1
|
Hu H, Liu S, Sun H, Sun W, Tang J, Wei L, Chen X, Chen Q, Lin Y, Tian Z, Su J. Low-Ir-Content Ir 0.10Mn 0.90O 2 Solid Solution for Highly Active Oxygen Evolution in Acid Media. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412096. [PMID: 40178026 DOI: 10.1002/smll.202412096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/11/2025] [Indexed: 04/05/2025]
Abstract
Iridium (Ir)-based materials are the most widely used oxygen evolution reaction (OER) electrocatalysts in proton exchange membrane water electrolysis (PEMWE). However, their commercial application suffers from high cost and insufficient activity. To optimize the atom utilization efficiency of Ir, the aim is to engineer and develop a rutile-structured solid solution catalyst with minimal Ir content, which is identified through a phase boundary. Here, Ir0.10Mn0.90O2 represents the lowest Ir content in the desired IrO2-MnO2 solid solution. The Ir0.10Mn0.90O2 catalyst exhibits outstanding OER performance in acidic electrolytes, reaching a remarkable mass activity of 1135 A g-1 Ir at an overpotential of 300 mV, which is ≈50 times higher than that of a commercial IrO2 catalyst. Additionally, it demonstrates excellent stability at a current density of 200 mA cm-2 over 120 h during PEMWE operations. Density functional theory (DFT) calculations indicate that the hydroxylation process can be efficiently promoted by the electron-withdrawing on Ir sites in Ir0.10Mn0.90O2, contributing to the enhancement of OER activity.
Collapse
Affiliation(s)
- Hongyan Hu
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), Anhui University, Hefei, 230601, P. R. China
| | - Shilong Liu
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), Anhui University, Hefei, 230601, P. R. China
| | - Hongfei Sun
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), Anhui University, Hefei, 230601, P. R. China
| | - Wenli Sun
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), Anhui University, Hefei, 230601, P. R. China
| | - Jike Tang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), Anhui University, Hefei, 230601, P. R. China
| | - Lingzhi Wei
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), Anhui University, Hefei, 230601, P. R. China
| | - Xiaowei Chen
- School of Material Science and Engineering, Key Laboratory for Ecological-Environment Materials of Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, P. R. China
| | - Qianwang Chen
- Hefei National Laboratory for Physical Science at Microscale, Department of Materials Science & Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yichao Lin
- Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Ziqi Tian
- Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Jianwei Su
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|
2
|
Kang J, Fang Y, Yang J, Huang L, Chen Y, Li D, Sun J, Jiang R. Recent Development of Ir- and Ru-Based Electrocatalysts for Acidic Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20519-20559. [PMID: 40138357 DOI: 10.1021/acsami.4c22918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Proton exchange membrane (PEM) water electrolyzers are one type of the most promising technologies for efficient, nonpolluting and sustainable production of high-purity hydrogen. The anode catalysts account for a very large fraction of cost in PEM water electrolyzer and also determine the lifetime of the electrolyzer. To date, Ir- and Ru-based materials are types of promising catalysts for the acidic oxygen evolution reaction (OER), but they still face challenges of high cost or low stability. Hence, exploring low Ir and stable Ru-based electrocatalysts for acidic OER attracts extensive research interest in recent years. Owing to these great research efforts, significant developments have been achieved in this field. In this review, the developments in the field of Ir- and Ru-based electrocatalysts for acidic OER are comprehensively described. The possible OER mechanisms are first presented, followed by the introduction of the criteria for evaluation of the OER electrocatalysts. The development of Ir- and Ru-based OER electrocatalysts are then elucidated according to the strategies utilized to tune the catalytic performances. Lastly, possible future research in this burgeoning field is discussed.
Collapse
Affiliation(s)
- Jianghao Kang
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yunpeng Fang
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jie Yang
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Luo Huang
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yu Chen
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Deng Li
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jie Sun
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Ruibin Jiang
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
3
|
Yang Y, Chen D, Hu S, Pei P, Xu X. Advanced Ir-Based Alloy Electrocatalysts for Proton Exchange Membrane Water Electrolyzers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410372. [PMID: 39901480 DOI: 10.1002/smll.202410372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/16/2024] [Indexed: 02/05/2025]
Abstract
Proton exchange membrane water electrolyzer (PEMWE) coupled with renewable energy to produce hydrogen is an important part of clean energy acquisition in the future. However, the slow kinetics of the oxygen evolution reaction (OER) hinder the large-scale application of PEM water electrolysis technology. To deal with the problems existing in the PEM electrolyzer and improve the electrolysis efficiency, substantial efforts are invested in the development of cost-effective and stable electrocatalysts. Within this scenario, the different OER reaction mechanisms are first discussed here. Based on the in-depth understanding of the reaction mechanism, the research progress of low-iridium noble metal alloys is reviewed from the aspects of special effects, design strategies, reaction mechanisms, and synthesis methods. Finally, the challenges and prospects of the future development of high-efficiency and low-precious metal OER electrocatalysts are presented.
Collapse
Affiliation(s)
- Yuan Yang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Dongfang Chen
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, Guangdong, 528000, China
| | - Song Hu
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, Guangdong, 528000, China
| | - Pucheng Pei
- School of Vehicle and Mobility, Tsinghua University, Beijing, 100084, China
| | - Xiaoming Xu
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, Guangdong, 528000, China
| |
Collapse
|
4
|
Hu F, Huang P, Feng X, Zhou C, Zeng X, Liu C, Wang G, Yang X, Hu H. A porous network of boron-doped IrO 2 nanoneedles with enhanced mass activity for acidic oxygen evolution reactions. MATERIALS HORIZONS 2025; 12:630-641. [PMID: 39508486 DOI: 10.1039/d4mh01358a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
While proton exchange membrane water electrolyzers (PEMWEs) are essential for realizing practical hydrogen production, the trade-off among activity, stability, and cost of state-of-the-art iridium (Ir)-based oxygen evolution reaction (OER) electrocatalysts for PEMWE implementation is still prohibitively challenging. Ir minimization coupled with mass activity improvement of Ir-based catalysts is a promising strategy to address this challenge. Here, we present a discovery demonstrating that boron doping facilitates the one-dimensional (1D) anisotropic growth of IrO2 crystals, as supported by both experimental and theoretical evidence. The synthesized porous network of ultralong boron-doped iridium oxide (B-IrO2) nanoneedles exhibits improved electronic conductivity and reduced charge transfer resistance, thereby increasing the number of active sites. As a result, B-IrO2 displays an ultrahigh OER mass activity of 3656.3 A gIr-1 with an Ir loading of 0.08 mgIr cm-2, which is 4.02 and 6.18 times higher than those of the un-doped IrO2 nanoneedle network (L-IrO2) and Adams IrO2 nanoparticles (A-IrO2), respectively. Density functional theory (DFT) calculations reveal that the B doping moderately increases the d-band center energy level and significantly lowers the free energy barrier for the conversion of *O to *OOH, thereby improving the intrinsic activity. On the other hand, the stability of B-IrO2 can be synchronously promoted, primarily attributed to the B-induced strengthening of the Ir bonds, which help resist electrochemical dissolution. More importantly, when the B-IrO2 catalysts are applied to the membrane electrode assembly for PEM water electrolysis (PEMWE), they generate a remarkable current density of up to 2.8 A cm-2 and maintain operation for at least 160 h at a current density of 1.0 A cm-2. This work provides new insights into promoting intrinsic activity and stability while minimizing the usage of noble-metal-based OER electrocatalysts for critical energy conversion and storage.
Collapse
Affiliation(s)
- Fei Hu
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan, 528000, P.R. China.
| | - Peiyu Huang
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan, 528000, P.R. China.
| | - Xu Feng
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan, 528000, P.R. China.
| | - Changjian Zhou
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan, 528000, P.R. China.
| | - Xinjuan Zeng
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan, 528000, P.R. China.
| | - Congcong Liu
- Flexible Electronics Innovation Institute (FEII), Jiangxi Science and Technology Normal University, Nanchang 330013, P.R. China
| | - Guangjin Wang
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan, 528000, P.R. China.
| | - Xiaowei Yang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
| | - Huawen Hu
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan, 528000, P.R. China.
| |
Collapse
|
5
|
Kovács MM, Fritsch B, Lahn L, Bachmann J, Kasian O, Mayrhofer KJJ, Hutzler A, Dworschak D. Electrospun Iridium-Based Nanofiber Catalysts for Oxygen Evolution Reaction: Influence of Calcination on Activity-Stability Relation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52179-52190. [PMID: 39293816 PMCID: PMC11450683 DOI: 10.1021/acsami.4c07831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/02/2024] [Accepted: 09/08/2024] [Indexed: 09/20/2024]
Abstract
The enhanced utilization of noble metal catalysts through highly porous nanostructures is crucial to advancing the commercialization prospects of proton exchange membrane water electrolysis (PEMWE). In this study, hierarchically structured IrOx-based nanofiber catalyst materials for acidic water electrolysis are synthesized by electrospinning, a process known for its scalability and ease of operation. A calcination study at various temperatures from 400 to 800 °C is employed to find the best candidates for both electrocatalytic activity and stability. Morphology, structure, phase, and chemical composition are investigated using a scale-bridging approach by SEM, TEM, XRD, and XPS to shed light on the structure-function relationship of the thermally prepared nanofibers. Activity and stability are monitored by a scanning flow cell (SFC) coupled with an inductively coupled plasma mass spectrometer (ICP-MS). We evaluate the dissolution of all metals potentially incorporated into the final catalyst material throughout the synthesis pathway. Despite the opposite trend of performance and stability, the present study demonstrates that an optimum between these two aspects can be achieved at 600 °C, exhibiting values that are 1.4 and 2.4 times higher than those of the commercial reference material, respectively. The dissolution of metal contaminations such as Ni, Fe, and Cr remains minimal, exhibiting no correlation with the steps of the electrochemical protocol applied, thus exerting a negligible influence on the stability of the nanofibrous catalyst materials. This work demonstrates the scalability of electrospinning to produce nanofibers with enhanced catalyst utilization and their testing by SFC-ICP-MS. Moreover, it illustrates the influence of calcination temperature on the structure and chemical composition of the nanofibers, resulting in outstanding electrocatalytic performance and stability compared to commercial catalyst materials for PEMWE.
Collapse
Affiliation(s)
- Miklós Márton Kovács
- Forschungszentrum
Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for
Renewable Energy (IET-2), 91058 Erlangen, Germany
- Friedrich-Alexander-Universität
Erlangen-Nürnberg, Department of Chemical
and Biological Engineering, 91058 Erlangen, Germany
| | - Birk Fritsch
- Forschungszentrum
Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for
Renewable Energy (IET-2), 91058 Erlangen, Germany
| | - Leopold Lahn
- Forschungszentrum
Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for
Renewable Energy (IET-2), 91058 Erlangen, Germany
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Dynamic Electrocatalytic Interfaces, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Friedrich-Alexander-Universität
Erlangen-Nürnberg, Department of
Materials Science and Engineering, 91058 Erlangen, Germany
| | - Julien Bachmann
- Friedrich-Alexander-Universität
Erlangen-Nürnberg, Chemistry of Thin
Film Materials, IZNF, 91058 Erlangen, Germany
| | - Olga Kasian
- Forschungszentrum
Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for
Renewable Energy (IET-2), 91058 Erlangen, Germany
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Dynamic Electrocatalytic Interfaces, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Friedrich-Alexander-Universität
Erlangen-Nürnberg, Department of
Materials Science and Engineering, 91058 Erlangen, Germany
| | - Karl J. J. Mayrhofer
- Forschungszentrum
Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for
Renewable Energy (IET-2), 91058 Erlangen, Germany
- Friedrich-Alexander-Universität
Erlangen-Nürnberg, Department of Chemical
and Biological Engineering, 91058 Erlangen, Germany
| | - Andreas Hutzler
- Forschungszentrum
Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for
Renewable Energy (IET-2), 91058 Erlangen, Germany
| | - Dominik Dworschak
- Forschungszentrum
Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for
Renewable Energy (IET-2), 91058 Erlangen, Germany
| |
Collapse
|
6
|
Chen L, Zhao W, Zhang J, Liu M, Jia Y, Wang R, Chai M. Recent Research on Iridium-Based Electrocatalysts for Acidic Oxygen Evolution Reaction from the Origin of Reaction Mechanism. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403845. [PMID: 38940392 DOI: 10.1002/smll.202403845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/18/2024] [Indexed: 06/29/2024]
Abstract
As the anode reaction of proton exchange membrane water electrolysis (PEMWE), the acidic oxygen evolution reaction (OER) is one of the main obstacles to the practical application of PEMWE due to its sluggish four-electron transfer process. The development of high-performance acidic OER electrocatalysts has become the key to improving the reaction kinetics. To date, although various excellent acidic OER electrocatalysts have been widely researched, Ir-based nanomaterials are still state-of-the-art electrocatalysts. Hence, a comprehensive and in-depth understanding of the reaction mechanism of Ir-based electrocatalysts is crucial for the precise optimization of catalytic performance. In this review, the origin and nature of the conventional adsorbate evolution mechanism (AEM) and the derived volcanic relationship on Ir-based electrocatalysts for acidic OER processes are summarized and some optimization strategies for Ir-based electrocatalysts based on the AEM are introduced. To further investigate the development strategy of high-performance Ir-based electrocatalysts, several unconventional OER mechanisms including dual-site mechanism and lattice oxygen mediated mechanism, and their applications are introduced in detail. Thereafter, the active species on Ir-based electrocatalysts at acidic OER are summarized and classified into surface Ir species and O species. Finally, the future development direction and prospect of Ir-based electrocatalysts for acidic OER are put forward.
Collapse
Affiliation(s)
- Ligang Chen
- State Power Investment Corporation Hydrogen Energy Company, Limited, Beijing, 102600, China
| | - Wei Zhao
- State Power Investment Corporation Hydrogen Energy Company, Limited, Beijing, 102600, China
| | - Juntao Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, China
| | - Min Liu
- State Power Investment Corporation Hydrogen Energy Company, Limited, Beijing, 102600, China
| | - Yin Jia
- State Power Investment Corporation Hydrogen Energy Company, Limited, Beijing, 102600, China
| | - Ruzhi Wang
- Institute of Advanced Energy Materials and Devices, College of Material Science and Engineering; Key Laboratory of Advanced Functional Materials of Education Ministry of China, Beijing University of Technology, Beijing, 100124, China
| | - Maorong Chai
- State Power Investment Corporation Hydrogen Energy Company, Limited, Beijing, 102600, China
| |
Collapse
|
7
|
Wang H, Yan Z, Cheng F, Chen J. Advances in Noble Metal Electrocatalysts for Acidic Oxygen Evolution Reaction: Construction of Under-Coordinated Active Sites. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401652. [PMID: 39189476 PMCID: PMC11348273 DOI: 10.1002/advs.202401652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/02/2024] [Indexed: 08/28/2024]
Abstract
Renewable energy-driven proton exchange membrane water electrolyzer (PEMWE) attracts widespread attention as a zero-emission and sustainable technology. Oxygen evolution reaction (OER) catalysts with sluggish OER kinetics and rapid deactivation are major obstacles to the widespread commercialization of PEMWE. To date, although various advanced electrocatalysts have been reported to enhance acidic OER performance, Ru/Ir-based nanomaterials remain the most promising catalysts for PEMWE applications. Therefore, there is an urgent need to develop efficient, stable, and cost-effective Ru/Ir catalysts. Since the structure-performance relationship is one of the most important tools for studying the reaction mechanism and constructing the optimal catalytic system. In this review, the recent research progress from the construction of unsaturated sites to gain a deeper understanding of the reaction and deactivation mechanism of catalysts is summarized. First, a general understanding of OER reaction mechanism, catalyst dissolution mechanism, and active site structure is provided. Then, advances in the design and synthesis of advanced acidic OER catalysts are reviewed in terms of the classification of unsaturated active site design, i.e., alloy, core-shell, single-atom, and framework structures. Finally, challenges and perspectives are presented for the future development of OER catalysts and renewable energy technologies for hydrogen production.
Collapse
Affiliation(s)
- Huimin Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| | - Zhenhua Yan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| | - Fangyi Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| | - Jun Chen
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of ChemistryNankai UniversityTianjin300071China
| |
Collapse
|
8
|
Li Z, Li X, Wang M, Wang Q, Wei P, Jana S, Liao Z, Yu J, Lu F, Liu T, Wang G. KIr 4O 8 Nanowires with Rich Hydroxyl Promote Oxygen Evolution Reaction in Proton Exchange Membrane Water Electrolyzer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402643. [PMID: 38718084 DOI: 10.1002/adma.202402643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/03/2024] [Indexed: 05/18/2024]
Abstract
The sluggish kinetics for anodic oxygen evolution reaction (OER) and insufficient catalytic performance over the corresponding Ir-based catalysts are still enormous challenges in proton exchange membrane water electrolyzer (PEMWE). Herein, it is reported that KIr4O8 nanowires anode catalyst with more exposed active sites and rich hydroxyl achieves a current density of 1.0 A cm-2 at 1.68 V and possesses excellent catalytic stability with 1230 h in PEMWE. Combining in situ Raman spectroscopy and differential electrochemical mass spectroscopy results, the modified adsorbate evolution mechanism is proposed, wherein the rich hydroxyl in the inherent structure of KIr4O8 nanowires directly participates in the catalytic process for favoring the OER. Density functional theory calculation results further suggest that the enhanced proximity between Ir (d) and O (p) band center in KIr4O8 can strengthen the covalence of Ir-O, facilitate the electron transfer between adsorbents and active sites, and decrease the energy barrier of rate-determining step from OH* to O* during the OER.
Collapse
Affiliation(s)
- Zhenyu Li
- State Key Laboratory of Catalysis Energy, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xiang Li
- State Key Laboratory of Catalysis Energy, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Dalian Jiaotong University, Dalian, 116028, China
| | - Mengna Wang
- State Key Laboratory of Catalysis Energy, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Dalian Jiaotong University, Dalian, 116028, China
| | - Qi Wang
- Dalian Jiaotong University, Dalian, 116028, China
| | - Pengfei Wei
- State Key Laboratory of Catalysis Energy, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Subhajit Jana
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Materials Interfaces Foundry, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Ziqi Liao
- State Key Laboratory of Catalysis Energy, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- College of Energy, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Jingcheng Yu
- State Key Laboratory of Catalysis Energy, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- College of Energy, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Fang Lu
- State Key Laboratory of Catalysis Energy, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Tianfu Liu
- State Key Laboratory of Catalysis Energy, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Guoxiong Wang
- State Key Laboratory of Catalysis Energy, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
9
|
Li X, Wang M, Fu J, Lu F, Li Z, Wang G. Sulfurized NiFe 2O 4 Electrocatalyst with In Situ Formed Fe-NiOOH Nanoparticles to Realize Industrial-Level Oxygen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310040. [PMID: 38150619 DOI: 10.1002/smll.202310040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/11/2023] [Indexed: 12/29/2023]
Abstract
Constructing composite catalysts with refined geometric control and optimal electronic structure provides a promising route to enhance electrocatalytic performance toward the oxygen evolution reaction (OER). Herein, a composite catalyst is prepared with multiple components using chemical vapour deposition method to transform crystalline NiFe2O4 into crystalline NiFe2O4@amorphous S-NiFe2O4 with core-shell structure (C-NiFe2O4@A-S-NiFe2O4), and Fe-NiOOH nanoparticles are subsequently in situ generated on its surface during the process of electrocatalytic OER. The C-NiFe2O4@A-S-NiFe2O4 catalyst exhibits a low overpotential of 275 mV while possessing an excellent stability for 500 h at 10 mA cm-2. The anion exchange membrane water electrolyzer with C-NiFe2O4@A-S-NiFe2O4 anode catalyst obtains a current density of 4270 mA cm- 2 at 2.0 V. Further, in situ Raman spectroscopy result demonstrates that in situ generated Fe-NiOOH nanoparticles are revealed to act as the catalytic active phase for catalyzing the OER. Besides, introducing A-S-NiFe2O4 in C-NiFe2O4@A-S-NiFe2O4 facilitates the formation of Fe-NiOOH nanoparticles with high-valency Ni, thus increasing the proportion of lattice oxygen-participated OER. This work not only provides an alternative strategy for the design of high-performance catalysts, but also lays a foundation for the exploration of catalytic mechanisms.
Collapse
Affiliation(s)
- Xiang Li
- College of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian, 116028, China
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Mengna Wang
- College of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian, 116028, China
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jie Fu
- College of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian, 116028, China
| | - Fang Lu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhenyu Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Guoxiong Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
10
|
Guan Z, Chen Q, Liu L, Xia C, Cao L, Dong B. Heterointerface MnO 2/RuO 2 with rich oxygen vacancies for enhanced oxygen evolution in acidic media. NANOSCALE 2024; 16:10325-10332. [PMID: 38738334 DOI: 10.1039/d4nr00827h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The design and synthesis of oxygen evolution reaction (OER) electrocatalysts that operate efficiently and stably under acidic conditions are important for the preparation of green hydrogen energy. The low intrinsic catalytic activity and poor acid resistance of commercial RuO2 limit its further development, and the construction of heterointerface structures is the most promising strategy to break through the intrinsic activity limitation of electrocatalysts. Herein, we synthesized spherical and oxygen vacancy-rich heterointerface MnO2/RuO2 using morphology control, which promoted the kinetics of the oxygen evolution reaction with the interaction between oxygen vacancies and the oxide heterointerface. MnO2/RuO2 was reported to be an acidic OER catalyst with excellent performance and stability, requiring only an ultra-low overpotential of 181 mV in 0.5 M H2SO4 to achieve a current density of 10 mA cm-2. The catalyst activity remained essentially unchanged in a 140 h stability test with an ultra-high mass activity (858.9 A g-1@ 1.5 V), which was far superior to commercial RuO2 and most previously reported noble metal-based acidic OER catalysts. The experimental results showed that the effect of more oxygen vacancies and the heterointerfaces of manganese ruthenium oxides broke the intrinsic activity limitation, provided more active sites for the OER, accelerated reaction kinetics, and improved the stability of the catalyst. The excellent performance of the catalyst suggests that MnO2/RuO2 provides a new idea for the design and study of heterointerfaces in metal oxide nanomaterials.
Collapse
Affiliation(s)
- Zhiming Guan
- School of Materials Science and Engineering Ocean University of China 1299 Sansha Road, Qingdao, 266000, P. R. China.
| | - Qian Chen
- School of Materials Science and Engineering Ocean University of China 1299 Sansha Road, Qingdao, 266000, P. R. China.
| | - Lin Liu
- School of Materials Science and Engineering Ocean University of China 1299 Sansha Road, Qingdao, 266000, P. R. China.
| | - Chenghui Xia
- School of Materials Science and Engineering Ocean University of China 1299 Sansha Road, Qingdao, 266000, P. R. China.
| | - Lixin Cao
- School of Materials Science and Engineering Ocean University of China 1299 Sansha Road, Qingdao, 266000, P. R. China.
| | - Bohua Dong
- School of Materials Science and Engineering Ocean University of China 1299 Sansha Road, Qingdao, 266000, P. R. China.
| |
Collapse
|
11
|
Gao J, Wu X, Teng X, Zhang K, Zhao H, Li J, Zhang J. Thermal-Driven Orderly Assembly of Ir-atomic Chains on α-MnO 2 with Enhanced Performance for Acidic Oxygen Evolution. Chempluschem 2024; 89:e202300680. [PMID: 38263338 DOI: 10.1002/cplu.202300680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 01/25/2024]
Abstract
The development of acid-stable oxygen evolution reaction electrocatalysts is essential for high-performance acidic water electrolysis. Herein, we report the results of one-dimensional (1D) nanorods (NRs) IrCeMnO@Ir containing ~20 wt . % Iridium (Ir) as an efficient anode electrocatalyst, synthesized via a one-step cation exchange strategy. Owing to the presence of 1D channels of the nanorod architecture and the unique electronic structure, the IrCeMnO@Ir exhibited 69 folds more mass activity than that of commercial IrO2 as well as over 400 h stability with only a 20 mV increase in overpotential. DFT calculations and control experiments demonstrated that CeO2 serves as an electron buffer to accelerate the kinetics of the rate-determined step for the significantly enhanced activity and suppress the over-oxidation of Ir species as well as their dissolution for impressively promoted stability under practical conditions. Our work opens up a feasible strategy to boost OER activity and stability simultaneously.
Collapse
Affiliation(s)
- Junan Gao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaokuan Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xin Teng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Kuo Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Hong Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jianwei Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jie Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
12
|
Sun J, Qin Y, Niu X, Zhao R, Xu Z, Liu D, Zhao W, Guo L, Jiang N, Liu C, Zhang K, Zhang J, Wang Q. Ultrastable and highly active Co-vacancies-enriched IrCo bifunctional nanoalloys for proton exchange membrane water electrolysis. J Colloid Interface Sci 2024; 661:249-258. [PMID: 38301463 DOI: 10.1016/j.jcis.2024.01.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/21/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Exploring the electrocatalysts with high intrinsic activity and stability for both anode and cathode to tolerate the extremely acidic condition in proton exchange membrane water electrolyzer (PEMWE) is crucial for widespread industrial application. Herein, we constructed the bifunctional IrCox nanoalloys with abundant metal vacancies via the combination of chemical reduction and electrochemical treatment for overall water splitting. The developed IrCo0.13 exhibits ultra-low overpotentials of 238 mV for OER and 18.6 mV for HER at 10 mA cm-2 in 0.1 M HClO4, and achieves the exceptional stability of 1000 h for OER and 100 h for HER at 10 mA cm-2. Further, the cell voltage is only 1.68 V to reach a high current density of 1 A cm-2 in PEMWE with IrCo0.13 as the both cathode and anode catalytic layer, and it shows excellent corrosion resistance in acidic environment, evidenced by 415 h stable operation at 1 A cm-2. The strong electronic interactions in the Ir-Co atomic heterostructure and the in-situ generation of Co vacancies by electrochemical oxidation synergistically contribute to the enhanced activity and stability via optimizing the electronic structure of adjacent Ir active sites, enhancing the conductivity and electrochemical active surface area of the catalyst, accelerating charge transfer and kinetics. This work provides a new perspective for designing bifunctional catalysts for practical application in PEMWE.
Collapse
Affiliation(s)
- Jiuyi Sun
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yue Qin
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaopo Niu
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Rong Zhao
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhihong Xu
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Danni Liu
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Wenli Zhao
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Lili Guo
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Nan Jiang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Chang Liu
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Kaige Zhang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Junfeng Zhang
- Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072, China
| | - Qingfa Wang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China; Zhejiang Institute of Tianjin University, Ningbo, Zhejiang, 315201, China.
| |
Collapse
|
13
|
Tang J, Su C, Shao Z. Advanced membrane-based electrode engineering toward efficient and durable water electrolysis and cost-effective seawater electrolysis in membrane electrolyzers. EXPLORATION (BEIJING, CHINA) 2024; 4:20220112. [PMID: 38854490 PMCID: PMC10867400 DOI: 10.1002/exp.20220112] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/04/2023] [Indexed: 06/11/2024]
Abstract
Researchers have been seeking for the most technically-economical water electrolysis technology for entering the next-stage of industrial amplification for large-scale green hydrogen production. Various membrane-based electrolyzers have been developed to improve electric-efficiency, reduce the use of precious metals, enhance stability, and possibly realize direct seawater electrolysis. While electrode engineering is the key to approaching these goals by bridging the gap between catalysts design and electrolyzers development, nevertheless, as an emerging field, has not yet been systematically analyzed. Herein, this review is organized to comprehensively discuss the recent progresses of electrode engineering that have been made toward advanced membrane-based electrolyzers. For the commercialized or near-commercialized membrane electrolyzer technologies, the electrode material design principles are interpreted and the interface engineering that have been put forward to improve catalytic sites utilization and reduce precious metal loading is summarized. Given the pressing issues of electrolyzer cost reduction and efficiency improvement, the electrode structure engineering toward applying precious metal free electrocatalysts is highlighted and sufficient accessible sites within the thick catalyst layers with rational electrode architectures and effective ions/mass transport interfaces are enabled. In addition, this review also discusses the innovative ways as proposed to break the barriers of current membrane electrolyzers, including the adjustments of electrode reaction environment, and the feasible cell-voltage-breakdown strategies for durable direct seawater electrolysis. Hopefully, this review may provide insightful information of membrane-based electrode engineering and inspire the future development of advanced membrane electrolyzer technologies for cost-effective green hydrogen production.
Collapse
Affiliation(s)
- Jiayi Tang
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM‐MECE)Curtin UniversityPerthWestern AustraliaAustralia
| | - Chao Su
- School of Energy and PowerJiangsu University of Science and TechnologyZhenjiangChina
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM‐MECE)Curtin UniversityPerthWestern AustraliaAustralia
| |
Collapse
|
14
|
Qin K, Zhu W, Wang M, Wu J, Ma M, Chen J, Liao F, Kang Z, Shao M. Carbon dots tailoring the interfacial proton and charge transfer of iridium nanowires with stress strain for boosting bifunctional hydrogen catalysis. J Colloid Interface Sci 2024; 653:434-442. [PMID: 37722172 DOI: 10.1016/j.jcis.2023.09.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/20/2023]
Abstract
The effective harnessing of hydrogen energy relies on the development of bifunctional electrocatalysts that facilitate hydrogen evolution/oxidation reactions (HER/HOR) with high catalytic activity. The design of such electrocatalysts requires the consideration of not only the volcano relationship with hydrogen binding energy (HBE) or hydrogen adsorption Gibbs free energy (ΔGH) but also the regulation of catalytic kinetics such as interfacial proton/electron transfer. In this work, unique one-dimensional iridium nanowires with compressive stress are successfully prepared and combined with carbon dots (Ir NWs/CDs). Acting as an electrocatalyst for HER in 0.5 M H2SO4, the optimal Ir NWs/CDs only requires an 18 mV overpotential to achieve a current density of -10 mA cm-2. Furthermore, the optimal Ir NWs/CDs shows high HOR performance with a mass activity (@ 50 mV versus RHE) 1.5 times that of 20% Pt/C and excellent anti-CO toxicity ability which is twice the level of the PtRu/C catalyst. Ir NWs/CDs exhibit enhanced HER/HOR activity due to (1) the appropriate modulation of the binding energy to hydrogen intermediate facilitated by the compressive stress applied to the Ir structure and (2) the improved proton/electron transfer kinetics by optimizing the electronic properties and surface structures through tailored CDs. This study delivers a new strategy for designing and synthesizing efficient acidic HER/HOR bifunctional catalysts.
Collapse
Affiliation(s)
- Keyang Qin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Wenxiang Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Meng Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Jie Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Mengjie Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Jinxin Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Fan Liao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China.
| | - Zhenhui Kang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China; Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa 999078, Macau.
| | - Mingwang Shao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
15
|
Xie Y, Yang Z. Morphological and Coordination Modulations in Iridium Electrocatalyst for Robust and Stable Acidic OER Catalysis. CHEM REC 2023; 23:e202300129. [PMID: 37229769 DOI: 10.1002/tcr.202300129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/12/2023] [Indexed: 05/27/2023]
Abstract
Proton exchange membrane water splitting (PEMWS) technology has high-level current density, high operating pressure, small electrolyzer-size, integrity, flexibility, and has good adaptability to the volatility of wind power and photovoltaics, but the development of both active and high stability of the anode electrocatalyst in acidic environment is still a huge challenge, which seriously hinders the promotion and application of PEMWS. In recent years, researchers have made tremendous attempts in the development of high-quality active anode electrocatalyst, and we summarize some of the research progress made by our group in the design and synthesis of PEMWS anode electrocatalysts with different nanostructures, and makes full use of electrocatalytic activity points to increase the inherent activity of Iridium (Ir) sites, and provides optimization strategies for the long-term non-decay of catalysts under high anode potential in acidic environments. At this stage, these research advances are expected to facilitate the research and technological progress of PEMWS, and providing some research ideas and references for future research on efficient and inexpensive PEMWS anode electrocatalysts.
Collapse
Affiliation(s)
- Yuhua Xie
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China, University of Geosciences Wuhan, 388 Lumo RD, Wuhan, 430074, P. R. China
| | - Zehui Yang
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China, University of Geosciences Wuhan, 388 Lumo RD, Wuhan, 430074, P. R. China
- Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, P. R. China
| |
Collapse
|
16
|
Wang C, Yang F, Feng L. Recent advances in iridium-based catalysts with different dimensions for the acidic oxygen evolution reaction. NANOSCALE HORIZONS 2023; 8:1174-1193. [PMID: 37434582 DOI: 10.1039/d3nh00156c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Proton exchange membrane (PEM) water electrolysis is considered a promising technology for green hydrogen production, and iridium (Ir)-based catalysts are the best materials for anodic oxygen evolution reactions (OER) owing to their high stability and anti-corrosion ability in a strong acid electrolyte. The properties of Ir-based nanocatalysts can be tuned by rational dimension engineering, which has received intensive attention recently for catalysis ability boosting. To achieve a comprehensive understanding of the structural and catalysis performance, herein, an overview of the recent progress was provided for Ir-based catalysts with different dimensions for the acidic OER. The promotional effect was first presented in terms of the nano-size effect, synergistic effect, and electronic effect based on the dimensional effect, then the latest progress of Ir-based catalysts classified into zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) catalysts was introduced in detail; and the practical application of some typical examples in the real PEM water electrolyzers (PEMWE) was also presented. Finally, the problems and challenges faced by current dimensionally engineered Ir-based catalysts in acidic electrolytes were discussed. It is concluded that the increased surface area and catalytic active sites can be realized by dimensional engineering strategies, while the controllable synthesis of different dimensional structured catalysts is still a great challenge, and the correlation between structure and performance, especially for the structural evolution during the electrochemical operation process, should be probed in depth. Hopefully, this effort could help understand the progress of dimensional engineering of Ir-based catalysts in OER catalysis and contribute to the design and preparation of novel efficient Ir-based catalysts.
Collapse
Affiliation(s)
- Chunyan Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| | - Fulin Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| | - Ligang Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
| |
Collapse
|
17
|
Lin Y, Dong Y, Wang X, Chen L. Electrocatalysts for the Oxygen Evolution Reaction in Acidic Media. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210565. [PMID: 36521026 DOI: 10.1002/adma.202210565] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Indexed: 06/02/2023]
Abstract
The well-established proton exchange membrane (PEM)-based water electrolysis, which operates under acidic conditions, possesses many advantages compared to alkaline water electrolysis, such as compact design, higher voltage efficiency, and higher gas purity. However, PEM-based water electrolysis is hampered by the low efficiency, instability, and high cost of anodic electrocatalysts for the oxygen evolution reaction (OER). In this review, the recently reported acidic OER electrocatalysts are comprehensively summarized, classified, and discussed. The related fundamental studies on OER mechanisms and the relationship between activity and stability are particularly highlighted in order to provide an atomistic-level understanding for OER catalysis. A stability test protocol is suggested to evaluate the intrinsic activity degradation. Some current challenges and unresolved questions, such as the usage of carbon-based materials and the differences between the electrocatalyst performances in acidic electrolytes and PEM-based electrolyzers are also discussed. Finally, suggestions for the most promising electrocatalysts and a perspective for future research are outlined. This review presents a fresh impetus and guideline to the rational design and synthesis of high-performance acidic OER electrocatalysts for PEM-based water electrolysis.
Collapse
Affiliation(s)
- Yichao Lin
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Yan Dong
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Xuezhen Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| | - Liang Chen
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
- Department of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Qianwan Institute of CNiTECH, Ningbo, 315000, China
| |
Collapse
|
18
|
Liu N, Yu L, Liu B, Yu F, Li L, Xiao Y, Yang J, Ma J. Ti 3 C 2 -MXene Partially Derived Hierarchical 1D/2D TiO 2 /Ti 3 C 2 Heterostructure Electrode for High-Performance Capacitive Deionization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204041. [PMID: 36442852 PMCID: PMC9839853 DOI: 10.1002/advs.202204041] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/14/2022] [Indexed: 05/31/2023]
Abstract
Constructing faradaic electrode with superior desalination performance is important for expanding the applications of capacitive deionization (CDI). Herein, a simple one-step alkalized treatment for in situ synthesis of 1D TiO2 nanowires on the surface of 2D Ti3 C2 nanosheets, forming a Ti3 C2 -MXene partially derived hierarchical 1D/2D TiO2 /Ti3 C2 heterostructure as the cathode electrode is reported. Cross-linked TiO2 nanowires on the surface help avoid layer stacking while acting as the protective layer against contact of internal Ti3 C2 with dissolved oxygen in water. The inner Ti3 C2 MXene nanosheets cross over the TiO2 nanowires can provide abundant active adsorption sites and short ion/electron diffusion pathways. . Density functional theory calculations demonstrated that Ti3 C2 can consecutively inject electrons into TiO2 , indicating the high electrochemical activity of the TiO2 /Ti3 C2 . Benefiting from the 1D/2D hierarchical structure and synergistic effect of TiO2 and Ti3 C2 , TiO2 /Ti3 C2 heterostructure presents a favorable hybrid CDI performance, with a superior desalination capacity (75.62 mg g-1 ), fast salt adsorption rate (1.3 mg g-1 min-1 ), and satisfactory cycling stability, which is better than that of most published MXene-based electrodes. This study provides a feasible partial derivative strategy for construction of a hierarchical 1D/2D heterostructure to overcome the restrictions of 2D MXene nanosheets in CDI.
Collapse
Affiliation(s)
- Ningning Liu
- Research Center for Environmental Functional MaterialsState Key Laboratory of Pollution Control and Resource ReuseCollege of Environmental Science and EngineeringTongji University1239 Siping RoadShanghai200092P. R. China
| | - Lanlan Yu
- College of Resource and Environmental EngineeringGuizhou UniversityGuiyang550025China
| | - Baojun Liu
- College of Resource and Environmental EngineeringGuizhou UniversityGuiyang550025China
| | - Fei Yu
- College of Marine Ecology and EnvironmentShanghai Ocean UniversityShanghai201306P. R. China
| | - Liqing Li
- Faculty of Materials Metallurgy and ChemistryJiangxi University of Science and TechnologyGanzhou341000P. R. China
| | - Yi Xiao
- Institute of Materials ScienceTU Darmstadt64287DarmstadtGermany
| | - Jinhu Yang
- School of Chemical Science and EngineeringTongji University1239 Siping RoadShanghai200092P. R. China
| | - Jie Ma
- Research Center for Environmental Functional MaterialsState Key Laboratory of Pollution Control and Resource ReuseCollege of Environmental Science and EngineeringTongji University1239 Siping RoadShanghai200092P. R. China
- Faculty of Materials Metallurgy and ChemistryJiangxi University of Science and TechnologyGanzhou341000P. R. China
| |
Collapse
|
19
|
Jin Y, Huo W, Zhou X, Zhang L, Li Y, Yang S, Qian J, Cai D, Ge Y, Yang Z, Nie H. IrO 2-Stablized La 2IrO 6 perovskite nanotubes via corner-shared interconnections as highly-efficient oxygen evolution electrocatalysts. Chem Commun (Camb) 2022; 59:183-186. [PMID: 36484155 DOI: 10.1039/d2cc05562g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
One-dimensional nanotube heterostructures with IrO2-stabilized La2IrO6 is obtained by an electrospinning approach. The La2IrO6/IrO2 catalyst exhibits superior catalytic activity and strong stability for the oxygen evolution reaction. The synergistic cooperation between the two types of Ir as the active sites in La2IrO6/IrO2 is demonstrated by in situ Raman spectrum and DFT calculation.
Collapse
Affiliation(s)
- Yuwei Jin
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Wenjing Huo
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Xuemei Zhou
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Libin Zhang
- Hangzhou Electric Connector Factory, Hangzhou, 310052, China
| | - Yong Li
- College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Shuo Yang
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Dong Cai
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Yongjie Ge
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Zhi Yang
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, P. R. China.
| | - Huagui Nie
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, P. R. China.
| |
Collapse
|
20
|
Lin HY, Lou ZX, Ding Y, Li X, Mao F, Yuan HY, Liu PF, Yang HG. Oxygen Evolution Electrocatalysts for the Proton Exchange Membrane Electrolyzer: Challenges on Stability. SMALL METHODS 2022; 6:e2201130. [PMID: 36333185 DOI: 10.1002/smtd.202201130] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Hydrogen generated by proton exchange membrane (PEM) electrolyzer holds a promising potential to complement the traditional energy structure and achieve the global target of carbon neutrality for its efficient, clean, and sustainable nature. The acidic oxygen evolution reaction (OER), owing to its sluggish kinetic process, remains a bottleneck that dominates the efficiency of overall water splitting. Over the past few decades, tremendous efforts have been devoted to exploring OER activity, whereas most show unsatisfying stability to meet the demand for industrial application of PEM electrolyzer. In this review, systematic considerations of the origin and strategies based on OER stability challenges are focused on. Intrinsic deactivation of the material and the extrinsic balance of plant-induced destabilization are summarized. Accordingly, rational strategies for catalyst design including doping and leaching, support effect, coordination effect, strain engineering, phase and facet engineering are discussed for their contribution to the promoted OER stability. Moreover, advanced in situ/operando characterization techniques are put forward to shed light on the OER pathways as well as the structural evolution of the OER catalyst, giving insight into the deactivation mechanisms. Finally, outlooks toward future efforts on the development of long-term and practical electrocatalysts for the PEM electrolyzer are provided.
Collapse
Affiliation(s)
- Hao Yang Lin
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhen Xin Lou
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yeliang Ding
- China General Nuclear New Energy Holdings Co., Ltd., Beijing, 100071, China
| | - Xiaoxia Li
- China General Nuclear New Energy Holdings Co., Ltd., Beijing, 100071, China
| | - Fangxin Mao
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hai Yang Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Peng Fei Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hua Gui Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
21
|
Sun J, Zhao R, Niu X, Xu M, Xu Z, Qin Y, Zhao W, Yang X, Han Y, Wang Q. In-situ reconstructed hollow iridium-cobalt oxide nanosphere for boosting electrocatalytic oxygen evolution in acid. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Jin L, Wang Q, Wang K, Lu Y, Huang B, Xu H, Qian X, Yang L, He G, Chen H. Engineering NiMoO 4/NiFe LDH/rGO multicomponent nanosheets toward enhanced electrocatalytic oxygen evolution reaction. Dalton Trans 2022; 51:6448-6453. [PMID: 35389408 DOI: 10.1039/d2dt00115b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rational hybridization of two-dimensional (2D) nanomaterials with extrinsic species has shown great promise for boosting the electrocatalytic oxygen evolution reaction (OER). To date, the rational design and engineering of heterojunctions based on three or more components has been rather limited. Herein, by taking advantage of the high intrinsic activity of NiFe layered double hydroxide (LDH), strong synergistic effects between different components, and good electronic conductivity of reduced graphene oxide (rGO), we demonstrate the successful synthesis of NiMoO4/NiFe LDH/rGO nanosheets. As a proof-of-concept demonstration, the multicomponent nanosheet catalyst with a well-modified electronic structure is applied to boost the electrochemical OER and achieve decent electrocatalytic activity in 1 M KOH electrolyte, which can deliver a current density of 10 mA cm-2 with an overpotential of merely 270 mV and a small Tafel slope of 76.2 mV dec-1, which are markedly superior to those of the commercial RuO2 catalyst (303 mV, 131.9 mV dec-1). This work is expected to provide new insights into furnishing multi-component heterostructures with extended functionalities and more advantageous merits.
Collapse
Affiliation(s)
- Lei Jin
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Qing Wang
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Kun Wang
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Yuchen Lu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Bingji Huang
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Hui Xu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Xingyue Qian
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Lida Yang
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Guangyu He
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Haiqun Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| |
Collapse
|
23
|
Pu Z, Liu T, Zhang G, Ranganathan H, Chen Z, Sun S. Electrocatalytic Oxygen Evolution Reaction in Acidic Conditions: Recent Progress and Perspectives. CHEMSUSCHEM 2021; 14:4636-4657. [PMID: 34411443 DOI: 10.1002/cssc.202101461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/12/2021] [Indexed: 06/13/2023]
Abstract
The electrochemical oxygen evolution reaction (OER) is an important half-cell reaction in many renewable energy conversion and storage technologies, including electrolyzers, nitrogen fixation, CO2 reduction, metal-air batteries, and regenerative fuel cells. Among them, proton exchange membrane (PEM)-based devices exhibit a series of advantages, such as excellent proton conductivity, high durability, and good mechanical strength, and have attracted global interest as a green energy device for transport and stationary sectors. Nevertheless, with a view to rapid commercialization, it is urgent to develop highly active and acid-stable OER catalysts for PEM-based devices. In this Review, based on the recent advances in theoretical calculation and in situ/operando characterization, the OER mechanism in acidic conditions is first discussed in detail. Subsequently, recent advances in the development of several types of acid-stable OER catalysts, including noble metals, non-noble metals, and even metal-free OER materials, are systematically summarized. Finally, the current key issues and future challenges for materials used as acidic OER catalysis are identified and potential future directions are proposed.
Collapse
Affiliation(s)
- Zonghua Pu
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, 1650 Boulevard Lionel-Boulet, Varennes, QC J3X 1S2, Canada
| | - Tingting Liu
- Institute for Clean Energy & Advanced Materials, School of Materials & Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Gaixia Zhang
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, 1650 Boulevard Lionel-Boulet, Varennes, QC J3X 1S2, Canada
| | - Hariprasad Ranganathan
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, 1650 Boulevard Lionel-Boulet, Varennes, QC J3X 1S2, Canada
| | - Zhangxing Chen
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Shuhui Sun
- Institut National de la Recherche Scientifique-Énergie Matériaux et Télécommunications, 1650 Boulevard Lionel-Boulet, Varennes, QC J3X 1S2, Canada
| |
Collapse
|
24
|
Pu Z, Liu T, Zhang G, Liu X, Gauthier MA, Chen Z, Sun S. Nanostructured Metal Borides for Energy-Related Electrocatalysis: Recent Progress, Challenges, and Perspectives. SMALL METHODS 2021; 5:e2100699. [PMID: 34927953 DOI: 10.1002/smtd.202100699] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/14/2021] [Indexed: 06/14/2023]
Abstract
The discovery of durable, active, and affordable electrocatalysts for energy-related catalytic applications plays a crucial role in the advancement of energy conversion and storage technologies to achieve a sustainable energy future. Transition metal borides (TMBs), with variable compositions and structures, present a number of interesting features including coordinated electronic structures, high conductivity, abundant natural reserves, and configurable physicochemical properties. Therefore, TMBs provide a wide range of opportunities for the development of multifunctional catalysts with high performance and long durability. This review first summarizes the typical structural and electronic features of TMBs. Subsequently, the various synthetic methods used thus far to prepare nanostructured TMBs are listed. Furthermore, advances in emerging TMB-catalyzed reactions (both theoretical and experimental) are highlighted, including the hydrogen evolution reaction, the oxygen evolution reaction, the oxygen reduction reaction, the carbon dioxide reduction reaction, the nitrogen reduction reaction, the methanol oxidation reaction, and the formic acid oxidation reaction. Finally, challenges facing the development of TMB electrocatalysts are discussed, with focus on synthesis and energy-related catalytic applications, and some potential strategies/perspectives are suggested as well, which will profit the design of more efficient TMB materials for application in future energy conversion and storage devices.
Collapse
Affiliation(s)
- Zonghua Pu
- Institut National de la Recherche Scientifique-Énergie Matériauxet Télécommunications, Varennes, Quebec, J3X 1S2, Canada
| | - Tingting Liu
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Gaixia Zhang
- Institut National de la Recherche Scientifique-Énergie Matériauxet Télécommunications, Varennes, Quebec, J3X 1S2, Canada
| | - Xianhu Liu
- Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450002, China
| | - Marc A Gauthier
- Institut National de la Recherche Scientifique-Énergie Matériauxet Télécommunications, Varennes, Quebec, J3X 1S2, Canada
| | - Zhangxing Chen
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Shuhui Sun
- Institut National de la Recherche Scientifique-Énergie Matériauxet Télécommunications, Varennes, Quebec, J3X 1S2, Canada
| |
Collapse
|
25
|
Deng B, Long Y, Yang C, Du P, Wang R, Huang K, Wu H. Ultrafast heating to boost the electrocatalytic activity of iridium towards oxygen evolution reaction. Chem Commun (Camb) 2021; 57:7830-7833. [PMID: 34278387 DOI: 10.1039/d1cc01999f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Efficient electrocatalysts are in great demand for renewable energy storage systems. Herein, we propose an ultrafast heating strategy to fabricate an efficient Ir/CP-UH catalyst for the oxygen evolution reaction (OER). Experimental results demonstrated that the ultrasmall Ir nanoparticles (≈1-3 nm) and clusters (<1 nm) were highly dispersed on the carbon paper support after a short thermal shock (∼5 s). The catalyst showed a low overpotential of 260 mV at 10 mA cm-2 and remarkable mass activity of about 13.8 times higher than that of the current state-of-the-art commercial Ir/C catalyst. This ultrafast heating strategy can also be applied to other catalyst systems for OER and other electrochemical reactions.
Collapse
Affiliation(s)
- Bohan Deng
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China.
| | - Yuanzheng Long
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China.
| | - Cheng Yang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China.
| | - Peng Du
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China. and State Key Laboratory of Information Photonics and Optical Communications & School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, P. R. China
| | - Ruyue Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China. and State Key Laboratory of Information Photonics and Optical Communications & School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, P. R. China
| | - Kai Huang
- State Key Laboratory of Information Photonics and Optical Communications & School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, P. R. China
| | - Hui Wu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China.
| |
Collapse
|
26
|
Wang X, Zhang W, Zhang J, Zhang J, Wu Z. Co(OH)
2
Nanosheets Array Doped by Cu
2+
Ions with Optimal Electronic Structure for Urea‐Assisted Electrolytic Hydrogen Generation. ChemElectroChem 2021. [DOI: 10.1002/celc.202100443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiangyu Wang
- Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base) The Key Laboratory of Functional Molecular Solids, Ministry of Education Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 P. R. China
| | - Wuzhengzhi Zhang
- Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base) The Key Laboratory of Functional Molecular Solids, Ministry of Education Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 P. R. China
| | - Junliang Zhang
- Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base) The Key Laboratory of Functional Molecular Solids, Ministry of Education Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 P. R. China
| | - Jing Zhang
- Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base) The Key Laboratory of Functional Molecular Solids, Ministry of Education Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 P. R. China
| | - Zhengcui Wu
- Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base) The Key Laboratory of Functional Molecular Solids, Ministry of Education Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 P. R. China
| |
Collapse
|
27
|
Sadeghi E, Peighambardoust NS, Khatamian M, Unal U, Aydemir U. Metal doped layered MgB 2 nanoparticles as novel electrocatalysts for water splitting. Sci Rep 2021; 11:3337. [PMID: 33558628 PMCID: PMC7870881 DOI: 10.1038/s41598-021-83066-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/28/2021] [Indexed: 11/17/2022] Open
Abstract
Growing environmental problems along with the galloping rate of population growth have raised an unprecedented challenge to look for an ever-lasting alternative source of energy for fossil fuels. The eternal quest for sustainable energy production strategies has culminated in the electrocatalytic water splitting process integrated with renewable energy resources. The successful accomplishment of this process is thoroughly subject to competent, earth-abundant, and low-cost electrocatalysts to drive the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), preferably, in the same electrolyte. The present contribution has been dedicated to studying the synthesis, characterization, and electrochemical properties of newfangled electrocatalysts with the formal composition of Mg1-xTMxB2 (x = 0.025, 0.05, and 0.1; TM (transition metal) = Fe and Co) primarily in HER as well as OER under 1 M KOH medium. The electrochemical tests revealed that among all the metal-doped MgB2 catalysts, Mg0.95Co0.05B2 has the best HER performance showing an overpotential of 470 mV at - 10 mA cm-2 and a Tafel slope of 80 mV dec-1 on account of its high purity and fast electron transport. Further investigation shed some light on the fact that Fe concentration and overpotential for HER have adverse relation meaning that the highest amount of Fe doping (x = 0.1) displayed the lowest overpotential. This contribution introduces not only highly competent electrocatalysts composed of low-cost precursors for the water-splitting process but also a facile scalable method for the assembly of highly porous electrodes paving the way for further stunning developments in the field.
Collapse
Affiliation(s)
- Ebrahim Sadeghi
- Koç University Boron and Advanced Materials Application and Research Center (KUBAM), 34450, Sariyer, Istanbul, Turkey
- Graduate School of Sciences and Engineering, Koç University, 34450, Sariyer, Istanbul, Turkey
| | - Naeimeh Sadat Peighambardoust
- Koç University Boron and Advanced Materials Application and Research Center (KUBAM), 34450, Sariyer, Istanbul, Turkey
| | - Masoumeh Khatamian
- Inorganic Chemistry Department, Faculty of Chemistry, University of Tabriz, 5166616471, Tabriz, Iran
| | - Ugur Unal
- Koç University Surface Science and Technology Center (KUYTAM), 34450, Sariyer, Istanbul, Turkey
- Department of Chemistry, Koç University, 34450, Sariyer, Istanbul, Turkey
| | - Umut Aydemir
- Koç University Boron and Advanced Materials Application and Research Center (KUBAM), 34450, Sariyer, Istanbul, Turkey.
- Department of Chemistry, Koç University, 34450, Sariyer, Istanbul, Turkey.
| |
Collapse
|
28
|
Tan S. Transmission Electron Microscopy: Applications in Nanotechnology. IEEE NANOTECHNOLOGY MAGAZINE 2021. [DOI: 10.1109/mnano.2020.3037432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Ghadge SD, Velikokhatnyi OI, Datta MK, Shanthi PM, Kumta PN. Computational and experimental investigation of Co and S-doped Ni2P as an efficient electrocatalyst for acid mediated proton exchange membrane hydrogen evolution reaction. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01862g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DFT study illuminating modification of the electronic structure and corresponding experimental validation of the enhanced acid mediated HER activity of Co and S doped Ni2P.
Collapse
Affiliation(s)
| | - Oleg I. Velikokhatnyi
- Department of Bioengineering
- Swanson School of Engineering
- University of Pittsburgh
- USA
- Center for Complex Engineered Multifunctional Materials
| | - Moni K. Datta
- Department of Bioengineering
- Swanson School of Engineering
- University of Pittsburgh
- USA
- Center for Complex Engineered Multifunctional Materials
| | - Pavithra M. Shanthi
- Chemical and Petroleum Engineering
- Swanson School of Engineering
- University of Pittsburgh
- USA
| | - Prashant N. Kumta
- Chemical and Petroleum Engineering
- Swanson School of Engineering
- University of Pittsburgh
- USA
- Department of Bioengineering
| |
Collapse
|
30
|
|
31
|
Chatterjee S, Intikhab S, Profitt L, Li Y, Natu V, Gawas R, Snyder J. Nanoporous multimetallic Ir alloys as efficient and stable electrocatalysts for acidic oxygen evolution reactions. J Catal 2021. [DOI: 10.1016/j.jcat.2020.11.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Shi Z, Wang X, Ge J, Liu C, Xing W. Fundamental understanding of the acidic oxygen evolution reaction: mechanism study and state-of-the-art catalysts. NANOSCALE 2020; 12:13249-13275. [PMID: 32568352 DOI: 10.1039/d0nr02410d] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The oxygen evolution reaction (OER), as the anodic reaction of water electrolysis (WE), suffers greatly from low reaction kinetics and thereby hampers the large-scale application of WE. Seeking active, stable, and cost-effective OER catalysts in acidic media is therefore of great significance. In this perspective, studying the reaction mechanism and exploiting advanced anode catalysts are of equal importance, where the former provides guidance for material structural engineering towards a better catalytic activity. In this review, we first summarize the currently proposed OER catalytic mechanisms, i.e., the adsorbate evolution mechanism (AEM) and lattice oxygen evolution reaction (LOER). Subsequently, we critically review several acidic OER electrocatalysts reported recently, with focus on structure-performance correlation. Finally, a few suggestions on exploring future OER catalysts are proposed.
Collapse
Affiliation(s)
- Zhaoping Shi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
| | | | | | | | | |
Collapse
|
33
|
Gao J, Huang X, Cai W, Wang Q, Jia C, Liu B. Rational Design of an Iridium-Tungsten Composite with an Iridium-Rich Surface for Acidic Water Oxidation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25991-26001. [PMID: 32428393 DOI: 10.1021/acsami.0c05906] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Developing highly active and stable water oxidation catalysts with reduced cost in acidic media plays a critical role in clean energy technologies such as fuel cells and electrolyzers. Precious iridium-based oxides are still the only oxygen evolution reaction (OER) catalysts with reasonable activity and stability in acid. Herein, we design iridium-tungsten composites with a metallic tungsten-rich core and an iridium-rich surface by the sol-gel method followed by hydrogen reduction. The thus obtained iridium-tungsten catalyst shows much higher intrinsic water oxidation activity (100 mA/mgIr at an overpotential of 290 mV) and stability (100 h at 10 mA/cm2geom) together with reduced iridium content (33 wt % only) as compared with pure iridium oxide. An operando method using H2O2 as a probe molecule is developed to determine the relative adsorption strength of the reaction intermediates (*OH and *OOH) in the OER process. Detailed characterization shows that the tungsten-incorporated surface not only modulates the adsorption energy of oxygen intermediates on iridium but also enhances the stability of iridium species in acid, while the metallic tungsten core exhibits high electrical conductivity, all of which collectively give rise to the much enhanced catalytic performance of iridium-tungsten composite in acidic water oxidation. A single-membrane electrode assembly is further prepared to demonstrate the advantages and potential application of iridium-tungsten composite in practical proton exchange membrane electrolyzers.
Collapse
Affiliation(s)
- Jiajian Gao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Xiang Huang
- Department of Physics, Southern University of Science and Technology, No. 1088 Xueyuan Avenue, Nanshan District, Shenzhen 518055, China
| | - Weizheng Cai
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Qilun Wang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Chunmiao Jia
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Bin Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| |
Collapse
|
34
|
Wang X, He P, Yang Y, Zhang F, Tang J, Que R. In situ synthesis of Fe-doped NiC2O4 nanorods for efficient oxygen evolution activity and overall water splitting. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
35
|
Ouyang T, Wang X, Mai X, Chen A, Tang Z, Liu Z. Coupling Magnetic Single‐Crystal Co
2
Mo
3
O
8
with Ultrathin Nitrogen‐Rich Carbon Layer for Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004533] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ting Ouyang
- School of Chemistry and Chemical Engineering/ Institute of Clean Energy and Materials/ Guangzhou Key Laboratory for Clean Energy and Materials/ Key Laboratory for Water Quality and Conservation of the Pearl River Delta Ministry of Education, Guangzhou University Guangzhou Higher Education Mega Center No. 230 Wai Huan Xi Road Guangzhou 510006 P. R. China
| | - Xiao‐Tong Wang
- School of Chemistry and Chemical Engineering/ Institute of Clean Energy and Materials/ Guangzhou Key Laboratory for Clean Energy and Materials/ Key Laboratory for Water Quality and Conservation of the Pearl River Delta Ministry of Education, Guangzhou University Guangzhou Higher Education Mega Center No. 230 Wai Huan Xi Road Guangzhou 510006 P. R. China
| | - Xiu‐Qiong Mai
- School of Chemistry and Chemical Engineering/ Institute of Clean Energy and Materials/ Guangzhou Key Laboratory for Clean Energy and Materials/ Key Laboratory for Water Quality and Conservation of the Pearl River Delta Ministry of Education, Guangzhou University Guangzhou Higher Education Mega Center No. 230 Wai Huan Xi Road Guangzhou 510006 P. R. China
| | - An‐Na Chen
- School of Chemistry and Chemical Engineering/ Institute of Clean Energy and Materials/ Guangzhou Key Laboratory for Clean Energy and Materials/ Key Laboratory for Water Quality and Conservation of the Pearl River Delta Ministry of Education, Guangzhou University Guangzhou Higher Education Mega Center No. 230 Wai Huan Xi Road Guangzhou 510006 P. R. China
| | - Zi‐Yuan Tang
- School of Chemistry and Chemical Engineering/ Institute of Clean Energy and Materials/ Guangzhou Key Laboratory for Clean Energy and Materials/ Key Laboratory for Water Quality and Conservation of the Pearl River Delta Ministry of Education, Guangzhou University Guangzhou Higher Education Mega Center No. 230 Wai Huan Xi Road Guangzhou 510006 P. R. China
| | - Zhao‐Qing Liu
- School of Chemistry and Chemical Engineering/ Institute of Clean Energy and Materials/ Guangzhou Key Laboratory for Clean Energy and Materials/ Key Laboratory for Water Quality and Conservation of the Pearl River Delta Ministry of Education, Guangzhou University Guangzhou Higher Education Mega Center No. 230 Wai Huan Xi Road Guangzhou 510006 P. R. China
| |
Collapse
|
36
|
Ouyang T, Wang XT, Mai XQ, Chen AN, Tang ZY, Liu ZQ. Coupling Magnetic Single-Crystal Co 2 Mo 3 O 8 with Ultrathin Nitrogen-Rich Carbon Layer for Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2020; 59:11948-11957. [PMID: 32337761 DOI: 10.1002/anie.202004533] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Indexed: 12/18/2022]
Abstract
Transition-metal oxides as electrocatalysts for the oxygen evolution reaction (OER) provide a promising route to face the energy and environmental crisis issues. Although palmeirite oxide A2 Mo3 O8 as OER catalyst has been explored, the correlation between its active sites (tetrahedral or octahedral) and OER performance has been elusive. Now, magnetic Co2 Mo3 O8 @NC-800 composed of highly crystallized Co2 Mo3 O8 nanosheets and ultrathin N-rich carbon layer is shown to be an efficient OER catalyst. The catalyst exhibits favorable performance with an overpotential of 331 mV@10 mA cm-2 and 422 mV@40 mA cm-2 , and a full water-splitting electrolyzer with it as anode catalyst shows a cell voltage of 1.67 V@10 mA cm-2 in alkaline. Combined HAADFSTEM, magnetic, and computational results show that factors influencing the OER performance can be attributed to the tetrahedral Co sites (high spin, t2 3 e4 ), which improve the OER kinetics of rate-determining step to form *OOH.
Collapse
Affiliation(s)
- Ting Ouyang
- School of Chemistry and Chemical Engineering/, Institute of Clean Energy and Materials/, Guangzhou Key Laboratory for Clean Energy and Materials/, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Xiao-Tong Wang
- School of Chemistry and Chemical Engineering/, Institute of Clean Energy and Materials/, Guangzhou Key Laboratory for Clean Energy and Materials/, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Xiu-Qiong Mai
- School of Chemistry and Chemical Engineering/, Institute of Clean Energy and Materials/, Guangzhou Key Laboratory for Clean Energy and Materials/, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - An-Na Chen
- School of Chemistry and Chemical Engineering/, Institute of Clean Energy and Materials/, Guangzhou Key Laboratory for Clean Energy and Materials/, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Zi-Yuan Tang
- School of Chemistry and Chemical Engineering/, Institute of Clean Energy and Materials/, Guangzhou Key Laboratory for Clean Energy and Materials/, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/, Institute of Clean Energy and Materials/, Guangzhou Key Laboratory for Clean Energy and Materials/, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| |
Collapse
|
37
|
Kokulnathan T, Chen SM. Design and Construction of the Gadolinium Oxide Nanorod-Embedded Graphene Aerogel: A Potential Application for Electrochemical Detection of Postharvest Fungicide. ACS APPLIED MATERIALS & INTERFACES 2020; 12:16216-16226. [PMID: 32149501 DOI: 10.1021/acsami.9b20224] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The rapid development of electrochemical sensors holds great promise to serve as next generation point-of-care safety devices. However, the practical performances of electrochemical sensors are cruelly limited by stability, selectivity, and sensitivity. These issues have been well addressed by introducing rational designs into the modified electrode for achieving the required performances. Herein, we demonstrate the gadolinium oxide nanorods embedded on the graphene aerogel (GdO NRs/GA) for a highly selective electrochemical detection of carbendazim (CDM). The GdO NRs/GA nanocomposite was characterized using X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, field emission gun scanning electron microscopy, transmission electron microscopy with elemental mapping, and energy-dispersive spectrometry. The GdO NRs/GA-modified electrode shows a much improved electrochemical performance compared to other electrodes. Interestingly, the GdO NRs are strongly anchored in the GA matrix, which provides a more sufficient pathway for the rapid electron and ion transportation. On the basis of these findings, our proposed sensor achieves a wide detection range from 0.01 to 75 μM with a correlation coefficient of 0.996 and a low detection limit of 3.0 nM. Most markedly, the real-time monitoring of the proposed electrochemical sensor was proved by the successful determination of CDM in environmental samples. Our research work has opened a novel way to the rationale for the construction of highly efficient practical electrochemical sensors.
Collapse
Affiliation(s)
- Thangavelu Kokulnathan
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| |
Collapse
|
38
|
Xu H, Zhang W, Zhang J, Wu Z, Sheng T, Gao F. An Fe-doped Co11(HPO3)8(OH)6 nanosheets array for high-performance water electrolysis. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135616] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
39
|
Dong Y, Yang J, Liu Y, Wang Y, Dong Z, Cui M, Li M, Yuan X, Zhang X, Dai X. 2D Fe-doped NiO nanosheets with grain boundary defects for the advanced oxygen evolution reaction. Dalton Trans 2020; 49:6355-6362. [DOI: 10.1039/c9dt04633j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NiFe0.1O with grain boundary defects possesses a smaller ECSA (Cdl = 3.23 mF cm−2) than other samples. However, NiFe0.1O shows the highest electrocatalytic OER performance.
Collapse
|
40
|
Jürgensen L, Frank M, Graf D, Gessner I, Fischer T, Welter K, Jägermann W, Mathur S. Nanostructured IrOx Coatings for Efficient Oxygen Evolution Reactions in PV-EC Setup. Z PHYS CHEM 2019. [DOI: 10.1515/zpch-2019-1450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Abstract
New heteroleptic iridium compounds exhibiting high volatility and defined thermal decomposition behavior were developed and tested in plasma-enhanced chemical vapor deposition (PECVD). The iridium precursor [(COD)Ir(TFB-TFEA)] (COD = 1,5-cyclooctadiene; TFB-TFEA = N-(4,4,4-Trifluorobut-1-en-3-on)-6,6,6-trifluoroethylamin) unifies both reactivity and sufficient stability through its heteroleptic constitution to offer a step-by-step elimination of ligands to provide high compositional purity in CVD deposits. The substitution of neutral COD ligands against CO groups further increased the volatility of the precursor. PECVD experiments with unambiguously characterized Ir compounds (single crystal X-ray diffraction analysis) demonstrated their suitability for an atom-efficient (high molecule-to-precursor yield) gas phase deposition of amorphous iridium oxide (IrOx) phases. Thin films of IrOx were well suited as electrocatalyst in oxygen evolution reaction so that an efficient coupled system in combination with solar cells is viable to perform water-splitting reaction without external bias.
Collapse
Affiliation(s)
- Lasse Jürgensen
- Institute of Inorganic Chemistry , University of Cologne , Greinstrasse 6, D-50939 Cologne , Germany
| | - Michael Frank
- Institute of Inorganic Chemistry , University of Cologne , Greinstrasse 6, D-50939 Cologne , Germany
| | - David Graf
- Institute of Inorganic Chemistry , University of Cologne , Greinstrasse 6, D-50939 Cologne , Germany
| | - Isabel Gessner
- Institute of Inorganic Chemistry , University of Cologne , Greinstrasse 6, D-50939 Cologne , Germany
| | - Thomas Fischer
- Institute of Inorganic Chemistry , University of Cologne , Greinstrasse 6, D-50939 Cologne , Germany
| | | | | | - Sanjay Mathur
- Institute of Inorganic Chemistry , University of Cologne , Greinstrasse 6, D-50939 Cologne , Germany
| |
Collapse
|
41
|
Liao CH, Fan K, Bao SS, Fan H, Wang XZ, Hu Z, Kurmoo M, Zheng LM. From a layered iridium(iii)-cobalt(ii) organophosphonate to an efficient oxygen-evolution-reaction electrocatalyst. Chem Commun (Camb) 2019; 55:13920-13923. [PMID: 31682247 DOI: 10.1039/c9cc06164a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bimetallic MOF precursors can produce a homogeneous distribution of mixed-metal oxides after calcination, and thus may provide high efficiency as electrocatalysts in the water splitting process. We designed a layered bimetallic-organophosphonate containing Ir, Co and P because the metal-oxides are well-known for their efficiency in the oxygen-evolution reaction (OER), especially when the phosphate acts as a proton carrier. We describe the structure of the MOF and characteristics of the calcined form, which has outstanding OER characteristics in 1.0 M KOH with an overpotential of 317.7 mV at 10 mA cm-2 and a low Tafel slope of 59.1 mV dec-1.
Collapse
Affiliation(s)
- Chwen-Haw Liao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Zhang R, Huang L, Yu Z, Jiang R, Hou Y, Sun L, Zhang B, Huang Y, Ye B, Zhang Y. Spherical cactus-like composite based on transition metals Ni, Co and Mn with 1D / 2D bonding heterostructure for electrocatalytic overall water splitting. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134845] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
43
|
Jin H, Joo J, Chaudhari NK, Choi S, Lee K. Recent Progress in Bifunctional Electrocatalysts for Overall Water Splitting under Acidic Conditions. ChemElectroChem 2019. [DOI: 10.1002/celc.201900507] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Haneul Jin
- Department of ChemistryKorea University Seoul 02841 Republic of Korea
| | - Jinwhan Joo
- Department of ChemistryKorea University Seoul 02841 Republic of Korea
| | - Nitin K. Chaudhari
- Department of ChemistryKorea University Seoul 02841 Republic of Korea
- Research Institute of Natural Sciences (RINS)Korea University Seoul 02841 Republic of Korea
| | - Sang‐Il Choi
- Department of Chemistry and Green-Nano Materials Research CenterKyungpook National University Daegu 41566 Republic of Korea
| | - Kwangyeol Lee
- Department of ChemistryKorea University Seoul 02841 Republic of Korea
| |
Collapse
|