1
|
Zou J, Cui W, Deng N, Li C, Yang W, Ye X, Yao F, Zhang T, Xiao J, Ma C, Wu L, Dong D, Chen J, Guo C, Liu A, Wu H. Fate reversal: Exosome-driven macrophage rejuvenation and bacterial-responsive drug release for infection immunotherapy in diabetes. J Control Release 2025; 382:113730. [PMID: 40250625 DOI: 10.1016/j.jconrel.2025.113730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/27/2025] [Accepted: 04/11/2025] [Indexed: 04/20/2025]
Abstract
Superficial surgical site infection (SSI) is a significant risk factor for the development of periprosthetic joint infection (PJI), particularly in diabetic patients. A high-glucose microenvironment is observed to compromise phagocytosis by inducing cellular senescence, which leads to impaired antibacterial immune function. Exosomes derived from umbilical cord stem cells (H-Exos) can reverse the immunosuppressive microenvironment by rejuvenating senescent cells, thereby terminating excessive, persistent, and ineffective inflammatory responses. Thus, a novel exosome-based immunotherapeutic antibacterial strategy to reverse fate is proposed. Vancomycin & lysostaphin-loaded exosomes are incorporated in a customizable microneedle patch (ExoV-ExoL@MN) for controlled release, enabling tailored treatments for diverse clinical scenarios. While rejuvenating macrophage senescent phenotype, the antibiotics encapsulated within exosomes can be responsively released by the hemolysin secreted by bacteria, triggering rapid bacterial killing. Post-infection clearance, they induce a shift from M1 to M2 macrophage polarization, thereby enhancing anti-inflammatory and reparative responses. Furthermore, the components can be mixed on demand and at any time, allowing for real-time customization and fabrication directly at the clinic (fabrication@clinic). This strategy reverses the immunosuppressive microenvironment by rejuvenating senescent macrophages and effectively combats bacterial invasion into deep tissues through bacteria-responsive antibiotic release, providing a promising approach for preventing and treating SSI-induced PJI.
Collapse
Affiliation(s)
- Jiaxuan Zou
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China
| | - Wushi Cui
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China
| | - Niping Deng
- School of Engineering, Westlake University, Hangzhou 310024, PR China
| | - Congsun Li
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China
| | - Weinan Yang
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China
| | - Xiaojun Ye
- Department of Ultrasound, Hangzhou Women's Hospital, Hangzhou 310008, PR China
| | - Feng Yao
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China
| | - Tao Zhang
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China; Department of Orthopedics, Lishui Hospital, Zhejiang University School of Medicine, Lishui 323000, PR China
| | - Jian Xiao
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China; Department of Orthopedics, The First People's Hospital of Jiashan, Jiaxing 314100, PR China
| | - Chiyuan Ma
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China
| | - Lingfeng Wu
- Department of Orthopedics, Lishui Hospital, Zhejiang University School of Medicine, Lishui 323000, PR China
| | - Dahai Dong
- Department of Orthopedics, Suichang County People's Hospital in Zhejiang Province, Lishui 323300, PR China
| | - Jing Chen
- Institute of Medical Sciences, The Second Hospital and Shandong University Center for Orthopaedics, Cheeloo College of Medicine, Shandong University, Jinan 250033, PR China.
| | - Chengchen Guo
- School of Engineering, Westlake University, Hangzhou 310024, PR China.
| | - An Liu
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China.
| | - Haobo Wu
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China.
| |
Collapse
|
2
|
Nurdin KN, Suhandi C, Mohammed AFA, Mahmoud SA, Elamin KM, Muchtaridi M, Wathoni N. Biodegradable gelatin methacryloyl microneedles: a new paradigm in transdermal drug delivery. Arch Pharm Res 2025:10.1007/s12272-025-01547-z. [PMID: 40332454 DOI: 10.1007/s12272-025-01547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 04/30/2025] [Indexed: 05/08/2025]
Abstract
Microneedles (MN) have emerged as a promising transdermal drug delivery technology that offers advantages such as minimal invasiveness, high biocompatibility, and biodegradability. Gelatin methacryloyl (GelMA)-based MNs have gained attention because of their flexibility, mechanical strength, and modification capabilities, which support controlled drug release. The synthesis process of GelMA involves crosslinking using UV light, resulting in a stable hydrogel structure that supports therapeutic applications, such as wound healing, cancer therapy, and glucose monitoring. However, challenges such as skin penetration strength, drug-loading capacity, and regulatory standards still require solutions. Material and design innovations, particularly the combination of GelMA with nanomaterials and natural polymers, have the potential to enhance the MN efficiency and expand its applications in various medical fields. This review explores the latest developments in GelMA-based MN design and their future potential as reliable therapeutic devices.
Collapse
Affiliation(s)
- Khazanah Nurain Nurdin
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| | - Cecep Suhandi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| | | | - Safwat A Mahmoud
- Center for Scientific Research and Entrepreneurship, Northern Border University, 73213, Arar, Saudi Arabia
| | - Khaled M Elamin
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia.
| |
Collapse
|
3
|
Zhong H, Chen Z, Huang J, Yu X, Wang C, Zheng Y, Peng M, Yuan Z. Spray-drying-engineered CS/HA-bilayer microneedles enable sequential drug release for wound healing. J Mater Chem B 2025; 13:4819-4829. [PMID: 40152787 DOI: 10.1039/d5tb00121h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
High incidence and mortality rates of chronic wounds place a heavy burden on global healthcare systems. Achieving phased delivery of antimicrobial and regenerative drugs is crucial for promoting chronic wound healing. Herein, a microneedle (MN) patch with a biphasic release system was developed using a combination of solvent casting and spraying methods. Additionally, a copper/PDMS mold was introduced to address the issue of deformation in the chitosan material during drying on polydimethylsiloxane (PDMS). The MNs have a bilayer structure, with a hyaluronic acid (HA) coating loaded with doxycycline (DOX) for antibacterial action and a chitosan (CS) core loaded with vascular endothelial growth factor (VEGF) for promoting cell migration and proliferation. Notably, in vitro drug release studies showed that the coating drug was released by 98.8% within 10 hours, while the release of the core drug could be sustained for up to 70 hours. In vivo studies showed that chronic wounds on C57 mice treated with CS/HA-bilayer MNs achieved nearly complete healing by day 9. These wounds exhibited reduced inflammatory cell infiltration, increased epithelial tissue regeneration, and enhanced collagen deposition. This work integrates the staged management of bacterial infection and angiogenesis and offers promising prospects for enhancing chronic wound healing.
Collapse
Affiliation(s)
- Haowen Zhong
- School of Electro-mechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, Guangdong University of Technology, Guangzhou, 510006, China
- State Key Laboratory for High Performance Tools, Guangdong University of Technology, Guangzhou, 510006, China
- Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zongyou Chen
- School of Electro-mechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, Guangdong University of Technology, Guangzhou, 510006, China
- State Key Laboratory for High Performance Tools, Guangdong University of Technology, Guangzhou, 510006, China
- Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jiahao Huang
- School of Electro-mechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, Guangdong University of Technology, Guangzhou, 510006, China
- State Key Laboratory for High Performance Tools, Guangdong University of Technology, Guangzhou, 510006, China
- Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiao Yu
- School of Electro-mechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, Guangdong University of Technology, Guangzhou, 510006, China
- State Key Laboratory for High Performance Tools, Guangdong University of Technology, Guangzhou, 510006, China
- Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou, 510006, China
| | - Chengyong Wang
- School of Electro-mechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, Guangdong University of Technology, Guangzhou, 510006, China
- State Key Laboratory for High Performance Tools, Guangdong University of Technology, Guangzhou, 510006, China
- Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yue Zheng
- Nanfang Hospital, Southern Medical University, Guangzhou, 510006, China
| | - Mengran Peng
- Department of Dermatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhishan Yuan
- School of Electro-mechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, Guangdong University of Technology, Guangzhou, 510006, China
- State Key Laboratory for High Performance Tools, Guangdong University of Technology, Guangzhou, 510006, China
- Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
4
|
Cui X, Gao Z, Han X, Yu Q, Cauduro VH, Flores EMM, Ashokkumar M, Qiu X, Cui J. Ultrasound-assisted preparation of shikonin-loaded emulsions for the treatment of bacterial infections. ULTRASONICS SONOCHEMISTRY 2025; 115:107302. [PMID: 40056870 PMCID: PMC11930738 DOI: 10.1016/j.ultsonch.2025.107302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 03/10/2025]
Abstract
Bacteria can encapsulate themselves in a self-generated matrix of hydrated extracellular polymeric substances such as polysaccharides, proteins, and nucleic acids, thereby forming bacterial biofilm infections. These biofilms are drug resistant and will diminish the efficacy of antimicrobial agents, rendering treatment of such infections challenging. Herein, an innovative strategy is proposed to synergistically degrade bacterial biofilms and eradicate the entrapped bacteria through integrating α-amylase (α-Amy), shikonin (SK) and epigallocatechin gallate (EGCG) within an emulsion. The natural protein α-Amy is deployed to enzymatically hydrolyze the polysaccharide of biofilms. Due to the amphipilic properties of α-Amy and the cross-linking capability of EGCG, the formed α-Amy/SK@EGCG emulsion possess high stability. SK was encapsulated within the emulsion through ultrasound-assisted assembly, targeting to treat bacterial infection after biofilm degradation. In vitro and in vivo experiments demonstrate that the polyphenol-protein stabilized emulsion loaded with antibacterial SK achieves profound penetration into the biofilms due to the extracellular polysaccharide hydrolysis mediated by α-Amy. As a result, the α-Amy/SK@EGCG emulsion can significantly alleviate inflammation symptoms and accelerate the healing process of biofilm-infected wounds. This study provides a promising therapeutic strategy for the development of novel materials aimed for the enhanced treatment of bacterial biofilm infections.
Collapse
Affiliation(s)
- Xiaomiao Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Zhiliang Gao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xinxin Han
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Qun Yu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Vitoria H Cauduro
- Department of Chemistry, Federal University of Santa Maria, Santa Maria 97105-900 RS, Brazil
| | - Erico M M Flores
- Department of Chemistry, Federal University of Santa Maria, Santa Maria 97105-900 RS, Brazil
| | | | - Xiaoyong Qiu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China; Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, Shandong University, Jinan, Shandong 250100, China.
| |
Collapse
|
5
|
Jing Y, Liu X, Zhu Y, Wu L, Nong W. Metal-organic framework microneedles for precision transdermal drug delivery: design strategy and therapeutic potential. NANOSCALE 2025; 17:5571-5604. [PMID: 39918280 DOI: 10.1039/d4nr03898c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2025]
Abstract
Metal-organic frameworks (MOFs) are porous materials renowned for their high porosity, large specific surface area, biocompatibility, and biodegradability. Hydrogel microneedles (MNs) is an emerging technology that minimally disrupts the skin or mucosal membranes, bypassing gastrointestinal absorption and the rapid metabolism typical of oral drug delivery. Over the past few decades, both MOFs and MNs have found applications across a range of fields. However, MOFs alone cannot penetrate the skin or mucosal barrier to deliver drugs effectively, and MNs have limited direct loading capacity. When combined, MOFs enhance the loading efficiency of therapeutic agents in hydrogel MNs and optimize their release kinetics. Additionally, the incorporation of MOFs improves the mechanical properties of hydrogel MNs, increasing their permeability to the skin. In turn, hydrogel MNs enable MOFs-whether therapeutically active or drug-loaded-to bypass the skin or mucosal barrier and deliver active compounds directly to the target site for localized treatment. This review discusses the structural features and preparation methods of MOFs and MOF-based MNs, explores their synergistic potential, and highlights strategies for integrating MOFs with MNs to enhance transdermal drug delivery in applications such as wound healing, scar management, acne treatment, and tumor suppression. Finally, we examine the challenges and future potential of MOF-based MNs and offer insights into their role in advancing transdermal therapies.
Collapse
Affiliation(s)
- Yutong Jing
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| | - Xueting Liu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| | - Yajing Zhu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| | - Lichuan Wu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| | - Wenqian Nong
- Institute of Oncology, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China.
| |
Collapse
|
6
|
Peng T, Chen Y, Luan X, Hu W, Wu W, Guo B, Lu C, Wu C, Pan X. Microneedle technology for enhanced topical treatment of skin infections. Bioact Mater 2025; 45:274-300. [PMID: 39659727 PMCID: PMC11629152 DOI: 10.1016/j.bioactmat.2024.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 10/31/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024] Open
Abstract
Skin infections caused by microbes such as bacteria, fungi, and viruses often lead to aberrant skin functions and appearance, eventually evolving into a significant risk to human health. Among different drug administration paradigms for skin infections, microneedles (MNs) have demonstrated superiority mainly because of their merits in enhancing drug delivery efficiency and reducing microbial resistance. Also, integrating biosensing functionality to MNs offers point-of-care wearable medical devices for analyzing specific pathogens, disease status, and drug pharmacokinetics, thus providing personalized therapy for skin infections. Herein, we do a timely update on the development of MN technology in skin infection management, with a special focus on how to devise MNs for personalized antimicrobial therapy. Notably, the advantages of state-of-the-art MNs for treating skin infections are pointed out, which include hijacking sequential drug transport barriers to enhance drug delivery efficiency and delivering various therapeutics (e.g., antibiotics, antimicrobial peptides, photosensitizers, metals, sonosensitizers, nanoenzyme, living bacteria, poly ionic liquid, and nanomoter). In addition, the nanoenzyme-based multimodal antimicrobial therapy is highlighted in addressing intractable infectious wounds. Furthermore, the MN-based biosensors used to identify pathogen types, track disease status, and quantify antibiotic concentrations are summarized. The limitations of antimicrobial MNs toward clinical translation are offered regarding large-scale production, quality control, and policy guidance. Finally, the future development of biosensing MNs with easy-to-use and intelligent properties and MN-based wearable drug delivery for home-based therapy are prospected. We hope this review will provide valuable guidance for future development in MN-mediated topical treatment of skin infections.
Collapse
Affiliation(s)
- Tingting Peng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/ International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Yangyan Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xuanyu Luan
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Wanshan Hu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/ International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Wentao Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Bing Guo
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
| | - Chao Lu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/ International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Chuanbin Wu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment/ International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China/College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
7
|
Wang Z, Li B, Nie C, Zhang R, Qu S, Shao Q, Zhang X, Li J, Li W, Li H, Xiao J, Xing C. Photothermal Conjugated Polymer Microneedle with Biofilm Elimination and Angiogenesis for Diabetic Wound Healing. NANO LETTERS 2025; 25:2911-2921. [PMID: 39913171 DOI: 10.1021/acs.nanolett.4c06284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Diabetic wounds are highly susceptible to bacterial infection, which can lead to the formation of bacterial biofilms, making diabetic wound healing a major challenge. In this study, a composited microneedle that incorporated drug-loaded conjugated polymer nanoparticles and basic fibroblast growth factor was prepared to eliminate biofilms and promote vascular regeneration. This microneedle released minocycline under near-infrared (NIR) light, effectively penetrating bacterial biofilms. The photothermal properties of the conjugated polymers, combined with the antibacterial action of minocycline, contribute to the eradication of biofilms and the elimination of drug-resistant bacteria. Moreover, it regulated the wound microenvironment by reducing the level of oxidative stress, as well as the production of inflammatory factors at the wound site. Meanwhile, it effectively boosted cell migration and promoted angiogenesis to accelerate diabetic wound healing. This composited microneedle for biofilm elimination represents a promising approach for promoting diabetic wound healing.
Collapse
Affiliation(s)
- Zijuan Wang
- Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Boying Li
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Chenyao Nie
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 325035, P. R. China
| | - Ran Zhang
- Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, Key Laboratory of Molecular Biophysics of Hebei Province, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Shuyi Qu
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 325035, P. R. China
| | - Qi Shao
- Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Xin Zhang
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 325035, P. R. China
| | - Jie Li
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 325035, P. R. China
| | - Wentai Li
- Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, Key Laboratory of Molecular Biophysics of Hebei Province, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Hao Li
- Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, Key Laboratory of Molecular Biophysics of Hebei Province, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Jian Xiao
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 325035, P. R. China
| | - Chengfen Xing
- Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
- Innovation and Research Institute of Hebei University of Technology in Shijiazhuang, Key Laboratory of Molecular Biophysics of Hebei Province, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| |
Collapse
|
8
|
Aldeen Salaymeh E, Steinberg D, Abu Ammar A. Chlorhexidine-loaded microneedles for treatment of oral diseases. Int J Pharm 2025; 670:125143. [PMID: 39732215 DOI: 10.1016/j.ijpharm.2024.125143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/16/2024] [Accepted: 12/26/2024] [Indexed: 12/30/2024]
Abstract
Chlorhexidine (CHX) is a gold standard therapeutic agent against clinical oral pathogens. However, its oral use is limited due to unpleasant taste, alteration in taste buds, staining of teeth and mucous membranes. Therefore, CHX-loaded PLGA microneedles (MNs) were fabricated for local and controlled release in the oral cavity, using a casting mold method. The MNs were well-formed with sharp MN tips and flat baseplates, showing quadrangular pyramidal shapes with average needle height and base width of about 500 and 200 µm, respectively. CHX was successfully incorporated into the PLGA-based MNs, exhibiting high encapsulation efficiency. CHX-PLGA MNs were further characterized in terms of ATR-FTIR and DSC, indicating intermolecular interactions between CHX and PLGA. In vitro CHX release exhibited an initial burst release within the first 24 h, accompanied by a slower release rate, reaching cumulative release of ca. 56 % after 10 days. The antibacterial effect of CHX-PLGA MNs on Streptococcus mutans (S. mutans) was evaluated using different techniques. In agar diffusion assay, the MNs displayed sustained antimicrobial activity over 8 days, while they significantly reduced the bacterial growth of S. mutans on the first 4 days in a planktonic experimental setup. No antibacterial effect was recorded for the blank PLGA MNs that served as a control group. Interestingly, CHX-PLGA MNs eliminated biofilm formation and metabolic activity for 3 days compared with biofilm formed in the presence of blank MNs. Then, a rebound effect was recorded. A weak antibiofilm effect and anti-metabolic activity was observed when MNs tested against pre-formed biofilm. Taken together, CHX-PLGA MNs hold promise as a viable delivery modality for localized and sustainedantimicrobial activity in the oral cavity. Further research is required to optimize the formulation and assess efficacy and safety in clinical settings.
Collapse
Affiliation(s)
- Ezz Aldeen Salaymeh
- Department of Pharmaceutical Engineering, Azrieli College of Engineering Jerusalem, Jerusalem 9103501, Israel
| | - Doron Steinberg
- Biofilm Research Laboratory, Institute of Bio-medicine and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Aiman Abu Ammar
- Department of Pharmaceutical Engineering, Azrieli College of Engineering Jerusalem, Jerusalem 9103501, Israel.
| |
Collapse
|
9
|
Upadhyay A, Jaiswal N, Kumar A. Biofilm battle: New transformative tactics to tackle the bacterial biofilm infections. Microb Pathog 2025; 199:107277. [PMID: 39756524 DOI: 10.1016/j.micpath.2025.107277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/28/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Bacterial biofilm infections are the root cause of persistent infections and the prevalence of resistance to specific or multiple antibiotics. Biofilms have unique features that provide a protective environment for bacteria under various stress conditions and contribute significantly to the pathogenesis of chronic infections. They cover bacterial cells with a self-produced extracellular polymeric matrix, effectively hiding the bacterial cells and their targets. Conventional therapies cannot effectively treat and control bacterial biofilm infections. Therefore, advanced therapeutic means like microneedles, targeted tissue therapy, phage therapy, nanodrug therapy, combination drug therapy, microbial therapy, and immune cell hijacking therapy are needed to tackle the complex issue. These advanced therapies have shown promising results not only in bacterial biofilm infections but also in diseases such as cancer and genetic disorders. Due to their unique features and mechanisms, they significantly contribute to preventing bacterial infections by disrupting biofilm. This article aims to serve as a comprehensive overview of the ongoing battle against biofilms with transformative therapies. This article compiles advancements in new therapies that have demonstrated effective roles in the disruption of bacterial biofilms. We also discuss the current developments and Food and Drug Administration-approved status of these therapies. Additionally, this article summarizes the limitations and future steps needed for these therapies in the field of bacterial biofilm prevention. Thus, these therapies represent the future of preventing bacterial biofilm infections and could be also effective in the reversal of resistance.
Collapse
Affiliation(s)
- Aditya Upadhyay
- Department of Biotechnology, National Institute of Technology, Raipur, 492010, (CG), India
| | - Neha Jaiswal
- Department of Biotechnology, National Institute of Technology, Raipur, 492010, (CG), India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, 492010, (CG), India.
| |
Collapse
|
10
|
Song YW, Nam J, Kim J, Lee Y, Choi J, Min HS, Yang H, Cho Y, Hwang S, Son J, Jung UW, Jung H. Hyaluronic acid-based minocycline-loaded dissolving microneedle: Innovation in local minocycline delivery for periodontitis. Carbohydr Polym 2025; 349:122976. [PMID: 39638519 DOI: 10.1016/j.carbpol.2024.122976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 12/07/2024]
Abstract
Periodontitis is a prevalent inflammatory disease that affects tooth-supporting tissues and is induced by complex polymicrobial dental plaques. Prior treatments, including topical antibiotic ointments, have faced difficulties in tissue permeability issues. Although dissolving microneedle (DMN) has been proposed as a painless and highly efficient transdermal drug delivery system to resolve this challenge, minocycline, widely used for the treatment of periodontitis, is light-sensitive, making it challenging to maintain its stability using conventional fabrication methods. Our hyaluronic acid-based minocycline-loaded dissolving microneedle (HAM-DMN) was designed utilizing an innovative light-blocking strategy, preserving 94.4 % of minocycline's stability, as confirmed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. HAM-DMNs demonstrated antimicrobial efficacy in in vitro zone of inhibition tests with Streptococcus mutans strains and provided enhanced local delivery of minocycline to porcine oral gingival mucosa at concentrations 6.1 times higher than those of commercial ointments. In vivo studies in periodontitis-induced rat models showed that HAM-DMNs reduced levels of junctional epithelium more effectively than control and blank DMN groups, indicating enhanced treatment efficacy. HAM-DMN is a novel local delivery system developed to overcome the limitations of systemic delivery and conventional topical treatment. We suggest that HAM-DMNs can replace injections for the treatment of intraoral mucosal and systemic diseases.
Collapse
Affiliation(s)
- Young Woo Song
- Department of Periodontology, Dental Hospital, Veterans Health Service Medical Center, 53, Jinhwangdo-ro 61-gil, Seoul, Republic of Korea
| | - Jeehye Nam
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seoul 03722, Republic of Korea
| | - Jeongin Kim
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seoul 03722, Republic of Korea
| | - Youjin Lee
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seoul 03722, Republic of Korea
| | - Jaibyung Choi
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seoul 03722, Republic of Korea
| | - Hye Su Min
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seoul 03722, Republic of Korea
| | - Huisuk Yang
- Juvic Inc., 208Ho, 272, Digital-ro, Guro-gu, Seoul 08389, Republic of Korea
| | - Yoeseph Cho
- Doping Control Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seoul 02792, Republic of Korea
| | - Sungmin Hwang
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seoul 03722, Republic of Korea; Doping Control Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seoul 02792, Republic of Korea
| | - Junghyun Son
- Doping Control Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seoul 02792, Republic of Korea
| | - Ui-Won Jung
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seoul 03722, Republic of Korea.
| | - Hyungil Jung
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seoul 03722, Republic of Korea; Juvic Inc., 208Ho, 272, Digital-ro, Guro-gu, Seoul 08389, Republic of Korea.
| |
Collapse
|
11
|
Kumar D, Pandey S, Shiekmydeen J, Kumar M, Chopra S, Bhatia A. Therapeutic Potential of Microneedle Assisted Drug Delivery for Wound Healing: Current State of the Art, Challenges, and Future Perspective. AAPS PharmSciTech 2025; 26:25. [PMID: 39779610 DOI: 10.1208/s12249-024-03017-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Microneedles (MNs) appear as a transformative and minimally invasive platform for transdermal drug delivery, representing a highly promising strategy in wound healing therapeutics. This technology, entailing the fabrication of micron-scale needle arrays, enables the targeted and efficient delivery of bioactive agents into the epidermal and dermal layers without inducing significant pain or discomfort. The precise penetration of MNs facilitates localized and sustained drug release, which significantly enhances tissue regeneration and accelerates wound closure. Furthermore, MNs can be engineered to encapsulate essential bioactive compounds, including antimicrobial agents, growth factors, and stem cells, which are critical for modulating the wound healing cascade and mitigating infection risk. The biodegradable nature of these MNs obviates the need for device removal, rendering them particularly advantageous in the management of chronic wounds such as diabetic ulcers and pressure sores. The integration of nanotechnology within MNs further augments their drug-loading capacity, stability, and controlled-release kinetics, offering a sophisticated therapeutic modality. This cutting-edge approach has the potential to redefine wound care by optimizing therapeutic efficacy, reducing adverse effects, and enhancing patient adherence. As MN technology advances, its application in wound healing exemplifies a dynamic frontier within biomedical engineering and regenerative medicine.
Collapse
Affiliation(s)
- Devesh Kumar
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Shubham Pandey
- Institute of Nuclear Medicine & Allied Sciences (INMAS), Brig. S. K Majumdar Marg, Timarpur, Delhi, 110054, India
- Department of Chemistry, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Jailani Shiekmydeen
- Jailani Shiekmydeen, Formulation R&D, Alpha Pharma Industries, KAEC, Rabigh, Saudi Arabia
| | - Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India.
| | - Shruti Chopra
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India.
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India.
| |
Collapse
|
12
|
Lu M, Cao X, Luo Z, Bian F, Wang Y, Zhao Y. Melanin Hydrogel Inverse Opal Microneedle Patches for Wound Healing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2404636. [PMID: 39473318 DOI: 10.1002/smll.202404636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/21/2024] [Indexed: 01/11/2025]
Abstract
Bacterial infected wounds bring an economic burden to the worldwide medical care field. A variety of bioactives-integrated hydrogel patches are developed in response to this challenge. Here, the melanin hydrogel inverse opal microneedle patches (MNs) with antioxidant and visual color sensing abilities for the management of bacterial infected wounds are proposed. The MNs are fabricated by applying melanin-loaded polyethylene glycol diacrylate (PEGDA) as the inverse opal hydrogel and using bacitracin-carried gelatin to fill those nanopores of hydrogel scaffold. Benefitting from the antioxidant capacity of melanin nanoparticles and the local antimicrobial ability of bacitracin, the resulting MNs possess the integrated functions of reactive oxygen species scavenging and antibacterial. Besides, the inverse opal structure endows the MNs with vivid structure color and detectable reflected wavelength, which can gradually shift with the release of the drug, thus allowing MNs to assess the drug delivery. Based on these characteristics, MNs perform excellent in in vitro drug delivery and monitoring, as well as the promotion of bacterial infected wound recovery in vivo, indicating the potential of MNs in the future wound management field.
Collapse
Affiliation(s)
- Minhui Lu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xinyue Cao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Zhiqiang Luo
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Feika Bian
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yu Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
- Shenzhen Research Institute, Southeast University, Shenzhen, 518071, China
| |
Collapse
|
13
|
Liu M, Jiang J, Wang Y, Liu H, Lu Y, Wang X. Smart drug delivery and responsive microneedles for wound healing. Mater Today Bio 2024; 29:101321. [PMID: 39554838 PMCID: PMC11567927 DOI: 10.1016/j.mtbio.2024.101321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/25/2024] [Accepted: 10/29/2024] [Indexed: 11/19/2024] Open
Abstract
Wound healing is an ongoing concern for the medical community. The limitations of traditional dressings are being addressed by materials and manufacturing technology. Microneedles (MNs) are a novel type of drug delivery system that has been widely used in cancer therapy, dermatological treatment, and insulin and vaccine delivery. MNs locally penetrate necrotic tissue, eschar, biofilm and epidermis into deep tissues, avoiding the possibility of drug dilution and degradation and greatly improving administration efficiency with less pain. MNs represent a new direction for wound treatment and transdermal delivery. In this study, we summarise the skin wound healing process and the mechanical stimulation of MNs in the context of the wound healing process. We also introduce the structural design and manufacture of MNs. Subsequently, MNs are categorised according to the loaded drugs, where the design of the MNs according to the traumatic biological/biochemical microenvironment (pH, glucose, and bacteria) and the physical microenvironment (temperature, light, and ultrasound) is emphasised. Finally, the advantages of MNs are compared with traditional drug delivery systems and their prospects are discussed.
Collapse
Affiliation(s)
- Meixuan Liu
- Department of Burns & Wound Care Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Jing Jiang
- Department of Burns & Wound Care Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yiran Wang
- Department of Burns & Wound Care Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Huan Liu
- Department of Burns & Wound Care Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yiping Lu
- Senior once Class 5, Shanghai Pinghe School, Shanghai, 200000, China
| | - Xingang Wang
- Department of Burns & Wound Care Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| |
Collapse
|
14
|
Wen T, Zhao Y, Fu Y, Chen Y, Li X, Shi C, Xian D, Zhao W, Yang D, Lu C, Wu C, Pan X, Quan G. "On-demand" nanosystem-integrated microneedles for amplified triple therapy against recalcitrant bacteria and biofilm growth. Mater Today Bio 2024; 29:101327. [PMID: 39582781 PMCID: PMC11585702 DOI: 10.1016/j.mtbio.2024.101327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/13/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024] Open
Abstract
Phototherapy has emerged to eradicate recalcitrant bacteria without causing drug resistance, but it is often accompanied by considerable limitations owing to a high tolerance of recalcitrant bacteria to heat and oxidative damage, leading to low efficiency of monotherapy and unwanted side effects. Assuming that employing antimicrobial peptides (AMPs) to disrupt bacterial membranes could reduce bacterial tolerance, a multifunctional "on-demand" nanosystem based on zeolitic imidazolate framework-8 (ZIF-8) with metal ions for intrinsic antibacterial activity was constructed to potently kill methicillin-resistant Staphylococcus aureus (MRSA). Then, microneedles (MNs) were used to transdermally deliver the ZIF-8-based nanosystem for localized skin infection. After MNs insertion, the nanoplatform could specifically deliver the loaded therapeutic components to bacterial infection sites through employing hyaluronic acid (HA) as a capping agent, thus realizing the "on-demand" payload release triggered by excess hyaluronidase secreted by MRSA. The prepared nanosystem and MNs were confirmed to exert an amplified triple therapy originating from membranolytic effect, phototherapy, and ion therapy, thus displaying a powerful bactericidal and MRSA biofilm destruction ability. This intelligent antimicrobial strategy may bring a dawn of hope for eradicating multidrug-resistant bacteria and biofilms.
Collapse
Affiliation(s)
- Ting Wen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yiting Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yanping Fu
- College of Pharmacy, Jinan University, Guangzhou, 511443, China
| | - Ying Chen
- College of Pharmacy, Jinan University, Guangzhou, 511443, China
| | - Xiaodie Li
- College of Pharmacy, Jinan University, Guangzhou, 511443, China
| | - Chaonan Shi
- College of Pharmacy, Jinan University, Guangzhou, 511443, China
| | - Dongyi Xian
- College of Pharmacy, Jinan University, Guangzhou, 511443, China
| | - Wanchen Zhao
- College of Pharmacy, Jinan University, Guangzhou, 511443, China
| | - Dan Yang
- College of Pharmacy, Jinan University, Guangzhou, 511443, China
| | - Chao Lu
- College of Pharmacy, Jinan University, Guangzhou, 511443, China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou, 511443, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou, 511443, China
| |
Collapse
|
15
|
Gu C, Fang S, Liu L, Chen B, Xu L, Shao M, Sun J, Qian H, Wang W. Local Release of Copper Manganese Oxide Using HA Microneedle for Improving the Efficacy of Drug-Resistant Wound Inflammation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406377. [PMID: 39370574 DOI: 10.1002/smll.202406377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/23/2024] [Indexed: 10/08/2024]
Abstract
The production of bacterial toxins and excessive accumulation of reactive oxygen species (ROS) can induce localized oxidative stress, triggering an exaggerated immune response that impedes wound healing and culminates in chronic wounds. To address this issue, a microneedle (MN) system loaded with copper-manganese oxide (CMO) is developed to modulate the hyperimmune response in wounds. CMO@MN exhibits excellent antimicrobial and anti-inflammatory properties by effectively killing bacteria, scavenging ROS, and modulating macrophage polarization through their multiple enzymatic activities and photothermal properties. RNA sequencing revealed that CMO@MN improved the therapeutic effect on the infected skin of mice by balancing the ratio of M1/M2 macrophages and promoting cell migration and angiogenesis through the regulation of relevant pathways. Overall, this CMO@MN patch skillfully balances the complex issues between the immune response and wound healing and has potential applications in the treatment of other serious bacterial infections.
Collapse
Affiliation(s)
- Cheng Gu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, P. R. China
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui, 230012, P. R. China
| | - Shu Fang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, P. R. China
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui, 230012, P. R. China
| | - Lin Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Benjin Chen
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, P. R. China
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui, 230012, P. R. China
| | - Lingling Xu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, P. R. China
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui, 230012, P. R. China
| | - Min Shao
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Jianan Sun
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, P. R. China
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui, 230012, P. R. China
| | - Haisheng Qian
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, P. R. China
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui, 230012, P. R. China
| | - Wanni Wang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, P. R. China
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui, 230012, P. R. China
| |
Collapse
|
16
|
Rojekar S, Parit S, Gholap AD, Manchare A, Nangare SN, Hatvate N, Sugandhi VV, Paudel KR, Ingle RG. Revolutionizing Eye Care: Exploring the Potential of Microneedle Drug Delivery. Pharmaceutics 2024; 16:1398. [PMID: 39598522 PMCID: PMC11597228 DOI: 10.3390/pharmaceutics16111398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/09/2024] [Accepted: 09/16/2024] [Indexed: 11/29/2024] Open
Abstract
Microneedle technology revolutionizes ocular drug delivery by addressing challenges in treating ocular diseases. This review explores its potential impact, recent advancements, and clinical uses. This minimally invasive technique offers precise control of drug delivery to the eye, with various microneedle types showing the potential to penetrate barriers in the cornea and sclera, ensuring effective drug delivery. Recent advancements have improved safety and efficacy, offering sustained and controlled drug delivery for conditions like age-related macular degeneration and glaucoma. While promising, challenges such as regulatory barriers and long-term biocompatibility persist. Overcoming these through interdisciplinary research is crucial. Ultimately, microneedle drug delivery presents a revolutionary method with the potential to significantly enhance ocular disease treatment, marking a new era in eye care.
Collapse
Affiliation(s)
- Satish Rojekar
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Swapnali Parit
- Institute of Chemical Technology, Marathwada Campus, Jalna 431203, India; (S.P.); (A.M.); (N.H.)
| | - Amol D. Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, India;
| | - Ajit Manchare
- Institute of Chemical Technology, Marathwada Campus, Jalna 431203, India; (S.P.); (A.M.); (N.H.)
| | - Sopan N. Nangare
- Department of Pharmaceutics, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, India;
| | - Navnath Hatvate
- Institute of Chemical Technology, Marathwada Campus, Jalna 431203, India; (S.P.); (A.M.); (N.H.)
| | - Vrashabh V. Sugandhi
- College of Pharmacy & Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA;
| | - Keshav Raj Paudel
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Rahul G. Ingle
- Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (Deemed to Be University)—DMIHER, Wardha 442107, India
| |
Collapse
|
17
|
Chen X, Li X, Xiao X, Long R, Chen B, Lin Y, Wang S, Liu Y. Photothermal and Antibacterial PDA@Ag/SerMA Microneedles for Promoting Diabetic Wound Repair. ACS APPLIED BIO MATERIALS 2024; 7:6603-6616. [PMID: 39250682 DOI: 10.1021/acsabm.4c00793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Diabetic foot ulcer (DFU) is a common and severe complication of diabetes characterized by wound neuropathy, ischemia, and susceptibility to infection, making its treatment difficult. Dressings are commonly used in treating diabetic wounds; however, they have disadvantages, including lack of flexibility and mechanical strength, lack of coagulation activity, resistance to biodegradation, and low drug delivery efficiency. Developing more effective strategies for diabetic wound treatment has become a new focus. Microneedles (MN) can be used as a drug delivery platform for DFU wounds, allowing safe, effective, painless and minimally invasive medication administration through the skin. Herein, PDA@Ag/SerMA microneedles were prepared by combining the photothermal properties of polydopamine (PDA), the antimicrobial properties of argentum (Ag), and the ability of sericin methacryloyl (SerMA) to promote cell mitosis to accelerate wound healing and treat diabetic ulcer wounds. The results revealed that PDA@Ag/SerMA microneedles exhibited approximately 100% antimicrobial efficacy against Staphylococcus aureus and Escherichia coli under 808 nm near-infrared (NIR) irradiation. Furthermore, the wound healing rate of mice reached 95% within 12 days, which demonstrated the excellent antibacterial properties and wound healing efficacy of PDA@Ag/SerMA microneedles at cellular and animal levels, providing a potential solution for treating DFU.
Collapse
Affiliation(s)
- Xinyu Chen
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Xuemei Li
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Xi Xiao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Ruimin Long
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Biaoqi Chen
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - Yi Lin
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Shibin Wang
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, China
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Yuangang Liu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
18
|
Abid Al-Wahaab ZM, Al-Mayahy MH. Microneedles as a potential platform for improving antibiotic delivery to bacterial infections. Heliyon 2024; 10:e37173. [PMID: 39286069 PMCID: PMC11403078 DOI: 10.1016/j.heliyon.2024.e37173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 07/15/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Bacterial infections are mainly managed by the administration of antibiotics, which are either cytotoxic or cytostatic to microbes. In some cases, it is inconvenient to treat infections caused by bacteria using the traditional oral route for antibiotic administration. This can be due to the limited oral bioavailability of antibiotics, their gastrointestinal tract (GIT) adverse effects, and the increased possibility of the appearance of resistant strains. In addition, the fact that many populations are needle-phobic restricts the switch from the oral to the parenteral route. Furthermore, poor drug permeation throughout the stratum corneum of topically applied antibiotics causes low systemic bioavailability. Therefore, microneedles (MNs) have emerged as viable medicinal devices for the delivery of antibiotics, either for local or systemic effects. MNs represent a minimally invasive, painless way of administration that can be self-administered by the patient without the need of medical professionals. This review has specifically focused on MNs as a promising approach for the delivery of antibiotics; it has discussed the different types of MNs, their advantages, and possible limitations for the delivery of antibiotics. Recent studies on the incorporation of antibiotics into various types of MNs, either for topical or transdermal delivery are highlighted, and finally, we present the conclusion and future perspectives.
Collapse
|
19
|
Xing Y, Yang K, Lu A, Mackie K, Guo F. Sensors and Devices Guided by Artificial Intelligence for Personalized Pain Medicine. CYBORG AND BIONIC SYSTEMS 2024; 5:0160. [PMID: 39282019 PMCID: PMC11395709 DOI: 10.34133/cbsystems.0160] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 09/18/2024] Open
Abstract
Personalized pain medicine aims to tailor pain treatment strategies for the specific needs and characteristics of an individual patient, holding the potential for improving treatment outcomes, reducing side effects, and enhancing patient satisfaction. Despite existing pain markers and treatments, challenges remain in understanding, detecting, and treating complex pain conditions. Here, we review recent engineering efforts in developing various sensors and devices for addressing challenges in the personalized treatment of pain. We summarize the basics of pain pathology and introduce various sensors and devices for pain monitoring, assessment, and relief. We also discuss advancements taking advantage of rapidly developing medical artificial intelligence (AI), such as AI-based analgesia devices, wearable sensors, and healthcare systems. We believe that these innovative technologies may lead to more precise and responsive personalized medicine, greatly improved patient quality of life, increased efficiency of medical systems, and reducing the incidence of addiction and substance use disorders.
Collapse
Affiliation(s)
- Yantao Xing
- Department of Intelligent Systems Engineering, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - Kaiyuan Yang
- Department of Intelligent Systems Engineering, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - Albert Lu
- Department of Intelligent Systems Engineering, Indiana University Bloomington, Bloomington, IN 47405, USA
- Culver Academies High School, Culver, IN 46511, USA
| | - Ken Mackie
- Gill Center for Biomolecular Science, Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - Feng Guo
- Department of Intelligent Systems Engineering, Indiana University Bloomington, Bloomington, IN 47405, USA
| |
Collapse
|
20
|
Luo R, Xu H, Lin Q, Chi J, Liu T, Jin B, Ou J, Xu Z, Peng T, Quan G, Lu C. Emerging Trends in Dissolving-Microneedle Technology for Antimicrobial Skin-Infection Therapies. Pharmaceutics 2024; 16:1188. [PMID: 39339224 PMCID: PMC11435303 DOI: 10.3390/pharmaceutics16091188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/26/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Skin and soft-tissue infections require significant consideration because of their prolonged treatment duration and propensity to rapidly progress, resulting in severe complications. The primary challenge in their treatment stems from the involvement of drug-resistant microorganisms that can form impermeable biofilms, as well as the possibility of infection extending deep into tissues, thereby complicating drug delivery. Dissolving microneedle patches are an innovative transdermal drug-delivery system that effectively enhances drug penetration through the stratum corneum barrier, thereby increasing drug concentration at the site of infection. They offer highly efficient, safe, and patient-friendly alternatives to conventional topical formulations. This comprehensive review focuses on recent advances and emerging trends in dissolving-microneedle technology for antimicrobial skin-infection therapy. Conventional antibiotic microneedles are compared with those based on emerging antimicrobial agents, such as quorum-sensing inhibitors, antimicrobial peptides, and antimicrobial-matrix materials. The review also highlights the potential of innovative microneedles incorporating chemodynamic, nanoenzyme antimicrobial, photodynamic, and photothermal antibacterial therapies. This review explores the advantages of various antimicrobial therapies and emphasizes the potential of their combined application to improve the efficacy of microneedles. Finally, this review analyzes the druggability of different antimicrobial microneedles and discusses possible future developments.
Collapse
Affiliation(s)
- Rui Luo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Department of Pharmacy, Jinan University, Guangzhou 511436, China
- Department of Pharmacy, College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Huihui Xu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Department of Pharmacy, Jinan University, Guangzhou 511436, China
- Department of Pharmacy, College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Qiaoni Lin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Department of Pharmacy, Jinan University, Guangzhou 511436, China
- Department of Pharmacy, College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Jiaying Chi
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Department of Pharmacy, Jinan University, Guangzhou 511436, China
- Department of Pharmacy, College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Tingzhi Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Department of Pharmacy, Jinan University, Guangzhou 511436, China
- Department of Pharmacy, College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Bingrui Jin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Department of Pharmacy, Jinan University, Guangzhou 511436, China
- Department of Pharmacy, College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Jiayu Ou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Department of Pharmacy, Jinan University, Guangzhou 511436, China
- Department of Pharmacy, College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Zejun Xu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Department of Pharmacy, Jinan University, Guangzhou 511436, China
- Department of Pharmacy, College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Tingting Peng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Department of Pharmacy, Jinan University, Guangzhou 511436, China
- Department of Pharmacy, College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Guilan Quan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Department of Pharmacy, Jinan University, Guangzhou 511436, China
- Department of Pharmacy, College of Pharmacy, Jinan University, Guangzhou 511436, China
| | - Chao Lu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Department of Pharmacy, Jinan University, Guangzhou 511436, China
- Department of Pharmacy, College of Pharmacy, Jinan University, Guangzhou 511436, China
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
21
|
Yang W, Cao M, Wang W, Diao N, Liu X, Hu Y, Wang X, Sun T, Guo C, Chen D. Multifunctional composite soluble microneedle patch based on "one stone, three birds" strategy for promoting the healing of infectious wounds. Colloids Surf B Biointerfaces 2024; 241:114049. [PMID: 38908043 DOI: 10.1016/j.colsurfb.2024.114049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
The colonisation of microorganisms such as bacteria forms a biofilm barrier on the wound's surface, preventing or delaying the penetration of antibacterial drugs. At the same time, continuous bacterial infection can cause oxidative stress and an inflammatory response and hinder angiogenesis, resulting in difficult wound healing. Based on the "one stone, three birds" strategy, a multi-functional nanoparticle composite soluble microneedle was designed and developed to solve this dilemma better. Ginsenoside-liposomes(R-Lipo) were prepared by ginsenoside Rg3, which had the effect of promoting repair, instead of cholesterol, and loaded with berberine (Ber), the antibacterial component of Coptis, together with polydopamine (PDA), which had anti-inflammatory and antioxidant properties, into microneedles based on hyaluronic acid (PDA/R-Lipo@BerMN). PDA/R-Lipo@BerMN tip can penetrate and destroy the integrity of the biofilm, dissolve under the action of hyaluronidase in the skin, and gradually release the drug to achieve rapid antibacterial, anti-inflammatory, antioxidant, and proliferation. As expected, the PDA/R-Lipo@BerMN patch effectively cleared ROS during wound closure, further promoted M2 macrophage polarisation, eradicated bacterial infection, and regulated the immune microenvironment, promoting inflammation suppression, collagen deposition, angiogenesis, and tissue regeneration.
Collapse
Affiliation(s)
- Weili Yang
- School of Pharmacy, Yantai University, 30# Qingquan Road, Yantai 264005, PR China
| | - Min Cao
- School of Pharmacy, Yantai University, 30# Qingquan Road, Yantai 264005, PR China
| | - Wenxin Wang
- School of Pharmacy, Yantai University, 30# Qingquan Road, Yantai 264005, PR China
| | - Ningning Diao
- School of Pharmacy, Yantai University, 30# Qingquan Road, Yantai 264005, PR China
| | - Xiaowei Liu
- School of Pharmacy, Yantai University, 30# Qingquan Road, Yantai 264005, PR China
| | - Yue Hu
- School of Pharmacy, Yantai University, 30# Qingquan Road, Yantai 264005, PR China
| | - Xinxin Wang
- School of Pharmacy, Yantai University, 30# Qingquan Road, Yantai 264005, PR China
| | - Tianying Sun
- School of Pharmacy, Yantai University, 30# Qingquan Road, Yantai 264005, PR China
| | - Chunjing Guo
- College of Marine Life Science, Ocean University of China, 5# Yushan 10 Road, Qingdao 266003, PR China.
| | - Daquan Chen
- School of Pharmacy, Yantai University, 30# Qingquan Road, Yantai 264005, PR China.
| |
Collapse
|
22
|
Choi HJ, Ullah A, Jang MJ, Lee US, Shin MC, An SH, Kim D, Kim BH, Kim GM. Microneedle patch casting using a micromachined carbon master for enhanced drug delivery. Sci Rep 2024; 14:19228. [PMID: 39164355 PMCID: PMC11335881 DOI: 10.1038/s41598-024-70393-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024] Open
Abstract
For successful treatment of diseases, sufficient therapeutics must be provided to the body. Microneedle applications in therapeutic delivery and analytics sampling are restricted because of various issues, including smaller area for drug loading and analytics sampling. To achieve sufficient drug loading and analytics sampling and improve drug penetration while maintaining painless administration, patch-type microneedle arrays were designed and fabricated using polymer casting from a conical cavity mold. Microcavities were formed on a carbon plate via micromechanical machining. A porous polymer layer was coated on a microneedle patch (MNP). The pores of the porous polymer layer provided space and channels for drug delivery. A pH-sensitive polymer layer was employed to cap the porous polymer layer, which prevented drug leakage during storage and provided a stimulus drug release in response to body pH conditions. The drug can be delivered through holes connected to both sides of the patch. The drug release of the MNP was investigated in vitro and in vivo and showed conceptual proof that these MNs have the potential to enhance treatment protocols for various diseases with the flexibility of coating and therapeutic materials and offer significant scope for further variations and advancement.
Collapse
Affiliation(s)
- Hye Jin Choi
- School of Mechanical Engineering, Kyungpook National University, Daegu, 41566, South Korea
| | - Asad Ullah
- Department of Mechanical Engineering, University of Engineering and Technology, Mardan, Khyber Pakhtunkhwa, 23200, Pakistan
| | - Mi Jin Jang
- Preclinical Research Center, Daegu Gyeongbuk Medical Innovation Foundation, Daegu, 41061, South Korea
| | - Ui Seok Lee
- Department of Mechanical Engineering, Graduate School, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul, 06978, Republic of Korea
| | - Min Chul Shin
- School of Mechanical Engineering, Kyungpook National University, Daegu, 41566, South Korea
| | - Sang Hyun An
- Preclinical Research Center, Daegu Gyeongbuk Medical Innovation Foundation, Daegu, 41061, South Korea
| | - Dongseon Kim
- Preclinical Research Center, Daegu Gyeongbuk Medical Innovation Foundation, Daegu, 41061, South Korea
| | - Bo Hyun Kim
- School of Mechanical Engineering, Soongsil University, Seoul, 06978, South Korea.
| | - Gyu Man Kim
- School of Mechanical Engineering, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
23
|
Yang Y, Fan L, Jiang J, Sun J, Xue L, Ma X, Kuai L, Li B, Li Y. M2 macrophage-polarized anti-inflammatory microneedle patch for accelerating biofilm-infected diabetic wound healing via modulating the insulin pathway. J Nanobiotechnology 2024; 22:489. [PMID: 39143532 PMCID: PMC11323363 DOI: 10.1186/s12951-024-02731-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
Macrophages play a pivotal role in the healing of diabetic ulcers. The sustained elevation of glucose levels damages the insulin signaling pathway in macrophages, leading to dysfunctional macrophages that struggle to transition from pro-inflammatory (M1) to reparative (M2) states. Therefore, modulating macrophage inflammatory responses via the insulin pathway holds promise for diabetic ulcer treatment. Additionally, the presence of biofilm impedes drug penetration, and the resulting immunosuppressive microenvironment exacerbates the persistent infiltration of pro-inflammatory M1 macrophages. Therefore, we designed an array of dissolvable microneedle (denoted as NPF@MN) loaded with self-assembled nanoparticles that could deliver NPF nanoparticles, acid-sensitive NPF-releasing Protocatechualdehyde (PA) with hypoglycemic and insulin-like effects, regulating macrophage polarization to an anti-inflammatory M2 phenotype. Additionally, this study extensively examined the mechanism by which NPF@MN accelerates the healing of diabetic ulcers through the activation of the insulin signaling pathway. Through RNA-seq and GSEA analysis, we identified a reduction in the expression of pathway-related factors such as IR, IRS-1, IRS-2, and SHC. Our work presents an innovative therapeutic approach targeting the insulin pathway in diabetic ulcers and underscores its translational potential for clinical management.
Collapse
Affiliation(s)
- Yushan Yang
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Shanghai Skin Disease Hospital of Tongji University, Tongji University, Shanghai, 200092, China
| | - Limin Fan
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Shanghai Skin Disease Hospital of Tongji University, Tongji University, Shanghai, 200092, China
| | - Jingsi Jiang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Jiuyuan Sun
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Shanghai Skin Disease Hospital of Tongji University, Tongji University, Shanghai, 200092, China
| | - Liangyi Xue
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Shanghai Skin Disease Hospital of Tongji University, Tongji University, Shanghai, 200092, China
| | - Xiaoyi Ma
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Shanghai Skin Disease Hospital of Tongji University, Tongji University, Shanghai, 200092, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bin Li
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, 200443, China.
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yongyong Li
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Shanghai Skin Disease Hospital of Tongji University, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
24
|
He W, Kong S, Lin R, Xie Y, Zheng S, Yin Z, Huang X, Su L, Zhang X. Machine Learning Assists in the Design and Application of Microneedles. Biomimetics (Basel) 2024; 9:469. [PMID: 39194448 DOI: 10.3390/biomimetics9080469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Microneedles (MNs), characterized by their micron-sized sharp tips, can painlessly penetrate the skin and have shown significant potential in disease treatment and biosensing. With the development of artificial intelligence (AI), the design and application of MNs have experienced substantial innovation aided by machine learning (ML). This review begins with a brief introduction to the concept of ML and its current stage of development. Subsequently, the design principles and fabrication methods of MNs are explored, demonstrating the critical role of ML in optimizing their design and preparation. Integration between ML and the applications of MNs in therapy and sensing were further discussed. Finally, we outline the challenges and prospects of machine learning-assisted MN technology, aiming to advance its practical application and development in the field of smart diagnosis and treatment.
Collapse
Affiliation(s)
- Wenqing He
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518000, China
| | - Suixiu Kong
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518000, China
| | - Rumin Lin
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518000, China
| | - Yuanting Xie
- School of Biomedical Engineering, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Shanshan Zheng
- School of Biomedical Engineering, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Ziyu Yin
- School of Biomedical Engineering, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xin Huang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Lei Su
- School of Biomedical Engineering, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Nano-Biosensing Technology, Marshall Laboratory of Biomedical Engineering, International Health Science Innovation Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xueji Zhang
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518000, China
- School of Biomedical Engineering, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Nano-Biosensing Technology, Marshall Laboratory of Biomedical Engineering, International Health Science Innovation Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
25
|
Hu Z, Shan J, Cui Y, Cheng L, Chen XL, Wang X. Nanozyme-Incorporated Microneedles for the Treatment of Chronic Wounds. Adv Healthc Mater 2024; 13:e2400101. [PMID: 38794907 DOI: 10.1002/adhm.202400101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/28/2024] [Indexed: 05/26/2024]
Abstract
Acute wounds are converted to chronic wounds due to advanced age and diabetic complications. Nanozymes catalyze ROS production to kill bacteria without causing drug resistance, while microneedles (MNs) can break through the skin barrier to deliver drugs effectively. Nanozymes can be intergrateded into MNs delivery systems to improve painless drug delivery. It can also reduce the effective dose of drug sterilization while increasing delivery efficiency and effectively killing wounded bacteria while preventing drug resistance. This paper describes various types of metal nanozymes from previous studies and compares their mutual enhancement with nanozymes. The pooled results show that the MNs, through material innovation, are able to both penetrate the scab and deliver nanozymes and exert additional anti-inflammatory and bactericidal effects. The catalytic effect of some of the nanozymes can also accelerate the lysis of the MNs or create a cascade reaction against inflammation and infection. However, the issue of increased toxicity associated with skin penetration and clinical translation remains a challenge. This study reviews the latest published results and corresponding challenges associated with the use of MNs combined with nanozymes for the treatment of wounds, providing further information for future research.
Collapse
Affiliation(s)
- Zhiyuan Hu
- Department of Burns, The First Hospital Affiliated Anhui Medical University, Hefei, Anhui, 230032, P. R. China
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
| | - Jie Shan
- Department of Burns, The First Hospital Affiliated Anhui Medical University, Hefei, Anhui, 230032, P. R. China
| | - Yuyu Cui
- Department of Burns, The First Hospital Affiliated Anhui Medical University, Hefei, Anhui, 230032, P. R. China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Xu-Lin Chen
- Department of Burns, The First Hospital Affiliated Anhui Medical University, Hefei, Anhui, 230032, P. R. China
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
| |
Collapse
|
26
|
Ji W, Li B, Li N, Xing C. Design Strategy of Microneedle Systems for Skin Wound Healing: Based on the Structure of Tips and Therapeutic Methodologies. ACS APPLIED BIO MATERIALS 2024; 7:4254-4269. [PMID: 38863157 DOI: 10.1021/acsabm.4c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The skin, being the largest organ of the human body, is susceptible to damage resulting in wounds that are vulnerable to pathogenic attacks and fail to provide effective protection for internal tissues. Therefore, it is crucial to expedite wound healing. In recent years, microneedles have garnered significant attention as an innovative drug delivery system owing to their noninvasive and painless administration, simplified application process, precise control over drug release, and versatile loading capabilities. Consequently, they hold immense potential for the treatment of skin wound. This review presents a comprehensive design strategy for the microneedle system in promoting skin wound healing. First, the process of skin wound healing and the characteristics of specific wounds are elucidated. The design strategies for microneedles are subsequently presented and classified based on their structural and therapeutic methodologies. Finally, a succinct recapitulation of the previously discussed points and a prospective analysis are provided.
Collapse
Affiliation(s)
- Wenchao Ji
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Boying Li
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Ning Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215000, P. R. China
| | - Chengfen Xing
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| |
Collapse
|
27
|
Sedighi O, Bednarke B, Sherriff H, Doiron AL. Nanoparticle-Based Strategies for Managing Biofilm Infections in Wounds: A Comprehensive Review. ACS OMEGA 2024; 9:27853-27871. [PMID: 38973924 PMCID: PMC11223148 DOI: 10.1021/acsomega.4c02343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 07/09/2024]
Abstract
Chronic wounds containing opportunistic bacterial pathogens are a growing problem, as they are the primary cause of morbidity and mortality in developing and developed nations. Bacteria can adhere to almost every surface, forming architecturally complex communities called biofilms that are tolerant to an individual's immune response and traditional treatments. Wound dressings are a primary source and potential treatment avenue for biofilm infections, and research has recently focused on using nanoparticles with antimicrobial activity for infection control. This Review categorizes nanoparticle-based approaches into four main types, each leveraging unique mechanisms against biofilms. Metallic nanoparticles, such as silver and copper, show promising data due to their ability to disrupt bacterial cell membranes and induce oxidative stress, although their effectiveness can vary based on particle size and composition. Phototherapy-based nanoparticles, utilizing either photodynamic or photothermal therapy, offer targeted microbial destruction by generating reactive oxygen species or localized heat, respectively. However, their efficacy depends on the presence of light and oxygen, potentially limiting their use in deeper or more shielded biofilms. Nanoparticles designed to disrupt extracellular polymeric substances directly target the biofilm structure, enhancing the penetration and efficacy of antimicrobial agents. Lastly, nanoparticles that induce biofilm dispersion represent a novel strategy, aiming to weaken the biofilm's defense and restore susceptibility to antimicrobials. While each method has its advantages, the selection of an appropriate nanoparticle-based treatment depends on the specific requirements of the wound environment and the type of biofilm involved. The integration of these nanoparticles into wound dressings not only promises enhanced treatment outcomes but also offers a reduction in the overall use of antibiotics, aligning with the urgent need for innovative solutions in the fight against antibiotic-tolerant infections. The overarching objective of employing these diverse nanoparticle strategies is to replace antibiotics or substantially reduce their required dosages, providing promising avenues for biofilm infection management.
Collapse
Affiliation(s)
- Omid Sedighi
- Department
of Electrical and Biomedical Engineering, University of Vermont, Burlington, Vermont 05405, United States
| | - Brooke Bednarke
- Department
of Electrical and Biomedical Engineering, University of Vermont, Burlington, Vermont 05405, United States
| | - Hannah Sherriff
- Department
of Electrical and Biomedical Engineering, University of Vermont, Burlington, Vermont 05405, United States
| | - Amber L. Doiron
- Department
of Electrical and Biomedical Engineering, University of Vermont, Burlington, Vermont 05405, United States
| |
Collapse
|
28
|
Jiang Z, Li J, Wang J, Pan Y, Liang S, Hu Y, Wang L. Multifunctional fucoidan-loaded Zn-MOF-encapsulated microneedles for MRSA-infected wound healing. J Nanobiotechnology 2024; 22:152. [PMID: 38575979 PMCID: PMC10996189 DOI: 10.1186/s12951-024-02398-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/18/2024] [Indexed: 04/06/2024] Open
Abstract
Infected wound healing remains a challenging task in clinical practice due to several factors: (I) drug-resistant infections caused by various pathogens, (II) persistent inflammation that hinders tissue regeneration and (III) the ability of pathogens to persist intracellularly and evade antibiotic treatment. Microneedle patches (MNs), recognized for their effecacious and painless subcutaneous drug delivery, could greatly enhance wound healing if integrated with antibacterial functionality and tissue regenerative potential. A multifunctional agent with subcellular targeting capability and contained novel antibacterial components, upon loading onto MNs, could yield excellent therapeutic effects on wound infections. In this study, we sythesised a zeolitic imidazolate framework-8 nanoparticles (ZIF-8 NPs) loaded with low molecular weight fucoidan (Fu) and further coating by hyaluronic acid (HA), obtained a multifunctional HAZ@Fu NPs, which could hinders Methicillin-resistant Staphylococcus aureus (MRSA) growth and promotes M2 polarization in macrophages. We mixed HAZ@Fu NPs with photocrosslinked gelatin methacryloyl (GelMA) and loaded it into the tips of the MNs (HAZ@Fu MNs), administered to mice model with MRSA-infected full-thickness cutaneous wounds. MNs are able to penetrate the skin barrier, delivering HAZ@Fu NPs into the dermal layer. Since cells within infected tissues extensively express the HA receptor CD44, we also confirmed the HA endows the nanoparticles with the ability to target MRSA in subcellular level. In vitro and in vivo murine studies have demonstrated that MNs are capable of delivering HAZ@Fu NPs deep into the dermal layers. And facilitated by the HA coating, HAZ@Fu NPs could target MRSA surviving at the subcellular level. The effective components, such as zinc ions, Fu, and hyaluronic acid could sustainably released, which contributes to antibacterial activity, mitigates inflammation, promotes epithelial regeneration and fosters neovascularization. Through the RNA sequencing of macrophages post co-culture with HAZ@Fu, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis reveals that the biological functionalities associated with wound healing could potentially be facilitated through the PI3K-Akt pathway. The results indicate that the synergistic application of HAZ@Fu NPs with biodegradable MNs may serve as a significant adjunct in the treatment of infected wounds. The intricate mechanisms driving its biological effects merit further investigation.
Collapse
Affiliation(s)
- Zichao Jiang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- University Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jingyi Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- University Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jiahao Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- University Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yixiao Pan
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- University Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shuailong Liang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- University Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yihe Hu
- Department of Orthopedics, First Affiliated Hospital, School of Medicine, Zhejiang, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Long Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China.
- University Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
29
|
Yang L, Gao Y, Liu Q, Li W, Li Z, Zhang D, Xie R, Zheng Y, Chen H, Zeng X. A Bacterial Responsive Microneedle Dressing with Hydrogel Backing Layer for Chronic Wound Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307104. [PMID: 37939306 DOI: 10.1002/smll.202307104] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/10/2023] [Indexed: 11/10/2023]
Abstract
The treatment of chronic wounds still presents great challenges due to being infected by biofilms and the damaged healing process. The current treatments do not address the needs of chronic wounds. In this study, a highly effective dressing (Dox-DFO@MN Hy) for the treatment of chronic wounds is described. This dressing combines the advantages of microneedles (MNs) and hydrogels in the treatment of chronic wounds. MNs is employed to debride the biofilms and break down the wound barrier, providing rapid access to therapeutic drugs from hydrogel backing layer. Importantly, to kill the pathogenic bacteria in the biofilms specifically, Doxycycline hydrochloride (Dox) is wrapped into the polycaprolactone (PCL) microspheres that have lipase-responsive properties and loaded into the tips of MNs. At the same time, hydrogel backing layer is used to seal the wound and accelerate wound healing. Benefiting from the combination of two advantages of MNs and hydrogel, the dressing significantly reduces the bacteria in the biofilms and effectively promotes angiogenesis and cell migration in vitro. Overall, Dox-DFO@MN Hy can effectively treat chronic wounds infected with biofilms, providing a new idea for the treatment of chronic wounds.
Collapse
Affiliation(s)
- Li Yang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
| | - Yiwen Gao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Qingyun Liu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
| | - Wenjing Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
| | - Zimu Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
| | - Dan Zhang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
| | - Rixin Xie
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
| | - Yi Zheng
- Central Laboratory, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, 518106, China
| | - Hongzhong Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xiaowei Zeng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
30
|
Zhong Y, Lai Y, Feng Z, Huang S, Fu Y, Huang L, Lan KF, Mo A. Multifunctional MXene-doped photothermal microneedles for drug-resistant bacteria-infected wound healing. Biomater Sci 2024; 12:660-673. [PMID: 38063374 DOI: 10.1039/d3bm01676e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Skin injuries and drug-resistant bacterial infections pose serious challenges to human health. It is essential to establish a novel multifunctional platform with good anti-infection and wound-healing abilities. In this study, a new MXene-doped composite microneedle (MN) patch with excellent mechanical strength and photothermal antibacterial and ROS removal properties has been developed for infected wound healing. When the MN tips carrying the MXene nanosheets are inserted into the cuticle of the skin, they will quickly dissolve and subsequently release the nanomaterials into the subcutaneous infection area. Under 808 nm NIR irradiation, the MXene, as a "nano-thermal knife", sterilizes and inhibits bacterial growth through synergistic effects of sharp edges and photothermal antibacterial activity. Furthermore, ROS caused by injury and infection can be cleared by MXene-doped MNs to avoid excessive inflammatory responses. Based on the synergistic antibacterial and antioxidant strategy, the MXene-doped MNs have demonstrated excellent wound-healing properties in an MRSA-infected wound model, such as promoting re-epithelialization, collagen deposition, and angiogenesis and inhibiting the expression of pro-inflammatory factors. Therefore, the multifunctional MXene-doped MN patches provide an excellent alternative for clinical drug-resistant bacteria-infected wound management.
Collapse
Affiliation(s)
- Yongjin Zhong
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Yancheng Lai
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Zeru Feng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Si Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Yu Fu
- Department of Stomatology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lirong Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Keng-Fu Lan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Anchun Mo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
31
|
Xu Y, Chen B, Xu L, Zhang G, Cao L, Liu N, Wang W, Qian H, Shao M. Urchin-like Fe 3O 4@Bi 2S 3 Nanospheres Enable the Destruction of Biofilm and Efficiently Antibacterial Activities. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3215-3231. [PMID: 38205800 DOI: 10.1021/acsami.3c17888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Biofilm-associated infections (BAIs) have been considered a major threat to public health, which induce persistent infections and serious complications. The poor penetration of antibacterial agents in biofilm significantly limits the efficiency of combating BAIs. Magnetic urchin-like core-shell nanospheres of Fe3O4@Bi2S3 were developed for physically destructing biofilm and inducing bacterial eradication via reactive oxygen species (ROS) generation and innate immunity regulation. The urchin-like magnetic nanospheres with sharp edges of Fe3O4@Bi2S3 exhibited propeller-like rotation to physically destroy biofilm under a rotating magnetic field (RMF). The mild magnetic hyperthermia improved the generation of ROS and enhanced bacterial eradication. Significantly, the urchin-like nanostructure and generated ROS could stimulate macrophage polarization toward the M1 phenotype, which could eradicate the persistent bacteria with a metabolic inactivity state through phagocytosis, thereby promoting the recovery of implant infection and inhibiting recurrence. Thus, the design of magnetic-driven sharp-shaped nanostructures of Fe3O4@Bi2S3 provided enormous potential in combating biofilm infections.
Collapse
Affiliation(s)
- Yaqian Xu
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, Anhui, P. R. China
| | - Benjin Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, Anhui, P. R. China
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei 230012, Anhui, P. R. China
| | - Lingling Xu
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei 230012, Anhui, P. R. China
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, Anhui, P. R. China
| | - Guoqiang Zhang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, Anhui, P. R. China
| | - Limian Cao
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, Anhui, P. R. China
| | - Nian Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, Anhui, P. R. China
| | - Wanni Wang
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei 230012, Anhui, P. R. China
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, Anhui, P. R. China
| | - Haisheng Qian
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei 230012, Anhui, P. R. China
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, Anhui, P. R. China
| | - Min Shao
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, Anhui, P. R. China
| |
Collapse
|
32
|
Lei XL, Cheng K, Hu YG, Li Y, Hou XL, Zhang F, Tan LF, Zhong ZT, Wang JH, Fan JX, Zhao YD. Gelatinase-responsive biodegradable targeted microneedle patch for abscess wound treatment of S. aureus infection. Int J Biol Macromol 2023; 253:127548. [PMID: 37865374 DOI: 10.1016/j.ijbiomac.2023.127548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/23/2023]
Abstract
Abscess wound caused by bacterial infection is usually difficult to heal, thus greatly affect people's quality of life. In this study, a biodegradable drug-loaded microneedle patch (MN) is designed for targeted eradication of S. aureus infection and repair of abscess wound. Firstly, the bacterial responsive composite nanoparticle (Ce6@GNP-Van) with a size of about 182.6 nm is constructed by loading the photosensitizer Ce6 into gelatin nanoparticle (GNP) and coupling vancomycin (Van), which can specifically target S. aureus and effectively shield the phototoxicity of photosensitizer during delivery. When Ce6@GNP-Van is targeted and enriched in the infected regions, the gelatinase secreted by the bacteria can degrade GNP in situ and release Ce6, which can kill the bacteria by generating ROS under laser irradiation. In vivo experiments show that the microneedle is basically degraded in 10 min after inserting into skin, and the abscess wound is completely healed within 13 d after applying Ce6@GNP-Van-loaded MN patch to the abscess wound of the bacterial infected mice with laser irradiation, which can simultaneously achieve the eradication of biofilm and subsequent wound healing cascade activation, showing excellent synergistic antibacterial effect. In conclusion, this work establishes a synergistic treatment strategy to facilitate the repair of chronic abscess wound.
Collapse
Affiliation(s)
- Xiao-Ling Lei
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Kai Cheng
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China; Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Yong-Guo Hu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Yong Li
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Xiao-Lin Hou
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Fang Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Lin-Fang Tan
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Zi-Tao Zhong
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China
| | - Jian-Hao Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, PR China.
| | - Jin-Xuan Fan
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China; Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China.
| | - Yuan-Di Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China; Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, Hubei, PR China.
| |
Collapse
|
33
|
Wang X, Liu M, Yu C, Li J, Zhou X. Biofilm formation: mechanistic insights and therapeutic targets. MOLECULAR BIOMEDICINE 2023; 4:49. [PMID: 38097907 PMCID: PMC10721784 DOI: 10.1186/s43556-023-00164-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
Biofilms are complex multicellular communities formed by bacteria, and their extracellular polymeric substances are observed as surface-attached or non-surface-attached aggregates. Many types of bacterial species found in living hosts or environments can form biofilms. These include pathogenic bacteria such as Pseudomonas, which can act as persistent infectious hosts and are responsible for a wide range of chronic diseases as well as the emergence of antibiotic resistance, thereby making them difficult to eliminate. Pseudomonas aeruginosa has emerged as a model organism for studying biofilm formation. In addition, other Pseudomonas utilize biofilm formation in plant colonization and environmental persistence. Biofilms are effective in aiding bacterial colonization, enhancing bacterial resistance to antimicrobial substances and host immune responses, and facilitating cell‒cell signalling exchanges between community bacteria. The lack of antibiotics targeting biofilms in the drug discovery process indicates the need to design new biofilm inhibitors as antimicrobial drugs using various strategies and targeting different stages of biofilm formation. Growing strategies that have been developed to combat biofilm formation include targeting bacterial enzymes, as well as those involved in the quorum sensing and adhesion pathways. In this review, with Pseudomonas as the primary subject of study, we review and discuss the mechanisms of bacterial biofilm formation and current therapeutic approaches, emphasizing the clinical issues associated with biofilm infections and focusing on current and emerging antibiotic biofilm strategies.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ming Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chuanjiang Yu
- Institute for Cancer Genetics, Columbia University, New York, NY, 10032, USA
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Xikun Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
34
|
Sun C, Zhou X, Liu C, Deng S, Song Y, Yang J, Dai J, Ju Y. An Integrated Therapeutic and Preventive Nanozyme-Based Microneedle for Biofilm-Infected Diabetic Wound Healing. Adv Healthc Mater 2023; 12:e2301474. [PMID: 37479531 DOI: 10.1002/adhm.202301474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/28/2023] [Indexed: 07/23/2023]
Abstract
The healing of biofilm-infected diabetic wounds characterized by a deteriorative tissue microenvironment represents a substantial clinical challenge. Current treatments remain unsatisfactory due to the limited antibiofilm efficacy caused by weak tissue and biofilm permeability of drugs and the risk of reinfection during the healing process. To address these issues, an integrated therapeutic and preventive nanozyme-based microneedle (denoted as Fe2 C/GOx@MNs) is engineered. The dissolvable tips with enough mechanical strength can deliver and rapidly release Fe2 C nanoparticles (NPs)/glucose oxidase (GOx) in the biofilm active regions, enhancing tissue and biofilm permeability of Fe2 C NPs/GOx, ultimately achieving highly efficient biofilm elimination. Meanwhile, the chitosan backing layer can not only act as an excellent physical barrier between the wound bed and the external environment, but also prevent the bacterial reinvasion during wound healing with its superior antibacterial property. Significantly, the biofilm elimination and reinfection prevention abilities of Fe2 C/GOx@MNs on wound healing are proved on methicillin-resistant Staphylococcus aureus-biofilm-infected diabetic mouse model with full-thickness wound. Together, these results demonstrate the promising clinical application of Fe2 C/GOx@MNs in biofilm-infected wound healing.
Collapse
Affiliation(s)
- Caixia Sun
- College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xinyu Zhou
- College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Cong Liu
- College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Shuyue Deng
- College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuhan Song
- Nanjing Institute for Food and Drug Control, Nanjing, 210038, China
| | - Jun Yang
- Nanjing Institute for Food and Drug Control, Nanjing, 210038, China
| | - Jianjun Dai
- College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanmin Ju
- College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
35
|
Yang L, Zhang D, Li W, Lin H, Ding C, Liu Q, Wang L, Li Z, Mei L, Chen H, Zhao Y, Zeng X. Biofilm microenvironment triggered self-enhancing photodynamic immunomodulatory microneedle for diabetic wound therapy. Nat Commun 2023; 14:7658. [PMID: 37996471 PMCID: PMC10667311 DOI: 10.1038/s41467-023-43067-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023] Open
Abstract
The treatment of diabetic wounds faces enormous challenges due to complex wound environments, such as infected biofilms, excessive inflammation, and impaired angiogenesis. The critical role of the microenvironment in the chronic diabetic wounds has not been addressed for therapeutic development. Herein, we develop a microneedle (MN) bandage functionalized with dopamine-coated hybrid nanoparticles containing selenium and chlorin e6 (SeC@PA), which is capable of the dual-directional regulation of reactive species (RS) generation, including reactive oxygen species (ROS) and reactive nitrogen species (RNS), in response to the wound microenvironment. The SeC@PA MN bandage can disrupt barriers in wound coverings for efficient SeC@PA delivery. SeC@PA not only depletes endogenous glutathione (GSH) to enhance the anti-biofilm effect of RS, but also degrades GSH in biofilms through cascade reactions to generate more lethal RS for biofilm eradication. SeC@PA acts as an RS scavenger in wound beds with low GSH levels, exerting an anti-inflammatory effect. SeC@PA also promotes the M2-phenotype polarization of macrophages, accelerating wound healing. This self-enhanced, catabolic and dynamic therapy, activated by the wound microenvironment, provides an approach for treating chronic wounds.
Collapse
Affiliation(s)
- Li Yang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Dan Zhang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Wenjing Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Hongbing Lin
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Chendi Ding
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Qingyun Liu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Liangliang Wang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Zimu Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Lin Mei
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Hongzhong Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore.
| | - Xiaowei Zeng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
36
|
Wang Y, Zong Q, Wu H, Ding Y, Pan X, Fu B, Sun W, Zhai Y. Functional Microneedle Patch for Wound Healing and Biological Diagnosis and Treatment. Macromol Biosci 2023; 23:e2300332. [PMID: 37633658 DOI: 10.1002/mabi.202300332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/17/2023] [Indexed: 08/28/2023]
Abstract
Wound healing, especially chronic wounds, has been one of the major challenges in the field of biomedicine. Drug therapy alone is not effective, so a variety of functional wound healing dressings have been developed. Microneedles have attracted more and more attentions in the field of wound healing dressings due to their penetration and high drug delivery efficiency. In this review, all the studies on the application of microneedles in wound healing in recent years are summarized, classify different microneedles according to their functions in the process of wound healing, discuss the current challenges in the transformation of microneedle technology toward clinical applications, and finally look forward to the future design and development directions of microneedles in this field.
Collapse
Affiliation(s)
- Ye Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qida Zong
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Huiying Wu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yan Ding
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xi Pan
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Bo Fu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Wei Sun
- Department of Biomedical Engineering, School of Pharmaceutical University, Shenyang, 110016, China
| | - Yinglei Zhai
- Department of Biomedical Engineering, School of Pharmaceutical University, Shenyang, 110016, China
| |
Collapse
|
37
|
Yu X, Zhao J, Fan D. The Progress in the Application of Dissolving Microneedles in Biomedicine. Polymers (Basel) 2023; 15:4059. [PMID: 37896303 PMCID: PMC10609950 DOI: 10.3390/polym15204059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
In recent years, microneedle technology has been widely used for the transdermal delivery of substances, showing improvements in drug delivery effects with the advantages of minimally invasive, painless, and convenient operation. With the development of nano- and electrochemical technology, different types of microneedles are increasingly being used in other biomedical fields. Recent research progress shows that dissolving microneedles have achieved remarkable results in the fields of dermatological treatment, disease diagnosis and monitoring, and vaccine delivery, and they have a wide range of application prospects in various biomedical fields, showing their great potential as a form of clinical treatment. This review mainly focuses on dissolving microneedles, summarizing the latest research progress in various biomedical fields, providing inspiration for the subsequent intelligent and commercial development of dissolving microneedles, and providing better solutions for clinical treatment.
Collapse
Affiliation(s)
- Xueqing Yu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi’an 710069, China
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi’an 710069, China
- Biotech & Biomed Research Institute, Northwest University, Xi’an 710069, China
| | - Jing Zhao
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi’an 710069, China
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi’an 710069, China
- Biotech & Biomed Research Institute, Northwest University, Xi’an 710069, China
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi’an 710069, China
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi’an 710069, China
- Biotech & Biomed Research Institute, Northwest University, Xi’an 710069, China
| |
Collapse
|
38
|
Lyu S, Dong Z, Xu X, Bei HP, Yuen HY, James Cheung CW, Wong MS, He Y, Zhao X. Going below and beyond the surface: Microneedle structure, materials, drugs, fabrication, and applications for wound healing and tissue regeneration. Bioact Mater 2023; 27:303-326. [PMID: 37122902 PMCID: PMC10140753 DOI: 10.1016/j.bioactmat.2023.04.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/11/2023] [Accepted: 04/02/2023] [Indexed: 05/02/2023] Open
Abstract
Microneedle, as a novel drug delivery system, has attracted widespread attention due to its non-invasiveness, painless and simple administration, controllable drug delivery, and diverse cargo loading capacity. Although microneedles are initially designed to penetrate stratum corneum of skin for transdermal drug delivery, they, recently, have been used to promote wound healing and regeneration of diverse tissues and organs and the results are promising. Despite there are reviews about microneedles, few of them focus on wound healing and tissue regeneration. Here, we review the recent advances of microneedles in this field. We first give an overview of microneedle system in terms of its potential cargos (e.g., small molecules, macromolecules, nucleic acids, nanoparticles, extracellular vesicle, cells), structural designs (e.g., multidrug structures, adhesive structures), material selection, and drug release mechanisms. Then we briefly summarize different microneedle fabrication methods, including their advantages and limitations. We finally summarize the recent progress of microneedle-assisted wound healing and tissue regeneration (e.g., skin, cardiac, bone, tendon, ocular, vascular, oral, hair, spinal cord, and uterine tissues). We expect that our article would serve as a guideline for readers to design their microneedle systems according to different applications, including material selection, drug selection, and structure design, for achieving better healing and regeneration efficacy.
Collapse
Affiliation(s)
- Shang Lyu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, PR China
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, PR China
| | - Zhifei Dong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, PR China
- Faculty of Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Xiaoxiao Xu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, PR China
- Faculty of Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Ho-Pan Bei
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, PR China
| | - Ho-Yin Yuen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, PR China
| | - Chung-Wai James Cheung
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, PR China
| | - Man-Sang Wong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, PR China
- Corresponding author.
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, PR China
- Corresponding author.
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, PR China
- Corresponding author.
| |
Collapse
|
39
|
Lu Z, Du S, Li J, Zhang M, Nie H, Zhou X, Li F, Wei X, Wang J, Liu F, He C, Yang G, Gu Z. Langmuir-Blodgett-Mediated Formation of Antibacterial Microneedles for Long-Term Transdermal Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303388. [PMID: 37384857 DOI: 10.1002/adma.202303388] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Microneedles (MNs) have become versatile platforms for minimally invasive transdermal drug delivery devices. However, there are concerns about MN-induced skin infections with long-term transdermal administration. Using the Langmuir-Blodgett (LB) technique, a simple method for depositing antibacterial nanoparticles of various shapes, sizes, and compositions onto MNs is developed. This strategy has merits over conventional dip coating techniques, including controlled coating layers, uniform and high coverage, and a straightforward fabrication process. This provides MNs with a fast-acting and long-lasting antibacterial effect. This study demonstrates that antibacterial MNs achieve superior bacterial elimination in vitro and in vivo without sacrificing payload capacity, drug release, or mechanical strength. It is believed that such a functional nanoparticle coating technique offers a platform for the expansion of MNs function, especially in long-term transdermal drug delivery fields.
Collapse
Affiliation(s)
- Ziyi Lu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Shan Du
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Jiaxun Li
- College of Basic Medicine, Naval Medical University, Shanghai, 200433, China
| | - Min Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Huali Nie
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Xiaojun Zhou
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Fulun Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xinwei Wei
- Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jinqiang Wang
- Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fuyao Liu
- Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chuanglong He
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Guang Yang
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, China
| | - Zhen Gu
- Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
40
|
Dul M, Alali M, Ameri M, Burke MD, Craig CM, Creelman BP, Dick L, Donnelly RF, Eakins MN, Frivold C, Forster AH, Gilbert PA, Henke S, Henry S, Hunt D, Lewis H, Maibach HI, Mistilis JJ, Park JH, Prausnitz MR, Robinson DK, Hernandez CAR, Ross C, Shin J, Speaker TJ, Taylor KM, Zehrung D, Birchall JC, Jarrahian C, Coulman SA. Assessing the risk of a clinically significant infection from a Microneedle Array Patch (MAP) product. J Control Release 2023; 361:236-245. [PMID: 37437849 DOI: 10.1016/j.jconrel.2023.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/14/2023]
Abstract
Microneedle Array Patches (MAPs) are an emerging dosage form that creates transient micron-sized disruptions in the outermost physical skin barrier, the stratum corneum, to facilitate delivery of active pharmaceutical ingredients to the underlying tissue. Numerous MAP products are proposed and there is significant clinical potential in priority areas such as vaccination. However, since their inception scientists have hypothesized about the risk of a clinically significant MAP-induced infection. Safety data from two major Phase 3 clinical trials involving hundreds of participants, who in total received tens of thousands of MAP applications, does not identify any clinically significant infections. However, the incumbent data set is not extensive enough to make definitive generalizable conclusions. A comprehensive assessment of the infection risk is therefore advised for MAP products, and this should be informed by clinical and pre-clinical data, theoretical analysis and informed opinions. In this article, a group of key stakeholders identify some of the key product- and patient-specific factors that may contribute to the risk of infection from a MAP product and provide expert opinions in the context of guidance from regulatory authorities. Considerations that are particularly pertinent to the MAP dosage form include the specifications of the finished product (e.g. microbial specification), it's design features, the setting for administration, the skill of the administrator, the anatomical application site, the target population and the clinical context. These factors, and others discussed in this article, provide a platform for the development of MAP risk assessments and a stimulus for early and open dialogue between developers, regulatory authorities and other key stakeholders, to expedite and promote development of safe and effective MAP products.
Collapse
Affiliation(s)
- Maria Dul
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Howard I Maibach
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | | | - Jung-Hwan Park
- Department of Bionano Technology, Gachon University, Seongnam, Republic of Korea
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | | | | | | | - Kevin Michael Taylor
- University College London School of Pharmacy, British Pharmacopoeia Commission, UK
| | | | - James C Birchall
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | | | - Sion A Coulman
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
41
|
Li Y, Bi D, Hu Z, Yang Y, Liu Y, Leung WK. Hydrogel-Forming Microneedles with Applications in Oral Diseases Management. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4805. [PMID: 37445119 DOI: 10.3390/ma16134805] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
Controlled drug delivery in the oral cavity poses challenges such as bacterial contamination, saliva dilution, and inactivation by salivary enzymes upon ingestion. Microneedles offer a location-specific, minimally invasive, and retentive approach. Hydrogel-forming microneedles (HFMs) have emerged for dental diagnostics and therapeutics. HFMs penetrate the stratum corneum, undergo swelling upon contact, secure attachment, and enable sustained transdermal or transmucosal drug delivery. Commonly employed polymers such as polyvinyl alcohol (PVA) and polyvinyl pyrrolidone are crosslinked with tartaric acid or its derivatives while incorporating therapeutic agents. Microneedle patches provide suture-free and painless drug delivery to keratinized or non-keratinized mucosa, facilitating site-specific treatment and patient compliance. This review comprehensively discusses HFMs' applications in dentistry such as local anesthesia, oral ulcer management, periodontal treatment, etc., encompassing animal experiments, clinical trials, and their fundamental impact and limitations, for example, restricted drug carrying capacity and, until now, a low number of dental clinical trial reports. The review explores the advantages and future perspectives of HFMs for oral drug delivery.
Collapse
Affiliation(s)
- Yuqing Li
- Periodontology and Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Duohang Bi
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhekai Hu
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Yanqi Yang
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Yijing Liu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wai Keung Leung
- Periodontology and Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
42
|
Serrano-Castañeda P, Ochoa Loyo MA, Tinoco Hernández CE, Anaya-Ortega BM, Guadarrama-Escobar OR, Anguiano-Almazán E, Rodríguez-Pérez B, Peña-Juárez MC, Vázquez-Durán A, Méndez-Albores A, Rodríguez-Cruz IM, Morales-Florido MI, Escobar-Chávez JJ. Ceftriaxone-Loaded Polymeric Microneedles, Dressings, and Microfibers for Wound Treatment. Polymers (Basel) 2023; 15:2610. [PMID: 37376256 DOI: 10.3390/polym15122610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The objective of this study was to create polymeric dressings, microfibers, and microneedles (MN) loaded with ceftriaxone, using PMVA (Poly (Methyl vinyl ether-alt-maleic acid), Kollicoat® 100P, and Kollicoat® Protect as polymers to treat diabetic wounds and accelerate their recovery. These formulations were optimized through a series of experiments and were subsequently subjected to physicochemical tests. The results of the characterization of the dressings, microfibers, and microneedles (PMVA and 100P) were, respectively, a bioadhesion of 281.34, 720, 720, 2487, and 510.5 gf; a post-humectation bioadhesion of 186.34, 831.5, 2380, and 630.5 gf, tear strength of 2200, 1233, 1562, and 385 gf, erythema of 358, 8.4, 227, and 188; transepidermal water loss (TEWL) of 2.6, 4.7, 1.9, and 5.2 g/h·m2; hydration of 76.1, 89.9, 73.5, and 83.5%; pH of 4.85, 5.40, 5.85, and 4.85; and drug release (Peppas kinetics release) of n: 0.53, n: 0.62, n: 0.62, and n: 0.66). In vitro studies were performed on Franz-type diffusion cells and indicated flux of 57.1, 145.4, 718.7, and 2.7 µg/cm2; permeation coefficient (Kp) of 13.2, 19.56, 42, and 0.00015 cm2/h; and time lag (tL) of 6.29, 17.61, 27. 49, and 22.3 h, respectively, in wounded skin. There was no passage of ceftriaxone from dressings and microfibers to healthy skin, but that was not the case for PMVA/100P and Kollicoat® 100P microneedles, which exhibited flux of 194 and 0.4 µg/cm2, Kp of 11.3 and 0.00002 cm2/h, and tL of 5.2 and 9.7 h, respectively. The healing time of the formulations in vivo (tests carried out using diabetic Wistar rats) was under 14 days. In summary, polymeric dressings, microfibers, and microneedles loaded with ceftriaxone were developed. These formulations have the potential to address the challenges associated with chronic wounds, such as diabetic foot, improving the outcomes.
Collapse
Affiliation(s)
- Pablo Serrano-Castañeda
- Unidad de Investigación Multidisciplinaria-Lab 12, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán-Teoloyucan, km 2.5 San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico
| | - Miguel Alejandro Ochoa Loyo
- Unidad de Investigación Multidisciplinaria-Lab 12, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán-Teoloyucan, km 2.5 San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico
| | - Cristian Ezequiel Tinoco Hernández
- Unidad de Investigación Multidisciplinaria-Lab 12, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán-Teoloyucan, km 2.5 San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico
| | - Brian Miguel Anaya-Ortega
- Unidad de Investigación Multidisciplinaria-Lab 12, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán-Teoloyucan, km 2.5 San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico
| | - Omar Rodrigo Guadarrama-Escobar
- Unidad de Investigación Multidisciplinaria-Lab 12, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán-Teoloyucan, km 2.5 San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico
| | - Ericka Anguiano-Almazán
- Unidad de Investigación Multidisciplinaria-Lab 12, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán-Teoloyucan, km 2.5 San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico
| | - Betsabé Rodríguez-Pérez
- Laboratorio de Servicio de Análisis de Propóleos (LASAP), Unidad de Investigación Multidisciplinaria (UIM), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54714, Mexico
| | - Ma Concepción Peña-Juárez
- Unidad de Investigación Multidisciplinaria-Lab 12, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán-Teoloyucan, km 2.5 San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico
| | - Alma Vázquez-Durán
- Unidad de Investigación Multidisciplinaria L14 (Ciencia y Tecnología de los Materiales), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54714, Mexico
| | - Abraham Méndez-Albores
- Unidad de Investigación Multidisciplinaria L14 (Ciencia y Tecnología de los Materiales), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54714, Mexico
| | - Isabel Marlen Rodríguez-Cruz
- Unidad de Enseñanza e Investigación, Hospital Regional de Alta Especialidad de Zumpango, Carretera Zumpango-Jilotzingo #400, Barrio de Santiago, 2ª Sección, Zumpango 55600, Mexico
| | - Miriam Isabel Morales-Florido
- Unidad de Investigación Multidisciplinaria-Lab 12, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán-Teoloyucan, km 2.5 San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico
| | - José Juan Escobar-Chávez
- Unidad de Investigación Multidisciplinaria-Lab 12, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Carretera Cuautitlán-Teoloyucan, km 2.5 San Sebastián Xhala, Cuautitlán Izcalli 54714, Mexico
| |
Collapse
|
43
|
Abdelhamid AG, Yousef AE. Combating Bacterial Biofilms: Current and Emerging Antibiofilm Strategies for Treating Persistent Infections. Antibiotics (Basel) 2023; 12:1005. [PMID: 37370324 DOI: 10.3390/antibiotics12061005] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Biofilms are intricate multicellular structures created by microorganisms on living (biotic) or nonliving (abiotic) surfaces. Medically, biofilms often lead to persistent infections, increased antibiotic resistance, and recurrence of infections. In this review, we highlighted the clinical problem associated with biofilm infections and focused on current and emerging antibiofilm strategies. These strategies are often directed at disrupting quorum sensing, which is crucial for biofilm formation, preventing bacterial adhesion to surfaces, impeding bacterial aggregation in viscous mucus layers, degrading the extracellular polymeric matrix, and developing nanoparticle-based antimicrobial drug complexes which target persistent cells within the biofilm core. It is important to acknowledge, however, that the use of antibiofilm agents faces obstacles, such as limited effectiveness in vivo, potential cytotoxicity to host cells, and propensity to elicit resistance in targeted biofilm-forming microbes. Emerging next generation antibiofilm strategies, which rely on multipronged approaches, were highlighted, and these benefit from current advances in nanotechnology, synthetic biology, and antimicrobial drug discovery. The assessment of current antibiofilm mitigation approaches, as presented here, could guide future initiatives toward innovative antibiofilm therapeutic strategies. Enhancing the efficacy and specificity of some emerging antibiofilm strategies via careful investigations, under conditions that closely mimic biofilm characteristics within the human body, could bridge the gap between laboratory research and practical application.
Collapse
Affiliation(s)
- Ahmed G Abdelhamid
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Court, Columbus, OH 43210, USA
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Ahmed E Yousef
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Court, Columbus, OH 43210, USA
- Department of Microbiology, The Ohio State University, 105 Biological Sciences Building, 484 West 12th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
44
|
Chen L, Fang D, Zhang J, Xiao X, Li N, Li Y, Wan M, Mao C. Nanomotors-loaded microneedle patches for the treatment of bacterial biofilm-related infections of wound. J Colloid Interface Sci 2023; 647:142-151. [PMID: 37247478 DOI: 10.1016/j.jcis.2023.05.080] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/04/2023] [Accepted: 05/13/2023] [Indexed: 05/31/2023]
Abstract
The biofilms formed by bacteria at the wound site can effectively protect the bacteria, which greatly weakens the effect of antibiotics. Herein, a microneedle patch for wound treatment is designed, which can effectively penetrate the biofilms in a physical way because of the penetration ability of the microneedles and the motion behavior of the nanomotors, and deliver bacterial quorum sensing inhibitor luteolin (Le) and nanomotors with multiple antibacterial properties within biofilms. Firstly, the nanomotors-loaded microneedle patches are prepared and characterized. The results of in vitro and in vivo experiments show that the microneedle patches have good biosafety and antibacterial properties. Among them, Le can inhibit the growth of biofilms. Further, under near-infrared (NIR) irradiation, the nanomotors loaded with photosensitizer ICG and nitric oxide (NO) donor L-arginine (L-Arg) can move in the biofilms under the double driving effect of photothermal and NO, and can give full play to the multiple anti-biological infection effects of photothermal therapy (PTT), photodynamic therapy (PDT) and NO, and finally realize the effective removal of biofilms and promote wound healing. The intervention of nanomotor technology has brought about a new therapeutic strategy for bacterial biofilm-related infection of wound.
Collapse
Affiliation(s)
- Lin Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Dan Fang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Junyue Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xiangyu Xiao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Nan Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yue Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
45
|
Wang H, Fu Y, Du S, Liu P, Ren J, Liu Y, Tao J, Zhang L, Zhu J. Mechanically Robust Dissolving Microneedles Made of Supramolecular Photosensitizers for Effective Photodynamic Bacterial Biofilm Elimination. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37196354 DOI: 10.1021/acsami.3c03614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Bacterial biofilms pose severe threats to public health worldwide and are intractable by conventional antibiotic treatment. Antimicrobial photodynamic therapy (PDT) is emerging as a promising strategy for eradicating biofilms by virtue of low invasiveness, broad-spectrum antibacterial activity, and nondrug resistance. However, its practical efficacy is impeded by the low water solubility, severe aggregation, and poor penetration of photosensitizers (PSs) into the dense extracellular polymeric substances (EPS) of biofilms. Herein, we develop a dissolving microneedle (DMN) patch composed of a sulfobutylether-β-cyclodextrin (SCD)/tetra(4-pyridyl)-porphine (TPyP) supramolecular PS for enhanced biofilm penetration and eradication. The inclusion of TPyP into the SCD cavity can drastically inhibit the aggregation of TPyP, thereby allowing for nearly tenfold reactive oxygen species production and high photodynamic antibacterial efficacy. Moreover, the TPyP/SCD-based DMN (TSMN) possesses excellent mechanical performance that can easily pierce the EPS of biofilm with a penetration depth of ∼350 μm, enabling sufficient contact of TPyP with bacteria and optimal photodynamic elimination of bacterial biofilms. Furthermore, TSMN could efficiently eradicate Staphylococcus aureus biofilm infection in vivo with good biosafety. This study offers a promising platform for supramolecular DMN for efficient biofilm elimination and other PDTs.
Collapse
Affiliation(s)
- Hua Wang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Yangxue Fu
- Department of Dermatology, Union Hospital, Tongji Medical College, HUST, Wuhan 430022, China
| | - Shuo Du
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Pei Liu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Jingli Ren
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Yijing Liu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Juan Tao
- Department of Dermatology, Union Hospital, Tongji Medical College, HUST, Wuhan 430022, China
| | - Lianbin Zhang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Jintao Zhu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| |
Collapse
|
46
|
Zafar S, Sohail Arshad M, Jafar Rana S, Patel M, Yousef B, Ahmad Z. Engineering of clarithromycin loaded stimulus responsive dissolving microneedle patches for the treatment of biofilms. Int J Pharm 2023; 640:123003. [PMID: 37146953 DOI: 10.1016/j.ijpharm.2023.123003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023]
Abstract
This study aimed to fabricate clarithromycin laden Eudragit S-100-based microfibers (MF), microfibers coated film (MB), clarithromycin loaded polyvinyl pyrollidone, hyaluronic acid and sorbitol-based dissolving microneedle patches (CP) and microfibers coated microneedle patches (MP). Morphological and phase analysis of formulations were carried out by scanning electron microscopy and differential scanning calorimetry, X-ray diffraction, respectively. Substrate liquefaction test, in vitro drug release, antimicrobial assay and in vivo antibiofilm studies were performed. MF exhibited a uniform surface and interconnected network. Morphological analysis of CP revealed sharp-tipped and uniform-surfaced microstructures. Clarithromycin was incorporated within MF and CP as amorphous solid. Liquefaction test indicated hyaluronate lyase enzyme responsiveness of hyaluronic acid. Fibers-based formulations (MF, MB and MP) provided an alkaline pH (7.4) responsive drug release; ∼79 %, ∼78 % and ∼81 %, respectively within 2 hours. CP showed a drug release of ∼82 % within 2 hours. MP showed ∼13 % larger inhibitory zone against Staphylococcus aureus (S. aureus) as compared to MB and CP. A relatively rapid eradication of S. aureus in infected wounds and subsequent skin regeneration was observed following MP application as compared to MB and CP indicating its usefulness for the management of microbial biofilms.
Collapse
Affiliation(s)
- Saman Zafar
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | | | - Sadia Jafar Rana
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Mohammed Patel
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| | - Bushra Yousef
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| | - Zeeshan Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom.
| |
Collapse
|
47
|
A chitosan/fucoidan nanoparticle-loaded pullulan microneedle patch for differential drug release to promote wound healing. Carbohydr Polym 2023; 306:120593. [PMID: 36746584 DOI: 10.1016/j.carbpol.2023.120593] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 01/24/2023]
Abstract
Wound healing is a largely unmet medical issue in trauma, burn, and diabetes. In this study, a pullulan-based and nanoparticle-loaded smart microneedle patch is designed to release drugs differentially based on the needs of wound healing. Chitosan and fucoidan are first used to prepare moxifloxacin (MOX)-loaded nanoparticles (MOXNPs) with a diameter of 258.0 ± 10.86 nm, PDI 0.19 ± 0.06, and surface charge 45.1 ± 3.9 mV. MOXNPs, lidocaine (LH), and thrombin (TH) are then incorporated to a 30 % (w/w) pullulan-based microneedle patch (TH + LH + MOXNPs@MN). TH + LH + MOXNPs@MN possesses uniform and cone-shaped microneedles with a length of 725 μm, demonstrating good biocompatibility, sufficient strength for skin penetration, fast skin dissolution within 55 ± 5 min, rapid release of TH and LH within 1 h, and sustained release of MOX for 24 h. TH + LH + MOXNPs@MN heals mice skin wounds completely within 7 days and restores collagen deposition with accelerated cell proliferation, granulation, and reduced pro-inflammatory cytokines. In conclusion, this study utilizes combined polysaccharides to develop a smart multifunctional microneedle platform that achieves rapid hemostasis/analgesia and sustained bactericidal action. The smart and combined therapy is a potential strategy for high-quality wound healing.
Collapse
|
48
|
Su Y, Andrabi SM, Shahriar SMS, Wong SL, Wang G, Xie J. Triggered release of antimicrobial peptide from microneedle patches for treatment of wound biofilms. J Control Release 2023; 356:131-141. [PMID: 36858263 PMCID: PMC10073311 DOI: 10.1016/j.jconrel.2023.02.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/01/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023]
Abstract
Biofilms pose a great challenge for wound management. Herein, this study describes a near-infrared (NIR) light-responsive microneedle patch for on-demand release of antimicrobial peptide for treatment of wound biofilms. IR780 iodide as a photothermal conversion agent and molecularly engineered peptide W379 as an antimicrobial agent are loaded in dissolvable poly(vinylpyrrolidone) (PVP) microneedle patches followed by coating with a phase change material 1-tetradecanol (TD). After placing in an aqueous solution or biofilm containing wounds ex vivo and in vivo, upon exposure to NIR light, the incorporated IR780 induces light-to-heat conversion, causing the melting of TD. This leads to the dissolution of PVP microneedles, enabling the release of loaded W379 peptide from the microneedles into surrounding regions (e.g., solution, biofilm, wound bed). Compared with traditional microneedle patches, NIR light responsive microneedle patches can program the release of antimicrobial peptide and show high antibacterial efficacy in vitro. Meanwhile, this work indicates that NIR light responsive TD-coated, W379-loaded PVP microneedle patches show excellent antibiofilm activities ex vivo and in vivo. Additionally, this microneedle system could be a promising platform for delivering other antimicrobial agents.
Collapse
Affiliation(s)
- Yajuan Su
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Syed Muntazir Andrabi
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - S M Shatil Shahriar
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Shannon L Wong
- Department of Surgery-Plastic Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Guangshun Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States; Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska Lincoln, Lincoln, NE 68588, United States.
| |
Collapse
|
49
|
Ziesmer J, Larsson JV, Sotiriou GA. Hybrid microneedle arrays for antibiotic and near-IR photothermal synergistic antimicrobial effect against Methicillin-Resistant Staphylococcus aureus. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2023; 462:142127. [PMID: 37719675 PMCID: PMC7615096 DOI: 10.1016/j.cej.2023.142127] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The rise of antibiotic-resistant skin and soft tissue infections (SSTIs) necessitates the development of novel treatments to improve the efficiency and delivery of antibiotics. The incorporation of photothermal agents such as plasmonic nanoparticles (NPs) improves the antibacterial efficiency of antibiotics through synergism with elevated temperatures. Hybrid microneedle (MN) arrays are promising local delivery platforms that enable co-therapy with therapeutic and photothermal agents. However, to-date, the majority of hybrid MNs have focused on the potential treatment of skin cancers, while suffering from the shortcoming of the intradermal release of photothermal agents. Here, we developed hybrid, two-layered MN arrays consisting of an outer water-soluble layer loaded with vancomycin (VAN) and an inner water-insoluble near-IR photothermal core. The photothermal core consists of flame-made plasmonic Au/SiO2 nanoaggregates and polymethylmethacrylate (PMMA). We analyzed the effect of the outer layer polymer, polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP), on MN morphology and performance. Hybrid MNs produced with 30 wt% PVA contain a highly drug-loaded outer shell allowing for the incorporation of VAN concentrations up to 100 mg g-1 and temperature increases up to 60 °C under near-IR irradiation while showing sufficient mechanical strength for skin insertion. Furthermore, we studied the combinatorial effect of VAN and heat on the growth inhibition of methicillin-resistant Staphylococcus aureus (MRSA) showing synergistic inhibition between VAN and heat above 55 °C for 10 min. Finally, we show that treatment with hybrid MN arrays can inhibit the growth of MRSA due to the synergistic interaction of heat with VAN reducing the bacterial survival by up to 80%. This proof-of-concept study demonstrates the potential of hybrid, two-layered MN arrays as a novel treatment option for MRSA-associated skin infections.
Collapse
Affiliation(s)
- Jill Ziesmer
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Justina Venckute Larsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Georgios A. Sotiriou
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
50
|
Hu F, Gao Q, Liu J, Chen W, Zheng C, Bai Q, Sun N, Zhang W, Zhang Y, Lu T. Smart microneedle patches for wound healing and management. J Mater Chem B 2023; 11:2830-2851. [PMID: 36916631 DOI: 10.1039/d2tb02596e] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The number of patients with non-healing wounds is generally increasing globally, placing a huge social and economic burden on every country. The complexity of the wound-healing process remains a major health challenge despite the numerous studies that have been reported on conventional wound dressings. Therefore, a therapeutic system that combines diagnostic and therapeutic modalities is essential to monitor wound-related biomarkers and facilitate wound healing in real time. Microneedles, as a multifunctional platform, are promising for transdermal diagnostics and drug delivery. Their advantages are mainly reflected in painless transdermal drug delivery, good biocompatibility, and ease of self-administration. In this work, we review recent advances in the use of microneedle patches for wound healing and monitoring. The paper first provides a brief overview of the skin structure and the wound healing process, and then discusses the current state of research and prospects for the development of wound-related biomarkers and their real-time monitoring based on microneedle sensors. It summarizes the current state of research based on the unique design of microneedle patches, including biomimetic, conductive, and environmentally responsive, to achieve wound healing. It further summarizes the prospects for the application of different microneedle-based drug delivery modalities and drug delivery substances for wound healing, due to their superior transdermal drug delivery advantages. It concludes with challenges and expectations for the use of smart microneedle patches for wound healing and management.
Collapse
Affiliation(s)
- Fangfang Hu
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Qian Gao
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Jinxi Liu
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Wenting Chen
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Caiyun Zheng
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Que Bai
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Na Sun
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Wenhui Zhang
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Yanni Zhang
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| | - Tingli Lu
- School of Life Sciences, Northwestern Polytechnical University 127 West Youyi Road, Beilin District, Xi'an Shaanxi, 710072, P. R. China.
| |
Collapse
|