1
|
Kaur P, Tyagi V. Merging Electrosynthesis and Biocatalysis to Access Sulfur-Based Chiral α-Fluorinated Carboxylic Acids. J Org Chem 2025; 90:5378-5392. [PMID: 40241286 DOI: 10.1021/acs.joc.4c03019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
We describe a sustainable process to synthesize chiral sulfur-based organofluorine compounds by integrating electrosynthesis and biocatalysis within a single vessel while using water as a solvent. In this context, differently substituted 2-fluoro-3-mercaptopropionic acids have been synthesized in good isolated yields using thiophenols and fluorine-containing α,β-unsaturated alkenes. In addition, molecular docking and control experiments were carried out that suggest the formation of radical species during the electrolysis and participation of the lipase active site during the biocatalysis. The scalability and applicability of the developed protocol have been illustrated through the synthesis of a key intermediate of the MMP-3 inhibitor and by performing a gram-scale reaction. Further, the compatibility of the lipase enzyme with electricity highlights the promising potential of enzymatic electrosynthesis in advancing environmentally friendly organic transformations.
Collapse
Affiliation(s)
- Parmjeet Kaur
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| | - Vikas Tyagi
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| |
Collapse
|
2
|
Vidossich P, Manathunga M, Götz AW, Merz KM, De Vivo M. Aliphatic Polyester Recognition and Reactivity at the Active Cleft of a Fungal Cutinase. J Chem Inf Model 2025. [PMID: 40273004 DOI: 10.1021/acs.jcim.5c00739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Protein engineering of cutinases is a promising strategy for the biocatalytic degradation of non-natural polyesters. We report a mechanistic study addressing the hydrolysis of the aliphatic polyester poly(butylene succinate, or PBS) by the fungal Apergillus oryzae cutinase enzyme. Through atomistic molecular dynamics simulations and advanced alchemical transformations, we reveal how three units of a model PBS substrate fit the active site cleft of the enzyme, interacting with hydrophobic side chains. The substrate ester moiety approaches the Asp-His-Ser catalytic triad, displaying catalytically competent conformations. Acylation and deacylation hydrolytic reactions were modeled according to a canonical esterase mechanism using umbrella sampling simulations at the quantum mechanical/molecular mechanical DFT(B3LYP)/6-31G**/AMBERff level. The free energy profiles of both steps show a high-energy tetrahedral intermediate resulting from the nucleophilic attack on the ester's carboxylic carbon. The free energy barrier of the acylation step is higher (20.2 ± 0.6 kcal mol-1) than that of the deacylation step (13.6 ± 0.6 kcal mol-1). This is likely due to the interaction of the ester's carboxylic oxygen with the oxyanion hole in the reactive conformation of the deacylation step. In contrast, these interactions form as the reaction proceeds during the acylation step. The formation of an additional hydrogen bond interaction with the side chain of Ser48 is crucial to stabilizing the developing charge at the carboxylic oxygen, thus lowering the activation free energy barrier. These mechanistic insights will inform the design of enzyme variants with improved activity for plastic degradation.
Collapse
Affiliation(s)
- Pietro Vidossich
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Madushanka Manathunga
- Department of Chemistry and Department of Biochemistry and Molecular Biology, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824-1322, United States
| | - Andreas W Götz
- San Diego Supercomputer Center, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0505, United States
| | - Kenneth M Merz
- Department of Chemistry and Department of Biochemistry and Molecular Biology, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824-1322, United States
| | - Marco De Vivo
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| |
Collapse
|
3
|
Kaur S, Adhikari A, Thapa P, Liu W, Dobrev PI, Vaculiková R, Lacek J, Park SW. A circadian clock RD29A is an esterase, relaying PGPR stimuli via RD29B and OPDA signaling in priming plant drought tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70185. [PMID: 40298460 DOI: 10.1111/tpj.70185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/31/2025] [Accepted: 04/12/2025] [Indexed: 04/30/2025]
Abstract
Drought is a critical limiting factor to crop production. Efforts to combat this problem through genetic engineering have been difficult to implement without growth tradeoffs. Hence, we recently identified two drought-responsive genes, Response to Desiccation (RD)29A and RD29B, which convey plant growth-promoting rhizobacteria-mediated induced systemic tolerance (IST). IST primes enhanced drought tolerance in plants and, concomitantly, promote their growth and productivity. However, the role and activity of RD29s are largely unknown. In this study, we unravel the autonomous, yet intertwined functions and modes of RD29s. RD29A is a circadian clock esterase and RD29B is a constitutive transcriptional regulator, controlling the oscillatory cycle and induction of RD29A expressions in response to IST-inducing PGPR, Paenibacillus polymyxa CR1. A diurnal peak of RD29A activity then facilitates cellular multitasking, allowing plants to concomitantly run "growth and defense" machineries via perhaps time-sharing of limited energy resources to each operation one by one. In line with these findings, the transient overexpression of Arabidopsis RD29s led to the reconstitution of IST in Solanum lycopersicum and Nicotiana benthamiana. On the contrary, RD29A can relay two different hormone, abscisic acid (ABA) and 12-oxo-phytodienoic acid (OPDA), signaling through distinct cis-regulatory, DRE/ABRE, and TGA elements, respectively. Together, RD29s coordinates general and/or systemic defense processes against various environmental constraints including drought and wounding. We hence conclude that RD29s are unique contenders that uncouple critical aspects of plant defenses; OPDA and ABA crosstalk, IST development, and growth and defense coordination, in shaping the optimal phenomes of plant varieties under different ecological conditions.
Collapse
Affiliation(s)
- Simrandeep Kaur
- Department of Entomology and Plant Pathology, Auburn University, Auburn, 36849, Alabama, USA
| | - Ashna Adhikari
- Department of Entomology and Plant Pathology, Auburn University, Auburn, 36849, Alabama, USA
| | - Parbati Thapa
- Department of Entomology and Plant Pathology, Auburn University, Auburn, 36849, Alabama, USA
| | - Wenshan Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, 36849, Alabama, USA
| | - Petre Ivanov Dobrev
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová, Prague, 263, Czech Republic
| | - Roberta Vaculiková
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová, Prague, 263, Czech Republic
| | - Jozef Lacek
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová, Prague, 263, Czech Republic
| | - Sang-Wook Park
- Department of Entomology and Plant Pathology, Auburn University, Auburn, 36849, Alabama, USA
| |
Collapse
|
4
|
Chen Z, Zhang Z, Yu Y, Guo Y, Liu J, Zhu Z. Carbocation charge as an interpretable descriptor for the catalytic activity of hydrolytic nanozymes. J Colloid Interface Sci 2025; 683:858-868. [PMID: 39752934 DOI: 10.1016/j.jcis.2024.12.191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/08/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025]
Abstract
A universal theory for predicting the catalytic activity of hydrolytic nanozymes has yet to be developed. Herein, by investigating the polarization and hydrolysis mechanisms of nanomaterials towards amide bonds, carbocation charge was identified as a key electronic descriptor for predicting catalytic activity in amide hydrolysis. Through machine learning correlation analysis and the Sure Independence Screening and Sparsifying Operator (SISSO) algorithm, this descriptor was interpreted to associate with the d-band center and Lewis acidity on the nanomaterial surface. On this basis, copper nanoparticles (Cu NPs) were discovered to exhibit significant hydrolytic activity. Further, peptidomic analysis and molecular dynamics simulations showed that Cu NPs demonstrated substrate selectivity. In the presence of water molecules, hydrophobic amino acid residues were driven towards the nanomaterial surface by hydrophobic groups of proteins, leading to the preferential hydrolysis of peptide bonds linked to these residues. This study provided a theoretic framework for predicting highly efficient hydrolytic nanozymes with broad potential applications.
Collapse
Affiliation(s)
- Zhen Chen
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Ziqi Zhang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Yixin Yu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Yu Guo
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China
| | - Jing Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China.
| | - Zhiling Zhu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong 266042, China.
| |
Collapse
|
5
|
Liu WL, Wen ZH, Li QY, Liu HB, Li QL, Deng SZ, Zeng ZY, Luo MC, Tang AX, Liu YY. New insights into exploring new functional enzymes through the enzyme promiscuity. Int J Biol Macromol 2025; 304:140576. [PMID: 39904435 DOI: 10.1016/j.ijbiomac.2025.140576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 02/06/2025]
Abstract
Enzyme promiscuity, defined as the ability of enzymes to catalyze reactions beyond their primary physiological functions, has emerged as a pivotal concept in modern enzyme engineering. This review provides a comprehensive exploration of enzyme promiscuity and its implications for the discovery and development of novel functional enzymes. Through targeted strategies such as (semi-)rational design, directed evolution, and de novo design, enzyme promiscuity has been harnessed to broaden substrate scopes, enhance catalytic efficiencies, and adapt enzymes to diverse reaction conditions. These modifications often involve subtle alterations to the active site, which impact catalytic mechanisms and open new pathways for the synthesis and degradation of complex organic compounds. Striking a balance between maintaining native activity and enhancing promiscuous functions remains a significant challenge in enzyme engineering. Nevertheless, advances in structural biology and computational modeling offer promising strategies to overcome these obstacles. By elucidating the mechanistic basis of enzyme promiscuity, this review aims to deepen our understanding of this phenomenon. It underscores the necessity of further investigating the mechanisms underlying promiscuous enzymatic activity and highlights the importance of leveraging promiscuous enzymes to address industrial application demands and drive the development of next-generation biocatalysts.
Collapse
Affiliation(s)
- Wen-Long Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Zong-Hong Wen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Qing-Yun Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China; Key Laboratory of Guangxi Biorefinery, Nanning 530003, PR China
| | - Hai-Bo Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Qun-Liang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Shun-Zhang Deng
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Zheng-Yun Zeng
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Meng-Cheng Luo
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Ai-Xing Tang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China; Key Laboratory of Guangxi Biorefinery, Nanning 530003, PR China.
| | - You-Yan Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China; Key Laboratory of Guangxi Biorefinery, Nanning 530003, PR China.
| |
Collapse
|
6
|
Ozhelvaci F, Steczkiewicz K. α/β Hydrolases: Toward Unraveling Entangled Classification. Proteins 2025; 93:855-870. [PMID: 39623291 PMCID: PMC11878206 DOI: 10.1002/prot.26776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 03/05/2025]
Abstract
α/β Hydrolase-like enzymes form a large and functionally diverse superfamily of proteins. Despite retaining a conserved structural core consisting of an eight-stranded, central β-sheet flanked with six α-helices, they display a modular architecture allowing them to perform a variety of functions, like esterases, lipases, peptidases, epoxidases, lyases, and others. At the same time, many α/β hydrolase-like families, even enzymatically distinct, share a high degree of sequence similarity. This imposes several problems for their annotation and classification, because available definitions of particular α/β hydrolase-like families overlap significantly, so the unambiguous functional assignment of these superfamily members remains a challenging task. For instance, two large and important peptidase families, namely S9 and S33, blend with lipases, epoxidases, esterases, and other enzymes unrelated to proteolysis, which hinders automatic annotations in high-throughput projects. With the use of thorough sequence and structure analyses, we newly annotate three protein families as α/β hydrolase-like and revise current classifications of the realm of α/β hydrolase-like superfamily. Based on manually curated structural superimpositions and multiple sequence and structure alignments, we comprehensively demonstrate structural conservation and diversity across the whole superfamily. Eventually, after detailed pairwise sequence similarity assessments, we develop a new clustering of the α/β hydrolases and provide a set of family profiles allowing for detailed, reliable, and automatic functional annotations of the superfamily members.
Collapse
Affiliation(s)
- Fatih Ozhelvaci
- Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarszawaPoland
| | - Kamil Steczkiewicz
- Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarszawaPoland
| |
Collapse
|
7
|
Yin Z, Wei W, Song W, Wen J, Hu G, Li X, Gao C, Liu J, Wu J. Reshaping Interface Interactions of P. litoralis Acyltransferase for Efficient Chemoenzymatic Epoxidation in Aqueous Phase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7364-7375. [PMID: 40099799 DOI: 10.1021/acs.jafc.4c12046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Epoxides, a class of ethers with a three-membered ring structure, are widely used in the textile, pharmaceutical, and packaging industries. Chemoenzymatic epoxidation presents a promising method for synthesizing epoxides. However, its epoxidation efficiency is hindered by low chemoselective perhydrolysis, which is caused by the hydrolysis side reaction in the aqueous phase. In this study, a chemoenzymatic epoxidation process in the aqueous phase was developed by utilizing an acyltransferase from P. litoralis (PlAcT) for its chemoselective perhydrolysis. Crystal structure analysis, molecular dynamics simulations, and quantum mechanics calculations, along with site-specific mutagenesis, revealed that the selectivity of perhydrolysis is due to a lower energy barrier in the acyl transfer step compared to that in hydrolysis. Furthermore, the mutant PlAcTM3-2 exhibited a 7.6-fold improvement in solvent stability and a 1.3-fold increase in perhydrolysis activity compared to the wild type, achieved by reshaping interface interactions. As a result, the engineered strain Y07, harboring PlAcTM3-2, successfully synthesized compounds 3a-3n with conversions ranging from 11-99%, and the titers of compounds α-pinene oxide(3i), β-pinene oxide(3j), 3-carene oxide(3k), and limonene dioxide(3l-3) reached 55.8, 16.7, 75.2, and 21.4 g/L, respectively. These results demonstrate a sustainable method for chemoenzymatic epoxidation in the aqueous phase.
Collapse
Affiliation(s)
- Zihao Yin
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Wanqing Wei
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jian Wen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Guipeng Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaomin Li
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jia Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
8
|
Li W, Sparks RP, Sun C, Yang Y, Pantano L, Kirchner R, Arghiani N, Weilheimer A, Toles BJ, Chen JY, Moran SP, Barrera V, Li Z, Zhou P, Brassil ML, Wrobel D, Ho Sui SJ, Aspnes G, Schuler M, Smith J, Medoff BD, Zhou C, Boustany-Kari CM, Rippmann JF, Santos DM, Doerner JF, Mullen AC. Screening the human druggable genome identifies ABHD17B as an anti-fibrotic target in hepatic stellate cells. Nat Commun 2025; 16:2109. [PMID: 40025044 PMCID: PMC11873113 DOI: 10.1038/s41467-025-56900-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/03/2025] [Indexed: 03/04/2025] Open
Abstract
Hepatic stellate cells (HSCs) are activated with chronic liver injury and transdifferentiate into myofibroblasts, which produce excessive extracellular matrices that form the fibrotic scar. While the progression of fibrosis is understood to be the cause of end-stage liver disease, there are no approved therapies directed at interfering with the activity of HSC myofibroblasts. Here, we perform a high-throughput small interfering RNA (siRNA) screen in primary human HSC myofibroblasts to identify gene products necessary for the fibrotic phenotype of HSCs. We find that depletion of ABHD17B promotes the inactivation of HSCs, characterized by reduced COL1A1 and ACTA2 expression and accumulation of lipid droplets. Mice deficient in Abhd17b are also protected from fibrosis in the setting of in vivo liver injury. While ABHD17B is a depalmitoylase, our data suggest that ABHD17B promotes fibrosis through pathways independent of depalmitoylation that include interaction with MYO1B to modulate gene expression and HSC migration. Together, our results provide an analysis of the phenotypic consequences for siRNAs targeting RNAs from >9500 genes in primary human HSCs and identify ABHD17B as a potential therapeutic target to inhibit liver fibrosis.
Collapse
Affiliation(s)
- Wenyang Li
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Robert P Sparks
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Cheng Sun
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Yang Yang
- Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Lorena Pantano
- Harvard Chan Bioinformatics Core, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Rory Kirchner
- Harvard Chan Bioinformatics Core, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Nahid Arghiani
- Division of Gastroenterology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Arden Weilheimer
- Division of Gastroenterology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Benjamin J Toles
- Division of Gastroenterology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jennifer Y Chen
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
- Liver Center, Department of Medicine, University of California, San Francisco, CA, USA
| | - Sean P Moran
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Victor Barrera
- Harvard Chan Bioinformatics Core, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Zixiu Li
- Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Peng Zhou
- Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Meghan L Brassil
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, USA
- UMass Cancer Center, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - David Wrobel
- ICCB-Longwood Screening Facility, Harvard Medical School, Boston, MA, USA
| | - Shannan J Ho Sui
- Harvard Chan Bioinformatics Core, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Gary Aspnes
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riss, Biberach, Germany
| | - Michael Schuler
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riss, Biberach, Germany
| | - Jennifer Smith
- ICCB-Longwood Screening Facility, Harvard Medical School, Boston, MA, USA
| | - Benjamin D Medoff
- Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Chan Zhou
- Population and Quantitative Health Sciences, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Jörg F Rippmann
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riss, Biberach, Germany
| | | | - Julia F Doerner
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach a.d. Riss, Biberach, Germany
| | - Alan C Mullen
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA.
- Division of Gastroenterology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
9
|
Akram F, Fatima T, Shabbir I, Haq IU, Ibrar R, Mukhtar H. Abridgement of Microbial Esterases and Their Eminent Industrial Endeavors. Mol Biotechnol 2025; 67:817-833. [PMID: 38461181 DOI: 10.1007/s12033-024-01108-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/05/2024] [Indexed: 03/11/2024]
Abstract
Esterases are hydrolases that contribute to the hydrolysis of ester bonds into both water-soluble acyl esters and emulsified glycerol-esters containing short-chain acyl groups. They have garnered significant attention from biotechnologists and organic chemists due to their immense commercial value. Esterases, with their diverse and significant properties, have become highly sought after for various industrial applications. Synthesized ubiquitously by a wide range of living organisms, including animals, plants, and microorganisms, these enzymes have found microbial esterases to be the preferred choice in industrial settings. The cost-effective production of microbial esterases ensures higher yields, unaffected by seasonal variations. Their applications span diverse sectors, such as food manufacturing, leather tanneries, paper and pulp production, textiles, detergents, cosmetics, pharmaceuticals, biodiesel synthesis, bioremediation, and waste treatment. As the global trend shifts toward eco-friendly and sustainable practices, industrial processes are evolving with reduced waste generation, lower energy consumption, and the utilization of biocatalysts derived from renewable and unconventional raw materials. This review explores the background, structural characteristics, thermostability, and multifaceted roles of bacterial esterases in crucial industries, aiming to optimize and analyze their properties for continued successful utilization in diverse industrial processes. Additionally, recent advancements in esterase research are overviewed, showcasing novel techniques, innovations, and promising areas for further exploration.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan.
| | - Taseer Fatima
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Ifrah Shabbir
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Ikram Ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
- Pakistan Academy of Sciences, Islamabad, Pakistan
| | - Ramesha Ibrar
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Hamid Mukhtar
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
10
|
Zarifi N, Asthana P, Doustmohammadi H, Klaus C, Sanchez J, Hunt SE, Rakotoharisoa RV, Osuna S, Fraser JS, Chica RA. Distal mutations enhance catalysis in designed enzymes by facilitating substrate binding and product release. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.21.639315. [PMID: 40060566 PMCID: PMC11888230 DOI: 10.1101/2025.02.21.639315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
The role of amino-acid residues distant from an enzyme's active site in facilitating the complete catalytic cycle-including substrate binding, chemical transformation, and product release-remains poorly understood. Here, we investigate how distal mutations promote the catalytic cycle by engineering mutants of three de novo Kemp eliminases containing either active-site or distal mutations identified through directed evolution. Kinetic analyses, X-ray crystallography, and molecular dynamics simulations reveal that while active-site mutations create preorganized catalytic sites for efficient chemical transformation, distal mutations enhance catalysis by facilitating substrate binding and product release through tuning structural dynamics to widen the active-site entrance and reorganize surface loops. These distinct contributions work synergistically to improve overall activity, demonstrating that a well-organized active site, though necessary, is not sufficient for optimal catalysis. Our findings reveal critical roles that distal residues play in shaping the catalytic cycle to enhance efficiency, yielding valuable insights for enzyme design.
Collapse
Affiliation(s)
- Niayesh Zarifi
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada, K1N 6N5
- Center for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario, Canada, K1N 6N5
| | - Pooja Asthana
- Department of Bioengineering and Therapeutic Science, University of California, San Francisco, San Francisco, California 94158, United States
| | - Hiva Doustmohammadi
- CompBioLab Group, Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Girona, Spain
- ICREA, Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Cindy Klaus
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada, K1N 6N5
- Center for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario, Canada, K1N 6N5
| | - Janet Sanchez
- CompBioLab Group, Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Girona, Spain
- ICREA, Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Serena E Hunt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada, K1N 6N5
- Center for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario, Canada, K1N 6N5
| | - Rojo V Rakotoharisoa
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada, K1N 6N5
- Center for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario, Canada, K1N 6N5
| | - Sílvia Osuna
- CompBioLab Group, Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Girona, Spain
- ICREA, Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - James S Fraser
- Department of Bioengineering and Therapeutic Science, University of California, San Francisco, San Francisco, California 94158, United States
| | - Roberto A Chica
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada, K1N 6N5
- Center for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario, Canada, K1N 6N5
| |
Collapse
|
11
|
Li Y, Jiang L, Liu Y, Lin Y, Li S, Xu C, Xian M. Design Strategy of PepNzymes-SH for an Emerging Catalyst with Serine Hydrolase-Like Functionality. ACS APPLIED MATERIALS & INTERFACES 2025; 17:8821-8835. [PMID: 39874419 DOI: 10.1021/acsami.4c19978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Serine hydrolases, as a class of green catalysts with hydrolytic and dehydrating activities, hold significant application value in the fields of biosynthesis and organic synthesis. However, practical applications face numerous challenges, including maintaining enzyme stability and managing usage costs. PepNzymes-SH, an emerging green catalytic material with enzyme-like activity, overcomes the operational limitations of natural enzymes and holds great promise as a substitute for hydrolases. Unfortunately, a systematic review of the design strategies for PepNzymes-SH is currently lacking. The core significance of this report lies in providing researchers with a comprehensive understanding and theoretical guidance through the summarization and performance evaluation of different design strategies of PepNzymes-SH. This review summarizes strategies for simulating and enhancing the stability of serine hydrolase active sites, oxyanion holes, and hydrophobic environmental structures. By comparing their catalytic activities, we assess the performance changes brought about by different strategies. Furthermore, the applications of PepNzymes-SH in the chemical, biomedicine, and environmental fields are also discussed.
Collapse
Affiliation(s)
- Yunfei Li
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Long Jiang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yaojie Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Yu Lin
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Shuhua Li
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Chao Xu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Mo Xian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
12
|
Verma S, Choudhary S, Amith Kumar K, Mahto JK, Vamsi K AK, Mishra I, Prakash VB, Sircar D, Tomar S, Kumar Sharma A, Singla J, Kumar P. Mechanistic and structural insights into EstS1 esterase: A potent broad-spectrum phthalate diester degrading enzyme. Structure 2025; 33:247-261.e3. [PMID: 39642872 DOI: 10.1016/j.str.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/20/2024] [Accepted: 11/11/2024] [Indexed: 12/09/2024]
Abstract
Phthalate diesters are important pollutants and act as endocrine disruptors. While certain bacterial esterases have been identified for phthalate diesters degradation to monoesters, their structural and mechanistic characteristics remain largely unexplored. Here, we highlight the potential of the thermostable and pH-tolerant EstS1 esterase from Sulfobacillus acidophilus DSM10332 to degrade high molecular weight bis(2-ethylhexyl) phthalate (DEHP) by combining biophysical and biochemical approaches along with high-resolution EstS1 crystal structures of the apo form and with bound substrates, products, and their analogs to elucidate its mechanism. The catalytic tunnel mediates entry and exit of the substrate and product, respectively. The centralized Ser-His-Asp triad performs catalysis by a bi-bi ping-pong mechanism, forming a tetrahedral intermediate. Mutagenesis analysis showed that the Met207Ala mutation abolished DEHP binding at the active site, confirming its essential role in supporting catalysis. These findings underscore EstS1 as a promising tool for advancing technologies aimed at phthalate diesters biodegradation.
Collapse
Affiliation(s)
- Shalja Verma
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | - Shweta Choudhary
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | - Kamble Amith Kumar
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | - Jai Krishna Mahto
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | - Anil Kumar Vamsi K
- Department of Civil Engineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | - Ishani Mishra
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | | | - Debabrata Sircar
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | - Ashwani Kumar Sharma
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | - Jitin Singla
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
13
|
Cabanding JMG, Yu SSF, Lin ZH, Fortuna MA, Elatico AJJ, Nellas RB. The importance of helical structures to the overall activity and structural stability of a lipase from Pseudomonas aeruginosa PAO1 in n-hexane. Arch Biochem Biophys 2025; 764:110226. [PMID: 39617119 DOI: 10.1016/j.abb.2024.110226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 11/20/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024]
Abstract
Bacterial lipases are versatile extracellular enzymes with a catalytic triad at the active site and a flexible 'lid' that modulates catalytic accessibility. We combined computational modeling with preliminary in vitro testing to assess the structural stability and activity of the Pseudomonas aeruginosa PAO1 lipase (PAL). We evaluated several systems consisting of the native and mutant forms of the lipase in n-hexane using molecular dynamics simulations. Structural stability was assessed by calculating the B-factor for each system. We measured the gorge radius of the catalytic channel and the RMSD of the catalytic triad to approximate enzymatic activity. Based on the correlation of these metrics, mutant forms were selected for their potential activity and stability. Selected mutant forms were expressed in E. coli BL21, mass-produced, and validated through a lipase-catalyzed esterification assay in n-hexane. Several helices outside the 'lid' region were found to influence lid conformational switching. Moreover, our preliminary experimental results show promise in validating our in silico predictions. Our integrated in silico and in vitro pipeline offers a promising approach for designing and producing industrially relevant lipases.
Collapse
Affiliation(s)
- Jaidriel Meg G Cabanding
- Institute of Chemistry, College of Science, University of the Philippines Diliman, Quezon City, 1101, Philippines; Department of Chemistry, College of Science, Tarlac State University, Tarlac City, 2300, Philippines
| | - Steve S-F Yu
- Institute of Chemistry, Academia Sinica, Taipei, 115201, Taiwan; Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115201, Taiwan
| | - Zhi-Han Lin
- Institute of Chemistry, Academia Sinica, Taipei, 115201, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, 106319, Taiwan; Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei, 115201, Taiwan
| | - Myrnel A Fortuna
- Institute of Chemistry, College of Science, University of the Philippines Diliman, Quezon City, 1101, Philippines
| | - Adam Jo J Elatico
- Institute of Chemistry, College of Science, University of the Philippines Diliman, Quezon City, 1101, Philippines
| | - Ricky B Nellas
- Institute of Chemistry, College of Science, University of the Philippines Diliman, Quezon City, 1101, Philippines.
| |
Collapse
|
14
|
Zhang S, Fan S, He H, Zhu J, Murray L, Liang G, Ran S, Zhu YZ, Cryle MJ, He HY, Zhang Y. Cyclic natural product oligomers: diversity and (bio)synthesis of macrocycles. Chem Soc Rev 2025; 54:396-464. [PMID: 39584260 DOI: 10.1039/d2cs00909a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Cyclic compounds are generally preferred over linear compounds for functional studies due to their enhanced bioavailability, stability towards metabolic degradation, and selective receptor binding. This has led to a need for effective cyclization strategies for compound synthesis and hence increased interest in macrocyclization mediated by thioesterase (TE) domains, which naturally boost the chemical diversity and bioactivities of cyclic natural products. Many non-ribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) derived natural products are assembled to form cyclodimeric compounds, with these molecules possessing diverse structures and biological activities. There is significant interest in identifying the biosynthetic pathways that produce such molecules given the challenge that cyclodimerization represents from a biosynthetic perspective. In the last decade, many groups have pursued the characterization of TE domains and have provided new insights into this biocatalytic machinery: however, the enzymes involved in formation of cyclodimeric compounds have proven far more elusive. In this review we focus on natural products that involve macrocyclization in their biosynthesis and chemical synthesis, with an emphasis on the function and biosynthetic investigation on the special family of TE domains responsible for forming cyclodimeric natural products. We also introduce additional macrocyclization catalysts, including butelase and the CT-mediated cyclization of peptides, alongside the formation of cyclodipeptides mediated by cyclodipeptide synthases (CDPS) and single-module NRPSs. Due to the interdisciplinary nature of biosynthetic research, we anticipate that this review will prove valuable to synthetic chemists, drug discovery groups, enzymologists, and the biosynthetic community in general, and inspire further efforts to identify and exploit these biocatalysts for the formation of novel bioactive molecules.
Collapse
Affiliation(s)
- Songya Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shuai Fan
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Haocheng He
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jing Zhu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lauren Murray
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
- EMBL Australia, Monash University, Clayton, Victoria, 3800, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, 3800, Australia
| | - Gong Liang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shi Ran
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yi Zhun Zhu
- School of Pharmacy & State Key Lab. for the Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Max J Cryle
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
- EMBL Australia, Monash University, Clayton, Victoria, 3800, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, 3800, Australia
| | - Hai-Yan He
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Youming Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
15
|
Xu W, Yao J, Ouyang B, Huang Z, Zhang W, Mu W. Substrate specificity study of zearalenone lactonase by analyzing interaction networks of residues near the β6-α6 region. Int J Biol Macromol 2025; 286:138531. [PMID: 39653226 DOI: 10.1016/j.ijbiomac.2024.138531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/13/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
Recently, how could microbial lactonase react to the mycotoxin zearalenone (ZEN) and its derivatives such as α-zearalenol (α-ZOL) is still unclear, resulting in limited applications. In this study, the interaction networks of residues near the β6-α6 region in lactonase from Monosporascus sp. GIB2 (ZENM) were analyzed. As a result, the residue M157 in the β6-α6 region was found significant to the specificity of ZENM, and two mutants including ZENMM157V and ZENMM157I that exhibited higher degradation activity than the wild-type (WT) against α-ZOL was achieved. The molecular dynamics simulation showed that the binding free energy of ZENMM157V and ZENMM157I was -38.68 and -40.84 Kcal/mol for α-ZOL, much lower than the wild-type enzyme (-33.03 Kcal/mol). Moreover, approximately a 54° torsion of the C6' hydroxyl group in α-ZOL was presented in mutants ZENMM157V and ZENMM157I conformation, resulting in a shorter distance between the catalytic pocket and α-ZOL.
Collapse
Affiliation(s)
- Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jiayi Yao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Binbin Ouyang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhaolin Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
16
|
Ong SN, Kamarudin NHA, Shariff FM, Noor NDM, Ali MSM, Rahman RNZRA. Effects of alcohol concentration and temperature on the dynamics and stability of mutant Staphylococcal lipase. J Biomol Struct Dyn 2025; 43:450-466. [PMID: 37968883 DOI: 10.1080/07391102.2023.2282177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/03/2023] [Indexed: 11/17/2023]
Abstract
The stability and activity of lipase in organic media are important parameters in determining how quickly biocatalysis proceeds. This study aimed to examine the effects of two commonly used alcohols in industrial applications, methanol (MtOH) and ethanol (EtOH) on the conformational stability and catalytic activity of G210C lipase, a laboratory-evolved mutant of Staphylococcus epidermidis AT2 lipase. Simulation studies were performed using an open-form predicted structure under 30, 40 and 50% of MtOH and EtOH at 25 °C and 45 °C. The overall enzyme structure becomes more flexible with increasing concentration of MtOH and exhibited the highest flexibility in 40% EtOH. In EtOH, the movement of the lid was found to be temperature-dependent with a noticeable shift in the lid position at 45 °C. Lid opening was evidenced at 50% of MtOH and EtOH which was supported by the increase in SASA of hydrophobic residues of the lid and catalytic triad. The active site remained mostly intact. An open-closed lid transition was observed when the structure was re-simulated in water. Experimental evaluation of the lipase stability showed that the half-life reduced when the enzyme was treated with 40% (v/v) and 50% (v/v) of EtOH and MtOH respectively. The finding implies that a high concentration of alcohol and elevated temperature can induce the lid opening of lipase which could be essential for the activation of the enzyme, provided that the catalytic performance in the active site is not compromised.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shir Nee Ong
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nor Hafizah Ahmad Kamarudin
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Centre for Foundation Studies in Science of Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Fairolniza Mohd Shariff
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Noor Dina Muhd Noor
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
17
|
Wang Y, Deng C, Wang X. Characterization of a novel salt- and solvent-tolerant esterase Dhs82 from soil metagenome capable of hydrolyzing estrogenic phthalate esters. Biophys Chem 2025; 316:107348. [PMID: 39531866 DOI: 10.1016/j.bpc.2024.107348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/19/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Esterases that can function under extreme conditions are important for industrial processing and environmental remediation. Here, we report the identification of a salt- and solvent-tolerant esterase, Dhs82, from a soil metagenomic library. Dhs82 prefers short-chain p-nitrophenyl (p-NP) esters and exhibits enzymatic activity up to 1460 ± 61 U/mg towards p-NP butyrate. Meanwhile, Dhs82 can catalyze the hydrolysis of dialkyl phthalate esters, especially the widely-used diethyl phthalate (DEP), dipropyl phthalate (DPP) and di-n-butyl phthalate (DBP). Importantly, as an acidic protein with negative charges dominating its surface, Dhs82 is highly active and extraordinarily stable at high salinity. This property is quite rare among previously reported esterases/hydrolases capable of degrading phthalate esters (PAEs). In addition, Dhs82 activity can be significantly enhanced in the presence of solvents over a concentration range of 10-30 % (v/v). Notably, Dhs82 also showed high stability towards these solvents and solvent concentrations as high as 50-60 % (v/v) are required to inactivate Dhs82. Furthermore, molecular docking revealed the key residues, including the catalytic triad (Ser156, His281, and Asp251) and the surrounding Gly84 and Gly85, involved in the interaction of Dhs82 with DBP, depicting how Dhs82 degrades PAEs as a family IV esterase. Together, these diverse properties make Dhs82 a valuable candidate for both basic research and biotechnological applications.
Collapse
Affiliation(s)
- Yuanyan Wang
- School of Science, China Pharmaceutical University, Nanjing 211198, PR China
| | - Chunmei Deng
- School of Science, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China
| | - Xin Wang
- School of Science, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
18
|
Cichon N, Grabowska W, Gorniak L, Stela M, Harmata P, Ceremuga M, Bijak M. Mechanistic and Therapeutic Insights into Flavonoid-Based Inhibition of Acetylcholinesterase: Implications for Neurodegenerative Diseases. Nutrients 2024; 17:78. [PMID: 39796512 PMCID: PMC11722824 DOI: 10.3390/nu17010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/03/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Flavonoids are naturally occurring polyphenolic compounds known for their extensive range of biological activities. This review focuses on the inhibitory effects of flavonoids on acetylcholinesterase (AChE) and their potential as therapeutic agents for cognitive dysfunction. AChE, a serine hydrolase that plays a crucial role in cholinergic neurotransmission, is a key target in the treatment of cognitive impairments due to its function in acetylcholine hydrolysis. Natural polyphenolic compounds, particularly flavonoids, have demonstrated significant inhibition of AChE, positioning them as promising alternatives or adjuncts in neuropharmacology. This study specifically examines flavonoids such as quercetin, apigenin, kaempferol, and naringenin, investigating their inhibitory efficacy, binding mechanisms, and additional neuroprotective properties, including their antioxidant and anti-inflammatory effects. In vitro, in vivo, and in silico analyses reveal that these flavonoids effectively interact with both the active and peripheral anionic sites of AChE, resulting in increased acetylcholine levels and the stabilization of cholinergic signaling. Their mechanisms of action extend beyond mere enzymatic inhibition, as they also exhibit antioxidant and anti-amyloidogenic properties, thereby offering a multifaceted approach to neuroprotection. Given these findings, flavonoids hold considerable therapeutic potential as modulators of AChE, with implications for enhancing cognitive function and treating neurodegenerative diseases. Future studies should prioritize the enhancement of flavonoid bioavailability, evaluate their efficacy in clinical settings, and explore their potential synergistic effects when combined with established therapies to fully harness their potential as neurotherapeutic agents.
Collapse
Affiliation(s)
- Natalia Cichon
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland (L.G.); (M.S.); (M.B.)
| | - Weronika Grabowska
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland (L.G.); (M.S.); (M.B.)
| | - Leslaw Gorniak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland (L.G.); (M.S.); (M.B.)
| | - Maksymilian Stela
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland (L.G.); (M.S.); (M.B.)
| | - Piotr Harmata
- Faculty of Advanced Technologies and Chemistry, Military University of Technology, 2 gen. S. Kaliskiego St., 00-908 Warsaw, Poland;
| | - Michal Ceremuga
- Military Institute of Armoured and Automotive Technology, Okuniewska 1, 05-070 Sulejówek, Poland;
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland (L.G.); (M.S.); (M.B.)
| |
Collapse
|
19
|
Yoo SJ, Kim HJ, Moon HY, Jeon MS, Cho YU, Jeon CO, Eyun SI, Kang HA. Genome-Wide Identification and Biochemical Characterization of Alcohol Acyltransferases for Aroma Generation in Wickerhamomyces subpelliculosus Isolates from Fermented Food. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:28194-28208. [PMID: 39648807 DOI: 10.1021/acs.jafc.4c08103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
The importance of nonconventional yeasts has increasingly been highlighted, particularly for aroma formation in fermented foods. Here, we performed de novo whole-genome sequencing of Wickerhamomyces subpelliculosus, which produces a variety of volatile flavor compounds, leading to the identification of the alcohol acyltransferase (AATase) family of genes. The genome of W. subpelliculosus contains seven AATase genes, encoding alcohol-O-acetyltransferases (ATFs) and ethanol acetyltransferase 1 (EAT1) for acetate ester formation, along with ethanol hexanoyl transferase 1 (EHT1) for ethyl ester formation. Among five ATF homologues, only WsATF5 showed acetyltransferase activity toward myriocin, a structural analogue of sphingosine. In contrast, heterologous expression of WsEHT1 and WsEAT1 in Saccharomyces cerevisiae promoted the production of ethyl decanoate and ethyl acetate, respectively, supporting their AATase activity. The enzymatic activity analyses revealed the additional alcoholysis activity of WsEAT1 and the thioesterase activity of WsEHT1. Subcellular localization analysis indicated that WsEAT1 was localized in the mitochondria, WsEHT1 in the endoplasmic reticulum and lipid droplets (LDs), and WsATF5 in the LDs. The novel W. subpelliculosus AATases could be usefully applied to produce flavor components in various food industries.
Collapse
Affiliation(s)
- Su Jin Yoo
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Hyeon Jin Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Hye Yun Moon
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Min-Seung Jeon
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Yong Uk Cho
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Seong-Il Eyun
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Hyun Ah Kang
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| |
Collapse
|
20
|
Knapp M, Jo M, Henthorn CL, Brimberry M, Gnann AD, Dowling DP, Bridwell-Rabb J. Chlorophyllase from Arabidopsis thaliana Reveals an Emerging Model for Controlling Chlorophyll Hydrolysis. ACS BIO & MED CHEM AU 2024; 4:353-370. [PMID: 39712203 PMCID: PMC11659893 DOI: 10.1021/acsbiomedchemau.4c00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 12/24/2024]
Abstract
Chlorophyll (Chl) is one of Nature's most complex pigments to biosynthesize and derivatize. This pigment is vital for survival and also paradoxically toxic if overproduced or released from a protective protein scaffold. Therefore, along with the mass production of Chl, organisms also invest in mechanisms to control its degradation and recycling. One important enzyme that is involved in these latter processes is chlorophyllase. This enzyme is employed by numerous photosynthetic organisms to hydrolyze the phytol tail of Chl. Although traditionally thought to catalyze the first step of Chl degradation, recent work suggests that chlorophyllase is instead employed during times of abiotic stress or conditions that produce reactive oxygen species. However, the molecular details regarding how chlorophyllases are regulated to function under such conditions remain enigmatic. Here, we investigate the Arabidopsis thaliana chlorophyllase isoform AtCLH2 using site-directed mutagenesis, mass spectrometry, dynamic light scattering, size-exclusion multiangle light scattering, and both steady-state enzyme kinetic and thermal stability measurements. Through these experiments, we show that AtCLH2 exists as a monomer in solution and contains two disulfide bonds. One disulfide bond putatively maps to the active site, whereas the other links two N-terminal Cys residues together. These disulfide bonds are cleaved by chemical or chemical and protein-based reductants, respectively, and are integral to maintaining the activity, stability, and substrate scope of the enzyme. This work suggests that Cys residue oxidation in chlorophyllases is an emerging regulatory strategy for controlling the hydrolysis of Chl pigments.
Collapse
Affiliation(s)
- Madison Knapp
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Minshik Jo
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Courtney L. Henthorn
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Marley Brimberry
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Andrew D. Gnann
- Department
of Chemistry, University of Massachusetts
Boston, Boston, Massachusetts 02125, United States
| | - Daniel P. Dowling
- Department
of Chemistry, University of Massachusetts
Boston, Boston, Massachusetts 02125, United States
| | - Jennifer Bridwell-Rabb
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
21
|
Coleman T, Viknander S, Kirk AM, Sandberg D, Caron E, Zelezniak A, Krenske E, Larsbrink J. Structure-based clustering and mutagenesis of bacterial tannases reveals the importance and diversity of active site-capping domains. Protein Sci 2024; 33:e5202. [PMID: 39555646 PMCID: PMC11571031 DOI: 10.1002/pro.5202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/13/2024] [Accepted: 10/12/2024] [Indexed: 11/19/2024]
Abstract
Tannins are critical plant defense metabolites, enriched in bark and leaves, that protect against microorganisms and insects by binding to and precipitating proteins. Hydrolyzable tannins contain ester bonds which can be cleaved by tannases-serine hydrolases containing so-called "cap" domains covering their active sites. However, comprehensive insights into the biochemical properties and structural diversity of tannases are limited, especially regarding their cap domains. We here present a code pipeline for structure prediction-based hierarchical clustering to categorize the whole family of bacterial tannases, and have used it to discover new types of cap domains and other structural insertions among these enzymes. Subsequently, we used two recently identified tannases from the gut/soil bacterium Clostridium butyricum as model systems to explore the biochemical and structural properties of the cap domains of tannases. We demonstrate using molecular dynamics and mutagenesis that the cap domain covering the active site plays a major role in enzyme substrate preference, inhibition, and activity-despite not directly interacting with smaller substrates. The present work provides deeper knowledge into the mechanism, structural dynamics, and diversity of tannases. The structure-based clustering approach presents a new way of classifying any other enzyme family, and will be of relevance for enzyme types where activity is influenced by variable loop or insert regions appended to a core protein fold.
Collapse
Affiliation(s)
- Tom Coleman
- Division of Industrial Biotechnology, Department of Life SciencesChalmers University of TechnologyGothenburgSweden
| | - Sandra Viknander
- Division of Systems and Synthetic Biology, Department of Life SciencesChalmers University of TechnologyGothenburgSweden
| | - Alicia M. Kirk
- School of Chemistry and Molecular BiosciencesUniversity of QueenslandBrisbaneQueenslandAustralia
| | - David Sandberg
- Division of Industrial Biotechnology, Department of Life SciencesChalmers University of TechnologyGothenburgSweden
| | - Elise Caron
- Division of Industrial Biotechnology, Department of Life SciencesChalmers University of TechnologyGothenburgSweden
| | - Aleksej Zelezniak
- Division of Systems and Synthetic Biology, Department of Life SciencesChalmers University of TechnologyGothenburgSweden
- Institute of Biotechnology, Life Sciences CentreVilnius UniversityVilniusLithuania
- Randall Centre for Cell & Molecular BiophysicsKing's College LondonLondonUK
| | - Elizabeth Krenske
- School of Chemistry and Molecular BiosciencesUniversity of QueenslandBrisbaneQueenslandAustralia
| | - Johan Larsbrink
- Division of Industrial Biotechnology, Department of Life SciencesChalmers University of TechnologyGothenburgSweden
- Wallenberg Wood Science CenterChalmers University of TechnologyGothenburgSweden
| |
Collapse
|
22
|
Qian Y, Lai L, Cheng M, Fang H, Fan D, Zylstra GJ, Huang X. Identification, characterization, and distribution of novel amidase gene aphA in sphingomonads conferring resistance to amphenicol antibiotics. Appl Environ Microbiol 2024; 90:e0151224. [PMID: 39431819 PMCID: PMC11577797 DOI: 10.1128/aem.01512-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Amphenicol antibiotics, such as chloramphenicol (CHL), thiamphenicol (TAP), and florfenicol (Ff), are high-risk emerging pollutants. Their extensive usage in aquaculture, livestock, and poultry farming has led to an increase in bacterial antibiotic resistance and facilitated the spread of resistance genes. Yet, limited research has been conducted on the co-resistance of CHL, TAP, and Ff. Herein, a novel amidase AphA was identified from a pure cultured strain that can concurrently mediate the hydrolytic inactivation of CHL, TAP, and Ff, yielding products p-nitrophenylserinol, thiamphenicol amine (TAP-amine), and florfenicol amine (Ff-amine), respectively. The antibacterial activity of these antibiotic hydrolysates exhibited a significant reduction or complete loss in comparison to the parent compounds. Notably, AphA shared less than 26% amino acid sequence identity with previously reported enzymes and exhibited high conservation within the sphingomonad species. Through enzymatic kinetic analysis, the AphA exhibited markedly superior affinity and catalytic activity toward Ff in comparison to CHL and TAP. Site-directed mutagenesis analysis revealed the indispensability of catalytic triad residues, particularly serine 153 and histidine 277, in forming crucial hydrogen bonds essential for AphA's hydrolytic activity. Comparative genomic analysis showed that aphA genes in some species are closely adjacent to various transposable elements, indicating that there is a high potential risk of horizontal gene transfer (HGT). This study established a hydrolysis resistance mechanism of amphenicol antibiotics in sphingomonads, which offers theoretical guidance and a novel marker gene for assessing the prevalent risk of amphenicol antibiotics in the environment.IMPORTANCEAmphenicol antibiotics are pervasive emerging contaminants that present a substantial threat to ecological systems. Few studies have elucidated resistance genes or mechanisms that can act on CHL, TAP, and Ff simultaneously. The results of this study fill this knowledge gap and identify a novel amidase AphA from the bacterium Sphingobium yanoikuyae B1, which mediates three typical amphenicol antibiotic inactivation, and the molecular mechanism is elucidated. The diverse types of transposable elements were identified in the flanking regions of the aphA gene, indicating the risk of horizontal transfer of this antibiotic resistance genes (ARG). These findings offer new insights into the bacterial resistance to amphenicol antibiotics. The gene reported herein can be utilized as a novel genetic diagnostic marker for monitoring the environmental fate of amphenicol antibiotics, thereby enriching risk assessment efforts within the context of antibiotic resistance.
Collapse
Affiliation(s)
- Yingying Qian
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Lin Lai
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Minggen Cheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Hua Fang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dandan Fan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Gerben J. Zylstra
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Xing Huang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
23
|
Ide D, Gorelik A, Illes K, Nagar B. Structural Analysis of Mammalian Sialic Acid Esterase. J Mol Biol 2024; 436:168801. [PMID: 39321866 DOI: 10.1016/j.jmb.2024.168801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/14/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Sialic acid esterase (SIAE) catalyzes the removal of O-acetyl groups from sialic acids found on cell surface glycoproteins to regulate cellular processes such as B cell receptor signalling and apoptosis. Loss-of-function mutations in SIAE are associated with several common autoimmune diseases including Crohn's, ulcerative colitis, and arthritis. To gain a better understanding of the function and regulation of this protein, we determined crystal structures of SIAE from three mammalian homologs, including an acetate bound structure. The structures reveal that the catalytic domain adopts the fold of the SGNH hydrolase superfamily. The active site is composed of a catalytic dyad, as opposed to the previously reported catalytic triad. Attempts to determine a substrate-bound structure yielded only the hydrolyzed product acetate in the active site. Rigid docking of complete substrates followed by molecular dynamics simulations revealed that the active site does not form specific interactions with substrates, rather it appears to be broadly specific to accept sialoglycans with diverse modifications. Based on the acetate bound structure, a catalytic mechanism is proposed. Structural mapping of disease mutations reveals that most are located on the surface of the enzyme and would only cause minor disruptions to the protein fold, suggesting that these mutations likely affect binding to other factors. These results improve our understanding of SIAE biology and may aid in the development of therapies for autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Danilo Ide
- Department of Biochemistry and Centre de Recherche en Biologie Structurale (CRBS), McGill University, Montreal, QC H3G 0B1, Canada
| | - Alexei Gorelik
- Department of Biochemistry and Centre de Recherche en Biologie Structurale (CRBS), McGill University, Montreal, QC H3G 0B1, Canada
| | - Katalin Illes
- Department of Biochemistry and Centre de Recherche en Biologie Structurale (CRBS), McGill University, Montreal, QC H3G 0B1, Canada
| | - Bhushan Nagar
- Department of Biochemistry and Centre de Recherche en Biologie Structurale (CRBS), McGill University, Montreal, QC H3G 0B1, Canada.
| |
Collapse
|
24
|
Zheng M, Li Y, Zhang Q, Wang W. Enzymatic Degradation toward Herbicides: The Case of the Sulfonylureas. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20049-20059. [PMID: 39352087 DOI: 10.1021/acs.est.4c04929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
Commercial herbicides, particularly sulfonylureas, are used worldwide and pose a significant challenge to environmental sustainability. The efficient degradation of sulfonylurea herbicides is critical. SulE, an esterase isolated from the bacterial strain Hansschlegelia zhihuaiae S113, shows degradation activity toward sulfonylurea herbicides. However, the detailed catalytic mechanism remains vague to a large extent. Herein, we decipher the SulEP44R-catalyzed degradation mechanism of sulfonylurea herbicides using hybrid quantum mechanics and molecular mechanics approaches. Our results show that the degradation of sulfonylureas catalyzed by SulEP44R involves four concerted elementary steps. The rate-determining step has an energy barrier range of 19.7-21.4 kcal·mol-1, consistent with the experimentally determined range of 16.0-18.0 kcal·mol-1. Distortion/interaction analysis demonstrates that active-site amino acids play a vital role in the enzymatic catalytic efficacy. The unique architecture of SulEP44R's active site can serve as an excellent template for designing artificial catalysts. Key structural and charge parameters affecting catalytic activity were systematically screened and identified. Based on the elucidated degradation mechanism, several new herbicides with both high herbicidal activity and biodegradability were developed with the aid of a high-throughput strategy. Our findings may advance the application of sulfonylurea herbicides within the framework of environmental sustainability.
Collapse
Affiliation(s)
- Mingna Zheng
- Environment Research Institute, Shandong University, Qingdao 266237, P.R. China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao 266237, P.R. China
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, P.R. China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao 266237, P.R. China
| |
Collapse
|
25
|
Rahman MU, Ullah MW, Alabbosh KF, Shah JA, Muhammad N, Zahoor, Shah SWA, Nawab S, Sethupathy S, Abdikakharovich SA, Khan KA, Elboughdiri N, Zhu D. Lignin valorization through the oxidative activity of β-etherases: Recent advances and perspectives. Int J Biol Macromol 2024; 281:136383. [PMID: 39395522 DOI: 10.1016/j.ijbiomac.2024.136383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/10/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
The increasing interest in lignin, a complex and abundant biopolymer, stems from its ability to produce environmentally beneficial biobased products. β-Etherases play a crucial role by breaking down the β-aryl ether bonds in lignin. This comprehensive review covers the latest advancements in β-etherase-mediated lignin valorization, focusing on substrate selectivity, enzymatic oxidative activity, and engineering methods. Research on the microbial origin, protein modification, and molecular structure determination of β-etherases has improved our understanding of their effectiveness. Furthermore, the use of these enzymes in biorefinery processes is promising for enhancing lignin breakdown and creating more valuable products. The review also discusses the challenges and future potential of β-etherases in advancing lignin valorization for biorefinery applications that are economically viable and environmentally sustainable.
Collapse
Affiliation(s)
- Mujeeb Ur Rahman
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Muhammad Wajid Ullah
- Department of Pulp & Paper Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| | | | - Junaid Ali Shah
- Department of Molecular Biology and Biochemistry, College of Life Sciences, China Normal University, Shanghai 200241, PR China
| | - Nizar Muhammad
- COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Zahoor
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Syed Waqas Ali Shah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Said Nawab
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Sivasamy Sethupathy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | | | - Khalid Ali Khan
- Applied College & Center of Bee Research and its Products (CBRP), King Khalid University, Abha 61413, Saudi Arabia
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, P.O. Box 2440, Ha'il 81441, Saudi Arabia
| | - Daochen Zhu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
26
|
Almeida DV, Ciancaglini I, Sandano ALH, Roman EKB, Andrade VB, Nunes AB, Tramontina R, da Silva VM, Gabel F, Corrêa TLR, Damasio A, Muniz JRC, Squina FM, Garcia W. Unveiling the crystal structure of thermostable dienelactone hydrolase exhibiting activity on terephthalate esters. Enzyme Microb Technol 2024; 180:110498. [PMID: 39182429 DOI: 10.1016/j.enzmictec.2024.110498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/06/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
Dienelactone hydrolase (DLH) is one of numerous hydrolytic enzymes with an α/β-hydrolase fold, which catalyze the hydrolysis of dienelactone to maleylacetate. The DLHs share remarkably similar tertiary structures and a conserved arrangement of catalytic residues. This study presents the crystal structure and comprehensive functional characterization of a novel thermostable DLH from the bacterium Hydrogenobacter thermophilus (HtDLH). The crystal structure of the HtDLH, solved at a resolution of about 1.67 Å, exhibits a canonical α/β-hydrolase fold formed by eight β-sheet strands in the core, with one buried α-helix and six others exposed to the solvent. The structure also confirmed the conserved catalytic triad of DHLs formed by Cys121, Asp170, and His202 residues. The HtDLH forms stable homodimers in solution. Functional studies showed that HtDLH has the expected esterase activity over esters with short carbon chains, such as p-nitrophenyl acetate, reaching optimal activity at pH 7.5 and 70 °C. Furthermore, HtDLH maintains more than 50 % of its activity even after incubation at 90 °C for 16 h. Interestingly, HtDLH exhibits catalytic activity towards polyethylene terephthalate (PET) monomers, including bis-1,2-hydroxyethyl terephthalate (BHET) and 1-(2-hydroxyethyl) 4-methyl terephthalate, as well as other aliphatic and aromatic esters. These findings associated with the lack of activity on amorphous PET indicate that HtDLH has characteristic of a BHET-degrading enzyme. This work expands our understanding of enzyme families involved in PET degradation, providing novel insights for plastic biorecycling through protein engineering, which could lead to eco-friendly solutions to reduce the accumulation of plastic in landfills and natural environments.
Collapse
Affiliation(s)
- Dnane Vieira Almeida
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC),Santo André, SP, Brazil
| | - Iara Ciancaglini
- Laboratory of Molecular Sciences, University of Sorocaba (UNISO), Sorocaba, SP, Brazil; Laboratory of Enzymology and Molecular Biology of Microorganisms (LEBIMO), Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | | | - Ellen K B Roman
- Laboratory of Molecular Sciences, University of Sorocaba (UNISO), Sorocaba, SP, Brazil; Laboratory of Enzymology and Molecular Biology of Microorganisms (LEBIMO), Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Viviane Brito Andrade
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC),Santo André, SP, Brazil
| | - Ana Bárbara Nunes
- Laboratory of Molecular Sciences, University of Sorocaba (UNISO), Sorocaba, SP, Brazil; Laboratory of Enzymology and Molecular Biology of Microorganisms (LEBIMO), Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Robson Tramontina
- Laboratory of Enzymology and Molecular Biology of Microorganisms (LEBIMO), Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Viviam Moura da Silva
- Institut de Biologie Structurale (IBS), CEA, CNRS, UGA, 71 Avenue des Martyrs, Grenoble 38000, France
| | - Frank Gabel
- Institut de Biologie Structurale (IBS), CEA, CNRS, UGA, 71 Avenue des Martyrs, Grenoble 38000, France
| | - Thamy L R Corrêa
- Laboratory of Enzymology and Molecular Biology of Microorganisms (LEBIMO), Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - André Damasio
- Laboratory of Enzymology and Molecular Biology of Microorganisms (LEBIMO), Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | | | - Fabio Marcio Squina
- Laboratory of Molecular Sciences, University of Sorocaba (UNISO), Sorocaba, SP, Brazil.
| | - Wanius Garcia
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC),Santo André, SP, Brazil.
| |
Collapse
|
27
|
Wang W, Deng S, Lin J, Ouyang D. Modeling on in vivo disposition and cellular transportation of RNA lipid nanoparticles via quantum mechanics/physiologically-based pharmacokinetic approaches. Acta Pharm Sin B 2024; 14:4591-4607. [PMID: 39525592 PMCID: PMC11544175 DOI: 10.1016/j.apsb.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 11/16/2024] Open
Abstract
The lipid nanoparticle (LNP) has been so far proven as a strongly effective delivery system for mRNA and siRNA. However, the mechanisms of LNP's distribution, metabolism, and elimination are complicated, while the transportation and pharmacokinetics (PK) of LNP are just sparsely investigated and simply described. This study aimed to build a model for the transportation of RNA-LNP in Hela cells, rats, mice, and humans by physiologically based pharmacokinetic (PBPK) and quantum mechanics (QM) models with integrated multi-source data. LNPs with different ionizable lipids, particle sizes, and doses were modeled and compared by recognizing their critical parameters dominating PK. Some interesting results were found by the models. For example, the metabolism of ionizable lipids was first limited by the LNP disassembly rate instead of the hydrolyzation of ionizable lipids; the ability of RNA release from endosomes for three ionizable lipids was quantitively derived and can predict the probability of RNA release. Moreover, the biodegradability of three ionizable lipids was estimated by the QM method and the is generally consistent with the result of PBPK result. In summary, the transportation model of RNA LNP among various species for the first time was successfully constructed. Various in vitro and in vivo pieces of evidence were integrated through QM/PBPK multi-level modeling. The resulting new understandings are related to biodegradability, safety, and RNA release ability which are highly concerned issues of the formulation. This would benefit the design and research of RNA-LNP in the future.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
- Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Shiwei Deng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
- Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Jinzhong Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
- Center for mRNA Translational Research, Fudan University, Shanghai 200438, China
- Zhangjiang mRNA Innovation and Translation Center, Fudan University, Shanghai 200438, China
| | - Defang Ouyang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
- Faculty of Health Sciences, University of Macau, Macau 999078, China
| |
Collapse
|
28
|
Thapa G, Han SR, Paudel P, Kim MS, Hong YS, Oh TJ. In Silico Analysis and Biochemical Characterization of Streptomyces PET Hydrolase with Bis(2-Hydroxyethyl) Terephthalate Biodegradation Activity. J Microbiol Biotechnol 2024; 34:1836-1847. [PMID: 39187447 PMCID: PMC11485624 DOI: 10.4014/jmb.2404.04030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/22/2024] [Accepted: 07/08/2024] [Indexed: 08/28/2024]
Abstract
Polyethylene terephthalate (PET), one of the most widely used plastics in the world, causes serious environmental problems. Recently, scientists have been focused on the enzymatic degradation of PET, an environmentally friendly method that offers an attractive approach to the degradation and recycling of PET. In this work, PET hydrolase from Streptomyces sp. W2061 was biochemically characterized, and the biodegradation of PET was performed using the PET model substrate bis (2-hydroxyethyl terephthalate) (BHET). PET hydrolase has an isoelectric point of 5.84, and a molecular mass of about 50.31 kDa. The optimum pH and temperature were 7.0 and 40°C, respectively. LC-MS analysis of the enzymatic products showed that the PET hydrolase successfully degraded a single ester bond of BHET, leading to the formation of MHET. Furthermore, in silico characterization of the PET hydrolase protein sequence and its predicted three-dimensional structure was designed and compared with the well-characterized IsPETase from Ideonella sakaiensis. The structural analysis showed that the (Gly-x1-Ser-x2-Gly) serine hydrolase motif and the catalytic triad (Ser, Asp, and His) were conserved in all sequences. In addition, we integrated molecular dynamics (MD) simulations to analyze the variation in the structural stability of the PET hydrolase in the absence and presence of BHET. These simulations showed the formation of a stable complex between the PET hydrolase and BHET. To the best of our knowledge, this is the first study on Streptomyces sp. W2061 to investigate the BHET degradation activity of PET hydrolase, which has potential application in the biodegradation of plastics in the environment.
Collapse
Affiliation(s)
- Gobinda Thapa
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan 31460, Republic of Korea
| | - So-Ra Han
- Bio Big Data-Based Chungnam Smart Clean Research Leader Training Program, Sun Moon University, Asan 31460, Republic of Korea
| | - Prakash Paudel
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan 31460, Republic of Korea
| | - Min-Su Kim
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan 31460, Republic of Korea
| | - Young-Soo Hong
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang 28116, Republic of Korea
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, Sun Moon University, Asan 31460, Republic of Korea
- Bio Big Data-Based Chungnam Smart Clean Research Leader Training Program, Sun Moon University, Asan 31460, Republic of Korea
- Genome-Based BioIT Convergence Institute, Asan 31460, Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan 31460, Republic of Korea
| |
Collapse
|
29
|
Verma S, Singh A, Kumar P, Singla J. In-silico characterization of a hypothetical protein of Sulfobacillus sp. hq2 for degradation of phthalate diesters. Int J Biol Macromol 2024; 280:136006. [PMID: 39326604 DOI: 10.1016/j.ijbiomac.2024.136006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Phthalate plasticizers are hazardous compounds capable of causing endocrine disruption, cancers, and developmental disorders. Phthalate diesters are commonly used plasticizers in plastic products (PVC pipes) that leach out into the environment due to changes in temperature, pressure, and pH, posing harmful effects on different life forms. Bioremediation of phthalate diesters utilizing bacterial esterase has been recognized as an efficient approach but few effective esterases capable of degrading a wide range of phthalate diesters have been identified. Further, the thermostability of these esterases is a highly desirable property for their applications in diverse in-situ conditions. In this present in-silico study a hypothetical protein (POB10642.1) as a high-potential esterase from a thermostable strain of Sulfobacillus sp. hq2 has been characterized. Analysis revealed a significant sequence identity of 42.67 % and structural similarity (RMSD 0.557) with known phthalate diester degrading EstS1 esterase and a high Tm range of 55-66 °C. Structural analysis revealed the presence of two cavities on the surface mediating toward the catalytic site forming a catalytic tunnel. The enzyme POB10642.1 has significant molecular docking binding energies in the range of -5.4 to -7.5 kcal/mol with several phthalate diesters, including Diethyl phthalate, Dipropyl phthalate, Dibutyl phthalate, Dipentyl phthalate, Dihexyl phthalate, Benzyl butyl phthalate, Dicyclohexyl phthalate, and Bis(2-ethylhexyl) phthalate. High stability of binding during 100 ns molecular dynamics simulations revealed efficient and stable binding of the enzyme with a wide range of phthalate diesters at its active site, demonstrating the ability of the identified esterase to interact with and degrade diverse phthalate diesters. Therefore, POB10642.1 esterase can be an efficient candidate to be utilized in the development of enzyme-based bioremediation technologies to reduce the toxic levels of phthalate diesters.
Collapse
Affiliation(s)
- Shalja Verma
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee 247667, Uttarakhand, India
| | - Anika Singh
- Montfort School, Roorkee 24766, Uttarakhand, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee 247667, Uttarakhand, India.
| | - Jitin Singla
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
30
|
Lu M, Xu J, Wang Z, Wang Y, Wu J, Yang L. In silico mining and identification of a novel lipase from Paenibacillus larvae: Rational protein design for improving catalytic performance. Enzyme Microb Technol 2024; 179:110472. [PMID: 38889604 DOI: 10.1016/j.enzmictec.2024.110472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
Lipases play a vital role in various biological processes, from lipid metabolism to industrial applications. However, the ever-evolving challenges and diverse substrates necessitate the continual exploration of novel high-performance lipases. In this study, we employed an in silico mining approach to search for lipases with potential high sn-1,3 selectivity and catalytic activity. The identified novel lipase, PLL, from Paenibacillus larvae subsp. larvae B-3650 exhibited a specific activity of 111.2 ± 5.5 U/mg towards the substrate p-nitrophenyl palmitate (pNPP) and 6.9 ± 0.8 U/mg towards the substrate olive oil when expressed in Escherichia coli (E. coli). Computational design of cysteine mutations was employed to enhance the catalytic performance of PLL. Superior stability was achieved with the mutant K7C/A386C/H159C/K108C (2M3/2M4), showing an increase in melting temperature (Tm) by 1.9°C, a 2.05-fold prolonged half-life at 45°C, and no decrease in enzyme activity. Another mutant, K7C/A386C/A174C/A243C (2M1/2M3), showed a 4.9-fold enhancement in specific activity without compromising stability. Molecular dynamics simulations were conducted to explore the mechanisms of these two mutants. Mutant 2M3/2M4 forms putative disulfide bonds in the loop region, connecting the N- and C-termini of PLL, thus enhancing overall structural rigidity without impacting catalytic activity. The cysteines introduced in mutant 2M1/2M3 not only form new intramolecular hydrogen bonds but also alter the polarity and volume of the substrate-binding pocket, facilitating the entry of large substrate pNPP. These results highlight an efficient in silico exploration approach for novel lipases, offering a rapid and efficient method for enhancing catalytic performance through rational protein design.
Collapse
Affiliation(s)
- Mengyao Lu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Jiaqi Xu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China.
| | - Ziyuan Wang
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Yong Wang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Jianping Wu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Lirong Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China.
| |
Collapse
|
31
|
Raum HN, Modig K, Akke M, Weininger U. Proton Transfer Kinetics in Histidine Side Chains Determined by pH-Dependent Multi-Nuclear NMR Relaxation. J Am Chem Soc 2024; 146:22284-22294. [PMID: 39103163 PMCID: PMC11328173 DOI: 10.1021/jacs.4c04647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Histidine is a key amino-acid residue in proteins with unique properties engendered by its imidazole side chain that can exist in three different states: two different neutral tautomeric forms and a protonated, positively charged one with a pKa value close to physiological pH. Commonly, two or all three states coexist and interchange rapidly, enabling histidine to act as both donor and acceptor of hydrogen bonds, coordinate metal ions, and engage in acid/base catalysis. Understanding the exchange dynamics among the three states is critical for assessing histidine's mechanistic role in catalysis, where the rate of proton exchange and interconversion among tautomers might be rate limiting for turnover. Here, we determine the exchange kinetics of histidine residues with pKa values representative of the accessible range from 5 to 9 by measuring pH-dependent 15N, 13C, and 1H transverse relaxation rate constants for 5 nuclei in each imidazole. Proton exchange between the imidazole and the solvent is mediated by hydronium ions at acidic and neutral pH, whereas hydroxide mediated exchange becomes the dominant mechanism at basic pH. Proton transfer is very fast and reaches the diffusion limit for pKa values near neutral pH. We identify a direct pathway between the two tautomeric forms, likely mediated by a bridging water molecule or, in the case of high pH, hydroxide ion. For histidines with pKa 7, we determine all rate constants (lifetimes) involving protonation over the entire pH range. Our approach should enable critical insights into enzymatic acid/base catalyzed reactions involving histidines in proteins.
Collapse
Affiliation(s)
- Heiner N Raum
- Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, Halle (Saale) D-06120, Germany
| | - Kristofer Modig
- Division of Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, P.O. Box 124, Lund SE-22100, Sweden
| | - Mikael Akke
- Division of Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, P.O. Box 124, Lund SE-22100, Sweden
| | - Ulrich Weininger
- Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, Halle (Saale) D-06120, Germany
| |
Collapse
|
32
|
Abdelhamid MAA, Khalifa HO, Yoon HJ, Ki MR, Pack SP. Microbial Immobilized Enzyme Biocatalysts for Multipollutant Mitigation: Harnessing Nature's Toolkit for Environmental Sustainability. Int J Mol Sci 2024; 25:8616. [PMID: 39201301 PMCID: PMC11355015 DOI: 10.3390/ijms25168616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024] Open
Abstract
The ever-increasing presence of micropollutants necessitates the development of environmentally friendly bioremediation strategies. Inspired by the remarkable versatility and potent catalytic activities of microbial enzymes, researchers are exploring their application as biocatalysts for innovative environmental cleanup solutions. Microbial enzymes offer remarkable substrate specificity, biodegradability, and the capacity to degrade a wide array of pollutants, positioning them as powerful tools for bioremediation. However, practical applications are often hindered by limitations in enzyme stability and reusability. Enzyme immobilization techniques have emerged as transformative strategies, enhancing enzyme stability and reusability by anchoring them onto inert or activated supports. These improvements lead to more efficient pollutant degradation and cost-effective bioremediation processes. This review delves into the diverse immobilization methods, showcasing their success in degrading various environmental pollutants, including pharmaceuticals, dyes, pesticides, microplastics, and industrial chemicals. By highlighting the transformative potential of microbial immobilized enzyme biocatalysts, this review underscores their significance in achieving a cleaner and more sustainable future through the mitigation of micropollutant contamination. Additionally, future research directions in areas such as enzyme engineering and machine learning hold immense promise for further broadening the capabilities and optimizing the applications of immobilized enzymes in environmental cleanup.
Collapse
Affiliation(s)
- Mohamed A. A. Abdelhamid
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
- Department of Botany and Microbiology, Faculty of Science, Minia University, Minia 61519, Egypt
- Faculty of Education and Art, Sohar University, Sohar 311, Oman
| | - Hazim O. Khalifa
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates;
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Hyo Jik Yoon
- Institute of Natural Science, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea;
| | - Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
- Institute of Industrial Technology, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
| |
Collapse
|
33
|
Ogura Y, Hashino Y, Nakamura A. Direct Screening of PET Hydrolase Activity in Culture Medium Based on Turbidity Reduction. ACS OMEGA 2024; 9:34151-34160. [PMID: 39130604 PMCID: PMC11307985 DOI: 10.1021/acsomega.4c05488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024]
Abstract
The development of an efficient screening method for the activity of PET-degrading enzymes represents a significant technological advance in the field of enzyme research, with the potential to facilitate the advancement of enzymes for PET recycling. By examining the stable conditions of PET suspension and enzyme production conditions, we developed a method to quantify PET-degrading enzyme activity in E. coli culture medium using turbidity reduction as an indicator. High PET concentration or ionic strength caused aggregation of PET, and the best condition for activity detection was 0.5 mg mL-1 PET in 50 mM sodium phosphate pH 7.0. Preculture of E. coli increased the purity of enzyme secreted in medium. To evaluate the screening method, 720 colonies of the PET2-7M-H229X-F233X mutant library were analyzed and three candidates of high-activity mutants were obtained. The thermostability of the mutants could also be easily measured by measuring the residual activity after heat treatment. The H229T-F233M mutant showed 3.4 times higher degradation rate against PET film than the template enzyme at the initial time. The molecular dynamics simulation implied that the F233M mutation makes space for making an α helix and that the H229T mutation resolved the steric hindrance with Trp199. These mutations were speculated to change the angle of the Trp199 side chain of PET2 to an angle similar to that of the Trp185 of IsPETase, making it suitable for PET binding to the active center. Screening of activity using PET suspensions is compatible with robotic automation and is expected to be useful for validating computationally predicted mutations.
Collapse
Affiliation(s)
- Yui Ogura
- Department
of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Yoshihito Hashino
- Department
of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Akihiko Nakamura
- Department
of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research
Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Shizuoka
Institute for the Study of Marine Biology and Chemistry, Shizuoka, Shizuoka 422-8529, Japan
- Institute
for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama Myodaijicho, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
34
|
Jin J, Jia Z. Characterization of Potential Plastic-Degradation Enzymes from Marine Bacteria. ACS OMEGA 2024; 9:32185-32192. [PMID: 39072070 PMCID: PMC11270687 DOI: 10.1021/acsomega.4c04843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
Polyethylene terephthalate (PET) and polyethylene (PE) are prominent polymer materials that comprise a significant portion of commercial plastic waste. Their durability and slow degradation rate have resulted in significant accumulation of plastic on Earth. In a recent study, macrotranscriptomic profiling of a reconstituted marine bacterial community identified 10 putative enzymes capable of directly acting on PE or PET (PEases or PETases). Among these enzymes, three recombinant proteins were reported to possess PE degradation activity. To select potential plastic degrading enzyme candidates for protein engineering efforts, we expressed and purified eight out of the 10 candidates, excluding two due to poor expression and/or solubility. Notably, several candidate proteins displayed significant esterase activity on p-nitrophenyl butyrate and exhibited unexpected thermostability despite their marine origin. Additionally, we observed dose- and time-dependent hydrolytic activity on the PET trimer substrate. Structural analysis and mutagenesis of a candidate protein confirmed the presence of catalytic triad residues, classifying it as an esterase. Furthermore, we elucidated the structural importance of the two disulfide bonds. Through point mutation experiments, we observed an enhanced hydrolytic activity of a selected enzyme candidate on PET nanoparticles. Our findings challenge the classification of the enzymes directly acting on PE and highlight the significance and complexity of validating PE degradation enzymes identified through metagenomic analysis.
Collapse
Affiliation(s)
- Jin Jin
- Department of Biomedical
and Molecular Sciences, Queen’s University, 18 Stuart Street, Kingston, ON KL7
3N6, Canada
| | - Zongchao Jia
- Department of Biomedical
and Molecular Sciences, Queen’s University, 18 Stuart Street, Kingston, ON KL7
3N6, Canada
| |
Collapse
|
35
|
Sinha P, Yadav AK. In silico identification of cyclosporin derivatives as potential inhibitors for RdRp of rotavirus by molecular docking and molecular dynamic studies. J Biomol Struct Dyn 2024; 42:5001-5014. [PMID: 37517053 DOI: 10.1080/07391102.2023.2239918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/05/2023] [Indexed: 08/01/2023]
Abstract
Rotavirus is one of the most common gastrointestinal viral diseases. Till date, there are only two vaccines available in the markets, which are specifically to be administered to young babies. In this study, VP1 RdRp is selected as potential target to carry out inhibitory activities. Cyclosporin A (Cys A) derivatives were designed via FBDD, pharmacokinetics, molecular docking, molecular dynamics (MD) simulation and molecular mechanics generalized born surface area was applied on these compounds. The results from these investigations were analyzed and it was found that the considered derivatives in this study were nontoxic and docking results revealed that the derivatives made some important bonds inside the active site of the receptors within a catalytic triad (Serine-Histidine-Aspartate). After analyzing the mean values of root mean square density (RMSD), root mean square fluctuation (RMSF), radius of gyration (RoG) and solvent accessible surface area (SASA) at 100 ns MD simulation of the selected compounds, it was found that compound 1 exhibits RMSD of 0.74 ± 0.10 Å, RMSF of 0.85 ± 0.15 Å, RoG of 16.45 ± 0.40 Å, SASA of 66.55 ± 0.35 nm2 and ΔGbind of -32.76 ± 0.02 kcal/mol. Therefore, the study revealed that amongst the designed and reported compounds, compound 1 was more stable within the active region of the RdRp and also this compound possesses lower binding free energy as compared to other selected compounds and Cys A as well.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Prashasti Sinha
- Department of Physics, School of Physical & Decision Science, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Anil Kumar Yadav
- Department of Physics, School of Physical & Decision Science, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
36
|
Lin J, Lv H, Wang T, Tao H, Zhong Y, Zhou Y, Tang Y, Xie F, Zhuang G, Xu C, Chu Y, Wang X, Yang Y, Song T. The global distribution of the macrolide esterase EstX from the alpha/beta hydrolase superfamily. Commun Biol 2024; 7:781. [PMID: 38944651 PMCID: PMC11214618 DOI: 10.1038/s42003-024-06473-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024] Open
Abstract
Macrolide antibiotics, pivotal in clinical therapeutics, are confronting resistance challenges mediated by enzymes like macrolide esterases, which are classified into Ere-type and the less studied Est-type. In this study, we provide the biochemical confirmation of EstX, an Est-type macrolide esterase that initially identified as unknown protein in the 1980s. EstX is capable of hydrolyzing four 16-membered ring macrolides, encompassing both veterinary (tylosin, tidipirosin, and tilmicosin) and human-use (leucomycin A5) antibiotics. It uses typical catalytic triad (Asp233-His261-Ser102) from alpha/beta hydrolase superfamily for ester bond hydrolysis. Further genomic context analysis suggests that the dissemination of estX is likely facilitated by mobile genetic elements such as integrons and transposons. The global distribution study indicates that bacteria harboring the estX gene, predominantly pathogenic species like Escherichia coli, Salmonella enterica, and Klebsiella pneumoniae, are prevalent in 74 countries across 6 continents. Additionally, the emergence timeline of the estX gene suggests its proliferation may be linked to the overuse of macrolide antibiotics. The widespread prevalence and dissemination of Est-type macrolide esterase highlight an urgent need for enhanced monitoring and in-depth research, underlining its significance as an escalating public health issue.
Collapse
Affiliation(s)
- Jiafu Lin
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University, 610106, Chengdu, China
| | - Hua Lv
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University, 610106, Chengdu, China
| | - Tiantian Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University, 610106, Chengdu, China
| | - Hongkun Tao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University, 610106, Chengdu, China
| | - Yi Zhong
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University, 610106, Chengdu, China
| | - Yang Zhou
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University, 610106, Chengdu, China
| | - Yibo Tang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University, 610106, Chengdu, China
| | - Feng Xie
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University, 610106, Chengdu, China
| | - Guoqing Zhuang
- Sichuan Academy of Forestry, 610081, Chengdu, Sichuan, China
| | - Changwen Xu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University, 610106, Chengdu, China
| | - Yiwen Chu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University, 610106, Chengdu, China
| | - Xinrong Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University, 610106, Chengdu, China
| | - Yongqiang Yang
- Center of Infectious Diseases, Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China.
| | - Tao Song
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University, 610106, Chengdu, China.
| |
Collapse
|
37
|
Clews AC, Ulch BA, Jesionowska M, Hong J, Mullen RT, Xu Y. Variety of Plant Oils: Species-Specific Lipid Biosynthesis. PLANT & CELL PHYSIOLOGY 2024; 65:845-862. [PMID: 37971406 DOI: 10.1093/pcp/pcad147] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/03/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
Plant oils represent a large group of neutral lipids with important applications in food, feed and oleochemical industries. Most plants accumulate oils in the form of triacylglycerol within seeds and their surrounding tissues, which comprises three fatty acids attached to a glycerol backbone. Different plant species accumulate unique fatty acids in their oils, serving a range of applications in pharmaceuticals and oleochemicals. To enable the production of these distinctive oils, select plant species have adapted specialized oil metabolism pathways, involving differential gene co-expression networks and structurally divergent enzymes/proteins. Here, we summarize some of the recent advances in our understanding of oil biosynthesis in plants. We compare expression patterns of oil metabolism genes from representative species, including Arabidopsis thaliana, Ricinus communis (castor bean), Linum usitatissimum L. (flax) and Elaeis guineensis (oil palm) to showcase the co-expression networks of relevant genes for acyl metabolism. We also review several divergent enzymes/proteins associated with key catalytic steps of unique oil accumulation, including fatty acid desaturases, diacylglycerol acyltransferases and oleosins, highlighting their structural features and preference toward unique lipid substrates. Lastly, we briefly discuss protein interactomes and substrate channeling for oil biosynthesis and the complex regulation of these processes.
Collapse
Affiliation(s)
- Alyssa C Clews
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Brandon A Ulch
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Monika Jesionowska
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Jun Hong
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Yang Xu
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
38
|
Charlier C, Gavalda S, Grga J, Perrot L, Gabrielli V, Löhr F, Schörghuber J, Lichtenecker R, Arnal G, Marty A, Tournier V, Lippens G. Exploring the pH dependence of an improved PETase. Biophys J 2024; 123:1542-1552. [PMID: 38664965 PMCID: PMC11213969 DOI: 10.1016/j.bpj.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/20/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Enzymatic recycling of plastic and especially of polyethylene terephthalate (PET) has shown great potential to reduce its negative impact on our society. PET hydrolases (PETases) have been optimized using rational design and machine learning, but the mechanistic details of the PET depolymerization process remain unclear. Belonging to the carboxylic-ester hydrolase family with a canonical Ser-His-Asp catalytic triad, their observed alkaline pH optimum is generally thought to be related to the protonation state of the catalytic His. Here, we explore this aspect in the context of LCCICCG, an optimized PETase, derived from the leaf-branch compost cutinase enzyme. We use NMR to identify the dominant tautomeric structure of the six histidines. Five show surprisingly low pKa values below 4.0, whereas the catalytic H242 in the active enzyme displays a pKa value that varies from 4.9 to 4.7 when temperatures increase from 30°C to 50°C. Whereas the hydrolytic activity of the enzyme toward a soluble substrate can be modeled by the corresponding protonation/deprotonation curve, an important discrepancy is found when the substrate is the solid plastic. This opens the way to further mechanistic understanding of the PETase activity and underscores the importance of studying the enzyme at the liquid-solid interface.
Collapse
Affiliation(s)
- Cyril Charlier
- Toulouse Biotechnology Institute (TBI), University of Toulouse, CNRS, INRAE, INSA Toulouse, Toulouse Cedex, France
| | - Sabine Gavalda
- Carbios, Parc Cataroux - Bâtiment B80, Clermont-Ferrand, France
| | - Jelena Grga
- Toulouse Biotechnology Institute (TBI), University of Toulouse, CNRS, INRAE, INSA Toulouse, Toulouse Cedex, France
| | - Laura Perrot
- Toulouse Biotechnology Institute (TBI), University of Toulouse, CNRS, INRAE, INSA Toulouse, Toulouse Cedex, France
| | - Valeria Gabrielli
- Toulouse Biotechnology Institute (TBI), University of Toulouse, CNRS, INRAE, INSA Toulouse, Toulouse Cedex, France
| | - Frank Löhr
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, Goethe, University Frankfurt, Frankfurt am Main, Germany
| | - Julia Schörghuber
- Institute of Organic Chemistry, University of Vienna, Währingerstraße 38, Vienna, Austria
| | - Roman Lichtenecker
- Institute of Organic Chemistry, University of Vienna, Währingerstraße 38, Vienna, Austria; MAG-LAB, Vienna, Austria
| | - Grégory Arnal
- Carbios, Parc Cataroux - Bâtiment B80, Clermont-Ferrand, France
| | - Alain Marty
- Carbios, Parc Cataroux - Bâtiment B80, Clermont-Ferrand, France
| | | | - Guy Lippens
- Toulouse Biotechnology Institute (TBI), University of Toulouse, CNRS, INRAE, INSA Toulouse, Toulouse Cedex, France.
| |
Collapse
|
39
|
Medeiros P, Canato D, Braz ASK, Paulino LC. Phylogenetic analyses reveal insights into interdomain horizontal gene transfer of microbial lipases. Mol Phylogenet Evol 2024; 195:108069. [PMID: 38565359 DOI: 10.1016/j.ympev.2024.108069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/12/2024] [Accepted: 03/30/2024] [Indexed: 04/04/2024]
Abstract
Microbial lipases play a pivotal role in a wide range of biotechnological processes and in the human skin microbiome. However, their evolution remains poorly understood. Accessing the evolutionary process of lipases could contribute to future applications in health and biotechnology. We investigated genetic events associated with the evolutionary trajectory of the microbial family LIP lipases. Using phylogenetic analysis, we identified two distinct horizontal gene transfer (HGT) events from Bacteria to Fungi. Further analysis of human cutaneous mycobiome members such as the lipophilic Malassezia yeasts and CUG-Ser-1 clade (including Candida sp. and other microorganisms associated with cutaneous mycobiota) revealed recent evolutionary processes, with multiple gene duplication events. The Lid region of fungal lipases, crucial for substrate interaction, exhibits varying degrees of conservation among different groups. Our findings suggest the adaptability of the fungal LIP family in various genetic and metabolic contexts and its potential role in niche exploration.
Collapse
Affiliation(s)
- Pedro Medeiros
- Center for Natural Sciences and Humanities, Federal University of ABC, Santo André, SP, Brazil
| | - Danilo Canato
- Center for Natural Sciences and Humanities, Federal University of ABC, Santo André, SP, Brazil
| | | | - Luciana Campos Paulino
- Center for Natural Sciences and Humanities, Federal University of ABC, Santo André, SP, Brazil.
| |
Collapse
|
40
|
Nair PC, Mangoni AA, Rodionov RN. Redefining the biological and pathophysiological role of dimethylarginine dimethylaminohydrolase 2. Trends Mol Med 2024; 30:552-561. [PMID: 38553332 DOI: 10.1016/j.molmed.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 06/15/2024]
Abstract
The enzyme dimethylarginine dimethylaminohydrolase (DDAH) 1 metabolizes asymmetric dimethylarginine (ADMA), a critical endogenous cardiovascular risk factor. In the past two decades, there has been significant controversy about whether DDAH2, the other DDAH isoform, is also able to directly metabolize ADMA. There has been evidence that DDAH2 regulates several critical processes involved in cardiovascular and immune homeostasis. However, the molecular mechanisms underpinning these effects are unclear. In this opinion, we discuss the previous and current knowledge of ADMA metabolism by DDAH in light of a recent consortium study, which convincingly demonstrated that DDAH2 is not capable of metabolizing ADMA, unlike DDAH1. Thus, further research in this field is needed to uncover the molecular mechanisms of DDAH2 and its role in various disorders.
Collapse
Affiliation(s)
- Pramod C Nair
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia; Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia; South Australian Health and Medical Research Institute, University of Adelaide, Adelaide, SA, Australia; Discipline of Medicine, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.
| | - Arduino A Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia; Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Bedford Park, SA, Australia
| | - Roman N Rodionov
- Department of Internal Medicine III, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
41
|
Zhao J, Xu Y, Ding Z, Wu Q, Li W, Sun B, Li X. Discovery and mechanism explanation of a novel green biocatalyst esterase Bur01 from Burkholderia ambifaria for ester synthesis under aqueous phase. Int J Biol Macromol 2024; 272:132630. [PMID: 38810853 DOI: 10.1016/j.ijbiomac.2024.132630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Biocatalyst catalyzing the synthesis of esters under aqueous phase is an alternative with green and sustainable characteristics. Here, a biocatalyst esterase Bur01 was identified through genome sequencing and gene library construction from a Burkholderia ambifaria BJQ0010 with efficient ester synthesis property under aqueous phase for the first time. Bur01 was soluble expressed and the purified enzyme showed the highest activity at pH 4.0 and 40 °C. It had a broad substrate spectrum, especially for ethyl esters. The structure of Bur01 was categorized as a member of α/β fold hydrolase superfamily. The easier opening of lid under aqueous phase and the hydrophobicity of substrate channel contribute to easier access to the active center for substrate. Molecular docking and site-directed mutation demonstrated that the oxyanion hole Ala22, Met112 and π-bond stacking between His24 and Phe217 played essential roles in catalytic function. The mutants V149A, V149I, L159I and F137I enhanced enzyme activity to 1.42, 1.14, 1.32 and 2.19 folds due to reduced spatial resistance and increased hydrophobicity of channel and ethyl octanoate with the highest conversion ratio of 68.28 % was obtained for F137I. These results provided new ideas for developing green catalysts and catalytic basis of mechanistic studies for ester synthetase under aqueous phase.
Collapse
Affiliation(s)
- Jingrong Zhao
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Beijing 100048, China; China General Chamber of Commerce, Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Youqiang Xu
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Beijing 100048, China; China General Chamber of Commerce, Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; Beijing Association for Science and Technology-Food Nutrition and Safety Professional Think Tank Base, Beijing 100048, China
| | - Ze Ding
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Beijing 100048, China; China General Chamber of Commerce, Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Qiuhua Wu
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Beijing 100048, China; China General Chamber of Commerce, Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Weiwei Li
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Beijing 100048, China; China General Chamber of Commerce, Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; Beijing Association for Science and Technology-Food Nutrition and Safety Professional Think Tank Base, Beijing 100048, China
| | - Baoguo Sun
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Beijing 100048, China; China General Chamber of Commerce, Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Xiuting Li
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Beijing 100048, China; China General Chamber of Commerce, Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; Beijing Association for Science and Technology-Food Nutrition and Safety Professional Think Tank Base, Beijing 100048, China; China Bio-Specialty Food Enzyme Technology Research Development and Promotion Center, Beijing 100048, China.
| |
Collapse
|
42
|
Carbonaro M, Mazurkewich S, Fiorentino G, Lo Leggio L, Larsbrink J. Exploration of three Dyadobacter fermentans enzymes uncovers molecular activity determinants in CE15. Appl Microbiol Biotechnol 2024; 108:335. [PMID: 38747981 PMCID: PMC11096219 DOI: 10.1007/s00253-024-13175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/18/2024]
Abstract
Glucuronoyl esterases (GEs) are serine-type hydrolase enzymes belonging to carbohydrate esterase family 15 (CE15), and they play a central role in the reduction of recalcitrance in plant cell walls by cleaving ester linkages between glucuronoxylan and lignin in lignocellulose. Recent studies have suggested that bacterial CE15 enzymes are more heterogeneous in terms of sequence, structure, and substrate preferences than their fungal counterparts. However, the sequence space of bacterial GEs has still not been fully explored, and further studies on diverse enzymes could provide novel insights into new catalysts of biotechnological interest. To expand our knowledge on this family of enzymes, we investigated three unique CE15 members encoded by Dyadobacter fermentans NS114T, a Gram-negative bacterium found endophytically in maize/corn (Zea mays). The enzymes are dissimilar, sharing ≤ 39% sequence identity to each other' and were considerably different in their activities towards synthetic substrates. Combined analysis of their primary sequences and structural predictions aided in establishing hypotheses regarding specificity determinants within CE15, and these were tested using enzyme variants attempting to shift the activity profiles. Together, the results expand our existing knowledge of CE15, shed light into the molecular determinants defining specificity, and support the recent thesis that diverse GEs encoded by a single microorganism may have evolved to fulfil different physiological functions. KEY POINTS: • D. fermentans encodes three CE15 enzymes with diverse sequences and specificities • The Region 2 inserts in bacterial GEs may directly influence enzyme activity • Rational amino acid substitutions improved the poor activity of the DfCE15A enzyme.
Collapse
Affiliation(s)
- Miriam Carbonaro
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Scott Mazurkewich
- Wallenberg Wood Science Center, Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.
| | | | - Leila Lo Leggio
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen, Denmark
| | - Johan Larsbrink
- Wallenberg Wood Science Center, Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.
| |
Collapse
|
43
|
Shi C, Quinn EC, Diment WT, Chen EYX. Recyclable and (Bio)degradable Polyesters in a Circular Plastics Economy. Chem Rev 2024; 124:4393-4478. [PMID: 38518259 DOI: 10.1021/acs.chemrev.3c00848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Polyesters carrying polar main-chain ester linkages exhibit distinct material properties for diverse applications and thus play an important role in today's plastics economy. It is anticipated that they will play an even greater role in tomorrow's circular plastics economy that focuses on sustainability, thanks to the abundant availability of their biosourced building blocks and the presence of the main-chain ester bonds that can be chemically or biologically cleaved on demand by multiple methods and thus bring about more desired end-of-life plastic waste management options. Because of this potential and promise, there have been intense research activities directed at addressing recycling, upcycling or biodegradation of existing legacy polyesters, designing their biorenewable alternatives, and redesigning future polyesters with intrinsic chemical recyclability and tailored performance that can rival today's commodity plastics that are either petroleum based and/or hard to recycle. This review captures these exciting recent developments and outlines future challenges and opportunities. Case studies on the legacy polyesters, poly(lactic acid), poly(3-hydroxyalkanoate)s, poly(ethylene terephthalate), poly(butylene succinate), and poly(butylene-adipate terephthalate), are presented, and emerging chemically recyclable polyesters are comprehensively reviewed.
Collapse
Affiliation(s)
- Changxia Shi
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Ethan C Quinn
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Wilfred T Diment
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
44
|
Shao T, Noroozifar M, Kraatz HB. Divalent metal ion modulation of a simple peptide-based hydrogel: self-assembly and viscoelastic properties. SOFT MATTER 2024; 20:2720-2729. [PMID: 38454905 DOI: 10.1039/d3sm01544k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Peptide self-assembly has been highly studied to understand the pathways in forming higher order structures along with the development and application of resulting hydrogel materials. Driven by noncovalent interactions, peptide hydrogels are stimuli-responsive to any addition to its gelling conditions. Here, a Phe-His based peptide, C14-FH(Trt)-OH, was synthesized and characterized with 1H NMR, FT-IR, MS, UV-vis spectroscopies and elemental analysis. Based on SEM imaging, the dipeptide conjugate was capable of forming a nanofibrous, interconnected network encapsulating buffer to produce a supramolecular hydrogel. Through the addition of Zn2+ and Cu2+, there is a clear change in the self-assembled nanostructures characterized through SEM. With this effect on self-assembly follows a change in the viscoelastic properties of the material, as determined through rheological frequency sweeps, with 2 and 3 orders of magnitude decreases in the elastic modulus G' in the presence of Zn2+ and Cu2+ respectively. This highlights the tunability of soft material properties with peptide design and self-assembly, through metal ions and Nδ-directed coordination.
Collapse
Affiliation(s)
- Tsuimy Shao
- Department of Chemistry, University of Toronto, 80 St. George Street, M5S 3H6, Toronto, Canada
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, M1C 1A4, Scarborough, Canada.
| | - Meissam Noroozifar
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, M1C 1A4, Scarborough, Canada.
| | - Heinz-Bernhard Kraatz
- Department of Chemistry, University of Toronto, 80 St. George Street, M5S 3H6, Toronto, Canada
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, M1C 1A4, Scarborough, Canada.
| |
Collapse
|
45
|
Neuber J, Lang C, Aurass P, Flieger A. Tools and mechanisms of vacuolar escape leading to host egress in Legionella pneumophila infection: Emphasis on bacterial phospholipases. Mol Microbiol 2024; 121:368-384. [PMID: 37891705 DOI: 10.1111/mmi.15183] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023]
Abstract
The phenomenon of host cell escape exhibited by intracellular pathogens is a remarkably versatile occurrence, capable of unfolding through lytic or non-lytic pathways. Among these pathogens, the bacterium Legionella pneumophila stands out, having adopted a diverse spectrum of strategies to disengage from their host cells. A pivotal juncture that predates most of these host cell escape modalities is the initial escape from the intracellular compartment. This critical step is increasingly supported by evidence suggesting the involvement of several secreted pathogen effectors, including lytic proteins. In this intricate landscape, L. pneumophila emerges as a focal point for research, particularly concerning secreted phospholipases. While nestled within its replicative vacuole, the bacterium deftly employs both its type II (Lsp) and type IVB (Dot/Icm) secretion systems to convey phospholipases into either the phagosomal lumen or the host cell cytoplasm. Its repertoire encompasses numerous phospholipases A (PLA), including three enzymes-PlaA, PlaC, and PlaD-bearing the GDSL motif. Additionally, there are 11 patatin-like phospholipases A as well as PlaB. Furthermore, the bacterium harbors three extracellular phospholipases C (PLCs) and one phospholipase D. Within this comprehensive review, we undertake an exploration of the pivotal role played by phospholipases in the broader context of phagosomal and host cell egress. Moreover, we embark on a detailed journey to unravel the established and potential functions of the secreted phospholipases of L. pneumophila in orchestrating this indispensable process.
Collapse
Affiliation(s)
- Jonathan Neuber
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Christina Lang
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Philipp Aurass
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Antje Flieger
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| |
Collapse
|
46
|
Tomonaga K, Tanaka J, Kiyoshi K, Akao T, Watanabe K, Kadokura T, Nakayama S. Physiological role of the EHL gene in sake yeast and its effects on quality of sake. J Biosci Bioeng 2024; 137:195-203. [PMID: 38242756 DOI: 10.1016/j.jbiosc.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/09/2023] [Accepted: 12/02/2023] [Indexed: 01/21/2024]
Abstract
The EHL1/2/3 genes were identified by whole-genome sequencing of Kyokai No. 7 (K7), which is a well-known representative Japanese sake yeast Saccharomyces cerevisiae. The genes are present in K7, but not in laboratory strain S288C. Although the genes were presumed to encode epoxide hydrolase based on homology analysis, their effect on cellular metabolism in sake yeast has not yet been clarified. We constructed ehl1/2/3 mutants harboring a stop codon in each gene using the haploid yeast strain H3 as the parental strain, which was derived from K701, and investigated the physiological role and effects of the EHL1/2/3 genes on sake quality. Metabolome analysis and vitamin requirement testing revealed that the EHL1/2/3 genes are partly responsible for the synthesis of pantothenate. For fermentation profiles, ethanol production by the ehl1/2/3 mutant was comparable with that of strain H3, but succinate production was decreased in the ehl1/2/3 mutant compared to strain H3 when cultured in yeast malt (YM) medium containing 10% glucose and during sake brewing. Ethyl hexanoate and isoamyl acetate levels in the ehl1/2/3 mutant strain were decreased compared to those of strain H3 during sake brewing. Thus, the EHL1/2/3 genes did not affect ethanol production but did affect the production of organic acids and aromatic components during sake brewing.
Collapse
Affiliation(s)
- Kazuko Tomonaga
- Department of Fermentation Science and Technology, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Jumpei Tanaka
- Department of Fermentation Science and Technology, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Keiji Kiyoshi
- Department of Biochemistry and Applied Bioscience, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadainishi, Miyazaki-shi, Miyazaki 889-2192, Japan
| | - Takeshi Akao
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-hiroshima, Hiroshima 739-0046, Japan
| | - Kota Watanabe
- Department of Fermentation Science and Technology, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Toshimori Kadokura
- Department of Fermentation Science and Technology, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Shunichi Nakayama
- Department of Fermentation Science and Technology, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan.
| |
Collapse
|
47
|
Arad E, Jelinek R. Catalytic physiological amyloids. Methods Enzymol 2024; 697:77-112. [PMID: 38816136 DOI: 10.1016/bs.mie.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Amyloid fibrils have been identified in many protein systems, mostly linked to progression and cytotoxicity in neurodegenerative diseases and other pathologies, but have also been observed in normal physiological systems. A growing body of work has shown that amyloid fibrils can catalyze chemical reactions. Most studies have focused on catalysis by de-novo synthetic amyloid-like peptides; however, recent studies reveal that physiological, native amyloids are catalytic as well. Here, we discuss methodologies and major experimental aspects pertaining to physiological catalytic amyloids. We highlight analyzes of kinetic parameters related to the catalytic activities of amyloid fibrils, structure-function considerations, characterization of the catalytic active sites, and deciphering of catalytic mechanisms.
Collapse
Affiliation(s)
- Elad Arad
- Ilse Katz Institute for Nanoscale Science and Technology and the Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, Israel; Department of Chemical Engineering, Columbia University in the City of New York, New York, NY, United States.
| | - Raz Jelinek
- Ilse Katz Institute for Nanoscale Science and Technology and the Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
48
|
Sánchez-Arroyo A, Plaza-Vinuesa L, Abeijón-Mukdsi MC, de Las Rivas B, Mancheño JM, Muñoz R. A new and promiscuous α/β hydrolase from Acinetobacter tandoii DSM 14970 T inactivates the mycotoxin ochratoxin A. Appl Microbiol Biotechnol 2024; 108:230. [PMID: 38393350 PMCID: PMC10891195 DOI: 10.1007/s00253-024-13073-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
The presence of ochratoxin A (OTA) in food and feed represents a serious concern since it raises severe health implications. Bacterial strains of the Acinetobacter genus hydrolyse the amide bond of OTA yielding non-toxic OTα and L-β-phenylalanine; in particular, the carboxypeptidase PJ15_1540 from Acinetobacter sp. neg1 has been identified as an OTA-degrading enzyme. Here, we describe the ability to transform OTA of cell-free protein extracts from Acinetobacter tandoii DSM 14970 T, a strain isolated from sludge plants, and also report on the finding of a new and promiscuous α/β hydrolase (ABH), with close homologs highly distributed within the Acinetobacter genus. ABH from A. tandoii (AtABH) exhibited amidase activity against OTA and OTB mycotoxins, as well as against several carboxypeptidase substrates. The predicted structure of AtABH reveals an α/β hydrolase core composed of a parallel, six-stranded β-sheet, with a large cap domain similar to the marine esterase EprEst. Further biochemical analyses of AtABH reveal that it is an efficient esterase with a similar specificity profile as EprEst. Molecular docking studies rendered a consistent OTA-binding mode. We proposed a potential procedure for preparing new OTA-degrading enzymes starting from promiscuous α/β hydrolases based on our results. KEY POINTS: • AtABH is a promiscuous αβ hydrolase with both esterase and amidohydrolase activities • AtABH hydrolyses the amide bond of ochratoxin A rendering nontoxic OTα • Promiscuous αβ hydrolases are a possible source of new OTA-degrading enzymes.
Collapse
Affiliation(s)
- Ana Sánchez-Arroyo
- Bacterial Biotechnology, Institute of Food Science, Technology and Nutrition (ICTAN), CSIC, José Antonio Novais 6, 28040, Madrid, Spain
| | - Laura Plaza-Vinuesa
- Bacterial Biotechnology, Institute of Food Science, Technology and Nutrition (ICTAN), CSIC, José Antonio Novais 6, 28040, Madrid, Spain
| | - María Claudia Abeijón-Mukdsi
- Bacterial Biotechnology, Institute of Food Science, Technology and Nutrition (ICTAN), CSIC, José Antonio Novais 6, 28040, Madrid, Spain
| | - Blanca de Las Rivas
- Bacterial Biotechnology, Institute of Food Science, Technology and Nutrition (ICTAN), CSIC, José Antonio Novais 6, 28040, Madrid, Spain
| | - José Miguel Mancheño
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Blas Cabrera, CSIC, Serrano 119, 28006, Madrid, Spain.
| | - Rosario Muñoz
- Bacterial Biotechnology, Institute of Food Science, Technology and Nutrition (ICTAN), CSIC, José Antonio Novais 6, 28040, Madrid, Spain.
| |
Collapse
|
49
|
Kua GKB, Nguyen GKT, Li Z. Enzymatic Strategies for the Biosynthesis of N-Acyl Amino Acid Amides. Chembiochem 2024; 25:e202300672. [PMID: 38051126 DOI: 10.1002/cbic.202300672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
Amide bond-containing biomolecules are functionally significant and useful compounds with diverse applications. For example, N-acyl amino acids (NAAAs) are an important class of lipoamino acid amides with extensive use in food, cosmetic and pharmaceutical industries. Their conventional chemical synthesis involves the use of toxic chlorinating agents for carboxylic acid activation. Enzyme-catalyzed biotransformation for the green synthesis of these amides is therefore highly desirable. Here, we review a range of enzymes suitable for the synthesis of NAAA amides and their strategies adopted in carboxylic acid activation. Generally, ATP-dependent enzymes for NAAA biosynthesis are acyl-adenylating enzymes that couple the hydrolysis of phosphoanhydride bond in ATP with the formation of an acyl-adenylate intermediate. In contrast, ATP-independent enzymes involve hydrolases such as lipases or aminoacylases, which rely on the transient activation of the carboxylic acid. This occurs either through an acyl-enzyme intermediate or by favorable interactions with surrounding residues to anchor the acyl donor in a suitable orientation for the incoming amine nucleophile. Recently, the development of an alternative pathway involving ester-amide interconversion has unraveled another possible strategy for amide formation through esterification-aminolysis cascade reactions, potentially expanding the substrate scope for enzymes to catalyze the synthesis of a diverse range of NAAA amides.
Collapse
Affiliation(s)
- Glen Kai Bin Kua
- Wilmar International Limited, 28 Biopolis Road, Singapore, 138568
| | | | - Zhi Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
50
|
Du Z, Ma Y, Shen Y, Jiang X, Zhou Y, Shi T. Exploring the substrate stereoselectivity and catalytic mechanism of nonribosomal peptide macrocyclization in surugamides biosynthesis. iScience 2024; 27:108876. [PMID: 38313049 PMCID: PMC10835440 DOI: 10.1016/j.isci.2024.108876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/12/2023] [Accepted: 01/08/2024] [Indexed: 02/06/2024] Open
Abstract
SurE, the first reported penicillin-binding protein-like thioesterase (PBP-like TE), is known as a new off-loading cyclase, which catalyzes heterochiral coupling in nonribosomal peptides (NRPs). However, the structural rationale for substrate stereoselectivity and enzymatic mechanism remains mysterious. Here, computational models, integrating MD simulations and QM/MM methods, unveiled SurE's substrate recognition and catalytic process. An oxyanion hole stabilized the C-terminal D-residue during recognition. Residue R446 anchored the substrate for macrocyclization. A vital hydrogen-bonding network (Y154, K66, N156), verified by mutation results, was responsible for the recognition of N-terminal L-residue and involvement in catalytic process with a calculated 19.4 kcal/mol energy barrier. Four novel-designed peptide precursors were effectively cyclized into cyclopeptides by SurE based on computational analysis. Our results provide a comprehensive understanding of SurE's catalytic mechanism and guiding design of versatile PBP-like TEs for novel macrocyclic NRPs.
Collapse
Affiliation(s)
- Zeqian Du
- State Key Laboratory of Microbial Metabolism, Joint International Research, Laboratory of Metabolic and Developmental Sciences, School of Life Sciences, and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yinhao Ma
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yaoyao Shen
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yongjun Zhou
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ting Shi
- State Key Laboratory of Microbial Metabolism, Joint International Research, Laboratory of Metabolic and Developmental Sciences, School of Life Sciences, and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|