1
|
Tao D, Xie C, Jaffrezic-Renault N, Guo Z. Flexible and wearable electrochemical sensors for health and safety monitoring. Talanta 2025; 291:127863. [PMID: 40043375 DOI: 10.1016/j.talanta.2025.127863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/24/2025] [Accepted: 02/28/2025] [Indexed: 03/24/2025]
Abstract
Environmental safety monitoring is a crucial process that involves continuous and systematic observation and analysis of various pollutants in the environment to ensure its quality and safety. This monitoring encompasses a wide range of areas, including physical indicator monitoring (pertaining to parameters such as temperature, humidity, and wind speed), chemical indicator monitoring (focused on detecting harmful substances in environmental media such as air, water, and soil), and ecosystem monitoring (including biodiversity assessments and judgments on the health status of ecosystems). This review delves deeply into the significant advancements achieved in the field of flexible and wearable electrochemical sensors (FWESs) over the past fifteen years (from 2010 to 2024). It emphasizes the broad application of these sensors in health and environmental safety monitoring, with health monitoring primarily focusing on exhaled breath and sweat, and environmental monitoring covering temperature, humidity, and pollutants in air and water. By seamlessly integrating electrochemical principles, advanced sensor manufacturing technologies, and sensor functionalization, FWESs have opened up new avenues for non-invasive real-time monitoring of human health and environmental safety. This review highlights key developments in sensor structures, including flexible substrates, printed electrodes, and active materials. It also underscores the remarkable progress made in healthcare and environmental monitoring through the utilization of FWES. Despite these promising advancements, this emerging field still faces numerous challenges, such as improving sensor accuracy, enhancing durability, and reducing costs. The review concludes by discussing the future directions in this field, including ongoing research efforts aimed at overcoming these challenges and expanding the applications of FWESs in various sectors.
Collapse
Affiliation(s)
- Dan Tao
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou, 561113, China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, 561113, China
| | - Chun Xie
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, No.6 Ankang Road, Guian New Area, Guizhou, 561113, China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, 561113, China
| | | | - Zhenzhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Faculty of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
2
|
Akiiga NS, Rashad Fath El-Bab AM, Yoshihisa M, El-Moneim AA. Enzyme-Free glucose detection in sweat using 2D inkjet-printed cobalt sulfide anchored on graphene in a paper-based microfluidic device. J Colloid Interface Sci 2025; 688:490-504. [PMID: 40020487 DOI: 10.1016/j.jcis.2025.02.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 03/03/2025]
Abstract
Notwithstanding the significant advancements in the fabrication of flexible sensors capable of continuously detecting glucose levels in the human body, using conventional manufacturing techniques to create flexible sensors with excellent sensitivity at a low cost is still difficult. This paper introduces a low-cost, high-sensitivity glucose sensor (CoS/LPEG) that is prepared by combining liquid-phase exfoliated graphene (LPEG) and cobalt sulfide (CoS) for the first time through Inkjet printing. The glucose sensor demonstrates two linearity ranges in the glucose concentration ranges of 0.001-6.57 mM and 6.57-13.32 mM in NaOH, with sensitivities of 1046 μA mM-1 cm-2 and 477.78 μA mM-1 cm-2, respectively. Meanwhile, in order to reduce dependence on equipment and to control volume flow, we have developed a straightforward microfluidic paper-based electrochemical device (µPEDs). The device enabled a continuous and sequential sample collection, achieving a sensitivity of 4,180 µA·mM-1·cm-2 and a detection limit of 18 nM in artificial sweat within 2 s. Moreover, the electrode exhibited remarkable stability after 200 cycles, maintaining 98.5 % of its initial response. The flexibility test revealed an approximate 2 % rise in peak-to-peak distance following bending tests at a 5 mm radius of curvature. Thus, the approach and method presented in this paper carry substantial implications for the future development and application of wearable sweat sensors.
Collapse
Affiliation(s)
- Ngutor Simon Akiiga
- School of Basic and Applied Science, Egypt-Japan University of Science and Technology, New Borg El Arab City, Alexandria 21934, Egypt; Graphene Center of Excellence, Energy and Electronics Applications, Egypt-Japan University of Science and Technology, New Borg El-Arab, 21934, Egypt.
| | | | - Matsushita Yoshihisa
- School of Basic and Applied Science, Egypt-Japan University of Science and Technology, New Borg El Arab City, Alexandria 21934, Egypt
| | - Ahmed Abd El-Moneim
- School of Basic and Applied Science, Egypt-Japan University of Science and Technology, New Borg El Arab City, Alexandria 21934, Egypt; Graphene Center of Excellence, Energy and Electronics Applications, Egypt-Japan University of Science and Technology, New Borg El-Arab, 21934, Egypt; Physical Chemistry Department, National Research Centre, El-Dokki, Cairo 12622, Egypt.
| |
Collapse
|
3
|
Yang D, Yang R, Liu FY, Zhao J, Qu DH, Chen M. A Reprocessable Dynamic Disulfide Hydrogel for Capacitive Pressure Sensors. Chemistry 2025:e202500407. [PMID: 40249831 DOI: 10.1002/chem.202500407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 04/20/2025]
Abstract
With the rapidly growing demand for wearable sensor devices across a range of applications, sensing technology has been rapidly advancing. However, challenges such as limited sensitivity, device instability, and trade-offs between performance and recyclability remain unaddressed. We report the facile fabrication of a recyclable dynamic disulfide hydrogel from an amphiphilic polyethylene-glycol-based thioctic acid derivative with hydrophilic/hydrophobic characteristics. The hydrogel demonstrates decent thermal stability and adequate mechanical properties, including elasticity, compressibility, and reprocessing capability. It is also integrated into a microstructured capacitive sensor, demonstrating a sensitivity of up to 1.14 kPa-1, rapid response times within 20 ms, and robust functioning stability up to 400 consecutive cycles. These properties make it particularly intriguing for the sustainable development of high-performance wearable sensors.
Collapse
Affiliation(s)
- Ding Yang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, China
| | - Rulin Yang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, China
| | - Fang-Yu Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, China
| | - Jiahui Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, China
| | - Meng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, China
| |
Collapse
|
4
|
Liu Y, Lin J, Wei J, Chen T, Wang W. Skin-like Heterogeneous and Self-Healing Conductive Hydrogel toward Ultrasensitive Marine Sensing. ACS Sens 2025; 10:2276-2286. [PMID: 39998418 DOI: 10.1021/acssensors.4c03619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Flexible wearable electronic devices based on hydrophobic, conductive hydrogels have attracted widespread attention in the field of underwater sensing. However, traditional homogeneous hydrogels tend to compromise their conductivity and sensing performance when achieving hydrophobicity, and the high complexity of marine environments further reduces their sensing performance and service life. Here, we develop a seawater-resistant conductive hydrogel with ultrahigh sensitivity and self-healing ability by the introduction of a skin-like heterogeneous structure, consisting of a hydrophobic outer layer that protects against seawater and a conductive internal layer that senses. Based on a heterogeneous structure obtained through surface hydrophobic modification of confined nitrogen-alkylation reaction, the conductive hydrogel simultaneously achieves satisfying seawater resistance (contact angle of 123.2°), high ionic conductivity (2.86 S m-1), and excellent sensing sensitivity in seawater (GF = 6.15), harmonizing the contradiction between water resistance and sensing of traditional hydrophobic hydrogels. In addition, abundant hydrogen-bonding and dipole-dipole interactions endow the heterogeneous hydrogel with an outstanding self-healing ability, exhibiting high-efficiency self-healing behavior in seawater. Underwater strain sensors constructed with the heterogeneous hydrogel can be used for detecting human motion in simulated seawater environments and real-time signal transmission, showcasing their great potential as wearable electronic devices in the marine sensing field.
Collapse
Affiliation(s)
- Yanan Liu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
- State Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jiehan Lin
- State Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Junjie Wei
- State Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Chen
- State Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Wenqin Wang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
5
|
Wang K, Liu W, Wu J, Li H, Peng H, Zhang J, Ding K, Wang X, Hou C, Zhang H, Luo Y. Smart Wearable Sensor Fuels Noninvasive Body Fluid Analysis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:13279-13301. [PMID: 39969947 DOI: 10.1021/acsami.4c22054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
The advancements in wearable sensor technology have revolutionized noninvasive body fluid monitoring, offering new possibilities for continuous and real-time health assessment. By analyzing body fluids such as sweat, saliva, tears, and interstitial fluid, these technologies provide painless diagnostic alternatives for detecting biomarkers such as glucose, electrolytes, and metabolites. These sensors play a crucial role in early disease detection, chronic condition management, and personalized healthcare. Recent innovations in flexible electronics, microfluidic systems, and biosensing materials have significantly improved the accuracy, reliability, and integration of sensors into everyday textiles. Moreover, the convergence of artificial intelligence and big data analytics has enhanced the precision and personalization of health monitoring systems, transforming wearable sensors into powerful tools for health holographic inspection. Despite significant progress, challenges remain, including improving sensor stability in dynamic environments, achieving real-time data transmission, and covering a broader range of biomarkers. Future research directions focus on enhancing material sustainability through green synthesis, optimizing sampling techniques, and leveraging machine learning to further improve sensor performance. This Review highlights the transformative potential of wearable sensors in medical applications, aiming to bridge gaps in healthcare accessibility and elevate the standards of patient care through noninvasive continuous monitoring technologies.
Collapse
Affiliation(s)
- Kang Wang
- Department of Laboratory Medicine, Chongqing General Hospital, School of Medicine, Chongqing University, Chongqing 401147, China
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China
| | - Wenjing Liu
- Department of Laboratory Medicine, Chongqing General Hospital, School of Medicine, Chongqing University, Chongqing 401147, China
| | - Jingzhi Wu
- Department of Laboratory Medicine, Chongqing General Hospital, School of Medicine, Chongqing University, Chongqing 401147, China
| | - Heng Li
- Department of Laboratory Medicine, Chongqing General Hospital, School of Medicine, Chongqing University, Chongqing 401147, China
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China
| | - Hai Peng
- Department of Laboratory Medicine, Chongqing General Hospital, School of Medicine, Chongqing University, Chongqing 401147, China
| | - Junhui Zhang
- Department of Geriatric Oncology and Department of Palliative Care, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment Chongqing University Cancer Hospital, Chongqing 400030, P. R. China
| | - Ke Ding
- Department of Laboratory Medicine, Chongqing General Hospital, School of Medicine, Chongqing University, Chongqing 401147, China
| | - Xiaoxing Wang
- College of Life Science and Laboratory Medicine, Kunming Medical University, Kunming, Yunnan 650050, P.R. China
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Hong Zhang
- Department of Laboratory Medicine, Chongqing General Hospital, School of Medicine, Chongqing University, Chongqing 401147, China
| | - Yang Luo
- Department of Laboratory Medicine, Chongqing General Hospital, School of Medicine, Chongqing University, Chongqing 401147, China
- College of Life Science and Laboratory Medicine, Kunming Medical University, Kunming, Yunnan 650050, P.R. China
| |
Collapse
|
6
|
Ren J, Li Q, Feng K, Gong J, Li Z, Liu X, Yang L, Zhang J. A wearable sensor based on janus fabric upon an electrochemical analysis platform for sweat glucose detection. Talanta 2025; 284:127236. [PMID: 39581105 DOI: 10.1016/j.talanta.2024.127236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/09/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
Wearable sweat sensing devices have drawn much attention due to their noninvasive and portable properties, which is emerging as a promising technology in daily healthiness assessment issues. A sweat sensor based on Janus fabric and electrochemical analysis is proposed in this work. Unidirectional moisture transported behavior of the Janus fabric serves as the quick-drying component directly contacting skin to transfer sweat toward the detection site. The working electrode was treated by repeated activation of Prussian blue followed by chitosan/single-wall carbon nano tubes/glucose oxidase deposition, ensuring the high electrochemical activity and sensitivity to detect the sweat glucose level. A detection system was established based on the electrochemical analysis of this sweat sensor, which can provide accurate glucose level in the testing samples. The limit of detection (LOD) of the sensor for glucose was 15.32 μM (S/N = 3) and the sensitivity was 3.35 μA/mM. One male subject wears this sensor for intermittent intensity training, outputting the real-time changes in sweat glucose levels, which is consistent with the energy consumption and metabolic status during human exercise. And the sweat glucose level for different subjects was tested to be 35-135 μM, which is coincident with the distribution range of normal human sweat glucose levels.
Collapse
Affiliation(s)
- Jianing Ren
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China
| | - Qiujin Li
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China; National Innovation Center of Advanced Dyeing & Finishing Technology, Tai'an, Shandong 271000, China.
| | - Kexin Feng
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China
| | - Jixian Gong
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China
| | - Zheng Li
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China
| | - Xiuming Liu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China
| | - Li Yang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China.
| | - Jianfei Zhang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China; Key Laboratory of Advanced Textile Composites, Ministry of Education, Tiangong University, Tianjin 300387, China; National Innovation Center of Advanced Dyeing & Finishing Technology, Tai'an, Shandong 271000, China; Collaborative Innovation Center for Eco-Textiles of Shandong Province, Shandong, Qingdao 266071, China
| |
Collapse
|
7
|
Zhang L, Ma B, Xu Z, Zhao Y. Nanofibrous Membrane-Based Stretchable Electrochemical Sweat Sensor for pH Detection. Polymers (Basel) 2025; 17:663. [PMID: 40076153 PMCID: PMC11902454 DOI: 10.3390/polym17050663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Wearable, non-invasive sweat sensors capable of continuously monitoring the pH of sweat, which is a key indicator related to metabolism and homeostasis level, are highly desirable for personal health management. However, ensuring the stability and accuracy of these sensors can be challenging when the body is in motion. In this work, we prepared a stretchable nanofibrous membrane-based electrochemical pH-sensing electrode by embedding carbon nanotubes (MWCNT) and silver nanowires (AgNWs) into an elastic electrospun nanofibrous membrane, followed by polyaniline electrodeposition. The as-prepared pH-sensing electrode showed a high sensitivity of 82.53 mV/pH and high accuracy in ionic solutions with pH ranging from 3 to 7. Notably, the electrode maintained stable sensing performance under deformations, including torsion, bending, and tensile strains up to 30%. Even after 1000 cycles of stretching at a 30% tensile strain, the detection sensitivity remained above 70 mV/pH, indicating its potential application as a wearable electrochemical sensor for monitoring sweat pH in personal health management.
Collapse
Affiliation(s)
- Longzhou Zhang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Baoyuan Ma
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Zhiguang Xu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Yan Zhao
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| |
Collapse
|
8
|
Khonina SN, Kazanskiy NL. Trends and Advances in Wearable Plasmonic Sensors Utilizing Surface-Enhanced Raman Spectroscopy (SERS): A Comprehensive Review. SENSORS (BASEL, SWITZERLAND) 2025; 25:1367. [PMID: 40096150 PMCID: PMC11902420 DOI: 10.3390/s25051367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/21/2025] [Accepted: 02/22/2025] [Indexed: 03/19/2025]
Abstract
Wearable sensors have appeared as a promising solution for real-time, non-invasive monitoring in diverse fields, including healthcare, environmental sensing, and wearable electronics. Surface-enhanced Raman spectroscopy (SERS)-based sensors leverage the unique properties of SERS, such as plasmonic signal enhancement, high molecular specificity, and the potential for single-molecule detection, to detect and identify a wide range of analytes with ultra-high sensitivity and molecular selectivity. However, it is important to note that wearable sensors utilize various sensing mechanisms, and not all rely on SERS technology, as their design depends on the specific application. This comprehensive review highlights the recent trends and advancements in wearable plasmonic sensing technologies, focusing on their design, fabrication, and integration into practical wearable devices. Key innovations in material selection, such as the use of nanomaterials and flexible substrates, have significantly enhanced sensor performance and wearability. Moreover, we discuss challenges such as miniaturization, power consumption, and long-term stability, along with potential solutions to address these issues. Finally, the outlook for wearable plasmonic sensing technologies is presented, emphasizing the need for interdisciplinary research to drive the next generation of smart wearables capable of real-time health diagnostics, environmental monitoring, and beyond.
Collapse
Affiliation(s)
- Svetlana N. Khonina
- Samara National Research University, 34 Moskovskoye Shosse, Samara 443086, Russia;
- Image Processing Systems Institute, NRC “Kurchatov Institute”, 151 Molodogvardeyskaya, Samara 443001, Russia
| | - Nikolay L. Kazanskiy
- Samara National Research University, 34 Moskovskoye Shosse, Samara 443086, Russia;
- Image Processing Systems Institute, NRC “Kurchatov Institute”, 151 Molodogvardeyskaya, Samara 443001, Russia
| |
Collapse
|
9
|
Wang S, Zhai H, Zhang Q, Hu X, Li Y, Xiong X, Ma R, Wang J, Chang Y, Wu L. Trends in Flexible Sensing Technology in Smart Wearable Mechanisms-Materials-Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:298. [PMID: 39997861 PMCID: PMC11858378 DOI: 10.3390/nano15040298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/10/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025]
Abstract
Flexible sensors are revolutionizing our lives as a key component of intelligent wearables. Their pliability, stretchability, and diverse designs enable foldable and portable devices while enhancing comfort and convenience. Advances in materials science have provided numerous options for creating flexible sensors. The core of their application in areas like electronic skin, health medical monitoring, motion monitoring, and human-computer interaction is selecting materials that optimize sensor performance in weight, elasticity, comfort, and flexibility. This article focuses on flexible sensors, analyzing their "sensing mechanisms-materials-applications" framework. It explores their development trajectory, material characteristics, and contributions in various domains such as electronic skin, health medical monitoring, and human-computer interaction. The article concludes by summarizing current research achievements and discussing future challenges and opportunities. Flexible sensors are expected to continue expanding into new fields, driving the evolution of smart wearables and contributing to the intelligent development of society.
Collapse
Affiliation(s)
- Sen Wang
- School of Mechanical Engineering, Yancheng Institute of Technology, Yancheng 224051, China;
| | - Haorui Zhai
- School of Automotive Engineering, Yancheng Institute of Technology, Yancheng 224051, China; (Q.Z.); (Y.L.); (X.X.)
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China;
| | - Qiang Zhang
- School of Automotive Engineering, Yancheng Institute of Technology, Yancheng 224051, China; (Q.Z.); (Y.L.); (X.X.)
| | - Xueling Hu
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (X.H.); (L.W.)
- CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Yujiao Li
- School of Automotive Engineering, Yancheng Institute of Technology, Yancheng 224051, China; (Q.Z.); (Y.L.); (X.X.)
| | - Xin Xiong
- School of Automotive Engineering, Yancheng Institute of Technology, Yancheng 224051, China; (Q.Z.); (Y.L.); (X.X.)
| | - Ruhong Ma
- School of Mechanical Engineering, Yancheng Institute of Technology, Yancheng 224051, China;
| | - Jianlei Wang
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (X.H.); (L.W.)
- CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Ying Chang
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China;
| | - Lixin Wu
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (X.H.); (L.W.)
- CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| |
Collapse
|
10
|
Sun Y, He W, Jiang C, Li J, Liu J, Liu M. Wearable Biodevices Based on Two-Dimensional Materials: From Flexible Sensors to Smart Integrated Systems. NANO-MICRO LETTERS 2025; 17:109. [PMID: 39812886 PMCID: PMC11735798 DOI: 10.1007/s40820-024-01597-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/08/2024] [Indexed: 01/16/2025]
Abstract
The proliferation of wearable biodevices has boosted the development of soft, innovative, and multifunctional materials for human health monitoring. The integration of wearable sensors with intelligent systems is an overwhelming tendency, providing powerful tools for remote health monitoring and personal health management. Among many candidates, two-dimensional (2D) materials stand out due to several exotic mechanical, electrical, optical, and chemical properties that can be efficiently integrated into atomic-thin films. While previous reviews on 2D materials for biodevices primarily focus on conventional configurations and materials like graphene, the rapid development of new 2D materials with exotic properties has opened up novel applications, particularly in smart interaction and integrated functionalities. This review aims to consolidate recent progress, highlight the unique advantages of 2D materials, and guide future research by discussing existing challenges and opportunities in applying 2D materials for smart wearable biodevices. We begin with an in-depth analysis of the advantages, sensing mechanisms, and potential applications of 2D materials in wearable biodevice fabrication. Following this, we systematically discuss state-of-the-art biodevices based on 2D materials for monitoring various physiological signals within the human body. Special attention is given to showcasing the integration of multi-functionality in 2D smart devices, mainly including self-power supply, integrated diagnosis/treatment, and human-machine interaction. Finally, the review concludes with a concise summary of existing challenges and prospective solutions concerning the utilization of 2D materials for advanced biodevices.
Collapse
Affiliation(s)
- Yingzhi Sun
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China
| | - Weiyi He
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Can Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China
| | - Jing Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China.
| | - Jianli Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| | - Mingjie Liu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China
| |
Collapse
|
11
|
Wang C, Guo Y, Han G, Zhou Y, Nyein HYY. Calibration-free and ready-to-use wearable electroanalytical reporting system (r-WEAR) for long-term remote monitoring of electrolytes markers. Biosens Bioelectron 2025; 267:116769. [PMID: 39260101 DOI: 10.1016/j.bios.2024.116769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
A major bottleneck in the development of wearable ion-selective sensors is the inherent conditioning and calibration procedures at the user's end due to the signal's instability and non-uniformity. To address this challenge, we developed a strategy that integrates three interdependent materials and device engineering approaches to realize a Ready-to-use Wearable ElectroAnalytical Reporting system (r-WEAR) for reliable electrolytes monitoring. The strategy collectively utilized (1) finely-configured diffusion-limiting polymers to stabilize the electromotive force in the electrodes, (2) a uniform electrical induction in electrochemical cells to normalize the open-circuit potential (OCP), and (3) an electrical shunt to maintain the OCP across the entire sensor in the r-WEAR. The approaches jointly enable fabrication of homogeneously stable and uniform ion-selective sensors, eliminating common conditioning and calibration practices. As a result, the r-WEAR demonstrated a signal's variation down to ±1.99 mV with a signal drift of 0.5 % per hour (0.12 mV h-1) during a 12-h continuous measurement of 10 sensors and a signal drift as low as 13.3 μV h-1 during storage. On-body evaluations of the r-WEAR for four days without conditioning and re-/calibration further validated the sensor's performance in realistic settings, indicating its remarkable potential for practical usage in a user operation-free manner in wearable healthcare applications.
Collapse
Affiliation(s)
- Chaoqi Wang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, China
| | - Yue Guo
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, China
| | - Ge Han
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, China
| | - Yifan Zhou
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, China
| | - Hnin Yin Yin Nyein
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, China.
| |
Collapse
|
12
|
Duan H, Peng S, He S, Tang S, Goda K, Wang CH, Li M. Wearable Electrochemical Biosensors for Advanced Healthcare Monitoring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411433. [PMID: 39588557 PMCID: PMC11727287 DOI: 10.1002/advs.202411433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/13/2024] [Indexed: 11/27/2024]
Abstract
Recent advancements in wearable electrochemical biosensors have opened new avenues for on-body and continuous detection of biomarkers, enabling personalized, real-time, and preventive healthcare. While glucose monitoring has set a precedent for wearable biosensors, the field is rapidly expanding to include a wider range of analytes crucial for disease diagnosis, treatment, and management. In this review, recent key innovations are examined in the design and manufacturing underpinning these biosensing platforms including biorecognition elements, signal transduction methods, electrode and substrate materials, and fabrication techniques. The applications of these biosensors are then highlighted in detecting a variety of biochemical markers, such as small molecules, hormones, drugs, and macromolecules, in biofluids including interstitial fluid, sweat, wound exudate, saliva, and tears. Additionally, the review also covers recent advances in wearable electrochemical biosensing platforms, such as multi-sensory integration, closed-loop control, and power supply. Furthermore, the challenges associated with critical issues are discussed, such as biocompatibility, biofouling, and sensor degradation, and the opportunities in materials science, nanotechnology, and artificial intelligence to overcome these limitations.
Collapse
Affiliation(s)
- Haowei Duan
- School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Shuhua Peng
- School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Shuai He
- School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Shi‐Yang Tang
- School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Keisuke Goda
- Department of ChemistryThe University of TokyoTokyo113‐0033Japan
- Department of BioengineeringUniversity of CaliforniaLos AngelesCalifornia90095USA
- Institute of Technological SciencesWuhan UniversityHubei430072China
| | - Chun H. Wang
- School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Ming Li
- School of Mechanical and Manufacturing EngineeringThe University of New South WalesSydneyNSW2052Australia
| |
Collapse
|
13
|
Amjad A, Xian X. Optical sensors for transdermal biomarker detection: A review. Biosens Bioelectron 2025; 267:116844. [PMID: 39406072 DOI: 10.1016/j.bios.2024.116844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024]
Abstract
This review has explored optical sensors and their important role in non-invasive transdermal biomarker detection. While electrochemical sensors have been thoroughly studied for biomarker tracking, optical sensors present a compelling alternative due to their high sensitivity and selectivity, multiplex capabilities, cost-efficiency, and small form factor. This review examines the latest advancements in optical sensing technologies for transdermal biomarker detection, such as colorimetry, fluorescence, surface plasmon resonance (SPR), fiber optics, photonic crystals, and Raman spectroscopy. These technologies have been applied in the analysis of biomarkers present in sweat and skin gases, which are essential for non-invasive health monitoring. Furthermore, the review has discussed the challenges and future perspectives of optical sensors in in transdermal biomarker detection. The analysis of various sensor types and their applications highlights the transformative potential of optical sensors in enhancing disease diagnostics and promoting proactive health management.
Collapse
Affiliation(s)
- Amirhossein Amjad
- McComish Department of Electrical Engineering and Computer Science, Jerome J. Lohr College of Engineering, South Dakota State University, Brookings, SD, 57007, USA
| | - Xiaojun Xian
- McComish Department of Electrical Engineering and Computer Science, Jerome J. Lohr College of Engineering, South Dakota State University, Brookings, SD, 57007, USA.
| |
Collapse
|
14
|
Amara U, Xu L, Hussain I, Yang K, Hu H, Ho D. MXene Hydrogels for Soft Multifunctional Sensing: A Synthesis-Centric Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405047. [PMID: 39501918 DOI: 10.1002/smll.202405047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/28/2024] [Indexed: 01/11/2025]
Abstract
Intelligent wearable sensors based on MXenes hydrogels are rapidly advancing the frontier of personalized healthcare management. MXenes, a new class of transition metal carbon/nitride synthesized only a decade ago, have proved to be a promising candidate for soft sensors, advanced human-machine interfaces, and biomimicking systems due to their controllable and high electrical conductivity, as well as their unique mechanical properties as derived from their atomistically thin layered structure. In addition, MXenes' biocompatibility, hydrophilicity, and antifouling properties render them particularly suitable to synergize with hydrogels into a composite for mechanoelectrical functions. Nonetheless, while the use of MXene as a multifunctional surface or an electrical current collector such as an energy device electrode is prevalent, its incorporation into a gel system for the purpose of sensing is vastly less understood and formalized. This review provides a systematic exposition to the synthesis, property, and application of MXene hydrogels for intelligent wearable sensors. Specific challenges and opportunities on the synthesis of MXene hydrogels and their adoption in practical applications are explicitly analyzed and discussed to facilitate cross gemination across disciplines to advance the potential of MXene multifunctional sensing hydrogels.
Collapse
Affiliation(s)
- Umay Amara
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
- Department of Material Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Lingtian Xu
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Kai Yang
- Department of Material Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering, Hong Kong, 999077, China
| | - Haibo Hu
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, China
| | - Derek Ho
- Department of Material Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering, Hong Kong, 999077, China
| |
Collapse
|
15
|
Gathright R, Mejia I, Gonzalez JM, Hernandez Torres SI, Berard D, Snider EJ. Overview of Wearable Healthcare Devices for Clinical Decision Support in the Prehospital Setting. SENSORS (BASEL, SWITZERLAND) 2024; 24:8204. [PMID: 39771939 PMCID: PMC11679471 DOI: 10.3390/s24248204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
Prehospital medical care is a major challenge for both civilian and military situations as resources are limited, yet critical triage and treatment decisions must be rapidly made. Prehospital medicine is further complicated during mass casualty situations or remote applications that require more extensive medical treatments to be monitored. It is anticipated on the future battlefield where air superiority will be contested that prolonged field care will extend to as much 72 h in a prehospital environment. Traditional medical monitoring is not practical in these situations and, as such, wearable sensor technology may help support prehospital medicine. However, sensors alone are not sufficient in the prehospital setting where limited personnel without specialized medical training must make critical decisions based on physiological signals. Machine learning-based clinical decision support systems can instead be utilized to interpret these signals for diagnosing injuries, making triage decisions, or driving treatments. Here, we summarize the challenges of the prehospital medical setting and review wearable sensor technology suitability for this environment, including their use with medical decision support triage or treatment guidance options. Further, we discuss recommendations for wearable healthcare device development and medical decision support technology to better support the prehospital medical setting. With further design improvement and integration with decision support tools, wearable healthcare devices have the potential to simplify and improve medical care in the challenging prehospital environment.
Collapse
Affiliation(s)
| | | | | | | | | | - Eric J. Snider
- Organ Support and Automation Technologies Group, U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, TX 78234, USA
| |
Collapse
|
16
|
Xu Y, Uppal A, Lee MS, Mahato K, Wuerstle BL, Lin M, Djassemi O, Chen T, Lin R, Paul A, Jain S, Chapotot F, Tasali E, Mercier P, Xu S, Wang J, Cauwenberghs G. Earable Multimodal Sensing and Stimulation: A Prospective Towards Unobtrusive Closed-Loop Biofeedback. IEEE Rev Biomed Eng 2024; PP:5-25. [PMID: 40030565 DOI: 10.1109/rbme.2024.3508713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The human ear has emerged as a bidirectional gateway to the brain's and body's signals. Recent advances in around-the-ear and in-ear sensors have enabled the assessment of biomarkers and physiomarkers derived from brain and cardiac activity using ear-electroencephalography (ear-EEG), photoplethysmography (ear-PPG), and chemical sensing of analytes from the ear, with ear-EEG having been taken beyond-the-lab to outer space. Parallel advances in non-invasive and minimally invasive brain stimulation techniques have leveraged the ear's access to two cranial nerves to modulate brain and body activity. The vestibulocochlear nerve stimulates the auditory cortex and limbic system with sound, while the auricular branch of the vagus nerve indirectly but significantly couples to the autonomic nervous system and cardiac output. Acoustic and current mode stimuli delivered using discreet and unobtrusive earables are an active area of research, aiming to make biofeedback and bioelectronic medicine deliverable outside of the clinic, with remote and continuous monitoring of therapeutic responsivity and long-term adaptation. Leveraging recent advances in ear-EEG, transcutaneous auricular vagus nerve stimulation (taVNS), and unobtrusive acoustic stimulation, we review accumulating evidence that combines their potential into an integrated earable platform for closed-loop multimodal sensing and neuromodulation, towards personalized and holistic therapies that are near, in- and around-the-ear.
Collapse
|
17
|
Jin W, Pei J, Cao Y, Zhao H. Intelligent Flexible Pressure Sensors with Improved Sensing Range and Sensitivity Based on 3D-Graphene Patterning Induced by UV Laser. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39560305 DOI: 10.1021/acsami.4c15808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Intelligent flexible sensors are an integral component of the next generation of consumer electronics. However, developing a flexible pressure sensing system that possesses both high sensitivity and a sensing range remains a key challenge in practical applications. Herein, a machine learning-assisted 3D laser-induced graphene (3D-LIG)/polydimethylsiloxane composite flexible pressure sensing system based on ultraviolet (UV) laser integrated fabrication was proposed. Low-cost LIG-based flexible sensors with a 3D carbonized structure were prepared by selective UV laser ablation and laser-induced graphitization. The interlayer interlocking structure, combined with the internal porous structure of LIG, enriches the sensing mechanism, allowing the sensor to exhibit triphasic linear response characteristics, demonstrating a large sensing range (0-500 kPa) and high sensitivity (0-20 kPa, 3.047 kPa-1). Based on machine-learning algorithms, an intelligent wearable sign language translation system was constructed capable of high-precision recognition of complex sign language sequence information. The integration of LIG with 3D microstructures allows a wider space for designing LIG-based flexible sensing structures and offers a promising platform for the development of intelligent wearable devices.
Collapse
Affiliation(s)
- Weiye Jin
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, PR China
- State Key Laboratory of Clean and Efficient Turbomachinery Power Equipment, Tsinghua University, Beijing 100084, PR China
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, PR China
| | - Jiayun Pei
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, PR China
- State Key Laboratory of Clean and Efficient Turbomachinery Power Equipment, Tsinghua University, Beijing 100084, PR China
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, PR China
| | - Yutong Cao
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, PR China
- State Key Laboratory of Clean and Efficient Turbomachinery Power Equipment, Tsinghua University, Beijing 100084, PR China
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, PR China
| | - Haiyan Zhao
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, PR China
- State Key Laboratory of Clean and Efficient Turbomachinery Power Equipment, Tsinghua University, Beijing 100084, PR China
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
18
|
Vo DK, Trinh KTL. Advances in Wearable Biosensors for Healthcare: Current Trends, Applications, and Future Perspectives. BIOSENSORS 2024; 14:560. [PMID: 39590019 PMCID: PMC11592256 DOI: 10.3390/bios14110560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024]
Abstract
Wearable biosensors are a fast-evolving topic at the intersection of healthcare, technology, and personalized medicine. These sensors, which are frequently integrated into clothes and accessories or directly applied to the skin, provide continuous, real-time monitoring of physiological and biochemical parameters such as heart rate, glucose levels, and hydration status. Recent breakthroughs in downsizing, materials science, and wireless communication have greatly improved the functionality, comfort, and accessibility of wearable biosensors. This review examines the present status of wearable biosensor technology, with an emphasis on advances in sensor design, fabrication techniques, and data analysis algorithms. We analyze diverse applications in clinical diagnostics, chronic illness management, and fitness tracking, emphasizing their capacity to transform health monitoring and facilitate early disease diagnosis. Additionally, this review seeks to shed light on the future of wearable biosensors in healthcare and wellness by summarizing existing trends and new advancements.
Collapse
Affiliation(s)
- Dang-Khoa Vo
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea;
| | - Kieu The Loan Trinh
- BioNano Applications Research Center, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
19
|
Hyun A, Takashima M, Hall S, Lee L, Dufficy M, Ruppel H, Ullman A. Wearable biosensors for pediatric hospitals: a scoping review. Pediatr Res 2024:10.1038/s41390-024-03693-4. [PMID: 39511444 DOI: 10.1038/s41390-024-03693-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/26/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024]
Abstract
As wearable biosensors are increasingly used in healthcare settings, this review aimed to identify the types of wearable biosensors used for neonate and pediatric patients and how these biosensors were clinically evaluated. A literature search was conducted using PubMed, CINAHL, Embase, Web of Science, and Cochrane. The studies published between January 2010 and February 2024 were included. Descriptive statistics were used to present counts and percentages of types, locations, clinical evaluation methods, and their results. Seventy-nine studies were included. 104 wearable sensors and 40 devices were identified. The most common type of biosensor was optoelectrical sensors (n = 40, 38.5%), and used to measure heart rate (n = 22, 19.0%). The clinical evaluation was tested by a combination of validity (n = 68, 86.1%) and reliability (n = 14, 17.7%). Only two-thirds of the wearable devices were validated or reported acceptable reliability. The majority of the biosensor studies (n = 51, 64.5%) did not report any complications related to wearable biosensors. The current literature has gaps regarding clinical evaluation and safety of wearable biosensor devices with interchangeable use of validity and reliability terms. There is a lack of comprehensive reporting on complications, highlighting the need for standardized guidelines in the clinical evaluation of biosensor medical devices. IMPACT: The most common types of biosensors in pediatric settings were optoelectrical sensors and electrical sensors. Only two-thirds of the wearable devices were validated or reported acceptable reliability, and more than half of the biosensor studies did not report whether they assessed any complications related to wearable biosensors. This review discovered significant gaps in safety and clinical validation reporting, emphasizing the need for standardized guidelines. The findings advocate for improved reporting clinical validation processes to enhance the safety of wearable biosensors in pediatric care.
Collapse
Affiliation(s)
- Areum Hyun
- School of Nursing and Midwifery, Griffith University, Nathan, Griffith, QLD, Australia.
| | - Mari Takashima
- School of Nursing, Midwifery and Social Work, Faculty of Health and Behavioural Sciences, The University of Queensland, St Lucia, QLD, Australia
- Queensland Children's Hospital, Children's Health Queensland Hospital and Health Service, South Brisbane, QLD, Australia
| | - Stephanie Hall
- School of Nursing, Midwifery and Social Work, Faculty of Health and Behavioural Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Leonard Lee
- School of Nursing, Midwifery and Social Work, Faculty of Health and Behavioural Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Mitchell Dufficy
- School of Nursing, Midwifery and Social Work, Faculty of Health and Behavioural Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Halley Ruppel
- School of Nursing, University of Pennsylvania, Research Institute, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Amanda Ullman
- School of Nursing and Midwifery, Griffith University, Nathan, Griffith, QLD, Australia
- School of Nursing, Midwifery and Social Work, Faculty of Health and Behavioural Sciences, The University of Queensland, St Lucia, QLD, Australia
- Queensland Children's Hospital, Children's Health Queensland Hospital and Health Service, South Brisbane, QLD, Australia
- Nursing and Midwifery Research Centre, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| |
Collapse
|
20
|
Salih IL, Alshatteri AH, Omer KM. Role of wearable electrochemical biosensors in monitoring renal function biomarkers in sweat: a review. ANAL SCI 2024; 40:1969-1986. [PMID: 39093545 DOI: 10.1007/s44211-024-00635-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024]
Abstract
Real-time detection of renal biomarkers is crucial for immediate and continuous monitoring of kidney function, facilitating early diagnosis and intervention in kidney-related disorders. This proactive approach enables timely adjustments in treatment plans, particularly in critical situations, and enhances overall patient care. Wearable devices emerge as a promising solution, enabling non-invasive and real-time data collection. This comprehensive review investigates numerous types of wearable sensors designed to detect kidney biomarkers in body fluids such as sweat. It critically evaluates the precision, dependability, and user-friendliness of these devices, contemplating their seamless integration into daily life for continuous health tracking. The review highlights the potential influence of wearable technology on individualized renal healthcare and its role in preventative medicine while also addressing challenges and future directions. The review's goal is to provide guidance to academics, healthcare professionals, and technologists working on wearable solutions for renal biomarker detection by compiling the body of current knowledge and advancements.
Collapse
Affiliation(s)
- Ibrahim Luqman Salih
- Department of Pharmacy, Raparin Technical and Vocational Institute, Rania, Sulaymaniyah, Kurdistan Region, 46012, Iraq
- Department of Chemistry, College of Science, University of Raparin, RaniaSulaymaniyah, Kurdistan Region, 46012, Iraq
| | - Azad H Alshatteri
- Department of Chemistry, University of Garmian, Darbandikhan Road, Kalar City, Sulaimaniyah, Kurdistan Region, Iraq.
| | - Khalid M Omer
- Department of Chemistry, College of Science, University of Sulaimani, Sulaymaniyah, Kurdistan Region, Iraq
| |
Collapse
|
21
|
Park SH, Pak JJ. LIG-Based High-Sensitivity Multiplexed Sensing System for Simultaneous Monitoring of Metabolites and Electrolytes. SENSORS (BASEL, SWITZERLAND) 2024; 24:6945. [PMID: 39517842 PMCID: PMC11548767 DOI: 10.3390/s24216945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
With improvements in medical environments and the widespread use of smartphones, interest in wearable biosensors for continuous body monitoring is growing. We developed a wearable multiplexed bio-sensing system that non-invasively monitors body fluids and integrates with a smartphone application. The system includes sensors, readout circuits, and a microcontroller unit (MCU) for signal processing and wireless communication. Potentiometric and amperometric measurement methods were used, with calibration capabilities added to ensure accurate readings of analyte concentrations and temperature. Laser-induced graphene (LIG)-based sensors for glucose, lactate, Na+, K+, and temperature were developed for fast, cost-effective production. The LIG electrode's 3D porous structure provided an active surface area 16 times larger than its apparent area, resulting in enhanced sensor performance. The glucose and lactate sensors exhibited high sensitivity (168.15 and 872.08 μAmM-1cm-2, respectively) and low detection limits (0.191 and 0.167 μM, respectively). The Na+ and K+ sensors demonstrated sensitivities of 65.26 and 62.19 mVdec-1, respectively, in a concentration range of 0.01-100 mM. Temperature sensors showed an average rate of resistance change per °C of 0.25%/°C, within a temperature range of 20-40 °C, providing accurate body temperature monitoring.
Collapse
Affiliation(s)
| | - James Jungho Pak
- School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea;
| |
Collapse
|
22
|
Tan SCL, Ning Y, Yu Y, Goh WP, Jiang C, Liu L, Zheng XT, Yang L. Stretchable Sweat Lactate Sensor with Dual-Signal Read-Outs. Chem Asian J 2024; 19:e202400496. [PMID: 39037569 DOI: 10.1002/asia.202400496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/07/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Innovations in wearable sweat sensors hold great promise to provide deeper insights into molecular level health information non-invasively. Lactate, a key metabolite present in sweat, holds immense significance in assessing physiological conditions and performance in sports physiology and health sensing. This paper presents the development and characterization of stretchable electrodes with ultrahigh active surface area of 648 % for lactate sensing. The as-printed stretchable electrodes were functionalized with an electron transfer layer comprising Toluidine Blue O and multi-walled carbon nanotubes (MWCNTs), and an enzymatic layer consisting of lactate dehydrogenase with β-Nicotinamide adenine dinucleotide as the cofactor for lactate selectivity. This sensor achieves a dual-signal read-out in which both electrochemical and fluorescence signals were obtained during lactate detection, demonstrating promising sensor performance in terms of sensitivity and reliability. We demonstrate the robustness of the dual-signal sensor under simulated conditions of physical deformation and shifted excitation. Under these compromised conditions, the performance of the stretchable electrodes remained largely unaffected, showcasing their potential for robust and adaptable sensing platforms in wearable health monitoring applications.
Collapse
Affiliation(s)
- Sherwin Chong Li Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Yuetong Ning
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Republic of Singapore
| | - Yong Yu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Wei Peng Goh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Changyun Jiang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Liyuan Liu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
- Department of Biological Science, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Republic of Singapore
| | - Xin Ting Zheng
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Le Yang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Republic of Singapore
| |
Collapse
|
23
|
Li X, Guan M, Liu Y, Dong H, Li X, Shao C, Lu D, Liu Y. Wearable Inorganic Oxide Chemiresistor Based on Flexible Al 2O 3-Stabilized ZrO 2 Ceramic Sponge Substrate for NO 2 Sensing. ACS Sens 2024; 9:4841-4850. [PMID: 39215743 DOI: 10.1021/acssensors.4c01311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Wearable gas sensors, possessing the advantages of high sensitivity, excellent flexibility, high permeability, low weight, and workability at ambient conditions, hold great promise for real-time health monitoring and early warnings of poisonous gases. However, obtaining high-performance wearable gas sensors utilizing the current well-developed inorganic semiconductor oxide sensing materials is still very limited due to their fragile and rigid nature. Herein, a newly designed wearable gas sensor based on an all-inorganic ASZ (Al2O3-stabilized ZrO2)/ZnO/SnO2 nanofibers is introduced for the first time. The flexible ASZ ceramic sponge substrate (with a Young's modulus of 4.15 MPa) and ultrathin ZnO/SnO2 sensing layer endow the wearable gas sensor with promising properties such as super flexibility (with a bending radius of 5 mm), high gas permeability, and low weight. Furthermore, driven by UV light irradiation, this all-inorganic wearable sensor also demonstrates a stable NO2 sensing response under different bending states at room temperature, which enables the gas sensor to be more compatible with wearable sensing applications. This work offers a general method to achieve a high-performance wearable gas sensor based on inorganic materials and provides new insights into their potential in wearable gas-sensing applications.
Collapse
Affiliation(s)
- Xiaowei Li
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Mengjie Guan
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Yu Liu
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Haipeng Dong
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Xinghua Li
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Changlu Shao
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Dongxiao Lu
- Nanophotonics and Biophotonics Key Laboratory of Jilin Province, Changchun University of Science and Technology, Changchun 130022, China
| | - Yichun Liu
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
24
|
Li C, Zhu W, Ma Y, Zheng H, Zhang X, Li D, Pu Z. A flexible glucose biosensor modified by reduced-swelling and conductive zwitterionic hydrogel enzyme membrane. Anal Bioanal Chem 2024; 416:4849-4860. [PMID: 39008068 DOI: 10.1007/s00216-024-05429-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024]
Abstract
This paper reports a flexible glucose biosensor which is modified by a reduced-swelling and conductive zwitterionic hydrogel enzyme membrane that contains two forms of chemical cross-links. One chemical cross-linking is induced by thermal initiators and forms the basal network of the hydrogel. Another cross-linking is achieved by the coordination interactions between the multivalent metal ion Al3+ and anionic group -COO- of zwitterionic poly-carboxy betaine (pCBMA), which significantly increase the cross-linking density of the zwitterionic hydrogel, improving the reduced-swelling property and reducing the pore size. The better reduced-swelling property and reduced diameters of pores within the zwitterionic hydrogel make less glucose oxidase (GOx) leakage, thus significantly improving the enzyme membrane's service life. By introducing the Al3+ and Cl-, the conductivity of the zwitterionic hydrogel is enhanced approximately 10.4-fold. According to the enhanced conductivity, the reduced-swelling property, and the high GOx loading capacity of the zwitterionic hydrogel, the sensitivity of the biosensor with GOx/pCBMA-Al3+ is significantly improved by 5 times and has a long service life. Finally, the proposed GOx/pCBMA-Al3+ biosensor was applied in non-invasive blood glucose detection on the human body, verifying the capability in practice.
Collapse
Affiliation(s)
- Chengcheng Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Wangwang Zhu
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Yuxiao Ma
- School of Future Technologies, Tianjin University, Tianjin, 300072, China
| | - Hao Zheng
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Xingguo Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Dachao Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Zhihua Pu
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China.
| |
Collapse
|
25
|
Wu B, Wu T, Huang Z, Ji S. Advancing Flexible Sensors through On-Demand Regulation of Supramolecular Nanostructures. ACS NANO 2024; 18:22664-22674. [PMID: 39152049 DOI: 10.1021/acsnano.4c08310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
The evolution of flexible sensors heavily relies on advances in soft-material design and sensing mechanisms. Supramolecular chemistry offers a powerful toolbox for manipulating nanoscale and molecular structures within soft materials, thus fostering recent advancements in flexible sensors and electronics. Supramolecular interactions have been utilized to nanoengineer functional sensing materials or construct chemical sensors with lower cost and broader targets. In this perspective, we will highlight the use of supramolecular interactions to regulate and optimize nanostructures within functional soft materials and illustrate their importance in expanding the nanocavities of bioreceptors for chemical sensing. Overall, a bridge between tissue-mimicking flexible sensors and cell-mimetic supramolecular chemistry has been built, which will further advance human healthcare innovation.
Collapse
Affiliation(s)
- Bohang Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), College of Nano Science and Technology (CNST), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P.R. China
- School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Tong Wu
- School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Zehuan Huang
- School of Materials Science and Engineering, Peking University, Beijing 100871, P.R. China
| | - Shaobo Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), College of Nano Science and Technology (CNST), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, P.R. China
| |
Collapse
|
26
|
Wu X, Yang X, Wang P, Wang Z, Fan X, Duan W, Yue Y, Xie J, Liu Y. Strain-Temperature Dual Sensor Based on Deep Learning Strategy for Human-Computer Interaction Systems. ACS Sens 2024; 9:4216-4226. [PMID: 39068608 DOI: 10.1021/acssensors.4c01202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Thermoelectric (TE) hydrogels, mimicking human skin, possessing temperature and strain sensing capabilities, are well-suited for human-machine interaction interfaces and wearable devices. In this study, a TE hydrogel with high toughness and temperature responsiveness was created using the Hofmeister effect and TE current effect, achieved through the cross-linking of PVA/PAA/carboxymethyl cellulose triple networks. The Hofmeister effect, facilitated by Na+ and SO42- ions coordination, notably increased the hydrogel's tensile strength (800 kPa). Introduction of Fe2+/Fe3+ as redox pairs conferred a high Seebeck coefficient (2.3 mV K-1), thereby enhancing temperature responsiveness. Using this dual-responsive sensor, successful demonstration of a feedback mechanism combining deep learning with a robotic hand was accomplished (with a recognition accuracy of 95.30%), alongside temperature warnings at various levels. It is expected to replace manual work through the control of the manipulator in some high-temperature and high-risk scenarios, thereby improving the safety factor, underscoring the vast potential of TE hydrogel sensors in motion monitoring and human-machine interaction applications.
Collapse
Affiliation(s)
- Xiaolong Wu
- School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding 071000, China
| | - Xiaoyu Yang
- School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding 071000, China
| | - Peng Wang
- School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding 071000, China
- Hebei Key Laboratory of Electric Machinery Health Maintenance & Failure Prevention, North China Electric Power University, Baoding 071003, China
| | - Zinan Wang
- School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding 071000, China
| | - Xiaolong Fan
- School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding 071000, China
| | - Wei Duan
- School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding 071000, China
- Hebei Key Laboratory of Electric Machinery Health Maintenance & Failure Prevention, North China Electric Power University, Baoding 071003, China
| | - Ying Yue
- School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding 071000, China
- Hebei Key Laboratory of Electric Machinery Health Maintenance & Failure Prevention, North China Electric Power University, Baoding 071003, China
| | - Jun Xie
- Department of Electrical Engineering, North China Electric Power University, Baoding 071000, China
| | - Yunpeng Liu
- Department of Electrical Engineering, North China Electric Power University, Baoding 071000, China
| |
Collapse
|
27
|
Imali DY, Perera ECJ, Kaumal MN, Dissanayake DP. Conducting polymer functionalization in search of advanced materials in ionometry: ion-selective electrodes and optodes. RSC Adv 2024; 14:25516-25548. [PMID: 39139237 PMCID: PMC11321474 DOI: 10.1039/d4ra02615b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
Functionalized conducting polymers (FCPs) have recently garnered attention as ion-selective sensor materials, surpassing their intrinsic counterparts due to synergistic effects that lead to enhanced electrochemical and analytical parameters. Following a brief introduction of the fundamental concepts, this article provides a comprehensive review of the recent developments in the application of FCPs in ion-selective electrodes (ISEs) and ion-selective optodes (ISOs), particularly as ion-to-electron transducers, optical transducers, and ion-selective membranes. Utilizing FCPs in these devices offers a promising avenue for detecting and measuring ions in various applications, regardless of the sample nature and composition. Research has focused on functionalizing different conducting polymers, such as polyaniline and polypyrrole, through strategies such as doping and derivatization to alter their hydrophobicity, conductance, redox capacitance, surface area, pH sensitivity, gas and light sensitivity, etc. These modifications aim to enhance performance outcomes, including potential stability/emission signal stability, reproducibility and low detection limits. The advancements have led to the transition of ISEs from conventional zero-current potentiometric ion sensing to innovative current-triggered sensing approaches, enabling calibration-free applications and emerging concepts such as opto-electro dual sensing systems. The intrinsic pH cross-response and instability of the optical signal of ISOs have been overcome through the novel optical signal transduction mechanisms facilitated by FCPs. In this review, the characteristics of materials, functionalization approaches, particular implementation strategies, specific performance outcomes and challenges faced are discussed. Consolidating dispersed information in the field, the in-depth analysis presented here is poised to drive further innovations by broadening the scope of ion-selective sensors in real-world scenarios.
Collapse
Affiliation(s)
- D Yureka Imali
- Department of Chemistry, University of Colombo Colombo 03 Sri Lanka
| | | | - M N Kaumal
- Department of Chemistry, University of Colombo Colombo 03 Sri Lanka
| | | |
Collapse
|
28
|
Amers EL, Orme BV, Shi Y, Torun H, Dodd LE. Embroidered Interdigitated Electrodes (IDTs) with Wireless Readout for Continuous Biomarker Monitoring. SENSORS (BASEL, SWITZERLAND) 2024; 24:4643. [PMID: 39066041 PMCID: PMC11280827 DOI: 10.3390/s24144643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
Non-invasive continuous health monitoring has become feasible with the advancement of biosensors. While monitoring certain biomarkers such as heart rate or skin temperature are now at a certain maturity, monitoring molecular biomarkers is still challenging. Progress has been shown in sampling, measurement, and interpretation of data toward non-invasive molecular sensors that can be integrated into daily wearable items. Toward this goal, this paper explores the potential of embroidered interdigitated transducer (IDT)-based sensors for non-invasive, continuous monitoring of human biomarkers, particularly glucose levels, in human sweat. The study employs innovative embroidery techniques to create flexible fabric-based sensors with gold-coated IDTs. In controlled experiments, we have shown the variation of glucose concentration in water can be wirelessly detected by tracking the resonant frequency of the embroidered sensors. The current sensors operate at 1.8 GHz to 2 GHz and respond to the change in glucose concentration with a sensitivity of 0.17 MHz/(mg/dL). The embroidered IDT-based sensors with wireless sensing will be a new measurement modality for molecular wearable sensors. The establishment of a wireless sensing mechanism for embroidered IDT-based sensors will be followed by an investigation of sweat for molecular detection. This will require adding functionalities for sampling and interpretation of acquired data. We envisage the embroidered IDT-based sensors offer a unique approach for seamless integration into clothing, paving the way for personalised, continuous health data capture.
Collapse
Affiliation(s)
- Emmy L. Amers
- Smart Materials & Surfaces Laboratory—E-Textiles Centre, Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, UK (H.T.)
| | - Bethany V. Orme
- Smart Materials & Surfaces Laboratory—E-Textiles Centre, Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, UK (H.T.)
| | - Yuyuan Shi
- Digital Textile Lab, School of Design, Faculty of Arts, Design and Social Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Hamdi Torun
- Smart Materials & Surfaces Laboratory—E-Textiles Centre, Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, UK (H.T.)
| | - Linzi E. Dodd
- Smart Materials & Surfaces Laboratory—E-Textiles Centre, Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, UK (H.T.)
| |
Collapse
|
29
|
Kong L, Li W, Zhang T, Ma H, Cao Y, Wang K, Zhou Y, Shamim A, Zheng L, Wang X, Huang W. Wireless Technologies in Flexible and Wearable Sensing: From Materials Design, System Integration to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400333. [PMID: 38652082 DOI: 10.1002/adma.202400333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/07/2024] [Indexed: 04/25/2024]
Abstract
Wireless and wearable sensors attract considerable interest in personalized healthcare by providing a unique approach for remote, noncontact, and continuous monitoring of various health-related signals without interference with daily life. Recent advances in wireless technologies and wearable sensors have promoted practical applications due to their significantly improved characteristics, such as reduction in size and thickness, enhancement in flexibility and stretchability, and improved conformability to the human body. Currently, most researches focus on active materials and structural designs for wearable sensors, with just a few exceptions reflecting on the technologies for wireless data transmission. This review provides a comprehensive overview of the state-of-the-art wireless technologies and related studies on empowering wearable sensors. The emerging functional nanomaterials utilized for designing unique wireless modules are highlighted, which include metals, carbons, and MXenes. Additionally, the review outlines the system-level integration of wireless modules with flexible sensors, spanning from novel design strategies for enhanced conformability to efficient transmitting data wirelessly. Furthermore, the review introduces representative applications for remote and noninvasive monitoring of physiological signals through on-skin and implantable wireless flexible sensing systems. Finally, the challenges, perspectives, and unprecedented opportunities for wireless and wearable sensors are discussed.
Collapse
Affiliation(s)
- Lingyan Kong
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Weiwei Li
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Tinghao Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Huihui Ma
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Yunqiang Cao
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Kexin Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Yilin Zhou
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Atif Shamim
- IMPACT Lab, Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Lu Zheng
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Xuewen Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
- Key Laboratory of Flexible Electronics(KLoFE)and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, China
| |
Collapse
|
30
|
Fuchs S, Caserto JS, Liu Q, Wang K, Shariati K, Hartquist CM, Zhao X, Ma M. A Glucose-Responsive Cannula for Automated and Electronics-Free Insulin Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403594. [PMID: 38639424 PMCID: PMC11223976 DOI: 10.1002/adma.202403594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/12/2024] [Indexed: 04/20/2024]
Abstract
Automated delivery of insulin based on continuous glucose monitoring is revolutionizing the way insulin-dependent diabetes is treated. However, challenges remain for the widespread adoption of these systems, including the requirement of a separate glucose sensor, sophisticated electronics and algorithms, and the need for significant user input to operate these costly therapies. Herein, a user-centric glucose-responsive cannula is reported for electronics-free insulin delivery. The cannula-made from a tough, elastomer-hydrogel hybrid membrane formed through a one-pot solvent exchange method-changes permeability to release insulin rapidly upon physiologically relevant varying glucose levels, providing simple and automated insulin delivery with no additional hardware or software. Two prototypes of the cannula are evaluated in insulin-deficient diabetic mice. The first cannula-an ends-sealed, subcutaneously inserted prototype-normalizes blood glucose levels for 3 d and controls postprandial glucose levels. The second, more translational version-a cannula with the distal end sealed and the proximal end connected to a transcutaneous injection port-likewise demonstrates tight, 3-d regulation of blood glucose levels when refilled twice daily. This proof-of-concept study may aid in the development of "smart" cannulas and next-generation insulin therapies at a reduced burden-of-care toll and cost to end-users.
Collapse
Affiliation(s)
- Stephanie Fuchs
- Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Julia S. Caserto
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca NY, 14853, USA
| | - Qingsheng Liu
- Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Kecheng Wang
- Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Kaavian Shariati
- Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Chase M. Hartquist
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Minglin Ma
- Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
31
|
Mota FAR, Passos MLC, Santos JLM, Saraiva MLMFS. Comparative analysis of electrochemical and optical sensors for detection of chronic wounds biomarkers: A review. Biosens Bioelectron 2024; 251:116095. [PMID: 38382268 DOI: 10.1016/j.bios.2024.116095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/23/2024]
Abstract
Chronic wounds (CW) present a significant healthcare challenge due to their prolonged healing time and associated complications. To effectively treat these wounds and prevent further deterioration, monitoring their healing progress is crucial. Traditional wound assessment methods relying on visual inspection and subjective evaluation are prone to inter-observer variability. Biomarkers play a critical role in objectively evaluating wound status and predicting healing outcomes, providing quantitative measures of wound healing progress, inflammation, infection, and tissue regeneration. Recent attention has been devoted to identifying and validating CW biomarkers. Various studies have investigated potential biomarkers, including growth factors, cytokines, proteases, and extracellular matrix components, shedding light on the complex molecular and cellular processes within CW. This knowledge enables a more targeted and personalized approach to wound management. Accurate and sensitive techniques are necessary for detecting CW biomarkers. Thus, this review compares and discusses the use of electrochemical and optical sensors for biomarker determination. The advantages and disadvantages of these sensors are highlighted. Differences in detection capabilities and characteristics such as non-invasiveness, portability, high sensitivity, specificity, simplicity, cost-effectiveness, compatibility with point-of-care applications, and real-time monitoring of wound biomarkers will be pointed out and compared. In summary, this work provides an overview of CW, explores the emerging field of CW biomarkers, and discusses methods for detecting these biomarkers, with a specific focus on optical and electrochemical sensors. The potential of further research and development in this field for advancing wound care and improving patient outcomes will also be noted.
Collapse
Affiliation(s)
- Fátima A R Mota
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no 228, Porto, 4050-313, Portugal.
| | - Marieta L C Passos
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no 228, Porto, 4050-313, Portugal.
| | - João L M Santos
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no 228, Porto, 4050-313, Portugal.
| | - M Lúcia M F S Saraiva
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no 228, Porto, 4050-313, Portugal.
| |
Collapse
|
32
|
Díaz-Fernández A, de-Los-Santos-Álvarez N, Lobo-Castañón MJ. Capacitive spectroscopy as transduction mechanism for wearable biosensors: opportunities and challenges. Anal Bioanal Chem 2024; 416:2089-2095. [PMID: 38093115 PMCID: PMC10950950 DOI: 10.1007/s00216-023-05066-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 03/21/2024]
Abstract
Wearable sensors would revolutionize healthcare and personalized medicine by providing individuals with continuous and real-time data about their bodies and environments. Their integration into everyday life has the potential to enhance well-being, improve healthcare outcomes, and offer new opportunities for research. Capacitive sensors technology has great potential to enrich wearable devices, extending their use to more accurate physiological indicators. On the basis of capacitive sensors developed so far to monitor physical parameters, and taking into account the advances in capacitive biosensors, this work discusses the benefits of this type of transduction to design wearables for the monitoring of biomolecules. Moreover, it provides insights into the challenges that must be overcome to take advantage of capacitive transduction in wearable sensors for health.
Collapse
Affiliation(s)
- Ana Díaz-Fernández
- Departamento de Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma, 33011, Oviedo, Spain
| | - Noemí de-Los-Santos-Álvarez
- Departamento de Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma, 33011, Oviedo, Spain
| | - María Jesús Lobo-Castañón
- Departamento de Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, 33006, Oviedo, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma, 33011, Oviedo, Spain.
| |
Collapse
|
33
|
Wu J, Akinin A, Somayajulu J, Lee MS, Paul A, Lu H, Park Y, Kim SJ, Mercier PP, Cauwenberghs G. A Low-Noise Low-Power 0.001Hz-1kHz Neural Recording System-on-Chip With Sample-Level Duty-Cycling. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2024; 18:263-273. [PMID: 38408002 PMCID: PMC11062612 DOI: 10.1109/tbcas.2024.3368068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Advances in brain-machine interfaces and wearable biomedical sensors for healthcare and human-computer interactions call for precision electrophysiology to resolve a variety of biopotential signals across the body that cover a wide range of frequencies, from the mHz-range electrogastrogram (EGG) to the kHz-range electroneurogram (ENG). Existing integrated wearable solutions for minimally invasive biopotential recordings are limited in detection range and accuracy due to trade-offs in bandwidth, noise, input impedance, and power consumption. This article presents a 16-channel wide-band ultra-low-noise neural recording system-on-chip (SoC) fabricated in 65nm CMOS for chronic use in mobile healthcare settings that spans a bandwidth of 0.001 Hz to 1 kHz through a featured sample-level duty-cycling (SLDC) mode. Each recording channel is implemented by a delta-sigma analog-to-digital converter (ADC) achieving 1.0 μ V rms input-referred noise over 1Hz-1kHz bandwidth with a Noise Efficiency Factor (NEF) of 2.93 in continuous operation mode. In SLDC mode, the power supply is duty-cycled while maintaining consistently low input-referred noise levels at ultra-low frequencies (1.1 μV rms over 0.001Hz-1Hz) and 435 M Ω input impedance. The functionalities of the proposed SoC are validated with two human electrophysiology applications: recording low-amplitude electroencephalogram (EEG) through electrodes fixated on the forehead to monitor brain waves, and ultra-slow-wave electrogastrogram (EGG) through electrodes fixated on the abdomen to monitor digestion.
Collapse
|
34
|
Martínez-Navarrete M, Pérez-López A, Guillot AJ, Cordeiro AS, Melero A, Aparicio-Blanco J. Latest advances in glucose-responsive microneedle-based systems for transdermal insulin delivery. Int J Biol Macromol 2024; 263:130301. [PMID: 38382776 DOI: 10.1016/j.ijbiomac.2024.130301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/11/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
The development of a self-regulated minimally invasive system for insulin delivery can be considered as the holy grail in the field of diabetes mellitus. A delivery system capable of releasing insulin in response to blood glucose levels would significantly improve the quality of life of diabetic patients, eliminating the need for frequent finger-prick tests and providing better glycaemic control with lower risk of hypoglycaemia. In this context, the latest advances in glucose-responsive microneedle-based transdermal insulin delivery are here compiled with a thorough analysis of the delivery mechanisms and challenges lying ahead in their clinical translation. Two main groups of microneedle-based systems have been developed so far: glucose oxidase-containing and phenylboronic acid-containing systems. Both strategies in combination have also been tested and two other novel strategies are under development, namely electronic closed-loop and glucose transporter-based systems. Results from preclinical studies conducted using these different types of glucose-triggered release systems are comprehensively discussed. Altogether, this analysis from both a mechanistic and translational perspective will provide rationale and/or guidance for future trends in the research hotspot of glucose-responsive microneedle-based insulin delivery systems.
Collapse
Affiliation(s)
- Miquel Martínez-Navarrete
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Valencia, Spain
| | - Alexandre Pérez-López
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Antonio José Guillot
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Valencia, Spain
| | - Ana Sara Cordeiro
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Ana Melero
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Valencia, Spain
| | - Juan Aparicio-Blanco
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain; Institute of Industrial Pharmacy, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
35
|
Sharma A, Eadi SB, Noothalapati H, Otyepka M, Lee HD, Jayaramulu K. Porous materials as effective chemiresistive gas sensors. Chem Soc Rev 2024; 53:2530-2577. [PMID: 38299314 DOI: 10.1039/d2cs00761d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Chemiresistive gas sensors (CGSs) have revolutionized the field of gas sensing by providing a low-power, low-cost, and highly sensitive means of detecting harmful gases. This technology works by measuring changes in the conductivity of materials when they interact with a testing gas. While semiconducting metal oxides and two-dimensional (2D) materials have been used for CGSs, they suffer from poor selectivity to specific analytes in the presence of interfering gases and require high operating temperatures, resulting in high signal-to-noise ratios. However, nanoporous materials have emerged as a promising alternative for CGSs due to their high specific surface area, unsaturated metal actives, and density of three-dimensional inter-connected conductive and pendant functional groups. Porous materials have demonstrated excellent response and recovery times, remarkable selectivity, and the ability to detect gases at extremely low concentrations. Herein, our central emphasis is on all aspects of CGSs, with a primary focus on the use of porous materials. Further, we discuss the basic sensing mechanisms and parameters, different types of popular sensing materials, and the critical explanations of various mechanisms involved throughout the sensing process. We have provided examples of remarkable performance demonstrated by sensors using these materials. In addition to this, we compare the performance of porous materials with traditional metal-oxide semiconductors (MOSs) and 2D materials. Finally, we discussed future aspects, shortcomings, and scope for improvement in sensing performance, including the use of metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), and porous organic polymers (POPs), as well as their hybrid counterparts. Overall, CGSs using porous materials have the potential to address a wide range of applications, including monitoring water quality, detecting harmful chemicals, improving surveillance, preventing natural disasters, and improving healthcare.
Collapse
Affiliation(s)
- Akashdeep Sharma
- Hybrid Porous Materials Laboratory, Department of Chemistry, Indian Institute of Technology Jammu, Jammu & Kashmir, 181221, India.
| | - Sunil Babu Eadi
- Department of Electronics Engineering, Chungnam National University, Daejeon, South Korea.
| | - Hemanth Noothalapati
- Faculty of Life and Environmental Sciences, Shimane University, Matsue, 690-8504, Japan
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
- IT4Innovations, VSB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Hi-Deok Lee
- Department of Electronics Engineering, Chungnam National University, Daejeon, South Korea.
- Korea Sensor Lab, Department of Electronics Engineering, Chungnam National University, Daejeon, South Korea
| | - Kolleboyina Jayaramulu
- Hybrid Porous Materials Laboratory, Department of Chemistry, Indian Institute of Technology Jammu, Jammu & Kashmir, 181221, India.
| |
Collapse
|
36
|
Yue O, Wang X, Xie L, Bai Z, Zou X, Liu X. Biomimetic Exogenous "Tissue Batteries" as Artificial Power Sources for Implantable Bioelectronic Devices Manufacturing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307369. [PMID: 38196276 PMCID: PMC10953594 DOI: 10.1002/advs.202307369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/27/2023] [Indexed: 01/11/2024]
Abstract
Implantable bioelectronic devices (IBDs) have gained attention for their capacity to conformably detect physiological and pathological signals and further provide internal therapy. However, traditional power sources integrated into these IBDs possess intricate limitations such as bulkiness, rigidity, and biotoxicity. Recently, artificial "tissue batteries" (ATBs) have diffusely developed as artificial power sources for IBDs manufacturing, enabling comprehensive biological-activity monitoring, diagnosis, and therapy. ATBs are on-demand and designed to accommodate the soft and confining curved placement space of organisms, minimizing interface discrepancies, and providing ample power for clinical applications. This review presents the near-term advancements in ATBs, with a focus on their miniaturization, flexibility, biodegradability, and power density. Furthermore, it delves into material-screening, structural-design, and energy density across three distinct categories of TBs, distinguished by power supply strategies. These types encompass innovative energy storage devices (chemical batteries and supercapacitors), power conversion devices that harness power from human-body (biofuel cells, thermoelectric nanogenerators, bio-potential devices, piezoelectric harvesters, and triboelectric devices), and energy transfer devices that receive and utilize external energy (radiofrequency-ultrasound energy harvesters, ultrasound-induced energy harvesters, and photovoltaic devices). Ultimately, future challenges and prospects emphasize ATBs with the indispensability of bio-safety, flexibility, and high-volume energy density as crucial components in long-term implantable bioelectronic devices.
Collapse
Affiliation(s)
- Ouyang Yue
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi University of Science &TechnologyXi'anShaanxi710021China
| | - Xuechuan Wang
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
- College of Chemistry and Chemical EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
| | - Long Xie
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
- College of Chemistry and Chemical EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
| | - Zhongxue Bai
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi University of Science &TechnologyXi'anShaanxi710021China
| | - Xiaoliang Zou
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi University of Science &TechnologyXi'anShaanxi710021China
| | - Xinhua Liu
- College of Bioresources Chemical and Materials EngineeringShaanxi University of Science & TechnologyXi'anShaanxi710021China
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi University of Science &TechnologyXi'anShaanxi710021China
| |
Collapse
|
37
|
Park J, Lee Y, Cho S, Choe A, Yeom J, Ro YG, Kim J, Kang DH, Lee S, Ko H. Soft Sensors and Actuators for Wearable Human-Machine Interfaces. Chem Rev 2024; 124:1464-1534. [PMID: 38314694 DOI: 10.1021/acs.chemrev.3c00356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Haptic human-machine interfaces (HHMIs) combine tactile sensation and haptic feedback to allow humans to interact closely with machines and robots, providing immersive experiences and convenient lifestyles. Significant progress has been made in developing wearable sensors that accurately detect physical and electrophysiological stimuli with improved softness, functionality, reliability, and selectivity. In addition, soft actuating systems have been developed to provide high-quality haptic feedback by precisely controlling force, displacement, frequency, and spatial resolution. In this Review, we discuss the latest technological advances of soft sensors and actuators for the demonstration of wearable HHMIs. We particularly focus on highlighting material and structural approaches that enable desired sensing and feedback properties necessary for effective wearable HHMIs. Furthermore, promising practical applications of current HHMI technology in various areas such as the metaverse, robotics, and user-interactive devices are discussed in detail. Finally, this Review further concludes by discussing the outlook for next-generation HHMI technology.
Collapse
Affiliation(s)
- Jonghwa Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Youngoh Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Seungse Cho
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Ayoung Choe
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Jeonghee Yeom
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Yun Goo Ro
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Jinyoung Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Dong-Hee Kang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Seungjae Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Hyunhyub Ko
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| |
Collapse
|
38
|
Lv M, Qiao X, Li Y, Zeng X, Luo X. A stretchable wearable sensor with dual working electrodes for reliable detection of uric acid in sweat. Anal Chim Acta 2024; 1287:342154. [PMID: 38182356 DOI: 10.1016/j.aca.2023.342154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/07/2024]
Abstract
Wearable sweat sensors with stretch capabilities and robust performances are desired for continuous monitoring of human health, and it remains a challenge for sweat sensors to detect targets reliably in both static and dynamic states. Herein, a flexible sweat sensor was created using a cost-effective approach involving the utilization of three-dimensional graphene foam and polydimethylsiloxane (PDMS). The flexible electrochemical sensor was fabricated based on PDMS and Pt/Pd nanoparticles modified 3D graphene foam for the detection of uric acid in sweat. Pt/Pd nanoparticles were electrodeposited on the graphene foam to markedly enhance the electrocatalytic activity for uric acid detection. The graphene foam with excellent electrical property and high porosity, and PDMS with an ideal mechanical property endow the sensing device with high stretchability (tolerable strain up to 110 %), high sensitivity (0.87 μA μM-1 cm-2), and stability (remaining unchanged for more than 5000 cycles) for daily wear. To eliminate possible interferences, the wearable sensor was designed with dual working electrodes, and their response difference ensured reliable and accurate detection of targets. This strategy of constructing sweat sensors with dual working electrodes based on the flexible composite material represents a promising way for the development of robust wearable sensing devices.
Collapse
Affiliation(s)
- Mingrui Lv
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Xiujuan Qiao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Yanxin Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Xianghua Zeng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China.
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China.
| |
Collapse
|
39
|
Zhang Y, Tang Q, Zhou J, Zhao C, Li J, Wang H. Conductive and Eco-friendly Biomaterials-based Hydrogels for Noninvasive Epidermal Sensors: A Review. ACS Biomater Sci Eng 2024; 10:191-218. [PMID: 38052003 DOI: 10.1021/acsbiomaterials.3c01003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
As noninvasive wearable electronic devices, epidermal sensors enable continuous, real-time, and remote monitoring of various human physiological parameters. Conductive biomaterials-based hydrogels as sensor matrix materials have good biocompatibility, biodegradability, and efficient stimulus response capabilities and are widely applied in motion monitoring, healthcare, and human-machine interaction. However, biomass hydrogel-based epidermal sensing devices still need excellent mechanical properties, prolonged stability, multifunctionality, and extensive practicality. Therefore, this paper reviews the common biomass hydrogel materials for epidermal sensing (proteins, polysaccharides, polyphenols, etc.) and the various types of noninvasive sensing devices (strain/pressure sensors, temperature sensors, glucose sensors, electrocardiograms, etc.). Moreover, this review focuses on the strategies of scholars to enhance sensor properties, such as strength, conductivity, stability, adhesion, and self-healing ability. This work will guide the preparation and optimization of high-performance biomaterials-based hydrogel epidermal sensors.
Collapse
Affiliation(s)
- Yibo Zhang
- School of Information Science and Technology, Qingdao University of Science and Technology, Qingdao 266061, China
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China
| | - Qianhui Tang
- School of Marine Technology and Environment, Dalian Ocean University, 52 Heishijiao Street, Dalian, Liaoning 116023, P. R. China
| | - Junyang Zhou
- School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chenghao Zhao
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China
| | - Jingpeng Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China
| | - Haiting Wang
- School of Information Science and Technology, Qingdao University of Science and Technology, Qingdao 266061, China
| |
Collapse
|
40
|
Ehtesabi H, Kalji SO. Carbon nanomaterials for sweat-based sensors: a review. Mikrochim Acta 2024; 191:77. [PMID: 38177621 DOI: 10.1007/s00604-023-06162-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024]
Abstract
Sweat is easily accessible from the human skin's surface. It is secreted by the eccrine glands and contains a wealth of physiological information, including metabolites and electrolytes like glucose and Na ions. Sweat is a particularly useful biofluid because of its easy and non-invasive access, unlike other biofluids, like blood. On the other hand, nanomaterials have started to show promise operation as a competitive substitute for biosensors and molecular sensors throughout the last 10 years. Among the most synthetic nanomaterials that are studied, applied, and discussed, carbon nanomaterials are special. They are desirable candidates for sensor applications because of their many intrinsic electrical, magnetic, and optical characteristics; their chemical diversity and simplicity of manipulation; their biocompatibility; and their effectiveness as a chemically resistant platform. Carbon nanofibers (CNFs), carbon dots (CDs), carbon nanotubes (CNTs), and graphene have been intensively investigated as molecular sensors or as components that can be integrated into devices. In this review, we summarize recent advances in the use of carbon nanomaterials as sweat sensors and consider how they can be utilized to detect a diverse range of analytes in sweat, such as glucose, ions, lactate, cortisol, uric acid, and pH.
Collapse
Affiliation(s)
- Hamide Ehtesabi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Seyed-Omid Kalji
- Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
41
|
Yang D, Shao T, Wang X, Hong M, Li R, Li C, Yue Q. N-doped carbon dots for the determination of Al 3+ and Fe 3+ using aggregation-induced emission. Mikrochim Acta 2024; 191:78. [PMID: 38182922 DOI: 10.1007/s00604-023-06143-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024]
Abstract
New portable hydrogel sensors for Al3+ and Fe3+ detection were designed based on the aggregation-induced emission (AIE) and color change of N-doped carbon dots (N-CDs). N-CDs with yellow fluorescence were prepared by a one-pot hydrothermal method from 2,5-dihydroxyterephthalic acid and acrylamide. The fluorescence of N-CDs was enhanced by Al3+ about 20 times and quenched by Fe3+. It was interesting that although Fe3+ showed obvious quenching on the fluorescence of N-CDs it did not cause a noticeable change in the fluorescence of N-CDs + Al3+. The colorless solution of N-CDs appeared blue in the presence of Fe3+ without the influence of Al3+. Therefore, the turn-on fluorometry and colorimetry systems based on N-CDs were constructed for the simultaneous detection of Al3+ and Fe3+. Furthermore, the portable sensing of Al3+ and Fe3+ was realized with the assistance of hydrogel, filter paper, cellulose acetate, and cellulose nitrate film. The proposed approach was successfully applied to the detection of Al3+ and Fe3+ in food samples and cell imaging.
Collapse
Affiliation(s)
- Dou Yang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Tong Shao
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Xiaoshuang Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Min Hong
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Rui Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Chenzhong Li
- Biomedical Engineering, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Qiaoli Yue
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China.
| |
Collapse
|
42
|
Pour SRS, Calabria D, Emamiamin A, Lazzarini E, Pace A, Guardigli M, Zangheri M, Mirasoli M. Microfluidic-Based Non-Invasive Wearable Biosensors for Real-Time Monitoring of Sweat Biomarkers. BIOSENSORS 2024; 14:29. [PMID: 38248406 PMCID: PMC10813635 DOI: 10.3390/bios14010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024]
Abstract
Wearable biosensors are attracting great interest thanks to their high potential for providing clinical-diagnostic information in real time, exploiting non-invasive sampling of biofluids. In this context, sweat has been demonstrated to contain physiologically relevant biomarkers, even if it has not been exhaustively exploited till now. This biofluid has started to gain attention thanks to the applications offered by wearable biosensors, as it is easily collectable and can be used for continuous monitoring of some parameters. Several studies have reported electrochemical and optical biosensing strategies integrated with flexible, biocompatible, and innovative materials as platforms for biospecific recognition reactions. Furthermore, sampling systems as well as the transport of fluids by microfluidics have been implemented into portable and compact biosensors to improve the wearability of the overall analytical device. In this review, we report and discuss recent pioneering works about the development of sweat sensing technologies, focusing on opportunities and open issues that can be decisive for their applications in routine-personalized healthcare practices.
Collapse
Affiliation(s)
- Seyedeh Rojin Shariati Pour
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, I-47922 Rimini, Italy; (S.R.S.P.); (A.E.)
| | - Donato Calabria
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy; (D.C.); (E.L.); (A.P.); (M.G.)
- Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum, University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
| | - Afsaneh Emamiamin
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, I-47922 Rimini, Italy; (S.R.S.P.); (A.E.)
| | - Elisa Lazzarini
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy; (D.C.); (E.L.); (A.P.); (M.G.)
| | - Andrea Pace
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy; (D.C.); (E.L.); (A.P.); (M.G.)
| | - Massimo Guardigli
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Via Francesco Selmi 2, I-40126 Bologna, Italy; (D.C.); (E.L.); (A.P.); (M.G.)
- Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum, University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
- Interdepartmental Centre for Industrial Research in Renewable Resources, Environment, Sea, and Energy (CIRI FRAME), Alma Mater Studiorum, University of Bologna, Via Sant’Alberto 163, I-48123 Ravenna, Italy
| | - Martina Zangheri
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, I-47922 Rimini, Italy; (S.R.S.P.); (A.E.)
- Interdepartmental Centre for Industrial Agrofood Research (CIRI AGRO), Alma Mater Studiorum—University of Bologna, Via Quinto Bucci 336, I-47521 Cesena, Italy
- Interdepartmental Centre for Industrial Research in Advanced Mechanical Engineering Applications and Materials Technology (CIRI MAM), Alma Mater Studiorum, University of Bologna, Viale Risorgimento 2, I-40136 Bologna, Italy
| | - Mara Mirasoli
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum, University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, I-47922 Rimini, Italy; (S.R.S.P.); (A.E.)
- Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum, University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
- Interdepartmental Centre for Industrial Research in Renewable Resources, Environment, Sea, and Energy (CIRI FRAME), Alma Mater Studiorum, University of Bologna, Via Sant’Alberto 163, I-48123 Ravenna, Italy
| |
Collapse
|
43
|
TABATA M, MIYAHARA Y. Control of interface functions in solid-state biosensors for stable detection of molecular recognition. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2024; 100:32-56. [PMID: 38199246 PMCID: PMC10864167 DOI: 10.2183/pjab.100.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/25/2023] [Indexed: 01/12/2024]
Abstract
Significant progress has been achieved in the field of solid-state biosensors over the past 50 years. Various sensing devices with high-density integration and flexible configuration, as well as new applications for clinical diagnosis and healthcare, have been developed using blood, serum, and other body fluids such as sweat, tears, and saliva. A high-density array of ion-sensitive field effect transistors was developed by exploiting the advantages of advanced semiconductor technologies and commercialized in combination with an enzymatic primer extension reaction as a DNA sequencer in 2011. Different types of materials such as inorganic materials, metals, polymers, and biomolecules are mixed together on the surface of the gate while maintaining their own functions; therefore, compatibility among different materials has to be optimized so that the best detection performance of solid-state biosensors, including stability and reliability, is achieved as designed. Solid-state biosensors are suitable for the rapid, cost-effective, and noninvasive identification of biomarkers at various timepoints over the course of a disease.
Collapse
Affiliation(s)
- Miyuki TABATA
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Yuji MIYAHARA
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
44
|
Parupelli SK, Desai S. The 3D Printing of Nanocomposites for Wearable Biosensors: Recent Advances, Challenges, and Prospects. Bioengineering (Basel) 2023; 11:32. [PMID: 38247910 PMCID: PMC10813523 DOI: 10.3390/bioengineering11010032] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Notably, 3D-printed flexible and wearable biosensors have immense potential to interact with the human body noninvasively for the real-time and continuous health monitoring of physiological parameters. This paper comprehensively reviews the progress in 3D-printed wearable biosensors. The review also explores the incorporation of nanocomposites in 3D printing for biosensors. A detailed analysis of various 3D printing processes for fabricating wearable biosensors is reported. Besides this, recent advances in various 3D-printed wearable biosensors platforms such as sweat sensors, glucose sensors, electrocardiography sensors, electroencephalography sensors, tactile sensors, wearable oximeters, tattoo sensors, and respiratory sensors are discussed. Furthermore, the challenges and prospects associated with 3D-printed wearable biosensors are presented. This review is an invaluable resource for engineers, researchers, and healthcare clinicians, providing insights into the advancements and capabilities of 3D printing in the wearable biosensor domain.
Collapse
Affiliation(s)
- Santosh Kumar Parupelli
- Department of Industrial and Systems Engineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA;
- Center of Excellence in Product Design and Advanced Manufacturing, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Salil Desai
- Department of Industrial and Systems Engineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA;
- Center of Excellence in Product Design and Advanced Manufacturing, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| |
Collapse
|
45
|
Soekoco AS, Mustafa D, Oktavian D, Bahtiar F, Martina T, Nugraha, Yuliarto B. The Potential of Double-Faced Polyester-Viscose Woven Fabric as a Porous Substrate for Direct-Coating and Multilayer Concept. Polymers (Basel) 2023; 15:4579. [PMID: 38231977 PMCID: PMC10708724 DOI: 10.3390/polym15234579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024] Open
Abstract
Textile-based sensors fabricated using the direct-coating method are the appropriate choice to meet the aspects of flexibility, non-invasiveness, and lightness for continuous monitoring of the human body. The characteristics of the sensor substrate are directly influenced by factors such as the type of weave, thread fineness, fabric density, and the type of polymeric constituent fibers. The fabric used as the sensor substrate, fabricated using the direct-coating method, must be capable of retaining the electrode paste solution, which has higher viscosity, on one surface of the fabric to avoid short circuits during the fabrication process. However, during its application, this fabric should allow the easy passage of analyte solutions with low viscosity as much as possible. Hence, an appropriate fabric construction is required to serve as the substrate for textile-based sensors to ensure the success of the fabrication process and the effectiveness of the resulting sensor's performance. The development of the structural design of the fabric to be used as a substrate for non-invasive biosensors with a multilayer concept is carried out by weaving and sewing processes utilizing polyester-viscose fibers. During the production process, variations are applied, such as weft yarn density, the characterization of wetting time, absorption rate, maximum wetted radius, spreading speed, and accumulative one-way transport index. The most suitable fabric for use as a substrate for non-invasive biosensors with a multilayer concept, such as in this research, is a fabric with a weft thread density of 70 strands per inch, along with the addition of an analyte transfer thread configuration.
Collapse
Affiliation(s)
- Asril Senoaji Soekoco
- Department of Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Kota Bandung 40132, Indonesia
- Department of Textile Engineering, Politeknik STTT Bandung, Kota Bandung 40272, Indonesia; (D.M.); (D.O.); (F.B.); (T.M.)
| | - Dody Mustafa
- Department of Textile Engineering, Politeknik STTT Bandung, Kota Bandung 40272, Indonesia; (D.M.); (D.O.); (F.B.); (T.M.)
| | - Dinan Oktavian
- Department of Textile Engineering, Politeknik STTT Bandung, Kota Bandung 40272, Indonesia; (D.M.); (D.O.); (F.B.); (T.M.)
| | - Fahruk Bahtiar
- Department of Textile Engineering, Politeknik STTT Bandung, Kota Bandung 40272, Indonesia; (D.M.); (D.O.); (F.B.); (T.M.)
| | - Tina Martina
- Department of Textile Engineering, Politeknik STTT Bandung, Kota Bandung 40272, Indonesia; (D.M.); (D.O.); (F.B.); (T.M.)
| | - Nugraha
- Department of Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Kota Bandung 40132, Indonesia
| | - Brian Yuliarto
- Department of Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Kota Bandung 40132, Indonesia
| |
Collapse
|
46
|
Xu Y, De la Paz E, Paul A, Mahato K, Sempionatto JR, Tostado N, Lee M, Hota G, Lin M, Uppal A, Chen W, Dua S, Yin L, Wuerstle BL, Deiss S, Mercier P, Xu S, Wang J, Cauwenberghs G. In-ear integrated sensor array for the continuous monitoring of brain activity and of lactate in sweat. Nat Biomed Eng 2023; 7:1307-1320. [PMID: 37770754 PMCID: PMC10589098 DOI: 10.1038/s41551-023-01095-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/14/2023] [Indexed: 09/30/2023]
Abstract
Owing to the proximity of the ear canal to the central nervous system, in-ear electrophysiological systems can be used to unobtrusively monitor brain states. Here, by taking advantage of the ear's exocrine sweat glands, we describe an in-ear integrated array of electrochemical and electrophysiological sensors placed on a flexible substrate surrounding a user-generic earphone for the simultaneous monitoring of lactate concentration and brain states via electroencephalography, electrooculography and electrodermal activity. In volunteers performing an acute bout of exercise, the device detected elevated lactate levels in sweat concurrently with the modulation of brain activity across all electroencephalography frequency bands. Simultaneous and continuous unobtrusive in-ear monitoring of metabolic biomarkers and brain electrophysiology may allow for the discovery of dynamic and synergetic interactions between brain and body biomarkers in real-world settings for long-term health monitoring or for the detection or monitoring of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yuchen Xu
- Shu Chien - Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Ernesto De la Paz
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Akshay Paul
- Shu Chien - Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Kuldeep Mahato
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Juliane R Sempionatto
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Nicholas Tostado
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Min Lee
- Shu Chien - Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Gopabandhu Hota
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Muyang Lin
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Abhinav Uppal
- Shu Chien - Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - William Chen
- Shu Chien - Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Srishty Dua
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Lu Yin
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Brian L Wuerstle
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Stephen Deiss
- Shu Chien - Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Patrick Mercier
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA.
| | - Sheng Xu
- Shu Chien - Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA.
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA.
| | - Gert Cauwenberghs
- Shu Chien - Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
47
|
Zahed MA, Kim DK, Jeong SH, Selim Reza M, Sharifuzzaman M, Pradhan GB, Song H, Asaduzzaman M, Park JY. Microfluidic-Integrated Multimodal Wearable Hybrid Patch for Wireless and Continuous Physiological Monitoring. ACS Sens 2023; 8:2960-2974. [PMID: 37498214 DOI: 10.1021/acssensors.3c00148] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Despite extensive advances in wearable monitoring systems, most designs focus on the detection of physical parameters or metabolites and do not consider the integration of microfluidic channels, miniaturization, and multimodality. In this study, a combination of multimodal (biochemical and electrophysiological) biosensing and microfluidic channel-integrated patch-based wireless systems is designed and fabricated using flexible materials for improved wearability, ease of operation, and real-time and continuous monitoring. The reduced graphene oxide-based microfluidic channel-integrated glucose biosensor exhibits a good sensitivity of 19.97 (44.56 without fluidic channels) μA mM-1 cm-2 within physiological levels (10 μM-0.4 mM) with good long-term and bending stability. All the sensors in the patch are initially validated using sauna gown sweat-based on-body and real-time tests with five separate individuals who perspired three times each. Multimodal glucose and electrocardiogram (ECG) sensing, along with their real-time adjustment based on sweat pH and temperature fluctuations, optimize sensing accuracy. Laser-burned hierarchical MXene-polyvinylidene fluoride-based conductive carbon nanofiber-based dry ECG electrodes exhibit low skin contact impedance (40.5 kΩ cm2) and high-quality electrophysiological signals (signal-to-noise ratios = 23.4-32.8 dB). The developed system is utilized to accurately and wirelessly monitor the sweat glucose and ECG of a human subject engaged in physical exercise in real time.
Collapse
Affiliation(s)
- Md Abu Zahed
- Department of Electronic Engineering, Kwangwoon University, 447-1, Seoul 139-701, Republic of Korea
- Human IoT Focused Research Center, Kwangwoon University, 447-1, Seoul 139-701, Republic of Korea
| | - Dong Kyun Kim
- Department of Electronic Engineering, Kwangwoon University, 447-1, Seoul 139-701, Republic of Korea
- Human IoT Focused Research Center, Kwangwoon University, 447-1, Seoul 139-701, Republic of Korea
| | - Seong Hoon Jeong
- Department of Electronic Engineering, Kwangwoon University, 447-1, Seoul 139-701, Republic of Korea
- Human IoT Focused Research Center, Kwangwoon University, 447-1, Seoul 139-701, Republic of Korea
| | - Md Selim Reza
- Department of Electronic Engineering, Kwangwoon University, 447-1, Seoul 139-701, Republic of Korea
- Human IoT Focused Research Center, Kwangwoon University, 447-1, Seoul 139-701, Republic of Korea
| | - Md Sharifuzzaman
- Department of Electronic Engineering, Kwangwoon University, 447-1, Seoul 139-701, Republic of Korea
- Human IoT Focused Research Center, Kwangwoon University, 447-1, Seoul 139-701, Republic of Korea
| | - Gagan Bahadur Pradhan
- Department of Electronic Engineering, Kwangwoon University, 447-1, Seoul 139-701, Republic of Korea
- Human IoT Focused Research Center, Kwangwoon University, 447-1, Seoul 139-701, Republic of Korea
| | - Hyesu Song
- Department of Electronic Engineering, Kwangwoon University, 447-1, Seoul 139-701, Republic of Korea
- Human IoT Focused Research Center, Kwangwoon University, 447-1, Seoul 139-701, Republic of Korea
| | - Md Asaduzzaman
- Department of Electronic Engineering, Kwangwoon University, 447-1, Seoul 139-701, Republic of Korea
- Human IoT Focused Research Center, Kwangwoon University, 447-1, Seoul 139-701, Republic of Korea
| | - Jae Yeong Park
- Department of Electronic Engineering, Kwangwoon University, 447-1, Seoul 139-701, Republic of Korea
- Human IoT Focused Research Center, Kwangwoon University, 447-1, Seoul 139-701, Republic of Korea
- SnE Solution Co. Ltd, 447-1, Seoul 139-701, Republic of Korea
| |
Collapse
|
48
|
Leung HMC, Forlenza GP, Prioleau TO, Zhou X. Noninvasive Glucose Sensing In Vivo. SENSORS (BASEL, SWITZERLAND) 2023; 23:7057. [PMID: 37631595 PMCID: PMC10458980 DOI: 10.3390/s23167057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
Blood glucose monitoring is an essential aspect of disease management for individuals with diabetes. Unfortunately, traditional methods require collecting a blood sample and thus are invasive and inconvenient. Recent developments in minimally invasive continuous glucose monitors have provided a more convenient alternative for people with diabetes to track their glucose levels 24/7. Despite this progress, many challenges remain to establish a noninvasive monitoring technique that works accurately and reliably in the wild. This review encompasses the current advancements in noninvasive glucose sensing technology in vivo, delves into the common challenges faced by these systems, and offers an insightful outlook on existing and future solutions.
Collapse
Affiliation(s)
- Ho Man Colman Leung
- Department of Computer Science, Columbia University, New York, NY 10027, USA;
| | - Gregory P. Forlenza
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | | | - Xia Zhou
- Department of Computer Science, Columbia University, New York, NY 10027, USA;
| |
Collapse
|
49
|
Zhang S. Editorial: Current development on wearable biosensors towards biomedical applications. Front Bioeng Biotechnol 2023; 11:1264337. [PMID: 37614631 PMCID: PMC10442947 DOI: 10.3389/fbioe.2023.1264337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 08/25/2023] Open
Affiliation(s)
- Sheng Zhang
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
| |
Collapse
|
50
|
Ganesan S, Ramajayam K, Kokulnathan T, Palaniappan A. Recent Advances in Two-Dimensional MXene-Based Electrochemical Biosensors for Sweat Analysis. Molecules 2023; 28:4617. [PMID: 37375172 DOI: 10.3390/molecules28124617] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Sweat, a biofluid secreted naturally from the eccrine glands of the human body, is rich in several electrolytes, metabolites, biomolecules, and even xenobiotics that enter the body through other means. Recent studies indicate a high correlation between the analytes' concentrations in the sweat and the blood, opening up sweat as a medium for disease diagnosis and other general health monitoring applications. However, low concentration of analytes in sweat is a significant limitation, requiring high-performing sensors for this application. Electrochemical sensors, due to their high sensitivity, low cost, and miniaturization, play a crucial role in realizing the potential of sweat as a key sensing medium. MXenes, recently developed anisotropic two-dimensional atomic-layered nanomaterials composed of early transition metal carbides or nitrides, are currently being explored as a material of choice for electrochemical sensors. Their large surface area, tunable electrical properties, excellent mechanical strength, good dispersibility, and biocompatibility make them attractive for bio-electrochemical sensing platforms. This review presents the recent progress made in MXene-based bio-electrochemical sensors such as wearable, implantable, and microfluidic sensors and their applications in disease diagnosis and developing point-of-care sensing platforms. Finally, the paper discusses the challenges and limitations of MXenes as a material of choice in bio-electrochemical sensors and future perspectives on this exciting material for sweat-sensing applications.
Collapse
Affiliation(s)
- Selvaganapathy Ganesan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Kalaipriya Ramajayam
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Thangavelu Kokulnathan
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Arunkumar Palaniappan
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| |
Collapse
|