1
|
Wu B, Dou X, Baddi S, Gao F, Zhao C, Feng C. Chiral Supramolecular Hydrogels Regulating Both Osteoblastogenesis and Osteoclastogenesis. Gels 2025; 11:112. [PMID: 39996655 PMCID: PMC11855158 DOI: 10.3390/gels11020112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/24/2025] [Accepted: 01/30/2025] [Indexed: 02/26/2025] Open
Abstract
Osteoporosis, a chronic bone disorder, poses a global threat to the health of millions of individuals. The disruption of bone homeostasis is the fundamental cause of osteoporosis. Currently, clinical drugs are employed to promote bone formation via enhancing osteogenesis and/or reduce bone loss via inhibiting osteoclastogenesis. However, it is difficult for the current drugs to simultaneously address the osteoblastogenesis and osteoclastogenesis issues associated with osteoporosis. Hence, L/D-phenylalanine derivatives (L/DPF), combined with Mg2+ ions, are employed to assemble into chiral supramolecular hydrogels which facilitate osteocyte activity and inhibit osteoclast function. LPF_Mg hydrogels and DPF_Mg hydrogels demonstrate the opposite supramolecular chirality. Specifically, LPF_Mg hydrogels and DPF_Mg hydrogels are composed of left-handed (M-type) helical nanofibers and right-handed (P-type) helical nanofibers, respectively. The hydrogen bonding and π-π stacking interactions are crucial in the process of hydrogel formation. The chiral left-handed nanofibrous DPF_Mg hydrogels significantly promote osteogenic differentiation of MC3T3 cells and inhibit osteoclast differentiation of RAW267.4 cells, thereby demonstrating substantial potential for applications in improving skeletal health. These findings provide a promising novel perspective on the application of chiral functional materials for osteoporosis therapy.
Collapse
Affiliation(s)
| | - Xiaoqiu Dou
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200230, China
| | | | | | | | - Chuanliang Feng
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200230, China
| |
Collapse
|
2
|
Lu X, Zhao Y, Peng X, Lu C, Wu Z, Xu H, Qin Y, Xu Y, Wang Q, Hao Y, Geng D. Comprehensive Overview of Interface Strategies in Implant Osseointegration. ADVANCED FUNCTIONAL MATERIALS 2024. [DOI: 10.1002/adfm.202418849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Indexed: 01/05/2025]
Abstract
AbstractWith the improvement of implant design and the expansion of application scenarios, orthopedic implants have become a common surgical option for treating fractures and end‐stage osteoarthritis. Their common goal is rapidly forming and long‐term stable osseointegration. However, this fixation effect is limited by implant surface characteristics and peri‐implant bone tissue activity. Therefore, this review summarizes the strategies of interface engineering (osteogenic peptides, growth factors, and metal ions) and treatment methods (porous nanotubes, hydrogel embedding, and other load‐release systems) through research on its biological mechanism, paving the way to achieve the adaptation of both and coordination between different strategies. With the transition of the osseointegration stage, interface engineering strategies have demonstrated varying therapeutic effects. Especially, the activity of osteoblasts runs almost through the entire process of osseointegration, and their physiological activities play a dominant role in bone formation. Furthermore, diseases impacting bone metabolism exacerbate the difficulty of achieving osseointegration. This review aims to assist future research on osseointegration engineering strategies to improve implant‐bone fixation, promote fracture healing, and enhance post‐implantation recovery.
Collapse
Affiliation(s)
- Xiaoheng Lu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yuhu Zhao
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Xiaole Peng
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University 1 Youyi Street Chongqing 400016 China
| | - Chengyao Lu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Zebin Wu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Hao Xu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yi Qin
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yaozeng Xu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Qing Wang
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yuefeng Hao
- Orthopedics and Sports Medicine Center The Affiliated Suzhou Hospital of Nanjing Medical University 242 Guangji Street Suzhou Jiangsu 215006 China
| | - Dechun Geng
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| |
Collapse
|
3
|
Matsumoto S, Tatsuoka H, Yoshii M, Nagao T, Shimizu T, Shingubara S, Tanaka S, Ito T. Anti-Biofilm Performance of Resin Nanopillars Inspired from Cicada Wing Surface for Staphylococcus spp. Biomimetics (Basel) 2024; 9:739. [PMID: 39727743 DOI: 10.3390/biomimetics9120739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
The increase in infections derived from biofilms from Staphylococcal spp. prompted us to develop novel strategies to inhibit biofilm development. Nanoscale protrusion structures (nanopillars) observed on the wings of dragonflies and cicadas have recently gained notable attention owing to their physical, antimicrobial, and bactericidal properties. Thus, they are not only expected to reduce the damage caused by chemical antimicrobial agents to human health and the environment, but also to serve as a potential countermeasure against the emergence of antimicrobial-resistant bacteria (ARB). In this study, we evaluated the anti-biofilm effects of cyclo-olefin polymer (COP) nanopillars by changing the wettability of surfaces ranging in height from 100 to 500 nm against Staphylococcus spp., such as Staphylococcus aureus NBRC 100910 (MSSA), Staphylococcus aureus JCM 8702 methicillin-resistant S. aureus (MRSA), and Staphylococcus epidermidis ATCC 35984. The results clearly show that the fabricated nanopillar structures exhibited particularly strong biofilm inhibition against MRSA, with inhibition rates ranging from 51.2% to 62.5%. For MSSA, anti-biofilm effects were observed only at nanopillar heights of 100-300 nm, with relatively low hydrophobicity, with inhibition rates ranging from 23.9% to 40.8%. Conversely, no significant anti-biofilm effect was observed for S. epidermidis in any of the nanopillar structures. These findings suggest that the anti-biofilm properties of nanopillars vary among bacteria of the same species. In other words, by adjusting the height of the nanopillars, selective anti-biofilm effects against specific bacterial strains can be achieved.
Collapse
Affiliation(s)
- Satoka Matsumoto
- Graduate School of Science and Engineering, Kansai University, 3-3-35 Yamatecho, Suita 564-8680, Osaka, Japan
| | - Hiroaki Tatsuoka
- Osaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya-1, Joto-ku, Osaka-City 536-8553, Osaka, Japan
| | - Miki Yoshii
- Osaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya-1, Joto-ku, Osaka-City 536-8553, Osaka, Japan
| | - Toshihiro Nagao
- Osaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya-1, Joto-ku, Osaka-City 536-8553, Osaka, Japan
| | - Tomohiro Shimizu
- Graduate School of Science and Engineering, Kansai University, 3-3-35 Yamatecho, Suita 564-8680, Osaka, Japan
| | - Shoso Shingubara
- Graduate School of Science and Engineering, Kansai University, 3-3-35 Yamatecho, Suita 564-8680, Osaka, Japan
| | - Shigemitsu Tanaka
- Osaka Research Institute of Industrial Science and Technology, 1-6-50 Morinomiya-1, Joto-ku, Osaka-City 536-8553, Osaka, Japan
| | - Takeshi Ito
- Graduate School of Science and Engineering, Kansai University, 3-3-35 Yamatecho, Suita 564-8680, Osaka, Japan
| |
Collapse
|
4
|
Kim JT, Chathuranga K, Lee JS, Kim MH, Park WH. Poly(vinyl alcohol)/tannic acid nanofibrous membrane containing curcumin as an intelligent indicator of food spoilage. CHEMOSPHERE 2024; 369:143829. [PMID: 39613002 DOI: 10.1016/j.chemosphere.2024.143829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/05/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
In recent years, active packaging technology for extending food shelf life and intelligent packaging technology for monitoring food freshness have become essential for ensuring food safety. Among sensing technologies, pH-sensitive sensors have notable advantages, including simplicity, compactness, and affordability, making them ideal for monitoring food freshness. This study proposes an intelligent food indicator based on a composite nanofiber membrane fabricated by electrospinning. The membrane, composed of poly(vinyl alcohol) (PVA), tannic acid (TA), and the natural pH-sensitive dye curcumin (CUR), was heat-treated to enhance its moisture stability for food packaging. Furthermore, the incorporation of TA and CUR into PVA provides additional benefits such as UV-blocking, antioxidant, and antimicrobial properties, effectively delaying food spoilage. The CUR-incorporated nanofibrous membrane exhibited faster detection of shrimp spoilage via colorimetric changes under increasingly alkaline conditions than film samples. Moreover, compared to film-based samples, the composite nanofiber membrane exhibited faster color change responsiveness owing to its porous and high surface area structure, thus serving as an efficient and intelligent indicator.
Collapse
Affiliation(s)
- Jun Tae Kim
- Department of Organic Materials Engineering, Chungnam National University, Daejeon, 34134, South Korea
| | - Kiramage Chathuranga
- Department of Veterinary Microbiology, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, South Korea
| | - Jong Soo Lee
- Department of Veterinary Microbiology, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, South Korea
| | - Min Hee Kim
- Department of Textile Engineering, Kyungpook National University, Gyeongsang-daero 2559, South Korea.
| | - Won Ho Park
- Department of Organic Materials Engineering, Chungnam National University, Daejeon, 34134, South Korea.
| |
Collapse
|
5
|
Haryono MB, Lin KWY, Waritanant T. Fast fabrication of superhydrophobic Ti-6Al-4V surface using Q-switched nanosecond pulsed laser at 1064 nm and cyclohexane. Heliyon 2024; 10:e37808. [PMID: 39315134 PMCID: PMC11417309 DOI: 10.1016/j.heliyon.2024.e37808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/27/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
Superhydrophobic and superhydrophilic surfaces are attracting significant attention in fundamental and applied research. This study fabricated the micro/nanostructure with a Q-switched nanosecond pulsed laser on the Ti-6Al-4V surface. Three laser-generated surface topographies on titanium were produced based on three different pitch sizes (51 μm, 34 μm, and 29 μm). The laser textured surfaces (LTS) were studied in terms of both structure evolution and chemical composition using Field Emission Scanning Electron Microscopy (FE-SEM), Optical Microscopy (OM), Confocal Laser Scanning Microscopy (CLSM), Raman Spectroscopy, and X-ray Diffractometer (XRD). 29 μm pitch displayed the lowest water contact angle of 18.5° and surface roughness of 0.5 μm. This structure was further treated with cyclohexane at different temperatures. The best sample reached superhydrophobicity with a maximum water contact angle of 155.1° immediately after being treated with cyclohexane at the low temperature of 70 °C for 2 h, while the raw surface, for comparison, showed no change in hydrophobicity after being treated with cyclohexane under the same condition. Thus showing clear evidence of a combined effect between LTS and post-treatment. The surface features were assessed to explain the underlying process.
Collapse
Affiliation(s)
- Muhammad Budi Haryono
- School of Materials Science and Innovation, Faculty of Science, Mahidol University, Thailand
| | - Kaung Wai Yan Lin
- School of Materials Science and Innovation, Faculty of Science, Mahidol University, Thailand
| | - Tanant Waritanant
- School of Materials Science and Innovation, Faculty of Science, Mahidol University, Thailand
| |
Collapse
|
6
|
Ganbaatar SE, Kim YM, Kim HK, Cho YS, Park HH. Evaluation of antibacterial activity on nanoline-array surfaces with different spacing. Colloids Surf B Biointerfaces 2024; 245:114242. [PMID: 39288549 DOI: 10.1016/j.colsurfb.2024.114242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
Extensive research has been conducted on anti-biofouling or antibacterial surfaces, with nanostructured surfaces that mimic cicada and dragonfly wings emerging as promising candidates for mechano-bactericidal applications. These biomimetic nanostructured surfaces are capable of exerting a bactericidal effect by directly damaging the membranes of bacteria attached to nanostructures. Although research on bactericidal effect using various nanostructures have been conducted, no specific studies have yet reported on the antibacterial efficiency of the surface having nanoline array, especially regarding the spacing between nanolines. This study details the fabrication of nanoline array via ultraviolet (UV) molding with polyurethane acrylate (PUA), noted for its UV sensitivity and rapid curing, enabling the fabrication of precise and scalable nanoscale structures. Investigation into the nanoline array's antibacterial effects against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) reveals that nanoline spacing critically influences bacterial adherence and viability, with specific spacings enhancing antibacterial properties. Scanning electron microscopy (SEM) and confocal microscopy analyses show that surface topography significantly affects bacterial behavior, with specific spacings leading to varied bacterial responses, including membrane damage and altered attachment patterns. The study highlights the potential of nanoline array in fabricating surfaces with tailored antibacterial properties, emphasizing the importance of nanoscale design in influencing bacterial interaction and viability. We also confirm the relative mechanical rigidity of the nanoline array, which exhibits antibacterial effects, through both experimental observations and numerical analysis. This indicates our proposed nanoline-array surface could have potential future applications in mechanical anti-bacterial functions that require such structural robustness.
Collapse
Affiliation(s)
- Suvd Erdene Ganbaatar
- Department of Mechanical Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
| | - You Min Kim
- Department of Mechanical Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
| | - Hee-Kyeong Kim
- Department of Mechanical Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea
| | - Young-Sam Cho
- Division of Mechanical Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea; MECHABIO Group, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea.
| | - Hyun-Ha Park
- Division of Mechanical Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea; MECHABIO Group, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Republic of Korea.
| |
Collapse
|
7
|
Fujii Y, Nakatani T, Ousaka D, Oozawa S, Sasai Y, Kasahara S. Development of Antimicrobial Surfaces Using Diamond-like Carbon or Diamond-like Carbon-Based Coatings. Int J Mol Sci 2024; 25:8593. [PMID: 39201280 PMCID: PMC11354288 DOI: 10.3390/ijms25168593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/20/2024] [Accepted: 07/26/2024] [Indexed: 09/02/2024] Open
Abstract
The medical device market is a high-growth sector expected to sustain an annual growth rate of over 5%, even in developed countries. Daily, numerous patients have medical devices implanted or inserted within their bodies. While medical devices have significantly improved patient outcomes, as foreign objects, their wider use can lead to an increase in device-related infections, thereby imposing a burden on healthcare systems. Multiple materials with significant societal impact have evolved over time: the 19th century was the age of iron, the 20th century was dominated by silicon, and the 21st century is often referred to as the era of carbon. In particular, the development of nanocarbon materials and their potential applications in medicine are being explored, although the scope of these applications remains limited. Technological innovations in carbon materials are remarkable, and their application in medicine is expected to advance greatly. For example, diamond-like carbon (DLC) has garnered considerable attention for the development of antimicrobial surfaces. Both DLC itself and its derivatives have been reported to exhibit anti-microbial properties. This review discusses the current state of DLC-based antimicrobial surface development.
Collapse
Affiliation(s)
- Yasuhiro Fujii
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama University, Okayama 700-8558, Japan
| | - Tatsuyuki Nakatani
- Institute of Frontier Science and Technology, Okayama University of Science, Okayama 700-0005, Japan;
| | - Daiki Ousaka
- Department of Pharmacology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan;
| | - Susumu Oozawa
- Division of Medical Safety Management, Safety Management Facility, Okayama University Hospital, Okayama University, Okayama 700-8558, Japan;
| | - Yasushi Sasai
- Department of Pharmacy, Gifu University of Medical Science, Kani 509-0293, Japan;
| | - Shingo Kasahara
- Department of Cardiovascular Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan;
| |
Collapse
|
8
|
Bhattacharjee A, Pereira B, Soares P, Popat KC. Titania (TiO 2) nanotube surfaces doped with zinc and strontium for improved cell compatibility. NANOSCALE 2024; 16:12510-12522. [PMID: 38874593 PMCID: PMC11223589 DOI: 10.1039/d4nr01123f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
Titanium-based orthopedic implants are gaining popularity in recent years due to their excellent biocompatibility, superior corrosion resistance and lightweight properties. However, these implants often fail to perform effectively due to poor osseointegration. Nanosurface modification approaches may help to resolve this problem. In this work, TiO2 nanotube (NT) arrays were fabricated on commercially available pure titanium (Ti) surfaces by anodization and annealing. Then, zinc (Zn) and strontium (Sr), important for cell signaling, were doped on the NT surface by hydrothermal treatment. This very simple method of Zn and Sr doping takes less time and energy compared to other complicated techniques. Different surface characterization tools such as scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS), static water contact angle, X-ray diffraction (XRD) and nanoindentation techniques were used to evaluate the modified surfaces. Then, adipose derived stem cells (ADSCs) were cultured with the surfaces to evaluate cell adhesion, proliferation, and growth on the surfaces. After that, the cells were differentiated towards osteogenic lineage to evaluate alkaline phosphatase (ALP) activity, osteocalcin expression, and calcium phosphate mineralization. Results indicate that NT surfaces doped with Zn and Sr had significantly enhanced ADSC adhesion, proliferation, growth, and osteogenic differentiation compared to an unmodified surface, thus confirming the enhanced performance of these surfaces.
Collapse
Affiliation(s)
- Abhishek Bhattacharjee
- School of Advanced Materials Discovery, Colorado State University, Department of Bioengineering, George Mason University, Fort Collins, CO, USA, Fairfax, VA, USA.
| | - Bruno Pereira
- Department of Mechanical Engineering, Pontifícia Universidade Católica do Paraná, PR, Brazil
| | - Paulo Soares
- Department of Mechanical Engineering, Pontifícia Universidade Católica do Paraná, PR, Brazil
| | - Ketul C Popat
- School of Advanced Materials Discovery, Colorado State University, Department of Bioengineering, George Mason University, Fort Collins, CO, USA, Fairfax, VA, USA.
- Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
- Department of Bioengineering, George Mason University, Fairfax, VA, USA
| |
Collapse
|
9
|
Wu B, Dou X, Zhao Y, Wang X, Zhao C, Xia J, Xing C, He S, Feng C. Chiral Supramolecular Nanofibers Regulated Tumor-Derived Exosomes Secretion for Constructing an Anti-Tumor Extracellular Microenvironment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308335. [PMID: 38420895 DOI: 10.1002/smll.202308335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Tumor-derived exosomes (TDEs) induced extracellular microenvironment has recently been validated to be critical for tumor progression and metastasis, however, remodeling it for oncotherapy still remains a major challenge due to difficulty in regulation of TDEs secretion. Herein, the supramolecular chiral nanofibers, composed of L/D-phenylalanine derivates (L/D-Phe) and linear hyaluronic acid (HA), are successfully employed to construct TDEs induced anti-tumor extracellular microenvironment. The left-handed L-Phe @HA nanofibers significantly inhibit TDEs secretion into extracellular microenvironment, which results in suppression of tumor proliferation and metastasis in vitro and vivo. Biological assays and theoretical modeling reveal that these results are mainly attributed to strong adsorption of the key exosomes transporters (Ras-related protein Rab-27A and synaptosome-associated protein 23) on left-handed L-Phe @HA nanofibers via enhanced stereoselective interaction, leading to degradation and phosphorylated dropping of exosomes transporters. Subsequently, transfer function of exosomes transporters is limited, which causes remarkable inhibition of TDEs secretion. These findings provide a promising novel insight of chiral functional materials to establish an anti-tumor extracellular microenvironment via regulation of TDEs secretion.
Collapse
Affiliation(s)
- Beibei Wu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200230, P. R. China
| | - Xiaoqiu Dou
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200230, P. R. China
| | - Yu Zhao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200230, P. R. China
| | - Xueqian Wang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200230, P. R. China
| | - Changli Zhao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200230, P. R. China
| | - Jingyi Xia
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200230, P. R. China
| | - Chao Xing
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200230, P. R. China
| | - Sijia He
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200230, P. R. China
| | - Chuanliang Feng
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200230, P. R. China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200230, P. R. China
| |
Collapse
|
10
|
Charoensopa K, Thangunpai K, Kong P, Enomae T, Ploysri W. Extraction of Nanocellulose from the Residue of Sugarcane Bagasse Fiber for Anti- Staphylococcus aureus ( S. aureus) Application. Polymers (Basel) 2024; 16:1612. [PMID: 38891557 PMCID: PMC11174382 DOI: 10.3390/polym16111612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Nanocellulose contains a large number of hydroxyl groups that can be used to modify its surface due to its structure. Owing to its appealing features, such as high strength, great stiffness, and high surface area, nanocellulose is currently gaining popularity in research and industry. The extraction of nanocellulose from the leftover bagasse fiber from sugarcane production by alkaline and acid treatment was successful in this study, with a production yield of 55.6%. The FTIR and XPS results demonstrated a difference in the functional and chemical composition of untreated sugarcane bagasse and extracted nanocellulose. SEM imaging was used to examined the size of the nanocellulose with ImageJ software v1.8.0. TGA, DTG, and XRD analyses were also performed to demonstrate the successful extraction of nanocellulose in terms of its morphology, thermal stability, and crystal structure before and after extraction. The anti-S. aureus activity of the extracted nanocellulose was discovered by using an OD600 test and a colony counting method, and an inhibitory rate of 53.12% was achieved. According to the results, nanocellulose produced from residual sugarcane bagasse could be employed as an antibacterial agent.
Collapse
Affiliation(s)
- Krairop Charoensopa
- Department of Industrial Arts and Science, Faculty of Engineering and Industrial Technology, Suan Sunandha Rajabhat University, 1 U Thong Nok Rd, Dusit, Bangkok 10300, Thailand;
| | - Kotchaporn Thangunpai
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Ibaraki, Japan; (K.T.); (P.K.)
| | - Peifu Kong
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Ibaraki, Japan; (K.T.); (P.K.)
| | - Toshiharu Enomae
- Institute of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Ibaraki, Japan
| | - Wat Ploysri
- Department of Industrial Arts and Science, Faculty of Engineering and Industrial Technology, Suan Sunandha Rajabhat University, 1 U Thong Nok Rd, Dusit, Bangkok 10300, Thailand;
| |
Collapse
|
11
|
Kuwada N, Fujii Y, Nakatani T, Ousaka D, Tsuji T, Imai Y, Kobayashi Y, Oozawa S, Kasahara S, Tanemoto K. Diamond-like carbon coating to inner surface of polyurethane tube reduces Staphylococcus aureus bacterial adhesion and biofilm formation. J Artif Organs 2024; 27:108-116. [PMID: 37227545 PMCID: PMC11126441 DOI: 10.1007/s10047-023-01403-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/07/2023] [Indexed: 05/26/2023]
Abstract
Staphylococcus aureus is one of the main causative bacteria for polyurethane catheter and artificial graft infection. Recently, we developed a unique technique for coating diamond-like carbon (DLC) inside the luminal resin structure of polyurethane tubes. This study aimed to elucidate the infection-preventing effects of diamond-like carbon (DLC) coating on a polyurethane surface against S. aureus. We applied DLC to polyurethane tubes and rolled polyurethane sheets with our newly developed DLC coating technique for resin tubes. The DLC-coated and uncoated polyurethane surfaces were tested in smoothness, hydrophilicity, zeta-potential, and anti-bacterial properties against S. aureus (biofilm formation and bacterial attachment) by contact with bacterial fluids under static and flow conditions. The DLC-coated polyurethane surface was significantly smoother, more hydrophilic, and had a more negative zeta-potential than did the uncoated polyurethane surface. Upon exposure to bacterial fluid under both static and flow conditions, DLC-coated polyurethane exhibited significantly less biofilm formation than uncoated polyurethane, based on absorbance measurements. In addition, the adherence of S. aureus was significantly lower for DLC-coated polyurethane than for uncoated polyurethane under both conditions, based on scanning electron microscopy. These results show that applying DLC coating to the luminal resin of polyurethane tubes may impart antimicrobial effects against S. aureus to implantable medical polyurethane devices, such as vascular grafts and central venous catheters.
Collapse
Affiliation(s)
- Noriaki Kuwada
- Department of Cardiovascular Surgery, Kawasaki Medical School, 577 Matsushima, Kurashiki-City, Okayama, 701-0192, Japan
| | - Yasuhiro Fujii
- Department of Cardiovascular Surgery, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama-City, Okayama, 700-8558, Japan.
| | - Tatsuyuki Nakatani
- Institute of Frontier Science and Technology, Okayama University of Science, 1-1 Ridai-Cho, Kita-Ku, Okayama-City, Okayama, Japan
| | - Daiki Ousaka
- Department of Pharmacology, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama-City, Okayama, 700-8558, Japan
| | - Tatsunori Tsuji
- Department of Cardiovascular Surgery, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama-City, Okayama, 700-8558, Japan
| | - Yuichi Imai
- Institute of Frontier Science and Technology, Okayama University of Science, 1-1 Ridai-Cho, Kita-Ku, Okayama-City, Okayama, Japan
| | - Yasuyuki Kobayashi
- Division of Cardiovascular Surgery, Department of Surgery, Labatt Family Heart Centre, The Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Susumu Oozawa
- Division of Medical Safety Management, Safety Management Facility, Okayama University Hospital, 2-5-1 Shikata-Cho, Kita-Ku, Okayama-City, Okayama, 700-8558, Japan
| | - Shingo Kasahara
- Department of Cardiovascular Surgery, Okayama University Faculty of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama-City, Okayama, 700-8558, Japan
| | - Kazuo Tanemoto
- Department of Cardiovascular Surgery, Kawasaki Medical School, 577 Matsushima, Kurashiki-City, Okayama, 701-0192, Japan
| |
Collapse
|
12
|
Pérez-Estay B, Cordero ML, Sepúlveda N, Soto R. Accumulation and depletion of E. coli in surfaces mediated by curvature. Phys Rev E 2024; 109:054601. [PMID: 38907493 DOI: 10.1103/physreve.109.054601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/27/2024] [Indexed: 06/24/2024]
Abstract
Can topography be used to control bacteria accumulation? We address this question in the model system of smooth-swimming and run-and-tumble Escherichia coli swimming near a sinusoidal surface, and show that the accumulation of bacteria is determined by the characteristic curvature of the surface. For low curvatures, cells swim along the surface due to steric alignment and are ejected from the surface when they reach the peak of the sinusoid. Increasing curvature enhances this effect and reduces the density of bacteria in the curved surface. However, for curvatures larger than κ^{*}≈0.25µm^{-1}, bacteria become trapped in the valleys, where they can remain for long periods of time. Minimal simulations considering only steric interactions with the surface reproduce these results and give insights into the physical mechanisms defining the critical curvature, which is found to scale with the inverse of the bacterial length. We show that for curvatures larger than κ^{*}, the otherwise stable alignment with the wall becomes unstable while the stable orientation is now perpendicular to the wall, thus predicting accurately the onset of trapping at the valleys.
Collapse
Affiliation(s)
- Benjamín Pérez-Estay
- Departamento de Física, FCFM, Universidad de Chile, Av. Beauchef 850, 8370458 Santiago, Chile
- Laboratoire PMMH-ESPCI Paris, PSL Research University, Sorbonne University, University Paris-Diderot, 7, Quai Saint-Bernard, 75005 Paris, France
| | - María Luisa Cordero
- Departamento de Física, FCFM, Universidad de Chile, Av. Beauchef 850, 8370458 Santiago, Chile
| | - Néstor Sepúlveda
- School of Engineering and Sciences, Universidad Adolfo Ibáñez, Diagonal las Torres 2640, Peñalolén, 7941169 Santiago, Chile
| | - Rodrigo Soto
- Departamento de Física, FCFM, Universidad de Chile, Av. Beauchef 850, 8370458 Santiago, Chile
| |
Collapse
|
13
|
Wu Y, Liu P, Mehrjou B, Chu PK. Interdisciplinary-Inspired Smart Antibacterial Materials and Their Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305940. [PMID: 37469232 DOI: 10.1002/adma.202305940] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
The discovery of antibiotics has saved millions of lives, but the emergence of antibiotic-resistant bacteria has become another problem in modern medicine. To avoid or reduce the overuse of antibiotics in antibacterial treatments, stimuli-responsive materials, pathogen-targeting nanoparticles, immunogenic nano-toxoids, and biomimetic materials are being developed to make sterilization better and smarter than conventional therapies. The common goal of smart antibacterial materials (SAMs) is to increase the antibiotic efficacy or function via an antibacterial mechanism different from that of antibiotics in order to increase the antibacterial and biological properties while reducing the risk of drug resistance. The research and development of SAMs are increasingly interdisciplinary because new designs require the knowledge of different fields and input/collaboration from scientists in different fields. A good understanding of energy conversion in materials, physiological characteristics in cells and bacteria, and bactericidal structures and components in nature are expected to promote the development of SAMs. In this review, the importance of multidisciplinary insights for SAMs is emphasized, and the latest advances in SAMs are categorized and discussed according to the pertinent disciplines including materials science, physiology, and biomimicry.
Collapse
Affiliation(s)
- Yuzheng Wu
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Pei Liu
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Babak Mehrjou
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
14
|
Kumar R, Rezapourian M, Rahmani R, Maurya HS, Kamboj N, Hussainova I. Bioinspired and Multifunctional Tribological Materials for Sliding, Erosive, Machining, and Energy-Absorbing Conditions: A Review. Biomimetics (Basel) 2024; 9:209. [PMID: 38667221 PMCID: PMC11048303 DOI: 10.3390/biomimetics9040209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Friction, wear, and the consequent energy dissipation pose significant challenges in systems with moving components, spanning various domains, including nanoelectromechanical systems (NEMS/MEMS) and bio-MEMS (microrobots), hip prostheses (biomaterials), offshore wind and hydro turbines, space vehicles, solar mirrors for photovoltaics, triboelectric generators, etc. Nature-inspired bionic surfaces offer valuable examples of effective texturing strategies, encompassing various geometric and topological approaches tailored to mitigate frictional effects and related functionalities in various scenarios. By employing biomimetic surface modifications, for example, roughness tailoring, multifunctionality of the system can be generated to efficiently reduce friction and wear, enhance load-bearing capacity, improve self-adaptiveness in different environments, improve chemical interactions, facilitate biological interactions, etc. However, the full potential of bioinspired texturing remains untapped due to the limited mechanistic understanding of functional aspects in tribological/biotribological settings. The current review extends to surface engineering and provides a comprehensive and critical assessment of bioinspired texturing that exhibits sustainable synergy between tribology and biology. The successful evolving examples from nature for surface/tribological solutions that can efficiently solve complex tribological problems in both dry and lubricated contact situations are comprehensively discussed. The review encompasses four major wear conditions: sliding, solid-particle erosion, machining or cutting, and impact (energy absorbing). Furthermore, it explores how topographies and their design parameters can provide tailored responses (multifunctionality) under specified tribological conditions. Additionally, an interdisciplinary perspective on the future potential of bioinspired materials and structures with enhanced wear resistance is presented.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate Tee 5, 19086 Tallinn, Estonia; (M.R.); (H.S.M.); (N.K.); (I.H.)
| | - Mansoureh Rezapourian
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate Tee 5, 19086 Tallinn, Estonia; (M.R.); (H.S.M.); (N.K.); (I.H.)
| | - Ramin Rahmani
- CiTin–Centro de Interface Tecnológico Industrial, 4970-786 Arcos de Valdevez, Portugal;
- proMetheus–Instituto Politécnico de Viana do Castelo (IPVC), 4900-347 Viana do Castelo, Portugal
| | - Himanshu S. Maurya
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate Tee 5, 19086 Tallinn, Estonia; (M.R.); (H.S.M.); (N.K.); (I.H.)
- Department of Engineering Sciences and Mathematics, Luleå University of Technology, 97187 Luleå, Sweden
| | - Nikhil Kamboj
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate Tee 5, 19086 Tallinn, Estonia; (M.R.); (H.S.M.); (N.K.); (I.H.)
- Department of Mechanical and Materials Engineering, University of Turku, 20500 Turku, Finland
- TCBC–Turku Clinical Biomaterials Centre, Department of Biomaterials Science, Faculty of Medicine, Institute of Dentistry, University of Turku, 20014 Turku, Finland
| | - Irina Hussainova
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate Tee 5, 19086 Tallinn, Estonia; (M.R.); (H.S.M.); (N.K.); (I.H.)
| |
Collapse
|
15
|
Li B, Thebault P, Labat B, Ladam G, Alt V, Rupp M, Brochausen C, Jantsch J, Ip M, Zhang N, Cheung WH, Leung SYS, Wong RMY. Implants coating strategies for antibacterial treatment in fracture and defect models: A systematic review of animal studies. J Orthop Translat 2024; 45:24-35. [PMID: 38495742 PMCID: PMC10943307 DOI: 10.1016/j.jot.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 03/19/2024] Open
Abstract
Objective Fracture-related infection (FRI) remains a major concern in orthopaedic trauma. Functionalizing implants with antibacterial coatings are a promising strategy in mitigating FRI. Numerous implant coatings have been reported but the preventive and therapeutic effects vary. This systematic review aimed to provide a comprehensive overview of current implant coating strategies to prevent and treat FRI in animal fracture and bone defect models. Methods A literature search was performed in three databases: PubMed, Web of Science and Embase, with predetermined keywords and criteria up to 28 February 2023. Preclinical studies on implant coatings in animal fracture or defect models that assessed antibacterial and bone healing effects were included. Results A total of 14 studies were included in this systematic review, seven of which used fracture models and seven used defect models. Passive coatings with bacteria adhesion resistance were investigated in two studies. Active coatings with bactericidal effects were investigated in 12 studies, four of which used metal ions including Ag+ and Cu2+; five studies used antibiotics including chlorhexidine, tigecycline, vancomycin, and gentamicin sulfate; and the other three studies used natural antibacterial materials including chitosan, antimicrobial peptides, and lysostaphin. Overall, these implant coatings exhibited promising efficacy in antibacterial effects and bone formation. Conclusion Antibacterial coating strategies reduced bacterial infections in animal models and favored bone healing in vivo. Future studies of implant coatings should focus on optimal biocompatibility, antibacterial effects against multi-drug resistant bacteria and polymicrobial infections, and osseointegration and osteogenesis promotion especially in osteoporotic bone by constructing multi-functional coatings for FRI therapy. The translational potential of this paper The clinical treatment of FRI is complex and challenging. This review summarizes novel orthopaedic implant coating strategies applied to FRI in preclinical studies, and offers a perspective on the future development of orthopaedic implant coatings, which can potentially contribute to alternative strategies in clinical practice.
Collapse
Affiliation(s)
- Baoqi Li
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Pascal Thebault
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, F-76000, Rouen, France
| | - Béatrice Labat
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, F-76000, Rouen, France
| | - Guy Ladam
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, F-76000, Rouen, France
| | - Volker Alt
- Department of Trauma Surgery, University Hospital Regensburg, Germany
| | - Markus Rupp
- Department of Trauma Surgery, University Hospital Regensburg, Germany
| | | | - Jonathan Jantsch
- Institute for Medical Microbiology, Immunology, and Hygiene, and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Margaret Ip
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ning Zhang
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wing-Hoi Cheung
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | - Ronald Man Yeung Wong
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
16
|
Jia D, Lin Y, Zou Y, Zhang Y, Yu Q. Recent Advances in Dual-Function Superhydrophobic Antibacterial Surfaces. Macromol Biosci 2023; 23:e2300191. [PMID: 37265089 DOI: 10.1002/mabi.202300191] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/31/2023] [Indexed: 06/03/2023]
Abstract
Bacterial adhesion and subsequent biofilm formation on the surfaces of synthetic materials imposes a significant burden in various fields, which can lead to infections in patients or reduce the service life of industrial devices. Therefore, there is increasing interest in imbuing surfaces with antibacterial properties. Bioinspired superhydrophobic surfaces with high water contact angles (>150°) exhibit excellent surface repellency against contaminations, thereby preventing initial bacterial adhesion and inhibiting biofilm formation. However, conventional superhydrophobic surfaces typically lack long-term durability and are incapable of achieving persistent efficacy against bacterial adhesion. To overcome these limitations, in recent decades, dual-function superhydrophobic antibacterial surfaces with both bacteria-repelling and bacteria-killing properties have been developed by introducing bactericidal components. These surfaces have demonstrated improved long-term antibacterial performance in addressing the issues associated with surface-attached bacteria. This review summarizes the recent advancements of these dual-function superhydrophobic antibacterial surfaces. First, a brief overview of the fabrication strategies and bacteria-repelling mechanism of superhydrophobic surfaces is provided and then the dual-function superhydrophobic antibacterial surfaces are classified into three types based on the bacteria-killing mechanism: i) mechanotherapy, ii) chemotherapy, and iii) phototherapy. Finally, the limitations and challenges of current research are discussed and future perspectives in this promising area are proposed.
Collapse
Affiliation(s)
- Dongxu Jia
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou, 215000, P. R. China
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yuancheng Lin
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yi Zou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yanxia Zhang
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou, 215000, P. R. China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
17
|
Mahmoudi-Qashqay S, Zamani-Meymian MR, Sadati SJ. Improving antibacterial ability of Ti-Cu thin films with co-sputtering method. Sci Rep 2023; 13:16593. [PMID: 37789153 PMCID: PMC10547835 DOI: 10.1038/s41598-023-43875-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023] Open
Abstract
Due to the resistance of some bacteria to antibiotics, research in the field of dealing with bacterial infections is necessary. A practical approach utilized in this study involves the preparation of an antibacterial thin film on the surfaces, which can effectively inhibit and reduce biofilm formation and bacterial adherence. In this study, we report the fabrication of bactericidal titanium (Ti) and copper (Cu) surfaces which involves a powerful co-sputtering method. This method provides a situation in which constituent elements are deposited simultaneously to control the composition of the thin film. Prepared samples were examined by energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), X-ray diffraction (XRD), atomic force microscopy (AFM), and contact angle measurements. To evaluate antibacterial behavior, we used two bacterial strains Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus). Antibacterial activity of the prepared sample was assessed by determining the number of colony-forming units per milliliter (CFU/ml) using a standard viable cell count assay. Results indicated that as the Cu concentration increased, the nanoscale surfaces became rougher, with roughness values rising from 11.85 to 49.65 nm, and the contact angle increased from 40 to 80 degrees, indicating a hydrophilic character. These factors play a significant role in the antibacterial properties of the surface. The Ti-Cu films displayed superior antibacterial ability, with a 99.9% reduction (equivalent to a 5-log reduction) in bacterial viability after 2 h compared to Ti alone against both bacterial strains. Field emission scanning electron microscopy (FE-SEM) images verified that both E. coli and S. aureus cells were physically deformed and damaged the bacterial cell ultrastructure was observed. These findings highlight that adding Cu to Ti can improve the antibacterial ability of the surface while inhibiting bacterial adherence. Therefore, the Ti14-Cu86 sample with the highest percentage of Cu had the best bactericidal rate. Investigation of toxicity of Cu-Ti thin films was conducted the using the MTT assay, which revealed their biocompatibility and absence of cytotoxicity, further confirming their potential as promising biomaterials for various applications.
Collapse
Affiliation(s)
- Samaneh Mahmoudi-Qashqay
- Department of Physics, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran
| | | | - Seyed Javad Sadati
- Department of Physics, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran
| |
Collapse
|
18
|
Bandyopadhyay S, Bakli C, Mukherjee R, Chakraborty S. Damped Oscillatory Dynamics of a Drop Impacting over Oil-Infused Slippery Interfaces─Does the Oil Viscosity Slow it Down? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12826-12834. [PMID: 37642554 DOI: 10.1021/acs.langmuir.3c01689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
A liquid drop impacting on a soft surface is known to exhibit fascinating dynamics that is distinctive from its bounce-back atop a rigid surface. However, while the early spreading of the drop subsequent to its immediate impact with a lubricating liquid layer appears to be reasonably well understood, the later events of retraction and eventual stabilization appear to be poorly addressed. Here, we bring out the nontrivial confluence of the solid substrate wettability and the liquid layer viscosity toward modulating the post-collision dynamics of an impinging liquid drop on a viscous oil-infused surface during its later phase of settlement before arriving at an equilibrium state. Our results reveal that despite an intuitive analogy with the classical phenomenon of damped oscillation, the drop, during its later stages of motion, undergoes dynamical events that may be nontrivially dictated by not only the relative viscosity of the impacting drop and the liquid layer but also the intrinsic wettability of the solid substrate, governing its post-impact settlement via a sequel of spreading-retraction cycles. As a consequence, the viscous liquid layer, instead of providing additional damping, may nonintuitively reduce the effective viscous dissipation so as to hasten the drop's final settlement. These results may turn out to be critical in designing engineered surfaces for tuning the movement of drops in a preferential pathway, bearing decisive implications in the functionalities of liquid lenses, inkjet printing, spray coating and cooling, and several other emerging applications in the realm of lubricated fluidic interfaces.
Collapse
Affiliation(s)
- Saumyadwip Bandyopadhyay
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India
| | - Chirodeep Bakli
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Rabibrata Mukherjee
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India
- Instability and Soft Patterning Laboratory, Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Suman Chakraborty
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur 721 302, West Bengal, India
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| |
Collapse
|
19
|
Hsieh PC, Chien HW. Biomimetic surfaces: Insights on the role of surface topography and wetting properties in bacterial attachment and biofilm formation. Colloids Surf B Biointerfaces 2023; 228:113389. [PMID: 37290200 DOI: 10.1016/j.colsurfb.2023.113389] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
The study explores the impact of biomimetic surfaces on bacterial attachment and biofilm formation. Specifically, it investigates the effects of topographic scale and wetting behavior on the attachment and growth of Staphylococcus aureus and Escherichia coli on four different biomimetic surfaces: rose petals, Paragrass leaves, shark skin, and goose feathers. Using soft lithography, epoxy replicas with surface topographies similar to those of the natural surfaces were created. The static water contact angles of the replicas exceeded the hydrophobic threshold of 90°, while the hysteresis angles were found to be in the order of goose feathers, shark skin, Paragrass leaves, and rose petals. The results showed that bacterial attachment and biofilm formation were the lowest on rose petals and the highest on goose feathers, regardless of the bacterial strain. Additionally, the study revealed that surface topography had a significant impact on biofilm formation, with smaller feature sizes inhibiting biofilm formation. Hysteresis angle, rather than static water contact angle, was identified as a critical factor to consider when evaluating bacterial attachment behavior. These unique insights have the potential to lead to the development of more effective biomimetic surfaces for the prevention and eradication of biofilms, ultimately improving human health and safety.
Collapse
Affiliation(s)
- Po-Cheng Hsieh
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Hsiu-Wen Chien
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan; Photo-Sensitive Material Advanced Research and Technology Center (Photo-SMART Center), National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan.
| |
Collapse
|
20
|
Gędas A, Draszanowska A, den Bakker H, Diez-Gonzalez F, Simões M, Olszewska MA. Prevention of surface colonization and anti-biofilm effect of selected phytochemicals against Listeria innocua strain. Colloids Surf B Biointerfaces 2023; 228:113391. [PMID: 37290199 DOI: 10.1016/j.colsurfb.2023.113391] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
This work aimed to determine the ability of Listeria innocua (L.i.) to colonize eight materials found in food-processing and packaging settings and to evaluate the viability of the sessile cells. We also selected four commonly used phytochemicals (trans-cinnamaldehyde, eugenol, citronellol, and terpineol) to examine and compare their efficacies against L.i. on each surface. Biofilms were also deciphered in chamber slides using confocal laser scanning microscopy to learn more about how phytochemicals affect L.i. The materials tested were silicone rubber (Si), polyurethane (PU), polypropylene (PP), polytetrafluoroethylene (PTFE), stainless steel 316 L (SS), copper (Cu), polyethylene terephthalate (PET), and borosilicate glass (GL). L.i. colonized Si and SS abundantly, followed by PU, PP, Cu, PET, GL, and PTFE surfaces. The live/dead status ranged from 65/35% for Si to 20/80% for Cu, and the estimates of cells unable to grow on Cu were the highest, reaching even 43%. Cu was also characterized by the highest degree of hydrophobicity (ΔGTOT = -81.5 mJ/m2). Eventually, it was less prone to attachment, as we could not recover L.i. after treatments with control or phytochemical solutions. The PTFE surface demonstrated the least total cell densities and fewer live cells (31%) as compared to Si (65%) or SS (nearly 60%). It also scored high in hydrophobicity degree (ΔGTOT = -68.9 mJ/m2) and efficacy of phytochemical treatments (on average, biofilms were reduced by 2.1 log10 CFU/cm2). Thus, the hydrophobicity of surface materials plays a role in cell viability, biofilm formation, and then biofilm control and could be the prevailing parameter when designing preventive measures and interventions. As for phytochemical comparison, trans-cinnamaldehyde displayed greater efficacies, with the highest reductions seen on PET and Si (4.6 and 4.0 log10 CFU/cm2). The biofilms in chamber slides exposed to trans-cinnamaldehyde revealed the disrupted organization to a greater extent than other molecules. This may help establish better interventions via proper phytochemical selection for incorporation in environment-friendly disinfection approaches.
Collapse
Affiliation(s)
- Astrid Gędas
- Department of Industrial and Food Microbiology, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726 Olsztyn, Poland
| | - Anna Draszanowska
- Department of Human Nutrition, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Słoneczna 45 f, 10-709 Olsztyn, Poland
| | - Henk den Bakker
- Center for Food Safety, College of Agriculture and Environmental Sciences, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA
| | - Francisco Diez-Gonzalez
- Center for Food Safety, College of Agriculture and Environmental Sciences, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA
| | - Manuel Simões
- ALiCE, Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; LEPABE, Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Magdalena A Olszewska
- Department of Industrial and Food Microbiology, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726 Olsztyn, Poland.
| |
Collapse
|
21
|
Zhou H, Li Q, Zhang Z, Wang X, Niu H. Recent Advances in Superhydrophobic and Antibacterial Cellulose-Based Fibers and Fabrics: Bio-inspiration, Strategies, and Applications. ADVANCED FIBER MATERIALS 2023; 5:1-37. [PMID: 37361104 PMCID: PMC10201051 DOI: 10.1007/s42765-023-00297-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/03/2023] [Indexed: 06/28/2023]
Abstract
Cellulose-based fabrics are ubiquitous in our daily lives. They are the preferred choice for bedding materials, active sportswear, and next-to-skin apparels. However, the hydrophilic and polysaccharide characteristics of cellulose materials make them vulnerable to bacterial attack and pathogen infection. The design of antibacterial cellulose fabrics has been a long-term and on-going effort. Fabrication strategies based on the construction of surface micro-/nanostructure, chemical modification, and the application of antibacterial agents have been extensively investigated by many research groups worldwide. This review systematically discusses recent research on super-hydrophobic and antibacterial cellulose fabrics, focusing on morphology construction and surface modification. First, natural surfaces showing liquid-repellent and antibacterial properties are introduced and the mechanisms behind are explained. Then, the strategies for fabricating super-hydrophobic cellulose fabrics are summarized, and the contribution of the liquid-repellent function to reducing the adhesion of live bacteria and removing dead bacteria is elucidated. Representative studies on cellulose fabrics functionalized with super-hydrophobic and antibacterial properties are discussed in detail, and their potential applications are also introduced. Finally, the challenges in achieving super-hydrophobic antibacterial cellulose fabrics are discussed, and the future research direction in this area is proposed. Graphical Abstract The figure summarizes the natural surfaces and the main fabrication strategies of superhydrophobic antibacterial cellulose fabrics and their potential applications. Supplementary Information The online version contains supplementary material available at 10.1007/s42765-023-00297-1.
Collapse
Affiliation(s)
- Hua Zhou
- College of Textiles and Clothing, Qingdao University, Qingdao, 266071 China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education Collaborative, Qingdao University, Qingdao, 266071 China
| | - Qingshuo Li
- College of Textiles and Clothing, Qingdao University, Qingdao, 266071 China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education Collaborative, Qingdao University, Qingdao, 266071 China
| | - Zhong Zhang
- College of Textiles and Clothing, Qingdao University, Qingdao, 266071 China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education Collaborative, Qingdao University, Qingdao, 266071 China
| | - Xungai Wang
- JC STEM Lab of Sustainable Fibers and Textiles, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Haitao Niu
- College of Textiles and Clothing, Qingdao University, Qingdao, 266071 China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education Collaborative, Qingdao University, Qingdao, 266071 China
| |
Collapse
|
22
|
Batool M, B. Albargi H, Ahmad A, Sarwar Z, Khaliq Z, Qadir MB, Arshad SN, Tahir R, Ali S, Jalalah M, Irfan M, Harraz FA. Nano-Silica Bubbled Structure Based Durable and Flexible Superhydrophobic Electrospun Nanofibrous Membrane for Extensive Functional Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1146. [PMID: 37049240 PMCID: PMC10096561 DOI: 10.3390/nano13071146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 06/19/2023]
Abstract
Nanoscale surface roughness has conventionally been induced by using complicated approaches; however, the homogeneity of superhydrophobic surface and hazardous pollutants continue to have existing challenges that require a solution. As a prospective solution, a novel bubbled-structured silica nanoparticle (SiO2) decorated electrospun polyurethane (PU) nanofibrous membrane (SiO2@PU-NFs) was prepared through a synchronized electrospinning and electrospraying process. The SiO2@PU-NFs nanofibrous membrane exhibited a nanoscale hierarchical surface roughness, attributed to excellent superhydrophobicity. The SiO2@PU-NFs membrane had an optimized fiber diameter of 394 ± 105 nm and was fabricated with a 25 kV applied voltage, 18% PU concentration, 20 cm spinning distance, and 6% SiO2 nanoparticles. The resulting membrane exhibited a water contact angle of 155.23°. Moreover, the developed membrane attributed excellent mechanical properties (14.22 MPa tensile modulus, 134.5% elongation, and 57.12 kPa hydrostatic pressure). The composite nanofibrous membrane also offered good breathability characteristics (with an air permeability of 70.63 mm/s and a water vapor permeability of 4167 g/m2/day). In addition, the proposed composite nanofibrous membrane showed a significant water/oil separation efficiency of 99.98, 99.97, and 99.98% against the water/xylene, water/n-hexane, and water/toluene mixers. When exposed to severe mechanical stresses and chemicals, the composite nanofibrous membrane sustained its superhydrophobic quality (WCA greater than 155.23°) up to 50 abrasion, bending, and stretching cycles. Consequently, this composite structure could be a good alternative for various functional applications.
Collapse
Affiliation(s)
- Misbah Batool
- Department of Chemistry, University of Sargodha, Sargodha 40100, Pakistan;
| | - Hasan B. Albargi
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia; (H.B.A.); (M.J.)
- Department of Physics, Faculty of Science and Arts, Najran University, Najran 11001, Saudi Arabia
| | - Adnan Ahmad
- Department of Textile Engineering, National Textile University, Faisalabad 37610, Pakistan; (Z.S.); (R.T.); (S.A.)
| | - Zahid Sarwar
- Department of Textile Engineering, National Textile University, Faisalabad 37610, Pakistan; (Z.S.); (R.T.); (S.A.)
| | - Zubair Khaliq
- Department of Materials, National Textile University, Faisalabad 37610, Pakistan;
| | - Muhammad Bilal Qadir
- Department of Textile Engineering, National Textile University, Faisalabad 37610, Pakistan; (Z.S.); (R.T.); (S.A.)
| | - Salman Noshear Arshad
- Department of Chemistry and Chemical Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan;
| | - Rizwan Tahir
- Department of Textile Engineering, National Textile University, Faisalabad 37610, Pakistan; (Z.S.); (R.T.); (S.A.)
| | - Sultan Ali
- Department of Textile Engineering, National Textile University, Faisalabad 37610, Pakistan; (Z.S.); (R.T.); (S.A.)
| | - Mohammed Jalalah
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia; (H.B.A.); (M.J.)
- Electrical Engineering Department, College of Engineering, Najran University, Najran 61441, Saudi Arabia;
| | - Muhammad Irfan
- Electrical Engineering Department, College of Engineering, Najran University, Najran 61441, Saudi Arabia;
| | - Farid A. Harraz
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia; (H.B.A.); (M.J.)
- Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Sharurah 68342, Saudi Arabia
| |
Collapse
|
23
|
Shaygani H, Seifi S, Shamloo A, Golizadeh M, Rahnamaee SY, Alishiri M, Ebrahimi S. Novel bilayer coating on gentamicin-loaded titanium nanotube for orthopedic implants applications. Int J Pharm 2023; 636:122764. [PMID: 36889413 DOI: 10.1016/j.ijpharm.2023.122764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 03/08/2023]
Abstract
Fabricating a multifunctional orthopedic implant which prevents post-surgery infection is highly desirable in advanced materials applications. However, designing an antimicrobial implant, which simultaneously promotes a sustained drug release and satisfactory cell proliferation, remains a challenge. The current study presents a drug-loaded surface-modified titanium nanotube (TNT) implant with different surface chemistry which was developed to investigate the effect of surface coating on drug release, antimicrobial activity, and cell proliferation. Accordingly, sodium alginate and chitosan were coated on the surface of TNT implants with different coating orders through layer-by-layer assembly. The coatings' swelling ratio and degradation rate were around 613% and 75%, respectively. The drug release results showed that surface-coatings prolonged the releasing profile for about 4 weeks. Chitosan coated TNTs demonstrated greater inhibition zone at 16.33mm compared with the other samples where no inhibition zone was observed. However, chitosan and alginate coated TNTs exhibited smaller inhibition zones at 48.56mm and 43.28mm, respectively, compared to bare TNT, which can be attributed to the coatings preventing the antibiotic burst release. Higher viability of cultured osteoblast cells was observed for chitosan-coated TNT as the top layer compared to the bare TNT at 12.18%, indicating improved bioactivity of TNT implants when the chitosan has the most contact with cells. Coupled with the cell viability assay, molecular dynamics (MD) simulations were carried out by placing collagen and fibronectin near the considered substrates. In agreement with cell viability results, MD simulations also indicated that chitosan had the highest adsorption energy approximately 60Kcal/mol. In summary, the proposed bilayer chitosan-coated drug-loaded TNT implant with chitosan and sodium alginate coating as the top and the bottom layers, respectively, can be a potential candidate for orthopedic applications in the light of its bacterial biofilm prevention, better osteoconductivity, and providing an adequate drug release profile.
Collapse
Affiliation(s)
- Hossein Shaygani
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| | - Saeed Seifi
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| | - Amir Shamloo
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran.
| | - Mortaza Golizadeh
- School of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Seyed Yahya Rahnamaee
- Polymeric Materials Research Group (PMRG), School of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Mojgan Alishiri
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Sina Ebrahimi
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
24
|
Sun T, Huang J, Zhang W, Zheng X, Wang H, Liu J, Leng H, Yuan W, Song C. Simvastatin-hydroxyapatite coatings prevent biofilm formation and improve bone formation in implant-associated infections. Bioact Mater 2023; 21:44-56. [PMID: 36017072 PMCID: PMC9395756 DOI: 10.1016/j.bioactmat.2022.07.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/18/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
Implant-associated infections (IAIs) caused by biofilm formation are the most devastating complications of orthopedic surgery. Statins have been commonly and safely used drugs for hypercholesterolemia for many years. Here, we report that simvastatin-hydroxyapatite-coated titanium alloy prevents biofilm-associated infections. The antibacterial properties of simvastatin against Staphylococcus aureus and Staphylococcus epidermidis biofilms in vitro was confirmed by crystal violet staining and live-dead bacterial staining. We developed a simvastatin-and hydroxyapatite (Sim-HA)-coated titanium alloy via electrochemical deposition. Sim-HA coatings inhibited Staphylococcus aureus biofilm formation and improved the biocompatibility of the titanium alloy. Sim-HA coatings effectively prevented Staphylococcus aureus IAI in rat femurs, as confirmed by radiological assessment and histological examination. The antibacterial effects of the Sim-HA coatings were attributed to their inhibitory effects on biofilm formation, as verified by scanning electron microscopic observations and bacterial spread plate analysis. In addition, the Sim-HA coatings enhanced osteogenesis and osteointegration, as verified by micro-CT, histological evaluation, and biomechanical pull-out tests. In summary, Sim-HA coatings are promising implant materials for protection against biofilm-associated infections. Simvastatin-hydroxyapatite coatings were prepared on Ti6Al4V by electrochemical deposition process. The Simvastatin-hydroxyapatite coatings inhibited S. aureus biofilm formation and improved biocompatibility in vitro. The coatings exhibited antibacterial effects and improved bone formation in a rat femur IAI model. Simvastatin coatings are promising for application in orthopedic implants.
Collapse
|
25
|
Tian H, Li W, Chen C, Yu H, Yuan H. Antibacterial Activity and Mechanism of Oxidized Bacterial Nanocellulose with Different Carboxyl Content. Macromol Biosci 2023; 23:e2200459. [PMID: 36575859 DOI: 10.1002/mabi.202200459] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/20/2022] [Indexed: 12/29/2022]
Abstract
Oxidized bacterial nanocellulose (OBC) is reported to prevent microbial growth, but its antibacterial characteristics and mechanism are still unclear. Here, the antibacterial mechanism of OBC is explored by detecting and assessing the interaction of OBC with different carboxyl content on Staphylococcus aureus and Escherichia coli. The results show that OBC has strong antibacterial activity and antibiofilm activity against S. aureus and E. coli, which is positively correlated with the carboxyl content of OBC. After OBC treatment, the bacteria adhesion is inhibited and the cell membrane is destroyed leading to increased permeability. Further investigation reveals that the concentration of cyclic diguanosine monophosphate (c-di-GMP) that induced biofilm formation is significantly decreased to 1.81 pmol mg-1 after OBC treatment. In addition, OBC inactivates mature biofilms, with inactivation rates up to 79.3%. This study suggests that OBC has excellent antibacterial and antiadhesion properties, which can increase the cell membrane permeability and inhibit c-di-GMP formation. In addition, OBC also has a strong inactivation effect on mature biofilm, which can be used as an effective antibiofilm agent.
Collapse
Affiliation(s)
- Huaixiang Tian
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Haiquan Road 100, Shanghai, 201418, China
| | - Wei Li
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Haiquan Road 100, Shanghai, 201418, China
| | - Chen Chen
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Haiquan Road 100, Shanghai, 201418, China
| | - Haiyan Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Haiquan Road 100, Shanghai, 201418, China
| | - Haibin Yuan
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Haiquan Road 100, Shanghai, 201418, China
| |
Collapse
|
26
|
Vieira A, Rodríguez-Lorenzo L, Leonor IB, Reis RL, Espiña B, Dos Santos MB. Innovative Antibacterial, Photocatalytic, Titanium Dioxide Microstructured Surfaces Based on Bacterial Adhesion Enhancement. ACS APPLIED BIO MATERIALS 2023; 6:754-764. [PMID: 36696391 DOI: 10.1021/acsabm.2c00956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Bacterial colonization and biofilm formation are found on nearly all wet surfaces, representing a serious problem for both human healthcare and industrial applications, where traditional treatments may not be effective. Herein, we describe a synergistic approach for improving the performance of antibacterial surfaces based on microstructured surfaces that embed titanium dioxide nanoparticles (TiO2 NPs). The surfaces were designed to enhance bacteria entrapment, facilitating their subsequent eradication by a combination of UVC disinfection and TiO2 NPs photocatalysis. The efficacy of the engineered TiO2-modified microtopographic surfaces was evaluated using three different designs, and it was found that S2-lozenge and S3-square patterns had a higher concentration of trapped bacteria, with increases of 70 and 76%, respectively, compared to flat surfaces. Importantly, these surfaces showed a significant reduction (99%) of viable bacteria after just 30 min of irradiation with UVC 254 nm light at low intensity, being sixfold more effective than flat surfaces. Overall, our results showed that the synergistic effect of combining microstructured capturing surfaces with the chemical functionality of TiO2 NPs paves the way for developing innovative and efficient antibacterial surfaces with numerous potential applications in the healthcare and biotechnology market.
Collapse
Affiliation(s)
- Ana Vieira
- INL─International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga4715-330, Portugal
| | - Laura Rodríguez-Lorenzo
- INL─International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga4715-330, Portugal
| | - Isabel B Leonor
- 3B's Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães4805-017, Barco, Portugal.,ICVS/3B's─PT Government Associate Laboratory, Braga/Guimarães4805-017, Portugal
| | - Rui L Reis
- 3B's Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães4805-017, Barco, Portugal.,ICVS/3B's─PT Government Associate Laboratory, Braga/Guimarães4805-017, Portugal
| | - Begoña Espiña
- INL─International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga4715-330, Portugal
| | | |
Collapse
|
27
|
Li Z, Hu K, Feng X. Hollow fiber membranes comprising of polyvinylamine/polydopamine active layers and a polyvinylidene fluoride substrate for pervaporative concentration of KAc solutions. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
28
|
Mathieu P, Bascou R, Navarro Oliva FS, Nesterenko A, Ngo A, Lisiecki I, Guénin E, Bedoui F. Electrospinning of ultrafine non‐hydrolyzed silk sericin/
PEO
fibers on
PLA
: A bilayer scaffold fabrication. POLYM ENG SCI 2023. [DOI: 10.1002/pen.26248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Paul Mathieu
- Alliance Sorbonne Université, Roberval Laboratory Université de Technologie de Compiègne Compiègne France
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu‐CS 60 319‐60 203 Compiègne Cedex France
| | - Rémi Bascou
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu‐CS 60 319‐60 203 Compiègne Cedex France
| | | | - Alla Nesterenko
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu‐CS 60 319‐60 203 Compiègne Cedex France
| | - Anh‐Tu Ngo
- Sorbonne Université, CNRS, De la Molécule Aux Nano‐Objets: Réactivité, Interactions Spectroscopies, MONARIS Paris France
| | - Isabelle Lisiecki
- Sorbonne Université, CNRS, De la Molécule Aux Nano‐Objets: Réactivité, Interactions Spectroscopies, MONARIS Paris France
| | - Erwann Guénin
- Alliance Sorbonne Université, Roberval Laboratory Université de Technologie de Compiègne Compiègne France
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu‐CS 60 319‐60 203 Compiègne Cedex France
| | - Fahmi Bedoui
- Alliance Sorbonne Université, Roberval Laboratory Université de Technologie de Compiègne Compiègne France
| |
Collapse
|
29
|
Shi K, Zhang H, Gu Y, Liang Z, Zhou H, Liu H, Liu J, Xie G. Electric Spark Deposition of Antibacterial Silver Coating on Microstructured Titanium Surfaces with a Novel Flexible Brush Electrode. ACS OMEGA 2022; 7:47108-47119. [PMID: 36570305 PMCID: PMC9773945 DOI: 10.1021/acsomega.2c06253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Infection caused by orthopedic titanium implants, which results in tissue damage, is a key factor in endosseous implant failure. Given the seriousness of implant infections and the limitations of antibiotic therapy, surface microstructures and antimicrobial silver coatings have emerged as prominent research areas and have displayed certain antimicrobial effects. Researchers are now working to combine the two to produce more effective antimicrobial surfaces. However, building robust and homogeneous coatings on complex microstructured surfaces is a tough task due to the limits of surface modification techniques. In this study, a novel flexible electrode brush (silver brush) instead of a traditional hard electrode was designed with electrical discharge machining, which has the ability to adapt to complex groove interiors. The results showed that the use of flexible electrode brush allowed silver to be deposited uniformly in titanium alloy microgrooves. On the surface of Ag-TC4, a uniformly covered deposit was visible, and it slowly released silver ions into a liquid environment. In vitro bacterial assays showed that a Ag-TC4 microstructured surface reduced bacterial adhesion and bacterial biofilm formation, and the antibacterial activity of Ag-TC4 against Staphylococcus aureus and Escherichia coli was 99.68% ± 0.002 and 99.50% ± 0.007, respectively. This research could lay the groundwork for the study of antimicrobial metal bound to microstructured surfaces and pave the way for future implant surface design.
Collapse
Affiliation(s)
- Kaihui Shi
- Guangzhou
Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious
Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou510182, PR China
| | - Hao Zhang
- State
Key Laboratory of Precision Electronic Manufacturing Technology and
Equipment, Guangdong University of Technology, Guangzhou510006, PR China
| | - Yuyan Gu
- Guangzhou
Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious
Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou510182, PR China
| | - Zhijie Liang
- State
Key Laboratory of Precision Electronic Manufacturing Technology and
Equipment, Guangdong University of Technology, Guangzhou510006, PR China
| | - Huanyu Zhou
- Guangzhou
Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious
Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou510182, PR China
| | - Haojie Liu
- Guangzhou
Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious
Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou510182, PR China
| | - Jiangwen Liu
- State
Key Laboratory of Precision Electronic Manufacturing Technology and
Equipment, Guangdong University of Technology, Guangzhou510006, PR China
| | - Guie Xie
- Guangzhou
Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious
Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou510182, PR China
| |
Collapse
|
30
|
Fabrication of Nanostructured Polycaprolactone (PCL) Film Using a Thermal Imprinting Technique and Assessment of Antibacterial Function for Its Application. Polymers (Basel) 2022; 14:polym14245527. [PMID: 36559894 PMCID: PMC9788332 DOI: 10.3390/polym14245527] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
In the use of the medical devices, it is essential to prevent the attachment of bacteria to the device surface or to kill the attached bacteria. To kill bacteria, many researchers have used antibiotics or studied nanostructure-based antibacterial surfaces, which rely on mechanical antibacterial methods. Several polymers are widely used for device fabrication, one of which is polycaprolactone (PCL). PCL is biocompatible, biodegradable, easy to fabricate using 3D printing, relatively inexpensive and its quality is easily controlled; therefore, there are various approaches to its use in bio-applications. In addition, it is an FDA-approved material, so it is often used as an implantable material in the human body. However, PCL has no inherent antibacterial function, so it is necessary to develop antibacterial functions in scaffold or film-based PCL medical devices. In this study, process parameters for nanopillar fabrication were established through a simple thermal imprinting method with PCL. Finally, a PCL film with a flexible and transparent nanopillar structure was produced, and the mechano-bactericidal potential was demonstrated using only one PCL material. PCL with nanopillars showed bactericidal ability against Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis) bacteria cultured on its surface that resulted in membrane damage and death due to contact with nanopillars. Additionally, bacteriostatic results were shown to inhibit bacterial growth and activity of Staphylococcus aureus (S. aureus) on PCL nanostructured columns. The fabricated nanopillar structure has confirmed that mechanically induced antibacterial function and can be applied to implantable medical devices.
Collapse
|
31
|
Anbumani S, da Silva AM, Alaferdov A, Puydinger dos Santos MV, Carvalho IGB, de Souza e Silva M, Moshkalev S, Carvalho HF, de Souza AA, Cotta MA. Physiochemically Distinct Surface Properties of SU-8 Polymer Modulate Bacterial Cell-Surface Holdfast and Colonization. ACS APPLIED BIO MATERIALS 2022; 5:4903-4912. [PMID: 36162102 PMCID: PMC9580523 DOI: 10.1021/acsabm.2c00632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022]
Abstract
SU-8 polymer is an excellent platform for diverse applications due to its high aspect ratio of micro/nanostructure fabrication and exceptional physicochemical and biocompatible properties. Although SU-8 polymer has often been investigated for various biological applications, how its surface properties influence the interaction of bacterial cells with the substrate and its colonization is poorly understood. In this work, we tailor SU-8 nanoscale surface properties to investigate single-cell motility, adhesion, and successive colonization of phytopathogenic bacteria, Xylella fastidiosa. Different surface properties of SU-8 thin films have been prepared using photolithography processing and oxygen plasma treatment. A more significant density of carboxyl groups in hydrophilic plasma-treated SU-8 surfaces promotes faster cell motility in the earlier growth stage. The hydrophobic nature of pristine SU-8 surfaces shows no trackable bacterial motility and 5-10 times more single cells adhered to the surface than its plasma-treated counterpart. In addition, plasma-treated SU-8 samples suppressed bacterial adhesion, with surfaces showing less than 5% coverage. These results not only showcase that SU-8 surface properties can impact the spatiotemporal bacterial behavior but also provide insights into pathogens' prominent ability to evolve and adapt to different surface properties.
Collapse
Affiliation(s)
- Silambarasan Anbumani
- Institute
of Physics “Gleb Wataghin”, University of Campinas, Campinas, SP 13083-859, Brazil
| | - Aldeliane M. da Silva
- Institute
of Physics “Gleb Wataghin”, University of Campinas, Campinas, SP 13083-859, Brazil
| | - Andrei Alaferdov
- Center
for Semiconductor Components and Nanotechnologies, University of Campinas, Campinas, SP 13083-870, Brazil
| | | | - Isis G. B. Carvalho
- Citrus
Center APTA “Sylvio Moreira” Agronomic Institute of
Campinas, Cordeirópolis, SP 13490-970, Brazil
| | - Mariana de Souza e Silva
- Citrus
Center APTA “Sylvio Moreira” Agronomic Institute of
Campinas, Cordeirópolis, SP 13490-970, Brazil
| | - Stanislav Moshkalev
- Center
for Semiconductor Components and Nanotechnologies, University of Campinas, Campinas, SP 13083-870, Brazil
| | - Hernandes F. Carvalho
- Department
of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, SP 13083-862, Brazil
| | - Alessandra A. de Souza
- Citrus
Center APTA “Sylvio Moreira” Agronomic Institute of
Campinas, Cordeirópolis, SP 13490-970, Brazil
| | - Monica A. Cotta
- Institute
of Physics “Gleb Wataghin”, University of Campinas, Campinas, SP 13083-859, Brazil
| |
Collapse
|
32
|
Guo F, Pan F, Zhang W, Liu T, Zuber F, Zhang X, Yu Y, Zhang R, Niederberger M, Ren Q. Robust Antibacterial Activity of Xanthan-Gum-Stabilized and Patterned CeO 2-x-TiO 2 Antifog Films. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44158-44172. [PMID: 36150021 DOI: 10.1021/acsami.2c11968] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Increased occurrence of antimicrobial resistance leads to a huge burden on patients, the healthcare system, and society worldwide. Developing antimicrobial materials through doping rare-earth elements is a new strategy to overcome this challenge. To this end, we design antibacterial films containing CeO2-x-TiO2, xanthan gum, poly(acrylic acid), and hyaluronic acid. CeO2-x-TiO2 inks are additionally integrated into a hexagonal grid for prominent transparency. Such design yields not only an antibacterial efficacy of ∼100% toward Staphylococcus aureus and Escherichia coli but also excellent antifog performance for 72 h in a 100% humidity atmosphere. Moreover, FluidFM is employed to understand the interaction in-depth between bacteria and materials. We further reveal that reactive oxygen species (ROS) are crucial for the bactericidal activity of E. coli through fluorescent spectroscopic analysis and SEM imaging. We meanwhile confirm that Ce3+ ions are involved in the stripping phosphate groups, damaging the cell membrane of S. aureus. Therefore, the hexagonal mesh and xanthan-gum cross-linking chains act as a reservoir for ROS and Ce3+ ions, realizing a long-lasting antibacterial function. We hence develop an antibacterial and antifog dual-functional material that has the potential for a broad application in display devices, medical devices, food packaging, and wearable electronics.
Collapse
Affiliation(s)
- Fangwei Guo
- Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory of Spacecraft Mechanism, Shanghai 201108, China
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Fei Pan
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Wenchen Zhang
- Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tian Liu
- Shanghai Key Laboratory of Spacecraft Mechanism, Shanghai 201108, China
| | - Flavia Zuber
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Xing Zhang
- Shanghai Institute of Aerospace System Engineering, Shanghai 201108, China
| | - Yali Yu
- Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruiji Zhang
- Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Markus Niederberger
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| |
Collapse
|
33
|
Yuan M, Xue J, Li J, Ma S, Wang M. PCN-222/Ag2O-Ag p-n heterojunction modified fabric as recyclable photocatalytic platform for boosting bacteria inactivation and organic pollutant degradation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
34
|
Wang X, Wang Z, Yu C, Ge Z, Yang W. Advances in precise single-cell capture for analysis and biological applications. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3047-3063. [PMID: 35946358 DOI: 10.1039/d2ay00625a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cells are the basic structural and functional units of living organisms. However, conventional cell analysis only averages millions of cell populations, and some important information is lost. It is essential to quantitatively characterize the physiology and pathology of single-cell activities. Precise single-cell capture is an extremely challenging task during cell sample preparation. In this review, we summarize the category of technologies to capture single cells precisely with a focus on the latest development in the last five years. Each technology has its own set of benefits and specific challenges, which provide opportunities for researchers in different fields. Accordingly, we introduce the applications of captured single cells in cancer diagnosis, analysis of metabolism and secretion, and disease treatment. Finally, some perspectives are provided on the current development trends, future research directions, and challenges of single-cell capture.
Collapse
Affiliation(s)
- Xiaowen Wang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China.
| | - Zhen Wang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China.
| | - Chang Yu
- College of Computer Science, Chongqing University, Chongqing 400000, China
| | - Zhixing Ge
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China.
| |
Collapse
|
35
|
Oopath SV, Baji A, Abtahi M. Biomimetic Rose Petal Structures Obtained Using UV-Nanoimprint Lithography. Polymers (Basel) 2022; 14:polym14163303. [PMID: 36015559 PMCID: PMC9415744 DOI: 10.3390/polym14163303] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
This study aims to produce a hydrophobic polymer film by mimicking the hierarchical micro/nanostructures found on the surface of rose petals. A simple and two-step UV-based nanoimprint lithography was used to copy rose petal structures on the surface of a polyurethane acrylate (PUA) film. In the first step, the rose petal was used as a template, and its negative replica was fabricated on a commercial UV-curable polymer film. Following this, the negative replica was used as a stamp to produce rose petal mimetic structures on UV curable PUA film. The presence of these structures on PUA influenced the wettability behavior of PUA. Introducing the rose petal mimetic structures led the inherently hydrophilic material to display highly hydrophobic behavior. The neat PUA film showed a contact angle of 65°, while the PUA film with rose petal mimetic structures showed a contact angle of 138°. Similar to natural materials, PUA with rose petal mimetic structures also displayed the water pinning effect. The water droplet was shown to have adhered to the surface of PUA even when the surface was turned upside down.
Collapse
Affiliation(s)
| | - Avinash Baji
- Department of Engineering, La Trobe University, Bundoora, VIC 3086, Australia
- Correspondence:
| | - Mojtaba Abtahi
- School of Engineering, Macquarie University, Macquarie Park, NSW 2113, Australia
| |
Collapse
|
36
|
Zhang Y, Habibovic P. Delivering Mechanical Stimulation to Cells: State of the Art in Materials and Devices Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110267. [PMID: 35385176 DOI: 10.1002/adma.202110267] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Biochemical signals, such as growth factors, cytokines, and transcription factors are known to play a crucial role in regulating a variety of cellular activities as well as maintaining the normal function of different tissues and organs. If the biochemical signals are assumed to be one side of the coin, the other side comprises biophysical cues. There is growing evidence showing that biophysical signals, and in particular mechanical cues, also play an important role in different stages of human life ranging from morphogenesis during embryonic development to maturation and maintenance of tissue and organ function throughout life. In order to investigate how mechanical signals influence cell and tissue function, tremendous efforts have been devoted to fabricating various materials and devices for delivering mechanical stimuli to cells and tissues. Here, an overview of the current state of the art in the design and development of such materials and devices is provided, with a focus on their design principles, and challenges and perspectives for future research directions are highlighted.
Collapse
Affiliation(s)
- Yonggang Zhang
- Department of Instructive Biomaterials Engineering, Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - Pamela Habibovic
- Department of Instructive Biomaterials Engineering, Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| |
Collapse
|
37
|
Hazra S, Zhang C, Wu Q, Asheghi M, Goodson K, Dede EM, Palko J, Narumanchi S. A novel hardmask-to-substrate pattern transfer method for creating 3D, multi-level, hierarchical, high aspect-ratio structures for applications in microfluidics and cooling technologies. Sci Rep 2022; 12:12180. [PMID: 35842450 PMCID: PMC9288478 DOI: 10.1038/s41598-022-16281-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/07/2022] [Indexed: 11/14/2022] Open
Abstract
This letter solves a major hurdle that mars photolithography-based fabrication of micro-mesoscale structures in silicon. Conventional photolithography is usually performed on smooth, flat wafer surfaces to lay a 2D design and subsequently etch it to create single-level features. It is, however, unable to process non-flat surfaces or already etched wafers and create more than one level in the structure. In this study, we have described a novel cleanroom-based process flow that allows for easy creation of such multi-level, hierarchical 3D structures in a substrate. This is achieved by introducing an ultra-thin sacrificial silicon dioxide hardmask layer on the substrate which is first 3D patterned via multiple rounds of lithography. This 3D pattern is then scaled vertically by a factor of 200–300 and transferred to the substrate underneath via a single shot deep etching step. The proposed method is also easily characterizable—using features of different topographies and dimensions, the etch rates and selectivities were quantified; this characterization information was later used while fabricating specific target structures. Furthermore, this study comprehensively compares the novel pattern transfer technique to already existing methods of creating multi-level structures, like grayscale lithography and chip stacking. The proposed process was found to be cheaper, faster, and easier to standardize compared to other methods—this made the overall process more reliable and repeatable. We hope it will encourage more research into hybrid structures that hold the key to dramatic performance improvements in several micro-mesoscale devices.
Collapse
Affiliation(s)
- Sougata Hazra
- Department of Mechanical Engineering, Stanford University, Stanford, USA.
| | - Chi Zhang
- Department of Mechanical Engineering, Stanford University, Stanford, USA
| | - Qianying Wu
- Department of Mechanical Engineering, Stanford University, Stanford, USA
| | - Mehdi Asheghi
- Department of Mechanical Engineering, Stanford University, Stanford, USA
| | - Kenneth Goodson
- Department of Mechanical Engineering, Stanford University, Stanford, USA
| | - Ercan M Dede
- Electronics Research Department, Toyota Research Institute of North America, Ann Arbor, MI, USA
| | - James Palko
- Department of Mechanical Engineering, University of California-Merced, Merced, CA, USA
| | | |
Collapse
|
38
|
Toirac B, Garcia-Casas A, Monclús MA, Aguilera-Correa JJ, Esteban J, Jiménez-Morales A. Influence of Addition of Antibiotics on Chemical and Surface Properties of Sol-Gel Coatings. MATERIALS 2022; 15:ma15144752. [PMID: 35888219 PMCID: PMC9317242 DOI: 10.3390/ma15144752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 01/30/2023]
Abstract
Infection is one of the most common causes that leads to joint prosthesis failure. In the present work, biodegradable sol-gel coatings were investigated as a promising controlled release of antibiotics for the local prevention of infection in joint prostheses. Accordingly, a sol-gel formulation was designed to be tested as a carrier for 8 different individually loaded antimicrobials. Sols were prepared from a mixture of MAPTMS and TMOS silanes, tris(tri-methylsilyl)phosphite, and the corresponding antimicrobial. In order to study the cross-linking and surface of the coatings, a battery of examinations (Fourier-transform infrared spectroscopy, solid-state 29Si-NMR spectroscopy, thermogravimetric analysis, SEM, EDS, AFM, and water contact angle, thickness, and roughness measurements) were conducted on the formulations loaded with Cefoxitin and Linezolid. A formulation loaded with both antibiotics was also explored. Results showed that the coatings had a microscale roughness attributed to the accumulation of antibiotics and organophosphites in the surface protrusions and that the existence of chemical bonds between antibiotics and the siloxane network was not evidenced.
Collapse
Affiliation(s)
- Beatriz Toirac
- Materials Science and Engineering and Chemical Engineering Department, Carlos III University of Madrid, 28911 Madrid, Spain; (A.G.-C.); (A.J.-M.)
- Correspondence:
| | - Amaya Garcia-Casas
- Materials Science and Engineering and Chemical Engineering Department, Carlos III University of Madrid, 28911 Madrid, Spain; (A.G.-C.); (A.J.-M.)
- CIDETEC, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
| | - Miguel A. Monclús
- Micro- and Nano-Mechanics Department, Madrid Institutes for Advanced Studies (IMDEA)—Materials, 28906 Madrid, Spain;
| | - John J. Aguilera-Correa
- Clinical Microbiology Department, IIS-Fundación Jiménez Díaz, UAM, 28040 Madrid, Spain; (J.J.A.-C.); (J.E.)
- CIBERINFEC, ISCIII—CIBER de Enfermedades Infecciosas, Instituto Carlos III, 28029 Madrid, Spain
| | - Jaime Esteban
- Clinical Microbiology Department, IIS-Fundación Jiménez Díaz, UAM, 28040 Madrid, Spain; (J.J.A.-C.); (J.E.)
- CIBERINFEC, ISCIII—CIBER de Enfermedades Infecciosas, Instituto Carlos III, 28029 Madrid, Spain
| | - Antonia Jiménez-Morales
- Materials Science and Engineering and Chemical Engineering Department, Carlos III University of Madrid, 28911 Madrid, Spain; (A.G.-C.); (A.J.-M.)
- CIBERINFEC, ISCIII—CIBER de Enfermedades Infecciosas, Instituto Carlos III, 28029 Madrid, Spain
- Alvaro Alonso Barba Technological Institute of Chemistry and Materials, Carlos III University of Madrid, 28911 Madrid, Spain
| |
Collapse
|
39
|
Leonard H, Jiang X, Arshavsky-Graham S, Holtzman L, Haimov Y, Weizman D, Halachmi S, Segal E. Shining light in blind alleys: deciphering bacterial attachment in silicon microstructures. NANOSCALE HORIZONS 2022; 7:729-742. [PMID: 35616534 DOI: 10.1039/d2nh00130f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With new advances in infectious disease, antifouling surfaces, and environmental microbiology research comes the need to understand and control the accumulation and attachment of bacterial cells on a surface. Thus, we employ intrinsic phase-shift reflectometric interference spectroscopic measurements of silicon diffraction gratings to non-destructively observe the interactions between bacterial cells and abiotic, microstructured surfaces in a label-free and real-time manner. We conclude that the combination of specific material characteristics (i.e., substrate surface charge and topology) and characteristics of the bacterial cells (i.e., motility, cell charge, biofilm formation, and physiology) drive bacteria to adhere to a particular surface, often leading to a biofilm formation. Such knowledge can be exploited to predict antibiotic efficacy and biofilm formation, and enhance surface-based biosensor development, as well as the design of anti-biofouling strategies.
Collapse
Affiliation(s)
- Heidi Leonard
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Xin Jiang
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Sofia Arshavsky-Graham
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Liran Holtzman
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Yuri Haimov
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Daniel Weizman
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Sarel Halachmi
- Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
- Department of Urology, Bnai Zion Medical Center, Haifa, 3104800, Israel
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
40
|
Murmu K, Pandey A, Roy P, Deb A, Gooh Pattader PS. Janus micro‐thread to micro‐nanodroplets using dynamic contact line lithography. J Appl Polym Sci 2022. [DOI: 10.1002/app.52490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kaniska Murmu
- Department of Chemical Engineering Indian Institute of Technology Guwahati Guwahati India
| | - Ankur Pandey
- Department of Chemical Engineering Indian Institute of Technology Guwahati Guwahati India
| | - Pritam Roy
- Centre for Nanotechnology Indian Institute of Technology Guwahati Guwahati India
| | - Aniruddha Deb
- Department of Chemical Engineering Indian Institute of Technology Guwahati Guwahati India
| | - Partho Sarathi Gooh Pattader
- Department of Chemical Engineering Indian Institute of Technology Guwahati Guwahati India
- Centre for Nanotechnology Indian Institute of Technology Guwahati Guwahati India
- School of Health Science and Technology Indian Institute of Technology Guwahati Guwahati India
| |
Collapse
|
41
|
Wu CY, Melaku AZ, Ilhami FB, Chiu CW, Cheng CC. Conductive Supramolecular Polymer Nanocomposites with Tunable Properties to Manipulate Cell Growth and Functions. Int J Mol Sci 2022; 23:ijms23084332. [PMID: 35457150 PMCID: PMC9032009 DOI: 10.3390/ijms23084332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
Synthetic bioactive nanocomposites show great promise in biomedicine for use in tissue growth, wound healing and the potential for bioengineered skin substitutes. Hydrogen-bonded supramolecular polymers (3A-PCL) can be combined with graphite crystals to form graphite/3A-PCL composites with tunable physical properties. When used as a bioactive substrate for cell culture, graphite/3A-PCL composites have an extremely low cytotoxic activity on normal cells and a high structural stability in a medium with red blood cells. A series of in vitro studies demonstrated that the resulting composite substrates can efficiently interact with cell surfaces to promote the adhesion, migration, and proliferation of adherent cells, as well as rapid wound healing ability at the damaged cellular surface. Importantly, placing these substrates under an indirect current electric field at only 0.1 V leads to a marked acceleration in cell growth, a significant increase in total cell numbers, and a remarkable alteration in cell morphology. These results reveal a newly created system with great potential to provide an efficient route for the development of multifunctional bioactive substrates with unique electro-responsiveness to manipulate cell growth and functions.
Collapse
Affiliation(s)
- Cheng-You Wu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (C.-Y.W.); (A.Z.M.); (F.B.I.)
| | - Ashenafi Zeleke Melaku
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (C.-Y.W.); (A.Z.M.); (F.B.I.)
| | - Fasih Bintang Ilhami
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (C.-Y.W.); (A.Z.M.); (F.B.I.)
| | - Chih-Wei Chiu
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan;
| | - Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; (C.-Y.W.); (A.Z.M.); (F.B.I.)
- Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
- Correspondence:
| |
Collapse
|
42
|
Zeng X, Zhu BB, Qiu W, Li WL, Zheng XH, Xu B. A review of the preparation and applications of wrinkled graphene oxide. NEW CARBON MATERIALS 2022; 37:290-302. [DOI: 10.1016/s1872-5805(22)60594-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
43
|
Czerwińska-Główka D, Skonieczna M, Barylski A, Golba S, Przystaś W, Zabłocka-Godlewska E, Student S, Cwalina B, Krukiewicz K. Bifunctional conducting polymer matrices with antibacterial and neuroprotective effects. Bioelectrochemistry 2022; 144:108030. [PMID: 34896782 DOI: 10.1016/j.bioelechem.2021.108030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/24/2021] [Accepted: 11/29/2021] [Indexed: 11/02/2022]
Abstract
Current trends in the field of neural tissue engineering include the design of advanced biomaterials combining excellent electrochemical performance with versatile biological characteristics. The purpose of this work was to develop an antibacterial and neuroprotective coating based on a conducting polymer - poly(3,4-ethylenedioxypyrrole) (PEDOP), loaded with an antibiotic agent - tetracycline (Tc). Employing an electrochemical technique to immobilize Tc within a growing polymer matrix allowed to fabricate robust PEDOP/Tc coatings with a high charge storage capacity (63.65 ± 6.05 mC/cm2), drug release efficiency (629.4 µg/cm2 ± 62.7 µg/cm2), and low charge transfer resistance (2.4 ± 0.1 kΩ), able to deliver a stable electrical signal. PEDOP/Tc were found to exhibit strong antimicrobial effects against Gram-negative bacteria Escherichia coli, expressed through negligible adhesion, reduction in viability, and a characteristic elongation of bacterial cells. Cytocompatibility and neuroprotective effects were evaluated using a rat neuroblastoma B35 cell line, and were analyzed using MTT, cell cycle, and Annexin-V apoptosis assays. The presence of Tc was found to enhance neural cell viability and neurite outgrowth. The results confirmed that PEDOP/Tc can serve as an efficient neural electrode coating able to enhance charge transfer, as well as to exhibit bifunctional biological characteristics, different for eukaryotic and prokaryotic cells.
Collapse
Affiliation(s)
- Dominika Czerwińska-Główka
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M.Strzody 9, 44-100 Gliwice, Poland
| | - Magdalena Skonieczna
- Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland; Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Adrian Barylski
- Institute of Materials Engineering, University of Silesia, 75 Pulku Piechoty, 41-500 Chorzow, Poland
| | - Sylwia Golba
- Institute of Materials Engineering, University of Silesia, 75 Pulku Piechoty, 41-500 Chorzow, Poland
| | - Wioletta Przystaś
- Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland; Department of Air Protection, Faculty of Energy and Environmental Engineering, Silesian University of Technology, S. Konarskiego 22B, 44-100 Gliwice, Poland
| | - Ewa Zabłocka-Godlewska
- Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland; Department of Air Protection, Faculty of Energy and Environmental Engineering, Silesian University of Technology, S. Konarskiego 22B, 44-100 Gliwice, Poland
| | - Sebastian Student
- Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland; Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Beata Cwalina
- Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland; Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, S.Konarskiego 18, 44-100 Gliwice, Poland
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M.Strzody 9, 44-100 Gliwice, Poland.
| |
Collapse
|
44
|
Development of antimicrobial oxidized cellulose film for active food packaging. Carbohydr Polym 2022; 278:118922. [PMID: 34973741 DOI: 10.1016/j.carbpol.2021.118922] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/01/2021] [Accepted: 11/17/2021] [Indexed: 11/02/2022]
Abstract
Foodborne diseases caused by bacteria have aroused ongoing concerns for food safety. Most existing packaging plastics bring pollution and potential toxicity. Here antimicrobial dialdehyde cellophane (DACP) was developed by periodate oxidation. The structure, mechanical properties, optical properties, and barrier properties of DACP were characterized. The antimicrobial activity of DACP against four Gram-positive bacteria was studied. The packaging effect of DACP for food with high water content was evaluated, including strawberry and tofu. The antimicrobial activity of DACP improved with increased aldehyde content. Compared with the polyethylene film and cellophane, our DACP exhibited excellent antimicrobial effect and extended the shelf life of food significantly, which shows promising prospects in food packaging.
Collapse
|
45
|
Zhang Y, Zhu X, Chen B. Adhesion force evolution of protein on the surfaces with varied hydration extent: Quantitative determination via atomic force microscopy. J Colloid Interface Sci 2022; 608:255-264. [PMID: 34626972 DOI: 10.1016/j.jcis.2021.09.131] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/05/2021] [Accepted: 09/21/2021] [Indexed: 01/03/2023]
Abstract
The adhesion force evolution of protein on surfaces with continuously varied hydrophobicity/hydration layer has not been completely clarified yet, limiting the further development of environmental applications such as membrane anti-biofouling and selective adsorption of the functional surfaces. Herein, chemical force spectroscopy using atomic force microscopy (AFM) was utilized to quantify the evolution of the adhesion forces of protein on hydration surfaces in water, where bovine serum albumin (BSA) was immobilized on an AFM tip as the representative protein. The stiffness, roughness and charge properties of the substrate surfaces were kept constant and the hydrophobicity was the only variant to monitor the role of hydrated water layers in protein adhesion. The adhesion force increased non-monotonically as a function of hydrophobicity of substrate surfaces, which was related to the concentration of humic acid, and independent of pH values and ionic strength. The non-monotonic variation occurred in the range of contact angle at 60-80° due to the mutual restriction between solid-liquid interface energy and solid-solid interface energy. Hydrophobic attraction was the dominant force that drove adhesion of BSA to these model substrate surfaces, but the passivation of hydration layers at the interface could weaken the hydrophobic attraction. In contrast to the measurements in water, the adhesion forces decreased as a function of surface hydrophobicity when measured in air, because capillary forces from condensation water dominated adhesion forces. The passivation of hydration layers of protein was revealed by quantitatively determining the evolution of adhesion forces on the hydration surfaces of varying hydrophobicity, which was ignored by traditional adhesion theory.
Collapse
Affiliation(s)
- Yuyao Zhang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China.
| | - Xiaoying Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China.
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
46
|
Ghosh A, Dubey SK, Patra M, Mandal J, Ghosh NN, Saha R, Bhattacharjee S. Coiled‐Coil Helical Nano‐Assemblies: Shape Persistent, Thixotropic, and Tunable Chiroptical Properties. ChemistrySelect 2022. [DOI: 10.1002/slct.202103942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Angshuman Ghosh
- Department of Chemistry Kazi Nazrul University Asansol 713340 West Bengal India
- TCG Lifescience, Block BN, Sector V, Saltlake Kolkata 700156 West Bengal India
| | - Soumen Kumar Dubey
- Department of Chemistry Kazi Nazrul University Asansol 713340 West Bengal India
| | - Maxcimilan Patra
- Department of Chemistry Kazi Nazrul University Asansol 713340 West Bengal India
| | - Jishu Mandal
- CIF Biophysical Laboratory CSIR-Indian Institute of Chemical Biology Jadavpur Kolkata 700032 West Bengal India
| | - Narendra Nath Ghosh
- Department of Chemistry University of Gour Banga Mokdumpur- 732103 West Bengal India
| | - Rajat Saha
- Department of Chemistry Kazi Nazrul University Asansol 713340 West Bengal India
| | | |
Collapse
|
47
|
Hegde O, Chatterjee R, Rasheed A, Chakravortty D, Basu S. Multiscale vapor-mediateddendritic pattern formation and bacterial aggregation in complex respiratory biofluid droplets. J Colloid Interface Sci 2022; 606:2011-2023. [PMID: 34749448 DOI: 10.1016/j.jcis.2021.09.158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/16/2021] [Accepted: 09/25/2021] [Indexed: 01/17/2023]
Abstract
HYPOTHESIS Deposits of biofluid droplets on surfaces (such as respiratory droplets formed during an expiratory) are composed of water-based salt-protein solution that may also contain an infection (bacterial/viral). The final patterns of the deposit formed and bacterial aggregation on the deposits are dictated by the fluid composition and flow dynamics within the droplet. EXPERIMENTS This work reports the spatio-temporal, topological regulation of deposits of respiratory fluid droplets and control of bacterial aggregation by tweaking flow inside droplets using non-contact vapor-mediated interactions. Desiccated respiratory droplets form deposits with haphazard multiscale dendritic, cruciform-shaped precipitates when evaporated on a glass substrate. However, we showcase that short and long-range vapor-mediated interaction between the droplets can be used as a tool to control these deposits at nano-micro-millimeter scales. We morphologically control hierarchial dendrite size, orientation and subsequently suppress cruciform-shaped crystals by placing a droplet of ethanol in the vicinity of the biofluid droplet. Active living matter in respiratory fluids like bacteria is preferentially segregated and agglomerated without its viability and pathogenesis attenuation. FINDINGS The nucleation sites can be controlled via preferential transfer of solutes in the droplets; thus, achieving control over crystal occurrence, growth dynamics, and the final topology of the deposit. For the first time, we have experimentally presented a proof-of-concept to control the aggregation of live active matter like bacteria without any direct contact. The methodology can have ramifications in biomedical applications like disease detection and bacterial segregation.
Collapse
Affiliation(s)
- Omkar Hegde
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Ritika Chatterjee
- Department of Cell Biology and Microbiology, Indian Institute of Science, Bangalore 560012, India
| | - Abdur Rasheed
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Dipshikha Chakravortty
- Department of Cell Biology and Microbiology, Indian Institute of Science, Bangalore 560012, India.
| | - Saptarshi Basu
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
48
|
Chen F, Wang Y, Tian Y, Zhang D, Song J, Crick CR, Carmalt CJ, Parkin IP, Lu Y. Robust and durable liquid-repellent surfaces. Chem Soc Rev 2022; 51:8476-8583. [DOI: 10.1039/d0cs01033b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This review provides a comprehensive summary of characterization, design, fabrication, and application of robust and durable liquid-repellent surfaces.
Collapse
Affiliation(s)
- Faze Chen
- School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Yaquan Wang
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Yanling Tian
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| | - Dawei Zhang
- School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Jinlong Song
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Colin R. Crick
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Claire J. Carmalt
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Ivan P. Parkin
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Yao Lu
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
49
|
Polyhexamethylene biguanide chemically modified cotton with desirable hemostatic, inflammation-reducing, intrinsic antibacterial property for infected wound healing. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.12.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
Eco-friendly bacteria-killing by nanorods through mechano-puncture with top selectivity. Bioact Mater 2021; 15:173-184. [PMID: 35386355 PMCID: PMC8941167 DOI: 10.1016/j.bioactmat.2021.11.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 11/20/2022] Open
Abstract
Nanorods can induce mechano-puncture of Staphylococcus aureus (S. aureus) that often impairs osseointegration of orthopedic implants, while the critical nanorod top sharpness able to puncture S. aureus and the predominant contributor between top sharpness and length to mechano-puncture activity remains elusive. Herein, we fabricated three kinds of Al2O3-wrapped nanorods patterned arrays with different lengths and top sharpness. The top-sharp nanorods have lengths of 469 and 884 nm and the shorter show a length identical to the top-flat nanorods. Driven by the equivalent adhesive force of S. aureus, the top-flat nanorods deform cell envelops, showing a bacteriostatic rate of 29% owing to proliferation-inhibited manner. The top-sharp nanorods puncture S. aureus, showing a bactericidal rate of 96% for the longer, and 98% for the shorter that simultaneously exhibits fair osseointegration in bacteria-infected rat tibias, identifying top sharpness as a predominate contributor to mechano-puncture activity. Based on finite-element simulation, such top-flat nanorod derives the maximum stress (Smax) of 5.65 MPa on cell wall, lower than its ultimate-tensile-strength (13 MPa); while such top-sharp and shorter nanorod derives Smax of 20.15 MPa to puncture cell envelop. Moreover, a critical top conical angle of 138° is identified for nanorods able to puncture S. aureus. Top sharpness depended mechano-puncture of nanorods against S. aureus is clarified. Top-flat nanorods deform bacterial cell envelop to inhibit their proliferation. Top-sharp nanorods (conical angle of 50°) puncture bacteria to intensely kill them. 138° is confirmed as critical top conical angle for nanorods to puncture S. aureus.
Collapse
|