency, expression kinetics, storage stability, and nebulization performance. Among them, the combination of poly-L-arginine and poly-L-glutamic acid demonstrated the highest overall performance. Our systems enabled precise co-delivery of two model mRNAs in a controlled ratio, demonstrating potential for advanced therapeutic applications. Additionally, the role of mRNA localization within the LPP was investigated. Surface-loaded mRNA demonstrated superior transfection efficiency and shear resistance compared to core-loaded mRNA, which lost functionality under nebulization.
Collapse
Affiliation(s)
- Aljoscha Gabelmann
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz-Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany; Department of Pharmacy, PharmaScienceHub (PSH), Saarland University, 66123 Saarbrücken, Germany
| | - Elham Mansouri-Ghahnavieh
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Marcus Koch
- INM-Leibniz-Institute for New Materials, Campus D2.2, 66123 Saarbrücken, Germany; Institute for Physical Process Technology, Saarland University of Applied Sciences, Göbenstr. 40, 66117 Saarbrücken, Germany
| | - Prashant Shinde
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Carlos A Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Brigitta Loretz
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz-Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Claus-Michael Lehr
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz-Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany; Department of Pharmacy, PharmaScienceHub (PSH), Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
2
|
Zaccariotto GDC, Bistaffa MJ, Zapata AMM, Rodero C, Coelho F, Quitiba JV, Lima L, Sterman R, Cardoso VDO, Zucolotto V. Cancer Nanovaccines: Mechanisms, Design Principles, and Clinical Translation. ACS NANO 2025; 19:16204-16223. [PMID: 40202241 PMCID: PMC12060653 DOI: 10.1021/acsnano.4c15765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 04/01/2025] [Accepted: 04/01/2025] [Indexed: 04/10/2025]
Abstract
Cancer immunotherapy has transformed the landscape of oncological treatment by employing various strategies to teach the immune system to eliminate tumors. Among these, cancer nanovaccines are an emerging strategy that utilizes nanotechnology to enhance immune activation in response to tumor antigens. This review addresses the principles behind the different technologies in this field aimed at generating a robust and effective immune response. The diversity of strategies adopted for the design of nanovaccines is discussed, including the types of active agents, nanocarriers, their functionalizations, and the incorporation of adjuvants. Furthermore, strategies to optimize nanoparticle formulations to enhance the antigen presentation, target immune cells, and organs and promote strong and durable antitumor responses are explored. Finally, we analyze the current state of clinical application, highlighting ongoing clinical trials and the future potential of cancer nanovaccines. The insights presented in this review aim to guide future research and development efforts in the field, contributing to the advancement of more effective and targeted nanovaccines in the fight against cancer.
Collapse
Affiliation(s)
- Gabriel de Camargo Zaccariotto
- Nanomedicine
and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo 13566-590, Brazil
| | - Maria Julia Bistaffa
- Nanomedicine
and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo 13566-590, Brazil
| | - Angelica Maria Mazuera Zapata
- Nanomedicine
and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo 13566-590, Brazil
| | - Camila Rodero
- Nanomedicine
and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo 13566-590, Brazil
| | - Fernanda Coelho
- Nanomedicine
and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo 13566-590, Brazil
| | - João Victor
Brandão Quitiba
- Nanomedicine
and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo 13566-590, Brazil
| | - Lorena Lima
- Nanomedicine
and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo 13566-590, Brazil
| | - Raquel Sterman
- Nanomedicine
and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo 13566-590, Brazil
| | | | - Valtencir Zucolotto
- Nanomedicine
and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo 13566-590, Brazil
| |
Collapse
|
3
|
Duymaz D, Kebabci AO, Kizilel S. Harnessing the immunomodulatory potential of chitosan and its derivatives for advanced biomedical applications. Int J Biol Macromol 2025; 307:142055. [PMID: 40090654 DOI: 10.1016/j.ijbiomac.2025.142055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 02/21/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
The success of biomaterial applications in medicine, particularly in tissue engineering, relies on achieving a balance between promoting tissue regeneration and controlling the immune response. Due to its natural origin, high biocompatibility, and versatility, chitosan has emerged as a promising biomaterial especially for immunomodulation purposes. Immunomodulation, refers to the deliberate alteration of the immune system's activity to achieve a desired therapeutic effect either by enhancing or suppressing the function of specific immune cells, signaling pathways, or cytokine production. This modulation opens up the unlimited possibilities for the use of biomaterials, especially about the use of natural polymers such as chitosan. Although numerous chitosan-based immunoregulatory strategies have been demonstrated over the past two decades, the lack of in-depth exploration hinders the full potential of strategies that include chitosan and its derivatives in biomedical applications. Thus, in this review, the possible immunomodulatory effects of chitosan, chitosan derivatives and their potential combined with various agents and therapies are investigated in detail. Moreover, this report includes agents for localized immune response control, chitosan-based strategies with complementary immunomodulatory properties to create synergistic effects that will influence the success of cell therapies for enhanced tissue acceptance and regeneration. Finally, the challenges and outlook of chitosan-based therapies as a powerful tool for improving immunomodulatory applications are discussed for paving the way for further studies.
Collapse
Affiliation(s)
- Doğukan Duymaz
- Chemical and Biological Engineering, Koç University, Sariyer, İstanbul, Turkiye
| | - Aybaran O Kebabci
- Chemical and Biological Engineering, Koç University, Sariyer, İstanbul, Turkiye
| | - Seda Kizilel
- Chemical and Biological Engineering, Koç University, Sariyer, İstanbul, Turkiye.
| |
Collapse
|
4
|
Xu Q, Chu J, Hu Q, Sun Y, Jiang F, Li S, Liu L. The role and clinical significance of tumor-draining lymph nodes in tumor progression and immunotherapy. Crit Rev Oncol Hematol 2025; 212:104745. [PMID: 40315968 DOI: 10.1016/j.critrevonc.2025.104745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/12/2025] [Accepted: 04/23/2025] [Indexed: 05/04/2025] Open
Abstract
Tumor-draining lymph nodes (TDLNs) play a pivotal role in tumor growth and the immune response, activating immune cells such as CD8 + T cells and natural killer cells to combat tumors. However, tumors can subvert TDLNs to avoid immune attack. Initially, TDLNs stimulate a robust antitumor response, but as tumor evolve, they infiltrate with immunosuppressive cells that alter the TDLN environment and potentially promote metastasis. Immunotherapy, including immune checkpoint inhibitor (ICI), have emerged as a potential solution to this challenge by reconfiguring the TDLN environment to enhance immune responses and influence the immune status of the primary tumor. The integrity of the TDLNs is crucial for the efficacy of immunotherapy. Conventional surgery often removes TDLNs, but this may impede immune system function and the effectiveness of immunotherapy. It is therefore recommended that removal of TDLNs be considered after neoadjuvant treatment rather than before adjuvant treatment. Accurate identification of patients who require post-neoadjuvant TDLN removal and the determination of metastatic nodes is of paramount importance in tailoring treatment plans, optimizing of patient outcomes, and improving quality of life.
Collapse
Affiliation(s)
- Qian Xu
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jiahui Chu
- Department of Pharmacy, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qinqin Hu
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yanheng Sun
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Fan Jiang
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Song Li
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Lian Liu
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
5
|
Li S, Shang X, Lou H, Wang Z, Qiu Y, Xiang S, Yu F, Yuan H. Cascade Bilateral Regulation of Ferroptosis and Immune Activation Conducted by the Electron-Accepting-Inspired Glycopolymer-Based Nanoreactor. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39569915 DOI: 10.1021/acsami.4c13257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The immunosuppressive tumor environment, characterized by elevated redox levels, significantly impairs the effectiveness of oxidation and the immune response. Here, an electron-accepting-inspired glycopolymer-based nanoreactor (chitosan-grafted nitrobenzene nanoparticles) CNP employing hypoxia-activated group nitrobenzene was constructed to realize cascade bilateral regulation of ferroptosis and immune activation by intervening antioxidant systems. The as-prepared CNP could consume nicotinamide adenine dinucleotide phosphate (NADPH) in the hypoxia-response process, allowing it to be involved in the recycling of glutathione (GSH) and thioredoxin (Trx). This ultimately affects redox homeostasis, leading to reduced GSH levels, increased reactive oxygen species (ROS), and inhibition of (glutathione peroxidase 4) Gpx4. By taking advantage of the sensitivity difference between tumor cells and dendritic cells (DCs) to the ferroptosis inducer erastin (Er) based on varying xCT expression levels, we developed Er-loaded nanoparticles CNP/Er. These nanoparticles not only enhance ferroptosis in 4T1 cells through Gpx4 inhibition by CNP but also promote DC maturation by utilizing CNP's hypoxia-responsive mechanism to increase ROS levels. The CNP/Er was believed to be an ideal candidate for bilateral regulation of ferroptosis and immune activation in one nanoreactor.
Collapse
Affiliation(s)
- Shiyan Li
- Department of Diagnostic Ultrasound and Echocardiography, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Xuwei Shang
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Haiya Lou
- Department of Diagnostic Ultrasound and Echocardiography, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Zixu Wang
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Yihe Qiu
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Shanshan Xiang
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Fangying Yu
- Department of Diagnostic Ultrasound and Echocardiography, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Hong Yuan
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| |
Collapse
|
6
|
Wang J, Zhang Z, Liang R, Chen W, Li Q, Xu J, Zhao H, Xing D. Targeting lymph nodes for enhanced cancer vaccination: From nanotechnology to tissue engineering. Mater Today Bio 2024; 26:101068. [PMID: 38711936 PMCID: PMC11070719 DOI: 10.1016/j.mtbio.2024.101068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/02/2024] [Accepted: 04/23/2024] [Indexed: 05/08/2024] Open
Abstract
Lymph nodes (LNs) occupy a critical position in initiating and augmenting immune responses, both spatially and functionally. In cancer immunotherapy, tumor-specific vaccines are blooming as a powerful tool to suppress the growth of existing tumors, as well as provide preventative efficacy against tumorigenesis. Delivering these vaccines more efficiently to LNs, where antigen-presenting cells (APCs) and T cells abundantly reside, is under extensive exploration. Formulating vaccines into nanomedicines, optimizing their physiochemical properties, and surface modification to specifically bind molecules expressed on LNs or APCs, are common routes and have brought encouraging outcomes. Alternatively, porous scaffolds can be engineered to attract APCs and provide an environment for them to mature, proliferate and migrate to LNs. A relatively new research direction is inducing the formation of LN-like organoids, which have shown positive relevance to tumor prognosis. Cutting-edge advances in these directions and discussions from a future perspective are given here, from which the up-to-date pattern of cancer vaccination will be drawn to hopefully provide basic guidance to future studies.
Collapse
Affiliation(s)
- Jie Wang
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Zongying Zhang
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Rongxiang Liang
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, 266033, China
| | - Wujun Chen
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Qian Li
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Jiazhen Xu
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Hongmei Zhao
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Dongming Xing
- Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
7
|
Tang Y, Liu B, Zhang Y, Liu Y, Huang Y, Fan W. Interactions between nanoparticles and lymphatic systems: Mechanisms and applications in drug delivery. Adv Drug Deliv Rev 2024; 209:115304. [PMID: 38599495 DOI: 10.1016/j.addr.2024.115304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/08/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
The lymphatic system has garnered significant attention in drug delivery research due to the advantages it offers, such as enhancing systemic exposure and enabling lymph node targeting for nanomedicines via the lymphatic delivery route. The journey of drug carriers involves transport from the administration site to the lymphatic vessels, traversing the lymph before entering the bloodstream or targeting specific lymph nodes. However, the anatomical and physiological barriers of the lymphatic system play a pivotal role in influencing the behavior and efficiency of carriers. To expedite research and subsequent clinical translation, this review begins by introducing the composition and classification of the lymphatic system. Subsequently, we explore the routes and mechanisms through which nanoparticles enter lymphatic vessels and lymph nodes. The review further delves into the interactions between nanomedicine and body fluids at the administration site or within lymphatic vessels. Finally, we provide a comprehensive overview of recent advancements in lymphatic delivery systems, addressing the challenges and opportunities inherent in current systems for delivering macromolecules and vaccines.
Collapse
Affiliation(s)
- Yisi Tang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; NHC Key Laboratory of Comparative Medicine, National Center of Technology Innovation for Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
| | - Bao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yuting Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528437, China; NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai 201203, China.
| | - Wufa Fan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
8
|
Gharatape A, Sadeghi-Abandansari H, Seifalian A, Faridi-Majidi R, Basiri M. Nanocarrier-based gene delivery for immune cell engineering. J Mater Chem B 2024; 12:3356-3375. [PMID: 38505950 DOI: 10.1039/d3tb02279j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Clinical advances in genetically modified immune cell therapies, such as chimeric antigen receptor T cell therapies, have raised hope for cancer treatment. The majority of these biotechnologies are based on viral methods for ex vivo genetic modification of the immune cells, while the non-viral methods are still in the developmental phase. Nanocarriers have been emerging as materials of choice for gene delivery to immune cells. This is due to their versatile physicochemical properties such as large surface area and size that can be optimized to overcome several practical barriers to successful gene delivery. The in vivo nanocarrier-based gene delivery can revolutionize cell-based cancer immunotherapies by replacing the current expensive autologous cell manufacturing with an off-the-shelf biomaterial-based platform. The aim of this research is to review current advances and strategies to overcome the challenges in nanoparticle-based gene delivery and their impact on the efficiency, safety, and specificity of the process. The main focus is on polymeric and lipid-based nanocarriers, and their recent preclinical applications for cancer immunotherapy.
Collapse
Affiliation(s)
- Alireza Gharatape
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hamid Sadeghi-Abandansari
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | - Alexander Seifalian
- Nanotechnology & Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd, Nanoloom Ltd, & Liberum Health Ltd), London BioScience Innovation Centre, London, UK
| | - Reza Faridi-Majidi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohsen Basiri
- Department of Stem Cells and Developmental Biology and Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
- T Cell Therapeutics Research Labs, Cellular Immunotherapy Center, Department of Hematology & Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
9
|
Foley CR, Swan SL, Swartz MA. Engineering Challenges and Opportunities in Autologous Cellular Cancer Immunotherapy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:188-198. [PMID: 38166251 PMCID: PMC11155266 DOI: 10.4049/jimmunol.2300642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/18/2023] [Indexed: 01/04/2024]
Abstract
The use of a patient's own immune or tumor cells, manipulated ex vivo, enables Ag- or patient-specific immunotherapy. Despite some clinical successes, there remain significant barriers to efficacy, broad patient population applicability, and safety. Immunotherapies that target specific tumor Ags, such as chimeric Ag receptor T cells and some dendritic cell vaccines, can mount robust immune responses against immunodominant Ags, but evolving tumor heterogeneity and antigenic downregulation can drive resistance. In contrast, whole tumor cell vaccines and tumor lysate-loaded dendritic cell vaccines target the patient's unique tumor antigenic repertoire without prior neoantigen selection; however, efficacy can be weak when lower-affinity clones dominate the T cell pool. Chimeric Ag receptor T cell and tumor-infiltrating lymphocyte therapies additionally face challenges related to genetic modification, T cell exhaustion, and immunotoxicity. In this review, we highlight some engineering approaches and opportunities to these challenges among four classes of autologous cell therapies.
Collapse
Affiliation(s)
- Colleen R. Foley
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois
| | - Sheridan L. Swan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois
| | - Melody A. Swartz
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois
- Committee on Immunology, University of Chicago, Chicago, Illinois
- Ben May Department of Cancer Research, University of Chicago, Chicago, Illinois
| |
Collapse
|
10
|
Dang BTN, Kwon TK, Lee S, Jeong JH, Yook S. Nanoparticle-based immunoengineering strategies for enhancing cancer immunotherapy. J Control Release 2024; 365:773-800. [PMID: 38081328 DOI: 10.1016/j.jconrel.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/27/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
Cancer immunotherapy is a groundbreaking strategy that has revolutionized the field of oncology compared to other therapeutic strategies, such as surgery, chemotherapy, or radiotherapy. However, cancer complexity, tumor heterogeneity, and immune escape have become the main hurdles to the clinical application of immunotherapy. Moreover, conventional immunotherapies cause many harmful side effects owing to hyperreactivity in patients, long treatment durations and expensive cost. Nanotechnology is considered a transformative approach that enhances the potency of immunotherapy by capitalizing on the superior physicochemical properties of nanocarriers, creating highly targeted tissue delivery systems. These advantageous features include a substantial specific surface area, which enhances the interaction with the immune system. In addition, the capability to finely modify surface chemistry enables the achievement of controlled and sustained release properties. These advances have significantly increased the potential of immunotherapy, making it more powerful than ever before. In this review, we introduce recent nanocarriers for application in cancer immunotherapy based on strategies that target different main immune cells, including T cells, dendritic cells, natural killer cells, and tumor-associated macrophages. We also provide an overview of the role and significance of nanotechnology in cancer immunotherapy.
Collapse
Affiliation(s)
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Jee-Heon Jeong
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Simmyung Yook
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
11
|
Zhang S, Zeng Y, Wang K, Song G, Yu Y, Meng T, Yuan H, Hu F. Chitosan-based nano-micelles for potential anti-tumor immunotherapy: Synergistic effect of cGAS-STING signaling pathway activation and tumor antigen absorption. Carbohydr Polym 2023; 321:121346. [PMID: 37739513 DOI: 10.1016/j.carbpol.2023.121346] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/09/2023] [Accepted: 08/28/2023] [Indexed: 09/24/2023]
Abstract
Cyclic GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING) signaling pathway is an essential DNA-sensing pathway to regulate the innate and adaptive immune response, which plays an important role in tumor immunotherapy. Although the STING agonists can be used, they are limited by their inability to target immune cells and systemic immunotoxicity, calling for novel strategies to accurately and effectively activate the cGAS-STING signaling pathway. Herein, mannose-modified stearic acid-grafted chitosan (M-CS-SA) micelles with the ability to activate the cGAS-STING signaling pathway and absorb tumor antigens were constructed. The chitosan-based nano-micelles showed valid dendritic cell (DCs) targeting and could escape from lysosomes leading to the activation of the cGAS-STING signaling pathway and the maturation of DCs. In addition, a combinatorial therapy was presented based on the programmed administration of oxaliplatin and M-CS-SA. M-CS-SA adsorbed tumor antigens released by chemotherapy to construct an autologous tumor vaccine and built a comprehensive antitumor immune response. In vivo, the combinatorial therapy achieved a tumor inhibition rate of 76.31 % at the oxaliplatin dose of 5 mg/kg and M-CS-SA dose of 15 mg/kg, and increased the CD3+ CD8+ T cell infiltration. This work demonstrated that M-CS-SA and its co-treatment with oxaliplatin showed great potential in tumor immunotherapy.
Collapse
Affiliation(s)
- Shufen Zhang
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
| | - Yingping Zeng
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
| | - Kai Wang
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
| | - Guangtao Song
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
| | - Yiru Yu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
| | - Tingting Meng
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China
| | - Hong Yuan
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China; Jinhua Institute of Zhejiang University, Jinhua 321299, China
| | - Fuqiang Hu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou 310058, China; Jinhua Institute of Zhejiang University, Jinhua 321299, China.
| |
Collapse
|
12
|
Cheng L, Yu J, Hao T, Wang W, Wei M, Li G. Advances in Polymeric Micelles: Responsive and Targeting Approaches for Cancer Immunotherapy in the Tumor Microenvironment. Pharmaceutics 2023; 15:2622. [PMID: 38004600 PMCID: PMC10675796 DOI: 10.3390/pharmaceutics15112622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
In recent years, to treat a diverse array of cancer forms, considerable advancements have been achieved in the field of cancer immunotherapies. However, these therapies encounter multiple challenges in clinical practice, such as high immune-mediated toxicity, insufficient accumulation in cancer tissues, and undesired off-target reactions. To tackle these limitations and enhance bioavailability, polymer micelles present potential solutions by enabling precise drug delivery to the target site, thus amplifying the effectiveness of immunotherapy. This review article offers an extensive survey of recent progress in cancer immunotherapy strategies utilizing micelles. These strategies include responsive and remodeling approaches to the tumor microenvironment (TME), modulation of immunosuppressive cells within the TME, enhancement of immune checkpoint inhibitors, utilization of cancer vaccine platforms, modulation of antigen presentation, manipulation of engineered T cells, and targeting other components of the TME. Subsequently, we delve into the present state and constraints linked to the clinical utilization of polymeric micelles. Collectively, polymer micelles demonstrate excellent prospects in tumor immunotherapy by effectively addressing the challenges associated with conventional cancer immunotherapies.
Collapse
Affiliation(s)
- Lichun Cheng
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian 116027, China; (L.C.); (T.H.); (W.W.)
- School of Pharmacy, China Medical University, Shenyang 110122, China;
| | - Jiankun Yu
- School of Pharmacy, China Medical University, Shenyang 110122, China;
| | - Tangna Hao
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian 116027, China; (L.C.); (T.H.); (W.W.)
| | - Wenshuo Wang
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian 116027, China; (L.C.); (T.H.); (W.W.)
| | - Minjie Wei
- School of Pharmacy, China Medical University, Shenyang 110122, China;
| | - Guiru Li
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian 116027, China; (L.C.); (T.H.); (W.W.)
| |
Collapse
|
13
|
Zhao Z, Sun Y, Li M, Yu Q. Construction of Candida albicans Adhesin-Exposed Synthetic Cells for Preventing Systemic Fungal Infection. Vaccines (Basel) 2023; 11:1521. [PMID: 37896925 PMCID: PMC10611093 DOI: 10.3390/vaccines11101521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
The development of efficient fungal vaccines is urgent for preventing life-threatening systemic fungal infections. In this study, we prepared a synthetic, cell-based fungal vaccine for preventing systemic fungal infections using synthetic biology techniques. The synthetic cell EmEAP1 was constructed by transforming the Escherichia coli chassis using a de novo synthetic fragment encoding the protein mChEap1 that was composed of the E. coli OmpA peptide, the fluorescence protein mCherry, the Candida albicans adhesin Eap1, and the C-terminally transmembrane region. The EmEAP1 cells highly exposed the mChEap1 on the cell surface under IPTG induction. The fungal vaccine was then prepared by mixing the EmEAP1 cells with aluminum hydroxide gel and CpG. Fluorescence quantification revealed that the fungal vaccine was stable even after 112 days of storage. After immunization in mice, the vaccine resided in the lymph nodes, inducing the recruitment of CD11c+ dendritic cells. Moreover, the vaccine strongly activated the CD4+ T splenocytes and elicited high levels of anti-Eap1 IgG. By the prime-boost immunization, the vaccine prolonged the survival time of the mice infected by the C. albicans cells and attenuated fungal colonization together with inflammation in the kidneys. This study sheds light on the development of synthetic biology-based fungal vaccines for the prevention of life-threatening fungal infections.
Collapse
Affiliation(s)
- Zirun Zhao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (Z.Z.); (Y.S.); (M.L.)
| | - Ying Sun
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (Z.Z.); (Y.S.); (M.L.)
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (Z.Z.); (Y.S.); (M.L.)
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; (Z.Z.); (Y.S.); (M.L.)
- Research Center for Infectious Diseases, Nankai University, Tianjin 300350, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Tianjin 300350, China
| |
Collapse
|
14
|
Yao M, Liu X, Qian Z, Fan D, Sun X, Zhong L, Wu P. Research progress of nanovaccine in anti-tumor immunotherapy. Front Oncol 2023; 13:1211262. [PMID: 37692854 PMCID: PMC10484753 DOI: 10.3389/fonc.2023.1211262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Tumor vaccines aim to activate dormant or unresponsive tumor-specific T lymphocytes by using tumor-specific or tumor-associated antigens, thus enhancing the body's natural defense against cancer. However, the effectiveness of tumor vaccines is limited by the presence of tumor heterogeneity, low immunogenicity, and immune evasion mechanisms. Fortunately, multifunctional nanoparticles offer a unique chance to address these issues. With the advantages of their small size, high stability, efficient drug delivery, and controlled surface chemistry, nanomaterials can precisely target tumor sites, improve the delivery of tumor antigens and immune adjuvants, reshape the immunosuppressive tumor microenvironment, and enhance the body's anti-tumor immune response, resulting in improved efficacy and reduced side effects. Nanovaccine, a type of vaccine that uses nanotechnology to deliver antigens and adjuvants to immune cells, has emerged as a promising strategy for cancer immunotherapy due to its ability to stimulate immune responses and induce tumor-specific immunity. In this review, we discussed the compositions and types of nanovaccine, and the mechanisms behind their anti-tumor effects based on the latest research. We hope that this will provide a more scientific basis for designing tumor vaccines and enhancing the effectiveness of tumor immunotherapy.
Collapse
Affiliation(s)
- Min Yao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhangbo Qian
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Dianfa Fan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Xinjun Sun
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Pan Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
15
|
Hou Y, Chen M, Bian Y, Zheng X, Tong R, Sun X. Advanced subunit vaccine delivery technologies: From vaccine cascade obstacles to design strategies. Acta Pharm Sin B 2023; 13:3321-3338. [PMID: 37655334 PMCID: PMC10465871 DOI: 10.1016/j.apsb.2023.01.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/23/2022] [Accepted: 12/03/2022] [Indexed: 01/12/2023] Open
Abstract
Designing and manufacturing safe and effective vaccines is a crucial challenge for human health worldwide. Research on adjuvant-based subunit vaccines is increasingly being explored to meet clinical needs. Nevertheless, the adaptive immune responses of subunit vaccines are still unfavorable, which may partially be attributed to the immune cascade obstacles and unsatisfactory vaccine design. An extended understanding of the crosstalk between vaccine delivery strategies and immunological mechanisms could provide scientific insight to optimize antigen delivery and improve vaccination efficacy. In this review, we summarized the advanced subunit vaccine delivery technologies from the perspective of vaccine cascade obstacles after administration. The engineered subunit vaccines with lymph node and specific cell targeting ability, antigen cross-presentation, T cell activation properties, and tailorable antigen release patterns may achieve effective immune protection with high precision, efficiency, and stability. We hope this review can provide rational design principles and inspire the exploitation of future subunit vaccines.
Collapse
Affiliation(s)
- Yingying Hou
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Min Chen
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yuan Bian
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Xi Zheng
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
16
|
Sinani G, Durgun ME, Cevher E, Özsoy Y. Polymeric-Micelle-Based Delivery Systems for Nucleic Acids. Pharmaceutics 2023; 15:2021. [PMID: 37631235 PMCID: PMC10457940 DOI: 10.3390/pharmaceutics15082021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/11/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Nucleic acids can modulate gene expression specifically. They are increasingly being utilized and show huge potential for the prevention or treatment of various diseases. However, the clinical translation of nucleic acids faces many challenges due to their rapid clearance after administration, low stability in physiological fluids and limited cellular uptake, which is associated with an inability to reach the intracellular target site and poor efficacy. For many years, tremendous efforts have been made to design appropriate delivery systems that enable the safe and effective delivery of nucleic acids at the target site to achieve high therapeutic outcomes. Among the different delivery platforms investigated, polymeric micelles have emerged as suitable delivery vehicles due to the versatility of their structures and the possibility to tailor their composition for overcoming extracellular and intracellular barriers, thus enhancing therapeutic efficacy. Many strategies, such as the addition of stimuli-sensitive groups or specific ligands, can be used to facilitate the delivery of various nucleic acids and improve targeting and accumulation at the site of action while protecting nucleic acids from degradation and promoting their cellular uptake. Furthermore, polymeric micelles can be used to deliver both chemotherapeutic drugs and nucleic acid therapeutics simultaneously to achieve synergistic combination treatment. This review focuses on the design approaches and current developments in polymeric micelles for the delivery of nucleic acids. The different preparation methods and characteristic features of polymeric micelles are covered. The current state of the art of polymeric micelles as carriers for nucleic acids is discussed while highlighting the delivery challenges of nucleic acids and how to overcome them and how to improve the safety and efficacy of nucleic acids after local or systemic administration.
Collapse
Affiliation(s)
- Genada Sinani
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Altinbas University, 34147 Istanbul, Türkiye;
| | - Meltem Ezgi Durgun
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, 34126 Istanbul, Türkiye; (M.E.D.); (E.C.)
| | - Erdal Cevher
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, 34126 Istanbul, Türkiye; (M.E.D.); (E.C.)
| | - Yıldız Özsoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, 34126 Istanbul, Türkiye; (M.E.D.); (E.C.)
| |
Collapse
|
17
|
Maisel K, McClain CA, Bogseth A, Thomas SN. Nanotechnologies for Physiology-Informed Drug Delivery to the Lymphatic System. Annu Rev Biomed Eng 2023; 25:233-256. [PMID: 37000965 PMCID: PMC10879987 DOI: 10.1146/annurev-bioeng-092222-034906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Accompanying the increasing translational impact of immunotherapeutic strategies to treat and prevent disease has been a broadening interest across both bioscience and bioengineering in the lymphatic system. Herein, the lymphatic system physiology, ranging from its tissue structures to immune functions and effects, is described. Design principles and engineering approaches to analyze and manipulate this tissue system in nanoparticle-based drug delivery applications are also elaborated.
Collapse
Affiliation(s)
- Katharina Maisel
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA;
| | - Claire A McClain
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA;
| | - Amanda Bogseth
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA;
| | - Susan N Thomas
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA;
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
18
|
Wang T, Peng R, Ni H, Zhong L, Zhang H, Wang T, Cheng H, Bao T, Jia X, Ling S. Effects of chemokine receptor CCR7 in the pathophysiology and clinical features of the immuno-inflammatory response in primary pterygium. Int Immunopharmacol 2023; 118:110086. [PMID: 37030121 DOI: 10.1016/j.intimp.2023.110086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023]
Abstract
OBJECTIVE Chemokine receptor 7 (CCR7) has been considered a critical biomarker in inflammation and the immune response; however, little is known about CCR7 in pterygia. This study aimed to investigate whether CCR7 participates in the pathogenesis of primary pterygia and how CCR7 affects the progression of pterygia. METHODS This was an experimental study. Slip-lamp photographs of 85 pterygium patients were used to measure the width, extent, and area of pterygia with computer software. Pterygium blood vessels and general ocular redness were quantitatively analyzed with a specific algorithm. The expression of CCR7 and its ligands C-C motif ligand 19 (CCL19) and C-C motif ligand 21 (CCL21) in control conjunctivae and excised pterygia collected during surgery were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) and immunofluorescence staining. The phenotype of CCR7-expressing cells was identified by costaining for major histocompatibility complex II (MHC II), CD11b or CD11c. RESULTS The CCR7 level was significantly increased by 9.6-fold in pterygia compared with control conjunctivae (p = 0.008). The higher the expression of CCR7 was, the more blood vessels appeared in pterygia (r = 0.437, p = 0.002) and the more general ocular redness was (r = 0.51, p < 0.001) in pterygium patients. CCR7 was significantly associated with pterygium extent (r = 0.286, p = 0.048). In addition, we found that CCR7 colocalized with CD11b, CD11c or MHC II in dendritic cells, and immunofluorescence staining showed that CCR7-CCL21 is a potential chemokine axis in pterygium. CONCLUSIONS This work verified that CCR7 impacts the extent of primary pterygia invading the cornea and inflammation at the ocular surface, which may provide a possibility for a further in-depth understanding of the immunological mechanism in pterygia.
Collapse
|
19
|
Meng L, Teng Z, Yang S, Wang N, Guan Y, Chen X, Liu Y. Biomimetic nanoparticles for DC vaccination: a versatile approach to boost cancer immunotherapy. NANOSCALE 2023; 15:6432-6455. [PMID: 36916703 DOI: 10.1039/d2nr07071e] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cancer immunotherapy, which harnesses the immune system to fight cancer, has begun to make a breakthrough in clinical applications. Dendritic cells (DCs) are the bridge linking innate and adaptive immunity and the trigger of tumor immune response. Considering the cumbersome process and poor efficacy of classic DC vaccines, there has been interest in transferring the field of in vitro-generated DC vaccines to nanovaccines. Conventional nanoparticles have insufficient targeting ability and are easily cleared by the reticuloendothelial system. Biological components have evolved very specific functions, which are difficult to fully reproduce with synthetic materials, making people interested in using the further understanding of biological systems to prepare nanoparticles with new and enhanced functions. Biomimetic nanoparticles are semi-biological or nature-derived delivery systems comprising one or more natural materials, which have a long circulation time in vivo and excellent performance of targeting DCs, and can mimic the antigen-presenting behavior of DCs. In this review, we introduce the classification, design, preparation, and challenges of different biomimetic nanoparticles, and discuss their application in activating DCs in vivo and stimulating T cell antitumor immunity. Incorporating biomimetic nanoparticles into cancer immunotherapy has shown outstanding advantages in precisely coaxing the immune system against cancer.
Collapse
Affiliation(s)
- Lingyang Meng
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Zhuang Teng
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Shuang Yang
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Na Wang
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - YingHua Guan
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| | - Xiguang Chen
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, P.R. China
| | - Ya Liu
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, P.R. China.
| |
Collapse
|
20
|
Hu Y, Zhang W, Chu X, Wang A, He Z, Si CL, Hu W. Dendritic cell-targeting polymer nanoparticle-based immunotherapy for cancer: A review. Int J Pharm 2023; 635:122703. [PMID: 36758880 DOI: 10.1016/j.ijpharm.2023.122703] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Abstract
Cancer immunity is dependent on dynamic interactions between T cells and dendritic cells (DCs). Polymer-based nanoparticles target DC receptors to improve anticancer immune responses. In this paper, DC surface receptors and their specific coupling natural ligands and antibodies are reviewed and compared. Moreover, reaction mechanisms are described, and the synergistic effects of immune adjuvants are demonstrated. Also, extracellular-targeting antigen-delivery strategies and intracellular stimulus responses are reviewed to promote the rational design of polymer delivery systems.
Collapse
Affiliation(s)
- Yeye Hu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China; Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wei Zhang
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China
| | - Xiaozhong Chu
- School of Chemistry & Chemical Engineering, Huaiyin Normal University, Huaian 223300, China
| | - Aoran Wang
- School of Chemistry & Chemical Engineering, Huaiyin Normal University, Huaian 223300, China
| | - Ziliang He
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China
| | - Chuan-Ling Si
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Weicheng Hu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China; Affiliated Hospital of Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, School of Medicine, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
21
|
Cui J, Zhang C, Liu H, Yang L, Liu X, Zhang J, Zhou Y, Zhang J, Yan X. Pulmonary Delivery of Recombinant Human Bleomycin Hydrolase Using Mannose-Modified Hierarchically Porous UiO-66 for Preventing Bleomycin-Induced Pulmonary Fibrosis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11520-11535. [PMID: 36808971 DOI: 10.1021/acsami.2c20479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Bleomycins (BLMs) are widely used in clinics as antitumor agents. However, BLM-based chemotherapies often accompany severe pulmonary fibrosis (PF). Human bleomycin hydrolase is a cysteine protease that can convert BLMs into inactive deamido-BLMs. In this study, mannose-modified hierarchically porous UiO-66 (MHP-UiO-66) nanoparticles (NPs) were used to encapsulate the recombinant human bleomycin hydrolase (rhBLMH). When rhBLMH@MHP-UiO-66 was intratracheally instilled into the lungs, the NPs were transported into the epithelial cells, and rhBLMH prevented the lungs from PF during BLM-based chemotherapies. Encapsulation of rhBLMH in the MHP-UiO-66 NPs protects the enzyme from proteolysis in physiological conditions and enhances cellular uptake. In addition, the MHP-UiO-66 NPs significantly enhance the pulmonary accumulation of intratracheally instilled rhBLMH, thus providing more efficient protection of the lungs against BLMs during the chemotherapies.
Collapse
Affiliation(s)
- Jingxuan Cui
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chengyu Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hongliang Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lijun Yang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiao Liu
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Haihe Laboratory of Sustainable Chemical Transformations (Tianjin), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jingjing Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ying Zhou
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Junhua Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaohui Yan
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
22
|
Lu Y, You J. Strategy and application of manipulating DCs chemotaxis in disease treatment and vaccine design. Biomed Pharmacother 2023; 161:114457. [PMID: 36868016 DOI: 10.1016/j.biopha.2023.114457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/17/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
As the most versatile antigen-presenting cells (APCs), dendritic cells (DCs) function as the cardinal commanders in orchestrating innate and adaptive immunity for either eliciting protective immune responses against canceration and microbial invasion or maintaining immune homeostasis/tolerance. In fact, in physiological or pathological conditions, the diversified migratory patterns and exquisite chemotaxis of DCs, prominently manipulate their biological activities in both secondary lymphoid organs (SLOs) as well as homeostatic/inflammatory peripheral tissues in vivo. Thus, the inherent mechanisms or regulation strategies to modulate the directional migration of DCs even could be regarded as the crucial cartographers of the immune system. Herein, we systemically reviewed the existing mechanistic understandings and regulation measures of trafficking both endogenous DC subtypes and reinfused DCs vaccines towards either SLOs or inflammatory foci (including neoplastic lesions, infections, acute/chronic tissue inflammations, autoimmune diseases and graft sites). Furthermore, we briefly introduced the DCs-participated prophylactic and therapeutic clinical application against disparate diseases, and also provided insights into the future clinical immunotherapies development as well as the vaccines design associated with modulating DCs mobilization modes.
Collapse
Affiliation(s)
- Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, 291 Fucheng Road, Zhejiang 310018, PR China; Zhejiang-California International NanoSystems Institute, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China.
| |
Collapse
|
23
|
Li X, Wu Y, Wang S, Liu J, Zhang T, Wei Y, Zhu L, Bai W, Ye T, Wang S. Menthol nanoliposomes enhanced anti-tumor immunotherapy by increasing lymph node homing of dendritic cell vaccines. Clin Immunol 2022; 244:109119. [PMID: 36109005 DOI: 10.1016/j.clim.2022.109119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 11/18/2022]
Abstract
Menthol, a cyclic terpene alcohol, plays a critical role in overcoming the blood-brain barrier and stratum corneum barrier. Herein, we innovatively propose a menthol nanoliposome (Men-nanoLips) that can dramatically increase lymph node accumulation of the dendritic cell (DC)-based anti-tumor vaccines. Specifically, Men-nanoLips efficiently enhanced lymphatic endothelial cell (EC) barrier permeability by reducing the expression of tight junction proteins. And interestingly, Men-nanoLips not only up-regulated the expression of CCR7 in DCs but also increased the secretion of CCL21 in lymphatic ECs. Moreover, Men-nanoLips promoted DC vaccine maturation as evidenced by increasing the expression of costimulatory molecules and up-regulating the pseudopodia-like protein. With those complementary mechanisms provided by Men-nanoLips, the number of the B16 whole-tumor cell lysate-loaded DCs that target the draining LN enhanced remarkably and significantly boosted the treatment efficacy of DC anti-tumor vaccines. Therefore, we concluded that Men-nanoLips could be instructive for increasing LN homing of DC vaccines.
Collapse
Affiliation(s)
- Xianqiang Li
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, 110016 Shenyang, Liaoning, China
| | - Yue Wu
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, 110016 Shenyang, Liaoning, China
| | - Sixue Wang
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, 110016 Shenyang, Liaoning, China
| | - Jun Liu
- Shenyang Junhong Pharmaceutical Co. LTD, 110016 Shenyang, Liaoning, China
| | - Tingting Zhang
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, 110016 Shenyang, Liaoning, China
| | - Yimei Wei
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, 110016 Shenyang, Liaoning, China
| | - Lili Zhu
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, 110016 Shenyang, Liaoning, China
| | - Wei Bai
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, 110016 Shenyang, Liaoning, China
| | - Tiantian Ye
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, 110016 Shenyang, Liaoning, China.
| | - Shujun Wang
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, 110016 Shenyang, Liaoning, China.
| |
Collapse
|
24
|
Sunil V, Teoh JH, Mohan BC, Mozhi A, Wang CH. Bioengineered immunomodulatory organelle targeted nanozymes for photodynamic immunometabolic therapy. J Control Release 2022; 350:215-227. [PMID: 35987351 DOI: 10.1016/j.jconrel.2022.08.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 10/15/2022]
Abstract
Intelligent nanomedicines integrated with stimuli-responsive components enable on-demand customizable treatment options which would improve therapeutic outcome and reduce systemic toxicity. In this work, we explore the synergistic therapeutic potential of photodynamic therapy and immunometabolic modulation to achieve tumour regression and to trigger an adaptive immunity to prevent tumour recurrence. The therapeutic potential of the fabricated Bioengineered Immunomodulatory Organelle targeted Nanozymes (BIONs) was tested on 3D printed mini-brains which could effectively recapitulate the biologically relevant interactions between glioblastoma cells and macrophages. In the presence of glioblastoma organotypic brain slices, activated BIONs upregulated the cell surface expression of CD86, a costimulatory molecule and CD83, maturation marker, on monocyte derived dendritic cells, suggesting its ability to elicit a strong immune response. Furthermore, the antigen pulsed dendritic cells by chemotaxis and transendothelial migration readily relocate into the draining lymph node where they present the antigenic cargo to enable the proliferation of T lymphocytes. The stealth and tunable catalytic activity of BIONs prevent ROS mediated diseases such as acute kidney injury by providing environment dependent protection without compromising on its promising anti-cancer activity.
Collapse
Affiliation(s)
- Vishnu Sunil
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Jia Heng Teoh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Babu Cadiam Mohan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Anbu Mozhi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Chi-Hwa Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| |
Collapse
|
25
|
Tan J, Ding B, Zheng P, Chen H, Ma P, Lin J. Hollow Aluminum Hydroxide Modified Silica Nanoadjuvants with Amplified Immunotherapy Effects through Immunogenic Cell Death Induction and Antigen Release. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202462. [PMID: 35896867 DOI: 10.1002/smll.202202462] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/07/2022] [Indexed: 06/15/2023]
Abstract
In spite of the widespread application of vaccine adjuvants in various preventive vaccines at present, the existing adjuvants are still hindered by weak cellular immunity responses in therapeutic cancer vaccines. Herein, a hollow silica nanoadjuvant containing aluminum hydroxide spikes on the surface (SiAl) is synthesized for the co-loading of chemotherapeutic drug doxorubicin (Dox) and tumor fragment (TF) as tumor antigens (SiAl@Dox@TF). The obtained nanovaccines show significantly elevated anti-tumor immunity responses thanks to silica and aluminum-based composite nanoadjuvant-mediated tumor antigen release and Dox-induced immunogenic cell death (ICD). In addition, the highest frequencies of dendritic cells (DCs), CD4+ T cells, CD8+ T cells, and memory T cells as well as the best mice breast cancer (4T1) tumor growth inhibitory are also observed in SiAl@Dox@TF group, indicating favorable potential of SiAl nanoadjuvants for further applications. This work is believed to provide inspiration for the design of new-style nanoadjuvants and adjuvant-based cancer vaccines.
Collapse
Affiliation(s)
- Jia Tan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Pan Zheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Institute of Frontier and Interdisciplinary Science and Institute of Molecular Sciences and Engineering, Shandong University, Qindao, 266237, China
| | - Hao Chen
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
26
|
Functionalized chitosan as a promising platform for cancer immunotherapy: A review. Carbohydr Polym 2022; 290:119452. [DOI: 10.1016/j.carbpol.2022.119452] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 12/20/2022]
|
27
|
Lage DP, Machado AS, Vale DL, Freitas CS, Linhares FP, Cardoso JMO, Pereira IAG, Ramos FF, Tavares GSV, Ludolf F, Oliveira-da-Silva JA, Bandeira RS, Silva AM, Simões LC, Reis TAR, Oliveira JS, Christodoulides M, Chávez-Fumagalli MA, Roatt BM, Martins VT, Coelho EAF. Recombinant guanosine-5'-triphosphate (GTP)-binding protein associated with Poloxamer 407-based polymeric micelles protects against Leishmania infantum infection. Cytokine 2022; 153:155865. [PMID: 35339043 DOI: 10.1016/j.cyto.2022.155865] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/12/2022] [Accepted: 03/09/2022] [Indexed: 11/03/2022]
Abstract
Leishmania virulence proteins should be considered as vaccine candidates against disease, since they are involved in developing infection in mammalian hosts. In a previous study, a Leishmania guanosine-5'-triphosphate (GTP)-binding protein was identified as a potential parasite virulence factor. In the present work, the gene encoding GTP was cloned and the recombinant protein (rGTP) was evaluated as a vaccine candidate against Leishmania infantum infection. The protein was associated with saponin (rGTP/Sap) or Poloxamer 407-based micelles (rGTP/Mic) as adjuvants, and protective efficacy was investigated in BALB/c mice after parasite challenge. Both rGTP/Sap and rGTP/Mic compositions induced a Th1-type immune response in vaccinated animals, with significantly higher levels of IFN-γ, IL-12, IL-2, TNF-α, GM-CSF, nitrite, specific IgG2a isotype antibody and positive lymphoproliferation, when compared to the control groups. This response was accompanied by significantly lower parasite load in the spleens, livers, bone marrows and draining lymph nodes of the animals. Immunological and parasitological evaluations indicated that rGTP/Mic induced a more polarized Th1-type response and higher reduction in the organ parasitism, and with lower hepatotoxicity, when compared to the use of rGTP/Sap. In conclusion, our preliminary data suggest that rGTP could be considered for further development as a vaccine candidate to protect against VL.
Collapse
Affiliation(s)
- Daniela P Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Amanda S Machado
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Danniele L Vale
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Camila S Freitas
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Flávia P Linhares
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Jamille M O Cardoso
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Departamento de Ciências Biológicas, Insituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Isabela A G Pereira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda F Ramos
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Grasiele S V Tavares
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Ludolf
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - João A Oliveira-da-Silva
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Raquel S Bandeira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Alessandra M Silva
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Luciana C Simões
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Thiago A R Reis
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Jamil S Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Minas Gerais, Brazil
| | - Myron Christodoulides
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton SO16 6YD, England
| | | | - Bruno M Roatt
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Departamento de Ciências Biológicas, Insituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Vívian T Martins
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil
| | - Eduardo A F Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190, 30130-100, Belo Horizonte, Minas Gerais, Brazil; Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
28
|
Hong W, Yang B, He Q, Wang J, Weng Q. New Insights of CCR7 Signaling in Dendritic Cell Migration and Inflammatory Diseases. Front Pharmacol 2022; 13:841687. [PMID: 35281921 PMCID: PMC8914285 DOI: 10.3389/fphar.2022.841687] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
CCR7, collaborated with its ligands CCL19 and CCL21, controls extensive migratory events in the immune system. CCR7-bearing dendritic cells can swarm into T-cell zones in lymph nodes, initiating the antigen presentation and T-cell response. Abnormal expression of CCR7 in dendritic cells will cause a series of inflammatory diseases due to the chaotic dendritic cell trafficking. In this review, we take an in-depth look at the structural–functional domains of CCR7 and CCR7-bearing dendritic cell trajectory to lymph nodes. Then, we summarize the regulatory network of CCR7, including transcriptional regulation, translational and posttranslational regulation, internalization, desensitization, and recycling. Furthermore, the potential strategies of targeting the CCR7 network to regulate dendritic cell migration and to deal with inflammatory diseases are integrated, which not only emphasizes the possibility of CCR7 to be a potential target of immunotherapy but also has an implication on the homing of dendritic cells to benefit inflammatory diseases.
Collapse
Affiliation(s)
- Wenxiang Hong
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Jiajia Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- *Correspondence: Qinjie Weng, ; Jiajia Wang,
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Qinjie Weng, ; Jiajia Wang,
| |
Collapse
|
29
|
Wang H, Yang X, hu C, Huang C, Wang H, Zhu D, Zhang L. Programmed polymersomes with spatio-temporal delivery of antigen and dual-adjuvants for efficient dendritic cells-based cancer immunotherapy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
30
|
Ding Y, Li Z, Jaklenec A, Hu Q. Vaccine delivery systems toward lymph nodes. Adv Drug Deliv Rev 2021; 179:113914. [PMID: 34363861 PMCID: PMC9418125 DOI: 10.1016/j.addr.2021.113914] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/05/2021] [Accepted: 07/31/2021] [Indexed: 12/15/2022]
Abstract
Strategies of improving vaccine targeting ability toward lymph nodes have been attracting considerable interest in recent years, though there are remaining delivery barriers based on the inherent properties of lymphatic systems and limited administration routes of vaccination. Recently, emerging vaccine delivery systems using various materials as carriers are widely developed to achieve efficient lymph node targeting and improve vaccine-triggered adaptive immune response. In this review, to further optimize the vaccine targeting ability for future research, the design principles of lymph node targeting vaccine delivery based on the anatomy of lymph nodes and vaccine administration routes are first summarized. Then different designs of lymph node targeting vaccine delivery systems, including vaccine delivery systems in clinical applications, are carefully surveyed. Also, the challenges and opportunities of current delivery systems for vaccines are concluded in the end.
Collapse
Affiliation(s)
- Yingyue Ding
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Zhaoting Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States,Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Ana Jaklenec
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, United States
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States; Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States.
| |
Collapse
|
31
|
Zeng Y, Xiang Y, Sheng R, Tomás H, Rodrigues J, Gu Z, Zhang H, Gong Q, Luo K. Polysaccharide-based nanomedicines for cancer immunotherapy: A review. Bioact Mater 2021; 6:3358-3382. [PMID: 33817416 PMCID: PMC8005658 DOI: 10.1016/j.bioactmat.2021.03.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer immunotherapy is an effective antitumor approach through activating immune systems to eradicate tumors by immunotherapeutics. However, direct administration of "naked" immunotherapeutic agents (such as nucleic acids, cytokines, adjuvants or antigens without delivery vehicles) often results in: (1) an unsatisfactory efficacy due to suboptimal pharmacokinetics; (2) strong toxic and side effects due to low targeting (or off-target) efficiency. To overcome these shortcomings, a series of polysaccharide-based nanoparticles have been developed to carry immunotherapeutics to enhance antitumor immune responses with reduced toxicity and side effects. Polysaccharides are a family of natural polymers that hold unique physicochemical and biological properties, as they could interact with immune system to stimulate an enhanced immune response. Their structures offer versatility in synthesizing multifunctional nanocomposites, which could be chemically modified to achieve high stability and bioavailability for delivering therapeutics into tumor tissues. This review aims to highlight recent advances in polysaccharide-based nanomedicines for cancer immunotherapy and propose new perspectives on the use of polysaccharide-based immunotherapeutics.
Collapse
Affiliation(s)
- Yujun Zeng
- Huaxi MR Research Center (HMRRC), Department of Radiology, Department of Neurosurgery, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yufan Xiang
- Huaxi MR Research Center (HMRRC), Department of Radiology, Department of Neurosurgery, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ruilong Sheng
- CQM-Centro de Quimica da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9000-390, Funchal, Madeira, Portugal
| | - Helena Tomás
- CQM-Centro de Quimica da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9000-390, Funchal, Madeira, Portugal
| | - João Rodrigues
- CQM-Centro de Quimica da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9000-390, Funchal, Madeira, Portugal
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Department of Neurosurgery, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, Department of Neurosurgery, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, Department of Neurosurgery, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
32
|
Dutta S. Immunotherapy of tumors by tailored nano-zeolitic imidazolate framework protected biopharmaceuticals. Biomater Sci 2021; 9:6391-6402. [PMID: 34582540 DOI: 10.1039/d1bm01161h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In cancer immunotherapy, antibodies have acquired rapidly increasing attention due to their sustained immune effect by target specific delivery without any adverse effects. Among many recent strategies, controlled delivery of monoclonal antibodies, check point inhibitor storage and tumor-specific targeted delivery have enabled biodegradable immunotherapeutic delivery via translation of tailored nano-zeolitic imidazolate frameworks (ZIFs) with encapsulated biopharmaceuticals. In addition, a robust antitumor immunity was developed by anti-programmed death ligand-1 (anti-PD-L1) antibody delivery by ZIF-8 with polyethylene glycol (PEG) protection by forming a multiple immunoregulatory system. The unique biorecognition capability of antibodies, encapsulated in ZIFs, was recognized by using growth on different substrates, such as bioconjugates on gold nanorods, to transform them into plasmonic nanobiosensors with sensitivity of the refractive index profile of surface plasmons to track the conjugating antibody. Herein, we have discussed the mechanistic window of antibody delivery-based immunotherapy via the encapsulation of antibodies within ZIFs as an emerging tool for protecting biopharmaceuticals from the complex cellular microenvironment and hyperthermia to enable an antitumor immune response. To fully achieve the potential of antibodies upon ZIF encapsulation, more endeavors should be undertaken in the biodegradable engineering of ZIF-surfaces via forming cellular or polymeric layers to gain higher in vivo circulation time without inhibiting endocytosis by tumor cells. The possible future prognosis for achieving ZIF-protected biocompatible and biodegradable immunotherapeutic antibody delivery systems of therapeutic significance is discussed.
Collapse
Affiliation(s)
- Saikat Dutta
- Biological & Molecular Science Laboratory, Amity Institute of Click Chemistry Research & Studies, Amity University, Noida, India 201303.
| |
Collapse
|
33
|
Jang H, Kim EH, Chi SG, Kim SH, Yang Y. Nanoparticles Targeting Innate Immune Cells in Tumor Microenvironment. Int J Mol Sci 2021; 22:10009. [PMID: 34576180 PMCID: PMC8468472 DOI: 10.3390/ijms221810009] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
A variety of innate immune cells such as macrophages, dendritic cells, myeloid-derived suppressor cells, natural killer cells, and neutrophils in the tumor microenvironments, contribute to tumor progression. However, while several recent reports have studied the use of immune checkpoint-based cancer immunotherapy, little work has focused on modulating the innate immune cells. This review focuses on the recent studies and challenges of using nanoparticles to target innate immune cells. In particular, we also examine the immunosuppressive properties of certain innate immune cells that limit clinical benefits. Understanding the cross-talk between tumors and innate immune cells could contribute to the development of strategies for manipulating the nanoparticles targeting tumor microenvironments.
Collapse
Affiliation(s)
- Hochung Jang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.J.); (E.H.K.)
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
| | - Eun Hye Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.J.); (E.H.K.)
- Department of Life Sciences, Korea University, Seoul 02841, Korea;
| | - Sung-Gil Chi
- Department of Life Sciences, Korea University, Seoul 02841, Korea;
| | - Sun Hwa Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.J.); (E.H.K.)
| | - Yoosoo Yang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.J.); (E.H.K.)
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
| |
Collapse
|
34
|
Qin L, Zhang H, Zhou Y, Umeshappa CS, Gao H. Nanovaccine-Based Strategies to Overcome Challenges in the Whole Vaccination Cascade for Tumor Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006000. [PMID: 33768693 DOI: 10.1002/smll.202006000] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/26/2020] [Indexed: 06/12/2023]
Abstract
Nanovaccine-based immunotherapy (NBI) has received greater attention recently for its potential to prime tumor-specific immunity and establish a long-term immune memory that prevents tumor recurrence. Despite encouraging results in the recent studies, there are still numerous challenges to be tackled for eliciting potent antitumor immunity using NBI strategies. Based on the principles that govern immune response, here it is proposed that these challenges need to be addressed at the five critical cascading events: Loading tumor-specific antigens by nanoscale drug delivery systems (L); Draining tumor antigens to lymph nodes (D); Internalization by dendritic cells (DCs) (I); Maturation of DCs by costimulatory signaling (M); and Presenting tumor-peptide-major histocompatibility complexes to T cells (P) (LDIMP cascade in short). This review provides a detailed and objective overview of emerging NBI strategies to improve the efficacy of nanovaccines in each step of the LDIMP cascade. It is concluded that the balance between each step must be optimized by delicate designing and modification of nanovaccines and by combining with complementary approaches to provide a synergistic immunity in the fight against cancer.
Collapse
Affiliation(s)
- Lin Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- Chongqing Vocational College of Transportation, Chongqing, 400715, China
| | - Huilin Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yang Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Channakeshava Sokke Umeshappa
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
35
|
Zhang G, Fu X, Sun H, Zhang P, Zhai S, Hao J, Cui J, Hu M. Poly(ethylene glycol)-Mediated Assembly of Vaccine Particles to Improve Stability and Immunogenicity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:13978-13989. [PMID: 33749241 DOI: 10.1021/acsami.1c00706] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We report the one-step assembly of vaccine particles by encapsulating ovalbumin (OVA) and cytosine-phosphate-guanine oligodeoxynucleotides (CpG) into poly(ethylene glycol) (PEG)-mediated zeolitic imidazolate framework-8 nanoparticles (OVA-CpG@ZIF-8 NPs), where PEG improves the stability and dispersity of ZIF-8 NPs and the NPs protect the encapsulated OVA and CpG to circumvent the cold chain issue. Compared with free OVA and OVA-encapsulated ZIF-8 (OVA@ZIF-8) NPs, OVA-CpG@ZIF-8 NPs can enhance antigen uptake, cross-presentation, dendritic cell (DC) maturation, production of specific antibody and cytokines, and CD4+ T and CD8+ T cell activation. More importantly, the vaccine particles retain their bioactivity against enzymatic degradation, elevated temperatures, and long-term storage at ambient temperature. The study highlights the importance of PEG-mediated ZIF-8 NPs as a vaccine delivery system for the promising application of effective and cold chain-independent vaccination against diseases.
Collapse
Affiliation(s)
- Guiqiang Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xiao Fu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Haifeng Sun
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Peiyu Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Shumei Zhai
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250012, China
| | - Ming Hu
- School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| |
Collapse
|
36
|
Effects on immunization of the physicochemical parameters of particles as vaccine carriers. Drug Discov Today 2021; 26:1712-1720. [PMID: 33737073 DOI: 10.1016/j.drudis.2021.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/19/2021] [Accepted: 03/10/2021] [Indexed: 12/21/2022]
Abstract
Vaccination has milestone significance for the prophylactic and complete elimination of infectious diseases. However, combating malignant infectious diseases, such as Ebola or HIV, remains a challenge. It is necessary to explore novel technologies to facilitate the immune profile of vaccines. Particles exhibit a remarkable ability to modulate sophisticated immunity because of their intrinsic adjuvanticity or codelivery with immunostimulatory molecules. Recently, particles have been broadly investigated as carriers for vaccine delivery. Their physicochemical parameters (e.g., size, shape, and surface chemistry) significantly influence their in vivo fate and subsequent immunization effect. Herein, we highlight several types of particulate carrier used in the delivery of vaccines. We also examine how to engineer the physical and chemical characteristics of particulate adjuvants to make them robust candidates for a versatile vaccine delivery platform.
Collapse
|
37
|
Feng M, Zhou S, Yu Y, Su Q, Li X, Lin W. Regulation of the Migration of Distinct Dendritic Cell Subsets. Front Cell Dev Biol 2021; 9:635221. [PMID: 33681216 PMCID: PMC7933215 DOI: 10.3389/fcell.2021.635221] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells (DCs), a class of antigen-presenting cells, are widely present in tissues and apparatuses of the body, and their ability to migrate is key for the initiation of immune activation and tolerogenic immune responses. The importance of DCs migration for their differentiation, phenotypic states, and immunologic functions has attracted widespread attention. In this review, we discussed and compared the chemokines, membrane molecules, and migration patterns of conventional DCs, plasmocytoid DCs, and recently proposed DC subgroups. We also review the promoters and inhibitors that affect DCs migration, including the hypoxia microenvironment, tumor microenvironment, inflammatory factors, and pathogenic microorganisms. Further understanding of the migration mechanisms and regulatory factors of DC subgroups provides new insights for the treatment of diseases, such as infection, tumors, and vaccine preparation.
Collapse
Affiliation(s)
- Meng Feng
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shuping Zhou
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yong Yu
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qinghong Su
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaofan Li
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wei Lin
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Science, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
38
|
Kim CW, Kim KD, Lee HK. The role of dendritic cells in tumor microenvironments and their uses as therapeutic targets. BMB Rep 2021. [PMID: 33298246 PMCID: PMC7851442 DOI: 10.5483/bmbrep.2021.54.1.224] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Dendritic cells (DC), which consist of several different subsets, specialize in antigen presentation and are critical for mediating the innate and adaptive immune responses. DC subsets can be classified into conventional, plasmacytoid, and monocyte-derived DC in the tumor microenvironment, and each subset plays a different role. Because of the role of intratumoral DCs in initiating antitumor immune responses with tumor-derived antigen presentation to T cells, DCs have been targeted in the treatment of cancer. By regulating the functionality of DCs, several DC-based immunotherapies have been developed, including administration of tumor-derived antigens and DC vaccines. In addition, DCs participate in the mechanisms of classical cancer therapies, such as radiation therapy and chemotherapy. Thus, regulating DCs is also important in improving current cancer therapies. Here, we will discuss the role of each DC subset in antitumor immune responses, and the current status of DC-related cancer therapies.
Collapse
Affiliation(s)
- Chae Won Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Kyun-Do Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- BioMedical Research Center, KAIST, Daejeon 34141, Korea
| |
Collapse
|
39
|
Ahmad MZ, Ahmad J, Haque A, Alasmary MY, Abdel-Wahab BA, Akhter S. Emerging advances in synthetic cancer nano-vaccines: opportunities and challenges. Expert Rev Vaccines 2020; 19:1053-1071. [PMID: 33315512 DOI: 10.1080/14760584.2020.1858058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 11/27/2020] [Indexed: 12/19/2022]
Abstract
Introduction: Cancer immunotherapy is a fast-growing field that has achieved tremendous progress in recent years. It is one of the most potent tools that can activate the immune system against cancer. Nevertheless, the development of safe and effective vaccines to overcome emerging new disease remains challenging since several emerging antigens are poorly immunogenic. Nanotechnology has provided a realistic resolution for the drawback of traditional cancer immunotherapy. Area covered: This review discusses different cancer immunotherapy approaches focusing on recent advancements in nanomedicine-based cancer immunotherapy. The literature review method includes inclusion and exclusion criteria to categorize important articles. The literature survey was carried out using PubMed, Google Scholar, Scopus, and the Saudi digital library. Expert opinion: In the last two decades, the development and application of nanoparticles incorporating antigen/adjuvant in cancer immunotherapy have experienced rapid growth. Soon, progressively multifaceted nanovaccines presenting different antigens and co-delivered with antigens will be clinically translated. Better understanding and improved knowledge of nanomedicines-based delivery approaches and immunostimulatory action, and in-vivo biodistribution would inevitably facilitate the altruistic design of cancer nanovaccine for humankind.
Collapse
Affiliation(s)
- Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University , Najran, Kingdom of Saudi Arabia
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University , Najran, Kingdom of Saudi Arabia
| | - Anzarul Haque
- Department of Pharmacognosy, Prince Sattam Bin Abdulaziz University College of Pharmacy , Alkharj Al-Kharj, Kingdom of Saudi Arabia
| | - Mohammed Yahia Alasmary
- Department of Internal Medicine, College of Medicine, Najran University Hospital , Najran, Kingdom of Saudi Arabia
| | - Basel A Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University , Najran, Kingdom of Saudi Arabia
- Department of Pharmacology, College of Medicine Assiut University , Assiut, Egypt
| | - Sohail Akhter
- Center for Molecular Biophysics (CBM), CNRS UPR4301; LE STUDIUM Loire Valley Institute for Advanced Studies , Orleans, France
| |
Collapse
|
40
|
Najibi AJ, Mooney DJ. Cell and tissue engineering in lymph nodes for cancer immunotherapy. Adv Drug Deliv Rev 2020; 161-162:42-62. [PMID: 32750376 PMCID: PMC7736208 DOI: 10.1016/j.addr.2020.07.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/03/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023]
Abstract
In cancer, lymph nodes (LNs) coordinate tumor antigen presentation necessary for effective antitumor immunity, both at the levels of local cellular interactions and tissue-level organization. In this review, we examine how LNs may be engineered to improve the therapeutic outcomes of cancer immunotherapy. At the cellular scale, targeting the LNs impacts the potency of cancer vaccines, immune checkpoint blockade, and adoptive cell transfer. On a tissue level, macro-scale biomaterials mimicking LN features can function as immune niches for cell reprogramming or delivery in vivo, or be utilized in vitro to enable preclinical testing of drugs and vaccines. We additionally review strategies to induce ectopic lymphoid sites reminiscent of LNs that may improve antitumor T cell priming.
Collapse
Affiliation(s)
- Alexander J Najibi
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138.
| |
Collapse
|
41
|
Tumor-draining lymph node targeting chitosan micelles as antigen-capturing adjuvants for personalized immunotherapy. Carbohydr Polym 2020; 240:116270. [DOI: 10.1016/j.carbpol.2020.116270] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/26/2020] [Accepted: 04/07/2020] [Indexed: 12/17/2022]
|
42
|
Yang X, Yu T, Zeng Y, Lian K, Zhou X, Ke J, Li Y, Yuan H, Hu F. pH-Responsive Biomimetic Polymeric Micelles as Lymph Node-Targeting Vaccines for Enhanced Antitumor Immune Responses. Biomacromolecules 2020; 21:2818-2828. [DOI: 10.1021/acs.biomac.0c00518] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Xiqin Yang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tong Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingping Zeng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Keke Lian
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xueqing Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jia Ke
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yinghong Li
- Zhejiang Institute for Food and Drug Control, Hangzhou 310052, China
| | - Hong Yuan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fuqiang Hu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
43
|
Del Prete A, Sozio F, Barbazza I, Salvi V, Tiberio L, Laffranchi M, Gismondi A, Bosisio D, Schioppa T, Sozzani S. Functional Role of Dendritic Cell Subsets in Cancer Progression and Clinical Implications. Int J Mol Sci 2020; 21:ijms21113930. [PMID: 32486257 PMCID: PMC7312661 DOI: 10.3390/ijms21113930] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
Dendritic cells (DCs) constitute a complex network of cell subsets with common functions but also with many divergent aspects. All dendritic cell subsets share the ability to prime T cell response and to undergo a complex trafficking program related to their stage of maturation and function. For these reasons, dendritic cells are implicated in a large variety of both protective and detrimental immune responses, including a crucial role in promoting anti-tumor responses. Although cDC1s are the most potent subset in tumor antigen cross-presentation, they are not sufficient to induce full-strength anti-tumor cytotoxic T cell response and need close interaction and cooperativity with the other dendritic cell subsets, namely cDC2s and pDCs. This review will take into consideration different aspects of DC biology, including the functional role of dendritic cell subsets in both fostering and suppressing tumor growth, the mechanisms underlying their recruitment into the tumor microenvironment, as well as the prognostic value and the potentiality of dendritic cell therapeutic targeting. Understanding the specificity of dendritic cell subsets will allow to gain insights on role of these cells in pathological conditions and to design new selective promising therapeutic approaches.
Collapse
Affiliation(s)
- Annalisa Del Prete
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (A.D.P.); (F.S.); (I.B.); (V.S.); (L.T.); (M.L.); (D.B.); (T.S.)
- Humanitas Clinical and Research Center—IRCCS, Via Manzoni 56, 20089 Rozzano (MI), Italy
| | - Francesca Sozio
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (A.D.P.); (F.S.); (I.B.); (V.S.); (L.T.); (M.L.); (D.B.); (T.S.)
- Humanitas Clinical and Research Center—IRCCS, Via Manzoni 56, 20089 Rozzano (MI), Italy
| | - Ilaria Barbazza
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (A.D.P.); (F.S.); (I.B.); (V.S.); (L.T.); (M.L.); (D.B.); (T.S.)
| | - Valentina Salvi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (A.D.P.); (F.S.); (I.B.); (V.S.); (L.T.); (M.L.); (D.B.); (T.S.)
| | - Laura Tiberio
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (A.D.P.); (F.S.); (I.B.); (V.S.); (L.T.); (M.L.); (D.B.); (T.S.)
| | - Mattia Laffranchi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (A.D.P.); (F.S.); (I.B.); (V.S.); (L.T.); (M.L.); (D.B.); (T.S.)
| | - Angela Gismondi
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy;
| | - Daniela Bosisio
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (A.D.P.); (F.S.); (I.B.); (V.S.); (L.T.); (M.L.); (D.B.); (T.S.)
| | - Tiziana Schioppa
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (A.D.P.); (F.S.); (I.B.); (V.S.); (L.T.); (M.L.); (D.B.); (T.S.)
- Humanitas Clinical and Research Center—IRCCS, Via Manzoni 56, 20089 Rozzano (MI), Italy
| | - Silvano Sozzani
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy;
- Correspondence: ; Tel.: +39-06-4434-0632
| |
Collapse
|
44
|
Wen L, Wen C, Zhang F, Wang K, Yuan H, Hu F. siRNA and chemotherapeutic molecules entrapped into a redox-responsive platform for targeted synergistic combination therapy of glioma. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 28:102218. [PMID: 32413510 DOI: 10.1016/j.nano.2020.102218] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/01/2020] [Accepted: 04/28/2020] [Indexed: 01/05/2023]
Abstract
Vascular endothelial growth factor (VEGF) has been implicated as the key regulator of tumor neovascularization. RNAi interference plays a critical role on down-regulation of VEGF, while single VEGF inhibition could not completely suppress angiogenesis and tumor growth; the effect of siRNA is temporary. To improve glioma therapy efficacy, an angiopep-2 (Ap) modified redox-responsive glycolipid-like copolymer co-delivering siVEGF and paclitaxel (PTX), termed as Ap-CSssSA/P/R complexes, was developed in this study. Ap modification significantly enhanced the distribution of Ap-CSssSA in glioma cells both in vitro and in vivo. Ap-CSssSA/P/R complexes could simultaneously deliver siVEGF and PTX into tumor cells, exhibiting great superiority in glioma growth suppression via receptor-mediated targeting delivery and cell apoptosis, accompanied with an obvious inhibition of neovascularization induced by VEGF gene silencing. The present study indicated that the combination delivery of siVEGF and PTX via Ap-modified copolymeric micelles presented a promising and safe platform for glioma targeted therapeutics.
Collapse
Affiliation(s)
- Lijuan Wen
- National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, College of Pharmacy, Gannan Medical University, Ganzhou, China; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Changlong Wen
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fengtian Zhang
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, China; Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Kai Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hong Yuan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Fuqiang Hu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
45
|
Eppler HB, Jewell CM. Biomaterials as Tools to Decode Immunity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903367. [PMID: 31782844 PMCID: PMC7124992 DOI: 10.1002/adma.201903367] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/23/2019] [Indexed: 05/02/2023]
Abstract
The immune system has remarkable capabilities to combat disease with exquisite selectivity. This feature has enabled vaccines that provide protection for decades and, more recently, advances in immunotherapies that can cure some cancers. Greater control over how immune signals are presented, delivered, and processed will help drive even more powerful options that are also safe. Such advances will be underpinned by new tools that probe how immune signals are integrated by immune cells and tissues. Biomaterials are valuable resources to support this goal, offering robust, tunable properties. The growing role of biomaterials as tools to dissect immune function in fundamental and translational contexts is highlighted. These technologies can serve as tools to understand the immune system across molecular, cellular, and tissue length scales. A common theme is exploiting biomaterial features to rationally direct how specific immune cells or organs encounter a signal. This precision strategy, enabled by distinct material properties, allows isolation of immunological parameters or processes in a way that is challenging with conventional approaches. The utility of these capabilities is demonstrated through examples in vaccines for infectious disease and cancer immunotherapy, as well as settings of immune regulation that include autoimmunity and transplantation.
Collapse
Affiliation(s)
- Haleigh B Eppler
- Fischell Department of Bioengineering, 8278 Paint Brach Drive, College Park, MD, 20742, USA
- Biological Sciences Training Program, 1247 Biology Psychology Building, College Park, MD, 20742, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, 8278 Paint Brach Drive, College Park, MD, 20742, USA
- Biological Sciences Training Program, 1247 Biology Psychology Building, College Park, MD, 20742, USA
- Robert E. Fischell Institute for Biomedical Devices, 8278 Paint Branch Drive, College Park, MD, 20742, USA
- United States Department of Veterans Affairs, VA Maryland Health Care System, 10. N Green Street, Baltimore, MD, 21201, USA
- Department of Microbiology and Immunology, University of Maryland Medical School, 685 West Baltimore Street, HSF-I Suite 380, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, 22 South Greene Street, Baltimore, MD, 21201, USA
| |
Collapse
|
46
|
Zhang H, Zhang J, Li Q, Song A, Tian H, Wang J, Li Z, Luan Y. Site-specific MOF-based immunotherapeutic nanoplatforms via synergistic tumor cells-targeted treatment and dendritic cells-targeted immunomodulation. Biomaterials 2020; 245:119983. [PMID: 32229333 DOI: 10.1016/j.biomaterials.2020.119983] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 01/14/2023]
Abstract
An efficient antitumor immune response relies on multiple cells-based process including tumor cells-targeted immunogenicity increment, dendritic cells (DCs)-targeted vaccine delivery and T cells-mediated tumor elimination. Only limited immune efficacy could be achieved by strengthening the function of single type of cells. Therefore, building an effective immunotherapeutic nanoplatform by simultaneously modulating the functions of multiple cells involved in immune process is urgently demanded. However, it is challenging to modulate multiple cells since the on-demand delivery of diverse agents to different cells is restricted by inherent different target sites. Herein, as a proof of concept, dual tailor-made metal organic framework (MOF) nanoparticles based on zeolitic imidazolate framework-8 (ZIF-8) are designed to comprehensively enhance the immunotherapy via the spatiotemporal cooperation of various therapeutic agents including photothermal agent IR820, adjuvant imiquimod (R837) and immunomodulator 1-methyl-d-tryptophan (1 MT). On one hand, IR820@ZIF-8 is modified with hyaluronic acid for realizing tumor-targeted photothermal therapy, accompanied with the release of tumor antigens. On the other hand, (R837+1 MT)@ZIF-8 is modified with mannan for achieving DCs-targeted immune amplification. The synergistic tumor cells-targeted treatment and DCs-targeted immunomodulation can efficiently overcome two major obstacles in immunotherapy: inadequate activation of immune response and immune evasion, offering powerful platform against invasive malignancy and rechallenged tumors.
Collapse
Affiliation(s)
- Huiyuan Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, 44 West Wenhua Road, Jinan, Shandong Province, 250012, China
| | - Jing Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, 44 West Wenhua Road, Jinan, Shandong Province, 250012, China
| | - Qian Li
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, 44 West Wenhua Road, Jinan, Shandong Province, 250012, China
| | - Aixin Song
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education), Shandong University, Jinan, Shandong Province, 250100, China
| | - Hailong Tian
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, 44 West Wenhua Road, Jinan, Shandong Province, 250012, China
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing and the Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao, Shandong Province, 266580, China
| | - Zhonghao Li
- Key Laboratory of Colloid & Interface Chemistry (Ministry of Education), Shandong University, Jinan, Shandong Province, 250100, China
| | - Yuxia Luan
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, 44 West Wenhua Road, Jinan, Shandong Province, 250012, China.
| |
Collapse
|
47
|
Yang X, Lian K, Tan Y, Zhu Y, Liu X, Zeng Y, Yu T, Meng T, Yuan H, Hu F. Selective uptake of chitosan polymeric micelles by circulating monocytes for enhanced tumor targeting. Carbohydr Polym 2020; 229:115435. [DOI: 10.1016/j.carbpol.2019.115435] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/26/2019] [Accepted: 10/03/2019] [Indexed: 01/08/2023]
|
48
|
Duong HTT, Yin Y, Thambi T, Kim BS, Jeong JH, Lee DS. Highly potent intradermal vaccination by an array of dissolving microneedle polypeptide cocktails for cancer immunotherapy. J Mater Chem B 2020; 8:1171-1181. [PMID: 31957761 DOI: 10.1039/c9tb02175b] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Despite recent advances in cancer therapy using vaccines, the efficacy of vaccine regimens remains to be improved. Cutaneous transportation of biomolecules, particularly DNA vaccines, has potentially improved the therapeutic efficacy and has been found to be an appealing approach in cancer immunotherapy. Nevertheless, the effectiveness of transdermal vaccination is limited by the lack of efficacious immune stimulation. Here, to elicit strong immunogenicity in target cells, we propose an array of dissolving microneedle cocktails for pain-free implantation and triggered release of vaccines and adjuvants at cutaneous tissues. The microneedle cocktails comprising a bioresorbable polypeptide matrix with a nanopolyplex, which include cationic amphiphilic conjugates with ovalbumin-expressing plasmid OVA (pOVA) and immunostimulant-polyinosinic:polycytidylic acid (poly(I:C)), were prepared using a one-pot synthesis. The cationic nanopolyplex effectively transported pOVA and poly(I:C) into the intracellular compartments of dendritic cells and macrophages. Cutaneous implantation of microneedle cocktails on mice elicits a stronger antigen-specific antibody response than subcutaneous administration of the microneedle-free nanopolyplex. Compared with traditional vaccination, the dissolving microneedle cocktails enhanced the antibody recall memory after challenge; remarkably, the cocktail-based therapeutic vaccination also resulted in enhanced lung clearance of cancer cells. The dissolving microneedle cocktail therapy based on the triggered release of immunomodulators and adjuvants synergistically augmented the therapeutic effect in B16/OVA melanoma tumors.
Collapse
Affiliation(s)
- Huu Thuy Trang Duong
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Yue Yin
- School of Pharmacy, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea. and CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Thavasyappan Thambi
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Bong Sup Kim
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Ji Hoon Jeong
- School of Pharmacy, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Doo Sung Lee
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
49
|
Perez CR, De Palma M. Engineering dendritic cell vaccines to improve cancer immunotherapy. Nat Commun 2019; 10:5408. [PMID: 31776331 PMCID: PMC6881351 DOI: 10.1038/s41467-019-13368-y] [Citation(s) in RCA: 331] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/06/2019] [Indexed: 12/19/2022] Open
Abstract
At the interface between the innate and adaptive immune system, dendritic cells (DCs) play key roles in tumour immunity and hold a hitherto unrealized potential for cancer immunotherapy. Here we review the role of distinct DC subsets in the tumour microenvironment, with special emphasis on conventional type 1 DCs. Integrating new knowledge of DC biology and advancements in cell engineering, we provide a blueprint for the rational design of optimized DC vaccines for personalized cancer medicine. Dendritic cells (DCs) have been explored as a promising strategy for cancer immunotherapy. In this Perspective, the authors discuss the different types of DCs and their therapeutic potential in the context of vaccines for personalized cancer therapy.
Collapse
Affiliation(s)
- Caleb R Perez
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Michele De Palma
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
| |
Collapse
|
50
|
Wu J, Chen J, Feng Y, Tian H, Chen X. Tumor microenvironment as the "regulator" and "target" for gene therapy. J Gene Med 2019; 21:e3088. [PMID: 30938916 DOI: 10.1002/jgm.3088] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/21/2019] [Accepted: 03/29/2019] [Indexed: 12/18/2022] Open
Abstract
In this review, we focus on strategies for designing functional nano gene carriers, as well as choosing therapeutic genes targeting the tumor microenvironment. Gene mutations have a great impact on the occurrence of cancer. Thus, gene therapy plays a major role in cancer therapy and has the potential to cure cancer. Well-designed gene therapy largely relies on effective gene carriers, which can be divided into viral carriers and non-viral carriers. A gene carrier delivers functional genes to their intracellular target and avoids nucleic acids being degraded by nucleases in the serum. Most conventional cancer gene therapies only target cancer cells and do not appear to be sufficintly efficient to pass clinical trials. Accumulating evidence has shown that extending the therapeutic strategies to the tumor microenvironment, rather than the tumor cell itself, can allow more options for achieving robust anti-cancer efficiency. In addition, unusual features between tumor microenvironment and normal tissues, such as a lower pH, higher glutathione and reactive oxygen species concentrations, and overexpression of some enzymes, facilitate the design of smart stimuli-responsive gene carriers regulated by the tumor microenvironment. These carriers interact with nucleic acids and then form stable nanoparticles under physiological conditions. By regulation of the tumor microenvironment, stimuli-responsive gene carriers are able to change their properties and achieve high gene delivery efficiency. Considering the tumor microenvironment as the "regulator" and "target" when designing gene carriers and choosing therapeutic genes shows significant benefit with respect to improving the accuracy and efficiency of cancer gene therapy.
Collapse
Affiliation(s)
- Jiayan Wu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,University of Science and Technology of China, Hefei, China
| | - Jie Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,University of Science and Technology of China, Hefei, China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun, China
| | - Yuanji Feng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,University of Science and Technology of China, Hefei, China
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,University of Science and Technology of China, Hefei, China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,University of Science and Technology of China, Hefei, China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun, China
| |
Collapse
|