1
|
Wang MF, Yan T, Gao MC, Han CW, Yan ZQ, Gao YZ, Zhang W, Yi Z. A review of the advances in implant technology: accomplishments and challenges for the design of functionalized surface structures. Biomed Mater 2025; 20:032003. [PMID: 40199334 DOI: 10.1088/1748-605x/adca7c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 04/08/2025] [Indexed: 04/10/2025]
Abstract
Biomedical implants are extensively utilized to replace hard-tissue defects owing to their biocompatibility and remarkable tissue-affinity. The materials and functional design are selected based on the resultant osseointegration level and resistance to infection, and these considerations constitute the dominant research topic in this field. However, high rates of implantation failure and peri-implantitis have been reported. Current research on biomedical-implant design encompasses enhancement of the implant surface properties, such as the roughness, nano/micro topography, and hydrophilicity, along with the realization of advanced features including antibacterial properties and cell and immunomodulation regulation. This review considers the two achievements of contemporary implant manufacturing; namely, osseointegration and the realization of antibacterial properties. Present mainstream surface modifications and coatings are discussed, along with functional design technologies and achievements. The impacts of direct surface-treatment techniques and osteogenic functional coatings on osseointegration performance and antibacterial surface structures are elucidated, considering inorganic and organic coatings with antibacterial properties as well as antibiotic-releasing coatings. Furthermore, this review highlights recent advancements in physically driven antimicrobial strategies. Expanding upon existing research, future directions for implant studies are proposed, including the realization of comprehensive functionality that integrates osseointegration and antibacterial properties, as well as patient-specific design. Our study presents a comprehensive review and offers a novel perspective on the design of biomedical implants for enhanced versatility. An in-depth exploration of future research directions will also stimulate subsequent investigations.
Collapse
Affiliation(s)
- Ming-Feng Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Tao Yan
- Joint Orthopedics, Xiangyang Hospital Affiliated to Hubei University of Chinese Medicine, Xiangyang, Hubei 441000, People's Republic of China
| | - Ming-Cen Gao
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| | - Cheng-Wei Han
- Liaoning Upcera Co., Ltd, Benxi, Liaoning 117004, People's Republic of China
| | - Zhuo-Qun Yan
- Liaoning Upcera Co., Ltd, Benxi, Liaoning 117004, People's Republic of China
| | - Yu-Zhong Gao
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, People's Republic of China
| | - Wei Zhang
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning 110016, People's Republic of China
| | - Zhe Yi
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| |
Collapse
|
2
|
Malheiros S, Borges MHR, Rangel EC, Fortulan CA, da Cruz NC, Barao VAR, Nagay BE. Zinc-Doped Antibacterial Coating as a Single Approach to Unlock Multifunctional and Highly Resistant Titanium Implant Surfaces. ACS APPLIED MATERIALS & INTERFACES 2025; 17:18022-18045. [PMID: 40098312 PMCID: PMC11955950 DOI: 10.1021/acsami.4c21875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/19/2025]
Abstract
Failures of dental and orthopedic implants due to microbial colonization, corrosion, and insufficient osseointegration remain persistent clinical challenges. Current implant surface coatings often lack the mechanical robustness needed for long-term success. Therefore, this study developed zinc (Zn)-doped coatings on titanium implants via plasma electrolytic oxidation (PEO), achieving 11 at % Zn incorporation primarily as zinc oxide (ZnO). The Zn-doped coatings were primarily composed of zinc, calcium, phosphorus, and oxygen, displaying moderate roughness (∼1 μm), hydrophilic behavior, and high crystallinity with anatase and rutile phases. Tribological tests demonstrated over a 50% reduction in mass loss, while electrochemical tests confirmed significantly enhanced corrosion resistance of Zn-doped coating with higher open circuit potential values, larger Nyquist plot semicircles, and higher impedance values at low frequencies compared to controls (p < 0.05). The Zn-doped coatings also showed superior antimicrobial efficacy, reducing Streptococcus sanguinis viability, completely inhibiting Escherichia coli growth, and reducing biofilm biomass by over 60%, which may be related to the sustained Zn release (∼6 μg/cm2) over 7 days. Enhanced bioactivity was evidenced by greater protein adsorption, increased hydroxyapatite formation, and improved preosteoblastic cell metabolism and morphology. Ex vivo analyses confirmed coating mechanical stability, without morphological or chemical impairment, during implant insertion and removal from bovine rib bone, with increased implant stability quotient (ISQ) values, indicating benefits in poor bone quality. These findings highlight the significant promise of Zn-doped plasma electrolytic oxidation coatings for advancing dental and orthopedic implant technology, offering enhanced longevity, antimicrobial defense, and improved bioactivity to optimize clinical outcomes.
Collapse
Affiliation(s)
- Samuel
S. Malheiros
- Department
of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Maria Helena R. Borges
- Department
of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Elidiane C. Rangel
- Laboratory
of Technological Plasmas, Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março,
511, Sorocaba, São
Paulo 18087-180, Brazil
| | - Carlos A Fortulan
- Department
of Mechanical Engineering, University of
São Paulo (USP), Trabalhador São Carlense, 400, São
Carlos, São Paulo 13566-590, Brazil
| | - Nilson C. da Cruz
- Laboratory
of Technological Plasmas, Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março,
511, Sorocaba, São
Paulo 18087-180, Brazil
| | - Valentim A. R. Barao
- Department
of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Bruna E. Nagay
- Department
of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| |
Collapse
|
3
|
Malheiros SS, Celles CAS, Borges MHR, Corrêa MMF, de Andrade CSAF, Neto JVC, Barão VAR, Nagay BE. Impact of citric acid and conventional denture cleansers on surface properties and antimicrobial performance of conventionally heat-processed acrylic resin: An in vitro study. J Prosthet Dent 2025:S0022-3913(25)00209-4. [PMID: 40140282 DOI: 10.1016/j.prosdent.2025.02.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/28/2025]
Abstract
STATEMENT OF PROBLEM Effective decontamination of denture base acrylic resin is essential for biofilm removal but can compromise the integrity of the material. Citric acid has shown promise as a potent antimicrobial agent, though its effectiveness as a denture cleanser is unknown. PURPOSE The purpose of this in vitro study was to evaluate the effect of citric acid on the surface properties and efficacy of biofilm removal on denture base acrylic resin compared with commonly used denture cleansers. MATERIAL AND METHODS A total of 130 conventional, heat-processed denture base acrylic resin disks were randomly allocated into 1 of 5 groups based on the decontamination solution applied: control 0.9% sodium chloride (NaCl), 0.1% sodium hypochlorite (SH), Periogard (chlorhexidine digluconate), effervescent denture cleansing tablets (Corega Tabs), and 10% citric acid (CA). Surface properties (roughness, hydrophilicity, microhardness, and color stability) were assessed at 3 time points: baseline (T0), after 5 minutes of exposure (T1), and after 1 week of exposure (T2) to the respective solution. A microcosm biofilm was formed on specimen surfaces to evaluate antimicrobial efficacy of the decontamination solution groups, through assessment of microbial viability, metabolic activity, biofilm dry weight, and morphology. A 2-way repeated measures ANOVA was performed for surface properties evaluations and for microbiological analysis, 1-way ANOVA was used (α=.05). RESULTS No significant differences in average surface roughness (Ra) were observed between T0, T1, and T2 across all groups (P>.05). CA significantly increased surface hydrophilicity at T2 (P<.001) compared with the other groups. No significant differences in ΔE00 were seen among the groups: all values near the 50% perceptibility threshold. Compared with the control group, all denture cleansers significantly reduced the viability of total microorganisms and Candida species, with no viable colonies detected after treatment (P<.001). However, CA demonstrated a robust antimicrobial effect, with a significant reduction in biofilm dry weight and metabolic activity (P<.001), suggesting superior biofilm disruption compared with the other groups. CONCLUSIONS Citric acid effectively increased hydrophilicity of conventional, heat-processed acrylic resin without negatively impacting surface roughness, microhardness, or color stability.
Collapse
Affiliation(s)
- Samuel Santana Malheiros
- MSc student, Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, Brazil
| | - Cícero Andrade Sigilião Celles
- PhD student, Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, Brazil
| | - Maria Helena Rossy Borges
- PhD student, Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, Brazil
| | - Mirtes Maria Ferreira Corrêa
- MSc student, Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, Brazil
| | - Catia Sufia Alves Freire de Andrade
- PhD student, Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, Brazil
| | - João Vicente Calazans Neto
- PhD student, Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, Brazil
| | - Valentim Adelino Ricardo Barão
- Associate Professor, Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, Brazil
| | - Bruna Egumi Nagay
- Postdoctoral Fellow, Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, Brazil.
| |
Collapse
|
4
|
He R, Gu Y, Jia J, Yang F, Wu P, Feng P, Shuai C. Semiconductor photocatalytic antibacterial materials and their application for bone infection treatment. NANOSCALE HORIZONS 2025; 10:681-698. [PMID: 39850999 DOI: 10.1039/d4nh00542b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Bacterial infection in bone tissue engineering is a severe clinical issue. Traditional antimicrobial methods usually cause problems such as bacterial resistance and biosecurity. Employing semiconductor photocatalytic antibacterial materials is a more controlled and safer strategy, wherein semiconductor photocatalytic materials generate reactive oxygen species under illumination for killing bacteria by destroying their cell membranes, proteins, DNA, etc. In this review, P-type and N-type semiconductor photocatalytic materials and their antibacterial mechanisms are introduced. Type II heterojunctions, P-N heterojunctions, type Z heterojunctions and Schottky junctions have been reported to reduce the recombination of carriers, while element doping, sensitization and up-conversion luminescence expand the photoresponse range. Furthermore, the applications of semiconductor photocatalytic antibacterial materials in bone infection treatment such as osteomyelitis treatment, bone defect repair and dental tissue regeneration are summarized. Finally, the conclusion and future prospects of semiconductor photocatalytic antibacterial materials in bone tissue engineering were analyzed.
Collapse
Affiliation(s)
- Ruizhong He
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Yulong Gu
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Jiye Jia
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Feng Yang
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Ping Wu
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Pei Feng
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Cijun Shuai
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
- Jiangxi Province Key Laboratory of Additive Manufacturing of Implantable Medical Device, Jiangxi University of Science and Technology, Nanchang 330013, China
| |
Collapse
|
5
|
Dini C, Yamashita KM, Sacramento CM, Borges MHR, Takeda TTS, Silva JPDS, Nagay BE, Costa RC, da Cruz NC, Rangel EC, Ruiz KGS, Barão VAR. Tailoring magnesium-doped coatings for improving surface and biological properties of titanium-based dental implants. Colloids Surf B Biointerfaces 2025; 246:114382. [PMID: 39591849 DOI: 10.1016/j.colsurfb.2024.114382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024]
Abstract
Physicochemical modifications of biomaterials have been proposed to overcome bone integration impairment and microbial infections. The magnesium (Mg) incorporation on dental implant surfaces has shown positive results in bone-to-implant contact and in the reduction of microbial colonization. Here, we explored the potential of using different Mg precursors to synthesize coatings via plasma electrolytic oxidation (PEO) on commercially pure titanium (cpTi), aiming to optimize the surface and biological properties. For this, we investigated Mg acetate and Mg nitrate precursors in different concentrations (0.04 M and 0.12 M), using calcium (Ca) and phosphorus (P) as the base electrolyte for all groups. Coatings with only the CaP base electrolyte were used as the control group. The surfaces were characterized by confocal laser scanning microscopy, scanning electron microscopy, film thickness measurement, profilometry, wettability, X-ray diffraction, energy dispersive spectroscopy, X-ray photoelectron spectroscopy, electrochemical behavior, and ion release. For biological analyses, the adhesion (2 h) of Streptococcus sanguinis was evaluated, as well as MC3T3-E1 osteoblastic cells proliferation at 1 and 3 days, and mineralization of calcium phosphates after 28 days. PEO treatment using different Mg precursors promoted physicochemical modifications of cpTi. The experimental groups MgN 0.04 and MgN 0.12 exhibited higher surface roughness and wettability compared to the other surfaces. Regardless of the Mg precursor, the higher the ion concentration in the electrolyte solution, the higher the Mg atomic concentration on the surfaces. Concerning the electrochemical behavior, the results indicated that the incorporation of Mg in the coatings may enhance the electrochemical performance. Mg treated surfaces did not promote greater bacterial adherence when compared to the control. MgAc 0.04 and MgAc 0.12 coatings displayed improved MC3T3-E1 pre-osteoblastic cells proliferation at day 3 compared to other groups. The hydroxyapatite formation on MgAc 0.12 surfaces was higher than in the other groups. Our data indicate that Mg precursor selection positively influences physicochemical and biological properties of coatings. Specifically, MgAc 0.12 surfaces showed the most promising surface features with greater cell proliferation, without affecting microbial colonization, being an excellent candidate for surface treatment of titanium-based dental implants.
Collapse
Affiliation(s)
- Caroline Dini
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Karen Midori Yamashita
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Catharina Marques Sacramento
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Maria Helena Rossy Borges
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Thais Terumi Sadamitsu Takeda
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - João Pedro Dos Santos Silva
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Bruna Egumi Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Raphael Cavalcante Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil; School of Dentistry, Federal University of Alfenas (Unifal-MG), Alfenas, Minas Gerais 37130-001, Brazil
| | - Nilson Cristino da Cruz
- Laboratory of Technological Plasmas, Engineering College, Univ Estadual Paulista (UNESP), Sorocaba, São Paulo 18087-180, Brazil
| | - Elidiane Cipriano Rangel
- Laboratory of Technological Plasmas, Engineering College, Univ Estadual Paulista (UNESP), Sorocaba, São Paulo 18087-180, Brazil
| | - Karina Gonzalez Silverio Ruiz
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil.
| |
Collapse
|
6
|
Park D, Kim NK, Shin WR, Osuji CO. Persistent Photoinduced Antibacterial Activity of MoS 2 Nanosheets Immobilized in Porous Polymer Beads. ACS APPLIED MATERIALS & INTERFACES 2025; 17:342-350. [PMID: 39679896 DOI: 10.1021/acsami.4c15416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Reactive oxygen species (ROS) photogenerated by two-dimensional (2D) nanomaterials provide a means of delivering persistent antibacterial activity in fluid media. Semiconducting molybdenum disulfide (MoS2) nanosheets are an attractive option for exploiting such activity by using visible light. However, the tendency of MoS2 nanosheets in suspension to restack or otherwise aggregate remains a critical obstacle, as it results in the loss of the desired photoactivity. We report here the development of persistent antibacterial activity by successfully immobilizing MoS2 nanosheets within porous cross-linked polymer beads. The nanosheet-loaded beads demonstrate continuous antibacterial activity against model species under visible-light exposure. The bactericidal activity is associated with ROS-mediated oxidative organismal stress, as assessed through chemical methods using fluorescent probes and gene-level biological studies. The porous beads demonstrate an effective antifouling capability and were physically stable with sustained bactericidal activity at an average of 99% over 5 cycles. The ability to confer reusable, continuous antibacterial activity under visible-light illumination is attractive in the context of the development of sustainable solutions for photoinduced antibacterial materials.
Collapse
Affiliation(s)
- Daehwan Park
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Republic of Korea
| | - Na Kyung Kim
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Woo-Ri Shin
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Chinedum O Osuji
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
7
|
Albadr RJ, Taher WM, Alwan M, Jawad MJ, Mushtaq H, Yaseen BM. A review on the potential use of bismuth nanoparticles in oral health. Microb Pathog 2025; 198:107131. [PMID: 39557226 DOI: 10.1016/j.micpath.2024.107131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
According to many investigations, persistent oral infections may be caused by oral pathogenic biofilms. Irritation of soft tissues and subsequent bone resorption due to bacterial biofilm contamination of the implant further worsen oral health. Dental problems may be effectively treated using metal nanoparticles (NPs) because they limit the development of many different types of bacteria. With their low toxicity, X-ray sensitivity, high atomic number, near-infrared driven semiconductor qualities, and cheap cost, multifunctional bismuth (Bi) NPs with therapeutic activities show significant potential for the domains of bacterial infection diagnostics and treatment. Also, by directly communicating with the bacterial cell wall, stimulating intracellular effects, inhibiting biofilm formation, producing reactive oxygen species, and inducing adaptive and innate immune responses, BiNPs offer an alternative to conventional antibiotics for treating bacteria with multiple drug resistance (MDR). Hence, BiNPs, which have more antibacterial activity and fewer side effects than chlorhexidine, might be a promising option to fight biofilm-forming bacteria in the mouth. This could lead to their usage in several areas of dentistry. The research delves into the many synthesis techniques of BiNPs and their antibacterial and anticancer capabilities. Next, we'll review how this nanoparticle has helped with dental infections, periodontitis, and dental implant problems. The anticancer effects of BiNPs on oral cancer were also studied. Thus, after this paper, we have highlighted the therapeutic limits and ways to address this issue for the clinical success of BiNPs in promoting oral and dental health.
Collapse
Affiliation(s)
| | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | | | | | | | - Baraa Mohammed Yaseen
- Department of Medical Laboratory Technics, College of Health and Medical Technology, Alnoor University, Mosul, Iraq.
| |
Collapse
|
8
|
Borges MHR, Nagay BE, Souza JGS, Barão VAR. What challenges hinder the adoption of antimicrobial surface in the dental implant market? Expert Rev Med Devices 2024; 21:1081-1085. [PMID: 39648297 DOI: 10.1080/17434440.2024.2440061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/18/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
INTRODUCTION Implant failures resulting from peri-implant infections can have substantial consequences, underscoring the urgent need for effective strategies to prevent biofilm formation on implant surfaces. However, despite advancements in antimicrobial surface technologies, significant challenges persist in translating these innovations into clinically viable solutions. AREAS COVERED This article provides an overview of the limitations of current treatment protocols and explores the potential of antimicrobial surface treatments for controlling such infections. Furthermore, we highlight the importance of balancing antimicrobial efficacy with biocompatibility and mechanical stability, key factors for long-term implant performance. Finally, we address the main challenges in translating these technologies into clinical practice, including the unpredictability of long-term antimicrobial effects, regulatory compliance gaps, and methodological weaknesses in current research. EXPERT OPINION The development of antimicrobial surfaces holds promise for enhancing the longevity of dental implants; however, current modifications face persistent challenges, hindering their translation into the dental implant market. Future advancements should prioritize 'smart' or stimulus-responsive surfaces that can release antimicrobials on demand. This strategy aims to efficiently combat infections while minimizing the risks of cytotoxicity and antimicrobial resistance, potentially leading to more effective and clinically translatable solutions.
Collapse
Affiliation(s)
- Maria Helena R Borges
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Bruna E Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | | | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| |
Collapse
|
9
|
Andrade CS, Borges MHR, Silva JP, Malheiros S, Sacramento C, Ruiz KGS, da Cruz NC, Rangel EC, Fortulan C, Figueiredo L, Nagay BE, Souza JGS, Barão VAR. Micro-arc driven porous ZrO 2 coating for tailoring surface properties of titanium for dental implants application. Colloids Surf B Biointerfaces 2024; 245:114237. [PMID: 39293292 DOI: 10.1016/j.colsurfb.2024.114237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
Titanium (Ti) is an ideal material for dental implants due to its excellent properties. However, corrosion and mechanical wear lead to Ti ions and particles release, triggering inflammatory responses and bone resorption. To overcome these challenges, surface modification techniques are used, including micro-arc oxidation (MAO). MAO creates adherent, porous coatings on Ti implants with diverse chemical compositions. In this context, zirconia element stands out in its wear and corrosion properties associated with low friction and chemical stability. Therefore, we investigated the impact of adding zirconium oxide (ZrO2) to Ti surfaces through MAO, aiming for improved electrochemical and mechanical properties. Additionally, the antimicrobial and modulatory potentials, cytocompatibility, and proteomic profile of surfaces were investigated. Ti discs were divided into four groups: machined - control (cpTi), treated by MAO with 0.04 M KOH - control (KOH), and two experimental groups incorporating ZrO2 at concentrations of 0.04 M and 0.08 M, composing the KOH@Zr4 and KOH@Zr8 groups. KOH@Zr8 showed higher surface porosity and roughness, even distribution of zirconia, formation of crystalline phases like ZrTiO4, and hydrophilicity. ZrO2 groups showed better mechanical performance including higher hardness values, lower wear area and mass loss, and higher friction coefficient under tribological conditions. The formation of a more compact oxide layer was observed, which favors the electrochemical stability of ZrO2 surfaces. Besides not inducing greater biofilm formation, ZrO2 surfaces reduced the load of pathogenic bacteria evidenced by the DNA-DNA checkerboard analysis. ZrO2 surfaces were cytocompatible with pre-osteoblastic cells. The saliva proteomic profile, evaluated by liquid chromatography coupled with tandem mass spectrometry, was slightly changed by zirconia, with more proteins adsorbed. KOH@Zr8 group notably absorbed proteins crucial for implant biological responses, like albumin and fibronectin. Incorporating ZrO2 improved the mechanical and electrochemical behavior of Ti surfaces, as well as modulated biofilm composition and provided suitable biological responses.
Collapse
Affiliation(s)
- Cátia Sufia Andrade
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Maria Helena R Borges
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - João Pedro Silva
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Samuel Malheiros
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Catharina Sacramento
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Karina G S Ruiz
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Nilson C da Cruz
- Laboratory of Technological Plasmas, Engineering College, Univ Estadual Paulista (UNESP), Av Três de Março, 511, Sorocaba, São Paulo 18087-180, Brazil
| | - Elidiane C Rangel
- Laboratory of Technological Plasmas, Engineering College, Univ Estadual Paulista (UNESP), Av Três de Março, 511, Sorocaba, São Paulo 18087-180, Brazil
| | - Carlos Fortulan
- Department of Mechanical Engineering, University of São Paulo (USP), Trabalhador São Carlense, 400, São Carlos, São Paulo 13566-590, Brazil
| | - Luciene Figueiredo
- Dental Research Division, Guarulhos University, Guarulhos, São Paulo 07023-070, Brazil
| | - Bruna E Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Joāo Gabriel S Souza
- Dental Research Division, Guarulhos University, Guarulhos, São Paulo 07023-070, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil.
| |
Collapse
|
10
|
Reis-Neta GRD, Ricomini-Filho AP, Martorano-Fernandes L, Vargas-Moreno VF, Cury AADB, Marcello-Machado RM. Effect of hydroxyapatite nanoparticles coating of titanium surface on biofilm adhesion: An in vitro study. Arch Oral Biol 2024; 164:105986. [PMID: 38723421 DOI: 10.1016/j.archoralbio.2024.105986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 06/06/2024]
Abstract
AIM To evaluate the adhesion of mono and duospecies biofilm on a commercially available dental implant surface coated with hydroxyapatite nanoparticles (nanoHA). MATERIAL AND METHODS Titanium discs were divided into two groups: double acid-etched (AE) and AE coated with nanoHA (NanoHA). Surface characteristics evaluated were morphology, topography, and wettability. Mono and duospecies biofilms of Streptococcus sanguinis (S. sanguinis) and Candida albicans (C. albicans) were formed. Discs were exposed to fetal bovine serum (FBS) to form the pellicle. Biofilm was growth in RPMI1640 medium with 10% FBS and 10% BHI medium for 6 h. Microbial viability was evaluated using colony-forming unit and metabolic activity by a colorimetric assay of the tetrazolium salt XTT. Biofilm architecture and organization were evaluated by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). RESULTS AE surface had more pores, while NanoHA had even nanoHA crystals distribution. Roughness was similar (AE: 0.59 ± 0.07 µm, NanoHA: 0.69 ± 0.18 µm), but wettability was different (AE: Θw= 81.79 ± 8.55°, NanoHA: Θw= 53.26 ± 11.86°; P = 0.01). NanoHA had lower S. sanguinis viability in monospecies biofilm (P = 0.007). Metabolic activity was similar among all biofilms. In SEM both surfaces on C. albicans biofilm show a similar distribution of hyphae in mono and duospecies biofilms. AE surface has more S. sanguinis than the NanoHA surface in the duospecies biofilm. CLSM showed a large proportion of live cells in all groups. CONCLUSIONS The nanoHA surface reduced the adhesion of S. sanguinis biofilm but did not alter the adhesion of C. albicans or the biofilm formed by both species.
Collapse
Affiliation(s)
- Gilda Rocha Dos Reis-Neta
- Departamento de Prótese e Periodontia da Universidade Estadual de Campinas (UNICAMP) - Faculdade de Odontologia de Piracicaba (FOP), Piracicaba, SP, Brazil
| | - Antônio Pedro Ricomini-Filho
- Departamento de Biociências da Universidade Estadual de Campinas (UNICAMP) - Faculdade de Odontologia de Piracicaba (FOP), Piracicaba, SP, Brazil
| | - Loyse Martorano-Fernandes
- Departamento de Prótese e Periodontia da Universidade Estadual de Campinas (UNICAMP) - Faculdade de Odontologia de Piracicaba (FOP), Piracicaba, SP, Brazil
| | - Vanessa Felipe Vargas-Moreno
- Departamento de Prótese e Periodontia da Universidade Estadual de Campinas (UNICAMP) - Faculdade de Odontologia de Piracicaba (FOP), Piracicaba, SP, Brazil
| | - Altair Antoninha Del Bel Cury
- Departamento de Prótese e Periodontia da Universidade Estadual de Campinas (UNICAMP) - Faculdade de Odontologia de Piracicaba (FOP), Piracicaba, SP, Brazil
| | - Raissa Micaella Marcello-Machado
- Departamento de Prótese e Periodontia da Universidade Estadual de Campinas (UNICAMP) - Faculdade de Odontologia de Piracicaba (FOP), Piracicaba, SP, Brazil; Periodontology, Faculty of Dentistry, Paulista University, São Paulo, SP, Brazil.
| |
Collapse
|
11
|
Tsai YH, Milbrandt NB, Prado RC, Ponce NB, Alam MM, Qiu SR, Yu X, Burda C, Kim TKJ, Samia ACS. Effect of Nitrogen Doping on the Photocatalytic Properties and Antibiofilm Efficacy of Reduced TiO 2 Nanoparticles. ACS APPLIED BIO MATERIALS 2024; 7:4580-4592. [PMID: 38958462 DOI: 10.1021/acsabm.4c00459] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Nanomaterial-mediated antibacterial photodynamic therapy (aPDT) emerges as a promising treatment against antibiotic-resistant bacterial biofilms. Specifically, titanium dioxide nanoparticles (TiO2 NPs) are being investigated as photosensitizers in aPDT to address biofilm related diseases. To enhance their photocatalytic performance in the visible spectral range for biomedical applications, various strategies have been adopted, including reduction of TiO2 NPs. However, despite improvements in visible-light photoactivity, reduced TiO2 NPs have yet to reach their expected performance primarily due to the instability of oxygen vacancies and their tendency to reoxidize easily. To address this, we present a two-step approach to fabricate highly visible-light active and stable TiO2 NP photocatalysts, involving nitrogen doping followed by a magnesium-assisted reductive annealing process. X-ray photoelectron spectroscopy analysis of the synthesized reduced nitrogen-doped TiO2 NPs (H:Mg-N-TiO2 NPs) reveals that the presence of nitrogen stabilizes oxygen vacancies and reduced Ti species, leading to increased production of reactive oxygen species under visible-light excitation. The improved aPDT efficiency translates to a 3-fold enhancement in the antibiofilm activity of nitrogen-doped compared to undoped reduced TiO2 NPs against both Gram-positive (Streptococcus mutans) and Gram-negative (Porphyromonas gingivalis, Fusobacterium nucleatum) oral pathogens. These results underscore the potential of H:Mg-N-TiO2 NPs in aPDT for combating bacterial biofilms effectively.
Collapse
Affiliation(s)
- Yu Hsin Tsai
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Nathalie B Milbrandt
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Ross Clark Prado
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Nicole Beatrice Ponce
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Md Masud Alam
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - S Roger Qiu
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratyory, Livermore, California 94551, United States
| | - Xiong Yu
- Department of Civil and Environmental Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Clemens Burda
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Tae Kyong John Kim
- Swagelok Center for Surface Analysis of Materials, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Anna Cristina S Samia
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
12
|
Bereanu AS, Vintilă BI, Bereanu R, Codru IR, Hașegan A, Olteanu C, Săceleanu V, Sava M. TiO 2 Nanocomposite Coatings and Inactivation of Carbapenemase-Producing Klebsiella Pneumoniae Biofilm-Opportunities and Challenges. Microorganisms 2024; 12:684. [PMID: 38674628 PMCID: PMC11051735 DOI: 10.3390/microorganisms12040684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
The worldwide increase of multidrug-resistant Gram-negative bacteria is a global threat. The emergence and global spread of Klebsiella pneumoniae carbapenemase- (KPC-) producing Klebsiella pneumoniae represent a particular concern. This pathogen has increased resistance and abilities to persist in human reservoirs, in hospital environments, on medical devices, and to generate biofilms. Mortality related to this microorganism is high among immunosuppressed oncological patients and those with multiple hospitalizations and an extended stay in intensive care. There is a severe threat posed by the ability of biofilms to grow and resist antibiotics. Various nanotechnology-based strategies have been studied and developed to prevent and combat serious health problems caused by biofilm infections. The aim of this review was to evaluate the implications of nanotechnology in eradicating biofilms with KPC-producing Klebsiella pneumoniae, one of the bacteria most frequently associated with nosocomial infections in intensive care units, including in our department, and to highlight studies presenting the potential applicability of TiO2 nanocomposite materials in hospital practice. We also described the frequency of the presence of bacterial biofilms on medical surfaces, devices, and equipment. TiO2 nanocomposite coatings are one of the best long-term options for antimicrobial efficacy due to their biocompatibility, stability, corrosion resistance, and low cost; they find their applicability in hospital practice due to their critical antimicrobial role for surfaces and orthopedic and dental implants. The International Agency for Research on Cancer has recently classified titanium dioxide nanoparticles (TiO2 NPs) as possibly carcinogenic. Currently, there is an interest in the ecological, non-toxic synthesis of TiO2 nanoparticles via biological methods. Biogenic, non-toxic nanoparticles have remarkable properties due to their biocompatibility, stability, and size. Few studies have mentioned the use of nanoparticle-coated surfaces as antibiofilm agents. A literature review was performed to identify publications related to KPC-producing Klebsiella pneumoniae biofilms and antimicrobial TiO2 photocatalytic nanocomposite coatings. There are few reviews on the antibacterial and antibiofilm applications of TiO2 photocatalytic nanocomposite coatings. TiO2 nanoparticles demonstrated marked antibiofilm activity, but being nano in size, these nanoparticles can penetrate cell membranes and may initiate cellular toxicity and genotoxicity. Biogenic TiO2 nanoparticles obtained via green, ecological technology have less applicability but are actively investigated.
Collapse
Affiliation(s)
- Alina-Simona Bereanu
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (R.B.); (A.H.); (V.S.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu nr. 2-4, 550245 Sibiu, Romania;
| | - Bogdan Ioan Vintilă
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (R.B.); (A.H.); (V.S.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu nr. 2-4, 550245 Sibiu, Romania;
| | - Rareș Bereanu
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (R.B.); (A.H.); (V.S.); (M.S.)
| | - Ioana Roxana Codru
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (R.B.); (A.H.); (V.S.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu nr. 2-4, 550245 Sibiu, Romania;
| | - Adrian Hașegan
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (R.B.); (A.H.); (V.S.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu nr. 2-4, 550245 Sibiu, Romania;
| | - Ciprian Olteanu
- County Clinical Emergency Hospital, Bld. Corneliu Coposu nr. 2-4, 550245 Sibiu, Romania;
| | - Vicențiu Săceleanu
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (R.B.); (A.H.); (V.S.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu nr. 2-4, 550245 Sibiu, Romania;
| | - Mihai Sava
- Faculty of Medicine, Lucian Blaga University of Sibiu, Lucian Blaga Street 2A, 550169 Sibiu, Romania; (A.-S.B.); (R.B.); (A.H.); (V.S.); (M.S.)
- County Clinical Emergency Hospital, Bld. Corneliu Coposu nr. 2-4, 550245 Sibiu, Romania;
| |
Collapse
|
13
|
Feng P, He R, Gu Y, Yang F, Pan H, Shuai C. Construction of antibacterial bone implants and their application in bone regeneration. MATERIALS HORIZONS 2024; 11:590-625. [PMID: 38018410 DOI: 10.1039/d3mh01298k] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Bacterial infection represents a prevalent challenge during the bone repair process, often resulting in implant failure. However, the extensive use of antibiotics has limited local antibacterial effects at the infection site and is prone to side effects. In order to address the issue of bacterial infection during the transplantation of bone implants, four types of bone scaffold implants with long-term antimicrobial functionality have been constructed, including direct contact antimicrobial scaffold, dissolution-penetration antimicrobial scaffold, photocatalytic antimicrobial scaffold, and multimodal synergistic antimicrobial scaffold. The direct contact antimicrobial scaffold involves the physical penetration or disruption of bacterial cell membranes by the scaffold surface or hindrance of bacterial adhesion through surface charge, microstructure, and other factors. The dissolution-penetration antimicrobial scaffold releases antimicrobial substances from the scaffold's interior through degradation and other means to achieve local antimicrobial effects. The photocatalytic antimicrobial scaffold utilizes the absorption of light to generate reactive oxygen species (ROS) with enhanced chemical reactivity for antimicrobial activity. ROS can cause damage to bacterial cell membranes, deoxyribonucleic acid (DNA), proteins, and other components. The multimodal synergistic antimicrobial scaffold involves the combined use of multiple antimicrobial methods to achieve synergistic effects and effectively overcome the limitations of individual antimicrobial approaches. Additionally, the biocompatibility issues of the antimicrobial bone scaffold are also discussed, including in vitro cell adhesion, proliferation, and osteogenic differentiation, as well as in vivo bone repair and vascularization. Finally, the challenges and prospects of antimicrobial bone implants are summarized. The development of antimicrobial bone implants can provide effective solutions to bacterial infection issues in bone defect repair in the foreseeable future.
Collapse
Affiliation(s)
- Pei Feng
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Ruizhong He
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Yulong Gu
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Feng Yang
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Hao Pan
- Department of Periodontics & Oral Mucosal Section, Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410013, China.
| | - Cijun Shuai
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China
- College of Mechanical Engineering, Xinjiang University, Urumqi 830017, China
| |
Collapse
|
14
|
Ouyang B, Wei D, Wu B, Yan L, Gang H, Cao Y, Chen P, Zhang T, Wang H. In the View of Electrons Transfer and Energy Conversion: The Antimicrobial Activity and Cytotoxicity of Metal-Based Nanomaterials and Their Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303153. [PMID: 37721195 DOI: 10.1002/smll.202303153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/28/2023] [Indexed: 09/19/2023]
Abstract
The global pandemic and excessive use of antibiotics have raised concerns about environmental health, and efforts are being made to develop alternative bactericidal agents for disinfection. Metal-based nanomaterials and their derivatives have emerged as promising candidates for antibacterial agents due to their broad-spectrum antibacterial activity, environmental friendliness, and excellent biocompatibility. However, the reported antibacterial mechanisms of these materials are complex and lack a comprehensive understanding from a coherent perspective. To address this issue, a new perspective is proposed in this review to demonstrate the toxic mechanisms and antibacterial activities of metal-based nanomaterials in terms of energy conversion and electron transfer. First, the antimicrobial mechanisms of different metal-based nanomaterials are discussed, and advanced research progresses are summarized. Then, the biological intelligence applications of these materials, such as biomedical implants, stimuli-responsive electronic devices, and biological monitoring, are concluded based on trappable electrical signals from electron transfer. Finally, current improvement strategies, future challenges, and possible resolutions are outlined to provide new insights into understanding the antimicrobial behaviors of metal-based materials and offer valuable inspiration and instructional suggestions for building future intelligent environmental health.
Collapse
Affiliation(s)
- Baixue Ouyang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Dun Wei
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Bichao Wu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Lvji Yan
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Haiying Gang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Yiyun Cao
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Peng Chen
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Tingzheng Zhang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Haiying Wang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
- School of Metallurgy and Environment and Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Central South, University, Changsha, 410083, China
| |
Collapse
|
15
|
Borges GA, Costa RC, Nagay BE, Sacramento CM, Ruiz KGS, Solano de Almeida L, Rossino LS, Fortulan CA, Rangel EC, Barão VAR, Mesquita MF. Targeting Biomechanical Endurance of Dental-Implant Abutments Using a Diamond-Like Carbon Coating. ACS APPLIED BIO MATERIALS 2023; 6:5630-5643. [PMID: 38052058 DOI: 10.1021/acsabm.3c00802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Abutment components (i.e., fixtures associated with oral implants) are essentially made of titanium (Ti), which is continuously exposed to the hash oral environment, resulting in scratching. Thus, such components need to be protected, and surface treatments are viable methods for overcoming long-term damage. Diamond-like carbon (DLC), an excellent protective material, is an alternative surface-treatment material for Ti abutments. Here, we demonstrate that a silicon interlayer for DLC film growth and the pulsed-direct current plasma-enhanced chemical vapor deposition (DC-PECVD) method enables the deposition of an enhanced protective DLC film. As a result, the DLC film demonstrated a smooth topography with a compact surface. Furthermore, the DLC film enhanced the mechanical (load-displacement, hardness, and elastic modulus) and tribological properties of Ti as well as increased its corrosion resistance (16-fold), which surpassed that of a bare Ti substrate. The biofilm formed (Streptococcus sanguinis) after 24 h exhibited an equal bacterial load (∼7 Log colony-forming units) for both the groups (Ti and DLC). In addition, the DLC film exhibited good cytocompatibility, owing to its noncytotoxicity toward human gingival fibroblast cells. Therefore, DLC deposition via DC-PECVD can be considered to be a promising protective and cytocompatible alternative for developing implant abutments with enhanced mechanical, tribological, and electrochemical properties.
Collapse
Affiliation(s)
- Guilherme Almeida Borges
- University of Campinas (UNICAMP), Piracicaba Dental School, Department of Prosthodontics and Periodontics, Avenida Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Raphael Cavalcante Costa
- University of Campinas (UNICAMP), Piracicaba Dental School, Department of Prosthodontics and Periodontics, Avenida Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Bruna Egumi Nagay
- University of Campinas (UNICAMP), Piracicaba Dental School, Department of Prosthodontics and Periodontics, Avenida Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Catharina Marques Sacramento
- University of Campinas (UNICAMP), Piracicaba Dental School, Department of Prosthodontics and Periodontics, Avenida Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Karina Gonzales Silverio Ruiz
- University of Campinas (UNICAMP), Piracicaba Dental School, Department of Prosthodontics and Periodontics, Avenida Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Larissa Solano de Almeida
- Federal University of São Carlos (UFSCar) - Campus Sorocaba, Postgraduate Program in Materials Science, Rodovia João Leme dos Santos, Km 110, Sorocaba, São Paulo 18052-780, Brazil
| | - Luciana Sgarbi Rossino
- Federal University of São Carlos (UFSCar) - Campus Sorocaba, Postgraduate Program in Materials Science, Rodovia João Leme dos Santos, Km 110, Sorocaba, São Paulo 18052-780, Brazil
- State Center of Technological Education "Paula Souza" (CEETEPS), Sorocaba Technology College - Campus Sorocaba (Fatec Sorocaba), Avenida Engenheiro Carlos Reinaldo Mendes, 2015, Sorocaba, São Paulo 18013-280, Brazil
| | - Carlos Alberto Fortulan
- University of São Paulo (USP), Department of Mechanical Engineering, Trabalhador São Carlense 400, São Carlos, São Paulo 13566-590, Brazil
| | - Elidiane Cipriano Rangel
- São Paulo State University (UNESP), Institute of Science and Technology, Laboratory of Technological Plasmas, Avenida Três de Março, 51, Sorocaba, São Paulo 18087-180, Brazil
| | - Valentim A R Barão
- University of Campinas (UNICAMP), Piracicaba Dental School, Department of Prosthodontics and Periodontics, Avenida Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Marcelo Ferraz Mesquita
- University of Campinas (UNICAMP), Piracicaba Dental School, Department of Prosthodontics and Periodontics, Avenida Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| |
Collapse
|
16
|
Wen X, Liu Y, Xi F, Zhang X, Kang Y. Micro-arc oxidation (MAO) and its potential for improving the performance of titanium implants in biomedical applications. Front Bioeng Biotechnol 2023; 11:1282590. [PMID: 38026886 PMCID: PMC10662315 DOI: 10.3389/fbioe.2023.1282590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Titanium (Ti) and its alloys have good biocompatibility, mechanical properties and corrosion resistance, making them attractive for biomedical applications. However, their biological inertness and lack of antimicrobial properties may compromise the success of implants. In this review, the potential of micro-arc oxidation (MAO) technology to create bioactive coatings on Ti implants is discussed. The review covers the following aspects: 1) different factors, such as electrolyte, voltage and current, affect the properties of MAO coatings; 2) MAO coatings affect biocompatibility, including cytocompatibility, hemocompatibility, angiogenic activity, corrosion resistance, osteogenic activity and osseointegration; 3) antibacterial properties can be achieved by adding copper (Cu), silver (Ag), zinc (Zn) and other elements to achieve antimicrobial properties; and 4) MAO can be combined with other physical and chemical techniques to enhance the performance of MAO coatings. It is concluded that MAO coatings offer new opportunities for improving the use of Ti and its alloys in biomedical applications, and some suggestions for future research are provided.
Collapse
Affiliation(s)
- Xueying Wen
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yan Liu
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Fangquan Xi
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| | - Xingwan Zhang
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| | - Yuanyuan Kang
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
17
|
Oliveira RI, de Oliveira IN, de Conto JF, de Souza AM, Batistuzzo de Medeiros SR, Egues SM, Padilha FF, Hernández-Macedo ML. Photocatalytic effect of N-TiO 2 conjugated with folic acid against biofilm-forming resistant bacteria. Heliyon 2023; 9:e22108. [PMID: 38027799 PMCID: PMC10658382 DOI: 10.1016/j.heliyon.2023.e22108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/08/2023] [Accepted: 11/04/2023] [Indexed: 12/01/2023] Open
Abstract
Antibiotic resistance challenges the treatment of bacterial biofilm-related infections, but the use of nanoparticles as a treatment is a promising strategy to overcome bacterial infections. This study applied nitrogen-doped titanium dioxide (N-TiO2) conjugated with folic acid (FA) on biofilm-forming resistant bacteria. The photocatalytic effect of TiO2 nanoparticles (NPs) was studied under ultraviolet (UV), visible light, and dark conditions at 60, 120, and 180 min against planktonic cells and biofilms of Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), and Pseudomonas aeruginosa. TiO2 NPs were in the anatase phase, spherical shaped with sizes of 10-13 nm, and effectively doped and conjugated with N and FA. The FA-conjugated nanoparticles (N-TiO2-FA and FA-TiO2) were shown to have a bactericidal effect on all bacteria between 60 and 180 min under UV and visible light conditions. Concerning biofilms, N-TiO2-FA was shown to have a highly disruptive effect on all bacterial biofilms under UV irradiation at 180 min. Meanwhile, the nanoparticles did not show DNA damaging potential and they had no cytostatic effect, indicating that these NPs are biocompatible. In sum, nanoparticle conjugation with FA promoted photocatalytic effectiveness, revealing the promise this nanomaterial holds as a biocompatible antimicrobial agent.
Collapse
Affiliation(s)
- Raphaella I.S. Oliveira
- Graduate Program in Industrial Biotechnology, Tiradentes University, 49032-490, Aracaju, SE, Brazil
- Laboratory of Molecular Biology, Institute of Technology and Research, Tiradentes University, Aracaju, SE, Brazil
| | - Iracema N. de Oliveira
- Laboratory of Molecular Biology, Institute of Technology and Research, Tiradentes University, Aracaju, SE, Brazil
| | - Juliana F. de Conto
- Laboratory of Materials Synthesis and Chromatography, Center for Studies in Colloidal Systems, Institute of Technology and Research, Tiradentes University, Aracaju, SE, Brazil
| | - Augusto M. de Souza
- Department of Cell Biology and Genetics, Bioscience Center, Federal University of Rio Grande do Norte, 59078-900, Natal, RN, Brazil
| | - Silvia R. Batistuzzo de Medeiros
- Department of Cell Biology and Genetics, Bioscience Center, Federal University of Rio Grande do Norte, 59078-900, Natal, RN, Brazil
| | - Silvia M. Egues
- Laboratory of Materials Synthesis and Chromatography, Center for Studies in Colloidal Systems, Institute of Technology and Research, Tiradentes University, Aracaju, SE, Brazil
- Graduate Program in Process Engineering, Tiradentes University, 49037-580 Aracaju, SE, Brazil
| | - Francine F. Padilha
- Graduate Program in Industrial Biotechnology, Tiradentes University, 49032-490, Aracaju, SE, Brazil
- Biomaterials Laboratory, Technology and Research Institute, Tiradentes University, Aracaju, Sergipe, Brazil
| | - Maria L. Hernández-Macedo
- Graduate Program in Industrial Biotechnology, Tiradentes University, 49032-490, Aracaju, SE, Brazil
- Laboratory of Molecular Biology, Institute of Technology and Research, Tiradentes University, Aracaju, SE, Brazil
| |
Collapse
|
18
|
Liang Y, Song Y, Wang L, Wei C, Zhou X, Feng Y. Research progress on antibacterial activity of medical titanium alloy implant materials. Odontology 2023; 111:813-829. [PMID: 37402971 DOI: 10.1007/s10266-023-00832-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/19/2023] [Indexed: 07/06/2023]
Abstract
Titanium and its alloys are the preferred materials for medical implants. However, easy infection is a fatal shortcoming of Ti implants. Fortunately, the ongoing development of antibacterial implant materials is a promising solution, and Ti alloys with antibacterial properties hold immense potential for medical applications. In this review, we briefly outline the mechanisms of bacterial colonization and biofilm formation on implants; discuss and classify the major antimicrobials currently in use and development, including inorganic and organic antimicrobials; and describe the important role of antimicrobials in the development of implant materials for clinical applications. Strategies and challenges related to improving the antimicrobial properties of implant materials as well as the prospects of antibacterial Ti alloys in the medical field are also discussed.
Collapse
Affiliation(s)
- Yi Liang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan, 250031, China
| | - Yuying Song
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan, 250031, China
| | - Li Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan, 250031, China
| | - Chao Wei
- School of Intelligent Manufacturing, Shandong University of Engineering and Vocational Technology, Jinan, 250200, China
| | - Xuan Zhou
- School of Intelligent Manufacturing, Shandong University of Engineering and Vocational Technology, Jinan, 250200, China
| | - Yihua Feng
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
- Shandong Institute of Mechanical Design and Research, Jinan, 250031, China.
| |
Collapse
|
19
|
Silva JPDS, Costa RC, Nagay BE, Borges MHR, Sacramento CM, da Cruz NC, Rangel EC, Fortulan CA, da Silva JHD, Ruiz KGS, Barão VAR. Boosting Titanium Surfaces with Positive Charges: Newly Developed Cationic Coating Combines Anticorrosive and Bactericidal Properties for Implant Application. ACS Biomater Sci Eng 2023; 9:5389-5404. [PMID: 37561763 DOI: 10.1021/acsbiomaterials.3c00491] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Along with poor implant-bone integration, peri-implant diseases are the major causes of implant failure. Although such diseases are primarily triggered by biofilm accumulation, a complex inflammatory process in response to corrosive-related metallic ions/debris has also been recognized as a risk factor. In this regard, by boosting the titanium (Ti) surface with silane-based positive charges, cationic coatings have gained increasing attention due to their ability to kill pathogens and may be favorable for corrosion resistance. Nevertheless, the development of a cationic coating that combines such properties in addition to having a favorable topography for implant osseointegration is lacking. Because introducing hydroxyl (-OH) groups to Ti is essential to increase chemical bonds with silane, Ti pretreatment is of utmost importance to achieve such polarization. In this study, plasma electrolytic oxidation (PEO) was investigated as a new route to pretreat Ti with OH groups while providing favorable properties for implant application compared with traditional hydrothermal treatment (HT). To produce bactericidal and corrosion-resistant cationic coatings, after pretreatment with PEO or HT (Step 1), surface silanization was subsequently performed via immersion-based functionalization with 3-aminopropyltriethoxysilane (APTES) (Step 2). In the end, five groups were assessed: untreated Ti (Ti), HT, PEO, HT+APTES, and PEO+APTES. PEO created a porous surface with increased roughness and better mechanical and tribological properties compared with HT and Ti. The introduction of -OH groups by HT and PEO was confirmed by Fourier transform infrared spectroscopy and the increase in wettability producing superhydrophilic surfaces. After silanization, the surfaces were polarized to hydrophobic ones, and an increase in the amine functional group was observed by X-ray photoelectron spectroscopy, demonstrating a considerable amount of positive ions. Such protonation may explain the enhanced corrosion resistance and dead bacteria (Streptococcus aureus and Escherichia coli) found for PEO+APTES. All groups presented noncytotoxic properties with similar blood plasma protein adsorption capacity vs the Ti control. Our findings provide new insights into developing next-generation cationic coatings by suggesting that a tailorable porous and oxide coating produced by PEO has promise in designing enhanced cationic surfaces targeting biomedical and dental implant applications.
Collapse
Affiliation(s)
- João Pedro Dos S Silva
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Raphael C Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Bruna E Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Maria H R Borges
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Catharina M Sacramento
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Nilson C da Cruz
- Laboratory of Technological Plasmas, Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Sorocaba, São Paulo 18087-180, Brazil
| | - Elidiane C Rangel
- Laboratory of Technological Plasmas, Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Sorocaba, São Paulo 18087-180, Brazil
| | - Carlos A Fortulan
- Department of Mechanical Engineering, University of São Paulo (USP), Trabalhador São Carlense, 400, São Carlos, São Paulo 13566-590, Brazil
| | - José H D da Silva
- Department of Physics, School of Sciences, São Paulo State University (UNESP), Av. Eng. Luís Edmundo C. Coube, 14-01, Bauru, São Paulo 17033-360, Brazil
| | - Karina G S Ruiz
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| |
Collapse
|
20
|
Malheiros SS, Nagay BE, Bertolini MM, de Avila ED, Shibli JA, Souza JGS, Barão VAR. Biomaterial engineering surface to control polymicrobial dental implant-related infections: focusing on disease modulating factors and coatings development. Expert Rev Med Devices 2023:1-17. [PMID: 37228179 DOI: 10.1080/17434440.2023.2218547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/29/2023] [Accepted: 05/23/2023] [Indexed: 05/27/2023]
Abstract
INTRODUCTION Peri-implantitis is the leading cause of dental implant loss and is initiated by a polymicrobial dysbiotic biofilm formation on the implant surface. The destruction of peri-implant tissue by the host immune response and the low effectiveness of surgical or non-surgical treatments highlight the need for new strategies to prevent, modulate and/or eliminate biofilm formation on the implant surface. Currently, several surface modifications have been proposed using biomolecules, ions, antimicrobial agents, and topography alterations. AREAS COVERED Initially, this review provides an overview of the etiopathogenesis and host- and material-dependent modulating factors of peri-implant disease. In addition, a critical discussion about the antimicrobial surface modification mechanisms and techniques employed to modify the titanium implant material is provided. Finally, we also considered the future perspectives on the development of antimicrobial surfaces to narrow the bridge between idea and product and favor the clinical application possibility. EXPERT OPINION Antimicrobial surface modifications have demonstrated effective results; however, there is no consensus about the best modification strategy and in-depth information on the safety and longevity of the antimicrobial effect. Modified surfaces display recurring challenges such as short-term effectiveness, the burst release of drugs, cytotoxicity, and lack of reusability. Stimulus-responsive surfaces seem to be a promising strategy for a controlled and precise antimicrobial effect, and future research should focus on this technology and study it from models that better mimic clinical conditions.
Collapse
Affiliation(s)
- Samuel S Malheiros
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Bruna E Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| | - Martinna M Bertolini
- Department of Periodontics and Preventive Dentistry, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA 15106, USA
| | - Erica D de Avila
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araçatuba, São Paulo State University (UNESP), Araçatuba, Sao Paulo 16015-050, Brazil
| | - Jamil A Shibli
- Dental Research Division, Guarulhos University, Guarulhos, São Paulo 07023-070, Brazil
| | - João Gabriel S Souza
- Dental Research Division, Guarulhos University, Guarulhos, São Paulo 07023-070, Brazil
- Dental Science School (Faculdade de Ciências Odontológicas - FCO), Montes Claros, Minas Gerais39401-303, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo 13414-903, Brazil
| |
Collapse
|
21
|
Zhang L, Li Y, Yuan L, Zhang Q, Yan Y, Dong F, Tang J, Wang Y. Advanced and Readily-Available Wireless-Powered Blue-Light-Implant for Non-Invasive Peri-Implant Disinfection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203472. [PMID: 36935373 DOI: 10.1002/advs.202203472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 02/12/2023] [Indexed: 05/18/2023]
Abstract
Non-invasive light-based antibacterial therapy has a good prospect in non-surgical treatment of peri-implant infections. However, its applications are severely limited by poor penetration of light into human tissues, leading to unsatisfying outcomes. Moreover, as an essential prerequisite for traditional light therapy, lasers can no longer meet the patients' needs for convenient treatment at any time. To break through the spatial and temporal limitations of traditional light therapy, a wireless-powered blue-light zirconia implant for readily available treatment of peri-implant infection is proposed. In space, complete irradiation to complex peri-implant structure is realized by the built-in wireless-powered light source, thus improving the efficacy. In time, wireless-powering allows timely and controllable anti-infection treatment. Blue micro-light emitting diodes are used as therapeutic light sources, which effectively kill peri-implant infection-related bacteria without exogenous photosensitive agents. Porphyromonas gingivalis biofilm on implant surface can be completely killed after 20 min irradiation in vitro. The bactericidal rate of peri-implant methicillin-resistant Staphylococcus aureus infection reaches 99.96 ± 0.03% under 30 min per day blue light exposure in vivo. Within the scope of this study, the treatment of peri-implant infection with blue-light implant has preliminary feasibility, giving a new approach to non-invasive treatment of deep oral infections, including peri-implant infections.
Collapse
Affiliation(s)
- Ludan Zhang
- Center of Digital Dentistry/ Department of Prosthodontics, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Yamin Li
- State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Integrated Circuits, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Lintian Yuan
- Center of Digital Dentistry/ Department of Prosthodontics, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Qianyi Zhang
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Yuqing Yan
- Beijing Taia Technology Co. LTD, Beijing, 100089, P. R. China
| | - Fan Dong
- Center of Digital Dentistry/ Department of Prosthodontics, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Jun Tang
- State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Integrated Circuits, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Yuguang Wang
- Center of Digital Dentistry/ Department of Prosthodontics, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, NHC Research Center of Engineering and Technology for Computerized Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| |
Collapse
|
22
|
Querebillo CJ. A Review on Nano Ti-Based Oxides for Dark and Photocatalysis: From Photoinduced Processes to Bioimplant Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:982. [PMID: 36985872 PMCID: PMC10058723 DOI: 10.3390/nano13060982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Catalysis on TiO2 nanomaterials in the presence of H2O and oxygen plays a crucial role in the advancement of many different fields, such as clean energy technologies, catalysis, disinfection, and bioimplants. Photocatalysis on TiO2 nanomaterials is well-established and has advanced in the last decades in terms of the understanding of its underlying principles and improvement of its efficiency. Meanwhile, the increasing complexity of modern scientific challenges in disinfection and bioimplants requires a profound mechanistic understanding of both residual and dark catalysis. Here, an overview of the progress made in TiO2 catalysis is given both in the presence and absence of light. It begins with the mechanisms involving reactive oxygen species (ROS) in TiO2 photocatalysis. This is followed by improvements in their photocatalytic efficiency due to their nanomorphology and states by enhancing charge separation and increasing light harvesting. A subsection on black TiO2 nanomaterials and their interesting properties and physics is also included. Progress in residual catalysis and dark catalysis on TiO2 are then presented. Safety, microbicidal effect, and studies on Ti-oxides for bioimplants are also presented. Finally, conclusions and future perspectives in light of disinfection and bioimplant application are given.
Collapse
Affiliation(s)
- Christine Joy Querebillo
- Leibniz-Institute for Solid State and Materials Research (IFW) Dresden, Helmholtzstr. 20, 01069 Dresden, Germany
| |
Collapse
|
23
|
Miranda LFB, Lima CV, Pagin R, Costa RC, Pereira MMA, de Avila ED, Bertolini M, Retamal-Valdes B, Shibli JA, Feres M, Barão VAR, Souza JGS. Effect of Processing Methods of Human Saliva on the Proteomic Profile and Protein-Mediated Biological Processes. J Proteome Res 2023; 22:857-870. [PMID: 36779809 DOI: 10.1021/acs.jproteome.2c00652] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
The use of saliva as a protein source prior to microbiological and biological assays requires previous processing. However, the effect of these processing methods on the proteomic profile of saliva has not been tested. Stimulated human saliva was collected from eight healthy volunteers. Non-processed saliva was compared with 0.22 μm filtered, 0.45 μm filtered, and pasteurized saliva, by liquid chromatography-mass spectrometry. Data are available via ProteomeXchange with identifier PXD039248. The effect of processed saliva on microbial adhesion was tested using bacterial and fungus species and in biological cell behavior using HaCaT immortalized human keratinocytes. Two hundred and seventy-eight proteins were identified in non-processed saliva, of which 54 proteins (≈19%) were exclusive. Saliva processing reduced identified proteins to 222 (≈80%) for the 0.22 μm group, 219 (≈79%) for the 0.45 μm group, and 201 (≈72%) for the pasteurized saliva, compared to non-processed saliva. The proteomic profile showed similar molecular functions and biological processes. The different saliva processing methods did not alter microbial adhesion (ANOVA, p > 0.05). Interestingly, pasteurized saliva reduced keratinocyte cell viability. Saliva processing methods tested reduced the proteomic profile diversity of saliva but maintained similar molecular functions and biological processes, not interfering with microbial adhesion and cell viability, except for pasteurization, which reduced cell viability.
Collapse
Affiliation(s)
- Luis Fernando B Miranda
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sa̅o Paulo 13414-903, Brazil
| | - Carolina V Lima
- Department of Restorative Dentistry, Federal University of Paraná (UFPR), Curitiba, Paraná 80210-170, Brazil
| | - Rafaela Pagin
- Department of Periodontology, Dental Research Division, Guarulhos University (UnG), Guarulhos, Sa̅o Paulo 07023-070, Brazil
| | - Raphael C Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sa̅o Paulo 13414-903, Brazil
| | - Marta Maria A Pereira
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, São Paulo State University (UNESP), Araraquara, São Paulo 14801-385, Brazil
| | - Erica D de Avila
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, São Paulo State University (UNESP), Araraquara, São Paulo 14801-385, Brazil.,Department of Dental Materials and Prosthodontics, School of Dentistry at Araçatuba, São Paulo State University (UNESP), Araçatuba, São Paulo 16066-840, Brazil
| | - Martinna Bertolini
- Department of Periodontics and Preventive Dentistry, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Belén Retamal-Valdes
- Department of Periodontology, Dental Research Division, Guarulhos University (UnG), Guarulhos, Sa̅o Paulo 07023-070, Brazil
| | - Jamil A Shibli
- Department of Periodontology, Dental Research Division, Guarulhos University (UnG), Guarulhos, Sa̅o Paulo 07023-070, Brazil
| | - Magda Feres
- Department of Periodontology, Dental Research Division, Guarulhos University (UnG), Guarulhos, Sa̅o Paulo 07023-070, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sa̅o Paulo 13414-903, Brazil
| | - João Gabriel S Souza
- Department of Periodontology, Dental Research Division, Guarulhos University (UnG), Guarulhos, Sa̅o Paulo 07023-070, Brazil.,Dental Science School (Faculdade de Ciências Odontológicas - FCO), Montes Claros, Minas Gerais 39401-303, Brazil
| |
Collapse
|
24
|
Abu Jarad N, Rachwalski K, Bayat F, Khan S, Shakeri A, MacLachlan R, Villegas M, Brown ED, Soleymani L, Didar TF. An Omniphobic Spray Coating Created from Hierarchical Structures Prevents the Contamination of High-Touch Surfaces with Pathogens. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205761. [PMID: 36587985 DOI: 10.1002/smll.202205761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Engineered surfaces that repel pathogens are of great interest due to their role in mitigating the spread of infectious diseases. A robust, universal, and scalable omniphobic spray coating with excellent repellency against water, oil, and pathogens is presented. The coating is substrate-independent and relies on hierarchically structured polydimethylsiloxane (PDMS) microparticles, decorated with gold nanoparticles (AuNPs). Wettability studies reveal the relationship between surface texturing of micro- and/or nano-hierarchical structures and the omniphobicity of the coating. Studies of pathogen transfer with bacteria and viruses reveal that an uncoated contaminated glove transfers pathogens to >50 subsequent surfaces, while a coated glove picks up 104 (over 99.99%) less pathogens upon first contact and transfers zero pathogens after the second touch. The developed coating also provides excellent stability under harsh conditions. The remarkable anti-pathogen properties of this surface combined with its ease of implementation, substantiate its use for the prevention of surface-mediated transmission of pathogens.
Collapse
Affiliation(s)
- Noor Abu Jarad
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Kenneth Rachwalski
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8N 3Z5, Canada
| | - Fereshteh Bayat
- Department of Mechanical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
| | - Shadman Khan
- Department of Mechanical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
| | - Amid Shakeri
- Department of Mechanical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
| | - Roderick MacLachlan
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
| | - Martin Villegas
- Department of Mechanical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
| | - Eric D Brown
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8N 3Z5, Canada
| | - Leyla Soleymani
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
- Department of Mechanical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
25
|
Schutte-Smith M, Erasmus E, Mogale R, Marogoa N, Jayiya A, Visser HG. Using visible light to activate antiviral and antimicrobial properties of TiO 2 nanoparticles in paints and coatings: focus on new developments for frequent-touch surfaces in hospitals. JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH 2023; 20:789-817. [PMID: 36777289 PMCID: PMC9904533 DOI: 10.1007/s11998-022-00733-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 05/05/2023]
Abstract
The COVID-19 pandemic refocused scientists the world over to produce technologies that will be able to prevent the spread of such diseases in the future. One area that deservedly receives much attention is the disinfection of health facilities like hospitals, public areas like bathrooms and train stations, and cleaning areas in the food industry. Microorganisms and viruses can attach to and survive on surfaces for a long time in most cases, increasing the risk for infection. One of the most attractive disinfection methods is paints and coatings containing nanoparticles that act as photocatalysts. Of these, titanium dioxide is appealing due to its low cost and photoreactivity. However, on its own, it can only be activated under high-energy UV light due to the high band gap and fast recombination of photogenerated species. The ideal material or coating should be activated under artificial light conditions to impact indoor areas, especially considering wall paints or frequent-touch areas like door handles and elevator buttons. By introducing dopants to TiO2 NPs, the bandgap can be lowered to a state of visible-light photocatalysis occurring. Naturally, many researchers are exploring this property now. This review article highlights the most recent advancements and research on visible-light activation of TiO2-doped NPs in coatings and paints. The progress in fighting air pollution and personal protective equipment is also briefly discussed. Graphical Abstract Indoor visible-light photocatalytic activation of reactive oxygen species (ROS) over TiO2 nanoparticles in paint to kill bacteria and coat frequently touched surfaces in the medical and food industries.
Collapse
Affiliation(s)
- M. Schutte-Smith
- Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein, 9300 South Africa
| | - E. Erasmus
- Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein, 9300 South Africa
| | - R. Mogale
- Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein, 9300 South Africa
| | - N. Marogoa
- Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein, 9300 South Africa
| | - A. Jayiya
- Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein, 9300 South Africa
| | - H. G. Visser
- Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein, 9300 South Africa
| |
Collapse
|
26
|
A Comprehensive Review on Adsorption, Photocatalytic and Chemical Degradation of Dyes and Nitro-Compounds over Different Kinds of Porous and Composite Materials. Molecules 2023; 28:molecules28031081. [PMID: 36770748 PMCID: PMC9918932 DOI: 10.3390/molecules28031081] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Dye and nitro-compound pollution has become a significant issue worldwide. The adsorption and degradation of dyes and nitro-compounds have recently become important areas of study. Different methods, such as precipitation, flocculation, ultra-filtration, ion exchange, coagulation, and electro-catalytic degradation have been adopted for the adsorption and degradation of these organic pollutants. Apart from these methods, adsorption, photocatalytic degradation, and chemical degradation are considered the most economical and efficient to control water pollution from dyes and nitro-compounds. In this review, different kinds of dyes and nitro-compounds, and their adverse effects on aquatic organisms and human beings, were summarized in depth. This review article covers the comprehensive analysis of the adsorption of dyes over different materials (porous polymer, carbon-based materials, clay-based materials, layer double hydroxides, metal-organic frameworks, and biosorbents). The mechanism and kinetics of dye adsorption were the central parts of this study. The structures of all the materials mentioned above were discussed, along with their main functional groups responsible for dye adsorption. Removal and degradation methods, such as adsorption, photocatalytic degradation, and chemical degradation of dyes and nitro-compounds were also the main aim of this review article, as well as the materials used for such degradation. The mechanisms of photocatalytic and chemical degradation were also explained comprehensively. Different factors responsible for adsorption, photocatalytic degradation, and chemical degradation were also highlighted. Advantages and disadvantages, as well as economic cost, were also discussed briefly. This review will be beneficial for the reader as it covers all aspects of dye adsorption and the degradation of dyes and nitro-compounds. Future aspects and shortcomings were also part of this review article. There are several review articles on all these topics, but such a comprehensive study has not been performed so far in the literature.
Collapse
|
27
|
Costa RC, Nagay BE, Dini C, Borges MHR, Miranda LFB, Cordeiro JM, Souza JGS, Sukotjo C, Cruz NC, Barão VAR. The race for the optimal antimicrobial surface: perspectives and challenges related to plasma electrolytic oxidation coating for titanium-based implants. Adv Colloid Interface Sci 2023; 311:102805. [PMID: 36434916 DOI: 10.1016/j.cis.2022.102805] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/01/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023]
Abstract
Plasma electrolytic oxidation (PEO) is a low-cost, structurally reliable, and environmentally friendly surface modification method for orthopedic and dental implants. This technique is successful for the formation of porous, corrosion-resistant, and bioactive coatings, besides introducing antimicrobial compounds easily. Given the increase in implant-related infections, antimicrobial PEO-treated surfaces have been widely proposed to surmount this public health concern. This review comprehensively discusses antimicrobial implant surfaces currently produced by PEO in terms of their in vitro and in vivo microbiological and biological properties. We present a critical [part I] and evidence-based [part II] review about the plethora of antimicrobial PEO-treated surfaces. The mechanism of microbial accumulation on implanted devices and the principles of PEO technology to ensure antimicrobial functionalization by one- or multi-step processes are outlined. Our systematic literature search showed that particular focus has been placed on the metallic and semi-metallic elements incorporated into PEO surfaces to facilitate antimicrobial properties, which are often dose-dependent, without leading to cytotoxicity in vitro. Meanwhile, there are concerns over the biocompatibility of PEO and its long-term antimicrobial effects in animal models. We clearly highlight the importance of using clinically relevant infection models and in vivo long-term assessments to guarantee the rational design of antimicrobial PEO-treated surfaces to identify the 'finish line' in the race for antimicrobial implant surfaces.
Collapse
Affiliation(s)
- Raphael C Costa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil
| | - Bruna E Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil
| | - Caroline Dini
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil
| | - Maria H R Borges
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil
| | - Luís F B Miranda
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil
| | - Jairo M Cordeiro
- Department of Dentistry, Centro Universitário das Faculdades Associadas de Ensino (UNIFAE), Sāo Joāo da Boa Vista, Sāo Paulo 13870-377, Brazil
| | - Joāo G S Souza
- Dental Research Division, Guarulhos University, Guarulhos, Sāo Paulo 07023-070, Brazil; Dentistry Science School (Faculdade de Ciências Odontológicas - FCO), Montes Claros, Minas Gerais 39401-303, Brazil
| | - Cortino Sukotjo
- Department of Restorative Dentistry, University of Illinois at Chicago College of Dentistry, Chicago, IL 60612, USA
| | - Nilson C Cruz
- Laboratory of Technological Plasmas, Institute of Science and Technology, Sāo Paulo State University (UNESP), Sorocaba, Sāo Paulo 18087-180, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Sāo Paulo 13414-903, Brazil.
| |
Collapse
|
28
|
Nikolova MP, Apostolova MD. Advances in Multifunctional Bioactive Coatings for Metallic Bone Implants. MATERIALS (BASEL, SWITZERLAND) 2022; 16:183. [PMID: 36614523 PMCID: PMC9821663 DOI: 10.3390/ma16010183] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
To fix the bone in orthopedics, it is almost always necessary to use implants. Metals provide the needed physical and mechanical properties for load-bearing applications. Although widely used as biomedical materials for the replacement of hard tissue, metallic implants still confront challenges, among which the foremost is their low biocompatibility. Some of them also suffer from excessive wear, low corrosion resistance, infections and shielding stress. To address these issues, various coatings have been applied to enhance their in vitro and in vivo performance. When merged with the beneficial properties of various bio-ceramic or polymer coatings remarkable bioactive, osteogenic, antibacterial, or biodegradable composite implants can be created. In this review, bioactive and high-performance coatings for metallic bone implants are systematically reviewed and their biocompatibility is discussed. Updates in coating materials and formulations for metallic implants, as well as their production routes, have been provided. The ways of improving the bioactive coating performance by incorporating bioactive moieties such as growth factors, osteogenic factors, immunomodulatory factors, antibiotics, or other drugs that are locally released in a controlled manner have also been addressed.
Collapse
Affiliation(s)
- Maria P. Nikolova
- Department of Material Science and Technology, University of Ruse “A. Kanchev”, 8 Studentska Str., 7017 Ruse, Bulgaria
| | - Margarita D. Apostolova
- Medical and Biological Research Lab., “Roumen Tsanev” Institute of Molecular Biology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
29
|
The Inflammation Level and a Microbiological Analysis of the Anophthalmic Cavities of Unilateral Ocular Prosthesis Users: A Blind, Randomized Observational Study. Antibiotics (Basel) 2022; 11:antibiotics11111486. [PMID: 36358141 PMCID: PMC9686759 DOI: 10.3390/antibiotics11111486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
Irritation and biofilm adhesion are complaints associated with ocular prosthesis use. This study aimed to evaluate the effects of prosthesis repolishing on several conditions of anophthalmic volunteers. Participants were divided into two groups: intervention (IG, n = 10) and nonintervention (NIG, n = 6) groups. The anophthalmic cavity, contralateral eye, and prosthesis surface were evaluated at initial, day 15, and day 30 after repolishing. Microbiological analysis (colony-forming units), exfoliative cytology (conjunctiva inflammatory cells), sensory analysis (quantitative mechanical sensory test), tear production (Schirmer’s test), and conjunctival inflammation (clinical evaluation) were performed. Nonparametric tests were used to compare groups in the initial period and to analyze periods for the IG (p < 0.05). More microorganisms were formed in the anophthalmic socket and prosthesis than in the contralateral eye in the initial period. For IG, the anophthalmic cavity exhibited more microorganisms and inflammatory clinical signs in the initial period than at 15 and 30 after repolishing. The prosthesis showed greater accumulations of total bacteria and Candida albicans in the initial period than at 15 and 30 days after repolishing. The anophthalmic cavity had more palpebral inflammation than the contralateral eye. In conclusion, repolishing reduced the number of microorganisms and inflammatory signs over time.
Collapse
|
30
|
Hasan J, Bright R, Hayles A, Palms D, Zilm P, Barker D, Vasilev K. Preventing Peri-implantitis: The Quest for a Next Generation of Titanium Dental Implants. ACS Biomater Sci Eng 2022; 8:4697-4737. [PMID: 36240391 DOI: 10.1021/acsbiomaterials.2c00540] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Titanium and its alloys are frequently the biomaterial of choice for dental implant applications. Although titanium dental implants have been utilized for decades, there are yet unresolved issues pertaining to implant failure. Dental implant failure can arise either through wear and fatigue of the implant itself or peri-implant disease and subsequent host inflammation. In the present report, we provide a comprehensive review of titanium and its alloys in the context of dental implant material, and how surface properties influence the rate of bacterial colonization and peri-implant disease. Details are provided on the various periodontal pathogens implicated in peri-implantitis, their adhesive behavior, and how this relationship is governed by the implant surface properties. Issues of osteointegration and immunomodulation are also discussed in relation to titanium dental implants. Some impediments in the commercial translation for a novel titanium-based dental implant from "bench to bedside" are discussed. Numerous in vitro studies on novel materials, processing techniques, and methodologies performed on dental implants have been highlighted. The present report review that comprehensively compares the in vitro, in vivo, and clinical studies of titanium and its alloys for dental implants.
Collapse
Affiliation(s)
- Jafar Hasan
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Richard Bright
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park 5042, South Australia, Australia
| | - Andrew Hayles
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park 5042, South Australia, Australia
| | - Dennis Palms
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park 5042, South Australia, Australia
| | - Peter Zilm
- Adelaide Dental School, University of Adelaide, Adelaide, 5005, South Australia, Australia
| | - Dan Barker
- ANISOP Holdings, Pty. Ltd., 101 Collins St, Melbourne VIC, 3000 Australia
| | - Krasimir Vasilev
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park 5042, South Australia, Australia
| |
Collapse
|
31
|
de Avila ED, Nagay BE, Pereira MMA, Barão VAR, Pavarina AC, van den Beucken JJJP. Race for Applicable Antimicrobial Dental Implant Surfaces to Fight Biofilm-Related Disease: Advancing in Laboratorial Studies vs Stagnation in Clinical Application. ACS Biomater Sci Eng 2022; 8:3187-3198. [PMID: 35816289 DOI: 10.1021/acsbiomaterials.2c00160] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Across years, potential strategies to fight peri-implantitis have been notoriously explored through the antimicrobial coating implant surfaces capable of interfering with the bacterial adhesion process. However, although experimental studies have significantly advanced, no product has been marketed so far. For science to reach the society, the commercialization of research outcomes is necessary to provide real advancement in the biomedical field. Therefore, the aim of this study was to investigate the challenges involved in the development of antimicrobial dental implant surfaces to fight peri-implantitis, through a systematic search. Research articles reporting antimicrobial dental implant surfaces were identified by searching PubMed, Scopus, Web of Science, The Cochrane Library, Embase, and System of Information on Grey Literature in Europe, between 2008 and 2020. A total of 1778 studies were included for quality assessment and the review. An impressive number of 1655 articles (93,1%) comprised in vitro studies, whereas 123 articles refer to in vivo investigations. From those 123, 102 refer to animal studies and only 21 articles were published on the clinical performance of antibacterial dental implant surfaces. The purpose of animal studies is to test how safe and effective new treatments are before they are tested in people. Therefore, the discrepancy between the number of published studies clearly reveals that preclinical investigations still come up against several challenges to overcome before moving forward to a clinical setting. Additionally, researchers need to recognize that the complex journey from lab to market requires more than a great idea and resources to develop a commercial invention; research teams must possess the skills necessary to commercialize an invention.
Collapse
Affiliation(s)
- Erica D de Avila
- Dental Research Division, Guarulhos University (UNG), Praça Tereza Cristina, 88 - Centro, Guarulhos, São Paulo 07023-070, Brazil.,Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Sao Paulo State University (UNESP), Rua Humaita, 1680, Araraquara, São Paulo 14801-903, Brazil
| | - Bruna E Nagay
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Marta M A Pereira
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Sao Paulo State University (UNESP), Rua Humaita, 1680, Araraquara, São Paulo 14801-903, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av. Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Ana Claudia Pavarina
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, Sao Paulo State University (UNESP), Rua Humaita, 1680, Araraquara, São Paulo 14801-903, Brazil
| | | |
Collapse
|
32
|
Oirschot BV, zhang Y, Alghamdi HS, cordeiro JM, nagay B, barão VA, de avila ED, van den Beucken J. Surface engineering for dental implantology: favoring tissue responses along the implant
. Tissue Eng Part A 2022; 28:555-572. [DOI: 10.1089/ten.tea.2021.0230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Bart van Oirschot
- Radboudumc Department of Dentistry, 370502, Regenerative Biomaterials, Nijmegen, Gelderland, Netherlands,
| | - yang zhang
- Shenzhen University, 47890, School of Stomatology, Health Science Center, Shenzhen, Guangdong, China,
| | - Hamdan S Alghamdi
- King Saud University College of Dentistry, 204573, Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia,
| | - jairo m cordeiro
- UNICAMP, 28132, Department of Prosthodontics and Periodontology, Piracicaba Dental School, Campinas, SP, Brazil,
| | - bruna nagay
- UNICAMP, 28132, Department of Prosthodontics and Periodontology, Piracicaba Dental School, Campinas, SP, Brazil,
| | - valentim ar barão
- UNICAMP, 28132, Department of Prosthodontics and Periodontology, Piracicaba Dental School, Campinas, SP, Brazil,
| | - erica dorigatti de avila
- UNESP, 28108, Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, São Paulo State University (UNESP), Sao Paulo, SP, Brazil,
| | - Jeroen van den Beucken
- Radboudumc Department of Dentistry, 370502, Regenerative Biomaterials, Nijmegen, Gelderland, Netherlands,
- RU RIMLS, 59912, Nijmegen, Gelderland, Netherlands,
| |
Collapse
|
33
|
Barão VAR, Costa RC, Shibli JA, Bertolini M, Souza JGS. Emerging titanium surface modifications: The war against polymicrobial infections on dental implants. Braz Dent J 2022; 33:1-12. [DOI: 10.1590/0103-6440202204860] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 12/18/2022] Open
Abstract
Abstract Dental implants made of titanium (Ti) material is recognized as the leading treatment option for edentulous patients’ rehabilitation, showing a high success rate and clinical longevity. However, dental implant surface acts as a platform for microbial adhesion and accumulation once exposed to the oral cavity. Biofilm formation on implant surfaces has been considered the main etiologic factor to induce inflammatory diseases, known as peri-implant mucositis and peri-implantitis; the latter being recognized as the key reason for late dental implant failure. Different factors, such as biofilm matrix production, source of carbohydrate exposure, and cross-kingdom interactions, have encouraged increased microbial accumulation on dental implants, leading to a microbiological community shift from a healthy to a pathogenic state, increasing inflammation and favoring tissue damage. These factors combined with the spatial organization of biofilms, reduced antimicrobial susceptibility, complex microbiological composition, and the irregular topography of implants hamper biofilm control and microbial killing. In spite of the well-known etiology, there is still no consensus regarding the best clinical protocol to control microbial accumulation on dental implant surfaces and treat peri-implant disease. In this sense, different coatings and Ti surface treatments have been proposed in order to reduce microbial loads and control polymicrobial infections on implantable devices. Therefore, this critical review aims to discuss the current evidence on biofilm accumulation on dental implants and central factors related to the pathogenesis process of implant-related infections. Moreover, the potential surface modifications with anti-biofilm properties for dental implant devices is discussed to shed light on further promising strategies to control peri-implantitis.
Collapse
|
34
|
Lu X, Wu Z, Xu K, Wang X, Wang S, Qiu H, Li X, Chen J. Multifunctional Coatings of Titanium Implants Toward Promoting Osseointegration and Preventing Infection: Recent Developments. Front Bioeng Biotechnol 2021; 9:783816. [PMID: 34950645 PMCID: PMC8691702 DOI: 10.3389/fbioe.2021.783816] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/25/2021] [Indexed: 01/27/2023] Open
Abstract
Titanium and its alloys are dominant material for orthopedic/dental implants due to their stable chemical properties and good biocompatibility. However, aseptic loosening and peri-implant infection remain problems that may lead to implant removal eventually. The ideal orthopedic implant should possess both osteogenic and antibacterial properties and do proper assistance to in situ inflammatory cells for anti-microbe and tissue repair. Recent advances in surface modification have provided various strategies to procure the harmonious relationship between implant and its microenvironment. In this review, we provide an overview of the latest strategies to endow titanium implants with bio-function and anti-infection properties. We state the methods they use to preparing these efficient surfaces and offer further insight into the interaction between these devices and the local biological environment. Finally, we discuss the unmet needs and current challenges in the development of ideal materials for bone implantation.
Collapse
Affiliation(s)
- Xiaoxuan Lu
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Zichen Wu
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Kehui Xu
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Xiaowei Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Shuang Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Hua Qiu
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Xiangyang Li
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Jialong Chen
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| |
Collapse
|
35
|
Fitting pieces into the puzzle: The impact of titanium-based dental implant surface modifications on bacterial accumulation and polymicrobial infections. Adv Colloid Interface Sci 2021; 298:102551. [PMID: 34757285 DOI: 10.1016/j.cis.2021.102551] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/09/2021] [Accepted: 10/17/2021] [Indexed: 12/12/2022]
Abstract
Polymicrobial infection is the main cause of dental implant failure. Although numerous studies have reported the ability of titanium (Ti) surface modifications to inhibit microbial adhesion and biofilm accumulation, the majority of solutions for the utilization of Ti antibacterial surfaces have been testedin in vitro and animal models, with only a few developed surfaces progressing into clinical research. Motivated by this huge gap, we critically reviewed the scientific literature on the existing antibacterial Ti surfaces to help understand these surfaces' impact on the "puzzle" of undesirable dental implant-related infections. This manuscript comprises three main sections: (i) a narrative review on topics related to oral biofilm formation, bacterial-implant surface interactions, and on how implant-surface modifications can influence microbial accumulation; (ii) a critical evidence-based review to summarize pre-clinical and clinical studies in an attempt to "fit pieces into the puzzle" to unveil the best way to reduce microbial loads and control polymicrobial infection around dental implants showed by the current in vivo evidence; and (iii) discussion and recommendations for future research testing emerging antibacterial implant surfaces, connecting basic science and the requirements for future clinical translation. The findings of the present review suggest no consensus regarding the best available Ti surface to reduce bacterial colonization on dental implants. Smart release or on-demand activation surface coatings are a "new piece of the puzzle", which may be the most effective alternative for reducing microbial colonization on Ti surfaces, and future studies should focus on these technologies.
Collapse
|
36
|
Antibacterial Effects of Modified Implant Abutment Surfaces for the Prevention of Peri-Implantitis-A Systematic Review. Antibiotics (Basel) 2021; 10:antibiotics10111350. [PMID: 34827288 PMCID: PMC8615005 DOI: 10.3390/antibiotics10111350] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/28/2021] [Accepted: 10/31/2021] [Indexed: 12/27/2022] Open
Abstract
The aim of the present study was to systematically review studies investigating antibacterial implant abutment surfaces or coatings, which may suppress bacterial growth to prevent plaque-induced peri-implant inflammatory disease. Data were collected after identification of case, assay/laboratory procedure, predicate/reference standard and outcome (CAPO). Seven hundred and twenty (720) records were identified through data base searching. After screening nine publications fulfilled inclusion criteria and were included. The following surfaces/coatings showed antibacterial properties: Electrochemical surface modification of titanium by the anodic spark deposition technique; doxycycline coating by cathodic polarization; silver coating by DC plasma sputter; titanium nitride; zirconium nitride and microwave assistant nano silver coating. Since the current state of the literature is rather descriptive, a meta-analysis was not performed. While several abutment coatings showed to have antibacterial capacity, some of them also influenced the behavior of investigated human cells. None of the studies investigated the long-term effect of surface modifications. Since surface changes are the main contributing factor in the development of antibacterial effects, the biodegradation behavior must be characterized to understand its durability. To date there is no effective structure, material or strategy to avoid peri-implant inflammation used as clinical routine. Furthermore, clinical studies are scarce.
Collapse
|
37
|
Cordeiro JM, Nagay BE, Dini C, Souza JG, Rangel EC, da Cruz NC, Yang F, van den Beucken JJ, Barão VA. Copper source determines chemistry and topography of implant coatings to optimally couple cellular responses and antibacterial activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 134:112550. [DOI: 10.1016/j.msec.2021.112550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/16/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022]
|
38
|
Moon KS, Park YB, Bae JM, Choi EJ, Oh SH. Visible Light-Mediated Sustainable Antibacterial Activity and Osteogenic Functionality of Au and Pt Multi-Coated TiO 2 Nanotubes. MATERIALS 2021; 14:ma14205976. [PMID: 34683564 PMCID: PMC8537070 DOI: 10.3390/ma14205976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/29/2021] [Accepted: 10/07/2021] [Indexed: 01/15/2023]
Abstract
The visible light reactions of noble metal-based photocatalysts have been increasingly utilized to investigate their antibacterial activities. Furthermore, the photoreactions at various visible light wavelengths for specific combinations of titania nanotubes and noble metal nanoparticles have been found to promote osteogenic functionality. In this investigation, a novel multi-coating combination of noble metals (gold and platinum) on titania nanotubes was assessed using plasmonic photocatalysis and low-level laser therapy at 470 and 600 nm. The results showed that this coating on the nanotubes promoted antibacterial activity and osteogenic functionality. The order in which the gold and platinum coatings were layered onto the titania nanotubes strongly affected the osteogenic performance of the human mesenchymal stem cells. These results have identified a new approach for the development of efficient novel combinations of noble metal nanoparticles and titania nanotubes with visible light responses, sustainable antimicrobial activity, and osteogenic functionality.
Collapse
Affiliation(s)
- Kyoung-Suk Moon
- Department of Dental Biomaterials, The Institute of Biomaterial and Implant, School of Dentistry, Wonkwang University, Iksan 54538, Korea; (K.-S.M.); (J.-M.B.)
| | - Young-Bum Park
- Department of Prosthodontics, School of Dentistry, Yonsei University, Seoul 03722, Korea;
| | - Ji-Myung Bae
- Department of Dental Biomaterials, The Institute of Biomaterial and Implant, School of Dentistry, Wonkwang University, Iksan 54538, Korea; (K.-S.M.); (J.-M.B.)
| | - Eun-Joo Choi
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Wonkwang University, Iksan 54538, Korea
- Correspondence: (E.-J.C.); (S.-H.O.); Tel.: +82-63-850-6931 (E.-J.C.); +82-63-850-6982 (S.-H.O.)
| | - Seung-Han Oh
- Department of Dental Biomaterials, The Institute of Biomaterial and Implant, School of Dentistry, Wonkwang University, Iksan 54538, Korea; (K.-S.M.); (J.-M.B.)
- Correspondence: (E.-J.C.); (S.-H.O.); Tel.: +82-63-850-6931 (E.-J.C.); +82-63-850-6982 (S.-H.O.)
| |
Collapse
|
39
|
Singh J, Hegde PB, Ravindra P, Sen P, Avasthi S. Ambient Light-Activated Antibacterial Material: Manganese Vanadium Oxide (Mn 2V 2O 7). ACS APPLIED BIO MATERIALS 2021; 4:6903-6911. [DOI: 10.1021/acsabm.1c00605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jagriti Singh
- Centre for Nanoscience and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Prajwal B. Hegde
- Centre for Nanoscience and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Pramod Ravindra
- Centre for Nanoscience and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Prosenjit Sen
- Centre for Nanoscience and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Sushobhan Avasthi
- Centre for Nanoscience and Engineering, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
40
|
Jawale NS, Arbuj SS, Umarji GG, Rane SB. Synthesis of Anatase/Brookite Mixed Phase TiO
2
Nanostructures and its Photocatalytic Performance Study. ChemistrySelect 2021. [DOI: 10.1002/slct.202102349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Niteen S. Jawale
- Centre for Materials for Electronics Technology (C-MET) Ministry of Electronics and Information Technology (MeitY) Government of India Panchawati Off Pashan Road Pune 411008 India
| | - Sudhir S. Arbuj
- Centre for Materials for Electronics Technology (C-MET) Ministry of Electronics and Information Technology (MeitY) Government of India Panchawati Off Pashan Road Pune 411008 India
| | - Govind G. Umarji
- Centre for Materials for Electronics Technology (C-MET) Ministry of Electronics and Information Technology (MeitY) Government of India Panchawati Off Pashan Road Pune 411008 India
| | - Sunit B. Rane
- Centre for Materials for Electronics Technology (C-MET) Ministry of Electronics and Information Technology (MeitY) Government of India Panchawati Off Pashan Road Pune 411008 India
| |
Collapse
|
41
|
Ch-Th T, Manisekaran R, Santoyo-Salazar J, Schoefs B, Velumani S, Castaneda H, Jantrania A. Graphene oxide decorated TiO2 and BiVO4 nanocatalysts for enhanced visible-light-driven photocatalytic bacterial inactivation. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
42
|
Pereira AO, Lopes IMI, Silva TR, Corrêa TQ, Paschoalin RT, Inada NM, Iermak I, van Riel Neto F, Araujo-Chaves JC, Marletta A, Tozoni JR, Mattoso LHC, Bagnato VS, Nantes-Cardoso IL, Oliveira ON, Campana PT. Bacterial Photoinactivation Using PLGA Electrospun Scaffolds. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31406-31417. [PMID: 34185501 DOI: 10.1021/acsami.1c02686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The use of ultraviolet (UV) and blue irradiation to sterilize surfaces is well established, but commercial applications would be enhanced if the light source is replaced with ambient light. In this paper, it is shown that nanofibers can be explored as an alternative methodology to UV and blue irradiation for bacterial inactivation. It is demonstrated that this is indeed possible using spun nanofibers of poly[lactic-co-(glycolic acid)] (PLGA). This work shows that PLGA spun scaffolds can promote photoinactivation of Staphylococcus aureus and Escherichia coli bacteria with ambient light or with laser irradiation at 630 nm. With the optimized scaffold composition of PLGA85:15 nanofibers, the minimum intensity required to kill the bacteria is much lower than in antimicrobial blue light applications. The enhanced effect introduced by PLGA scaffolds is due to their nanofiber structures since PLGA spun nanofibers were able to inactivate both S. aureus and E. coli bacteria, but cast films had no effect. These findings pave the way for an entirely different method to sterilize surfaces, which is less costly and environmentally friendly than current procedures. In addition, the scaffolds could also be used in cancer treatment with fewer side effects since photosensitizers are not required.
Collapse
Affiliation(s)
- Aline O Pereira
- School of Arts, Sciences and Humanities, University of São Paulo (USP), Arlindo Bettio Av., 1000, São Paulo 03828-000, Brazil
| | - Isabella M I Lopes
- School of Arts, Sciences and Humanities, University of São Paulo (USP), Arlindo Bettio Av., 1000, São Paulo 03828-000, Brazil
| | - Thiago R Silva
- School of Arts, Sciences and Humanities, University of São Paulo (USP), Arlindo Bettio Av., 1000, São Paulo 03828-000, Brazil
| | - Thaila Q Corrêa
- Sao Carlos Institute of Physics, University of São Paulo (USP), Trabalhador São-Carlense Av., 400, Sao Carlos 13560-970, Brazil
| | - Rafaella T Paschoalin
- Sao Carlos Institute of Physics, University of São Paulo (USP), Trabalhador São-Carlense Av., 400, Sao Carlos 13560-970, Brazil
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentation, 15 de Novembro St., 1452, São Carlos 13560-970, Brazil
| | - Natalia M Inada
- Sao Carlos Institute of Physics, University of São Paulo (USP), Trabalhador São-Carlense Av., 400, Sao Carlos 13560-970, Brazil
| | - Ievgeniia Iermak
- Sao Carlos Institute of Physics, University of São Paulo (USP), Trabalhador São-Carlense Av., 400, Sao Carlos 13560-970, Brazil
| | - Francisco van Riel Neto
- Institute of Physics, Federal University of Uberlândia (UFU), João Naves de Ávila Av., 2121, Uberlândia 38408-100, Brazil
| | - Juliana C Araujo-Chaves
- Center of Natural Sciences and HumanitiesFederal University of ABC (UFABC), dos Estados Av., 5001, Santo André 09210-580, Brazil
| | - Alexandre Marletta
- Institute of Physics, Federal University of Uberlândia (UFU), João Naves de Ávila Av., 2121, Uberlândia 38408-100, Brazil
| | - José R Tozoni
- Institute of Physics, Federal University of Uberlândia (UFU), João Naves de Ávila Av., 2121, Uberlândia 38408-100, Brazil
| | - Luiz Henrique C Mattoso
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentation, 15 de Novembro St., 1452, São Carlos 13560-970, Brazil
| | - Vanderlei S Bagnato
- Sao Carlos Institute of Physics, University of São Paulo (USP), Trabalhador São-Carlense Av., 400, Sao Carlos 13560-970, Brazil
| | - Iseli L Nantes-Cardoso
- Center of Natural Sciences and HumanitiesFederal University of ABC (UFABC), dos Estados Av., 5001, Santo André 09210-580, Brazil
| | - Osvaldo N Oliveira
- Sao Carlos Institute of Physics, University of São Paulo (USP), Trabalhador São-Carlense Av., 400, Sao Carlos 13560-970, Brazil
| | - Patricia T Campana
- School of Arts, Sciences and Humanities, University of São Paulo (USP), Arlindo Bettio Av., 1000, São Paulo 03828-000, Brazil
| |
Collapse
|
43
|
Sun D, Mao J, Wang Z, Li H, Zhang L, Zhang W, Zhang Q, Li P. Inhibition of Aspergillus flavus growth and aflatoxins production on peanuts over α-Fe 2O 3 nanorods under sunlight irradiation. Int J Food Microbiol 2021; 353:109296. [PMID: 34147839 DOI: 10.1016/j.ijfoodmicro.2021.109296] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 05/19/2021] [Accepted: 06/05/2021] [Indexed: 11/29/2022]
Abstract
Peanut is an important resource of edible oil and digestible protein in daily life, which is rich in the nutriments and antioxidants such as vitamins, minerals and polyphenols. However, peanut is susceptible to the contamination of Aspergillus flavus (A. flavus), which can produce highly carcinogenic toxins that brings serious threats to human health and food safety. Exploring green and effective methods to control A. flavus is meaningful. Herein, a green and economical way to control A. flavus on peanuts was demonstrated. It was found that the growth of A. flavus hyphae and germination of its spores could be inhibited in the presence of α-Fe2O3 nanorods under sunlight irradiation according to the agar diffusion method, flat colony counting method and fluorescence-based live/dead test. The diameter of inhibition zone was 22.3 ± 0.2 mm and the inhibition rate of spores germination was about 60 ± 5%, when the concentration of α-Fe2O3 was 10 mg/mL for 7 h sunlight irradiation. Most important, α-Fe2O3 showed the photocatalytic inhibition of A. flavus on peanuts under sunlight irradiation with the inhibition rate of about 90 ± 5%, and the production of aflatoxin B1 and aflatoxin B2 were reduced by 90 ± 2% and 70 ± 3%, respectively. By comparing the fat contents, protein contents, acid value, peroxide value and antioxidative compositions of peanuts, it was found that there was no obvious effect on the quality of peanuts after inhibition treatment. The findings provide a green, safe and economical strategy to control A. flavus on peanuts, which may be as a promising way to be used in food and agro-food preservation.
Collapse
Affiliation(s)
- Di Sun
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Jin Mao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; National Reference Laboratory for Agricultural Testing P.R.China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Quality Inspection & Test Center for Oilseed Products, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China.
| | - Zhijian Wang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Hui Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; National Reference Laboratory for Agricultural Testing P.R.China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Quality Inspection & Test Center for Oilseed Products, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| | - Liangxiao Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; National Reference Laboratory for Agricultural Testing P.R.China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Quality Inspection & Test Center for Oilseed Products, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| | - Wen Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; National Reference Laboratory for Agricultural Testing P.R.China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Quality Inspection & Test Center for Oilseed Products, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; National Reference Laboratory for Agricultural Testing P.R.China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Quality Inspection & Test Center for Oilseed Products, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; National Reference Laboratory for Agricultural Testing P.R.China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Quality Inspection & Test Center for Oilseed Products, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, China
| |
Collapse
|
44
|
Wu S, Xu J, Zou L, Luo S, Yao R, Zheng B, Liang G, Wu D, Li Y. Long-lasting renewable antibacterial porous polymeric coatings enable titanium biomaterials to prevent and treat peri-implant infection. Nat Commun 2021; 12:3303. [PMID: 34083518 PMCID: PMC8175680 DOI: 10.1038/s41467-021-23069-0] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/18/2021] [Indexed: 01/14/2023] Open
Abstract
Peri-implant infection is one of the biggest threats to the success of dental implant. Existing coatings on titanium surfaces exhibit rapid decrease in antibacterial efficacy, which is difficult to promisingly prevent peri-implant infection. Herein, we report an N-halamine polymeric coating on titanium surface that simultaneously has long-lasting renewable antibacterial efficacy with good stability and biocompatibility. Our coating is powerfully biocidal against both main pathogenic bacteria of peri-implant infection and complex bacteria from peri-implantitis patients. More importantly, its antibacterial efficacy can persist for a long term (e.g., 12~16 weeks) in vitro, in animal model, and even in human oral cavity, which generally covers the whole formation process of osseointegrated interface. Furthermore, after consumption, it can regain its antibacterial ability by facile rechlorination, highlighting a valuable concept of renewable antibacterial coating in dental implant. These findings indicate an appealing application prospect for prevention and treatment of peri-implant infection.
Collapse
Affiliation(s)
- Shuyi Wu
- Department of Prosthodontics, Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
| | - Jianmeng Xu
- Department of Prosthodontics, Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
| | - Leiyan Zou
- Department of Prosthodontics, Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
| | - Shulu Luo
- Department of Prosthodontics, Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
| | - Run Yao
- Department of Prosthodontics, Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
| | - Bingna Zheng
- Materials Science Institute, PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Guobin Liang
- Department of Prosthodontics, Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
| | - Dingcai Wu
- Materials Science Institute, PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China.
| | - Yan Li
- Department of Prosthodontics, Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China.
| |
Collapse
|
45
|
Ikram M, Wakeel M, Hassan J, Haider A, Naz S, Ul-Hamid A, Haider J, Ali S, Goumri-Said S, Kanoun MB. Impact of Bi Doping into Boron Nitride Nanosheets on Electronic and Optical Properties Using Theoretical Calculations and Experiments. NANOSCALE RESEARCH LETTERS 2021; 16:82. [PMID: 33978872 PMCID: PMC8116421 DOI: 10.1186/s11671-021-03542-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/03/2021] [Indexed: 05/16/2023]
Abstract
In the present work, boron nitride (BN) nanosheets were prepared through bulk BN liquid phase exfoliation while various wt. ratios (2.5, 5, 7.5 and 10) of bismuth (Bi) were incorporated as dopant using hydrothermal technique. Our findings exhibit that the optical investigation showed absorption spectra in near UV region. Density functional theory calculations indicate that Bi doping has led to various modifications in the electronic structures of BN nanosheet by inducing new localized gap states around the Fermi level. It was found that bandgap energy decrease with the increase of Bi dopant concentrations. Therefore, in analysis of the calculated absorption spectra, a redshift has been observed in the absorption edges, which is consistent with the experimental observation. Additionally, host and Bi-doped BN nanosheets were assessed for their catalytic and antibacterial potential. Catalytic activity of doped free and doped BN nanosheets was evaluated by assessing their performance in dye reduction/degradation process. Bactericidal activity of Bi-doped BN nanosheets resulted in enhanced efficiency measured at 0-33.8% and 43.4-60% against S. aureus and 0-38.8% and 50.5-85.8% against E. coli, respectively. Furthermore, In silico molecular docking predictions were in good agreement with in-vitro bactericidal activity. Bi-doped BN nanosheets showed good binding score against DHFR of E. coli (- 11.971 kcal/mol) and S. aureus (- 8.526 kcal/mol) while binding score for DNA gyrase from E. coli (- 6.782 kcal/mol) and S. aureus (- 7.819 kcal/mol) suggested these selected enzymes as possible target.
Collapse
Affiliation(s)
- Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore, 54000, Punjab, Pakistan.
| | - Muhammad Wakeel
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, 14 Ali Road, Lahore, Pakistan
| | - Jahanzeb Hassan
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, 14 Ali Road, Lahore, Pakistan
| | - Ali Haider
- Department of Clinical Medicine and Surgery, University of Veterinary and Animal Sciences Lahore, Lahore, 54000, Punjab, Pakistan
| | - Sadia Naz
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Junaid Haider
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Salamat Ali
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, 14 Ali Road, Lahore, Pakistan
| | - Souraya Goumri-Said
- College of Science, Physics Department, Alfaisal University, P.O. Box 50927, Riyadh, 11533, Saudi Arabia
| | - Mohammed Benali Kanoun
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa, 31982, Saudi Arabia.
| |
Collapse
|
46
|
Manouras T, Koufakis E, Vasilaki E, Peraki I, Vamvakaki M. Antimicrobial Hybrid Coatings Combining Enhanced Biocidal Activity under Visible-Light Irradiation with Stimuli-Renewable Properties. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17183-17195. [PMID: 33734694 DOI: 10.1021/acsami.0c21230] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hybrid, organic-inorganic, biocidal films exhibiting polishing properties were developed as effective long-lasting antimicrobial surface coatings. The films were prepared using cationically modified chitosan, synthesized by the reaction with 3-bromo-N,N,N-trimethylpropan-1-aminium bromide, to introduce permanent biocidal quaternary ammonium salt (QAS) groups along the polymer backbone and were cross-linked by a novel, pH-cleavable acetal cross-linker, which allowed polishing the hybrid coatings with the solution pH. TiO2 nanoparticles, modified with reduced graphene oxide (rGO) sheets, to narrow their band gap energy value and shift their photocatalytic activity in the visible light regime, were introduced within the polymer film to enhance its antibacterial activity. The hybrid coatings exhibited an effective biocidal activity in the dark (∼2 Log and ∼3 Log reduction for Gram-negative and Gram-positive bacteria, respectively), when only the QAS sites interacted with the bacteria membrane, and an excellent biocidal action upon visible-light irradiation (∼5 Log and ∼6 Log reduction for Gram-negative and Gram-positive bacteria, respectively) due to the synergistic antimicrobial effect of the QAS moieties and the rGO-modified TiO2 nanoparticles. The gradual decrease in the film thickness, upon immersion of the coatings in mildly basic (pH 8), neutral (pH 7), and acidic (pH 6) media, reaching 10, 20, and 70% reduction, respectively, after 60 days of immersion time, confirmed the polishing behavior of the films, whereas their effective antimicrobial action was retained. The biocompatibility of the hybrid films was verified in human cell culture studies. The proposed approach enables the facile development of highly functional coatings, combining biocompatibility and bactericidal action with a "kill and self-clean" mechanism that allows the regeneration of the outer surface of the coating leading to a strong and prolonged antimicrobial action.
Collapse
Affiliation(s)
- Theodore Manouras
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Heraklion 700 13, Crete, Greece
- Department of Materials Science and Technology, University of Crete, Heraklion 700 13, Crete, Greece
| | - Eleftherios Koufakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Heraklion 700 13, Crete, Greece
- Department of Materials Science and Technology, University of Crete, Heraklion 700 13, Crete, Greece
| | - Evangelia Vasilaki
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Heraklion 700 13, Crete, Greece
- Department of Materials Science and Technology, University of Crete, Heraklion 700 13, Crete, Greece
| | - Ioanna Peraki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 700 13 Heraklion, Crete, Greece
| | - Maria Vamvakaki
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Heraklion 700 13, Crete, Greece
- Department of Materials Science and Technology, University of Crete, Heraklion 700 13, Crete, Greece
| |
Collapse
|
47
|
Wang J, Qiu M, Liu Z, He C. Fabrication of a Dual-Action Membrane with Both Antibacterial and Anticoagulant Properties via Cationic Polyelectrolyte-Induced Phase Separation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14938-14950. [PMID: 33775092 DOI: 10.1021/acsami.1c00256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The development of microorganisms and formation of thrombus on a biomaterial surface can seriously lead to device failure and threaten human health. Nonetheless, a surface that has both antibacterial and anticoagulant properties has scarcely been developed. Herein, a novel dual-action membrane composed of polyethersulfone (PES) bulk material and a hydrophilic anionic poly-2-acrylamido-2-methylpropanesulfonic acid (PAMPS) polymer has been prepared via the cationic antibacterial agent poly(hexamethylene biguanide) (PHMB)-induced phase separation technique. Interestingly, the resultant membrane can offer tunable antibacterial and anticoagulant properties, while maintaining satisfactory permeability and greatly increasing selectivity. The membrane also shows excellent hydrophilicity, a well-defined porous surface, and cross section with a sponge gradient structure. Furthermore, the PHMB-PAMPS complex formed on the membrane surface displays outstanding long-term stability, which is crucial for further practical applications. More importantly, the hollow fiber membrane fabricated by the cationic polyelectrolyte-induced phase separation technique confirms its capability to control the membrane permeability (257.4 L·m-2·h-1·bar-1) and selectivity (95.9%) without destroying the membrane structure. The present work opens a straightforward and efficient avenue for the rational design of a functional surface to fight biomedical material-associated infections.
Collapse
Affiliation(s)
- Jianxiu Wang
- The State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Ming Qiu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Ziyuan Liu
- The State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Chunju He
- The State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
48
|
Au nanorods decorated TiO2 nanobelts with enhanced full solar spectrum photocatalytic antibacterial activity and the sterilization file cabinet application. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.10.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
49
|
Chen Z, Wang Z, Qiu W, Fang F. Overview of Antibacterial Strategies of Dental Implant Materials for the Prevention of Peri-Implantitis. Bioconjug Chem 2021; 32:627-638. [PMID: 33779151 DOI: 10.1021/acs.bioconjchem.1c00129] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
As dental implants have become one of the main treatment options for patients with tooth loss, the number of patients with peri-implant diseases has increased. Similar to periodontal diseases, peri-implant diseases have been associated with dental plaque formation on implants. Unconventional approaches have been reported to remove plaque from infected implants, but none of these methods can completely and permanently solve the problem of bacterial invasion. Fortunately, the constant development of antibacterial implant materials is a promising solution to this situation. In this review, the development and study of different antibacterial strategies for dental implant materials for the prevention of peri-implantitis are summarized. We hope that by highlighting the advantages and limitations of these antimicrobial strategies, we can assist in the continued development of oral implant materials.
Collapse
Affiliation(s)
- Zehao Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, P.R. China
| | - Zhaodan Wang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, P.R. China
| | - Wei Qiu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, P.R. China
| | - Fuchun Fang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, P.R. China
| |
Collapse
|
50
|
Almohandes A, Abrahamsson I, Dahlén G, Berglundh T. Effect of biofilm formation on implant abutments with an anti-bacterial coating: A pre-clinical in vivo study. Clin Oral Implants Res 2021; 32:756-766. [PMID: 33715254 DOI: 10.1111/clr.13745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/03/2021] [Accepted: 03/07/2021] [Indexed: 01/01/2023]
Abstract
OBJECTIVES To analyse the long-term effect of plaque formation on implant abutments with an antibacterial coating and the ensuing host response in peri-implant tissues. MATERIALS AND METHODS Four implants were installed in each mandibular premolar region following tooth extraction in six dogs. Three months later, two test abutments with a titanium-bismuth-gallium (Ti-Bi-Ga) coating and two control titanium abutments were connected to the implants on each side of the mandible. After 2 months, ligatures were placed around the implants in one side of the mandible and plaque formation was allowed until the end of the experiment. The ligatures were removed after 4 weeks. Radiographs and microbiological samples were obtained from each implant site during the plaque formation period. Biopsies were obtained 8 months after abutment connection and prepared for histological analysis. RESULTS The analysis did not reveal any statistically significant differences in bone loss, bacterial growth and size of inflammatory lesions between implant units with and without the Ti-Bi-Ga coating. Implant sites exposed to the short period of ligature-induced breakdown demonstrated more pronounced bone loss and bacterial growth than non-ligature sites. CONCLUSIONS It is suggested that a Ti-Bi-Ga coating does not prevent biofilm formation on the implant device and does not influence the ensuing host response in the adjacent peri-implant mucosa.
Collapse
Affiliation(s)
- Ahmed Almohandes
- Department of Periodontology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ingemar Abrahamsson
- Department of Periodontology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Gunnar Dahlén
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tord Berglundh
- Department of Periodontology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|