1
|
Pei T, Li W, Zhou Z, Zhang Q, Yu G, Yin S, Chen H, Tang J. The relationship between tryptophan metabolism and gut microbiota: Interaction mechanism and potential effects in infection treatment. Microbiol Res 2025; 298:128211. [PMID: 40393170 DOI: 10.1016/j.micres.2025.128211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/29/2025] [Accepted: 05/05/2025] [Indexed: 05/22/2025]
Abstract
Human health is influenced by the gut microbiota, particularly in aspects of host immune homeostasis and intestinal immune response. Tryptophan (Trp) not only acts as a nutrient enhancer but also plays a critical role in the balance between host immune tolerance and gut microbiota maintenance. Both endogenous and bacterial metabolites of Trp, exert significant effects on gut microbial composition, microbial metabolism, the host immunity and the host-microbiome interface. Trp metabolites regulate host immunity by activating aryl hydrocarbon receptor (AhR), thereby contributing to immune homeostasis. Among Trp metabolites, AhR ligands include endogenous metabolites (such as kynurenine), and bacterial metabolites (such as indole and its derivatives). Here, we present a comprehensive analysis of the relationships between Trp metabolism and 14 key microbiota, encompassing fungi (e.g., Candida albicans, Aspergillus), bacteria (e.g., Ruminococcus gnavus, Bacteroides, Prevotella copri, Clostridium difficile, Escherichia coli, lactobacilli, Mycobacterium tuberculosis, Pseudomonas aeruginosa, Staphylococcus aureus, Helicobacter. Pylori), and viruses (e.g., SARS-CoV-2, influenza virus). This review clarifies how the gut microbiota regulates Trp metabolism and uncovers the underlying mechanisms of these interactions. And increased mechanistic insight into how the microbiota modulate the host immune system through Trp metabolism may allow for the identification of innovative therapies that are specifically designed to target Trp absorption, Trp metabolites, the gut microbiota, or interactions between Trp and gut microbiota to treat both intestinal and extra-intestinal inflammation as well as microbial infections.
Collapse
Affiliation(s)
- Tongchao Pei
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Wenweiran Li
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Ziyang Zhou
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Qinyu Zhang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Guohong Yu
- Department of Emergency Medicine, Baoshan Second People's Hospital, Baoshan College of Traditional Chinese Medicine, Baoshan 678000, China
| | - Sokun Yin
- Department of Emergency Medicine, Luoping County People's Hospital, Qujing 655800, China
| | - Hui Chen
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China.
| | - Jianguo Tang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China.
| |
Collapse
|
2
|
Baranova AA, Alferova VA, Korshun VA, Tyurin AP. Imaging-based profiling for elucidation of antibacterial mechanisms of action. Biotechnol Appl Biochem 2025; 72:542-569. [PMID: 39467068 DOI: 10.1002/bab.2681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/03/2024] [Indexed: 10/30/2024]
Abstract
In this review, we aim to summarize experimental data and approaches to identifying cellular targets or mechanisms of action of antibacterials based on imaging techniques. Imaging-based profiling methods, such as bacterial cytological profiling, dynamic bacterial morphology imaging, and others, have become a useful research tool for mechanistic studies of new antibiotics as well as combinations with conventional ones and other therapeutic options. The main methodological and experimental details and obtained results are summarized and discussed. The review covers the literature up to February 2024.
Collapse
Affiliation(s)
- Anna A Baranova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Vera A Alferova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir A Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anton P Tyurin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Chauhan A, Mathkor DM, Joshi H, Chauhan R, Sharma U, Sharma V, Kumar M, Saini RV, Saini AK, Tuli HS, Kaur D, Haque S. Mechanistic Insight of Pharmacological Aspects of Violacein: Recent Trends and Advancements. J Biochem Mol Toxicol 2025; 39:e70114. [PMID: 39865920 DOI: 10.1002/jbt.70114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/21/2024] [Accepted: 12/21/2024] [Indexed: 01/28/2025]
Abstract
Since its discovery in the bacterium Chromobacterium violaceum, violacein-a striking purple pigment-has garnered significant interest due to its promising applications in the food and pharmaceutical industries. Violacein exhibits a range of pharmacological properties, including anti-inflammatory, anticancer, antibacterial, and antiparasitic effects, yet its complete molecular mechanisms are still being elucidated. Its mechanisms of action likely involve complex interactions with cellular receptors, signaling pathways, and specific molecular targets. Given violacein's unique properties and bioactive intermediates, future research holds substantial potential to advance its clinical and industrial applications. Upcoming studies will focus on deepening our understanding of violacein's molecular interactions, conducting clinical trials, and refining drug delivery systems to maximize its therapeutic value. Additionally, obtaining regulatory approval, conducting rigorous safety assessments, and developing efficient biosynthetic methods remain essential steps for violacein's successful integration into food biotechnology and medical applications.
Collapse
Affiliation(s)
- Abhishek Chauhan
- Amity Institute of Environmental Toxicology, Safety and Management, Amity University, Noida, India
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ritu Chauhan
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, India
| | - Ujjawal Sharma
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Vikas Sharma
- Department of Biotechnology, Ambala College of Engineering and Applied Research, Ambala Cantt, Haryana, India
| | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University Sadopur, Ambala, India
| | - Reena V Saini
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, India
| | - Adesh K Saini
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, India
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, India
| | - Damandeep Kaur
- University Center for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
- Centre for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
- Universidad Espiritu Santo, Samborondon, Ecuador
| |
Collapse
|
4
|
Lou X, Zhou Q, Jiang Q, Lin L, Zhu W, Mei X, Xiong J, Gao Y. Inhibitory effect and mechanism of violacein on planktonic growth, spore germination, biofilm formation and toxin production of Bacillus cereus and its application in grass carp preservation. Int J Food Microbiol 2025; 426:110917. [PMID: 39293098 DOI: 10.1016/j.ijfoodmicro.2024.110917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 09/20/2024]
Abstract
Bacillus cereus is a ubiquitous foodborne pathogen commonly found in various foods. Its ability to form spores, biofilms and diarrhoeal and/or emetic toxins further exacerbates the risk of food poisoning. Violacein is a tryptophan derivative with excellent antibacterial activity. However, the knowledge on the antibacterial action of violacein against B. cereus was lacking, and thus this study aimed to investigate the antibacterial activity and mechanism. The antibacterial results demonstrated that minimum inhibitory concentration and minimum bactericidal concentration of violacein were 3.125 mg/L and 12.50 mg/L, respectively. Violacein could effectively inhibit planktonic growth, spore germination and biofilm formation of B. cereus (P < 0.001). Meanwhile, violacein significantly downregulated the expression of toxin genes, including nheA (P < 0.05), nheB (P < 0.001), bceT (P < 0.01), cytK (P < 0.001), hblC (P < 0.001) and hblD (P < 0.001). Results of extracellular alkaline phosphatase, nucleotide and protein leakage assays and scanning and transmission electron microscopy observation tests showed violacein destroyed cell walls and membranes of B. cereus. In addition, 6.25 mg/kg of violacein could significantly inhibit B. cereus in grass carp fillets (P < 0.05). These results demonstrate that violacein has great potential as an effective natural antimicrobial preservative to control food contamination and poisoning events caused by B. cereus.
Collapse
Affiliation(s)
- Xiangdi Lou
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China; Jiangsu Coastal Area Institute of Agricultural Science, Yancheng 224002, China
| | - Qiang Zhou
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qiyue Jiang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Liping Lin
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenwu Zhu
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaoyu Mei
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jianhua Xiong
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yanyan Gao
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
5
|
Kowalska P, Mierzejewska J, Skrzeszewska P, Witkowska A, Oksejuk K, Sitkiewicz E, Krawczyk M, Świadek M, Głuchowska A, Marlicka K, Sobiepanek A, Milner-Krawczyk M. Extracellular vesicles of Janthinobacterium lividum as violacein carriers in melanoma cell treatment. Appl Microbiol Biotechnol 2024; 108:529. [PMID: 39636419 PMCID: PMC11621134 DOI: 10.1007/s00253-024-13358-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Violacein is a natural indole-derived purple pigment of microbial origin that has attracted attention for its remarkable biological properties. Due to its poor solubility in aqueous media, most studies of this pigment use extracts of the compound obtained with common solvents. Violacein is also transported in bacterial extracellular vesicles (EVs) and transferred via this type of carrier remains stable in an aqueous environment. This paper is the first to present an in-depth study of Janthinobacterium lividum EVs as violacein carriers. J. lividum EVs were studied for their contribution to violacein translocation, size, morphology and protein composition. The production of violacein encapsulated in EVs was more efficient than the intracellular production of this compound. The average size of the violacein-containing EVs was 124.07 ± 3.74 nm. Liquid chromatography-tandem mass spectrometry analysis (LC-MS/MS) revealed 932 proteins common to three independent EVs isolations. The high proportion of proteins with intracellular localisation, which are involved in many fundamental cellular processes, suggests that J. lividum EVs could be generated in a cell lysis model, additionally stimulated by violacein production. Using human keratinocytes and melanoma cell lines, it was confirmed that J. lividum EVs are able to react with and deliver their cargo to mammalian cells. The EVs-delivered violacein was shown to retain its activity against melanoma cells, and the dose and timing of treatment can be selected to target only cancer cells. The characterisation of J. lividum EVs, described in the following paper, represents a milestone for their future potential anticancer application. KEY POINTS: • This report focuses on the investigation of Janthinobacterium lividum EVs as a new delivery vehicle for violacein, a compound with a previously demonstrated broad spectrum of activity. • EVs were characterised for size, morphology and protein composition. • Studies on human keratinocytes and a melanoma cell model confirmed that the activity of violacein applied in the encapsulated form of EVs is similar to that of its organic solvent extract, but their production is much more environmentally friendly.
Collapse
Affiliation(s)
- Patrycja Kowalska
- Chair of Drug and Cosmetics Biotechnology, Warsaw University of Technology, Warsaw, Poland
- Doctoral School Warsaw University of Technology, Warsaw, Poland
| | - Jolanta Mierzejewska
- Chair of Drug and Cosmetics Biotechnology, Warsaw University of Technology, Warsaw, Poland
| | - Paulina Skrzeszewska
- Chair of Drug and Cosmetics Biotechnology, Warsaw University of Technology, Warsaw, Poland
| | - Aleksandra Witkowska
- Chair of Drug and Cosmetics Biotechnology, Warsaw University of Technology, Warsaw, Poland
| | - Katarzyna Oksejuk
- Chair of Drug and Cosmetics Biotechnology, Warsaw University of Technology, Warsaw, Poland
| | - Ewa Sitkiewicz
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Science, Warsaw, Poland
| | | | - Magdalena Świadek
- Nencki Institute of Experimental Biology, Polish Academy of Science, Warsaw, Poland
| | - Agata Głuchowska
- Nencki Institute of Experimental Biology, Polish Academy of Science, Warsaw, Poland
| | - Klaudia Marlicka
- Chair of Drug and Cosmetics Biotechnology, Warsaw University of Technology, Warsaw, Poland
- Doctoral School Warsaw University of Technology, Warsaw, Poland
| | - Anna Sobiepanek
- Chair of Drug and Cosmetics Biotechnology, Warsaw University of Technology, Warsaw, Poland
| | | |
Collapse
|
6
|
Zhang Y, Zhang P, Lv Y, Liu J, Zhou Y, Zhang Z, Huang J. Insight into the Antibacterial Activities of Pyridinium-Based Cationic Pillar[5]arene with Controllable Hydrophobic Chain Lengths against Staphylococcus aureus. ACS APPLIED BIO MATERIALS 2024; 7:7730-7739. [PMID: 39487785 DOI: 10.1021/acsabm.4c01305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
The increasing number of infections caused by pathogenic bacteria has severely affected human society. More and more deaths were originated from Gram-positive methicillin-resistant Staphylococcus aureus (MRSA) infection each year. The potential and excellent bacteriostatic activity and resistance to biofilm formation of pillar[5]arene with different functional groups attract important attention to further study the relationship between antimicrobial activity and cytotoxicity by varying the length of the hydrophobic chain, the number of positive charges, and the hydrophobic/hydrophilic balance of the molecule. In this work, four pyridinium-based cationic pillar[5]arene (PPs) with linear aliphatic chains of different lengths were synthesized. After systematic characterization, their inhibition activities against S. aureus were investigated. It revealed that PP6 (six methylenes in each linker) exhibited excellent inhibition activity against S. aureus (ATCC 6538) with a minimum inhibitory concentration (MIC) of 3.91 μg/mL and a minimum bactericidal concentration (MBC) of 62.50 μg/mL. As expected, PP6 exhibited the strongest antibiofilm ability and negligible antimicrobial resistance even after the 20th passage. A study of the action mechanism of selected PPs on the bacterial membrane depolarization and permeability by transmission electron microscopy (TEM) disclosed that the cationic pyridine groups of PPs inserted into the negatively charged bacterial membranes, thereby leading to membranolysis, cytoplasmic content leakage, and cell death. Importantly, PPs all showed very low toxicity to mammalian cells (L929 and HBZY-1), which provided a significant reference for the construction of hypotoxic antibacterial biomaterials for multiple drug-resistant bacteria based on pyridinium-grafted cationic macrocycles with controllable hydrophobic chain lengths.
Collapse
Affiliation(s)
- Yujun Zhang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, PR. China
| | - Peiling Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Yan Lv
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, PR. China
| | - Jing Liu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, PR. China
| | - Yiyu Zhou
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, PR. China
| | - Zibin Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Jianying Huang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, PR. China
| |
Collapse
|
7
|
Ishimoto CK, Paulino BN, Neri-Numa IA, Bicas JL. The blue palette of life: A comprehensive review of natural bluish colorants with potential commercial applications. Food Res Int 2024; 196:115082. [PMID: 39614567 DOI: 10.1016/j.foodres.2024.115082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/09/2024] [Accepted: 09/11/2024] [Indexed: 12/01/2024]
Abstract
Considering the growing interest for safer, environmentally friendly and healthier products, the search for natural colorants to replace their synthetic has been raised. This is particularly challenging for the rare and usually unstable bluish coloring substances. This comprehensive review describes several bluish pigments which can be obtained from natural sources (plants and mostly microorganisms), covering less known molecules to well established compounds (although no focus is given for anthocyanins). Key information about each compound, including sources, extraction procedures, properties, and potential applications, are presented. Despite many studies on these molecules, toxicological and stability studies are still lacking for many of them. Therefore, this text also discusses the regulatory requirements for approving new coloring substances. Given the increasing robustness of scientific data supporting the biological activities attributed to many of these pigments, it is possible to envisage that some of them may be commercially available for industrial applications in different fields, not only in traditional food or cosmetic uses but in pharmaceutical formulations as well.
Collapse
Affiliation(s)
- Caroline Kie Ishimoto
- Department of Food Science and Nutrition, School of Food Engineering, Universidade Estadual de Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Bruno Nicolau Paulino
- Department of Bromatological Analysis, Faculty of Pharmacy, Federal University of Bahia (UFBA), 40170-115 Salvador, BA, Brazil
| | - Iramaia Angelica Neri-Numa
- Department of Food Science and Nutrition, Faculty of Food Engineering, Universidade Estadual de Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil
| | - Juliano Lemos Bicas
- Department of Food Science and Nutrition, School of Food Engineering, Universidade Estadual de Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil; Department of Food Science and Nutrition, Faculty of Food Engineering, Universidade Estadual de Campinas (UNICAMP), 13083-862 Campinas, SP, Brazil.
| |
Collapse
|
8
|
Yang Q, Luan M, Wang M, Zhang Y, Liu G, Niu G. Characterizing and Engineering Rhamnose-Inducible Regulatory Systems for Dynamic Control of Metabolic Pathways in Streptomyces. ACS Synth Biol 2024; 13:3461-3470. [PMID: 39377938 DOI: 10.1021/acssynbio.4c00626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Fine-tuning gene expression is of great interest for synthetic biotechnological applications. This is particularly true for the genus Streptomyces, which is well-known as a prolific producer of diverse natural products. Currently, there is an increasing demand to develop effective gene induction systems. In this study, bioinformatic analysis revealed a putative rhamnose catabolic pathway in multiple Streptomyces species, and the removal of the pathway in the model organism Streptomyces coelicolor impaired its growth on minimal media with rhamnose as the sole carbon source. To unravel the regulatory mechanism of RhaR, a LacI family transcriptional regulator of the catabolic pathway, electrophoretic mobility shift assays (EMSAs) were performed to identify potential target promoters. Multiple sequence alignments retrieved a consensus sequence of the RhaR operator (rhaO). A synthetic biology-based strategy was then deployed to build rhamnose-inducible regulatory systems, referred to as rhaRS1 and rhaRS2, by assembling the repressor/operator pair RhaR/rhaO with the well-defined constitutive kasO* promoter. Both rhaRS1 and rhaRS2 exhibited a high level of induced reporter activity, with no leaky expression. rhaRS2 has been proven successful for the programmable production of actinorhodin and violacein in Streptomyces. Our study expanded the toolkit of inducible regulatory systems that will be broadly applicable to many other Streptomyces species.
Collapse
Affiliation(s)
- Qian Yang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Mengao Luan
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Meiyan Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Yuxin Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Guoqiang Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Guoqing Niu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| |
Collapse
|
9
|
Gonzales M, Jacquet P, Gaucher F, Chabrière É, Plener L, Daudé D. AHL-Based Quorum Sensing Regulates the Biosynthesis of a Variety of Bioactive Molecules in Bacteria. JOURNAL OF NATURAL PRODUCTS 2024; 87:1268-1284. [PMID: 38390739 DOI: 10.1021/acs.jnatprod.3c00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Bacteria are social microorganisms that use communication systems known as quorum sensing (QS) to regulate diverse cellular behaviors including the production of various secreted molecules. Bacterial secondary metabolites are widely studied for their bioactivities including antibiotic, antifungal, antiparasitic, and cytotoxic compounds. Besides playing a crucial role in natural bacterial niches and intermicrobial competition by targeting neighboring organisms and conferring survival advantages to the producer, these bioactive molecules may be of prime interest to develop new antimicrobials or anticancer therapies. This review focuses on bioactive compounds produced under acyl homoserine lactone-based QS regulation by Gram-negative bacteria that are pathogenic to humans and animals, including the Burkholderia, Serratia, Pseudomonas, Chromobacterium, and Pseudoalteromonas genera. The synthesis, regulation, chemical nature, biocidal effects, and potential applications of these identified toxic molecules are presented and discussed in light of their role in microbial interactions.
Collapse
Affiliation(s)
- Mélanie Gonzales
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille 13288, France
- Gene&GreenTK, Marseille 13005, France
| | | | | | - Éric Chabrière
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille 13288, France
| | | | | |
Collapse
|
10
|
Cai G, Yang X, Yu X, Zheng W, Cai R, Wang H. The novel application of violacein produced by a marine Duganella strain as a promising agent for controlling Heterosigma akashiwo bloom: Algicidal mechanism, fermentation optimization and agent formulation. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133548. [PMID: 38262320 DOI: 10.1016/j.jhazmat.2024.133548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/28/2023] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
Controlling harmful algal blooms with algicidal bacteria is thought to be an efficient and eco-friendly way but lack of comprehensive studies from theory to practice limited the field application. Here we presented a purple bacterial strain Duganella sp. A3 capable of killing several harmful algae, including Heterosigma akashiwo, a world-wide fish-killing microalga. A bioactivity-guided purification and identification approach revealed the major algicidal compound of A3 as the pigment violacein, which was never reported for its algicidal potential before. Violacein rapidly disrupted cell permeability, caused long-term oxidative stress, but mildly affected algal photosystem, which might explain its highly species-specific activity against unarmored H. akashiwo. To explore the application potential of violacein, a fermentation optimization approach combing single-factor and multi-factor experiments was conducted to increase the violacein yield, which finally reached 0.4199 g/L just using a simple medium formula beneficial for compound purification. Finally, taking advantages of the physical and chemical stabilities, we successfully developed the novel application of violacein as a sustained-releasing and easy-to-preserve algicidal agent using alginate-acacia-gum-chitosan encapsulation, which paved the path for its future application in controlling H. akashiwo bloom.
Collapse
Affiliation(s)
- Guanjing Cai
- Biology Department and Institute of Marine Sciences, College of Science, and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China.
| | - Xujun Yang
- Jimei University, Xiamen 361021, China; State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Xiaoqi Yu
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005, China; Jimei Branch Xiamen Foreign Language School, Xiamen 361021, China
| | - Wei Zheng
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Runlin Cai
- Biology Department and Institute of Marine Sciences, College of Science, and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Hui Wang
- Biology Department and Institute of Marine Sciences, College of Science, and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| |
Collapse
|
11
|
Zhong Y, He X, Tao W, Feng J, Zhang R, Gong H, Tang Z, Huang C, He Y. 2,4-Diacetylphloroglucinol (DAPG) derivatives rapidly eradicate methicillin-resistant staphylococcus aureus without resistance development by disrupting membrane. Eur J Med Chem 2023; 261:115823. [PMID: 37839345 DOI: 10.1016/j.ejmech.2023.115823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) causes severe public health challenges throughout the world, and the multi-drug resistance (MDR) of MRSA to antibiotics necessitates the development of more effective antibiotics. Natural 2,4-diacetylphloroglucinol (DAPG), produced by Pseudomonas, displays moderate inhibitory activity against MRSA. A series of DAPG derivatives was synthesized and evaluated for their antibacterial activities, and some showed excellent activities (MRSA MIC = 0.5-2 μg/mL). Among these derivatives, 7g demonstrated strong antibacterial activity without resistance development over two months. Mechanistic studies suggest that 7g asserted its activity by targeting bacterial cell membranes. In addition, 7g exhibited significant synergistic antibacterial effects with oxacillin both in vitro and in vivo, with a tendency to eradicate MRSA biofilms. 7g is a promising lead for the treatment of MRSA.
Collapse
Affiliation(s)
- Yifan Zhong
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing, 401331, PR China
| | - Xiaoli He
- Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing, PR China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, PR China
| | - Wenlan Tao
- Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing, PR China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, PR China
| | - Jizhou Feng
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing, 401331, PR China
| | - Ruixue Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing, 401331, PR China
| | - Hongzhi Gong
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing, 401331, PR China
| | - Ziyi Tang
- Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing, PR China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, PR China
| | - Chao Huang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing, 401331, PR China.
| | - Yun He
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing, 401331, PR China; Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing, PR China; BayRay Innovation Center, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| |
Collapse
|
12
|
Kumar G, Engle K. Natural products acting against S. aureus through membrane and cell wall disruption. Nat Prod Rep 2023; 40:1608-1646. [PMID: 37326041 DOI: 10.1039/d2np00084a] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Covering: 2015 to 2022Staphylococcus aureus (S. aureus) is responsible for several community and hospital-acquired infections with life-threatening complications such as bacteraemia, endocarditis, meningitis, liver abscess, and spinal cord epidural abscess. In recent decades, the abuse and misuse of antibiotics in humans, animals, plants, and fungi and the treatment of nonmicrobial diseases have led to the rapid emergence of multidrug-resistant pathogens. The bacterial wall is a complex structure consisting of the cell membrane, peptidoglycan cell wall, and various associated polymers. The enzymes involved in bacterial cell wall synthesis are established antibiotic targets and continue to be a central focus for antibiotic development. Natural products play a vital role in drug discovery and development. Importantly, natural products provide a starting point for active/lead compounds that sometimes need modification based on structural and biological properties to meet the drug criteria. Notably, microorganisms and plant metabolites have contributed as antibiotics for noninfectious diseases. In this study, we have summarized the recent advances in understanding the activity of the drugs or agents of natural origin that directly inhibit the bacterial membrane, membrane components, and membrane biosynthetic enzymes by targeting membrane-embedded proteins. We also discussed the unique aspects of the active mechanisms of established antibiotics or new agents.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India.
| | - Kritika Engle
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India.
| |
Collapse
|
13
|
Milosevic E, Stanisavljevic N, Boskovic S, Stamenkovic N, Novkovic M, Bavelloni A, Cenni V, Kojic S, Jasnic J. Antitumor activity of natural pigment violacein against osteosarcoma and rhabdomyosarcoma cell lines. J Cancer Res Clin Oncol 2023; 149:10975-10987. [PMID: 37270734 DOI: 10.1007/s00432-023-04930-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/23/2023] [Indexed: 06/05/2023]
Abstract
PURPOSE Sarcomas are rare and heterogenic tumors with unclear etiology. They develop in bone and connective tissue, mainly in pediatric patients. To increase efficacy of current therapeutic options, natural products showing selective toxicity to tumor cells are extensively investigated. Here, we evaluated antitumor activity of bacterial pigment violacein in osteosarcoma (OS) and rhabdomyosarcoma (RMS) cell lines. METHODS The toxicity of violacein was assessed in vitro and in vivo, using MTT assay and FET test. The effect of violacein on cell migration was monitored by wound healing assay, cell death by flow cytometry, uptake of violacein by fluorescence microscopy, generation of reactive oxygen species (ROS) by DCFH-DA assay and lipid peroxidation by TBARS assay. RESULTS Violacein IC50 values for OS and RMS cells were in a range from 0.35 to 0.88 µM. Its selectivity toward malignant phenotype was confirmed on non-cancer V79-4 cells, and it was safe in vivo, for zebrafish embryos in doses up to 1 µM. Violacein induced apoptosis and affected the migratory potential of OS and RMS cells. It was found on the surfaces of tested cells. Regarding the mechanism of action, violacein acted on OS and RMS cells independently of oxidative signaling, as judged by no increase in intracellular ROS generation and no lipid peroxidation. CONCLUSION Our study provided further evidence that reinforces the potential of violacein as an anticancer agent and candidate to consider for improvement of the effectiveness of traditional OS and RMS therapies.
Collapse
Affiliation(s)
- Emilija Milosevic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042, Belgrade, Serbia
| | - Nemanja Stanisavljevic
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042, Belgrade, Serbia
| | - Srdjan Boskovic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042, Belgrade, Serbia
| | - Nemanja Stamenkovic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042, Belgrade, Serbia
| | - Mirjana Novkovic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042, Belgrade, Serbia
| | - Alberto Bavelloni
- Laboratory of Experimental Oncology, IRCCS, Istituto Ortopedico Rizzoli, 40136, Bologna, Italy
| | - Vittoria Cenni
- CNR Institute of Molecular Genetics "Luigi-Luca Cavalli-Sforza" Unit of Bologna, Via di Barbiano 1/10, 40136, Bologna, Italy
- IRCCS, Istituto Ortopedico Rizzoli, 40136, Bologna, Italy
| | - Snezana Kojic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042, Belgrade, Serbia
| | - Jovana Jasnic
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042, Belgrade, Serbia.
| |
Collapse
|
14
|
Huang C, Chu X, Hui W, Xie C, Xu X. Study on extraction and characterization of new antibiotics violacein from engineered Escherichia coli VioABCDE-SD. Biotechnol Appl Biochem 2023; 70:1582-1596. [PMID: 36898961 DOI: 10.1002/bab.2454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/26/2023] [Indexed: 03/12/2023]
Abstract
To better understand the characteristic properties of violacein biosynthesized by engineered Escherichia coli VioABCDE-SD, a convenient and simplified method was designed to extract violacein and its stability, antimicrobial activity, and antioxidant capacity were analyzed. Different from the traditional extraction methods, our new method is easier and less time consuming and can directly obtain violacein dry powder product with a higher extraction rate. Low temperature, dark condition, neutral pH, reducing agents, Ba2+ , Mn2+ , Ni2+ , Co2+ , and some food additives of sucrose, xylose, and glucose were conducive to maintaining its stability. The violacein also exhibited surprisingly high bacteriostatic action against Gram-positive Bacillus subtilis, Deinococcus radiodurans R1, and Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa, but no effect on E. coli. The violacein of VioABCDE-SD exhibited strong antioxidant activity, with the scavenging rate of 1,1-diphenyl-2-picrylhydrazyl free radicals reaching 60.33%, the scavenging efficiency of hydroxyl radical scavenging reaching 56.34%, and the total antioxidant capacity reaching 0.63 U/mL. Violacein from VioABCDE-SD can be synthesized directionally with better stability, antibacterial, and antioxidant properties compared with that from the original strain Janthinobacterium sp. B9-8. Therefore, our study indicated that violacein from engineered E. coli VioABCDE-SD was a kind of new antibiotic with potential biological activities, which may have potential utility in multiple areas such as pharmacological, cosmetics, and healthy food industries.
Collapse
Affiliation(s)
- Chunyan Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, China
| | - Xiaoting Chu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, China
| | - Wenyang Hui
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, China
| | - Chengjia Xie
- School of Chemical Engineering, Yangzhou Polytechnic Institute, Yangzhou, Jiangsu Province, China
| | - Xian Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, China
| |
Collapse
|
15
|
Mun W, Choi SY, Upatissa S, Mitchell RJ. Predatory bacteria as potential biofilm control and eradication agents in the food industry. Food Sci Biotechnol 2023; 32:1729-1743. [PMID: 37780591 PMCID: PMC10533476 DOI: 10.1007/s10068-023-01310-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 10/03/2023] Open
Abstract
Biofilms are a major concern within the food industry since they have the potential to reduce productivity in situ (within the field), impact food stability and storage, and cause downstream food poisoning. Within this review, predatory bacteria as potential biofilm control and eradication agents are discussed, with a particular emphasis on the intraperiplasmic Bdellovibrio-and-like organism (BALO) grouping. After providing a brief overview of predatory bacteria and their activities, focus is given to how BALOs fulfill four attributes that are essential for biocontrol agents to be successful in the food industry: (1) Broad spectrum activity against pathogens, both plant and human; (2) Activity against biofilms; (3) Safety towards humans and animals; and (4) Compatibility with food. As predatory bacteria possess all of these characteristics, they represent a novel form of biofilm biocontrol that is ripe for use within the food industry.
Collapse
Affiliation(s)
- Wonsik Mun
- School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - Seong Yeol Choi
- School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - Sumudu Upatissa
- School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 South Korea
| | - Robert J. Mitchell
- School of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 South Korea
| |
Collapse
|
16
|
Jang H, Choi SY, Mitchell RJ. Staphylococcus aureus Sensitivity to Membrane Disrupting Antibacterials Is Increased under Microgravity. Cells 2023; 12:1907. [PMID: 37508571 PMCID: PMC10377918 DOI: 10.3390/cells12141907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
In a survey of the International Space Station (ISS), the most common pathogenic bacterium identified in samples from the air, water and surfaces was Staphylococcus aureus. While growth under microgravity is known to cause physiological changes in microbial pathogens, including shifts in antibacterial sensitivity, its impact on S. aureus is not well understood. Using high-aspect ratio vessels (HARVs) to generate simulated microgravity (SMG) conditions in the lab, we found S. aureus lipid profiles are altered significantly, with a higher presence of branch-chained fatty acids (BCFAs) (14.8% to 35.4%) with a concomitant reduction (41.3% to 31.4%) in straight-chain fatty acids (SCFAs) under SMG. This shift significantly increased the sensitivity of this pathogen to daptomycin, a membrane-acting antibiotic, leading to 12.1-fold better killing under SMG. Comparative assays with two additional compounds, i.e., SDS and violacein, confirmed S. aureus is more susceptible to membrane-disrupting agents, with 0.04% SDS and 0.6 mg/L violacein resulting in 22.9- and 12.8-fold better killing in SMG than normal gravity, respectively. As humankind seeks to establish permanent colonies in space, these results demonstrate the increased potency of membrane-active antibacterials to control the presence and spread of S. aureus, and potentially other pathogens.
Collapse
Affiliation(s)
- Hyochan Jang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Seong Yeol Choi
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Robert J Mitchell
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
17
|
Shaffer JMC, Giddings LA, Samples RM, Mikucki JA. Genomic and phenotypic characterization of a red-pigmented strain of Massilia frigida isolated from an Antarctic microbial mat. Front Microbiol 2023; 14:1156033. [PMID: 37250028 PMCID: PMC10213415 DOI: 10.3389/fmicb.2023.1156033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/20/2023] [Indexed: 05/31/2023] Open
Abstract
The McMurdo Dry Valleys of Antarctica experience a range of selective pressures, including extreme seasonal variation in temperature, water and nutrient availability, and UV radiation. Microbial mats in this ecosystem harbor dense concentrations of biomass in an otherwise desolate environment. Microbial inhabitants must mitigate these selective pressures via specialized enzymes, changes to the cellular envelope, and the production of secondary metabolites, such as pigments and osmoprotectants. Here, we describe the isolation and characterization of a Gram-negative, rod-shaped, motile, red-pigmented bacterium, strain DJPM01, from a microbial mat within the Don Juan Pond Basin of Wright Valley. Analysis of strain DJMP01's genome indicates it can be classified as a member of the Massilia frigida species. The genome contains several genes associated with cold and salt tolerance, including multiple RNA helicases, protein chaperones, and cation/proton antiporters. In addition, we identified 17 putative secondary metabolite gene clusters, including a number of nonribosomal peptides and ribosomally synthesized and post-translationally modified peptides (RiPPs), among others, and the biosynthesis pathway for the antimicrobial pigment prodigiosin. When cultivated on complex agar, multiple prodiginines, including the antibiotic prodigiosin, 2-methyl-3-propyl-prodiginine, 2-methyl-3-butyl-prodiginine, 2-methyl-3-heptyl-prodiginine, and cycloprodigiosin, were detected by LC-MS. Genome analyses of sequenced members of the Massilia genus indicates prodigiosin production is unique to Antarctic strains. UV-A radiation, an ecological stressor in the Antarctic, was found to significantly decrease the abundance of prodiginines produced by strain DJPM01. Genomic and phenotypic evidence indicates strain DJPM01 can respond to the ecological conditions of the DJP microbial mat, with prodiginines produced under a range of conditions, including extreme UV radiation.
Collapse
Affiliation(s)
- Jacob M. C. Shaffer
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | | | - Robert M. Samples
- Department of Chemistry, Smith College, Northampton, MA, United States
| | - Jill A. Mikucki
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
18
|
Di Salvo E, Lo Vecchio G, De Pasquale R, De Maria L, Tardugno R, Vadalà R, Cicero N. Natural Pigments Production and Their Application in Food, Health and Other Industries. Nutrients 2023; 15:nu15081923. [PMID: 37111142 PMCID: PMC10144550 DOI: 10.3390/nu15081923] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
In addition to fulfilling their function of giving color, many natural pigments are known as interesting bioactive compounds with potential health benefits. These compounds have various applications. In recent times, in the food industry, there has been a spread of natural pigment application in many fields, such as pharmacology and toxicology, in the textile and printing industry and in the dairy and fish industry, with almost all major natural pigment classes being used in at least one sector of the food industry. In this scenario, the cost-effective benefits for the industry will be welcome, but they will be obscured by the benefits for people. Obtaining easily usable, non-toxic, eco-sustainable, cheap and biodegradable pigments represents the future in which researchers should invest.
Collapse
Affiliation(s)
- Eleonora Di Salvo
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Giovanna Lo Vecchio
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Rita De Pasquale
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Laura De Maria
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Roberta Tardugno
- Department of Pharmacy-Drug Sciences, University of Bari, 70121 Bari, Italy
| | - Rossella Vadalà
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Nicola Cicero
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
- Science4life srl, University of Messina, 98168 Messina, Italy
| |
Collapse
|
19
|
Gupta R, Ghosh SK. Discerning perturbed assembly of lipids in a model membrane in presence of violacein: Effects of membrane hydrophobicity. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184130. [PMID: 36764473 DOI: 10.1016/j.bbamem.2023.184130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/12/2023] [Accepted: 01/27/2023] [Indexed: 02/11/2023]
Abstract
For the lack of effective antibiotics towards antibiotic resisting bacteria, it is required to discover new antibiotics and to understand their antimicrobial mechanism. Violacein is a violet pigment found in several gram-negative bacteria possessing antimicrobial properties to gram-positive bacteria. This present article investigates the insertion ability of this molecule into a model membrane composed of zwitterionic phospholipids. Thermodynamic characterization of lipid monolayers in the presence of violacein was carried out using a single lipid layer formed at air-water interface. The molecule inserts into the layer altering the area occupied by each lipid and the in-plane compressibility of the film. This insertion increases with the hydrophobic chain length of the lipid. The perturbed self-assembly of lipids in a bilayer is quantified using a lipid multilayer system applying the X-ray reflectivity technique. The electron density profile from the reflectivity data shows that the molecule inserts into the fluid phase creating a relatively ordered chain conformation. Further, the insertion into the gel phase is observed to increase with the increased thickness of the hydrophobic core of a bilayer.
Collapse
Affiliation(s)
- Ritika Gupta
- Department of Physics, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India
| | - Sajal K Ghosh
- Department of Physics, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India.
| |
Collapse
|
20
|
Gupta MK, Singh R, Rangan L. Phytochemical screening, antibacterial, anti-biofilm and quorum sensing inhibiting activity of Alpinia nigra leaf extract against infectious pathogen Pseudomonas aeruginosa PAO1. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Fermentation in Minimal Media and Fungal Elicitation Enhance Violacein and Deoxyviolacein Production in Two Janthinobacterium Strains. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8120714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Violacein and its biosynthesis by-product deoxyviolacein are valuable natural pigments with different biological activities. Various efforts have been made to enhance violacein and deoxyviolacein production in microbes. However, the effect of different culture media, agitation, and fungal elicitation on biosynthesis in Janthinobacterium has not been evaluated. In this study, the effect of eight different culture media, agitation, and fungal elicitation by Agaricus bisporus on violacein and deoxviolacein production in Janthinobacterium agaricidamnosum DSM 9628 and Janthinobacterium lividum DSM 1552 were examined. The results showed that violacein and deoxviolacein are produced at high-levels when Janthinobacterium is cultivated in minimal media such as Davis minimal broth with glycerol (DMBgly), shipworm basal medium (SBM), and MM9 media. A 50-fold increase was observed in violacein production when Janthinobacterium was cultivated in these media compared to cultivation in Luria–Bertani (LB), nutrient broth (NB), and King’s B (KB). Agitation reduces violacein and deoxyviolacein production, while fungal elicitation decreases violacein but increases deoxyviolacein when Janthinobacterium is cultured in KB media, SBM, and modified SBM (MSBM). An antibacterial assay using various pathogenic bacteria showed that violacein and deoxyviolacein extracted from Janthinobacterium are effective against both Gram-positive and Gram-negative pathogens, confirming their functionality as antibacterial agents. The findings suggest that cultivation in minimal media and fungal elicitation might invoke a stress response, enhancing the production of violacein and deoxviolacein in Janthinobacterium.
Collapse
|
22
|
Nguyen UT, Kalan LR. Forgotten fungi: the importance of the skin mycobiome. Curr Opin Microbiol 2022; 70:102235. [PMID: 36372041 PMCID: PMC10044452 DOI: 10.1016/j.mib.2022.102235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/21/2022] [Accepted: 10/19/2022] [Indexed: 11/13/2022]
Abstract
The mosaic ecosystems of microbes that live on our skin encompass not only bacteria but also fungi, microeukaryotes, and viruses. As the second most prevalent group, unique fungal communities are found across the dry, moist, and oily microenvironments of human skin, and alterations of these communities are largely driven by changes in skin physiology throughout an individual's lifespan. Fungi have also been associated with infection and dermatological disorders, resulting from the disrupted balance between fungal-bacterial networks on the skin. Mechanisms of colonization resistance toward fungi in the skin microbiome of animals have advanced our understanding in conservation strategies, yet in the human skin, the fungal microbiome (mycobiome) remains vastly unexplored. Here, we review recent studies on the role of fungi in the skin microbiome, emphasizing how fungal-bacterial interactions at the skin surface play an important ecological function in vertebrate hosts.
Collapse
Affiliation(s)
- Uyen Thy Nguyen
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, United States; Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States.
| | - Lindsay R Kalan
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States; Department of Medicine, Division of Infectious Disease, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States.
| |
Collapse
|
23
|
Hui CY, Guo Y, Zhu DL, Li LM, Yi J, Zhang NX. Metabolic engineering of the violacein biosynthetic pathway toward a low-cost, minimal-equipment lead biosensor. Biosens Bioelectron 2022; 214:114531. [PMID: 35810697 DOI: 10.1016/j.bios.2022.114531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/17/2022] [Accepted: 06/29/2022] [Indexed: 02/07/2023]
Abstract
Metabolic engineered bacteria have been successfully employed to produce various natural colorants, which are expected to be used as the visually recognizable signals to develop mini-equipment biological devices for monitoring toxic heavy metals. The violacein biosynthetic pathway has been reconstructed in Escherichia coli (E. coli). Here the successful production of four violacein derivatives was achieved by integrating metabolic engineering and synthetic biology. Lead binding to the metalloregulator enables whole-cell colorimetric biosensors capable of assessing bioavailable lead. Deoxyviolacein-derived signal showed the most satisfied biosensing properties among prodeoxyviolacein (green), proviolacein (blue), deoxyviolacein (purple), and violacein (navy). The limit of detection (LOD) of pigment-based biosensors was 2.93 nM Pb(II), which is lower than that of graphite furnace atomic absorption spectrometry. Importantly, a good linear dose-response model in a wide dose range (2.93-6000 nM) was obtained in a non-cytotoxic deoxyviolacein-based biosensor, which was significantly better than cytotoxic violacein-based biosensor (2.93-750 nM). Among ten metal ions, only Cd(II) and Hg(II) exerted a slight influence on the response of the deoxyviolacein-based biosensor toward Pb(II). The deoxyviolacein-based biosensor was validated in detecting bioaccessible Pb(II) in environmental samples. Factors such as low cost and minimal-equipment requirement make this biosensor a suitable biological device for monitoring toxic lead in the environment.
Collapse
Affiliation(s)
- Chang-Ye Hui
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518020, China.
| | - Yan Guo
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518020, China
| | - De-Long Zhu
- School of Public Health , Guangdong Medical University, Dongguan, 523808, China
| | - Li-Mei Li
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518020, China
| | - Juan Yi
- Department of Pathology & Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518020, China
| | - Nai-Xing Zhang
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518020, China.
| |
Collapse
|
24
|
Joodaki F, Martin LM, Greenfield ML. Generation and Computational Characterization of a Complex Staphylococcus aureus Lipid Bilayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9481-9499. [PMID: 35901279 DOI: 10.1021/acs.langmuir.2c00483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Studies indicate a crucial cell membrane role in the antibiotic resistance of Staphylococcus aureus. To simulate its membrane structure and dynamics, a complex molecular-scale computational representation of the S. aureus lipid bilayer was developed. Phospholipid types and their amounts were optimized by reverse Monte Carlo to represent characterization data from the literature, leading to 19 different phospholipid types that combine three headgroups [phosphatidylglycerol, lysyl-phosphatidylglycerol (LPG), and cardiolipin] and 10 tails, including iso- and anteiso-branched saturated chains. The averaged lipid bilayer thickness was 36.7 Å, and area per headgroup was 67.8 Å2. Phosphorus and nitrogen density profiles showed that LPG headgroups tended to be bent and oriented more parallel to the bilayer plane. The water density profile showed that small amounts reached the membrane center. Carbon density profiles indicated hydrophobic interactions for all lipids in the middle of the bilayer. Bond vector order parameters along each tail demonstrated different C-H ordering even within distinct lipids of the same type; however, all tails followed similar trends in average order parameter. These complex simulations further revealed bilayer insights beyond those attainable with monodisperse, unbranched lipids. Longer tails often extended into the opposite leaflet. Carbon at and beyond a branch showed significantly decreased ordering compared to carbon in unbranched tails; this feature arose in every branched lipid. Diverse tail lengths distributed these disordered methyl groups throughout the middle third of the bilayer. Distributions in mobility and ordering reveal diverse properties that cannot be obtained with monodisperse lipids.
Collapse
Affiliation(s)
- Faramarz Joodaki
- Department of Chemical Engineering, University of Rhode Island, 360 Fascitelli Center for Advanced Engineering, Kingston, Rhode Island 02881, United States
| | - Lenore M Martin
- Department of Cell and Molecular Biology, University of Rhode Island, 120 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Michael L Greenfield
- Department of Chemical Engineering, University of Rhode Island, 360 Fascitelli Center for Advanced Engineering, Kingston, Rhode Island 02881, United States
| |
Collapse
|
25
|
A Quorum Sensing-Regulated Type VI Secretion System Containing Multiple Nonredundant VgrG Proteins Is Required for Interbacterial Competition in Chromobacterium violaceum. Microbiol Spectr 2022; 10:e0157622. [PMID: 35876575 PMCID: PMC9430734 DOI: 10.1128/spectrum.01576-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The environmental pathogenic bacterium Chromobacterium violaceum kills Gram-positive bacteria by delivering violacein packed into outer membrane vesicles, but nothing is known about its contact-dependent competition mechanisms. In this work, we demonstrate that C. violaceum utilizes a type VI secretion system (T6SS) containing multiple VgrG proteins primarily for interbacterial competition. The single T6SS of C. violaceum contains six vgrG genes, which are located in the main T6SS cluster and four vgrG islands. Using T6SS core component-null mutant strains, Western blotting, fluorescence microscopy, and competition assays, we showed that the C. violaceum T6SS is active and required for competition against Gram-negative bacteria such as Pseudomonas aeruginosa but dispensable for C. violaceum infection in mice. Characterization of single and multiple vgrG mutants revealed that, despite having high sequence similarity, the six VgrGs show little functional redundancy, with VgrG3 showing a major role in T6SS function. Our coimmunoprecipitation data support a model of VgrG3 interacting directly with the other VgrGs. Moreover, we determined that the promoter activities of T6SS genes increased at high cell density, but the produced Hcp protein was not secreted under such condition. This T6SS growth phase-dependent regulation was dependent on CviR but not on CviI, the components of a C. violaceum quorum sensing (QS) system. Indeed, a ΔcviR but not a ΔcviI mutant was completely defective in Hcp secretion, T6SS activity, and interbacterial competition. Overall, our data reveal that C. violaceum relies on a QS-regulated T6SS to outcompete other bacteria and expand our knowledge about the redundancy of multiple VgrGs. IMPORTANCE The type VI secretion system (T6SS) is a contractile nanomachine used by many Gram-negative bacteria to inject toxic effectors into adjacent cells. The delivered effectors are bound to the components of a puncturing apparatus containing the protein VgrG. The T6SS has been implicated in pathogenesis and, more commonly, in competition among bacteria. Chromobacterium violaceum is an environmental bacterium that causes deadly infections in humans. In this work, we characterized the single T6SS of C. violaceum ATCC 12472, including its six VgrG proteins, regarding its function and regulation. This previously undescribed C. violaceum T6SS is active, regulated by QS, and required for interbacterial competition instead of acute infection in mice. Among the VgrGs, VgrG3, encoded outside the main T6SS cluster, showed a major contribution to T6SS function. These results shed light on a key contact-dependent killing mechanism used by C. violaceum to antagonize other bacteria.
Collapse
|
26
|
Ratrey P, Datta B, Mishra A. Intracellular Bacterial Targeting by a Thiazolyl Benzenesulfonamide and Octaarginine Peptide Complex. ACS APPLIED BIO MATERIALS 2022; 5:3257-3268. [PMID: 35736131 DOI: 10.1021/acsabm.2c00252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A brominated thiazolyl benzenesulfonamide (BTB) derivative is conjugated with the cell-penetrating peptide octaarginine (R8) in an effort to construct innovative antibacterial products. The noncovalent complex of BTB and R8 is characterized by Fourier transform infrared (FTIR) spectroscopy, which indicates hydrogen bonding between the two constituents. Attachment of the peptide moiety renders aqueous solubility to the hydrophobic benzenesulfonamide drug and bestows bactericidal activity. Confocal imaging in conjunction with dye probes shows successful clearance of intracellular Staphylococcus aureus bacteria by the BTB-R8 complex. Scanning electron micrographs and studies with a set of fluorescent dyes suggest active disruption of the bacterial cell membrane by the BTB-R8 complex. In contrast, the complex of BTB with octalysine (K8) fails to cause membrane damage and displays a modest antibacterial effect. A complex of BTB with the water-soluble hydrophilic polymer poly(vinylpyrrolidone) (PVP) does not display any antibacterial effect, indicating the distinctive role of the cell-penetrating peptide (CPP) R8 in the cognate complex. The leakage of the encapsulated dye from giant unilamellar vesicles upon interaction with the BTB-R8 complex further highlights the membrane activity of the complex, which cannot be accomplished by bare sulfonamide alone. This work broadens the scope of use of CPPs with respect to eliciting antibacterial activity and potentially expands the limited arsenal of membrane-targeting antibiotics.
Collapse
Affiliation(s)
- Poonam Ratrey
- Materials Science and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India
| | - Bhaskar Datta
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India
| | - Abhijit Mishra
- Materials Science and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India
| |
Collapse
|
27
|
Durán N, Castro GR, Portela RWD, Fávaro WJ, Durán M, Tasic L, Nakazato G. Violacein and its antifungal activity: comments and potentialities. Lett Appl Microbiol 2022; 75:796-803. [PMID: 35687081 DOI: 10.1111/lam.13760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/29/2022]
Abstract
Violacein is an important natural antimicrobial pigment that is mainly produced by Chromobacterium violaceum and Janthinobacterium lividum. It presents a significant range of effects against phytopathogenic and human fungi, besides being featured as having low toxicity, and by its important ecological role in protecting amphibian species and applications in dyed medical fabric. The hypothesis about violacein's action mechanisms against mucormycosis (Rhizopus arrhizus) and candidiasis (Candida auris) is herein discussed based on data available in the scientific literature.
Collapse
Affiliation(s)
- N Durán
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.,Nanomedicine Research Unit (Nanomed), Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC (UFABC), Santo André, SP, Brazil
| | - G R Castro
- Nanomedicine Research Unit (Nanomed), Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC (UFABC), Santo André, SP, Brazil.,Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC). Partner Laboratory of the Max Planck Institute for Biophysical Chemistry (MPIbpC, MPG), Centro de Estudios Interdisciplinarios (CEI), Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - R W D Portela
- Laboratory of Immunology and Molecular Biology, Health Sciences Institute, Universidade Federal da Bahia, Salvador, BA, Brazil
| | - W J Fávaro
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - M Durán
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - L Tasic
- Biogical Chemistry Laboratory, Institute of Chemistry, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - G Nakazato
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Biology Sciences Center, Universidade Estadual de Londrina (UEL), Londrina, Puerto Rico, Brazil
| |
Collapse
|
28
|
Detection of environmental pollutant cadmium in water using a visual bacterial biosensor. Sci Rep 2022; 12:6898. [PMID: 35477977 PMCID: PMC9046199 DOI: 10.1038/s41598-022-11051-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/18/2022] [Indexed: 11/10/2022] Open
Abstract
Cadmium (Cd) contamination in water and soil is considered an environmental pollutant. Food crops can absorb and accumulate bioavailable Cd. Continuous monitoring of Cd levels in the environment can minimize exposure and harm to humans. Visual pigments have been demonstrated to have great potential in the development of minimal-equipment biosensors. In the present study, a metabolically engineered bacterium was employed to produce blue-purple pigment violacein responsive to toxic Cd(II). The high stability of the bisindole pigment contributed to determining the violacein at wavelengths of 578 nm. Visual and quantifiable signals could be captured after a 1.5-h Cd(II) exposure. This novel biosensor showed significantly stronger responses to Cd(II) than to other heavy metals including Pb(II), Zn(II), and Hg(II). A significant increase in pigment signal was found to respond to as low as 0.049 μM Cd(II). The naked eye can detect the color change when violacein-based biosensor is exposed to 25 μM Cd(II). A high-throughput method for rapid determination of soluble Cd(II) in environmental water was developed using a colorimetric microplate.
Collapse
|
29
|
de Medeiros TDM, Dufossé L, Bicas JL. Lignocellulosic substrates as starting materials for the production of bioactive biopigments. Food Chem X 2022; 13:100223. [PMID: 35128384 PMCID: PMC8808281 DOI: 10.1016/j.fochx.2022.100223] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/22/2021] [Accepted: 01/18/2022] [Indexed: 12/14/2022] Open
Abstract
The search for sustainable processes is constantly increasing in the last years, so reusing, recycling and adding value to residues and by-products from agroindustry is a consolidated area of research. Particularly in the field of fermentation technology, the lignocellulosic substrates have been used to produce a diversity of chemicals, fuels and food additives. These residues or by-products are rich sources of carbon, which may be used to yield fermentescible sugars upon hydrolysis, but are usually inaccessible to enzyme and microbial attack. Therefore, pre-treatments (e.g. hydrolysis, steam explosion, biological pretreatment or others) are required prior to microbial action. Biopigments are added-value compounds that can be produced biotechnologically, including fermentation processes employing lignocellulosic substrates. These molecules are important not only for their coloring properties, but also for their biological activities. Therefore, this paper discusses the most recent and relevant processes for biopigment production using lignocellulosic substrates (solid-state fermentation) or their hydrolysates.
Collapse
Affiliation(s)
- Tiago Daniel Madureira de Medeiros
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80. Campinas-SP, Brazil
| | - Laurent Dufossé
- Chemistry and Biotechnology of Natural Products, CHEMBIOPRO, Université de La Réunion, ESIROI Agroalimentaire, 15 Avenue René Cassin, CEDEX 9, F-97744 Saint-Denis, France
| | - Juliano Lemos Bicas
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80. Campinas-SP, Brazil
| |
Collapse
|
30
|
An operator-based expression toolkit for Bacillus subtilis enables fine-tuning of gene expression and biosynthetic pathway regulation. Proc Natl Acad Sci U S A 2022; 119:e2119980119. [PMID: 35263224 PMCID: PMC8931375 DOI: 10.1073/pnas.2119980119] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
A gene regulatory system is an important tool for the engineering of biosynthetic pathways of organisms. Here, we report the development of an inducible-ON/OFF regulatory system using a malO operator as a key element. We identified and modulated sequence, position, numbers, and spacing distance of malO operators, generating a series of activating or repressive promoters with tunable strength. The stringency and robustness are both guaranteed in this system, a maximal induction factor of 790-fold was achieved, and nine proteins from different organisms were expressed with high yields. This system can be utilized as a gene switch, promoter enhancer, or metabolic valve in synthetic biology applications. This operator-based engineering strategy can be employed for developing similar regulatory systems in different microorganisms. Genetic elements are key components of metabolic engineering and synthetic biological applications, allowing the development of organisms as biosensors and for manufacturing valuable chemicals and protein products. In contrast to the gram-negative model bacterium Escherichia coli, the gram-positive model bacterium Bacillus subtilis lacks such elements with precise and flexible characteristics, which is a great barrier to employing B. subtilis for laboratory studies and industrial applications. Here, we report the development of a malO-based genetic toolbox that is derived from the operator box in the malA promoter, enabling gene regulation via compatible “ON” and “OFF” switches. This engineered toolbox combines promoter-based mutagenesis and host-specific metabolic engineering of transactivation components upon maltose induction to achieve stringent, robust, and homogeneous gene regulation in B. subtilis. We further demonstrate the synthetic biological applications of the toolbox by utilizing these genetic elements as a gene switch, a promoter enhancer, and an ON-OFF dual-control device in biosynthetic pathway optimization. Collectively, this regulatory system provides a comprehensive genetic toolbox for controlling the expression of genes in biosynthetic pathways and regulatory networks to optimize the production of valuable chemicals and proteins in B. subtilis.
Collapse
|
31
|
Staphylococcal Bacterial Persister Cells, Biofilms, and Intracellular Infection Are Disrupted by JD1, a Membrane-Damaging Small Molecule. mBio 2021; 12:e0180121. [PMID: 34634935 PMCID: PMC8510524 DOI: 10.1128/mbio.01801-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Rates of antibiotic and multidrug resistance are rapidly rising, leaving fewer options for successful treatment of bacterial infections. In addition to acquiring genetic resistance, many pathogens form persister cells, form biofilms, and/or cause intracellular infections that enable bacteria to withstand antibiotic treatment and serve as a source of recurring infections. JD1 is a small molecule previously shown to kill Gram-negative bacteria under conditions where the outer membrane and/or efflux pumps are disrupted. We show here that JD1 rapidly disrupts membrane potential and kills Gram-positive bacteria. Further investigation revealed that treatment with JD1 disrupts membrane barrier function and causes aberrant membranous structures to form. Additionally, exposure to JD1 reduced the number of Staphylococcus aureus and Staphylococcus epidermidis viable persister cells within broth culture by up to 1,000-fold and reduced the matrix and cell volume of biofilms that had been established for 24 h. Finally, we show that JD1 reduced the number of recoverable methicillin-resistant S. aureus organisms from infected cells. These observations indicate that JD1 inhibits staphylococcal cells in difficult-to-treat growth stages as well as, or better than, current clinical antibiotics. Thus, JD1 shows the importance of testing compounds under conditions that are relevant to infection, demonstrates the utility that membrane-targeting compounds have against multidrug-resistant bacteria, and indicates that small molecules that target bacterial cell membranes may serve as potent broad-spectrum antibacterials.
Collapse
|
32
|
Róg T, Girych M, Bunker A. Mechanistic Understanding from Molecular Dynamics in Pharmaceutical Research 2: Lipid Membrane in Drug Design. Pharmaceuticals (Basel) 2021; 14:1062. [PMID: 34681286 PMCID: PMC8537670 DOI: 10.3390/ph14101062] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
We review the use of molecular dynamics (MD) simulation as a drug design tool in the context of the role that the lipid membrane can play in drug action, i.e., the interaction between candidate drug molecules and lipid membranes. In the standard "lock and key" paradigm, only the interaction between the drug and a specific active site of a specific protein is considered; the environment in which the drug acts is, from a biophysical perspective, far more complex than this. The possible mechanisms though which a drug can be designed to tinker with physiological processes are significantly broader than merely fitting to a single active site of a single protein. In this paper, we focus on the role of the lipid membrane, arguably the most important element outside the proteins themselves, as a case study. We discuss work that has been carried out, using MD simulation, concerning the transfection of drugs through membranes that act as biological barriers in the path of the drugs, the behavior of drug molecules within membranes, how their collective behavior can affect the structure and properties of the membrane and, finally, the role lipid membranes, to which the vast majority of drug target proteins are associated, can play in mediating the interaction between drug and target protein. This review paper is the second in a two-part series covering MD simulation as a tool in pharmaceutical research; both are designed as pedagogical review papers aimed at both pharmaceutical scientists interested in exploring how the tool of MD simulation can be applied to their research and computational scientists interested in exploring the possibility of a pharmaceutical context for their research.
Collapse
Affiliation(s)
- Tomasz Róg
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Alex Bunker
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
33
|
Durán N, Nakazato G, Durán M, Berti IR, Castro GR, Stanisic D, Brocchi M, Fávaro WJ, Ferreira-Halder CV, Justo GZ, Tasic L. Multi-target drug with potential applications: violacein in the spotlight. World J Microbiol Biotechnol 2021; 37:151. [PMID: 34398340 DOI: 10.1007/s11274-021-03120-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/02/2021] [Indexed: 11/28/2022]
Abstract
The aim of the current review is to address updated research on a natural pigment called violacein, with emphasis on its production, biological activity and applications. New information about violacein's action mechanisms as antitumor agent and about its synergistic action in drug delivery systems has brought new alternatives for anticancer therapy. Thus, violacein is introduced as reliable drug capable of overcoming at least three cancer hallmarks, namely: proliferative signaling, cell death resistance and metastasis. In addition, antimicrobial effects on several microorganisms affecting humans and other animals turn violacein into an attractive drug to combat resistant pathogens. Emphasis is given to effects of violacein combined with different agents, such as antibiotics, anticancer agents and nanoparticles. Although violacein is well-known for many decades, it remains an attractive compound. Thus, research groups have been making continuous effort to help improving its production in recent years, which can surely enable its pharmaceutical and chemical application as multi-task compound, even in the cosmetics and food industries.
Collapse
Affiliation(s)
- Nelson Durán
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil. .,Nanomedicine Research Unit (Nanomed), Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC (UFABC), Santo André, SP, Brazil.
| | - Gerson Nakazato
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Biology Sciences Center, Universidade Estadual de Londrina (UEL), Londrina, PR, Brazil
| | - Marcela Durán
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.,Nanomedicine Research Unit (Nanomed), Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC (UFABC), Santo André, SP, Brazil
| | - Ignasio R Berti
- Nanobiomaterials Laboratory, Department of Chemistry, School of Sciences, Institute of Applied Biotechnology CINDEFI (UNLPCONICET, CCT La Plata),, Universidad Nacional de La Plata, La Plata, Argentina
| | - Guillermo R Castro
- Nanobiomaterials Laboratory, Department of Chemistry, School of Sciences, Institute of Applied Biotechnology CINDEFI (UNLPCONICET, CCT La Plata),, Universidad Nacional de La Plata, La Plata, Argentina
| | - Danijela Stanisic
- Biological Chemistry Laboratory, Institute of Chemistry, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Marcelo Brocchi
- Laboratory of Tropical Diseases, Department of Genetic, Evolution and Bioagents , Biology Institute, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Wagner J Fávaro
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Carmen V Ferreira-Halder
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Giselle Z Justo
- Departamento de Ciências Farmacêuticas (Campus Diadema) e Departamento de Bioquímica (Campus São Paulo), Universidade Federal de São Paulo (UNIFESP), 3 de Maio, 100, São Paulo, SP, 04044-020, Brazil.
| | - Ljubica Tasic
- Biological Chemistry Laboratory, Institute of Chemistry, Universidade Estadual de Campinas, Campinas, SP, Brazil
| |
Collapse
|
34
|
Mutnale MC, Reddy GS, Vasudevan K. Bacterial Community in the Skin Microbiome of Frogs in a Coldspot of Chytridiomycosis Infection. MICROBIAL ECOLOGY 2021; 82:554-558. [PMID: 33442763 PMCID: PMC8384794 DOI: 10.1007/s00248-020-01669-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
Chytridiomycosis is a fungal disease caused by the pathogens, Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal), which has caused declines in amphibian populations worldwide. Asia is considered as a coldspot of infection, since adult frogs are less susceptible to Bd-induced mortality or morbidity. Using the next-generation sequencing approach, we assessed the cutaneous bacterial community composition and presence of anti-Bd bacteria in six frog species from India using DNA isolated from skin swabs. All the six frog species sampled were tested using nested PCR and found Bd negative. We found a total of 551 OTUs on frog skin, of which the bacterial phyla such as Proteobacteria (56.15% average relative abundance) was dominated followed by Actinobacteria (21.98% average relative abundance) and Firmicutes (13.7% average relative abundance). The contribution of Proteobacteria in the anti-Bd community was highest and represented by 175 OTUs. Overall, the anti-Bd bacterial community dominated (51.7% anti-Bd OTUs) the skin microbiome of the frogs. The study highlights the putative role of frog skin microbiome in affording resistance to Bd infections in coldspots of infection.
Collapse
Affiliation(s)
- Milind C Mutnale
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
| | - Gundlapally S Reddy
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
| | - Karthikeyan Vasudevan
- Laboratory for the Conservation of Endangered Species, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India.
| |
Collapse
|
35
|
Yu JH, Xu XF, Hou W, Meng Y, Huang MY, Lin J, Chen WM. Synthetic cajaninstilbene acid derivatives eradicate methicillin-resistant Staphylococcus aureus persisters and biofilms. Eur J Med Chem 2021; 224:113691. [PMID: 34274830 DOI: 10.1016/j.ejmech.2021.113691] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 11/30/2022]
Abstract
The Staphylococcus aureus can switch to a transient genotype-invariant dormancy, known as a persister, to survive treatment with high doses of antibiotics. This transient persister is an important reason underlying its resistance. There is an urgent need to find new antibacterial agents capable of eradicating methicillin-resistant S. aureus (MRSA) persisters. In this study, 37 new derivatives of cajaninstilbene acid (CSA) were designed and synthesized, and their biological activity against MRSA persisters was evaluated. Most of the newly synthesized derivatives exhibit more potent antimicrobial properties against S. aureus and MRSA than CSA itself, and 23 of the 37 derivatives show a tendency to eradicate MRSA persisters. A representative compound (A6) was demonstrated to target bacterial cell membranes. It eradicated the adherent biofilm of MRSA in a concentration dependent manner, and showed a synergistic antibacterial effect with piperacilin. In a model mouse abscess caused by MRSA persisters, A6 effectively reduced the bacterial load in vivo. These results indicate that A6 is a potential candidate for treatment of MRSA persister infections.
Collapse
Affiliation(s)
- Jia-Hui Yu
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Xiao-Fang Xu
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Wen Hou
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Ying Meng
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Mei-Yan Huang
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Jing Lin
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China.
| | - Wei-Min Chen
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China.
| |
Collapse
|
36
|
Guo Y, Hui CY, Liu L, Chen MP, Huang HY. Development of a bioavailable Hg(II) sensing system based on MerR-regulated visual pigment biosynthesis. Sci Rep 2021; 11:13516. [PMID: 34188121 PMCID: PMC8242042 DOI: 10.1038/s41598-021-92878-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/14/2021] [Indexed: 12/02/2022] Open
Abstract
Engineered microorganisms have proven to be a highly effective and robust tool to specifically detect heavy metals in the environment. In this study, a highly specific pigment-based whole-cell biosensor has been investigated for the detection of bioavailable Hg(II) based on an artificial heavy metal resistance operon. The basic working principle of biosensors is based on the violacein biosynthesis under the control of mercury resistance (mer) promoter and mercury resistance regulator (MerR). Engineered biosensor cells have been demonstrated to selectively respond to Hg(II), and the specific response was not influenced by interfering metal ions. The response of violacein could be recognized by the naked eye, and the time required for the maximum response of violacein (5 h) was less than that of enhanced green fluorescence protein (eGFP) (8 h) in the single-signal output constructs. The response of violacein was almost unaffected by the eGFP in a double-promoter controlled dual-signals output construct. However, the response strength of eGFP was significantly decreased in this genetic construct. Exponentially growing violacein-based biosensor detected concentrations as low as 0.39 μM Hg(II) in a colorimetric method, and the linear relationship was observed in the concentration range of 0.78-12.5 μM. Non-growing biosensor cells responded to concentrations as low as 0.006 μM Hg(II) in a colorimetric method and in a Hg(II) containing plate sensitive assay, and the linear relationship was demonstrated in a very narrow concentration range. The developed biosensor was finally validated for the detection of spiked bioavailable Hg(II) in environmental water samples.
Collapse
Affiliation(s)
- Yan Guo
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Chang-Ye Hui
- Department of Pathology and Toxicology, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China.
| | - Lisa Liu
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Min-Peng Chen
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| | - Hong-Ying Huang
- National Key Clinical Specialty of Occupational Diseases, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China
| |
Collapse
|
37
|
Wang J, Ansari MF, Zhou CH. Identification of Unique Quinazolone Thiazoles as Novel Structural Scaffolds for Potential Gram-Negative Bacterial Conquerors. J Med Chem 2021; 64:7630-7645. [PMID: 34009979 DOI: 10.1021/acs.jmedchem.1c00334] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A class of quinazolone thiazoles was identified as new structural scaffolds for potential antibacterial conquerors to tackle dreadful resistance. Some prepared compounds exhibited favorable bacteriostatic efficiencies on tested bacteria, and the most representative 5j featuring the 4-trifluoromethylphenyl group possessed superior performances against Escherichia coli and Pseudomonas aeruginosa to norfloxacin. Further studies revealed that 5j with inappreciable hemolysis could hinder the formation of bacterial biofilms and trigger reactive oxygen species generation, which could take responsibility for emerging low resistance. Subsequent paralleled exploration discovered that 5j not only disintegrated outer and inner membranes to induce leakage of cytoplasmic contents but also broke the metabolism by suppressing dehydrogenase. Meanwhile, derivative 5j could intercalate into DNA to exert powerful antibacterial properties. Moreover, compound 5j gave synergistic effects against some Gram-negative bacteria in combination with norfloxacin. These findings indicated that this novel structural type of quinazolone thiazoles showed therapeutic foreground in struggling with Gram-negative bacterial infections.
Collapse
Affiliation(s)
- Jie Wang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Mohammad Fawad Ansari
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
38
|
Discerning perturbed assembly of lipids in a model membrane in presence of violacein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183647. [PMID: 33989532 DOI: 10.1016/j.bbamem.2021.183647] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 05/01/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022]
Abstract
Violacein is a naturally found pigment that is used by some gram negative bacteria to defend themselves from various gram positive bacteria. As a result, this molecule has caught attention for its potential biomedical applications and has already shown promising outcomes as an antiviral, an antibacterial, and an anti-tumor agent. Understanding the interaction of this molecule with a cellular membrane is an essential step to extend its use in the pharmaceutical paradigm. Here, the interaction of violacein with a lipid monolayer formed at the air-water interface is found to depend on electrostatic nature of lipids. In presence of violacein, the two dimensional (2D) pressure-area isotherms of lipids have exhibited changes in their phase transition pressure and in-plane elasticity. To gain insights into the out-of-plane structural organization of lipids in a membrane, X-ray reflectivity (XRR) study on a solid supported lipid monolayer on a hydrophilic substrate has been performed. It has revealed that the increase in membrane thickness is more pronounced in the zwitterionic and positively charged lipids compared to the negatively charged one. Further, the lipid molecules are observed to decrease their tilt angle made with the normal of lipid membrane along with an alteration in their in-plane ordering. This has been quantified by grazing incidence X-ray diffraction (GIXD) experiments on the multilayer membrane formed in an environment with controlled humidity. The structural reorganization of lipid molecules in presence of violacein can be utilized to provide a detailed mechanism of the interaction of this molecule with cellular membrane.
Collapse
|
39
|
Tavella TA, da Silva NSM, Spillman N, Kayano ACAV, Cassiano GC, Vasconcelos AA, Camargo AP, da Silva DCB, Fontinha D, Salazar Alvarez LC, Ferreira LT, Peralis Tomaz KC, Neves BJ, Almeida LD, Bargieri DY, Lacerda MVGD, Lemos Cravo PV, Sunnerhagen P, Prudêncio M, Andrade CH, Pinto Lopes SC, Carazzolle MF, Tilley L, Bilsland E, Borges JC, Maranhão Costa FT. Violacein-Induced Chaperone System Collapse Underlies Multistage Antiplasmodial Activity. ACS Infect Dis 2021; 7:759-776. [PMID: 33689276 PMCID: PMC8042658 DOI: 10.1021/acsinfecdis.0c00454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Antimalarial drugs with novel modes of action and wide therapeutic potential are needed to pave the way for malaria eradication. Violacein is a natural compound known for its biological activity against cancer cells and several pathogens, including the malaria parasite, Plasmodium falciparum (Pf). Herein, using chemical genomic profiling (CGP), we found that violacein affects protein homeostasis. Mechanistically, violacein binds Pf chaperones, PfHsp90 and PfHsp70-1, compromising the latter's ATPase and chaperone activities. Additionally, violacein-treated parasites exhibited increased protein unfolding and proteasomal degradation. The uncoupling of the parasite stress response reflects the multistage growth inhibitory effect promoted by violacein. Despite evidence of proteotoxic stress, violacein did not inhibit global protein synthesis via UPR activation-a process that is highly dependent on chaperones, in agreement with the notion of a violacein-induced proteostasis collapse. Our data highlight the importance of a functioning chaperone-proteasome system for parasite development and differentiation. Thus, a violacein-like small molecule might provide a good scaffold for development of a novel probe for examining the molecular chaperone network and/or antiplasmodial drug design.
Collapse
Affiliation(s)
- Tatyana Almeida Tavella
- Laboratory of Tropical Diseases−Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas−UNICAMP, Campinas, SP 13083-970, Brazil
| | - Noeli Soares Melo da Silva
- Biochemistry and Biophysics of Proteins Group−São Carlos Institute of Chemistry−IQSC, University of São Paulo, Trabalhador Sancarlense Avenue, 400, BQ1, S27, São Carlos, SP 13566-590, Brazil
| | - Natalie Spillman
- Department of Biochemistry, Bio 21 Institute, University of Melbourne, 30 Flemington Rd, Parkville, Melbourne,VIC 3052, Australia
| | - Ana Carolina Andrade Vitor Kayano
- Laboratory of Tropical Diseases−Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas−UNICAMP, Campinas, SP 13083-970, Brazil
| | - Gustavo Capatti Cassiano
- Laboratory of Tropical Diseases−Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas−UNICAMP, Campinas, SP 13083-970, Brazil
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, 1099-085 Lisboa, Portugal
| | - Adrielle Ayumi Vasconcelos
- Laboratory of Genomics and BioEnergy, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas−UNICAMP, Campinas, SP 13083-970, Brazil
| | - Antônio Pedro Camargo
- Laboratory of Genomics and BioEnergy, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas−UNICAMP, Campinas, SP 13083-970, Brazil
| | - Djane Clarys Baia da Silva
- Leônidas & Maria Deane Institute, Fundação Oswaldo Cruz−FIOCRUZ, Manaus , AM 69057070, Brazil
- Fundação de Medicina Tropical−Dr. Heitor Vieira Dourado, Manaus, AM 69040-000, Brazil
| | - Diana Fontinha
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisboa, Portugal
| | - Luis Carlos Salazar Alvarez
- Laboratory of Tropical Diseases−Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas−UNICAMP, Campinas, SP 13083-970, Brazil
| | - Letícia Tiburcio Ferreira
- Laboratory of Tropical Diseases−Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas−UNICAMP, Campinas, SP 13083-970, Brazil
| | - Kaira Cristina Peralis Tomaz
- Laboratory of Tropical Diseases−Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas−UNICAMP, Campinas, SP 13083-970, Brazil
| | - Bruno Junior Neves
- Laboratory of Molecular Modeling and Drug Design, LabMol, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO 74605-170, Brazil
- LabChem−Laboratory of Cheminformatics, Centro Universitário de Anápolis−UniEVANGÉLICA, Anápolis, GO 75083-515, Brazil
| | - Ludimila Dias Almeida
- Synthetic Biology Laboratory, Department of Structural and Functional Biology, Institute of Biology, UNICAMP, Campinas, SP Brazil
| | - Daniel Youssef Bargieri
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Cidade Universitária “Armando Salles Oliveira”, São Paulo 05508-000, Brazil
| | | | - Pedro Vitor Lemos Cravo
- LabChem−Laboratory of Cheminformatics, Centro Universitário de Anápolis−UniEVANGÉLICA, Anápolis, GO 75083-515, Brazil
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, 1099-085 Lisboa, Portugal
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisboa, Portugal
| | - Carolina Horta Andrade
- Laboratory of Tropical Diseases−Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas−UNICAMP, Campinas, SP 13083-970, Brazil
- Laboratory of Molecular Modeling and Drug Design, LabMol, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO 74605-170, Brazil
| | - Stefanie Costa Pinto Lopes
- Leônidas & Maria Deane Institute, Fundação Oswaldo Cruz−FIOCRUZ, Manaus , AM 69057070, Brazil
- Fundação de Medicina Tropical−Dr. Heitor Vieira Dourado, Manaus, AM 69040-000, Brazil
| | - Marcelo Falsarella Carazzolle
- Laboratory of Genomics and BioEnergy, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas−UNICAMP, Campinas, SP 13083-970, Brazil
| | - Leann Tilley
- Department of Biochemistry, Bio 21 Institute, University of Melbourne, 30 Flemington Rd, Parkville, Melbourne,VIC 3052, Australia
| | - Elizabeth Bilsland
- Synthetic Biology Laboratory, Department of Structural and Functional Biology, Institute of Biology, UNICAMP, Campinas, SP Brazil
| | - Júlio César Borges
- Biochemistry and Biophysics of Proteins Group−São Carlos Institute of Chemistry−IQSC, University of São Paulo, Trabalhador Sancarlense Avenue, 400, BQ1, S27, São Carlos, SP 13566-590, Brazil
| | - Fabio Trindade Maranhão Costa
- Laboratory of Tropical Diseases−Prof. Dr. Luiz Jacinto da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas−UNICAMP, Campinas, SP 13083-970, Brazil
| |
Collapse
|
40
|
Naphthalimide-Containing BP100 Leads to Higher Model Membranes Interactions and Antimicrobial Activity. Biomolecules 2021; 11:biom11040542. [PMID: 33917850 PMCID: PMC8068292 DOI: 10.3390/biom11040542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/26/2021] [Accepted: 04/06/2021] [Indexed: 11/17/2022] Open
Abstract
In a large variety of organisms, antimicrobial peptides (AMPs) are primary defenses against pathogens. BP100 (KKLFKKILKYL-NH2), a short, synthetic, cationic AMP, is active against bacteria and displays low toxicity towards eukaryotic cells. BP100 acquires a α-helical conformation upon interaction with membranes and increases membrane permeability. Despite the volume of information available, the action mechanism of BP100, the selectivity of its biological effects, and possible applications are far from consensual. Our group synthesized a fluorescent BP100 analogue containing naphthalimide linked to its N-terminal end, NAPHT-BP100 (Naphthalimide-AAKKLFKKILKYL-NH2). The fluorescence properties of naphthalimides, especially their spectral sensitivity to microenvironment changes, are well established, and their biological activities against transformed cells and bacteria are known. Naphthalimide derived compounds are known to interact with DNA disturbing related processes as replication and transcription, and used as anticancer agents due to this property. A wide variety of techniques were used to demonstrate that NAPHT-BP100 bound to and permeabilized zwitterionic POPC and negatively charged POPC:POPG liposomes and, upon interaction, acquired a α-helical structure. Membrane surface high peptide/lipid ratios triggered complete permeabilization of the liposomes in a detergent-like manner. Membrane disruption was driven by charge neutralization, lipid aggregation, and bilayer destabilization. NAPHT-BP100 also interacted with double-stranded DNA, indicating that this peptide could also affect other cellular processes besides causing membrane destabilization. NAPHT-BP100 showed increased antibacterial and hemolytic activities, compared to BP100, and may constitute an efficient antimicrobial agent for dermatological use. By conjugating BP100 and naphthalimide DNA binding properties, NAPHT-BP100 bound to a large extent to the bacterial membrane and could more efficiently destabilize it. We also speculate that peptide could enter the bacteria cell and interact with its DNA in the cytoplasm.
Collapse
|
41
|
Verma S, Pandey AK. Exploring Nature’s Treasure to Inhibit β-Barrel Assembly Machinery of Antibiotic Resistant Bacteria: An In silico Approach. LETT DRUG DES DISCOV 2021. [DOI: 10.2174/1570180818999201224121342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The development of antibiotic resistance in bacteria is a matter of global
concern due to the exceptionally high morbidity and mortality rates. The outer membrane of most
gram-negative bacteria acts as a highly efficient barrier and blocks the entry of the majority of antibiotics,
making them ineffective. The Bam complex, β-barrel assembly machinery complex, contains
five subunits (BamA, B, C, D, E), which plays a vital role in folding and inserting essential
outer membrane proteins into the membrane, thus maintaining outer membrane integrity. BamA
and BamD are essential subunits to fulfill this purpose. Therefore, targeting this complex to treat
antibiotic resistance can be an incredibly effective approach. Natural bacterial pigments like
violacein, phytochemicals like withanone, semasin, and several polyphenols have often been reported
for their effective antibiotic, antioxidant, anti-inflammatory, antiviral, and anti-carcinogenic
properties.
Objective:
Structural inhibition of the Bam complex by natural compounds can provide safe and
effective treatment for antibiotic resistance by targeting outer membrane integrity.
Methods:
In-silico ADMET and molecular docking analysis was performed with ten natural compounds,
namely violacein, withanone, sesamin, resveratrol, naringenin, quercetin, epicatechin, gallic
acid, ellagic acid, and galangin, to analyse their inhibitory potential against the Bam complex.
Results:
Docking complexes of violacein gave high binding energies of -10.385 and -9.46 Kcal/mol
at C and D subunits interface and at A subunits of the Bam complex, respectively.
Conclusion:
Henceforth, violacein can be an effective antibiotic against to date reported resistant
gram-negative bacteria by inhibiting the Bam complex of their outer membrane. Therefore the urgent
need for exhaustive research in this concern is highly demanded.
Collapse
Affiliation(s)
- Shalja Verma
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi- 284128,India
| | - Anand Kumar Pandey
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi- 284128,India
| |
Collapse
|
42
|
Park H, Park S, Yang YH, Choi KY. Microbial synthesis of violacein pigment and its potential applications. Crit Rev Biotechnol 2021; 41:879-901. [PMID: 33730942 DOI: 10.1080/07388551.2021.1892579] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Violacein is a pigment synthesized by Gram-negative bacteria such as Chromobacterium violaceum. It has garnered significant interest owing to its unique physiological and biological activities along with its synergistic effects with various antibiotics. In addition to C. violaceum, several microorganisms, including: Duganella sp., Pseudoalteromonas sp., Iodobacter sp., and Massilia sp., are known to produce violacein. Along with the identification of violacein-producing strains, the genetic regulation, quorum sensing mechanism, and sequence of the vio-operon involved in the biosynthesis of violacein have been elucidated. From an engineering perspective, the heterologous production of violacein using the genetically engineered Escherichia coli or Citrobacter freundii host has also been attempted. Genetic engineering of host cells involves the heterologous expression of genes involved in the vio operon and the optimization of metabolic pathways and gene regulation. Further, the crystallography of VioD and VioE was revealed, and mass production by enzyme engineering has been accelerated. In this review, we highlight the biologically assisted end-use applications of violacein (such as functional fabric development, nanoparticles, functional polymer composites, and sunscreen ingredients) and violacein activation mechanisms, production strains, and the results of mass production with engineered methods. The prospects for violacein research and engineering applications have also been discussed.
Collapse
Affiliation(s)
- HyunA Park
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, South Korea
| | - SeoA Park
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, South Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Kwon-Young Choi
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, South Korea.,Department of Environmental and Safety Engineering, College of Engineering, Ajou University, Suwon, South Korea
| |
Collapse
|
43
|
Choi SY, Lim S, Yoon KH, Lee JI, Mitchell RJ. Biotechnological Activities and Applications of Bacterial Pigments Violacein and Prodigiosin. J Biol Eng 2021; 15:10. [PMID: 33706806 PMCID: PMC7948353 DOI: 10.1186/s13036-021-00262-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
In this review, we discuss violacein and prodigiosin, two chromogenic bacterial secondary metabolites that have diverse biological activities. Although both compounds were "discovered" more than seven decades ago, interest into their biological applications has grown in the last two decades, particularly driven by their antimicrobial and anticancer properties. These topics will be discussed in the first half of this review. The latter half delves into the current efforts of groups to produce these two compounds. This includes in both their native bacterial hosts and heterogeneously in other bacterial hosts, including discussing some of the caveats related to the yields reported in the literature, and some of the synthetic biology techniques employed in this pursuit.
Collapse
Affiliation(s)
- Seong Yeol Choi
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Sungbin Lim
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Kyoung-Hye Yoon
- Department of Physiology, Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Gangwon-do, South Korea.
| | - Jin I Lee
- Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Mirae Campus, Wonju, Gangwon-do, South Korea.
| | - Robert J Mitchell
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea.
| |
Collapse
|
44
|
Rani A, Saini KC, Bast F, Mehariya S, Bhatia SK, Lavecchia R, Zuorro A. Microorganisms: A Potential Source of Bioactive Molecules for Antioxidant Applications. Molecules 2021; 26:molecules26041142. [PMID: 33672774 PMCID: PMC7924645 DOI: 10.3390/molecules26041142] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress originates from an elevated intracellular level of free oxygen radicals that cause lipid peroxidation, protein denaturation, DNA hydroxylation, and apoptosis, ultimately impairing cell viability. Antioxidants scavenge free radicals and reduce oxidative stress, which further helps to prevent cellular damage. Medicinal plants, fruits, and spices are the primary sources of antioxidants from time immemorial. In contrast to plants, microorganisms can be used as a source of antioxidants with the advantage of fast growth under controlled conditions. Further, microbe-based antioxidants are nontoxic, noncarcinogenic, and biodegradable as compared to synthetic antioxidants. The present review aims to summarize the current state of the research on the antioxidant activity of microorganisms including actinomycetes, bacteria, fungi, protozoa, microalgae, and yeast, which produce a variety of antioxidant compounds, i.e., carotenoids, polyphenols, vitamins, and sterol, etc. Special emphasis is given to the mechanisms and signaling pathways followed by antioxidants to scavenge Reactive Oxygen Species (ROS), especially for those antioxidant compounds that have been scarcely investigated so far.
Collapse
Affiliation(s)
- Alka Rani
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab 151401, India; (A.R.); (K.C.S.); (F.B.)
| | - Khem Chand Saini
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab 151401, India; (A.R.); (K.C.S.); (F.B.)
| | - Felix Bast
- Department of Botany, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab 151401, India; (A.R.); (K.C.S.); (F.B.)
| | - Sanjeet Mehariya
- Department of Chemical Engineering, Materials and Environment, Sapienza University of Rome, 00184 Rome, Italy;
- Correspondence: (S.M.); (A.Z.); Tel.: +39-347-494-0910 (S.M.); +39-06-4458-5598 (A.Z.)
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Korea;
| | - Roberto Lavecchia
- Department of Chemical Engineering, Materials and Environment, Sapienza University of Rome, 00184 Rome, Italy;
| | - Antonio Zuorro
- Department of Chemical Engineering, Materials and Environment, Sapienza University of Rome, 00184 Rome, Italy;
- Correspondence: (S.M.); (A.Z.); Tel.: +39-347-494-0910 (S.M.); +39-06-4458-5598 (A.Z.)
| |
Collapse
|
45
|
Nocedo-Mena D, Arrasate S, Garza-González E, Rivas-Galindo VM, Romo-Mancillas A, Munteanu CR, Sotomayor N, Lete E, Barbolla I, Martín CA, Del Rayo Camacho-Corona M. Molecular docking, SAR analysis and biophysical approaches in the study of the antibacterial activity of ceramides isolated from Cissus incisa. Bioorg Chem 2021; 109:104745. [PMID: 33640629 DOI: 10.1016/j.bioorg.2021.104745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/09/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022]
Abstract
The developing of antibacterial resistance is becoming in crisis. In this sense, natural products play a fundamental role in the discovery of antibacterial agents with diverse mechanisms of action. Phytochemical investigation of Cissus incisa leaves led to isolation and characterization of the ceramides mixture (1): (8E)-2-(tritriacont-9-enoyl amino)-1,3,4-octadecanetriol-8-ene (1-I); (8E)-2-(2',3'-dihydroxyoctacosanoyl amino)-1,3,4-octadecanetriol-8-ene (1-II); (8E)-2-(2'-hydroxyheptacosanoyl amino)-1,3,4-octadecanetriol-8-ene (1-III); and (8E)-2-(-2'-hydroxynonacosanoyl amino)-1,3,4-octadecanetriol-8-ene (1-IV). Until now, this is the first report of the ceramides (1-I), (1-II), and (1-IV). The structures were elucidated using NMR and mass spectrometry analyses. Antibacterial activity of ceramides (1) and acetylated derivates (2) was evaluated against nine multidrug-resistant bacteria by Microdilution method. (1) showed the best results against Gram-negatives, mainly against carbapenems-resistant Acinetobacter baumannii with MIC = 50 μg/mL. Structure-activity analysis and molecular docking revealed interactions between plant ceramides with membrane proteins, and enzymes associated with biological membranes of Gram-negative bacteria, through hydrogen bonding of functional groups. Vesicular contents release assay showed the capacity of (1) to disturb membrane permeability detected by an increase of fluorescence probe over time. The membrane disruption is not caused for ceramides lytic action on cell membranes, according in vitro hemolyticactivity results. Combining SAR analysis, bioinformatics and biophysical techniques, and also experimental tests, it was possible to explain the antibacterial action of these natural ceramides.
Collapse
Affiliation(s)
- Deyani Nocedo-Mena
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N, Ciudad Universitaria, 66451 San Nicolás de los Garza, Nuevo León, Mexico; University of the Basque Country UPV/EHU, Department of Organic Chemistry II, 48940 Leioa, Spain
| | - Sonia Arrasate
- University of the Basque Country UPV/EHU, Department of Organic Chemistry II, 48940 Leioa, Spain
| | - Elvira Garza-González
- Universidad Autónoma de Nuevo León, Servicio de Gastroenterología, Hospital Universitario "Dr. José Eleuterio González", Av. Gonzalitos and Madero S/N, Colonia Mitras Centro, 64460 Monterrey, Nuevo León, Mexico
| | - Verónica M Rivas-Galindo
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Av. Gonzalitos and Madero S/N, Colonia Mitras Centro, 64460 Monterrey, Nuevo León, Mexico
| | - Antonio Romo-Mancillas
- Universidad Autónoma de Querétaro, Facultad de Ciencias Químicas, Centro Universitario, Cerro de las Campanas, 76010 Querétaro, Mexico
| | - Cristian R Munteanu
- University of A Coruna, Computer Science Faculty, 15071 A Coruña, Spain; Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), 15006 A Coruña, Spain; Centro de Investigación en Tecnologías de la Información y las Comunicaciones (CITIC), Campus de Elviña s/n, 15071 A Coruña, Spain
| | - Nuria Sotomayor
- University of the Basque Country UPV/EHU, Department of Organic Chemistry II, 48940 Leioa, Spain
| | - Esther Lete
- University of the Basque Country UPV/EHU, Department of Organic Chemistry II, 48940 Leioa, Spain
| | - Iratxe Barbolla
- University of the Basque Country UPV/EHU, Department of Organic Chemistry II, 48940 Leioa, Spain
| | - César A Martín
- Biofisika Institute (UPV/EHU, CSIC), 48940, Leioa, Spain; University of the Basque Country, UPV/EHU, Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, 48940 Leioa, Spain.
| | - María Del Rayo Camacho-Corona
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N, Ciudad Universitaria, 66451 San Nicolás de los Garza, Nuevo León, Mexico.
| |
Collapse
|
46
|
Direct RBS Engineering of the biosynthetic gene cluster for efficient productivity of violaceins in E. coli. Microb Cell Fact 2021; 20:38. [PMID: 33557849 PMCID: PMC7869524 DOI: 10.1186/s12934-021-01518-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/12/2021] [Indexed: 02/07/2023] Open
Abstract
Background Violaceins have attracted much attention as potential targets used in medicines, food additives, insecticides, cosmetics and textiles, but low productivity was the key factor to limit their large-scale applications. This work put forward a direct RBS engineering strategy to engineer the violacein biosynthetic gene cluster cloned from Chromobacterium violaceum ATCC 12,472 to efficiently improve the fermentation titers. Results Through four-rounds of engineering of the native RBSs within the violaceins biosynthetic operon vioABCDE, this work apparently broke through the rate-limiting steps of intermediates conversion, resulting in 2.41-fold improvement of violaceins production compared to the titers of the starting strain Escherichia coli BL21(DE3) (Vio12472). Furthermore, by optimizing the batch-fermentation parameters including temperature, concentration of IPTG inducer and fermentation time, the maximum yield of violaceins from (BCDE)m (tnaA−) reached 3269.7 µM at 2 mM tryptophan in the medium. Interestingly, rather than previous reported low temperature (20 ℃), we for the first time found the RBS engineered Escherichia coli strain (BCDE)m worked better at higher temperature (30 ℃ and 37 ℃), leading to a higher-level production of violaceins. Conclusions To our knowledge, this is the first time that a direct RBS engineering strategy is used for the biosynthesis of natural products, having the potential for a greater improvement of the product yields within tryptophan hyperproducers and simultaneously avoiding the costly low temperature cultivation for large-scale industrial production of violaciens. This direct RBS engineering strategy could also be easily and helpfully used in engineering the native RBSs of other larger and value-added natural product biosynthetic gene clusters by widely used site-specific mutagenesis methods represented by inverse PCR or CRISPR-Cas9 techniques to increase their fermentation titers in the future.![]()
Collapse
|
47
|
Kumar V, Darnal S, Kumar S, Kumar S, Singh D. Bioprocess for co-production of polyhydroxybutyrate and violacein using Himalayan bacterium Iodobacter sp. PCH194. BIORESOURCE TECHNOLOGY 2021; 319:124235. [PMID: 33254459 DOI: 10.1016/j.biortech.2020.124235] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 06/12/2023]
Abstract
The co-production of industrially relevant biopolymers/biomolecules from microbes is of biotechnological importance. Herein, a unique bacterium, Iodobacter sp. PCH 194 from the kettle lake at Sach Pass in western Indian Himalaya was identified. It co-produces biopolymer polyhydroxyalkanoates (PHA) and biomolecule (violacein pigment). Statistical optimization yielded dual products in the medium augmented with glucose (4.0% w/v) and tryptone (0.5% w/v) as carbon and nitrogen sources, respectively. The purified PHA was polyhydroxybutyrate (PHB), and pigment constitutes of violacein (50-60%) and deoxyviolacein (40-50%). A bench-scale bioprocess in 22.0 L fermentor with 20% dissolved O2 supply produced PHB (11.0 ± 1.0 g/L, 58% of dry cell mass) and violacein pigment (1.5 ± 0.08 g/L). PHB obtained was used for the preparation of bioplastic film. Violacein pigment experimentally validated for anticancerous and antimicrobial activities. In summary, a commercially implied bioprocess developed for the co-production of PHB and violacein pigment using the Himalayan bacterium.
Collapse
Affiliation(s)
- Vijay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India
| | - Sanyukta Darnal
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India
| | - Subhash Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India
| | - Sanjay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India
| | - Dharam Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India.
| |
Collapse
|
48
|
Buijs Y, Isbrandt T, Zhang SD, Larsen TO, Gram L. The Antibiotic Andrimid Produced by Vibrio coralliilyticus Increases Expression of Biosynthetic Gene Clusters and Antibiotic Production in Photobacterium galatheae. Front Microbiol 2020; 11:622055. [PMID: 33424823 PMCID: PMC7793655 DOI: 10.3389/fmicb.2020.622055] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/30/2020] [Indexed: 01/12/2023] Open
Abstract
The development and spread of multidrug resistant pathogens have reinforced the urgency to find novel natural products with antibiotic activity. In bacteria, orphan biosynthetic gene clusters (BGCs) far outnumber the BGCs for which chemistry is known, possibly because they are transcriptionally silent under laboratory conditions. A strategy to trigger the production of this biosynthetic potential is to challenge the microorganism with low concentrations of antibiotics, and by using a Burkholderia genetic reporter strain (Seyedsayamdost, Proc Natl Acad Sci 111:7266-7271), we found BGC unsilencing activity for the antimicrobial andrimid, produced by the marine bacterium Vibrio coralliilyticus. Next, we challenged another marine Vibrionaceae, Photobacterium galatheae, carrier of seven orphan BGCs with sub-inhibitory concentrations of andrimid. A combined approach of transcriptional and chemical measurements of andrimid-treated P. galatheae cultures revealed a 10-fold upregulation of an orphan BGC and, amongst others, a 1.6-2.2-fold upregulation of the gene encoding the core enzyme for biosynthesis of holomycin. Also, addition of andrimid caused an increase, based on UV-Vis peak area, of 4-fold in production of the antibiotic holomycin. Transcriptional measurements of stress response related genes in P. galatheae showed a co-occurrence of increased transcript levels of rpoS (general stress response) and andrimid induced holomycin overproduction, while in trimethoprim treated cultures attenuation of holomycin production coincided with a transcriptional increase of recA (SOS stress response). This study shows that using antimicrobial compounds as activators of secondary metabolism can be a useful strategy in eliciting biosynthetic gene clusters and facilitate natural product discovery. Potentially, such interactions could also have ecological relevant implications.
Collapse
Affiliation(s)
| | | | | | | | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
49
|
A small molecule that mitigates bacterial infection disrupts Gram-negative cell membranes and is inhibited by cholesterol and neutral lipids. PLoS Pathog 2020; 16:e1009119. [PMID: 33290418 PMCID: PMC7748285 DOI: 10.1371/journal.ppat.1009119] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 12/18/2020] [Accepted: 11/01/2020] [Indexed: 01/01/2023] Open
Abstract
Infections caused by Gram-negative bacteria are difficult to fight because these pathogens exclude or expel many clinical antibiotics and host defense molecules. However, mammals have evolved a substantial immune arsenal that weakens pathogen defenses, suggesting the feasibility of developing therapies that work in concert with innate immunity to kill Gram-negative bacteria. Using chemical genetics, we recently identified a small molecule, JD1, that kills Salmonella enterica serovar Typhimurium (S. Typhimurium) residing within macrophages. JD1 is not antibacterial in standard microbiological media, but rapidly inhibits growth and curtails bacterial survival under broth conditions that compromise the outer membrane or reduce efflux pump activity. Using a combination of cellular indicators and super resolution microscopy, we found that JD1 damaged bacterial cytoplasmic membranes by increasing fluidity, disrupting barrier function, and causing the formation of membrane distortions. We quantified macrophage cell membrane integrity and mitochondrial membrane potential and found that disruption of eukaryotic cell membranes required approximately 30-fold more JD1 than was needed to kill bacteria in macrophages. Moreover, JD1 preferentially damaged liposomes with compositions similar to E. coli inner membranes versus mammalian cell membranes. Cholesterol, a component of mammalian cell membranes, was protective in the presence of neutral lipids. In mice, intraperitoneal administration of JD1 reduced tissue colonization by S. Typhimurium. These observations indicate that during infection, JD1 gains access to and disrupts the cytoplasmic membrane of Gram-negative bacteria, and that neutral lipids and cholesterol protect mammalian membranes from JD1-mediated damage. Thus, it may be possible to develop therapeutics that exploit host innate immunity to gain access to Gram-negative bacteria and then preferentially damage the bacterial cell membrane over host membranes.
Collapse
|
50
|
Secretory production in Escherichia coli of a GH46 chitosanase from Chromobacterium violaceum, suitable to generate antifungal chitooligosaccharides. Int J Biol Macromol 2020; 165:1482-1495. [PMID: 33017605 DOI: 10.1016/j.ijbiomac.2020.09.221] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 01/23/2023]
|