1
|
Nie L, Wang L, Hu S, Wei Z, Ding X, Lu Y, Tang H, Ding P. Dopamine-conjugated hyaluronic acid hydrogel interpenetrated by genipin crosslinked quaternary ammonium chitosan for potential biomedical adhesives applications. Colloids Surf B Biointerfaces 2025; 252:114683. [PMID: 40222113 DOI: 10.1016/j.colsurfb.2025.114683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/22/2025] [Accepted: 04/05/2025] [Indexed: 04/15/2025]
Abstract
Multifunctional hydrogel adhesives have emerged as promising candidates for advanced biomedical applications, particularly in surgical suture alternatives, hemostatic management, and regenerative wound care. This study developed an interpenetrating polymer network (IPN) hydrogel adhesive system through the synergistic integration of dopamine-functionalized hyaluronic acid (HA-DA) and genipin-crosslinked quaternary ammonium chitosan (QCS). The successful preparation of HA-DA and QCS was confirmed via 1H nuclear magnetic resonance (1H NMR) and Fourier transform infrared (FT-IR) analysis. The fabricated hydrogel adhesives exhibited the interconnected microstructure, suitable mechanical strength, and elastic solid properties. Additionally, the hydrogel adhesives exhibited expected self-healing abilities and injectability. The hydrogels displayed strong adhesion on different matrix and tissues. The quaternary ammonium group pendants in the hydrogel network result in the excellent antibacterial activity of hydrogels against Escherichia coli and Staphylococcus aureus. Furthermore, hemolysis test, fluorescence images, CCK-8 assay, and wound scratch assay demonstrated that the hydrogel adhesives possessed good hemocompatibility, biocompatibility, and cell migration ability. These multifunctional characteristics, combining structural integrity, rapid self-repair, surgical-grade adhesion, antimicrobial protection, hemocompatibility, and cytocompatibility, establish this IPN hydrogel as a promising candidate for biomedical adhesives.
Collapse
Affiliation(s)
- Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China.
| | - Ling Wang
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Shuxin Hu
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Zheng Wei
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Xiaoyue Ding
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Yuanyuan Lu
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Hengmin Tang
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Peng Ding
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
2
|
Lv Q, Zhou D, He Y, Xu T, Qiu X, Zeng J. Engineering functional electroconductive hydrogels for targeted therapy in myocardial infarction repair. Bioact Mater 2025; 49:172-192. [PMID: 40124599 PMCID: PMC11929901 DOI: 10.1016/j.bioactmat.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/23/2024] [Accepted: 01/13/2025] [Indexed: 03/25/2025] Open
Abstract
Myocardial infarction (MI) is characterized by a paucity of cardiomyocyte regeneration, leading to significant morbidity and mortality. Contemporary therapeutic modalities, while mitigating ischemic effects, fail to reconstitute the impaired electromechanical coupling within the infracted myocardium. Emerging evidence supports the utility of electroconductive hydrogels (ECHs) in facilitating post-MI cardiac function recovery by restoring the conductive microenvironment of the infarcted tissue. This comprehensive review delineates the taxonomy of ECHs predicated on their constituent conductive materials. It also encapsulates prevailing research trends in ECH-mediated MI repair, encompassing innovative design paradigms and microenvironment-sensitive strategies. The review also provides a critical appraisal of various implantation techniques, underscored by a thorough examination of the attendant considerations. It elucidates the mechanistic underpinnings by which hydrogels exert salutary effects on myocardial repair, namely by augmenting mechanical and electrical integrity, exerting anti-inflammatory actions, fostering angiogenesis, and curtailing adverse remodeling processes. Furthermore, the review engages with the pressing challenge of optimizing ECH functionality to achieve superior reparative outcomes post-MI. The discourse concludes with an anticipatory perspective on the evolution of ECH scaffolds, advocating for a tailored approach that integrates multifaceted physicochemical properties to cater to the nuances of personalized medicine.
Collapse
Affiliation(s)
- Qianqian Lv
- Department of Physiology, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
- International Center for Translational Medicine, Shunde Hospital, Southern Medical University, Foshan, Guangdong, 528300, PR China
| | - Dandan Zhou
- Department of Physiology, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
- International Center for Translational Medicine, Shunde Hospital, Southern Medical University, Foshan, Guangdong, 528300, PR China
| | - Yutong He
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China
| | - Tao Xu
- Department of Physiology, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| | - Xiaozhong Qiu
- International Center for Translational Medicine, Shunde Hospital, Southern Medical University, Foshan, Guangdong, 528300, PR China
| | - Junwei Zeng
- Department of Physiology, Zunyi Medical University, Zunyi, Guizhou, 563000, PR China
| |
Collapse
|
3
|
Lu J, Guo Y, Yang Z, Xie M, Zhang S, Li K, Yang J, Xue S, Xu D, Yan K, Liu Y. Calycosin-7-glucoside-Loaded Hydrogel Promotes Wound Healing in Gestational Diabetes Mellitus. ACS APPLIED BIO MATERIALS 2025; 8:4186-4199. [PMID: 40300146 DOI: 10.1021/acsabm.5c00290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
The prevalence of gestational diabetes mellitus (GDM) is currently on the rise globally, which heightens the risk of adverse pregnancy outcomes and subsequently increases the likelihood of cesarean delivery. GDM can induce hyperglycemic conditions in cesarean wounds, leading to delayed wound healing and complications such as itching, pain, and scarring. These complications significantly impact the quality of life and mental health of mothers. Furthermore, there is a lack of effective clinical prevention strategies. Consequently, the need to improve wound healing after cesarean sections in women with GDM is a pressing concern that warrants our attention. To maximize the therapeutic impact and extend the bioavailability of calycosin-7-glucoside (CG), it was integrated into a hybridized hydrogel (GOHA) as a drug carrier to create the GOHACG hydrogel. Bases on our tests, the GOHACG hydrogel demonstrated a strong capacity for water absorption, appropriate pore size, and good biocompatibility to adjust to the in situ surroundings of the wound. GOHACG also promoted epidermal regeneration, collagen deposition, angiogenesis, and the conversion of macrophages from the M1 to M2 phenotype. Indicating a reduction in the inflammatory response, accelerated wound repair, and minimized skin scarring in a postcesarean delivery model involving gestational diabetic mellitus mice. In brief, the GOHACG possesses significant properties that enhance wound healing in GDM model, suggesting its potential effects in treating wound healing of GDM.
Collapse
Affiliation(s)
- Jicong Lu
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yingying Guo
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhaoyuan Yang
- The 988 Hospital of the Joint Service Support Force of the Chinese People's Liberation Army, Zhengzhou 450000, China
| | - Mengxia Xie
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shuangyu Zhang
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Keji Li
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jingjing Yang
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shanhui Xue
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Da Xu
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Kanglu Yan
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yuehua Liu
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
4
|
Datta D, Colaco V, Bandi SP, Dhas N, Janardhanam LSL, Singh S, Vora LK. Stimuli-Responsive Self-Healing Ionic Gels: A Promising Approach for Dermal and Tissue Engineering Applications. ACS Biomater Sci Eng 2025; 11:1338-1372. [PMID: 39999055 PMCID: PMC11897956 DOI: 10.1021/acsbiomaterials.4c02264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025]
Abstract
The rapid increase in the number of stimuli-responsive polymers, also known as smart polymers, has significantly advanced their applications in various fields. These polymers can respond to multiple stimuli, such as temperature, pH, solvent, ionic strength, light, and electrical and magnetic fields, making them highly valuable in both the academic and industrial sectors. Recent studies have focused on developing hydrogels with self-healing properties that can autonomously recover their structural integrity and mechanical properties after damage. These hydrogels, formed through dynamic covalent reactions, exhibit superior biocompatibility, mechanical strength, and responsiveness to stimuli, particularly pH changes. However, conventional hydrogels are limited by their weak and brittle nature. To address this, ionizable moieties within polyelectrolytes can be tuned to create ionically cross-linked hydrogels, leveraging natural polymers such as alginate, chitosan, hyaluronic acid, and cellulose. The integration of ionic liquids into these hydrogels enhances their mechanical properties and conductivity, positioning them as significant self-healing agents. This review focuses on the emerging field of stimuli-responsive ionic-based hydrogels and explores their potential in dermal applications and tissue engineering.
Collapse
Affiliation(s)
- Deepanjan Datta
- Department
of Pharmaceutics, Manipal College of Pharmaceutical
Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Viola Colaco
- Department
of Pharmaceutics, Manipal College of Pharmaceutical
Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sony Priyanka Bandi
- Department
of Pharmacy, Birla Institute of Technology
and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, Telangana, India
| | - Namdev Dhas
- Department
of Pharmaceutics, Manipal College of Pharmaceutical
Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Leela Sai Lokesh Janardhanam
- Department
of Pharmaceutical Sciences and Experimental Therapeutics, College
of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| | - Sudarshan Singh
- Faculty
of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Office
of Research Administrations, Chiang Mai
University, Chiang
Mai 50200, Thailand
| | - Lalitkumar K. Vora
- School of
Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K.
| |
Collapse
|
5
|
Lee Y, Shelke S, Lee C. Cardiac Repair and Regeneration via Advanced Technology: Narrative Literature Review. JMIR BIOMEDICAL ENGINEERING 2025; 10:e65366. [PMID: 40056468 PMCID: PMC11956377 DOI: 10.2196/65366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/22/2024] [Accepted: 01/08/2025] [Indexed: 03/10/2025] Open
Abstract
BACKGROUND Cardiovascular diseases (CVDs) are the leading cause of death globally, and almost one-half of all adults in the United States have at least one form of heart disease. This review focused on advanced technologies, genetic variables in CVD, and biomaterials used for organ-independent cardiovascular repair systems. OBJECTIVE A variety of implantable and wearable devices, including biosensor-equipped cardiovascular stents and biocompatible cardiac patches, have been developed and evaluated. The incorporation of those strategies will hold a bright future in the management of CVD in advanced clinical practice. METHODS This study employed widely used academic search systems, such as Google Scholar, PubMed, and Web of Science. Recent progress in diagnostic and treatment methods against CVD, as described in the content, are extensively examined. The innovative bioengineering, gene delivery, cell biology, and artificial intelligence-based technologies that will continuously revolutionize biomedical devices for cardiovascular repair and regeneration are also discussed. The novel, balanced, contemporary, query-based method adapted in this manuscript defined the extent to which an updated literature review could efficiently provide research on the evidence-based, comprehensive applicability of cardiovascular devices for clinical treatment against CVD. RESULTS Advanced technologies along with artificial intelligence-based telehealth will be essential to create efficient implantable biomedical devices, including cardiovascular stents. The proper statistical approaches along with results from clinical studies including model-based risk probability prediction from genetic and physiological variables are integral for monitoring and treatment of CVD risk. CONCLUSIONS To overcome the current obstacles in cardiac repair and regeneration and achieve successful therapeutic applications, future interdisciplinary collaborative work is essential. Novel cardiovascular devices and their targeted treatments will accomplish enhanced health care delivery and improved therapeutic efficacy against CVD. As the review articles contain comprehensive sources for state-of-the-art evidence for clinicians, these high-quality reviews will serve as a first outline of the updated progress on cardiovascular devices before undertaking clinical studies.
Collapse
Affiliation(s)
- Yugyung Lee
- Division of Pharmacology and Pharmaceutics Sciences, School of Pharmacy, University of Missouri Kansas City, Kansas City, MO, United States
| | - Sushil Shelke
- Division of Pharmacology and Pharmaceutics Sciences, School of Pharmacy, University of Missouri Kansas City, Kansas City, MO, United States
| | - Chi Lee
- Division of Pharmacology and Pharmaceutics Sciences, School of Pharmacy, University of Missouri Kansas City, Kansas City, MO, United States
| |
Collapse
|
6
|
Zhao J, Chen Y, Qin Y, Li Y, Lu X, Xie C. Adhesive and Conductive Hydrogels for the Treatment of Myocardial Infarction. Macromol Rapid Commun 2025; 46:e2400835. [PMID: 39803789 DOI: 10.1002/marc.202400835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/27/2024] [Indexed: 05/02/2025]
Abstract
Myocardial infarction (MI) is a leading cause of mortality among cardiovascular diseases. Following MI, the damaged myocardium is progressively being replaced by fibrous scar tissue, which exhibits poor electrical conductivity, ultimately resulting in arrhythmias and adverse cardiac remodeling. Due to their extracellular matrix-like structure and excellent biocompatibility, hydrogels are emerging as a focal point in cardiac tissue engineering. However, traditional hydrogels lack the necessary conductivity to restore electrical signal transmission in the infarcted regions. Imparting conductivity to hydrogels while also enhancing their adhesive properties enables them to adhere closely to myocardial tissue, establish stable electrical connections, and facilitate synchronized contraction and myocardial tissue repair within the infarcted area. This paper reviews the strategies for constructing conductive and adhesive hydrogels, focusing on their application in MI repair. Furthermore, the challenges and future directions in developing adhesive and conductive hydrogels for MI repair are discussed.
Collapse
Affiliation(s)
- Jialiang Zhao
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Ying Chen
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yuanyuan Qin
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yongqi Li
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Xiong Lu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Chaoming Xie
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| |
Collapse
|
7
|
Li T, Ding L, Wang Q, Ma J, Wang S. Enhancing cardiac repair post-myocardial infarction: a study on GATM/Gel hydrogel therapeutics. Cell Biol Toxicol 2025; 41:44. [PMID: 39937362 PMCID: PMC11821695 DOI: 10.1007/s10565-025-09987-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 01/03/2025] [Indexed: 02/13/2025]
Abstract
BACKGROUND AND PURPOSE Significant advancements in therapeutic approaches are imperative to address the prevalent impact of myocardial infarction (MI) on morbidity and mortality rates worldwide. This study explores the therapeutic potential of GATM/Gel hydrogel, focusing on its ability to enhance cardiac repair and functionality after MI through modulation of inflammatory and repair pathways. EXPERIMENTAL APPROACH The effects of GATM/Gel hydrogel on cardiac recovery were studied in a murine MI model. HA-CHO and gelatin solutions were mixed in situ using a dual syringe with a static mixing needle, and the resulting hydrogel was applied directly to the epicardium during MI modeling, followed by repositioning of the heart and closure of the thorax. Comprehensive in vivo assessments-including echocardiography, electrocardiography, and histopathological analysis-were combined with molecular techniques such as RT-qPCR, Western blotting, and immunofluorescence to elucidate the underlying mechanisms. Key cellular and molecular changes were tracked, focusing on macrophage polarization, angiogenesis, and modulation of the TNF/TNFR2 signaling pathway. KEY RESULTS Employing the GATM/Gel hydrogel led to a substantial improvement in heart function, shown through enhanced ejection fraction and fractional shortening, and reduced infarction size compared to control groups. Mechanistically, the hydrogel promoted the polarization of anti-inflammatory M2 macrophages and stimulated angiogenesis. Moreover, treatment with GATM/Gel hydrogel altered the TNF/TNFR2 pathway, pivotal in mediating inflammatory responses and facilitating myocardial repair. The discoveries highlight the possibility of GATM/Gel hydrogels as an innovative remedy for MI, providing a twofold role in regulating inflammation and fostering recovery.
Collapse
Affiliation(s)
- Te Li
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, 130021, China
| | - Lijuan Ding
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Qiang Wang
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Jianing Ma
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Shudong Wang
- Department of Cardiology, The First Hospital of Jilin University, No. 1 Xinmin Street Avenue, Chaoyang District, Changchun, 130021, China.
| |
Collapse
|
8
|
Ghosh S, Kumar N, Chattopadhyay S. Electrically conductive "SMART" hydrogels for on-demand drug delivery. Asian J Pharm Sci 2025; 20:101007. [PMID: 39935975 PMCID: PMC11810714 DOI: 10.1016/j.ajps.2024.101007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/17/2024] [Accepted: 05/20/2024] [Indexed: 02/13/2025] Open
Abstract
In the current transformative era of biomedicine, hydrogels have established their presence in biomaterials due to their superior biocompatibility, tuneability and resemblance with native tissue. However, hydrogels typically exhibit poor conductivity due to their hydrophilic polymer structure. Electrical conductivity provides an important enhancement to the properties of hydrogel-based systems in various biomedical applications such as drug delivery and tissue engineering. Consequently, researchers are developing combinatorial strategies to develop electrically responsive "SMART" systems to improve the therapeutic efficacy of biomolecules. Electrically conductive hydrogels have been explored for various drug delivery applications, enabling higher loading of therapeutic cargo with on-demand delivery. This review emphasizes the properties, mechanisms, fabrication techniques and recent advancements of electrically responsive "SMART" systems aiding on-site drug delivery applications. Additionally, it covers prospects for the successful translation of these systems into clinical research.
Collapse
Affiliation(s)
- Soumajyoti Ghosh
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur 721302, India
| | - Nikhil Kumar
- Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur 721302, India
| | | |
Collapse
|
9
|
Wang X, Yu S, Xie L, Xiang M, Ma H. The role of the extracellular matrix in cardiac regeneration. Heliyon 2025; 11:e41157. [PMID: 39834404 PMCID: PMC11745795 DOI: 10.1016/j.heliyon.2024.e41157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/16/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025] Open
Abstract
The extracellular matrix (ECM) is a complex and dynamic three-dimensional network that functions as an architectural scaffold to maintain cardiac homeostasis. Important biochemical and mechanical signals associated with cell‒cell communication are provided via the reciprocal interaction between cells and the ECM. By converting mechanical cues into biochemical signals, the ECM regulates many cell processes, including migration, adhesion, growth, differentiation, proliferation, and apoptosis. Moreover, the ECM facilitates the replacement of dead cells and preserves the structural integrity of the heart, making it essential in conditions such as myocardial infarction and other pathological states. When excessive ECM deposition or abnormal production of ECM components occurs, the heart undergoes fibrosis, leading to cardiac dysfunction and heart failure. However, emerging evidence suggests that the ECM may contribute to heart regeneration following cardiac injury. The present review offers a complete overview of the existing information and novel discoveries regarding the involvement of the ECM in heart regeneration from both mechanical and biochemical perspectives. Understanding the ECM and its involvement in mechanotransduction holds significant potential for advancing therapeutic approaches in heart repair and regeneration.
Collapse
Affiliation(s)
- Xiying Wang
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Shuo Yu
- Department of Anesthesiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lan Xie
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Department of Rheumatology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Meixiang Xiang
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Hong Ma
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| |
Collapse
|
10
|
Li H, Li D, Wang X, Zeng Z, Pahlavan S, Zhang W, Wang X, Wang K. Progress in Biomaterials-Enhanced Vascularization by Modulating Physical Properties. ACS Biomater Sci Eng 2025; 11:33-54. [PMID: 39615049 DOI: 10.1021/acsbiomaterials.4c01106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Sufficient vascular system and adequate blood perfusion is crucial for ensuring nutrient and oxygen supply within biomaterials. Actively exploring the optimal physical properties of biomaterials in various application scenarios has provided clues for enhancing vascularization within materials, leading to improved outcomes in tissue engineering and clinical translation. Here we focus on reviewing the physical properties of biomaterials, including pore structure, surface topography, and stiffness, and their effects on promoting vascularization. This angiogenic capability has the potential to provide better standardized research models and personalized treatment strategies for bone regeneration, wound healing, islet transplantation and cardiac repair.
Collapse
Affiliation(s)
- Hao Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Dayan Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| | - Xue Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China
| | - Ziyuan Zeng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Wei Zhang
- TianXinFu (Beijing) Medical Appliance Co., Ltd., Beijing 102200, China
| | - Xi Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China
| | - Kai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China
| |
Collapse
|
11
|
Tang S, Feng K, Yang R, Cheng Y, Chen M, Zhang H, Shi N, Wei Z, Ren H, Ma Y. Multifunctional Adhesive Hydrogels: From Design to Biomedical Applications. Adv Healthc Mater 2025; 14:e2403734. [PMID: 39604246 DOI: 10.1002/adhm.202403734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Adhesive hydrogels characterized by structural properties similar to the extracellular matrix, excellent biocompatibility, controlled degradation, and tunable mechanical properties have demonstrated significant potential in biomedical applications, including tissue engineering, biosensors, and drug delivery systems. These hydrogels exhibit remarkable adhesion to target substrates and can be rationally engineered to meet specific requirements. In recent decades, adhesive hydrogels have experienced significant advancements driven by the introduction of numerous multifunctional design strategies. This review initially summarizes the chemical bond-based design strategies for tissue adhesion, encompassing static covalent bonds, dynamic covalent bonds, and non-covalent interactions. Subsequently, the multiple functionalities imparted by these diverse design strategies, including highly stretchable and tough performances, responsiveness to microenvironments, anti-freezing/heating properties, conductivity, antibacterial activity, and hemostatic properties are discussed. In addition, recent advances in the biomedical applications of adhesive hydrogels, focusing on tissue repair, drug delivery, medical devices, and wearable sensors are reviewed. Finally, the current challenges are highlighted and future trends in this rapidly evolving field are discussed.
Collapse
Affiliation(s)
- Shaoxin Tang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Keru Feng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Rui Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yang Cheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Meiyue Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hui Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Nianyuan Shi
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Key Laboratory of Magnetic Medicine, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Zhao Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hui Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Yufei Ma
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
12
|
Lee J, Choi Y, Song J, Seong D, Jin S, Ju J, Son D, Shin M. Nerve-Mimetic Adhesive Hydrogel Electroceuticals: Tailoring In Situ Physically Entangled Domains in Singular Polymers. ACS NANO 2024; 18:34949-34961. [PMID: 39670562 DOI: 10.1021/acsnano.4c13097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Implantable electrochemicals stand out as promising candidates for resolving peripheral nerve injuries. However, challenges persist in designing bioelectronic materials that mimic tissue due to modulus matching, conformal adhesion, and immune responses. Herein, we present a nerve-mimicking design rationale for biocompatible hydrogel-based electroceuticals with a tissue-like modulus, robust and conformal tissue adhesion, exceptional mechanical toughness, and efficient stress dissipation. Inspired by the hierarchical structure of the peripheral nerve, the hydrogel substrate features a structurally gradient bilayer transitioning from a dense to a loose polymeric network, utilizing alginate functionalized with either photo-cross-linkable methacrylate or tissue-adhesive phenylborate. Due to the varying water affinity of the tethering groups, a physically entangled interfacial domain is in situ formed during dehydration of the pre-gel film, resulting in enhanced mechanical toughness and strong adhesion. The hydrogel electroceuticals, when integrated with conducting polymeric electrodes, locally stimulate nerve tissue, improving tissue regeneration in a crushed nerve injury model.
Collapse
Affiliation(s)
- Jaebeom Lee
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
| | - Yeonsun Choi
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jihyang Song
- Department of Artificial Intelligence System Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Duhwan Seong
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Subin Jin
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jaewon Ju
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Donghee Son
- Department of Artificial Intelligence System Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
| | - Mikyung Shin
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
| |
Collapse
|
13
|
Zhou G, Xu R, Groth T, Wang Y, Yuan X, Ye H, Dou X. The Combination of Bioactive Herbal Compounds with Biomaterials for Regenerative Medicine. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:607-630. [PMID: 38481114 DOI: 10.1089/ten.teb.2024.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Regenerative medicine aims to restore the function of diseased or damaged tissues and organs by cell therapy, gene therapy, and tissue engineering, along with the adjunctive application of bioactive molecules. Traditional bioactive molecules, such as growth factors and cytokines, have shown great potential in the regulation of cellular and tissue behavior, but have the disadvantages of limited source, high cost, short half-life, and side effects. In recent years, herbal compounds extracted from natural plants/herbs have gained increasing attention. This is not only because herbal compounds are easily obtained, inexpensive, mostly safe, and reliable, but also owing to their excellent effects, including anti-inflammatory, antibacterial, antioxidative, proangiogenic behavior and ability to promote stem cell differentiation. Such effects also play important roles in the processes related to tissue regeneration. Furthermore, the moieties of the herbal compounds can form physical or chemical bonds with the scaffolds, which contributes to improved mechanical strength and stability of the scaffolds. Thus, the incorporation of herbal compounds as bioactive molecules in biomaterials is a promising direction for future regenerative medicine applications. Herein, an overview on the use of bioactive herbal compounds combined with different biomaterial scaffolds for regenerative medicine application is presented. We first introduce the classification, structures, and properties of different herbal bioactive components and then provide a comprehensive survey on the use of bioactive herbal compounds to engineer scaffolds for tissue repair/regeneration of skin, cartilage, bone, neural, and heart tissues. Finally, we highlight the challenges and prospects for the future development of herbal scaffolds toward clinical translation. Overall, it is believed that the combination of bioactive herbal compounds with biomaterials could be a promising perspective for the next generation of regenerative medicine. Impact statement This article reviews the combination of bioactive herbal compounds with biomaterials in the promotion of skin, cartilage, bone, neural, and heart regeneration, due to the anti-inflammatory, antibacterial, antioxidative, and proangiogenic effects of the herbal compounds, but also their effects on the improvement of mechanic strength and stability of biomaterial scaffolds. This review provides a promising direction for the next generation of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Guoying Zhou
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruojiao Xu
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Thomas Groth
- Department of Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Yanying Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xingyu Yuan
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hua Ye
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
- Oxford Suzhou Centre for Advanced Research, University of Oxford, Suzhou, China
| | - Xiaobing Dou
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
14
|
Wang X, Wang H, Liu X, Zhang Y, Li J, Liu H, Feng J, Jiang W, Liu L, Chen Y, Li X, Zhao L, Guan J, Zhang Y. Self-adhesion conductive cardiac patch based on methoxytriethylene glycol-functionalized graphene effectively improves cardiac function after myocardial infarction. J Adv Res 2024:S2090-1232(24)00545-9. [PMID: 39566818 DOI: 10.1016/j.jare.2024.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024] Open
Abstract
INTRODUCTION Abnormal electrical activity of the heart following myocardial infarction (MI) may lead to heart failure or sudden cardiac death. Graphene-based conductive hydrogels can simulate the microenvironment of myocardial tissue and improve cardiac function post-MI. However, existing methods for preparing graphene and its derivatives suffer from drawbacks such as low purity, complex processes, and unclear structures, which limiting their biological applications. OBJECTIVES We propose an optimized synthetic route for synthesizing methoxytriethylene glycol-functionalized graphene (TEG-GR) with a defined structure. The aim of this study is to establish a novel self-adhesion conductive cardiac patch based on TEG-GR for protecting cardiac function after MI. METHODS We optimized π-extension polymerization (APEX) reaction to synthesize TEG-GR. TEG-GR was incorporated into dopamine-modified gelatin (GelDA) to construct conductive cardiac patch (TEG-GR/GelDA). We validated the function of TEG-GR/GelDA cardiac patch in rat models of MI, and explored the mechanism of TEG-GR/GelDA cardiac patch by RNA sequencing and molecular biology experiments. RESULTS Methoxytriethylene glycol side chain endowed graphene with low immunogenicity and superior biological properties without compromising conductivity. In rats, transplantation of TEG-GR/GelDA cardiac patch onto the infarcted area of heart could more effectively enhance ejection fraction, attenuate collagen deposition, shorten QRS interval and increase vessel density at 28 days post-treatment, compared to non-conductive cardiac patch. Transcriptome analysis indicated that TEG-GR/GelDA cardiac patch could improve cardiac function by maintaining gap junction, promoting angiogenesis, and suppressing cardiomyocytes apoptosis. CONCLUSION The precision synthesis of polymer with defined functional group expands the application of graphene in biomedical field, and the novel cardiac patch can be a promising candidate for treating MI.
Collapse
Affiliation(s)
- Xu Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China
| | - Hao Wang
- Department of Organic Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Xin Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Labratoray -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Yuan Zhang
- Department of Organic Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Jiamin Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Labratoray -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Heng Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China
| | - Jing Feng
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China
| | - Wenqian Jiang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China
| | - Ling Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China
| | - Yongchao Chen
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China
| | - Xiaohan Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China
| | - Limin Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China
| | - Jing Guan
- Department of Organic Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China.
| | - Yong Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China; State Key Labratoray -Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China.
| |
Collapse
|
15
|
Wang H, Gui B, Chen Y, Zhong F, Liu Q, Zhang S, Jiang N, Chen W, Xu C, Yang H, Zhou Q, Deng Q. Black-Phosphorus-Reinforced Injectable Conductive Biodegradable Hydrogel for the Delivery of ADSC-Derived Exosomes to Repair Myocardial Infarction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58286-58298. [PMID: 39413429 DOI: 10.1021/acsami.4c12285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Myocardial infarction (MI) remains one of the leading causes of death globally, necessitating innovative therapeutic strategies for effective repair. Conventional treatment methods such as pharmacotherapy, interventional surgery, and cardiac transplantation, while capable of reducing short-term mortality rates, still face significant challenges in post-MI repair including the restoration of intercellular biological and electrical signaling. This study presents a novel exosome-loaded conductive hydrogel designed to enhance myocardial repair by concurrently improving biological and electrical signals. Adipose-derived stem cell (ADSC) exosomes, encapsulated within a hyaluronic acid-dopamine (HA-DA) hydrogel, were employed to promote angiogenesis and inhibit inflammation. Incorporating black phosphorus (BP) into the hydrogel improved its electrical conductivity, thereby restoring electrical signal transmission in the infarcted myocardium and preventing arrhythmias. In vitro and in vivo experiments demonstrated that the exosome-loaded conductive hydrogel significantly enhanced cardiac function recovery by accelerating angiogenesis, reducing inflammation, and increasing electrical activity between myocardial cells. The hydrogel exhibited excellent biocompatibility, biodegradability, and sustained release of exosomes, ensuring prolonged therapeutic effects. This integrated approach resulted in notable improvements in the left ventricular ejection fraction, reduced fibrosis, and increased neovascularization. The combination of bioactive exosomes and a conductive hydrogel presents a promising therapeutic strategy for myocardial infarction repair.
Collapse
Affiliation(s)
- Hao Wang
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Bin Gui
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yueying Chen
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Fanglu Zhong
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qianhui Liu
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shiman Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Nan Jiang
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Weihai Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Chao Xu
- College of Materials Science and Engineering, State Key Laboratory of New Textile Materials and Advanced Processing Technology, Wuhan Textile University, Wuhan 430200, China
| | - Hongjun Yang
- College of Materials Science and Engineering, State Key Laboratory of New Textile Materials and Advanced Processing Technology, Wuhan Textile University, Wuhan 430200, China
| | - Qing Zhou
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qing Deng
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
16
|
Vahidi M, Rizkalla AS, Mequanint K. Extracellular Matrix-Surrogate Advanced Functional Composite Biomaterials for Tissue Repair and Regeneration. Adv Healthc Mater 2024; 13:e2401218. [PMID: 39036851 DOI: 10.1002/adhm.202401218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/13/2024] [Indexed: 07/23/2024]
Abstract
Native tissues, comprising multiple cell types and extracellular matrix components, are inherently composites. Mimicking the intricate structure, functionality, and dynamic properties of native composite tissues represents a significant frontier in biomaterials science and tissue engineering research. Biomimetic composite biomaterials combine the benefits of different components, such as polymers, ceramics, metals, and biomolecules, to create tissue-template materials that closely simulate the structure and functionality of native tissues. While the design of composite biomaterials and their in vitro testing are frequently reviewed, there is a considerable gap in whole animal studies that provides insight into the progress toward clinical translation. Herein, we provide an insightful critical review of advanced composite biomaterials applicable in several tissues. The incorporation of bioactive cues and signaling molecules into composite biomaterials to mimic the native microenvironment is discussed. Strategies for the spatiotemporal release of growth factors, cytokines, and extracellular matrix proteins are elucidated, highlighting their role in guiding cellular behavior, promoting tissue regeneration, and modulating immune responses. Advanced composite biomaterials design challenges, such as achieving optimal mechanical properties, improving long-term stability, and integrating multifunctionality into composite biomaterials and future directions, are discussed. We believe that this manuscript provides the reader with a timely perspective on composite biomaterials.
Collapse
Affiliation(s)
- Milad Vahidi
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, N6A5B9, Canada
| | - Amin S Rizkalla
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, N6A5B9, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, N6A5B9, Canada
| | - Kibret Mequanint
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, N6A5B9, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, N6A5B9, Canada
| |
Collapse
|
17
|
Wu R, Li W, Yang P, Shen N, Yang A, Liu X, Ju Y, Lei L, Fang B. DNA hydrogels and their derivatives in biomedical engineering applications. J Nanobiotechnology 2024; 22:518. [PMID: 39210464 PMCID: PMC11360341 DOI: 10.1186/s12951-024-02791-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Deoxyribonucleotide (DNA) is uniquely programmable and biocompatible, and exhibits unique appeal as a biomaterial as it can be precisely designed and programmed to construct arbitrary shapes. DNA hydrogels are polymer networks comprising cross-linked DNA strands. As DNA hydrogels present programmability, biocompatibility, and stimulus responsiveness, they are extensively explored in the field of biomedicine. In this study, we provide an overview of recent advancements in DNA hydrogel technology. We outline the different design philosophies and methods of DNA hydrogel preparation, discuss its special physicochemical characteristics, and highlight the various uses of DNA hydrogels in biomedical domains, such as drug delivery, biosensing, tissue engineering, and cell culture. Finally, we discuss the current difficulties facing DNA hydrogels and their potential future development.
Collapse
Affiliation(s)
- Rui Wu
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Wenting Li
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences School of Basic Medicine, Peking Union Medical College, Beijing, 100000, China
| | - Pu Yang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Naisi Shen
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Anqi Yang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xiangjun Liu
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yikun Ju
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Bairong Fang
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
18
|
Wan H, Yang X, Zhang Y, Liu X, Li Y, Qin Y, Yan H, Gui L, Li K, Zhang L, Yang L, Zhang B, Wang Y. Polyphenol-Reinforced Glycocalyx-Like Hydrogel Coating Induced Myocardial Regeneration and Immunomodulation. ACS NANO 2024; 18:21512-21522. [PMID: 39096486 DOI: 10.1021/acsnano.4c06332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Although minimally invasive interventional occluders can effectively seal heart defect tissue, they still have some limitations, including poor endothelial healing, intense inflammatory response, and thrombosis formation. Herein, a polyphenol-reinforced medicine/peptide glycocalyx-like coating was prepared on cardiac occluders. A coating consisting of carboxylated chitosan, epigallocatechin-3-gallate (EGCG), tanshinone IIA sulfonic sodium (TSS), and hyaluronic acid grafted with 3-aminophenylboronic acid was prepared. Subsequently, the mercaptopropionic acid-GGGGG-Arg-Glu-Asp-Val peptide was grafted by the thiol-ene "click" reaction. The coating showed good hydrophilicity and free radical-scavenging ability and could release EGCG-TSS. The results of biological experiments suggested that the coating could reduce thrombosis by promoting endothelialization, and promote myocardial repair by regulating the inflammatory response. The functions of regulating cardiomyocyte apoptosis and metabolism were confirmed, and the inflammatory regulatory functions of the coating were mainly dependent on the NF-kappa B and TNF signaling pathway.
Collapse
Affiliation(s)
- Huining Wan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiaohui Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yutong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiyu Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yanyan Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yumei Qin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Hui Yan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Lan Gui
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Ke Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Longjian Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| | - Bo Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
- Bioengineering Department, University of California, Los Angeles, California 90095, United States
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
19
|
Luque GC, Picchio ML, Daou B, Lasa-Fernandez H, Criado-Gonzalez M, Querejeta R, Filgueiras-Ramas D, Prato M, Mecerreyes D, Ruiz-Cabello J, Alegret N. Printable Poly(3,4-ethylenedioxythiophene)-Based Conductive Patches for Cardiac Tissue Remodeling. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34467-34479. [PMID: 38936818 DOI: 10.1021/acsami.4c03784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Myocardial cardiopathy is one of the highest disease burdens worldwide. The damaged myocardium has little intrinsic repair ability, and as a result, the distorted muscle loses strength for contraction, producing arrhythmias and fainting, and entails a high risk of sudden death. Permanent implantable conductive hydrogels that can restore contraction strength and conductivity appear to be promising candidates for myocardium functional recovery. In this work, we present a printable cardiac hydrogel that can exert functional effects on networks of cardiac myocytes. The hydrogel matrix was designed from poly(vinyl alcohol) (PVA) dynamically cross-linked with gallic acid (GA) and the conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT). The resulting patches exhibited excellent electrical conductivity, elasticity, and mechanical and contractile strengths, which are critical parameters for reinforcing weakened cardiac contraction and impulse propagation. Furthermore, the PVA-GA/PEDOT blend is suitable for direct ink writing via a melting extrusion. As a proof of concept, we have proven the efficiency of the patches in propagating the electrical signal in adult mouse cardiomyocytes through in vitro recordings of intracellular Ca2+ transients during cell stimulation. Finally, the patches were implanted in healthy mouse hearts to demonstrate their accommodation and biocompatibility. Magnetic resonance imaging revealed that the implants did not affect the essential functional parameters after 2 weeks, thus showing great potential for treating cardiomyopathies.
Collapse
Affiliation(s)
- Gisela C Luque
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián 20014, Spain
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC) CONICET, Güemes 3450, Santa Fe 3000, Argentina
| | - Matías L Picchio
- POLYMAT University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, Donostia-San Sebastián 20018, Spain
| | - Bahaa Daou
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC) CONICET, Güemes 3450, Santa Fe 3000, Argentina
- IIS Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, Paseo Dr. Begiristain s/n, San Sebastian 20014, Spain
| | - Haizpea Lasa-Fernandez
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián 20014, Spain
| | - Miryam Criado-Gonzalez
- POLYMAT University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, Donostia-San Sebastián 20018, Spain
| | - Ramon Querejeta
- Servicio de Cardiología, Hospital Universitario Donostia, San Sebastián, Gipuzkoa 20014, España
| | - David Filgueiras-Ramas
- Centro Nacional de Investigaciones Cardiovasculares; CIBER de Enfermedades Cardiovasculares, Hospital Clínico Universitario San Carlos, Madrid 28029, Spain
| | - Maurizio Prato
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián 20014, Spain
- Department of Chemical and Pharmaceutical Sciences, INSTM Unit of Trieste, University of Trieste, Via L. Giorgieri 1, Trieste 34127, Italy
- Ikerbasque, Basque Foundation for Science, Bilbao 48013, Spain
| | - David Mecerreyes
- POLYMAT University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, Donostia-San Sebastián 20018, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao 48013, Spain
| | - Jesús Ruiz-Cabello
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián 20014, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao 48013, Spain
- Ciber Enfermedades Respiratorias (Ciberes), Madrid 28029, Spain
- NMR and Imaging in Biomedicine Group, Department of Chemistry in Pharmaceutical Sciences, Pharmacy School, University Complutense Madrid, Madrid 28040, Spain
| | - Nuria Alegret
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián 20014, Spain
- POLYMAT University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, Donostia-San Sebastián 20018, Spain
- IIS Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, Paseo Dr. Begiristain s/n, San Sebastian 20014, Spain
| |
Collapse
|
20
|
Dai J, Wang B, Chang Z, Lu X, Nie J, Ren Q, Lv Y, Rotenberg MY, Fang Y. Injectable Mesh-Like Conductive Hydrogel Patch for Elimination of Atrial Fibrillation. Adv Healthc Mater 2024; 13:e2303219. [PMID: 38198617 DOI: 10.1002/adhm.202303219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/15/2023] [Indexed: 01/12/2024]
Abstract
Irregular electrical impulses in atrium are the leading cause of atrial fibrillation (AF), resulting in fatal arrhythmia and sudden cardiac death. Traditional medication and physical therapies are widely used, but generally suffer problems in serious physical damage and high surgical risks. Flexible and soft implants have great potential to be a novel approach for heart diseases therapy. A conductive hydrogel-based mesh cardiac patch is developed for application in AF elimination. The designed mesh patch with rhombic-shaped structure exhibits excellent flexibility, surface conformability, and deformation compliance, making it fit well with heart surface and accommodate to the deformation during heart beating. Moreover, the mechanical elastic and shape-memory properties of the mesh patch enable a minimally invasive injection of the patch into living animals. The mesh patch is implanted on the atrium surface for one month, indicating good biocompatibility and stability. Furthermore, the conductive patch can effectively eliminate AF owing to the conductivity and high charge storage capability (CSC) of the hydrogel. The proposed scheme of cardiac bioelectric signal modulation using conductive hydrogel brings new possibility for the treatment of arrhythmia diseases.
Collapse
Affiliation(s)
- Jing Dai
- Research Center for Translational Medicine, Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, China
| | - Bingfang Wang
- Research Center for Translational Medicine, Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, China
| | - Zhiqiang Chang
- Research Center for Translational Medicine, Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, China
| | - Xinxin Lu
- Research Center for Translational Medicine, Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, China
| | - Jianfang Nie
- Research Center for Translational Medicine, Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, China
| | - Qinjuan Ren
- Research Center for Translational Medicine, Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yingying Lv
- Research Centre of Nanoscience and Nanotechnology, College of Science, Shanghai University, Shanghai, 200444, China
| | - Menahem Y Rotenberg
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Yin Fang
- Research Center for Translational Medicine, Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, China
| |
Collapse
|
21
|
Roshanbinfar K, Schiffer M, Carls E, Angeloni M, Koleśnik-Gray M, Schruefer S, Schubert DW, Ferrazzi F, Krstić V, Fleischmann BK, Roell W, Engel FB. Electrically Conductive Collagen-PEDOT:PSS Hydrogel Prevents Post-Infarct Cardiac Arrhythmia and Supports hiPSC-Cardiomyocyte Function. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403642. [PMID: 38653478 DOI: 10.1002/adma.202403642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Indexed: 04/25/2024]
Abstract
Myocardial infarction (MI) causes cell death, disrupts electrical activity, triggers arrhythmia, and results in heart failure, whereby 50-60% of MI-associated deaths manifest as sudden cardiac deaths (SCD). The most effective therapy for SCD prevention is implantable cardioverter defibrillators (ICDs). However, ICDs contribute to adverse remodeling and disease progression and do not prevent arrhythmia. This work develops an injectable collagen-PEDOT:PSS (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate) hydrogel that protects infarcted hearts against ventricular tachycardia (VT) and can be combined with human induced pluripotent stem cell (hiPSC)-cardiomyocytes to promote partial cardiac remuscularization. PEDOT:PSS improves collagen gel formation, micromorphology, and conductivity. hiPSC-cardiomyocytes in collagen-PEDOT:PSS hydrogels exhibit near-adult sarcomeric length, improved contractility, enhanced calcium handling, and conduction velocity. RNA-sequencing data indicate enhanced maturation and improved cell-matrix interactions. Injecting collagen-PEDOT:PSS hydrogels in infarcted mouse hearts decreases VT to the levels of healthy hearts. Collectively, collagen-PEDOT:PSS hydrogels offer a versatile platform for treating cardiac injuries.
Collapse
Affiliation(s)
- Kaveh Roshanbinfar
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Miriam Schiffer
- Institute of Physiology I, Life and Brain Center, Medical Faculty, University of Bonn, Germany
| | - Esther Carls
- Department of Cardiac Surgery, UKB, University of Bonn, Germany
| | - Miriam Angeloni
- Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Maria Koleśnik-Gray
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstr. 7, 91058, Erlangen, Germany
| | - Stefan Schruefer
- Institute of Polymer Materials, Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Martensstr. 7, 91058, Erlangen, Germany
| | - Dirk W Schubert
- Institute of Polymer Materials, Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Martensstr. 7, 91058, Erlangen, Germany
| | - Fulvia Ferrazzi
- Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Muscle Research Center Erlangen (MURCE), 91054, Erlangen, Germany
| | - Vojislav Krstić
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstr. 7, 91058, Erlangen, Germany
| | - Bernd K Fleischmann
- Institute of Physiology I, Life and Brain Center, Medical Faculty, University of Bonn, Germany
| | - Wilhelm Roell
- Department of Cardiac Surgery, UKB, University of Bonn, Germany
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| |
Collapse
|
22
|
Liu T, Hao Y, Zhang Z, Zhou H, Peng S, Zhang D, Li K, Chen Y, Chen M. Advanced Cardiac Patches for the Treatment of Myocardial Infarction. Circulation 2024; 149:2002-2020. [PMID: 38885303 PMCID: PMC11191561 DOI: 10.1161/circulationaha.123.067097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Myocardial infarction is a cardiovascular disease characterized by a high incidence rate and mortality. It leads to various cardiac pathophysiological changes, including ischemia/reperfusion injury, inflammation, fibrosis, and ventricular remodeling, which ultimately result in heart failure and pose a significant threat to global health. Although clinical reperfusion therapies and conventional pharmacological interventions improve emergency survival rates and short-term prognoses, they are still limited in providing long-lasting improvements in cardiac function or reversing pathological progression. Recently, cardiac patches have gained considerable attention as a promising therapy for myocardial infarction. These patches consist of scaffolds or loaded therapeutic agents that provide mechanical reinforcement, synchronous electrical conduction, and localized delivery within the infarct zone to promote cardiac restoration. This review elucidates the pathophysiological progression from myocardial infarction to heart failure, highlighting therapeutic targets and various cardiac patches. The review considers the primary scaffold materials, including synthetic, natural, and conductive materials, and the prevalent fabrication techniques and optimal properties of the patch, as well as advanced delivery strategies. Last, the current limitations and prospects of cardiac patch research are considered, with the goal of shedding light on innovative products poised for clinical application.
Collapse
Affiliation(s)
- Tailuo Liu
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases (T.L., Y.H., H.Z., S.P., D.Z., Y.C., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
- Department of Cardiology (T.L., S.P., D.Z., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, PR China (T.L., K.L., Y.C.)
| | - Ying Hao
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases (T.L., Y.H., H.Z., S.P., D.Z., Y.C., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
| | - Zixuan Zhang
- West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, PR China (Z.Z.)
| | - Hao Zhou
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases (T.L., Y.H., H.Z., S.P., D.Z., Y.C., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
| | - Shiqin Peng
- Department of Cardiology (T.L., S.P., D.Z., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
| | - Dingyi Zhang
- Department of Cardiology (T.L., S.P., D.Z., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
| | - Ka Li
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, PR China (T.L., K.L., Y.C.)
| | - Yuwen Chen
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, PR China (T.L., K.L., Y.C.)
| | - Mao Chen
- Department of Cardiology (T.L., S.P., D.Z., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
| |
Collapse
|
23
|
Sun Y, Zhang X, Nie X, Yang R, Zhao X, Cui C, Liu W. Dough-Kneading-Inspired Design of an Adhesive Cardiac Patch to Attenuate Cardiac Fibrosis and Improve Cardiac Function via Regulating Glycometabolism. Adv Healthc Mater 2024; 13:e2303685. [PMID: 38386972 DOI: 10.1002/adhm.202303685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Recently, hydrogel adhesive patches have been explored for treating myocardial infarction. However, achieving secure adhesion onto the wet beating heart and local regulation of pathological microenvironment remains challenging. Herein, a dough-kneading-inspired design of hydrogel adhesive cardiac patch is reported, aiming to improve the strength of prevalent powder-formed patch and retain wet adhesion. In mimicking the polysaccharide and protein components of natural flour, methacrylated polyglutamic acid (PGAMA) is electrostatically interacted with hydroxypropyl chitosan (HPCS) to form PGAMA/HPCS coacervate hydrogel. The PGAMA/HPCS hydrogel is freeze-dried and ground into powders, which are further rehydrated with two aqueous solutions of functional drug, 3-acrylamido phenylboronic acid (APBA)/rutin (Rt) complexes for protecting the myocardium from advanced glycation end product (AGEs) injury by reactive oxygen species (ROS) -responsive Rt release, and hypoxanthine-loaded methacrylated hyaluronic acid (HAMA) nanogels for enhancing macrophage targeting ability to regulate glycometabolism for combating inflammation. The rehydrated powders bearing APBA/Rt complexes and HAMA-hypoxanthine nanogels are repeatedly kneaded into a dough-like gel, which is further subjected to thermal-initiated crosslinking to form a stabilized and sticky patch. This biofunctional patch is applied onto the rats' infarcted myocardium, and the outcomes at 28 days post-surgery indicate efficient restoration of cardiac functions and attenuation of cardiac fibrosis.
Collapse
Affiliation(s)
- Yage Sun
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Xiaoping Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Xiongfeng Nie
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Rong Yang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Xinrui Zhao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Chunyan Cui
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
24
|
Wang D, Zhang H, Chen Y, He J, Zhao L, Huang Y, Zhao F, Jiang Y, Fu S, Hong Z. Improving therapeutic effects of exosomes encapsulated gelatin methacryloyl/hyaluronic acid blended and oxygen releasing injectable hydrogel by cardiomyocytes induction and vascularization in rat myocardial infarction model. Int J Biol Macromol 2024; 271:132412. [PMID: 38754674 DOI: 10.1016/j.ijbiomac.2024.132412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/18/2024]
Abstract
Acute myocardial infarction (AMI) causes acute cardiac cell death when oxygen supply is disrupted. Improving oxygen flow to the damaged area could potentially achieve the to prevent cell death and provide cardiac regeneration. Here, we describe the production of oxygen-producing injectable bio-macromolecular hydrogels from natural polymeric components including gelatin methacryloyl (GelMA), hyaluronic acid (HA) loaded with catalase (CAT). Under hypoxic conditions, the O2-generating hydrogels (O2 (+) hydrogel) encapsulated with Mesenchymal stem cells (MSCs)-derived-exosomes (Exo- O2 (+) hydrogel) released substantial amounts of oxygen for >5 days. We demonstrated that after 7 days of in vitro cell culture, exhibits identical production of paracrine factors compared to those of culture of rat cardiac fibroblasts (RCFs), rat neonatal cardiomyocytes (RNCs) and Human Umbilical Vein Endothelial Cells (HUVECs), demonstrating its ability to replicate the natural architecture and function of capillaries. Four weeks after treatment with Exo-O2 (+) hydrogel, cardiomyocytes in the peri-infarct area of an in vivo rat model of AMI displayed substantial mitotic activity. In contrast with infarcted hearts treated with O2 (-) hydrogel, Exo- O2 (+) hydrogel infarcted hearts showed a considerable increase in myocardial capillary density. The outstanding therapeutic advantages and quick, easy fabrication of Exo- O2 (+) hydrogel has provided promise favourably for potential cardiac treatment applications.
Collapse
Affiliation(s)
- Dan Wang
- Department of Cardiology, The Sixth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, PR China
| | - Hong Zhang
- Department of Cardiology, The Sixth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, PR China
| | - Yu Chen
- Department of Cardiology, The Sixth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, PR China
| | - Jiangchun He
- Department of Cardiology, The Sixth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, PR China
| | - Li Zhao
- Department of Cardiology, The Sixth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, PR China
| | - Yixiong Huang
- Department of Cardiology, The Sixth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, PR China
| | - Fengjiao Zhao
- Department of Cardiology, The Sixth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, PR China
| | - Yuting Jiang
- Department of Cardiology, The Sixth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, PR China
| | - Shihu Fu
- Department of Cardiology, The Sixth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, PR China.
| | - Zhibo Hong
- Department of Cardiology, The Sixth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, PR China.
| |
Collapse
|
25
|
Zhao LY, Wang XY, Wen ML, Pan NN, Yin XQ, An MW, Wang L, Liu Y, Song JB. Advances in injectable hydrogels for radiation-induced heart disease. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1031-1063. [PMID: 38340315 DOI: 10.1080/09205063.2024.2314364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/11/2024] [Indexed: 02/12/2024]
Abstract
Radiological heart damage (RIHD) is damage caused by unavoidable irradiation of the heart during chest radiotherapy, with a long latency period and a progressively increasing proportion of delayed cardiac damage due to conventional doses of chest radiotherapy. There is a risk of inducing diseases such as acute/chronic pericarditis, myocarditis, delayed myocardial fibrosis and damage to the cardiac conduction system in humans, which can lead to myocardial infarction or even death in severe cases. This paper details the pathogenesis of RIHD and gives potential targets for treatment at the molecular and cellular level, avoiding the drawbacks of high invasiveness and immune rejection due to drug therapy, medical device implantation and heart transplantation. Injectable hydrogel therapy has emerged as a minimally invasive tissue engineering therapy to provide necessary mechanical support to the infarcted myocardium and to act as a carrier for various bioactive factors and cells to improve the cellular microenvironment in the infarcted area and induce myocardial tissue regeneration. Therefore, this paper combines bioactive factors and cellular therapeutic mechanisms with injectable hydrogels, presents recent advances in the treatment of cardiac injury after RIHD with different injectable gels, and summarizes the therapeutic potential of various types of injectable hydrogels as a potential solution.
Collapse
Affiliation(s)
- Lu-Yao Zhao
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Xin-Yue Wang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Mei-Ling Wen
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Ning-Ning Pan
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Xing-Qi Yin
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Mei-Wen An
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Li Wang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Yang Liu
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jian-Bo Song
- Shanghai NewMed Medical Corporation, Shanghai, China
| |
Collapse
|
26
|
Qiu Y, Yu C, Yue Z, Ren Y, Wang W, Yu Q, Guo B, Liang L, Yao F, Zhang H, Sun H, Li J. Chronological-Programmed Black Phosphorus Hydrogel for Responsive Modulation of the Pathological Microenvironment in Myocardial Infarction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17323-17338. [PMID: 38556990 DOI: 10.1021/acsami.4c01956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Electroactive hydrogels have garnered extensive interest as a promising approach to myocardial tissue engineering. However, the challenges of spatiotemporal-specific modulation of individual pathological processes and achieving nontoxic bioresorption still remain. Herein, inspired by the entire postinfarct pathological processes, an injectable conductive bioresorbable black phosphorus nanosheets (BPNSs)-loaded hydrogel (BHGD) was developed via reactive oxide species (ROS)-sensitive disulfide-bridge and photomediated cross-linking reaction. Significantly, the chronologically programmed BHGD hydrogel can achieve graded modulation during the inflammatory, proliferative, and maturation phases of myocardial infarction (MI). More details, during early infarction, the BHGD hydrogel can effectively reduce ROS levels in the MI area, inhibit cellular oxidative stress damage, and promote macrophage M2 polarization, creating a favorable environment for damaged myocardium repair. Meanwhile, the ROS-responsive structure can protect BPNSs from degradation and maintain good conductivity under MI microenvironments. Therefore, the BHGD hydrogel possesses tissue-matched modulus and conductivity in the MI area, facilitating cardiomyocyte maturation and electrical signal exchange, compensating for impaired electrical signaling, and promoting vascularization in infarcted areas in the maturation phase. More importantly, all components of the hydrogel degrade into nontoxic substances without adverse effects on vital organs. Overall, the presented BPNS-loaded hydrogel offers an expandable and safe option for clinical treatment of MI.
Collapse
Affiliation(s)
- Yuwei Qiu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Chaojie Yu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Zhiwei Yue
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Yuchen Ren
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Weitong Wang
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Qingyu Yu
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Bingyan Guo
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Lei Liang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Fanglian Yao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Hong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Hong Sun
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Junjie Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
| |
Collapse
|
27
|
Li M, Jin M, Yang H. Remodelers of the vascular microenvironment: The effect of biopolymeric hydrogels on vascular diseases. Int J Biol Macromol 2024; 264:130764. [PMID: 38462100 DOI: 10.1016/j.ijbiomac.2024.130764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/31/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Vascular disease is the leading health problem worldwide. Vascular microenvironment encompasses diverse cell types, including those within the vascular wall, blood cells, stromal cells, and immune cells. Initiation of the inflammatory state of the vascular microenvironment and changes in its mechanics can profoundly affect vascular homeostasis. Biomedical materials play a crucial role in modern medicine, hydrogels, characterized by their high-water content, have been increasingly utilized as a three-dimensional interaction network. In recent times, the remarkable progress in utilizing hydrogels and understanding vascular microenvironment have enabled the treatment of vascular diseases. In this review, we give an emphasis on the utilization of hydrogels and their advantages in the various vascular diseases including atherosclerosis, aneurysm, vascular ulcers of the lower limbs and myocardial infarction. Further, we highlight the importance and advantages of hydrogels as artificial microenvironments.
Collapse
Affiliation(s)
- Minhao Li
- School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang 110122, Liaoning Province, China
| | - Meiqi Jin
- School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang 110122, Liaoning Province, China
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang 110122, Liaoning Province, China.
| |
Collapse
|
28
|
Xie C, Xu J, Wang X, Jiang S, Zheng Y, Liu Z, Jia Z, Jia Z, Lu X. Smart Hydrogels for Tissue Regeneration. Macromol Biosci 2024; 24:e2300339. [PMID: 37848181 DOI: 10.1002/mabi.202300339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/06/2023] [Indexed: 10/19/2023]
Abstract
The rapid growth in the portion of the aging population has led to a consequent increase in demand for biomedical hydrogels, together with an assortment of challenges that need to be overcome in this field. Smart hydrogels can autonomously sense and respond to the physiological/pathological changes of the tissue microenvironment and continuously adapt the response according to the dynamic spatiotemporal shifts in conditions. This along with other favorable properties, make smart hydrogels excellent materials for employing toward improving the precision of treatment for age-related diseases. The key factor during the smart hydrogel design is on accurately identifying the characteristics of natural tissues and faithfully replicating the composition, structure, and biological functions of these tissues at the molecular level. Such hydrogels can accurately sense distinct physiological and external factors such as temperature and biologically active molecules, so they may in turn actively and promptly adjust their response, by regulating their own biological effects, thereby promoting damaged tissue repair. This review summarizes the design strategies employed in the creation of smart hydrogels, their response mechanisms, as well as their applications in field of tissue engineering; and concludes by briefly discussing the relevant challenges and future prospects.
Collapse
Affiliation(s)
- Chaoming Xie
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Jie Xu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Xinyi Wang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Shengxi Jiang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yujia Zheng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Zexin Liu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Zhuo Jia
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Zhanrong Jia
- The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523000, China
| | - Xiong Lu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| |
Collapse
|
29
|
Shelke S, Veerubhotla K, Lee Y, Lee CH. Telehealth of cardiac devices for CVD treatment. Biotechnol Bioeng 2024; 121:823-834. [PMID: 38151894 DOI: 10.1002/bit.28637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/29/2023]
Abstract
This review covers currently available cardiac implantable electronic devices (CIEDs) as well as updated progress in real-time monitoring techniques for CIEDs. A variety of implantable and wearable devices that can diagnose and monitor patients with cardiovascular diseases are summarized, and various working mechanisms and principles of monitoring techniques for Telehealth and mHealth are discussed. In addition, future research directions are presented based on the rapidly evolving research landscape including Artificial Intelligence (AI).
Collapse
Affiliation(s)
- Sushil Shelke
- Division of Pharmacology and Pharmaceutics Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Krishna Veerubhotla
- Division of Pharmacology and Pharmaceutics Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Yugyung Lee
- Division of Computer Science, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Chi H Lee
- Division of Pharmacology and Pharmaceutics Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
30
|
Sun Z, Hu H, Zhang X, Luan X, Xi Y, Wei G, Zhang X. Recent advances in peptide-based bioactive hydrogels for nerve repair and regeneration: from material design to fabrication, functional tailoring and applications. J Mater Chem B 2024; 12:2253-2273. [PMID: 38375592 DOI: 10.1039/d4tb00019f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The injury of both central and peripheral nervous systems can result in neurological disorders and severe nervous diseases, which has been one of the challenges in the medical field. The use of peptide-based hydrogels for nerve repair and regeneration (NRR) provides a promising way for treating these problems, but the effects of the functions of peptide hydrogels on the NRR efficiency have been not understood clearly. In this review, we present recent advances in the material design, matrix fabrication, functional tailoring, and NRR applications of three types of peptide-based hydrogels, including pure peptide hydrogels, other component-functionalized peptide hydrogels, and peptide-modified polymer hydrogels. The case studies on the utilization of various peptide-based hydrogels for NRR are introduced and analyzed, in which the effects and mechanisms of the functions of hydrogels on NRR are illustrated specifically. In addition, the fabrication of medical NRR scaffolds and devices for pre-clinical application is demonstrated. Finally, we provide potential directions on the development of this promising topic. This comprehensive review could be valuable for readers to know the design and synthesis strategies of bioactive peptide hydrogels, as well as their functional tailoring, in order to promote their practical applications in tissue engineering, biomedical engineering, and materials science.
Collapse
Affiliation(s)
- Zhengang Sun
- Department of Spinal Surgery, Qingdao Huangdao Central Hospital, Qingdao University Medical Group, Qingdao 266555, P. R. China
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, P. R. China.
- The Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730030, P. R. China.
| | - Huiqiang Hu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, P. R. China.
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao 266071, P. R. China.
| | - Xingchao Zhang
- Department of Spinal Surgery, Qingdao Huangdao Central Hospital, Qingdao University Medical Group, Qingdao 266555, P. R. China
| | - Xin Luan
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, P. R. China.
| | - Yongming Xi
- Department of Spinal Surgery, Affiliated Hospital of Qingdao University, Qingdao 266071, P. R. China.
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, P. R. China.
| | - Xuanfen Zhang
- The Department of Plastic Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730030, P. R. China.
| |
Collapse
|
31
|
Xu Y, Sun K, Huang L, Dai Y, Zhang X, Xia F. Magneto-Induced Janus Adhesive-Tough Hydrogels for Wearable Human Motion Sensing and Enhanced Low-Grade Heat Harvesting. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10556-10564. [PMID: 38359102 DOI: 10.1021/acsami.3c19373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Janus hydrogels with different properties on the two surfaces have considerable potential in the field of material engineering applications. Various Janus hydrogels have been developed, but there are still some problems, such as stress mismatch caused by the double-layer structure and Janus failure caused by material diffusion in the gradient structure. Here, we report a Janus adhesive-tough hydrogel with polydopamine-decorated Fe3O4 nanoparticles (Fe3O4@PDA) at one side induced by magnetic field to avoid uncontrollable material diffusion in the cross-linking polymerization of acrylamide with alginate-calcium. The magneto-induced Janus (MIJ) hydrogel has an adhesive surface and a tough bulk without an obvious interface to avoid stress mismatch. Due to the intrinsic dissipative matrix and the abundant catechol groups on the adhesive surface, it shows strong adhesion onto various substrates. The MIJ hydrogel has high sensitivity (GF = 0.842) in detecting tiny human motion. Owing to the synergy of Fe3O4@PDA-enhanced interfacial adhesion and heat transfer, it is possible to quickly generate effective temperature differences when adhering to human skin. The MIJ hydrogel achieves a Seebeck coefficient of 13.01 mV·K-1 and an output power of 462.02 mW·m-2 at a 20 K temperature difference. This work proposes a novel strategy to construct Janus hydrogels for flexible wearable devices in human motion sensing and low-grade heat harvesting.
Collapse
Affiliation(s)
- Yindong Xu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Keyong Sun
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Lingyi Huang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yu Dai
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaojin Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | | |
Collapse
|
32
|
Sacchi M, Sauter-Starace F, Mailley P, Texier I. Resorbable conductive materials for optimally interfacing medical devices with the living. Front Bioeng Biotechnol 2024; 12:1294238. [PMID: 38449676 PMCID: PMC10916519 DOI: 10.3389/fbioe.2024.1294238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/02/2024] [Indexed: 03/08/2024] Open
Abstract
Implantable and wearable bioelectronic systems are arising growing interest in the medical field. Linking the microelectronic (electronic conductivity) and biological (ionic conductivity) worlds, the biocompatible conductive materials at the electrode/tissue interface are key components in these systems. We herein focus more particularly on resorbable bioelectronic systems, which can safely degrade in the biological environment once they have completed their purpose, namely, stimulating or sensing biological activity in the tissues. Resorbable conductive materials are also explored in the fields of tissue engineering and 3D cell culture. After a short description of polymer-based substrates and scaffolds, and resorbable electrical conductors, we review how they can be combined to design resorbable conductive materials. Although these materials are still emerging, various medical and biomedical applications are already taking shape that can profoundly modify post-operative and wound healing follow-up. Future challenges and perspectives in the field are proposed.
Collapse
Affiliation(s)
- Marta Sacchi
- Université Grenoble Alpes, CEA, LETI-DTIS (Département des Technologies pour l’Innovation en Santé), Grenoble, France
- Université Paris-Saclay, CEA, JACOB-SEPIA, Fontenay-aux-Roses, France
| | - Fabien Sauter-Starace
- Université Grenoble Alpes, CEA, LETI-DTIS (Département des Technologies pour l’Innovation en Santé), Grenoble, France
| | - Pascal Mailley
- Université Grenoble Alpes, CEA, LETI-DTIS (Département des Technologies pour l’Innovation en Santé), Grenoble, France
| | - Isabelle Texier
- Université Grenoble Alpes, CEA, LETI-DTIS (Département des Technologies pour l’Innovation en Santé), Grenoble, France
| |
Collapse
|
33
|
Liang J, Lv R, Li M, Chai J, Wang S, Yan W, Zheng Z, Li P. Hydrogels for the Treatment of Myocardial Infarction: Design and Therapeutic Strategies. Macromol Biosci 2024; 24:e2300302. [PMID: 37815522 DOI: 10.1002/mabi.202300302] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/02/2023] [Indexed: 10/11/2023]
Abstract
Cardiovascular diseases (CVDs) have become the leading global burden of diseases in recent years and are the primary cause of human mortality and loss of healthy life expectancy. Myocardial infarction (MI) is the top cause of CVDs-related deaths, and its incidence is increasing worldwide every year. Recently, hydrogels have garnered great interest from researchers as a promising therapeutic option for cardiac tissue repair after MI. This is due to their excellent properties, including biocompatibility, mechanical properties, injectable properties, anti-inflammatory properties, antioxidant properties, angiogenic properties, and conductive properties. This review discusses the advantages of hydrogels as a novel treatment for cardiac tissue repair after MI. The design strategies of various hydrogels in MI treatment are then summarized, and the latest research progress in the field is classified. Finally, the future perspectives of this booming field are also discussed at the end of this review.
Collapse
Affiliation(s)
- Jiaheng Liang
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an, 710072, China
- Laboratory for Advanced Interfacial Materials and Devices, Department of Applied Biology and Chemical Technology (ABCT), Research Institute for Intelligent Wearable Systems (RI-IWEAR), The Hong Kong Polytechnic University, Hong Kong, SAR, 999077, China
| | - Ronghao Lv
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| | - Maorui Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| | - Jin Chai
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| | - Shuo Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| | - Wenjun Yan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710072, China
| | - Zijian Zheng
- Laboratory for Advanced Interfacial Materials and Devices, Department of Applied Biology and Chemical Technology (ABCT), Research Institute for Intelligent Wearable Systems (RI-IWEAR), The Hong Kong Polytechnic University, Hong Kong, SAR, 999077, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| |
Collapse
|
34
|
Li Q, Yu X, Zheng X, Yang J, Hui J, Fan D. Rapid dissolution microneedle based on polyvinyl alcohol/chitosan for local oral anesthesia. Int J Biol Macromol 2024; 257:128629. [PMID: 38070795 DOI: 10.1016/j.ijbiomac.2023.128629] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/25/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
At present, the main clinical methods of oral local anesthesia are direct injection of anesthetic and surface ointment. However, the pain and fear caused by the injection, the discomfort of topical anesthetic creams, and the scour and moist oral environment during the procedure pose great challenges to oral anesthesia. Herein, we designed a Lido-PVP/PVA DMNP microneedle (MN) for oral local anesthesia. The microneedle tip was consisted of Polyvinylpyrrolidone/Polyvinyl alcohol (PVP/PVA), which can quickly dissolve and release the lidocaine hydrochloride (Lido) drug within 5 min to achieve rapid anesthesia. The backing was composed of polyvinyl alcohol/chitosan (PVA/CS), and its excellent adhesion can overcome saliva erosion and anchor firmly to the oral mucosa, significantly improving the utilization rate of drugs, as well as the patient compliance. MNs have good mechanical properties for tissue insertion while possessing high drug loading (3 mg/MNs). Von Frey tests proved that MNs showed a faster and more effective local anesthetic effect (anesthesia takes effect at 5 min) compared to cream (anesthesia takes effect at 30 min). In addition, the excellent biocompatibility and no skin irritation endowed Lido-PVP/PVA DMNP MNs a great potential for oral local anesthesia in the oral cavity.
Collapse
Affiliation(s)
- Quanpeng Li
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, Shaanxi, China
| | - Xueqing Yu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, Shaanxi, China
| | - Xiaoyan Zheng
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, Shaanxi, China
| | - Jing Yang
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, Shaanxi, China
| | - Junfeng Hui
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, Shaanxi, China.
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, Shaanxi, China.
| |
Collapse
|
35
|
Lee M, Kim YS, Park J, Choe G, Lee S, Kang BG, Jun JH, Shin Y, Kim M, Ahn Y, Lee JY. A paintable and adhesive hydrogel cardiac patch with sustained release of ANGPTL4 for infarcted heart repair. Bioact Mater 2024; 31:395-407. [PMID: 37680586 PMCID: PMC10481188 DOI: 10.1016/j.bioactmat.2023.08.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/05/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
The infarcted heart undergoes irreversible pathological remodeling after reperfusion involving left ventricle dilation and excessive inflammatory reactions in the infarcted heart, frequently leading to fatal functional damage. Extensive attempts have been made to attenuate pathological remodeling in infarcted hearts using cardiac patches and anti-inflammatory drug delivery. In this study, we developed a paintable and adhesive hydrogel patch using dextran-aldehyde (dex-ald) and gelatin, incorporating the anti-inflammatory protein, ANGPTL4, into the hydrogel for sustained release directly to the infarcted heart to alleviate inflammation. We optimized the material composition, including polymer concentration and molecular weight, to achieve a paintable, adhesive hydrogel using 10% gelatin and 5% dex-ald, which displayed in-situ gel formation within 135 s, cardiac tissue-like modulus (40.5 kPa), suitable tissue adhesiveness (4.3 kPa), and excellent mechanical stability. ANGPTL4 was continuously released from the gelatin/dex-ald hydrogel without substantial burst release. The gelatin/dex-ald hydrogel could be conveniently painted onto the beating heart and degraded in vivo. Moreover, in vivo studies using animal models of acute myocardial infarction revealed that our hydrogel cardiac patch containing ANGPTL4 significantly improved heart tissue repair, evaluated by echocardiography and histological evaluation. The heart tissues treated with ANGPTL4-loaded hydrogel patches exhibited increased vascularization, reduced inflammatory macrophages, and structural maturation of cardiac cells. Our novel hydrogel system, which allows for facile paintability, appropriate tissue adhesiveness, and sustained release of anti-inflammatory drugs, will serve as an effective platform for the repair of various tissues, including heart, muscle, and cartilage.
Collapse
Affiliation(s)
- Mingyu Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Yong Sook Kim
- Cell Regeneration Research Center, Chonnam National University, Gwangju, Republic of Korea
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Junggeon Park
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Goeun Choe
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Sanghun Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Bo Gyeong Kang
- Cell Regeneration Research Center, Chonnam National University, Gwangju, Republic of Korea
| | - Ju Hee Jun
- Cell Regeneration Research Center, Chonnam National University, Gwangju, Republic of Korea
| | - Yoonmin Shin
- Department of Cardiology, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Minchul Kim
- Department of Cardiology, Chonnam National University Hospital, Gwangju, Republic of Korea
- Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Youngkeun Ahn
- Cell Regeneration Research Center, Chonnam National University, Gwangju, Republic of Korea
- Department of Cardiology, Chonnam National University Hospital, Gwangju, Republic of Korea
- Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Jae Young Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| |
Collapse
|
36
|
Lisboa ES, Serafim C, Santana W, Dos Santos VLS, de Albuquerque-Junior RLC, Chaud MV, Cardoso JC, Jain S, Severino P, Souto EB. Nanomaterials-combined methacrylated gelatin hydrogels (GelMA) for cardiac tissue constructs. J Control Release 2024; 365:617-639. [PMID: 38043727 DOI: 10.1016/j.jconrel.2023.11.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Among non-communicable diseases, cardiovascular diseases are the most prevalent, accounting for approximately 17 million deaths per year. Despite conventional treatment, cardiac tissue engineering emerges as a potential alternative for the advancement and treatment of these patients, using biomaterials to replace or repair cardiac tissues. Among these materials, gelatin in its methacrylated form (GelMA) is a biodegradable and biocompatible polymer with adjustable biophysical properties. Furthermore, gelatin has the ability to replace and perform collagen-like functions for cell development in vitro. The interest in using GelMA hydrogels combined with nanomaterials is increasingly growing to promote the responsiveness to external stimuli and improve certain properties of these hydrogels by exploring the incorporation of nanomaterials into these hydrogels to serve as electrical signaling conductive elements. This review highlights the applications of electrically conductive nanomaterials associated with GelMA hydrogels for the development of structures for cardiac tissue engineering, by focusing on studies that report the combination of GelMA with nanomaterials, such as gold and carbon derivatives (carbon nanotubes and graphene), in addition to the possibility of applying these materials in 3D tissue engineering, developing new possibilities for cardiac studies.
Collapse
Affiliation(s)
- Erika S Lisboa
- University of Tiradentes (Unit) and Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil
| | - Carine Serafim
- University of Tiradentes (Unit) and Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil
| | - Wanessa Santana
- University of Tiradentes (Unit) and Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil
| | - Victoria L S Dos Santos
- University of Tiradentes (Unit) and Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil
| | - Ricardo L C de Albuquerque-Junior
- Post-Graduate Program in Dentistry, Department of Dentistry, Federal University of Santa Catarina, Florianópolis 88040-370, Brazil; Department of Pathology, Health Sciences Center, Federal University of Santa Catarina, Florianópolis 88040-370, Brazil
| | - Marco V Chaud
- Laboratory of Biomaterials and Nanotechnology of UNISO (LaBNUS), University of Sorocaba, Sorocaba, São Paulo, Brazil
| | - Juliana C Cardoso
- University of Tiradentes (Unit) and Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil
| | - Sona Jain
- University of Tiradentes (Unit) and Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil
| | - Patrícia Severino
- University of Tiradentes (Unit) and Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil.
| | - Eliana B Souto
- Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, MEDTECH, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
37
|
Elakkiya K, Bargavi P, Balakumar S. Unveiling pro-angiogenesis and drug delivery using dual-bio polymer with bio-ceramic based nanocomposite hydrogels. CHEMOSPHERE 2023; 341:140131. [PMID: 37690566 DOI: 10.1016/j.chemosphere.2023.140131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/28/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
In regenerative medicine, blood vessel development is of utmost importance as it enables the restoration of blood flow to tissues, and facilitate rapid vascularization in clinical tissue-engineered grafts. Herein, we fabricate the nanocomposite hydrogels from BG (clinophosinaite), alginate, Polyethylene glycol (PEG) and Dexamethasone (DEX) for the dual applications of drug delivery and angiogenesis assay. The hydrogels were fabricated through cross-linking approach and termed as alginate/PEG (A), alginate/PEG/clinophosinaite (AC), and alginate/PEG/clinophosinaite/DEX (ACD) that further subjected to structural characterization, using powder X-ray diffraction, and fourier-transform infrared spectroscopy. Porous nanostructures and sheets were imaged using field emission scanning electron microscopy (FESEM), which aid in nutrient and oxygen transport to support angiogenesis. The nanocomposite hydrogels evidently demonstrated good hemocompatibility and fully hydrophilic (30.20°). By means of liquid displacement technique, the nanocomposite hydrogel achieves 47% of porosity with the compressive strength about 0.04 MPa. In alginate/PEG/clinophosinaite and alginate/PEG/clinophosinaite/DEX systems, water absorption capacity reached 85% in 6 h and maintained 90% retention after 12 h. Further, leachable tests revealed that the hydrogel had not deformed even after 24 h. In vitro drug release studies evidently divulge sustainable delivery of DEX from alginate/PEG/clinophosinaite/DEX hydrogel with superior characteristics for drug release. The angiogenesis assay also evidently revealed that the AC and ACD hydrogels, demonstrated higher angiogenic properties with, promoted blood vessel development.
Collapse
Affiliation(s)
- K Elakkiya
- National Centre for Nanoscience and Nanotechnology, University of Madras, Chennai, 600025, India
| | - P Bargavi
- Department of Oral Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, India
| | - S Balakumar
- National Centre for Nanoscience and Nanotechnology, University of Madras, Chennai, 600025, India.
| |
Collapse
|
38
|
Ping P, Guan S, Ning C, Yang T, Zhao Y, Zhang P, Gao Z, Fu S. Fabrication of blended nanofibrous cardiac patch transplanted with TGF-β3 and human umbilical cord MSCs-derived exosomes for potential cardiac regeneration after acute myocardial infarction. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 54:102708. [PMID: 37788793 DOI: 10.1016/j.nano.2023.102708] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/22/2023] [Accepted: 09/05/2023] [Indexed: 10/05/2023]
Abstract
Acute myocardial infarction (AMI) is a common cardiovascular condition that progressively results in heart failure. In the present study, we have designed to load transforming growth factor beta 3 (TGF-β3) and cardio potential exosomes into the blended polycaprolactone/type I collagen (PCL/COL-1) nanofibrous patch (Exo@TGF-β3@NFs) and examined its feasibility for cardiac repair. The bioactivity of the developed NFs towards the migration and proliferation of human umbilical vein endothelial cells was determined using in vitro cell compatibility assays. Additionally, Exo@TGF-β3/NFs showed up-regulation of genes involved in angiogenesis and mesenchymal differentiations in vitro. The in vivo experiments performed 4 weeks after transplantation showed that the Exo@TGF-β3@NFs had a higher LV ejection fraction and fraction shortening functions. Subsequently, it has been determined that Exo@TGF-β3@NFs significantly reduced AMI size and fibrosis and increased scar thickness. The developed NFs approach will become a useful therapeutic approach for the treatment of AMI.
Collapse
Affiliation(s)
- Ping Ping
- General Station for Drug and Instrument Supervision and Control, Joint Logistic Support Force of Chinese People's Liberation Army, Beijing, PR China
| | - Shasha Guan
- Department of Oncology, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, Hainan Province, PR China
| | - Chaoxue Ning
- Central Laboratory, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, Hainan Province, PR China
| | - Ting Yang
- Central Laboratory, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, Hainan Province, PR China
| | - Yali Zhao
- Central Laboratory, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, Hainan Province, PR China
| | - Pei Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, PR China.
| | - Zhitao Gao
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan Province, PR China.
| | - Shihui Fu
- Department of Cardiology, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, Hainan Province, PR China; Department of Geriatric Cardiology, Chinese People's Liberation Army General Hospital, Beijing, PR China.
| |
Collapse
|
39
|
Acharya R, Dutta SD, Patil TV, Ganguly K, Randhawa A, Lim KT. A Review on Electroactive Polymer-Metal Composites: Development and Applications for Tissue Regeneration. J Funct Biomater 2023; 14:523. [PMID: 37888188 PMCID: PMC10607043 DOI: 10.3390/jfb14100523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/28/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
Electroactive polymer-metal composites (EAPMCs) have gained significant attention in tissue engineering owing to their exceptional mechanical and electrical properties. EAPMCs develop by combining an electroactive polymer matrix and a conductive metal. The design considerations include choosing an appropriate metal that provides mechanical strength and electrical conductivity and selecting an electroactive polymer that displays biocompatibility and electrical responsiveness. Interface engineering and surface modification techniques are also crucial for enhancing the adhesion and biocompatibility of composites. The potential of EAPMC-based tissue engineering revolves around its ability to promote cellular responses, such as cell adhesion, proliferation, and differentiation, through electrical stimulation. The electrical properties of these composites can be used to mimic natural electrical signals within tissues and organs, thereby aiding tissue regeneration. Furthermore, the mechanical characteristics of the metallic components provide structural reinforcement and can be modified to align with the distinct demands of various tissues. EAPMCs have extraordinary potential as regenerative biomaterials owing to their ability to promote beneficial effects in numerous electrically responsive cells. This study emphasizes the characteristics and applications of EAPMCs in tissue engineering.
Collapse
Affiliation(s)
- Rumi Acharya
- Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Tejal V. Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
40
|
Yang L, Wang Y, Zhang W, Liu X. One-Pot Preparation of Skin-Inspired Multifunctional Hybrid Hydrogel with Robust Wound Healing Capacity. ACS Biomater Sci Eng 2023; 9:5855-5870. [PMID: 37748138 DOI: 10.1021/acsbiomaterials.3c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Bioinspired hydrogels have demonstrated multiple superiorities over traditional wound dressings for wound healing applications. However, the fabrication of bioinspired hydrogel-based wound dressings with desired functionalities always requires multiple successive steps, time-consuming processes, and/or sophisticated protocols, plaguing their clinical applications. Here, a facile one-pot strategy is developed to prepare a skin-inspired multifunctional hydrogel within 30 min by incorporating elastin (an essential functional component of the dermal extracellular matrix), tannic acid, and chitosan into the covalently cross-linked poly(acrylamide) network through noncovalent interactions. The resulting hydrogel exhibits a Young's modulus (ca. 36 kPa) comparable to that of human skin, a high elongation-at-break (ca. 1550%), a satisfactory tensile strength (ca. 61 kPa), and excellent elastic self-restorability, enabling the hydrogel to synchronously and conformally deform with human skin when used as wound dressings. Importantly, the hydrogel displays a self-adhesive property to skin tissues with an appropriate bonding strength (ca. 55 kPa measured on intact porcine skin), endowing the hydrogel with the ability to rapidly self-adhere to intact human skin, sealing the wound surface and also easily being removed without residue left or trauma caused to the skin. The hydrogel also possesses remarkable antibacterial activity, antioxidant capability, and hemocompatibility. All of these collective beneficial properties enable the hydrogel to significantly accelerate the wound healing process, outperforming the commercial wound dressings.
Collapse
Affiliation(s)
- Liangliang Yang
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Yue Wang
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, P.R. China
| | - Wei Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
- Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Xiaokong Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| |
Collapse
|
41
|
Yang Q, Miao Y, Luo J, Chen Y, Wang Y. Amyloid Fibril and Clay Nanosheet Dual-Nanoengineered DNA Dynamic Hydrogel for Vascularized Bone Regeneration. ACS NANO 2023; 17:17131-17147. [PMID: 37585498 DOI: 10.1021/acsnano.3c04816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Dynamic hydrogels have attracted enormous interest for bone tissue engineering as they demonstrate reversible mechanics to better mimic biophysical cues of natural extracellular matrix (ECM) compared to traditional static hydrogels. However, the facile development of therapeutic dynamic hydrogels that simultaneously recapitulate the filamentous architecture of the ECM of living tissues and induce both osteogenesis and angiogenesis to augment vascularized bone regeneration remains challenging. Herein, we report a dual nanoengineered DNA dynamic hydrogel developed through the supramolecular coassembly of amyloid fibrils and clay nanosheets with DNA strands. The nanoengineered ECM-like fibrillar hydrogel network is facilely formed without a complicated and tedious molecular synthesis. Amyloid fibrils together with clay nanosheets synergistically enhance the mechanical strength and stability of the dynamic hydrogel and, more remarkably, endow the matrix with an array of tunable features, including shear-thinning, injectability, self-healing, self-supporting, and 3D printable properties. The QK peptide is further chemically grafted onto amyloid fibrils, and its sustainable release from the hydrogel matrix stimulates the tube formation and migration with human umbilical vein endothelial cells. Meanwhile, the nanoengineered hydrogel matrix promotes osteogenic differentiation of bone marrow mesenchymal stem cells due to the sustainable release of Si4+ and Mg2+ derived from clay nanosheets. Furthermore, the manipulation of enhanced vascularized bone regeneration by the dynamic hydrogel is revealed in a rat cranial bone defect model. This dual nanoengineered strategy envisions great promise in developing therapeutic dynamic hydrogels for improved and customizable bone regeneration.
Collapse
Affiliation(s)
- Qian Yang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Yali Miao
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Jinshui Luo
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Yunhua Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Yingjun Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
42
|
Kim SD, Kim K, Shin M. Recent advances in 3D printable conductive hydrogel inks for neural engineering. NANO CONVERGENCE 2023; 10:41. [PMID: 37679589 PMCID: PMC10484881 DOI: 10.1186/s40580-023-00389-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023]
Abstract
Recently, the 3D printing of conductive hydrogels has undergone remarkable advances in the fabrication of complex and functional structures. In the field of neural engineering, an increasing number of reports have been published on tissue engineering and bioelectronic approaches over the last few years. The convergence of 3D printing methods and electrically conducting hydrogels may create new clinical and therapeutic possibilities for precision regenerative medicine and implants. In this review, we summarize (i) advancements in preparation strategies for conductive materials, (ii) various printing techniques enabling the fabrication of electroconductive hydrogels, (iii) the required physicochemical properties of the printed constructs, (iv) their applications in bioelectronics and tissue regeneration for neural engineering, and (v) unconventional approaches and outlooks for the 3D printing of conductive hydrogels. This review provides technical insights into 3D printable conductive hydrogels and encompasses recent developments, specifically over the last few years of research in the neural engineering field.
Collapse
Affiliation(s)
- Sung Dong Kim
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
| | - Kyoungryong Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Mikyung Shin
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea.
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
43
|
Zhao K, Li B, Sun Y, Jia B, Chen J, Cheng W, Zhao L, Li J, Wang F, Su J, Sun J, Han B, Liu Y, Zhang H, Liu K. Engineered Bicomponent Adhesives with Instantaneous and Superior Adhesion Performance for Wound Sealing and Healing Applications. ADVANCED FUNCTIONAL MATERIALS 2023; 33. [DOI: 10.1002/adfm.202303509] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Indexed: 10/05/2024]
Abstract
AbstractSurgical adhesives are playing an important role in wound repair and emergency hemostasis in clinical treatment. However, the development of strong bioglue with rapid in situ adhesion, durable adhesiveness, and flexibility in dynamic and moist physiological environments is still challenging. Herein, a new type of biosynthetic protein bioadhesives with superior adhesion performance is reported by developing a protein aldimine condensation strategy. Lysine‐rich recombinant proteins are designed and massively biosynthesized to instantaneously react with aldehyde cross‐linkers to realize in situ strong adhesion. The obtained bioadhesives show an ultra‐high adhesion strength of ≈101.6 kPa on porcine skin, outperforming extant clinical bioglues. In addition, they possess super biocompatibility, flexibility, biodegradability, and compliance with the tissues. Owing to the strong and instantaneous adhesion properties, the bioadhesives are qualified for dynamic wound closure, facilitating wound repair, and noncompressible hemorrhage. Importantly, they can be industrially encapsulated into custom‐made cartridge delivery tubes at low cost for clinical use. Therefore, biosynthetic bioadhesives have great potential for biological applications and are capable of scaling up to the industrial level for clinical transformation, which will be a successful paradigm for reforming existing clinical products.
Collapse
Affiliation(s)
- Kelu Zhao
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| | - Bo Li
- Engineering Research Center of Advanced Rare Earth Materials Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yao Sun
- Engineering Research Center of Advanced Rare Earth Materials Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
- Xiangfu Laboratory Jiaxing Zhejiang 314102 China
| | - Bo Jia
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
| | - Jing Chen
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
| | - Wenhao Cheng
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| | - Lai Zhao
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
| | - Juanjuan Su
- College of Materials Science and Opto‐Electronic Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Jing Sun
- School of Chemistry and Molecular Engineering Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development East China Normal University Shanghai 200062 China
| | - Bing Han
- Department of Orthodontics Cranial‐Facial Growth, and Development Center Peking University School and Hospital of Stomatology and National Center of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 China
| | - Yawei Liu
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
- Engineering Research Center of Advanced Rare Earth Materials Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
- Xiangfu Laboratory Jiaxing Zhejiang 314102 China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
- Engineering Research Center of Advanced Rare Earth Materials Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
- Xiangfu Laboratory Jiaxing Zhejiang 314102 China
| |
Collapse
|
44
|
El-Husseiny HM, Mady EA, El-Dakroury WA, Doghish AS, Tanaka R. Stimuli-responsive hydrogels: smart state of-the-art platforms for cardiac tissue engineering. Front Bioeng Biotechnol 2023; 11:1174075. [PMID: 37449088 PMCID: PMC10337592 DOI: 10.3389/fbioe.2023.1174075] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Biomedicine and tissue regeneration have made significant advancements recently, positively affecting the whole healthcare spectrum. This opened the way for them to develop their applications for revitalizing damaged tissues. Thus, their functionality will be restored. Cardiac tissue engineering (CTE) using curative procedures that combine biomolecules, biomimetic scaffolds, and cells plays a critical part in this path. Stimuli-responsive hydrogels (SRHs) are excellent three-dimensional (3D) biomaterials for tissue engineering (TE) and various biomedical applications. They can mimic the intrinsic tissues' physicochemical, mechanical, and biological characteristics in a variety of ways. They also provide for 3D setup, adequate aqueous conditions, and the mechanical consistency required for cell development. Furthermore, they function as competent delivery platforms for various biomolecules. Many natural and synthetic polymers were used to fabricate these intelligent platforms with innovative enhanced features and specialized capabilities that are appropriate for CTE applications. In the present review, different strategies employed for CTE were outlined. The light was shed on the limitations of the use of conventional hydrogels in CTE. Moreover, diverse types of SRHs, their characteristics, assembly and exploitation for CTE were discussed. To summarize, recent development in the construction of SRHs increases their potential to operate as intelligent, sophisticated systems in the reconstruction of degenerated cardiac tissues.
Collapse
Affiliation(s)
- Hussein M. El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Eman A. Mady
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Walaa A. El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Egypt
| | - Ahmed S. Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ryou Tanaka
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| |
Collapse
|
45
|
Lee M, Park J, Choe G, Lee S, Kang BG, Jun JH, Shin Y, Kim MC, Kim YS, Ahn Y, Lee JY. A Conductive and Adhesive Hydrogel Composed of MXene Nanoflakes as a Paintable Cardiac Patch for Infarcted Heart Repair. ACS NANO 2023. [PMID: 37339066 DOI: 10.1021/acsnano.3c00933] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Myocardial infarction (MI) is a major cause of death worldwide. After the occurrence of MI, the heart frequently undergoes serious pathological remodeling, leading to excessive dilation, electrical disconnection between cardiac cells, and fatal functional damage. Hence, extensive efforts have been made to suppress pathological remodeling and promote the repair of the infarcted heart. In this study, we developed a hydrogel cardiac patch that can provide mechanical support, electrical conduction, and tissue adhesiveness to aid in the recovery of an infarcted heart function. Specifically, we developed a conductive and adhesive hydrogel (CAH) by combining the two-dimensional titanium carbide (Ti3C2Tx) MXene with natural biocompatible polymers [i.e., gelatin and dextran aldehyde (dex-ald)]. The CAH was formed within 250 s of mixing the precursor solution and could be painted. The hydrogel containing 3.0 mg/mL MXene, 10% gelatin, and 5% dex-ald exhibited appropriate material characteristics for cardiac patch applications, including a uniform distribution of MXene, a high electrical conductivity (18.3 mS/cm), cardiac tissue-like elasticity (30.4 kPa), strong tissue adhesion (6.8 kPa), and resistance to various mechanical deformations. The CAH was cytocompatible and induced cardiomyocyte (CM) maturation in vitro, as indicated by the upregulation of connexin 43 expression and a faster beating rate. Furthermore, CAH could be painted onto the heart tissue and remained stably adhered to the beating epicardium. In vivo animal studies revealed that CAH cardiac patch treatment significantly improved cardiac function and alleviated the pathological remodeling of an infarcted heart. Thus, we believe that our MXene-based CAH can potentially serve as a promising platform for the effective repair of various electroactive tissues including the heart, muscle, and nerve tissues.
Collapse
Affiliation(s)
- Mingyu Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Junggeon Park
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Goeun Choe
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Sanghun Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Bo Gyeong Kang
- Cell Regeneration Research Center, Chonnam National University, Gwangju 61005, Republic of Korea
| | - Ju Hee Jun
- Cell Regeneration Research Center, Chonnam National University, Gwangju 61005, Republic of Korea
| | - Yoonmin Shin
- Department of Cardiology, Chonnam National University Hospital, Gwangju 61005, Republic of Korea
| | - Min Chul Kim
- Department of Cardiology, Chonnam National University Hospital, Gwangju 61005, Republic of Korea
- Chonnam National University Medical School, Gwangju 61005, Republic of Korea
| | - Yong Sook Kim
- Cell Regeneration Research Center, Chonnam National University, Gwangju 61005, Republic of Korea
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju 61005, Republic of Korea
| | - Youngkeun Ahn
- Cell Regeneration Research Center, Chonnam National University, Gwangju 61005, Republic of Korea
- Department of Cardiology, Chonnam National University Hospital, Gwangju 61005, Republic of Korea
- Chonnam National University Medical School, Gwangju 61005, Republic of Korea
| | - Jae Young Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
46
|
Zhu H, Zheng J, Oh XY, Chan CY, Low BQL, Tor JQ, Jiang W, Ye E, Loh XJ, Li Z. Nanoarchitecture-Integrated Hydrogel Systems toward Therapeutic Applications. ACS NANO 2023; 17:7953-7978. [PMID: 37071059 DOI: 10.1021/acsnano.2c12448] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Hydrogels, as one of the most feasible soft biomaterials, have gained considerable attention in therapeutic applications by virtue of their tunable properties including superior patient compliance, good biocompatibility and biodegradation, and high cargo-loading efficiency. However, hydrogel application is still limited by some challenges like inefficient encapsulation, easy leakage of loaded cargoes, and the lack of controllability. Recently, nanoarchitecture-integrated hydrogel systems were found to be therapeutics with optimized properties, extending their bioapplication. In this review, we briefly presented the category of hydrogels according to their synthetic materials and further discussed the advantages in bioapplication. Additionally, various applications of nanoarchitecture hybrid hydrogels in biomedical engineering are systematically summarized, including cancer therapy, wound healing, cardiac repair, bone regeneration, diabetes therapy, and obesity therapy. Last, the current challenges, limitations, and future perspectives in the future development of nanoarchitecture-integrated flexible hydrogels are addressed.
Collapse
Affiliation(s)
- Houjuan Zhu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Jie Zheng
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Xin Yi Oh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Chui Yu Chan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Beverly Qian Ling Low
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Jia Qian Tor
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Wenbin Jiang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Enyi Ye
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Republic of Singapore
| |
Collapse
|
47
|
Wang R, Liu L, He X, Xia Z, Zhao Z, Xi Z, Yu J, Wang J. Dynamic Crosslinked Injectable Mussel-Inspired Hydrogels with Adhesive, Self-Healing, and Biodegradation Properties. Polymers (Basel) 2023; 15:polym15081876. [PMID: 37112024 PMCID: PMC10143368 DOI: 10.3390/polym15081876] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The non-invasive tissue adhesives with strong tissue adhesion and good biocompatibility are ideal for replacing traditional wound treatment methods such as sutures and needles. The self-healing hydrogels based on dynamic reversible crosslinking can recover their structure and function after damage, which is suitable for the application scenario of tissue adhesives. Herein, inspired by mussel adhesive proteins, we propose a facile strategy to achieve an injectable hydrogel (DACS hydrogel) by grafting dopamine (DOPA) onto hyaluronic acid (HA) and mixing it with carboxymethyl chitosan (CMCS) solution. The gelation time and rheological and swelling properties of the hydrogel can be controlled conveniently by adjusting the substitution degree of the catechol group and the concentration of raw materials. More importantly, the hydrogel exhibited rapid and highly efficient self-healing ability and excellent biodegradation and biocompatibility in vitro. Meanwhile, the hydrogel exhibited ~4-fold enhanced wet tissue adhesion strength (21.41 kPa) over the commercial fibrin glue. This kind of HA-based mussel biomimetic self-healing hydrogel is expected to be used as a multifunctional tissue adhesive material.
Collapse
Affiliation(s)
- Ruixiao Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liqun Liu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiang He
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zongmei Xia
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhenjie Zhao
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhenhao Xi
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Juan Yu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jie Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
48
|
Rana D, Colombani T, Saleh B, Mohammed HS, Annabi N, Bencherif SA. Engineering injectable, biocompatible, and highly elastic bioadhesive cryogels. Mater Today Bio 2023; 19:100572. [PMID: 36880083 PMCID: PMC9984686 DOI: 10.1016/j.mtbio.2023.100572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023] Open
Abstract
The extracellular matrix (ECM), an integral component of all organs, is inherently tissue adhesive and plays a pivotal role in tissue regeneration and remodeling. However, man-made three-dimensional (3D) biomaterials that are designed to mimic ECMs do not intrinsically adhere to moisture-rich environments and often lack an open macroporous architecture required for facilitating cellularization and integration with the host tissue post-implantation. Furthermore, most of these constructs usually entail invasive surgeries and potentially a risk of infection. To address these challenges, we recently engineered biomimetic and macroporous cryogel scaffolds that are syringe injectable while exhibiting unique physical properties, including strong bioadhesive properties to tissues and organs. These biomimetic catechol-containing cryogels were prepared from naturally-derived polymers such as gelatin and hyaluronic acid and were functionalized with mussel-inspired dopamine (DOPA) to impart bioadhesive properties. We found that using glutathione as an antioxidant and incorporating DOPA into cryogels via a PEG spacer arm led to the highest tissue adhesion and improved physical properties overall, whereas DOPA-free cryogels were weakly tissue adhesive. As shown by qualitative and quantitative adhesion tests, DOPA-containing cryogels were able to adhere strongly to several animal tissues and organs such as the heart, small intestine, lung, kidney, and skin. Furthermore, these unoxidized (i.e., browning-free) and bioadhesive cryogels showed negligible cytotoxicity toward murine fibroblasts and prevented the ex vivo activation of primary bone marrow-derived dendritic cells. Finally, in vivo data suggested good tissue integration and a minimal host inflammatory response when subcutaneously injected in rats. Collectively, these minimally invasive, browning-free, and strongly bioadhesive mussel-inspired cryogels show great promise for various biomedical applications, potentially in wound healing, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Devyesh Rana
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Thibault Colombani
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Bahram Saleh
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | | | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sidi A. Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, USA
- Sorbonne University, UTC CNRS UMR 7338, Biomechanics and Bioengineering (BMBI), University of Technology of Compiègne, Compiègne, France
| |
Collapse
|
49
|
Wei L, Wang S, Shan M, Li Y, Wang Y, Wang F, Wang L, Mao J. Conductive fibers for biomedical applications. Bioact Mater 2023; 22:343-364. [PMID: 36311045 PMCID: PMC9588989 DOI: 10.1016/j.bioactmat.2022.10.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/12/2022] [Accepted: 10/07/2022] [Indexed: 11/26/2022] Open
Abstract
Bioelectricity has been stated as a key factor in regulating cell activity and tissue function in electroactive tissues. Thus, various biomedical electronic constructs have been developed to interfere with cell behaviors to promote tissue regeneration, or to interface with cells or tissue/organ surfaces to acquire physiological status via electrical signals. Benefiting from the outstanding advantages of flexibility, structural diversity, customizable mechanical properties, and tunable distribution of conductive components, conductive fibers are able to avoid the damage-inducing mechanical mismatch between the construct and the biological environment, in return to ensure stable functioning of such constructs during physiological deformation. Herein, this review starts by presenting current fabrication technologies of conductive fibers including wet spinning, microfluidic spinning, electrospinning and 3D printing as well as surface modification on fibers and fiber assemblies. To provide an update on the biomedical applications of conductive fibers and fiber assemblies, we further elaborate conductive fibrous constructs utilized in tissue engineering and regeneration, implantable healthcare bioelectronics, and wearable healthcare bioelectronics. To conclude, current challenges and future perspectives of biomedical electronic constructs built by conductive fibers are discussed.
Collapse
Affiliation(s)
- Leqian Wei
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Shasha Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Mengqi Shan
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Yimeng Li
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Yongliang Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao City, Shandong Province, 266071, China
| | - Fujun Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Lu Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| | - Jifu Mao
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai, 201620, China
| |
Collapse
|
50
|
Wu T, Liu L, Gao Z, Cui C, Fan C, Liu Y, Di M, Yang Q, Xu Z, Liu W. Extracellular matrix (ECM)-inspired high-strength gelatin-alginate based hydrogels for bone repair. Biomater Sci 2023; 11:2877-2885. [PMID: 36876524 DOI: 10.1039/d3bm00213f] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
It has always been a huge challenge to construct high-strength hydrogels that are composed entirely of natural polymers. In this study, inspired by the structural characteristics of the extracellular matrix (ECM), gelatin and hydrazide alginate were employed to mimic the composition of collagen and glycosaminoglycans (GAGs) in the ECM, respectively, to develop natural polymer (NP) high-strength hydrogels crosslinked by physical and covalent interactions (Gelatin-HAlg-DN). First, HAlg and gelatin can form physically crosslinked hydrogels (Gelatin-HAlg) due to electrostatic and hydrogen bond interactions. Then, the Gelatin-HAlg hydrogels can be further covalently crosslinked in the presence of 1-(3-dimethylaminopropyl)-3-ethyl carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) to obtain Gelatin-HAlg-DN hydrogels. The obtained Gelatin-HAlg-DN hydrogels exhibit considerably enhanced mechanical properties (tensile strength: 0.9 MPa; elongation at break: 177%) with a maximum 16- and 3.2-fold increase in tensile strength and elongation at break, respectively, compared with gelatin methacrylate (GelMA) hydrogels. Importantly, the Gelatin-HAlg-DN hydrogels exhibit excellent biodegradability and swelling stability under physiological conditions, and the capability to support cell adhesion and proliferation. In a rat critical size bone defect model, Gelatin-HAlg-DN hydrogels loaded with psoralen could effectively promote bone regeneration, showing appealing potential as tissue engineering scaffolds.
Collapse
Affiliation(s)
- Tengling Wu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Luxing Liu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin 300211, China
| | - Ziwei Gao
- Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Chunyan Cui
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Chuanchuan Fan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Yang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Mingyuan Di
- Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Qiang Yang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin 300211, China
| | - Ziyang Xu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| |
Collapse
|