1
|
Liang KC, Ling TP, Qin HT, Liu F. Sulfinylation of Tertiary Alkyl Halides via a Halogenophilic Substitution (S N2X) Reaction. J Org Chem 2025; 90:5393-5397. [PMID: 40208698 DOI: 10.1021/acs.joc.4c03021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
The halogenophilic SN2X reaction involving a nucleophilic attack on the X group from the front is less sensitive to backside steric hindrance. Herein, we report a mild and efficient SN2X reaction for sulfinylation of activated tertiary alkyl halides, which could provide a novel method for accessing sulfoxides decorated with a congested carbon center. Preliminary mechanistic studies indicated that the generated sulfinyl bromides would be the key electrophilic intermediates in the reaction.
Collapse
Affiliation(s)
- Kai-Cheng Liang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Tian-Peng Ling
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Hai-Tao Qin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Feng Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
- Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| |
Collapse
|
2
|
Chen Y, Wang X, Shan JR, Wu Z, Cao R, Liu Y, Jin Y, Hao E, Houk KN, Shi L. Chemoselective Functionalization of Tertiary C-H Bonds of Allylic Ethers: Enantioconvergent Access to sec,tert-Vicinal Diols. Angew Chem Int Ed Engl 2025; 64:e202501924. [PMID: 39932430 DOI: 10.1002/anie.202501924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025]
Abstract
While enantioenriched alcohols are highly significant in medicinal chemistry, total synthesis, and materials science, the stereoselective synthesis of tertiary alcohols with two adjacent stereocenters remains a formidable challenge. In this study, we present a dual catalysis approach utilizing photoredox and nickel catalysts to enable the unprecedented chemoselective functionalization of tertiary allylic C-H bonds in allyl ethers instead of cleaving the C-O bond. The resulting allyl-Ni intermediates can undergo coupling with various aldehydes, facilitating a novel enantioconvergent approach to access extensively functionalized homoallylic sec,tert-vicinal diols frameworks. This protocol exhibits nice tolerance towards functional groups, a broad scope of substrates, excellent diastereo- and enantioselectivity (up to 20 : 1 dr, 99 % ee). Mechanistic studies suggested that allyl-NiII acts as the nucleophilic species in the coupling reaction with carbonyls.
Collapse
Affiliation(s)
- Yuqing Chen
- School of Chemistry, Dalian University of Technology, 116024, Dalian, China
| | - Xin Wang
- School of Chemistry, Dalian University of Technology, 116024, Dalian, China
| | - Jing-Ran Shan
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, 90095, United States
| | - Zhixian Wu
- School of Chemistry, Dalian University of Technology, 116024, Dalian, China
| | - Renxu Cao
- School of Chemistry, Dalian University of Technology, 116024, Dalian, China
| | - Yonghong Liu
- School of Chemistry, Dalian University of Technology, 116024, Dalian, China
| | - Yunhe Jin
- School of Chemistry, Dalian University of Technology, 116024, Dalian, China
| | - Erjun Hao
- School of Chemistry and Chemical Engineering, Henan Normal University, 453007, Xinxiang, China
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, 90095, United States
| | - Lei Shi
- School of Chemistry, Dalian University of Technology, 116024, Dalian, China
- School of Chemistry and Chemical Engineering, Henan Normal University, 453007, Xinxiang, China
| |
Collapse
|
3
|
Kang B, Wei L, Jiang H, Qi C. Cyclic Diphenylchloronium-Salt-Triggered Coupling of Sulfides with Nucleophiles: Modular Assembly of Pharmaceuticals. Org Lett 2025; 27:3655-3660. [PMID: 40175354 DOI: 10.1021/acs.orglett.5c00768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
We report a novel coupling strategy enabled by cyclic diphenylchloronium salt that facilitates reactions between sulfides and diverse nucleophiles, including oxygen- and nitrogen-based species. The methodology efficiently produces structurally varied valuable compounds, including carbamates, carboxylic esters, aryl ethers, and alkylated amines, under mild, operationally simple conditions. The protocol's synthetic utility was highlighted through modular preparation of five important drugs and five structural analogues, demonstrating significant potential for drug discovery applications.
Collapse
Affiliation(s)
- Bangxiong Kang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Li Wei
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chaorong Qi
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
4
|
Guo W, Zi L, Yang J, Wang Y, Zhu S. Through-Space 1,4-Ni/H Shift: Unlocking Migration along Coupling Partners in Olefin Borylcarbofunctionalization. Angew Chem Int Ed Engl 2025:e202503671. [PMID: 40213907 DOI: 10.1002/anie.202503671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/11/2025] [Accepted: 04/11/2025] [Indexed: 04/22/2025]
Abstract
Olefin migratory functionalization is a well-established strategy for the selective installation of functional groups at remote C(sp3)-H positions along an alkyl chain. However, prior research has predominantly focused on migration along the alkene component. Herein, we describe a conceptually new migratory coupling strategy for the difunctionalization of alkenes, where migration selectively occurs along the C(sp2) coupling partner rather than the alkene component, facilitated by a through-space 1,4-Ni/H shift. This approach offers a modular three-component strategy for the selective and efficient construction of densely functionalized alkyl boronates from readily accessible chemicals. Moreover, by integrating the 1,2-Ni/H shift with the 1,4-Ni/H shift, this platform has been expanded to achieve a two-fold migration along both the alkene components and the coupling partners, facilitating selective borylative remote C(sp3)─H/C(sp2)─H cross-coupling.
Collapse
Affiliation(s)
- Wenqing Guo
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Letian Zi
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Jingjie Yang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - You Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Shaolin Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
5
|
Teng S, Liang P, Zhou JS. New reactivity of late 3d transition metal complexes in catalytic reactions of alkynes. Chem Soc Rev 2025; 54:2664-2692. [PMID: 39969407 DOI: 10.1039/d4cs01130a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Late 3d metals such as iron, cobalt, nickel, and copper are abundantly present in the Earth's crust and they are produced in huge quantities in the mining industry. Often, these inexpensive metals exhibit unique or special reactivities in catalytic reactions as compared with expensive noble metals such as palladium, iridium, and rhodium. The novel reactivities of 3d metal complexes originate from their unique physical and atomic properties as compared with heavier 4d/5d congeners: smaller ionic and covalent radii, contracted 3d orbitals of smaller sizes and lower energies, lower values of Pauli electronegativity, etc. This review summarizes the recent progress in late 3d transition metal-catalyzed transformations of alkynes. We organize catalytic examples according to each type of novel elementary reactivity exhibited by 3d metal complexes. Each section includes a description of the unique reactivity of the 3d metals, the atomic and theoretical basis of the reactivity and illustrations of catalytic examples: (1) single electron transfer from low-valent metal complexes to alkyl halides, (2) facile reductive elimination from nickel(III), (3) facile reductive elimination from copper(III), (4) cis-to-trans isomerization of alkenyl metal complexes after syn-insertion, (5) ligand-to-ligand hydrogen transfer, (6) hydrogen atom transfer from hydride complexes and (7) protonation of nickel metallacyclopropenes.
Collapse
Affiliation(s)
- Shenghan Teng
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China.
| | - Peiyao Liang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China.
| | - Jianrong Steve Zhou
- State Key Laboratory of Chemical Oncogenomics, Shenzhen Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China.
| |
Collapse
|
6
|
Han MH, Koh HS, Heo IH, Kim MH, Kim PS, Jeon MU, Kim MJ, Jin WH, Cho KC, Park J, Park JG. The Chemical Deformation of a Thermally Cured Polyimide Film Surface into Neutral 1,2,4,5-Benzentetracarbonyliron and 4,4'-Oxydianiline to Remarkably Enhance the Chemical-Mechanical Planarization Polishing Rate. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:425. [PMID: 40137598 PMCID: PMC11944291 DOI: 10.3390/nano15060425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025]
Abstract
The rapid advancement of 3D packaging technology has emerged as a key solution to overcome the scaling-down limitation of advanced memory and logic devices. Redistribution layer (RDL) fabrication, a critical process in 3D packaging, requires the use of polyimide (PI) films with thicknesses in the micrometer range. However, these polyimide films present surface topography variations in the range of hundreds of nanometers, necessitating chemical-mechanical planarization (CMP) to achieve nanometer-level surface flatness. Polyimide films, composed of copolymers of pyromellitimide and diphenyl ether, possess strong covalent bonds such as C-C, C-O, C=O, and C-N, leading to inherently low polishing rates during CMP. To address this challenge, the introduction of Fe(NO3)3 into CMP slurries has been proposed as a polishing rate accelerator. During CMP, this Fe(NO3)3 deformed the surface of a polyimide film into strongly positively charged 1,2,4,5-benzenetetracarbonyliron and weakly negatively charged 4,4'-oxydianiline (ODA). The chemically dominant polishing rate enhanced with the concentration of the Fe(NO3)3 due to accelerated surface interactions. However, higher Fe(NO3)3 concentrations reduce the attractive electrostatic force between the positively charged wet ceria abrasives and the negatively charged deformed surface of the polyimide film, thereby decreasing the mechanically dominant polishing rate. A comprehensive investigation of the chemical and mechanical polishing rate dynamics revealed that the optimal Fe(NO3)3 concentration to achieve the maximum polyimide film removal rate was 0.05 wt%.
Collapse
Affiliation(s)
- Man-Hyup Han
- Department of Nanoscale Semiconductor Engineering, Hanyang University, Seoul 04763, Republic of Korea; (M.-H.H.); (P.-S.K.)
| | - Hyun-Sung Koh
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea; (H.-S.K.); (I.-H.H.); (M.-H.K.); (M.-U.J.); (M.-J.K.); (W.-H.J.); (K.-C.C.); (J.P.)
| | - Il-Haeng Heo
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea; (H.-S.K.); (I.-H.H.); (M.-H.K.); (M.-U.J.); (M.-J.K.); (W.-H.J.); (K.-C.C.); (J.P.)
| | - Myung-Hoe Kim
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea; (H.-S.K.); (I.-H.H.); (M.-H.K.); (M.-U.J.); (M.-J.K.); (W.-H.J.); (K.-C.C.); (J.P.)
| | - Pil-Su Kim
- Department of Nanoscale Semiconductor Engineering, Hanyang University, Seoul 04763, Republic of Korea; (M.-H.H.); (P.-S.K.)
| | - Min-Uk Jeon
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea; (H.-S.K.); (I.-H.H.); (M.-H.K.); (M.-U.J.); (M.-J.K.); (W.-H.J.); (K.-C.C.); (J.P.)
| | - Min-Ji Kim
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea; (H.-S.K.); (I.-H.H.); (M.-H.K.); (M.-U.J.); (M.-J.K.); (W.-H.J.); (K.-C.C.); (J.P.)
| | - Woo-Hyun Jin
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea; (H.-S.K.); (I.-H.H.); (M.-H.K.); (M.-U.J.); (M.-J.K.); (W.-H.J.); (K.-C.C.); (J.P.)
| | - Kyoo-Chul Cho
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea; (H.-S.K.); (I.-H.H.); (M.-H.K.); (M.-U.J.); (M.-J.K.); (W.-H.J.); (K.-C.C.); (J.P.)
| | - Jinsub Park
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea; (H.-S.K.); (I.-H.H.); (M.-H.K.); (M.-U.J.); (M.-J.K.); (W.-H.J.); (K.-C.C.); (J.P.)
| | - Jea-Gun Park
- Department of Nanoscale Semiconductor Engineering, Hanyang University, Seoul 04763, Republic of Korea; (M.-H.H.); (P.-S.K.)
- Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea; (H.-S.K.); (I.-H.H.); (M.-H.K.); (M.-U.J.); (M.-J.K.); (W.-H.J.); (K.-C.C.); (J.P.)
| |
Collapse
|
7
|
Xia Z, Ye Z, Deng T, Tan Z, Song C, Li J. Benzylic C-H Radical Sulfation by Persulfates. Angew Chem Int Ed Engl 2025; 64:e202413847. [PMID: 39404953 DOI: 10.1002/anie.202413847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Indexed: 11/14/2024]
Abstract
Sulfation is a highly valuable pathological and physiological process, yet it is often underappreciated considering the rather difficult accessibility of organosulfates. O-sulfonation (O-SO3), a conventional and still common way to make organosulfates, restricts its applicability to hydroxyl compounds and therein lies a major challenge of library construction. Here, we describe a benzylic C-H radical sulfation with persulfates via C-O bond formation. This strategy leverages modular control over the reactivity of persulfates and the stability of sulfate radicals by coutercations. K+/NH4 + stabilized sulfate radicals act as the oxidant to generate carbon-centered radicals from substrates, and activation of persulfates by n-NBu4 + provides O-O resource pool to facilitate C-OSO3 - bond formation via a bimolecular homolytic substitution (SH2) process.
Collapse
Affiliation(s)
- Zhen Xia
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zhongyao Ye
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Ting Deng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Ze Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Chunlang Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jiakun Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
8
|
Shen HC, Aggarwal VK. Iridium-Catalyzed Stereocontrolled C(sp 3)-C(sp 3) Cross-Coupling of Boronic Esters and Allylic Carbonates Enabled by Boron-to-Zinc Transmetalation. J Am Chem Soc 2025; 147:5583-5589. [PMID: 39912599 PMCID: PMC11848825 DOI: 10.1021/jacs.4c17931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 02/07/2025]
Abstract
The stereocontrolled C(sp3)-C(sp3) cross-coupling represents a considerable challenge of great contemporary interest. While this has been achieved through the reactions of boronate complexes with π-allyl iridium complexes, such reactions suffered from a limited substrate scope. We now report that following transmetalation from boronate complexes to organozinc reagents enables previously unreactive substrates to engage in stereocontrolled C(sp3)-C(sp3) cross-coupling. The broader substrate scope has enabled their application to the synthesis of biologically active molecules. The organozinc reagents react through a stereoinvertive coupling pathway with π-allyl iridium complexes, in contrast to reactions with other electrophiles that occur with retention of stereochemistry. The reaction uniquely combines the enantiospecific reactivity of an enantioenriched organometallic nucleophile with the enantioselective engagement of a racemic electrophile, enabling access to all stereoisomers.
Collapse
Affiliation(s)
- Hong-Cheng Shen
- School of Chemistry, University
of Bristol, Cantock’s
Close, Bristol BS8 1TS, U.K.
| | - Varinder K. Aggarwal
- School of Chemistry, University
of Bristol, Cantock’s
Close, Bristol BS8 1TS, U.K.
| |
Collapse
|
9
|
Liu G, Shi Z, Guo C, Gu D, Wang Z. Metallaphotoredox Enabled Single Carbon Atom Insertion into Alkenes for Allene Synthesis. Angew Chem Int Ed Engl 2025; 64:e202418746. [PMID: 39779479 DOI: 10.1002/anie.202418746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/11/2025]
Abstract
Efficient methods for synthesizing allenes from readily available starting materials pose a persistent challenge in organic chemistry. In this work, we present a novel two-stage protocol for allene synthesis involving the single-atom insertion into alkenes, facilitated by synergistic photoredox and cobalt catalysis. Diverging from conventional methods such as the Doering-LaFlamme reaction, this photochemical rearrangement approach operates efficiently under mild conditions in a radical-based manner. The protocol exhibits a broad substrate scope and demonstrates applicability in the late-stage diversification of alkene-containing natural products and bioactive molecules. Preliminary mechanistic studies and density functional theory (DFT) calculations offer insights into the reaction pathway, indicating a radical mechanism involving fleeting cyclopropyl carbene intermediates followed by rapid ring opening to form allenes.
Collapse
Affiliation(s)
- Gang Liu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Hangzhou, 310030, Zhejiang Province, China
| | - Zhaoxin Shi
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Hangzhou, 310030, Zhejiang Province, China
| | - Chuning Guo
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Hangzhou, 310030, Zhejiang Province, China
| | - Danyu Gu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou, 310024, Zhejiang Province, China
| | - Zhaobin Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Hangzhou, 310030, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310030, Zhejiang Province, China
| |
Collapse
|
10
|
Cho H, Tong X, Zuccarello G, Anderson RL, Fu GC. Synthesis of tertiary alkyl amines via photoinduced copper-catalysed nucleophilic substitution. Nat Chem 2025; 17:271-278. [PMID: 39754014 PMCID: PMC11853627 DOI: 10.1038/s41557-024-01692-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 11/05/2024] [Indexed: 02/06/2025]
Abstract
In view of the high propensity of tertiary alkyl amines to be bioactive, the development of new methods for their synthesis is an important challenge. Transition-metal catalysis has the potential to greatly expand the scope of nucleophilic substitution reactions of alkyl electrophiles; unfortunately, in the case of alkyl amines as nucleophiles, only one success has been described so far: the selective mono-alkylation of primary amines to form secondary amines. Here, using photoinduced copper catalysis, we report the synthesis of tertiary alkyl amines from secondary amines and unactivated alkyl electrophiles, two readily available coupling partners. Utilizing an array of tools, we have analysed the mechanism of this process; specifically, we have structurally characterized the three principal copper-based intermediates that are detected during catalysis and provided support for the key steps of the proposed catalytic cycle, including the coupling of a copper(II)-amine intermediate with an alkyl radical to form a C-N bond.
Collapse
Affiliation(s)
- Hyungdo Cho
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Xiaoyu Tong
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Giuseppe Zuccarello
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Robert L Anderson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Gregory C Fu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
11
|
Wang YZ, Sun B, Guo JF, Zhu XY, Gu YC, Han YP, Ma C, Mei TS. Enantioselective reductive cross-couplings to forge C(sp 2)-C(sp 3) bonds by merging electrochemistry with nickel catalysis. Nat Commun 2025; 16:1108. [PMID: 39875390 PMCID: PMC11775263 DOI: 10.1038/s41467-025-56377-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/16/2025] [Indexed: 01/30/2025] Open
Abstract
Motivated by the inherent benefits of synergistically combining electrochemical methodologies with nickel catalysis, we present here a Ni-catalyzed enantioselective electroreductive cross-coupling of benzyl chlorides with aryl halides, yielding chiral 1,1-diaryl compounds with good to excellent enantioselectivity. This catalytic reaction can not only be applied to aryl chlorides/bromides, which are challenging to access by other means, but also to benzyl chlorides containing silicon groups. Additionally, the absence of a sacrificial anode lays a foundation for scalability. The combination of cyclic voltammetry analysis with electrode potential studies suggests that NiI species activate aryl halides via oxidative addition and alkyl chlorides via single electron transfer.
Collapse
Affiliation(s)
- Yun-Zhao Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Bing Sun
- State Key Laboratory of Organometallic Chemistry, Shanghai of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Jian-Feng Guo
- State Key Laboratory of Organometallic Chemistry, Shanghai of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Xiao-Yu Zhu
- State Key Laboratory of Organometallic Chemistry, Shanghai of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Yu-Cheng Gu
- Syngenta, Jealott's Hill International Research Centre, Berkshire, UK
| | - Ya-Ping Han
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
| | - Cong Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Shanghai of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, PR China.
| |
Collapse
|
12
|
Liu P, He Y, Jiang CH, Ren WR, Jin RX, Zhang T, Chen WX, Nie X, Wang XS. CF 2H-synthon enables asymmetric radical difluoroalkylation for synthesis of chiral difluoromethylated amines. Nat Commun 2025; 16:599. [PMID: 39799146 PMCID: PMC11724884 DOI: 10.1038/s41467-025-55912-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025] Open
Abstract
The difluoromethyl group is a crucial fluorinated moiety with distinctive biological properties, and the synthesis of chiral CF₂H-containing analogs has been recognized as a powerful strategy in drug design. To date, the most established method for accessing enantioenriched difluoromethyl compounds involves the enantioselective functionalization of nucleophilic and electrophilic CF₂H synthons. However, this approach is limited by lower reactivity and reduced enantioselectivity. Leveraging the unique fluorine effect, we design and synthesize a radical CF₂H synthon by incorporating isoindolinone into alkyl halides for asymmetric radical transformation. Here, we report an efficient strategy for the asymmetric construction of carbon stereocenters featuring a difluoromethyl group via nickel-catalyzed Negishi cross-coupling. This approach demonstrates mild reaction conditions and excellent enantioselectivity. Given that optically pure difluoromethylated amines and isoindolinones are key structural motifs in bioactive compounds, this strategy offers a practical solution for the efficient synthesis of CF₂H-containing chiral drug-like molecules.
Collapse
Affiliation(s)
- Peng Liu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Yan He
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Chen-Hui Jiang
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Wei-Ran Ren
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Ruo-Xing Jin
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Ting Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Wang-Xuan Chen
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Xuan Nie
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Xi-Sheng Wang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Department of Chemistry, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
13
|
Xu S, Ping Y, Su Y, Guo H, Luo A, Kong W. A modular approach to catalytic stereoselective synthesis of chiral 1,2-diols and 1,3-diols. Nat Commun 2025; 16:364. [PMID: 39754022 PMCID: PMC11699147 DOI: 10.1038/s41467-024-55744-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025] Open
Abstract
Optically pure 1,2-diols and 1,3-diols are the most privileged structural motifs, widely present in natural products, pharmaceuticals and chiral auxiliaries or ligands. However, their synthesis relies on the use of toxic or expensive metal catalysts or suffer from low regioselectivity. Catalytic asymmetric synthesis of optically pure 1,n-diols from bulk chemicals in a highly stereoselective and atom-economical manner remains a formidable challenge. Here, we disclose a versatile and modular method for the synthesis of enantioenriched 1,2-diols and 1,3-diols from the high-production-volume chemicals ethane-1,2-diol (MEG) and 1,3-propanediol (PDO), respectively. The key to success is to temporarily mask the diol group as an acetonide, which imparts selectivity to the key step of C(sp3)-H functionalization. Additionally, 1,n-diols containing two stereogenic centers are also prepared through diastereoselective C(sp3)-H functionalization. The late-stage functionalization of biological active compounds and the expedient synthesis of chiral ligands and pharmaceutically relevant molecules further highlight the synthetic potential of this protocol.
Collapse
Affiliation(s)
- Sheng Xu
- The Institute for Advanced Studies and Hongyi Honor College, Wuhan University, Wuhan, China
| | - Yuanyuan Ping
- The Institute for Advanced Studies and Hongyi Honor College, Wuhan University, Wuhan, China
| | - Yinyan Su
- The Institute for Advanced Studies and Hongyi Honor College, Wuhan University, Wuhan, China
| | - Haoyun Guo
- The Institute for Advanced Studies and Hongyi Honor College, Wuhan University, Wuhan, China
| | - Aowei Luo
- The Institute for Advanced Studies and Hongyi Honor College, Wuhan University, Wuhan, China
| | - Wangqing Kong
- The Institute for Advanced Studies and Hongyi Honor College, Wuhan University, Wuhan, China.
- Wuhan Institute of Photochemistry and Technology, Wuhan, China.
| |
Collapse
|
14
|
Shen H, Yang L, Xu M, Shi Z, Gao K, Xia X, Wang Z. Radical-Based Enantioconvergent Reductive Couplings of Racemic Allenes and Aldehydes. Angew Chem Int Ed Engl 2025; 64:e202413198. [PMID: 39221920 DOI: 10.1002/anie.202413198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
Transition metal-catalyzed radical-based enantioconvergent reactions have become a powerful strategy to synthesize enantiopure compounds from racemic starting materials. However, existing methods primarily address precursors with central chirality, neglecting those with axial chirality. Herein, we describe the enantioconvergent reductive coupling of racemic allenes with aldehydes, facilitated by a photoredox, chromium, and cobalt triple catalysis system. This method selectively affords one product from sixteen possible regio- and stereoisomers. The protocol leverages CoIII-H mediated hydrogen atom transfer (MHAT) and Cr-catalyzed radical-polar crossover for efficient stereoablation of axial chirality and asymmetric addition, respectively. Supported by mechanistic insights from control experiments, deuterium labeling, and DFT calculations, our approach offers synthetic chemists a valuable tool for creating enantioenriched chiral homoallylic alcohols, promising to advance radical-based strategies for synthesizing complex chiral molecules.
Collapse
Affiliation(s)
- Haigen Shen
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 310024, Hangzhou, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 310024, Hangzhou, China
| | - Ling Yang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 310024, Hangzhou, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 310024, Hangzhou, China
| | - Mingrui Xu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 310024, Hangzhou, China
| | - Zhaoxin Shi
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 310024, Hangzhou, China
| | - Ke Gao
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 310024, Hangzhou, China
| | - Xiaowen Xia
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 310024, Hangzhou, China
| | - Zhaobin Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 310024, Hangzhou, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 310024, Hangzhou, China
| |
Collapse
|
15
|
Sarkar P, Dash S, Krause JA, Sinha S, Panetier JA, Jiang JJ. Ambient Electroreductive Carboxylation of Unactivated Alkyl Chlorides and Polyvinyl Chloride (PVC) Upgrading. CHEMSUSCHEM 2024; 17:e202400517. [PMID: 38890556 DOI: 10.1002/cssc.202400517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/20/2024]
Abstract
Electrosynthesis of alkyl carboxylic acids upon activating stronger alkyl chlorides at low-energy cost is desired in producing carbon-rich feedstock. Carbon dioxide (CO2), a greenhouse gas, has been recognized as an ideal primary carbon source for those syntheses, and such events also mitigate the atmospheric CO2 level, which is already alarming. On the other hand, the promising upcycling of polyvinyl chloride to polyacrylate is a high energy-demanding carbon-chloride (C-Cl) bond activation process. Molecular catalysts that can efficiently perform such transformation under ambient reaction conditions are rarely known. Herein, we reveal a nickel (Ni)-pincer complex that catalyzes the electrochemical upgrading of polyvinyl chloride to polyacrylate in 95 % yield. The activities of such a Ni electrocatalyst bearing a redox-active ligand were also tested to convert diverse examples of unactivated alkyl chlorides to their corresponding carboxylic acid derivatives. Furthermore, electronic structure calculations revealed that CO2 binding occurs in a resting state to yield an η2-CO2 adduct and that the C-Cl bond activation step is the rate-determining transition state, which has an activation energy of 19.3 kcal/mol. A combination of electroanalytical methods, control experiments, and computational studies were also carried out to propose the mechanism of the electrochemical C-Cl activation process with the subsequent carboxylation step.
Collapse
Affiliation(s)
- Prasenjit Sarkar
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221
| | - Sandeep Dash
- Department of Chemistry, State University of New York, Binghamton, NY 13902
| | - Jeanette A Krause
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221
| | - Soumalya Sinha
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221
| | - Julien A Panetier
- Department of Chemistry, State University of New York, Binghamton, NY 13902
| | | |
Collapse
|
16
|
Le HV, Nguyen VTB, Le HX, Nguyen TT, Nguyen KD, Ho PH, Nguyen TTH. Green Synthesis of Diphenyl-Substituted Alcohols Via Radical Coupling of Aromatic Alcohols Under Transition-Metal-Free Conditions. ChemistryOpen 2024; 13:e202400139. [PMID: 39171770 PMCID: PMC11625937 DOI: 10.1002/open.202400139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/16/2024] [Indexed: 08/23/2024] Open
Abstract
Alcohols are common alkylating agents and starting materials alternative to harmful alkyl halides. In this study, a simple, benign and efficient pathway was developed to synthesize 1,3-diphenylpropan-1-ols via the β-alkylation of 1-phenylethanol with benzyl alcohols. Unlike conventional borrowing hydrogen processes in which alcohols were activated by transition-metal catalyzed dehydrogenation, in this work, t-BuONa was suggested to be a dual-role reagent, namely, both base and radical initiator, for the radical coupling of aromatic alcohols. The cross-coupling reaction readily proceeded under transition metal-free conditions and an inert atmosphere, affording 1,3-diphenylpropan-1-ol with an excellent yield. A good functional group tolerance in benzyl alcohols was observed, leading to the production of various phenyl-substituted propan-1-ol derivatives in moderate-to-good yields. The mechanistic studies proposed that the reaction could involve the formation of reactive radical anions by base-mediated deprotonation and single electron transfer.
Collapse
Affiliation(s)
- Ha V. Le
- Faculty of Chemical EngineeringHo Chi Minh City University of Technology (HCMUT)268 Ly Thuong Kiet740010District 10, Ho Chi Minh CityVietnam
- Vietnam National University Ho Chi Minh CityLinh Trung Ward720400Thu Duc City, Ho Chi Minh CityVietnam
| | - Vy T. B. Nguyen
- Faculty of Chemical EngineeringHo Chi Minh City University of Technology (HCMUT)268 Ly Thuong Kiet740010District 10, Ho Chi Minh CityVietnam
- Vietnam National University Ho Chi Minh CityLinh Trung Ward720400Thu Duc City, Ho Chi Minh CityVietnam
| | - Huy X. Le
- Faculty of Chemical EngineeringHo Chi Minh City University of Technology (HCMUT)268 Ly Thuong Kiet740010District 10, Ho Chi Minh CityVietnam
- Vietnam National University Ho Chi Minh CityLinh Trung Ward720400Thu Duc City, Ho Chi Minh CityVietnam
| | - Tung T. Nguyen
- Faculty of Chemical EngineeringHo Chi Minh City University of Technology (HCMUT)268 Ly Thuong Kiet740010District 10, Ho Chi Minh CityVietnam
- Vietnam National University Ho Chi Minh CityLinh Trung Ward720400Thu Duc City, Ho Chi Minh CityVietnam
| | - Khoa D. Nguyen
- Faculty of Chemical EngineeringHo Chi Minh City University of Technology (HCMUT)268 Ly Thuong Kiet740010District 10, Ho Chi Minh CityVietnam
- Vietnam National University Ho Chi Minh CityLinh Trung Ward720400Thu Duc City, Ho Chi Minh CityVietnam
| | - Phuoc H. Ho
- Chemical Engineering, Competence Centre for CatalysisChalmers University of TechnologyGothenburgSE-412 96Sweden
| | - Thuong T. H. Nguyen
- Faculty of Chemical EngineeringHo Chi Minh City University of Technology (HCMUT)268 Ly Thuong Kiet740010District 10, Ho Chi Minh CityVietnam
- Vietnam National University Ho Chi Minh CityLinh Trung Ward720400Thu Duc City, Ho Chi Minh CityVietnam
| |
Collapse
|
17
|
Brösamlen D, Neb D, Oestreich M. Enantio- and Regioconvergent Nickel-Catalyzed Etherification of Phenols by Allylation to Access Chiral C(sp 3)-O Allyl Aryl Ethers. Angew Chem Int Ed Engl 2024; 63:e202412181. [PMID: 39155679 DOI: 10.1002/anie.202412181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
An enantio- and regioconvergent allylation of phenols under nickel catalysis with an α-/γ-regioisomeric mixture of racemic silylated/germylated allylic chlorides is reported. The silyl/germyl group governs the regioselectivity, and the transformation affords enantiomerically enriched unsymmetrical 1,3-disubstituted allyl aryl ethers with excellent regiocontrol in good yields and excellent enantioselectivities. Notably, no nickel-mediated C-O bond activation is observed at room temperature. The synthetic value of these densely functionalized silicon-containing building blocks is demonstrated in a series of chemoselective transformations, including a [3,3]-sigmatropic rearrangement for the construction of an α-chiral silane.
Collapse
Affiliation(s)
- Daniel Brösamlen
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| | - Daniel Neb
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| |
Collapse
|
18
|
Dawson GA, Seith MC, Neary MC, Diao T. Redox Activity and Potentials of Bidentate N-Ligands Commonly Applied in Nickel-Catalyzed Cross-Coupling Reactions. Angew Chem Int Ed Engl 2024; 63:e202411110. [PMID: 39264261 PMCID: PMC11780508 DOI: 10.1002/anie.202411110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/13/2024]
Abstract
Bidentate N-ligands are paramount to recent advances in nickel-catalyzed cross-coupling reactions. Through comprehensive organometallic, spectroscopic, and computational studies on bi-oxazoline and imidazoline ligands, we reveal that a square planar geometry enables redox activity of these ligands in stabilizing nickel radical species. This finding contrasts with the prior assumption that bi-oxazoline lacks redox activity due to strong mesomeric donation. Moreover, we conducted systematic cyclic voltammetry (CV) analyses of bidentate pyridyl, oxazoline, and imidazoline nitrogen ligands, along with their corresponding nickel complexes. Complexation with nickel shifts the reduction potentials to a more positive region and narrows the differences in redox potentials among the ligands. Additionally, various ligands led to different degrees of bromide dissociation from singly reduced (L)Ni(Ar)(Br) complexes, reflecting varying reactivity in the subsequent activation of alkyl halides, a crucial step in cross-electrophile coupling. These insights highlight the significant electronic effects of ligands on the stability of metalloradical species and their redox potentials, which interplay with coordination geometry. Quantifying the electron-donating, π-accepting properties of these ligands, as well as their effect on catalyst speciation, provides crucial benchmarks for controlling catalytic activity and enhancing catalyst stability.
Collapse
Affiliation(s)
- Gregory A. Dawson
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 (USA)
| | - Maria C. Seith
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 (USA)
| | - Michelle C. Neary
- Department of Chemistry, CUNY – Hunter College, 695 Park Ave, New York, NY 10065 (USA)
| | - Tianning Diao
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 (USA)
| |
Collapse
|
19
|
Chen S, Ding D, Yin L, Wang X, Krause JA, Liu W. Overcoming Copper Reduction Limitation in Asymmetric Substitution: Aryl-Radical-Enabled Enantioconvergent Cyanation of Alkyl Iodides. J Am Chem Soc 2024; 146:31982-31991. [PMID: 39505711 PMCID: PMC11955248 DOI: 10.1021/jacs.4c11888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Cu-catalyzed enantioconvergent cross-coupling of alkyl halides has emerged as a powerful strategy for synthesizing enantioenriched molecules. However, this approach is intrinsically limited by the weak reducing power of copper(I) species, which restricts the scope of compatible nucleophiles and necessitates extensive ligand optimization or the use of complex chiral scaffolds. To overcome these challenges, we introduce an aryl-radical-enabled strategy that decouples the alkyl halide activation step from the chiral Cu center. We demonstrate that merging aryl-radical-enabled iodine abstraction with Cu-catalyzed asymmetric radical functionalization enables the conversion of racemic α-iodoamides to enantioenriched alkyl nitrile products with good yield and enantioselectivity. The rational design of chiral ligands identified a new class of carboxamide-containing BOX ligands. Mechanistic studies support an aryl-radical-enabled pathway and the unique hydrogen-bonding ability in the newly designed BOX ligands. This aryl-radical-enabled asymmetric substitution reaction has the potential to significantly expand the scope of Cu-catalyzed enantioconvergent cross-coupling reactions.
Collapse
Affiliation(s)
- Su Chen
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Decai Ding
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Lingfeng Yin
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Xiao Wang
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Jeanette A Krause
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Wei Liu
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
20
|
Hassan S, Bilal M, Khalid S, Rasool N, Imran M, Shah AA. Cobalt-catalyzed reductive cross-coupling: a review. Mol Divers 2024:10.1007/s11030-024-11017-1. [PMID: 39466351 DOI: 10.1007/s11030-024-11017-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024]
Abstract
Transition-metal-catalyzed reductive cross-coupling is highly efficient for forming C-C bonds. It earns its limelight from its application by coupling unreactive electrophilic substrates to synthesize a variety of carbon-carbon bonds with various hybridizations (sp, sp2, and sp3), late-stage functionalization, and bioactive molecules' synthesis. Reductive cross-coupling is challenging to bring selectivity but promising approach. Cobalt is comparatively more affordable than other highly efficient metals e.g., palladium and nickel but cobalt catalysis is still facing efficacy challenges. Researchers are trying to harness the maximum out of cobalt's catalytic properties. Shortly, with efficiency achieved combined with the affordability of cobalt, it will revolutionize industrial applications. This review gives insight into the core of cobalt-catalyzed reductive cross-coupling reactions with a variety of substrates forming a range of differently hybridized coupled products.
Collapse
Affiliation(s)
- Shamoon Hassan
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Bilal
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
- School of Chemistry and Chemical Engineering, Shandong University, Ji'nan, 250100, China
| | - Shehla Khalid
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan
| | - Nasir Rasool
- Department of Chemistry, Government College University, Faisalabad, 38000, Pakistan.
| | - Muhammad Imran
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, 42300, Bandar Puncak Alam, Selangor, Malaysia
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), University Teknologi MARA Cawangan Selangor Kampus Puncak Alam, 42300, Bandar Puncak Alam, Selangor, Malaysia
| |
Collapse
|
21
|
Gao X, Lin T, Wang YE, Xing F, Qiu Y, Xiong D, Mao J. Nickel/Photoredox-Catalyzed Asymmetric Three-Component Cross-Coupling To Access Enantioenriched 1,1-Diaryl(heteroaryl)alkanes. Org Lett 2024; 26:8792-8797. [PMID: 39377550 DOI: 10.1021/acs.orglett.4c03151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
An enantioselective 1,2-dicarbofunctionalization of vinyl (hetero)arenes with alkyl bromides and aryl bromides through nickel/photoredox catalysis is described. This three-component enantioselective domino alkyl arylation of vinyl (hetero)arenes could generate a diverse array of enantioenriched 1,1-diaryl(heteroaryl)alkanes with good to excellent yields (up to 88%) and high enantioselectivities (up to 99% ee). This transformation could proceed well under mild conditions with excellent chemo- and regioselectivity due to the avoidance of the use of air- and moisture-sensitive organometallic reagents and stoichiometric metal reductants. Mechanistic studies suggested that the alkyl radical is generated via NiI species or photocatalyst.
Collapse
Affiliation(s)
- Xueying Gao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Tingzhi Lin
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yan-En Wang
- College of Science, Hebei Agricultural University, Baoding 071000, P. R. China
| | - Fei Xing
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yanfeng Qiu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Dan Xiong
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jianyou Mao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
22
|
Wang X, He J, Wang YN, Zhao Z, Jiang K, Yang W, Zhang T, Jia S, Zhong K, Niu L, Lan Y. Strategies and Mechanisms of First-Row Transition Metal-Regulated Radical C-H Functionalization. Chem Rev 2024; 124:10192-10280. [PMID: 39115179 DOI: 10.1021/acs.chemrev.4c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Radical C-H functionalization represents a useful means of streamlining synthetic routes by avoiding substrate preactivation and allowing access to target molecules in fewer steps. The first-row transition metals (Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) are Earth-abundant and can be employed to regulate radical C-H functionalization. The use of such metals is desirable because of the diverse interaction modes between first-row transition metal complexes and radical species including radical addition to the metal center, radical addition to the ligand of metal complexes, radical substitution of the metal complexes, single-electron transfer between radicals and metal complexes, hydrogen atom transfer between radicals and metal complexes, and noncovalent interaction between the radicals and metal complexes. Such interactions could improve the reactivity, diversity, and selectivity of radical transformations to allow for more challenging radical C-H functionalization reactions. This review examines the achievements in this promising area over the past decade, with a focus on the state-of-the-art while also discussing existing limitations and the enormous potential of high-value radical C-H functionalization regulated by these metals. The aim is to provide the reader with a detailed account of the strategies and mechanisms associated with such functionalization.
Collapse
Affiliation(s)
- Xinghua Wang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Jing He
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Ya-Nan Wang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
| | - Zhenyan Zhao
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kui Jiang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Wei Yang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Tao Zhang
- Institute of Intelligent Innovation, Henan Academy of Sciences, Zhengzhou, Henan 451162, P. R. China
| | - Shiqi Jia
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kangbao Zhong
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Linbin Niu
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yu Lan
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
23
|
Zhao HT, Lin JN, Shu W. Visible-Light Mediated Nickel-Catalyzed Asymmetric Difunctionalizations of Alkenes. Chemistry 2024:e202402712. [PMID: 39136591 DOI: 10.1002/chem.202402712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Indexed: 10/30/2024]
Abstract
Difunctionalizations of alkenes represent one of the most straightforward protocols to build molecular complexity due to the simultaneous construction of two vicinal bonds cross π-bond of alkenes. It is extremely attractive yet challenging to control the stereochemistry outcome of this event. Over the past years, visible-light and Ni-catalyzed asymmetric difunctionalizations of alkenes provide an environmental benign and promising solution for the construction of saturated carbon centers with the control of regio- and enantioselectivity. In this Concept, the initiative and progress of regio- and enantioselective difunctionalizations of alkenes enabled by visible-light and nickel catalysis has been summarized. Moreover, further efforts and directions for the development of visible-light mediated Ni-catalyzed asymmetric difunctionalizations of alkenes has been discussed.
Collapse
Affiliation(s)
- Han-Tong Zhao
- Guangming Advanced Research Institute, Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P.R. China
| | - Jia-Ni Lin
- Guangming Advanced Research Institute, Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P.R. China
| | - Wei Shu
- Guangming Advanced Research Institute, Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, P.R. China
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong, 643000, Sichuan, P.R. China
| |
Collapse
|
24
|
Xu W, Xu T. Dual Nickel- and Photoredox-Catalyzed Asymmetric Reductive Cross-Couplings: Just a Change of the Reduction System? Acc Chem Res 2024; 57:1997-2011. [PMID: 38961540 DOI: 10.1021/acs.accounts.4c00309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
ConspectusIn recent years, nickel-catalyzed asymmetric coupling reactions have emerged as efficient methods for constructing chiral C(sp3) carbon centers. Numerous novel approaches have been reported to rapidly construct chiral carbon-carbon bonds through nickel-catalyzed asymmetric couplings between electrophiles and nucleophiles or asymmetric reductive cross-couplings of two different electrophiles. Building upon these advances, our group has been devoted to interrogating dual nickel- and photoredox-catalyzed asymmetric reductive cross-coupling reactions.In our endeavors over the past few years, we have successfully developed several dual Ni-/photoredox-catalyzed asymmetric reductive cross-coupling reactions involving organohalides. While some probably think that this system is just a change of the reduction system from traditional metal reductants to a photocatalysis system, a question that we also pondered at the beginning of our studies, both the achievable reaction types and mechanisms suggest a different conclusion: that this dual catalysis system has its own advantages in the chiral carbon-carbon bond formation. Even in certain asymmetric reactions where the photocatalysis regime functions only as a reducing system, the robust reducing capability of photocatalysts can effectively accelerate the regeneration of low-valent nickel species, thus expanding the selectable scope of chiral ligands. More importantly, in many transformations, besides reducing nickel catalysts, the photocatalysis system can also undertake the responsibility of alkyl radical formation, thereby establishing two coordinated, yet independent catalytic cycles. This catalytic mode has been proven to play a crucial role in achieving diverse asymmetric coupling reactions with great challenges.In this Account, we elucidate our understanding of this system based on our experience and findings. In the Introduction, we provide an overview of the main distinctions between this system and traditional Ni-catalyzed asymmetric reductive cross-couplings with metal reductants and the potential opportunities arising from these differences. Subsequently, we outline various chiral carbon-carbon bond-forming types obtained by this dual Ni/photoredox catalysis system and their mechanisms. In terms of chiral C(sp3)-C(sp2) bond formation, extensive discussion focuses on the asymmetric arylations of α-chloroboronates, α-trifluoromethyl alkyl bromides, α-bromophosphonates, and so on. In the realm of chiral C(sp3)-C(sp) bond formation, asymmetric alkynylations of α-bromophosphonates and α-trifluoromethyl alkyl bromides have been presented herein. Regarding C(sp3)-C(sp3) bond formation, we take the asymmetric alkylation of α-chloroboronates as a compelling example to illustrate the great efficiency of this dual catalysis system. This summary would enable a better grasp of the advantages of this dual catalysis system and clarify how the photocatalysis regime facilitates enantioselective transformations. We anticipate that this Account will offer valuable insights and contribute to the development of new methodologies in this field.
Collapse
Affiliation(s)
- Wenhao Xu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Tao Xu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| |
Collapse
|
25
|
Luo H, Yang Y, Fu Y, Yu F, Gao L, Ma Y, Li Y, Wu K, Lin L. In situ copper photocatalysts triggering halide atom transfer of unactivated alkyl halides for general C(sp3)-N couplings. Nat Commun 2024; 15:5647. [PMID: 38969653 PMCID: PMC11226431 DOI: 10.1038/s41467-024-50082-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024] Open
Abstract
Direct reduction of unactivated alkyl halides for C(sp3)-N couplings under mild conditions presents a significant challenge in organic synthesis due to their low reduction potential. Herein, we introduce an in situ formed pyridyl-carbene-ligated copper (I) catalyst that is capable of abstracting halide atom and generating alkyl radicals for general C(sp3)-N couplings under visible light. Control experiments confirmed that the mono-pyridyl-carbene-ligated copper complex is the active species responsible for catalysis. Mechanistic investigations using transient absorption spectroscopy across multiple decades of timescales revealed ultrafast intersystem crossing (260 ps) of the photoexcited copper (I) complexes into their long-lived triplet excited states (>2 μs). The non-Stern-Volmer quenching dynamics of the triplets by unactivated alkyl halides suggests an association between copper (I) complexes and alkyl halides, thereby facilitating the abstraction of halide atoms via inner-sphere single electron transfer (SET), rather than outer-sphere SET, for the formation of alkyl radicals for subsequent cross couplings.
Collapse
Affiliation(s)
- Hang Luo
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Yupeng Yang
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian, Dalian, Liaoning, 116023, China
| | - Yukang Fu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Fangnian Yu
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Lei Gao
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Yunpeng Ma
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Yang Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China.
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian, Dalian, Liaoning, 116023, China.
| | - Luqing Lin
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning, 116024, China.
| |
Collapse
|
26
|
Shen M, Niu C, Wang X, Huang JB, Zhao Z, Ni SF, Rong ZQ. Regio- and Enantioselective Hydromethylation of 3-Pyrrolines and Glycals Enabled by Cobalt Catalysis. JACS AU 2024; 4:2312-2322. [PMID: 38938800 PMCID: PMC11200246 DOI: 10.1021/jacsau.4c00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024]
Abstract
Enantioenriched 3-methylpyrrolidine, with its unique chiral nitrogen-containing core skeleton, exists widely in various functional molecules, including natural products, bioactive compounds, and pharmaceuticals. Traditional methods for synthesizing these valuable methyl-substituted heterocycles often involve enzymatic processes or complex procedures with chiral auxiliaries, limiting the substrate scope and efficiency. Efficient catalytic methylation, especially in an enantioselective manner, has been a long-standing challenge in chemical synthesis. Herein, we present a novel approach for the remote and stereoselective installation of a methyl group onto N-heterocycles, leveraging a CoH-catalyzed asymmetric hydromethylation strategy. By effectively combining a commercial cobalt precursor with a modified bisoxazoline (BOX) ligand, a variety of easily accessible 3-pyrrolines can be converted to valuable enantiopure 3-(isotopic labeling)methylpyrrolidine compounds with outstanding enantioselectivity. This efficient protocol streamlines the two-step synthesis of enantioenriched 3-methylpyrrolidine, which previously required up to five or six steps under harsh conditions or expensive starting materials.
Collapse
Affiliation(s)
- Mengyang Shen
- Frontiers
Science Center for Flexible Electronics (FSCFE), Shaanxi Institute
of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical
Materials and Engineering (SIBME), Northwestern
Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| | - Caoyue Niu
- Frontiers
Science Center for Flexible Electronics (FSCFE), Shaanxi Institute
of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical
Materials and Engineering (SIBME), Northwestern
Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| | - Xuchao Wang
- Frontiers
Science Center for Flexible Electronics (FSCFE), Shaanxi Institute
of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical
Materials and Engineering (SIBME), Northwestern
Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| | - Jia-Bo Huang
- Department
of Chemistry and Key Laboratory for Preparation and Application of
Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, China
| | - Zhen Zhao
- Frontiers
Science Center for Flexible Electronics (FSCFE), Shaanxi Institute
of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical
Materials and Engineering (SIBME), Northwestern
Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| | - Shao-Fei Ni
- Department
of Chemistry and Key Laboratory for Preparation and Application of
Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, China
| | - Zi-Qiang Rong
- Frontiers
Science Center for Flexible Electronics (FSCFE), Shaanxi Institute
of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical
Materials and Engineering (SIBME), Northwestern
Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China
| |
Collapse
|
27
|
Zhao L, Liu F, Zhuang Y, Shen M, Xue J, Wang X, Zhang Y, Rong ZQ. CoH-catalyzed asymmetric remote hydroalkylation of heterocyclic alkenes: a rapid approach to chiral five-membered S- and O-heterocycles. Chem Sci 2024; 15:8888-8895. [PMID: 38873055 PMCID: PMC11168172 DOI: 10.1039/d4sc01149j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024] Open
Abstract
Saturated heterocycles, which incorporate S and O heteroatoms, serve as fundamental frameworks in a diverse array of natural products, bioactive compounds, and pharmaceuticals. Herein, we describe a unique cobalt-catalyzed approach integrated with a desymmetrization strategy, facilitating precise and enantioselective remote hydroalkylation of unactivated heterocyclic alkenes. This method delivers hydroalkylation products with high yields and excellent stereoselectivity, representing good efficiency in constructing alkyl chiral centers at remote C3-positions within five-membered S/O-heterocycles. Notably, the broad scope and good functional group tolerance of this asymmetric C(sp3)-C(sp3) coupling enhance its applicability.
Collapse
Affiliation(s)
- Lingzi Zhao
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Feipeng Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Yan Zhuang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Mengyang Shen
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Jing Xue
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Xuchao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Yuting Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| | - Zi-Qiang Rong
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU) 127 West Youyi Road Xi'an 710072 China
| |
Collapse
|
28
|
Cagan D, Bím D, Kazmierczak NP, Hadt RG. Mechanisms of Photoredox Catalysis Featuring Nickel-Bipyridine Complexes. ACS Catal 2024; 14:9055-9076. [PMID: 38868098 PMCID: PMC11165457 DOI: 10.1021/acscatal.4c02036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 06/14/2024]
Abstract
Metallaphotoredox catalysis can unlock useful pathways for transforming organic reactants into desirable products, largely due to the conversion of photon energy into chemical potential to drive redox and bond transformation processes. Despite the importance of these processes for cross-coupling reactions and other transformations, their mechanistic details are only superficially understood. In this review, we have provided a detailed summary of various photoredox mechanisms that have been proposed to date for Ni-bipyridine (bpy) complexes, focusing separately on photosensitized and direct excitation reaction processes. By highlighting multiple bond transformation pathways and key findings, we depict how photoredox reaction mechanisms, which ultimately define substrate scope, are themselves defined by the ground- and excited-state geometric and electronic structures of key Ni-based intermediates. We further identify knowledge gaps to motivate future mechanistic studies and the development of synergistic research approaches spanning the physical, organic, and inorganic chemistry communities.
Collapse
Affiliation(s)
- David
A. Cagan
- Division
of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory
of Chemical Physics, California Institute
of Technology, Pasadena, California 91125, United States
| | - Daniel Bím
- Institute
of Organic Chemistry and Biochemistry, The
Czech Academy of Sciences, Flemingovo nám. 2, Prague 6 166 10, Czech Republic
| | - Nathanael P. Kazmierczak
- Division
of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory
of Chemical Physics, California Institute
of Technology, Pasadena, California 91125, United States
| | - Ryan G. Hadt
- Division
of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory
of Chemical Physics, California Institute
of Technology, Pasadena, California 91125, United States
| |
Collapse
|
29
|
Chang Z, Zhang X, Lv H, Sun H, Lian Z. Three-Component Radical Cross-Coupling: Asymmetric Vicinal Sulfonyl-Esterification of Alkenes Involving Sulfur Dioxide. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309069. [PMID: 38532287 PMCID: PMC11186061 DOI: 10.1002/advs.202309069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/30/2024] [Indexed: 03/28/2024]
Abstract
A novel catalytic system for radical cross-coupling reactions based on copper and chiral Pyridyl-bis(imidazole) (PyBim) ligands is described. It overcomes the challenges of chemoselectivity and enantioselectivity, achieving a highly enantioselective vicinal sulfonyl-esterification reaction of alkenes involving sulfur dioxide. This strategy involves the use of earth-abundant metal catalyst, mild reaction conditions, a broad range of substrates (84 examples), high yields (up to 97% yield), and exceptional control over enantioselectivity. The reaction system is compatible with different types of radical precursors, including O-acylhydroxylamines, cycloketone oxime esters, aryldiazonium salts, and drug molecules. Chiral ligand PyBim is identified as particularly effective in achieving the desired high enantioselectivity. Mechanistic studies reveal that copper/PyBim system plays a vital role in C─O coupling, employing an outer-sphere model. In addition, the side arm effect of ligand is observed.
Collapse
Affiliation(s)
- Zhiqian Chang
- Department of DermatologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Xuemei Zhang
- Department of DermatologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Haiping Lv
- Department of DermatologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Haotian Sun
- Department of DermatologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041P. R. China
| | - Zhong Lian
- Department of DermatologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041P. R. China
| |
Collapse
|
30
|
Luo J, Davenport MT, Ess DH, Liu TL. Electro/Ni Dual-Catalyzed Decarboxylative C(sp 3)-C(sp 2) Cross-Coupling Reactions of Carboxylates and Aryl Bromide. Angew Chem Int Ed Engl 2024; 63:e202403844. [PMID: 38518115 PMCID: PMC11566894 DOI: 10.1002/anie.202403844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 03/24/2024]
Abstract
Paired redox-neutral electrolysis offers an attractive green platform for organic synthesis by avoiding sacrificial oxidants and reductants. Carboxylates are non-toxic, stable, inexpensive, and widely available, making them ideal nucleophiles for C-C cross-coupling reactions. Here, we report the electro/Ni dual-catalyzed redox-neutral decarboxylative C(sp3)-C(sp2) cross-coupling reactions of pristine carboxylates with aryl bromides. At a cathode, a NiII(Ar)(Br) intermediate is formed through the activation of Ar-Br bond by a NiI-bipyridine catalyst and subsequent reduction. At an anode, the carboxylates, including amino acid, benzyl carboxylic acid, and 2-phenoxy propionic acid, undergo oxidative decarboxylation to form carbon-based free radicals. The combination of NiII(Ar)(Br) intermediate and carbon radical results in the formation of C(sp3)-C(sp2) cross-coupling products. The adaptation of this electrosynthesis method to flow synthesis and valuable molecule synthesis was demonstrated. The reaction mechanism was systematically studied through electrochemical voltammetry and density functional theory (DFT) computational studies. The relationships between the electrochemical properties of carboxylates and the reaction selectivity were revealed. The electro/Ni dual-catalyzed cross-coupling reactions described herein expand the chemical space of paired electrochemical C(sp3)-C(sp2) cross-coupling and represent a promising method for the construction of the C(sp3)-C(sp2) bonds because of the ubiquitous carboxylate nucleophiles and the innate scalability and flexibility of electrochemical flow-synthesis technology.
Collapse
Affiliation(s)
- Jian Luo
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, Utah, 84322, United States
| | - Michael T Davenport
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, 84604, United States
| | - Daniel H Ess
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, 84604, United States
| | - T Leo Liu
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, Utah, 84322, United States
| |
Collapse
|
31
|
Shen HC, Wang ZS, Noble A, Aggarwal VK. Simultaneous Stereoinvertive and Stereoselective C(sp 3)-C(sp 3) Cross-Coupling of Boronic Esters and Allylic Carbonates. J Am Chem Soc 2024; 146:13719-13726. [PMID: 38721780 PMCID: PMC11117407 DOI: 10.1021/jacs.4c03686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/23/2024]
Abstract
With increasing interest in constructing more three-dimensional entities, there has been growing interest in cross-coupling reactions that forge C(sp3)-C(sp3) bonds, which leads to additional challenges as it is not just a more difficult bond to construct but issues of stereocontrol also arise. Herein, we report the stereocontrolled cross-coupling of enantioenriched boronic esters with racemic allylic carbonates enabled by iridium catalysis, leading to the formation of C(sp3)-C(sp3) bonds with single or vicinal stereogenic centers. The method shows broad substrate scope, enabling primary, secondary, and even tertiary boronic esters to be employed, and can be used to prepare any of the four possible stereoisomers of a coupled product with vicinal chiral centers. The new method, which combines the simultaneous enantiospecific reaction of a chiral nucleophile with the enantioselective reaction of a chiral electrophile in a single process, offers a solution for stereodivergent cross-coupling of two C(sp3) fragments.
Collapse
Affiliation(s)
| | | | - Adam Noble
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Varinder K. Aggarwal
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| |
Collapse
|
32
|
Huang H, Alvarez-Hernandez JL, Hazari N, Mercado BQ, Uehling MR. Effect of 6,6'-Substituents on Bipyridine-Ligated Ni Catalysts for Cross-Electrophile Coupling. ACS Catal 2024; 14:6897-6914. [PMID: 38737398 PMCID: PMC11087080 DOI: 10.1021/acscatal.4c00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
A family of 4,4'-tBu2-2,2'-bipyridine (tBubpy) ligands with substituents in either the 6-position, 4,4'-tBu2-6-Me-bpy (tBubpyMe), or 6 and 6'-positions, 4,4'-tBu2-6,6'-R2-bpy (tBubpyR2; R = Me, iPr, sBu, Ph, or Mes), was synthesized. These ligands were used to prepare Ni complexes in the 0, I, and II oxidation states. We observed that the substituents in the 6 and 6'-positions of the tBubpy ligand impact the properties of the Ni complexes. For example, bulkier substituents in the 6,6'-positions of tBubpy better stabilized (tBubpyR2)NiICl species and resulted in cleaner reduction from (tBubpyR2)NiIICl2. However, bulkier substituents hindered or prevented coordination of tBubpyR2 ligands to Ni0(cod)2. In addition, by using complexes of the type (tBubpyMe)NiCl2 and (tBubpyR2)NiCl2 as precatalysts for different XEC reactions, we demonstrated that the 6 or 6,6' substituents lead to major differences in catalytic performance. Specifically, while (tBubpyMe)NiIICl2 is one of the most active catalysts reported to date for XEC and can facilitate XEC reactions at room temperature, lower turnover frequencies were observed for catalysts containing tBubpyR2 ligands. A detailed study on the catalytic intermediates (tBubpy)Ni(Ar)I and (tBubpyMe2)Ni(Ar)I revealed several factors that likely contributed to the differences in catalytic activity. For example, whereas complexes of the type (tBubpy)Ni(Ar)I are low spin and relatively stable, complexes of the type (tBubpyMe2)Ni(Ar)I are high-spin and less stable. Further, (tBubpyMe2)Ni(Ar)I captures primary and benzylic alkyl radicals more slowly than (tBubpy)Ni(Ar)I, consistent with the lower activity of the former in catalysis. Our findings will assist in the design of tailor-made ligands for Ni-catalyzed transformations.
Collapse
Affiliation(s)
- Haotian Huang
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | | | - Nilay Hazari
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | - Brandon Q Mercado
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | - Mycah R Uehling
- Merck & Co., Inc., Discovery Chemistry, HTE and Lead Discovery Capabilities, Rahway, New Jersey, 07065, USA
| |
Collapse
|
33
|
Mills LR, Simmons EM, Lee H, Nester E, Kim J, Wisniewski SR, Pecoraro MV, Chirik PJ. (Phenoxyimine)nickel-Catalyzed C(sp 2)-C(sp 3) Suzuki-Miyaura Cross-Coupling: Evidence for a Recovering Radical Chain Mechanism. J Am Chem Soc 2024; 146:10124-10141. [PMID: 38557045 DOI: 10.1021/jacs.4c01474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Phenoxyimine (FI)-nickel(II)(2-tolyl)(DMAP) compounds were synthesized and evaluated as precatalysts for the C(sp2)-C(sp3) Suzuki-Miyaura cross coupling of (hetero)arylboronic acids with alkyl bromides. With 5 mol % of the optimal (MeOMeFI)Ni(Aryl)(DMAP) precatalyst, the scope of the cross-coupling reaction was established and included a variety of (hetero)arylboronic acids and alkyl bromides (>50 examples, 33-97% yield). A β-hydride elimination-reductive elimination sequence from reaction with potassium isopropoxide base, yielding a potassium (FI)nickel(0)ate, was identified as a catalyst activation pathway that is responsible for halogen atom abstraction from the alkyl bromide. A combination of NMR and EPR spectroscopies identified (FI)nickel(II)-aryl complexes as the resting state during catalysis with no evidence for long-lived organic radical or odd-electron nickel intermediates. These data establish that the radical chain is short-lived and undergoes facile termination and also support a "recovering radical chain" process whereby the (FI)nickel(II)-aryl compound continually (re)initiates the radical chain. Kinetic studies established that the rate of C(sp2)-C(sp3) product formation was proportional to the concentration of the (FI)nickel(II)-aryl resting state that captures the alkyl radical for chain propagation. The proposed mechanism involves two key and concurrently operating catalytic cycles; the first involving a nickel(I/II/III) radical propagation cycle consisting of radical capture at (FI)nickel(II)-aryl, C(sp2)-C(sp3) reductive elimination, bromine atom abstraction from C(sp3)-Br, and transmetalation; and the second involving an off-cycle catalyst recovery process by slow (FI)nickel(II)-aryl → (FI)nickel(0)ate conversion for nickel(I) regeneration.
Collapse
Affiliation(s)
- L Reginald Mills
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Eric M Simmons
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, New Jersey 08903, United States
| | - Heejun Lee
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, New Jersey 08903, United States
| | - Eva Nester
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Junho Kim
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Steven R Wisniewski
- Chemical Process Development, Bristol Myers Squibb Company, New Brunswick, New Jersey 08903, United States
| | - Matthew V Pecoraro
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
34
|
Hu DD, Nie TM, Xiao X, Li K, Li YB, Gao Q, Bi YX, Wang XS. Enantioselective Construction of C-SCF 3 Stereocenters via Nickel Catalyzed Asymmetric Negishi Coupling Reaction. Angew Chem Int Ed Engl 2024; 63:e202400308. [PMID: 38299744 DOI: 10.1002/anie.202400308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/02/2024]
Abstract
The construction of the SCF3-containing 1,1-diaryl tertiary carbon stereocenters with high enantioselectivities is reported via a nickel-catalyzed asymmetric C-C coupling strategy. This method demonstrates simple operations, mild conditions and excellent functional group tolerance, with newly designed SCF3-containing synthon, which can be easily obtained from commercially available benzyl bromide and trifluoromethylthio anion in a two-step manner. Further substrate exploration indicated that the reaction system could be extended to diverse perfluoroalkyl sulfide (SC2F5, SC3F7, SC4F9, SCF2CO2Et)-substituted 1,1-diaryl compounds with excellent enantioselectivities. The synthetic utility of this transformation was further demonstrated by convenient derivatization to optical SCF3-containing analogues of bioactive compounds without an apparent decrease in enantioselectivity.
Collapse
Affiliation(s)
- Duo-Duo Hu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- School of Chemical and Blasting Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| | - Tian-Mei Nie
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Xi Xiao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Kuiliang Li
- School of Chemical and Blasting Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| | - Yuan-Bo Li
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Qian Gao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Yu-Xiang Bi
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Xi-Sheng Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| |
Collapse
|
35
|
Li LJ, Zhang JC, Li WP, Zhang D, Duanmu K, Yu H, Ping Q, Yang ZP. Enantioselective Construction of Quaternary Stereocenters via Cooperative Photoredox/Fe/Chiral Primary Amine Triple Catalysis. J Am Chem Soc 2024; 146:9404-9412. [PMID: 38504578 DOI: 10.1021/jacs.4c01842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The catalytic and enantioselective construction of quaternary (all-carbon substituents) stereocenters poses a formidable challenge in organic synthesis due to the hindrance caused by steric factors. One conceptually viable and potentially versatile approach is the coupling of a C-C bond through an outer-sphere mechanism, accompanied by the realization of enantiocontrol through cooperative catalysis; however, examples of such processes are yet to be identified. Herein, we present such a method for creating different compounds with quaternary stereocenters by photoredox/Fe/chiral primary amine triple catalysis. This approach facilitates the connection of an unactivated alkyl source with a tertiary alkyl moiety, which is also rare. The scalable process exhibits mild conditions, does not necessitate the use of a base, and possesses a good functional-group tolerance. Preliminary investigations into the underlying mechanisms have provided valuable insights into the reaction pathway.
Collapse
Affiliation(s)
- Lian-Jie Li
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Jun-Chun Zhang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Wei-Peng Li
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Dan Zhang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Kaining Duanmu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Hui Yu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Qian Ping
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Ze-Peng Yang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| |
Collapse
|
36
|
Du XY, Fang JH, Chen JJ, Shen B, Liu WL, Zhang JY, Ye XM, Yang NY, Gu QS, Li ZL, Yu P, Liu XY. Copper-Catalyzed Enantioconvergent Radical N-Alkylation of Diverse (Hetero)aromatic Amines. J Am Chem Soc 2024; 146:9444-9454. [PMID: 38513075 DOI: 10.1021/jacs.4c02141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The 3d transition metal-catalyzed enantioconvergent radical cross-coupling provides a powerful tool for chiral molecule synthesis. In the classic mechanism, the bond formation relies on the interaction between nucleophile-sequestered metal complexes and radicals, limiting the nucleophile scope to sterically uncongested ones. The coupling of sterically congested nucleophiles poses a significant challenge due to difficulties in transmetalation, restricting the reaction generality. Here, we describe a probable outer-sphere nucleophilic attack mechanism that circumvents the challenging transmetalation associated with sterically congested nucleophiles. This strategy enables a general copper-catalyzed enantioconvergent radical N-alkylation of aromatic amines with secondary/tertiary alkyl halides and exhibits catalyst-controlled stereoselectivity. It accommodates diverse aromatic amines, especially bulky secondary and primary ones to deliver value-added chiral amines (>110 examples). It is expected to inspire the coupling of more nucleophiles, particularly challenging sterically congested ones, and accelerate reaction generality.
Collapse
Affiliation(s)
- Xuan-Yi Du
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jia-Heng Fang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ji-Jun Chen
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen 518055, China
| | - Boming Shen
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wei-Long Liu
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jia-Yong Zhang
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xue-Man Ye
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ning-Yuan Yang
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qiang-Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhong-Liang Li
- Dongguan Key Laboratory of Interdisciplinary Science for Advanced Materials and Large-Scale Scientific Facilities, School of Physical Sciences, Great Bay University, Dongguan 523000, China
| | - Peiyuan Yu
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin-Yuan Liu
- Shenzhen Grubbs Institute, Department of Chemistry, and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
37
|
Zhang LL, Gao YZ, Cai SH, Yu H, Shen SJ, Ping Q, Yang ZP. Ni-catalyzed enantioconvergent deoxygenative reductive cross-coupling of unactivated alkyl alcohols and aryl bromides. Nat Commun 2024; 15:2733. [PMID: 38548758 PMCID: PMC10979021 DOI: 10.1038/s41467-024-46713-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/07/2024] [Indexed: 04/01/2024] Open
Abstract
Transition metal-catalyzed enantioconvergent cross-coupling of an alkyl precursor presents a promising method for producing enantioenriched C(sp3) molecules. Because alkyl alcohol is a ubiquitous and abundant family of feedstock in nature, the direct reductive coupling of alkyl alcohol and aryl halide enables efficient access to valuable compounds. Although several strategies have been developed to overcome the high bond dissociation energy of the C - O bond, the asymmetric pattern remains unknown. In this report, we describe the realization of an enantioconvergent deoxygenative reductive cross-coupling of unactivated alkyl alcohol (β-hydroxy ketone) and aryl bromide in the presence of an NHC activating agent. The approach can accommodate substituents of various sizes and functional groups, and its synthetic potency is demonstrated through a gram scale reaction and derivatizations into other compound families. Finally, we apply our convergent method to the efficient asymmetric synthesis of four β-aryl ketones that are natural products or bioactive compounds.
Collapse
Affiliation(s)
- Li-Li Zhang
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Yu-Zhong Gao
- Key Laboratory of Magnetic Molecules, Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan, 030031, People's Republic of China
| | - Sheng-Han Cai
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Hui Yu
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Shou-Jie Shen
- Key Laboratory of Magnetic Molecules, Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan, 030031, People's Republic of China
| | - Qian Ping
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Ze-Peng Yang
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
38
|
Hossain A, Anderson RL, Zhang CS, Chen PJ, Fu GC. Nickel-Catalyzed Enantioconvergent and Diastereoselective Allenylation of Alkyl Electrophiles: Simultaneous Control of Central and Axial Chirality. J Am Chem Soc 2024; 146:7173-7177. [PMID: 38447585 PMCID: PMC11003353 DOI: 10.1021/jacs.4c00593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
In recent years, remarkable progress has been described in the development of methods that simultaneously control vicinal stereochemistry, wherein both stereochemical elements are central chirality; in contrast, methods that control central and axial chirality are comparatively rare. Herein we report that a chiral nickel catalyst achieves the enantioconvergent and diastereoselective coupling of racemic secondary alkyl electrophiles with prochiral 1,3-enynes (in the presence of a hydrosilane) to generate chiral tetrasubstituted allenes that bear an adjacent stereogenic center. A carbon-carbon and a carbon-hydrogen bond are formed in this process, which provides good stereoselectivity and is compatible with an array of functional groups.
Collapse
Affiliation(s)
- Asik Hossain
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Robert L Anderson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Claudia S Zhang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Peng-Jui Chen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Gregory C Fu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
39
|
Cai YM, Liu XT, Xu LL, Shang M. Electrochemical Ni-Catalyzed Decarboxylative C(sp 3 )-N Cross-Electrophile Coupling. Angew Chem Int Ed Engl 2024; 63:e202315222. [PMID: 38299697 DOI: 10.1002/anie.202315222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/22/2023] [Accepted: 01/31/2024] [Indexed: 02/02/2024]
Abstract
A new electrochemical transformation is presented that enables chemists to couple simple alkyl carboxylic acid derivatives with an electrophilic amine reagent to construct C(sp3 )-N bond. The success of this reaction hinges on the merging of cooperative electrochemical reduction with nickel catalysis. The chemistry exhibits a high degree of practicality, showcasing its wide applicability with 1°, 2°, 3° carboxylic acids and remarkable compatibility with diverse functional groups, even in the realm of late-stage functionalization. Furthermore, extensive mechanistic studies have unveiled the engagement of alkyl radicals and iminyl radicals; and elucidated the multifaceted roles played by i Pr2 O, Ni catalyst, and electricity.
Collapse
Affiliation(s)
- Yue-Ming Cai
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiao-Ting Liu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Lin-Lin Xu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ming Shang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
40
|
Zhang W, Tian Y, Liu XD, Luan C, Liu JR, Gu QS, Li ZL, Liu XY. Copper-Catalyzed Enantioselective C(sp 3 )-SCF 3 Coupling of Carbon-Centered Benzyl Radicals with (Me 4 N)SCF 3. Angew Chem Int Ed Engl 2024; 63:e202319850. [PMID: 38273811 DOI: 10.1002/anie.202319850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 01/27/2024]
Abstract
In contrast with the well-established C(sp2 )-SCF3 cross-coupling to forge the Ar-SCF3 bond, the corresponding enantioselective coupling of readily available alkyl electrophiles to forge chiral C(sp3 )-SCF3 bond has remained largely unexplored. We herein disclose a copper-catalyzed enantioselective radical C(sp3 )-SCF3 coupling of a range of secondary/tertiary benzyl radicals with the easily available (Me4 N)SCF3 reagent. The key to the success lies in the utilization of chiral phosphino-oxazoline-derived anionic N,N,P-ligands through tuning electronic and steric effects for the simultaneous control of the reaction initiation and enantioselectivity. This strategy can successfully realize two types of asymmetric radical reactions, including enantioconvergent C(sp3 )-SCF3 cross-coupling of racemic benzyl halides and three-component 1,2-carbotrifluoromethylthiolation of arylated alkenes under mild reaction conditions. It therefore provides a highly flexible platform for the rapid assembly of an array of enantioenriched SCF3 -containing molecules of interest in organic synthesis and medicinal chemistry.
Collapse
Affiliation(s)
- Wei Zhang
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yu Tian
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiao-Dong Liu
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Cheng Luan
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ji-Ren Liu
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qiang-Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhong-Liang Li
- School of Physical Sciences, Great Bay University, Dongguan, 523000, China
| | - Xin-Yuan Liu
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
41
|
Li B, Zhang HH, Luo Y, Yu S, Goddard Iii WA, Dang Y. Interception of Transient Allyl Radicals with Low-Valent Allylpalladium Chemistry: Tandem Pd(0/II/I)-Pd(0/II/I/II) Cycles in Photoredox/Pd Dual-Catalytic Enantioselective C(sp 3)-C(sp 3) Homocoupling. J Am Chem Soc 2024; 146:6377-6387. [PMID: 38385755 DOI: 10.1021/jacs.4c00676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
We present comprehensive computational and experimental studies on the mechanism of an asymmetric photoredox/Pd dual-catalytic reductive C(sp3)-C(sp3) homocoupling of allylic electrophiles. In stark contrast to the canonical assumption that photoredox promotes bond formation via facile reductive elimination from high-valent metal-organic species, our computational analysis revealed an intriguing low-valent allylpalladium pathway that features tandem operation of Pd(0/II/I)-Pd(0/II/I/II) cycles. Specifically, we propose that (i) the photoredox/Pd system enables the in situ generation of allyl radicals from low-valent Pd(I)-allyl species, and (ii) effective interception of the fleeting allyl radical by the chiral Pd(I)-allyl species results in the formation of an enantioenriched product. Notably, the cooperation of the two pathways highlights the bifunctional role of Pd(I)-allyl species in the generation and interception of transient allyl radicals. Moreover, the mechanism implies divergent substrate-activation modes in this homocoupling reaction, suggesting a theoretical possibility for cross-coupling. Combined, the current study offers a novel mechanistic hypothesis for photoredox/Pd dual catalysis and highlights the use of low-valent allylpalladium as a means to efficiently intercept radicals for selective asymmetric bond constructions.
Collapse
Affiliation(s)
- Bo Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Materials and Process Simulation Center, Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - Hong-Hao Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Yongrui Luo
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Shouyun Yu
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - William A Goddard Iii
- Materials and Process Simulation Center, Beckman Institute, California Institute of Technology, Pasadena, California 91125, United States
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| |
Collapse
|
42
|
Chen LM, Reisman SE. Enantioselective C(sp 2)-C(sp 3) Bond Construction by Ni Catalysis. Acc Chem Res 2024; 57:751-762. [PMID: 38346006 PMCID: PMC10918837 DOI: 10.1021/acs.accounts.3c00775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 03/06/2024]
Abstract
ConspectusAfter decades of palladium dominating the realm of transition-metal-catalyzed cross-coupling, recent years have witnessed exciting advances in the development of new nickel-catalyzed cross-coupling reactions to form C(sp3) centers. Nickel possesses distinct properties compared with palladium, such as facile single-electron transfer to C(sp3) electrophiles and rapid C-C reductive elimination from NiIII. These properties, among others, make nickel particularly well-suited for reductive cross-coupling (RCC) in which two electrophiles are coupled and an exogenous reductant is used to turn over the metal catalyst. Ni-catalyzed RCCs use readily available and stable electrophiles as starting materials and exhibit good functional group tolerance, which makes them appealing for applications in the synthesis of complex molecules. Building upon the foundational work in Ni-catalyzed RCCs by the groups of Kumada, Durandetti, Weix, and others, as well as the advancements in Ni-catalyzed enantioselective redox-neutral cross-couplings led by Fu and co-workers, we initiated a program to explore the feasibility of developing highly enantioselective Ni-catalyzed RCCs. Our research has also been driven by a keen interest in unraveling the factors contributing to enantioinduction and electrophile activation as we seek new avenues for advancing our understanding and further developing these reactions.In the first part of this Account, we organize our reported methods on the basis of the identity of the C(sp3) electrophiles, including benzylic chlorides, N-hydroxyphthalimide (NHP) esters, and α-chloro esters and nitriles. We highlight how the selection of specific chiral ligands plays a pivotal role in achieving high cross-selectivity and enantioselectivity. In addition, we show that reduction can be accomplished not only with heterogeneous reductants, such as Mn0, but also with the soluble organic reductant tetrakis(dimethylamino)ethylene (TDAE), as well as electrochemically. The use of homogeneous reductants, such as TDAE, is well suited for studying the mechanism of the transformation. Although this Account primarily focuses on RCCs, we also highlight our work using trifluoroborate (BF3K) salts as radical precursors for enantioselective dual-Ni/photoredox systems.At the end of this Account, we summarize the relevant mechanistic studies of two closely related asymmetric reductive alkenylation reactions developed in our laboratory and provide a context between our work and related mechanistic studies by others. We discuss how the ligand properties influence the rates and mechanisms of electrophile activation and how understanding the mode of C(sp3) radical generation can be used to optimize the yield of an RCC. Our research endeavors to offer insights on the intricate mechanisms at play in asymmetric Ni-catalyzed RCCs with the goal of using the rate of electrophile activation to improve the substrate scope of enantioselective RCCs. We anticipate that the insights we share in this Account can provide guidance for the development of new methods in this field.
Collapse
Affiliation(s)
- Li-Ming Chen
- The
Warren and Katharine Schlinger Laboratory for Chemistry and Chemical
Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Sarah E. Reisman
- The
Warren and Katharine Schlinger Laboratory for Chemistry and Chemical
Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
43
|
Matsuura Y, Fuse S. Micro-flow heteroatom alkylation via TfOH-mediated rapid in situ generation of carbocations and subsequent nucleophile addition. Chem Commun (Camb) 2024; 60:2497-2500. [PMID: 38285468 DOI: 10.1039/d3cc06308a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
A rapid nucleophilic substitution reaction was developed using carbocations generated from diarylmethanol and trifluoromethanesulfonic acid. Undesired reactions caused by the carbocations were suppressed, presumably due to the rapid and uniform generation of carbocations and the subsequent rapid and uniform distribution of nucleophiles by the micro-flow technology.
Collapse
Affiliation(s)
- Yuma Matsuura
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan.
| | - Shinichiro Fuse
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan.
| |
Collapse
|
44
|
Brösamlen D, Oestreich M. Ligand-Controlled On-Off Switch of a Silicon-Tethered Directing Group Enabling the Regiodivergent Hydroalkylation of Vinylsilanes under Ni-H Catalysis. Org Lett 2024; 26:977-982. [PMID: 38051157 DOI: 10.1021/acs.orglett.3c03799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
A regiodivergent Ni-H-catalyzed hydroalkylation of vinylsilanes is described. Depending on the ancillary ligand at the nickel catalyst, the regioselectivity can be steered by a directing group attached to the silicon atom. The mild protocols allow for the selective synthesis of either branched or linear alkylsilanes. An example of a vinylgermane is also reported. The method features a broad scope with high functional-group tolerance and follows a radical mechanism.
Collapse
Affiliation(s)
- Daniel Brösamlen
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623 Berlin, Germany
| |
Collapse
|
45
|
Li Z, Liu B, Yao CY, Gao GW, Zhang JY, Tong YZ, Zhou JX, Sun HK, Liu Q, Lu X, Fu Y. Ligand-Controlled Cobalt-Catalyzed Regio-, Enantio-, and Diastereoselective Oxyheterocyclic Alkene Hydroalkylation. J Am Chem Soc 2024; 146:3405-3415. [PMID: 38282378 DOI: 10.1021/jacs.3c12881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Metal-hydride-catalyzed alkene hydroalkylation has been developed as an efficient method for C(sp3)-C(sp3) coupling with broad substrate availability and high functional group compatibility. However, auxiliary groups, a conjugated group or a chelation-directing group, are commonly required to attain high regio- and enantioselectivities. Herein, we reported a ligand-controlled cobalt-hydride-catalyzed regio-, enantio-, and diastereoselective oxyheterocyclic alkene hydroalkylation without chelation-directing groups. This reaction enables the hydroalkylation of conjugated and unconjugated oxyheterocyclic alkenes to deliver C2- or C3-alkylated tetrahydrofuran or tetrahydropyran in uniformly good yields and with high regio- and enantioselectivities. In addition, hydroalkylation of C2-substituted 2,5-dihydrofuran resulted in the simultaneous construction of 1,3-distereocenters, providing convenient access to polysubstituted tetrahydrofuran with multiple enantioenriched C(sp3) centers.
Collapse
Affiliation(s)
- Zhen Li
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
| | - Bingxue Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Cheng-Yu Yao
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
| | - Gen-Wei Gao
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
| | - Jun-Yang Zhang
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
| | - Yi-Zhou Tong
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
| | - Jing-Xiang Zhou
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
| | - Hao-Kai Sun
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
| | - Qiang Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xi Lu
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
| | - Yao Fu
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
46
|
Gallego-Gamo A, Pleixats R, Gimbert-Suriñach C, Vallribera A, Granados A. Hydroxytrifluoroethylation and Trifluoroacetylation Reactions via SET Processes. Chemistry 2024:e202303854. [PMID: 38183331 DOI: 10.1002/chem.202303854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/08/2024]
Abstract
Hydroxytrifluoroethyl and trifluoroacetyl groups are of utmost importance in biologically active compounds, but methods to tether these motifs to organic architectures have been limited. Typically, the preparation of these compounds relied on the use of strong bases or multistep routes. The renaissance of radical chemistry in photocatalytic, transition metal mediated, and hydrogen atom transfer (HAT) processes have allowed the installation of these medicinally relevant fluorinated motifs. This review provides an overview of the methods available for the direct synthesis of hydroxytrifluoroethyl- and trifluoroacetyl-derived compounds governed by single-electron transfer processes.
Collapse
Affiliation(s)
- Albert Gallego-Gamo
- Department of Chemistry and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Roser Pleixats
- Department of Chemistry and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Carolina Gimbert-Suriñach
- Department of Chemistry and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Adelina Vallribera
- Department of Chemistry and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Albert Granados
- Department of Chemistry and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| |
Collapse
|
47
|
Zhou Y, Qiu L, Li J, Xie W. A General Copper Catalytic System for Suzuki-Miyaura Cross-Coupling of Unactivated Secondary and Primary Alkyl Halides with Arylborons. J Am Chem Soc 2023; 145:28146-28155. [PMID: 38085645 DOI: 10.1021/jacs.3c10628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Suzuki-Miyaura cross-couplings (SMC) are powerful tools for the construction of carbon-carbon bonds. However, the couplings of sp3-hybridized alkyl halides with arylborons often encounter several problematic issues such as sluggish oxidation addition of alkyl halides and competitive β-hydride elimination side pathways of metal-alkyl species. In precedent reports, copper is mainly utilized for the coupling of sp2-aryl halides, and the cross-couplings with unactivated alkyl halides are far less reported. Herein, we demonstrate that a high-efficiency copper system enabled the coupling of arylborons with various unactivated secondary and primary alkyl halides including bromides, iodides, and even robust chlorides. The present system features broad scope, excellent functionality tolerance, scalability, and practicality. Moreover, the current system could be applied for the late-stage functionalization of complex molecules in moderate to high efficiency.
Collapse
Affiliation(s)
- Yonglei Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Liping Qiu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Jian Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Weilong Xie
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
48
|
Zeng W, Chen AW, Yan MJ, Wang J. Sterically demanding Csp 2( ortho-substitution)-Csp 3(tertiary) bond formation via carboxylate-directed Mizoroki-Heck reaction under extra-ligand-free conditions. Org Biomol Chem 2023; 22:80-84. [PMID: 38051230 DOI: 10.1039/d3ob01784b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Construction of the sterically demanding Csp2(oS)-Csp3(T) bond was achieved by carrying out the Pd-catalyzed carboxylate-directed Mizoroki-Heck reaction under extra-ligand-free aqueous conditions. The cooperative role of the presence of water with the absence of phosphine ligand was proposed to accelerate the migratory insertion process considerably, delivering a broad substrate scope.
Collapse
Affiliation(s)
- Wei Zeng
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ai-Wen Chen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ming-Jie Yan
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jie Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
49
|
Wang P, Zhu L, Wang J, Tao Z. Catalytic Asymmetric α-Alkylation of Ketones with Unactivated Alkyl Halides. J Am Chem Soc 2023; 145:27211-27217. [PMID: 38061195 DOI: 10.1021/jacs.3c09614] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
A catalytic, enantioselective method for direct α-alkylation of ketones with unactivated alkyl halides is realized by employing an α-enolizable ketone in a nickel-catalyzed C(sp3)-C(sp3) cross-coupling reaction. The key to the success is attributed to a unique bimetallic ligand. A variety of acyclic ketones and unactivated alkyl iodides can serve as suitable substrates under mild conditions to generate chiral ketones with α-quaternary carbon stereocenters in high yields with good enantioselectivities. A range of transformations based on the ketone moiety are also demonstrated to show the potential application of this method. Preliminary mechanistic studies support a dinickel-catalyzed cross-coupling mechanism.
Collapse
Affiliation(s)
- Peigen Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Liangwei Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Jingwen Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Zhonglin Tao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| |
Collapse
|
50
|
Monteith JJ, Rousseaux SAL. Redox-Active Thiocarbonyl Auxiliaries in Ni-Catalyzed Cross-Couplings of Aliphatic Alcohols. Acc Chem Res 2023; 56:3581-3594. [PMID: 38047525 DOI: 10.1021/acs.accounts.3c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
ConspectusThe Barton-McCombie deoxygenation reaction first established the use of O-alkyl thiocarbonyl derivatives as powerful redox-active agents for C(sp3)-O reduction. In recent years, first-row transition metals capable of engaging with alkyl radical intermediates generated from O-alkyl thiocarbonyl derivatives using alternative stoichiometric radical precursors have been developed. Given the ability of select Ni catalysts to both participate in single-electron oxidative addition pathways and intercept alkyl radical intermediates, our group has investigated the use of O-alkyl thiocarbonyl derivatives as electrophiles in novel cross-coupling reactions. After describing related work in this area, this Account will first summarize our entry point into this field. Here, we used the cyclopropane ring as a reporter of leaving group reactivity to aid in the design and optimization of a novel redox-active O-thiocarbamate leaving group for C(sp3)-O arylation. Motivation for this pursuit was driven by the propensity of the cyclopropane ring to undergo ring opening under polar (2e) oxidative addition pathways or to be maintained under single-electron (1e) conditions. Using these guiding principles, we developed a method for the deoxygenative arylation of cyclopropanol derivatives using a Ni catalyst without the need for a stoichiometric external reductant or photocatalyst. We next summarize our evaluation of an alternative redox-active O-thiocarbonyl imidazole auxiliary in a related deoxygenative cross-coupling. This work demonstrated an extension of our initial approach to the deoxygenative arylation of primary and secondary aliphatic alcohol derivatives. A brief mechanistic investigation revealed that this reaction likely proceeds via a distinct mechanism involving direct homolytic C(sp3)-O bond cleavage. We conclude this Account with a summary of work aimed toward a unique approach for thiocarboxylic acid derivative synthesis. This project was inspired by the efficiency of thionoester generation under most of the reaction conditions evaluated in our prior investigations. Using alcohol, amine, or thiol starting materials, which were activated with convenient thiocarbonyl sources in a single step, we optimized for a Ni-catalyzed cross-coupling capable of providing access to a range of thionoester, thioamide, or dithioester products. In summary, our work has revealed the potential of redox-active thiocarbonyl auxiliaries in Ni-catalyzed cross-couplings with C(sp3)-O electrophiles. We anticipate that the continued investigation of aliphatic thiocarbonyl derivatives as radical precursors with alternative single-electron inputs will be an area of continued growth in the years to come.
Collapse
Affiliation(s)
- John J Monteith
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Sophie A L Rousseaux
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|