1
|
Kumar S, Sinclair JA, Shi T, Chuang HS, Senapati S, Chang HC. Immunojanus Particles for low-volume and isolation-free unlabeled characterization of small Extracellular Vesicle in biofluids: Characterization of disease type by surface marker profiling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.17.607528. [PMID: 39229167 PMCID: PMC11370386 DOI: 10.1101/2024.08.17.607528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Small extracellular vesicles (sEVs) are vital for cellular communication and serve as critical biomarker carriers for diseases such as cancer. However, quantifying and profiling sEV surface markers presents significant challenges due to the low concentration of specific sEV-bound proteins and interference by more abundant dispersed proteins. This paper presents Immunojanus Particles (IJPs), a new method that enables the direct detection of sEVs in less than an hour without isolation. The design of IJPs incorporates fluorescent and non-fluorescent halves, utilizing rotational Brownian motion to detect captured sEVs through the change in the blinking rate, without interference from the smaller dispersed proteins. We demonstrate a detection limit of 2E5 sEVs/mL with low sample volumes and the capability to characterize sEVs directly from plasma, serum, cell culture media, and urine. In a small pilot study involving 87 subjects, including individuals with colorectal cancer, pancreatic ductal adenocarcinoma, glioblastoma, Alzheimer's disease, and healthy controls, our method accurately identified the type of disease with high 0.90-0.99 AUC in a blind setting. Compared with an orthogonal ultracentrifugation plus surface plasmon resonance (UC+SPR) method that requires about 24 hours, the sensitivity and dynamic range of IJP are better by 2 logs.
Collapse
|
2
|
Kumar S, Senapati S, Chang HC. Extracellular vesicle and lipoprotein diagnostics (ExoLP-Dx) with membrane sensor: A robust microfluidic platform to overcome heterogeneity. BIOMICROFLUIDICS 2024; 18:041301. [PMID: 39056024 PMCID: PMC11272220 DOI: 10.1063/5.0218986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
The physiological origins and functions of extracellular vesicles (EVs) and lipoproteins (LPs) propel advancements in precision medicine by offering non-invasive diagnostic and therapeutic prospects for cancers, cardiovascular, and neurodegenerative diseases. However, EV/LP diagnostics (ExoLP-Dx) face considerable challenges. Their intrinsic heterogeneity, spanning biogenesis pathways, surface protein composition, and concentration metrics complicate traditional diagnostic approaches. Commonly used methods such as nanoparticle tracking analysis, enzyme-linked immunosorbent assay, and nuclear magnetic resonance do not provide any information about their proteomic subfractions, including active proteins/enzymes involved in essential pathways/functions. Size constraints limit the efficacy of flow cytometry for small EVs and LPs, while ultracentrifugation isolation is hampered by co-elution with non-target entities. In this perspective, we propose a charge-based electrokinetic membrane sensor, with silica nanoparticle reporters providing salient features, that can overcome the interference, long incubation time, sensitivity, and normalization issues of ExoLP-Dx from raw plasma without needing sample pretreatment/isolation. A universal EV/LP standard curve is obtained despite their heterogeneities.
Collapse
Affiliation(s)
- Sonu Kumar
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Satyajyoti Senapati
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Hsueh-Chia Chang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
3
|
Sun DS, Chang HH. Extracellular vesicles: Function, resilience, biomarker, bioengineering, and clinical implications. Tzu Chi Med J 2024; 36:251-259. [PMID: 38993825 PMCID: PMC11236075 DOI: 10.4103/tcmj.tcmj_28_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 07/13/2024] Open
Abstract
Extracellular vesicles (EVs) have emerged as key players in intercellular communication, disease pathology, and therapeutic innovation. Initially overlooked as cellular debris, EVs are now recognized as vital mediators of cell-to-cell communication, ferrying a cargo of proteins, nucleic acids, and lipids, providing cellular resilience in response to stresses. This review provides a comprehensive overview of EVs, focusing on their role as biomarkers in disease diagnosis, their functional significance in physiological and pathological processes, and the potential of bioengineering for therapeutic applications. EVs offer a promising avenue for noninvasive disease diagnosis and monitoring, reflecting the physiological state of originating cells. Their diagnostic potential spans a spectrum of diseases, including cancer, cardiovascular disorders, neurodegenerative diseases, and infectious diseases. Moreover, their presence in bodily fluids such as blood, urine, and cerebrospinal fluid enhances their diagnostic utility, presenting advantages over traditional methods. Beyond diagnostics, EVs mediate crucial roles in intercellular communication, facilitating the transfer of bioactive molecules between cells. This communication modulates various physiological processes such as tissue regeneration, immune modulation, and neuronal communication. Dysregulation of EV-mediated communication is implicated in diseases such as cancer, immune disorders, and neurodegenerative diseases, highlighting their therapeutic potential. Bioengineering techniques offer avenues for manipulating EVs for therapeutic applications, from isolation and purification to engineering cargo and targeted delivery systems. These approaches hold promise for developing novel therapeutics tailored to specific diseases, revolutionizing personalized medicine. However, challenges such as standardization, scalability, and regulatory approval need addressing for successful clinical translation. Overall, EVs represent a dynamic frontier in biomedical research with vast potential for diagnostics, therapeutics, and personalized medicine.
Collapse
Affiliation(s)
- Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
4
|
Talebian Gevari M, Sahu SS, Stridfeldt F, Hååg P, De Petris L, Viktorsson K, Lewensohn R, Gori A, Cretich M, Dev A. Design and Optimization of a Silicon-Based Electrokinetic Microchip for Sensitive Detection of Small Extracellular Vesicles. ACS Sens 2024; 9:2935-2945. [PMID: 38848141 PMCID: PMC11217933 DOI: 10.1021/acssensors.4c00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
Detection of analytes using streaming current has previously been explored using both experimental approaches and theoretical analyses of such data. However, further developments are needed for establishing a viable microchip that can be exploited to deliver a sensitive, robust, and scalable biosensor device. In this study, we demonstrated the fabrication of such a device on silicon wafer using a scalable silicon microfabrication technology followed by characterization and optimization of this sensor for detection of small extracellular vesicles (sEVs) with sizes in the range of 30 to 200 nm, as determined by nanoparticle tracking analyses. We showed that the sensitivity of the devices, assessed by a common protein-ligand pair and sEVs, significantly outperforms previous approaches using the same principle. Two versions of the microchips, denoted as enclosed and removable-top microchips, were developed and compared, aiming to discern the importance of high-pressure measurement versus easier and better surface preparation capacity. A custom-built chip manifold allowing easy interfacing with standard microfluidic connections was also constructed. By investigating different electrical, fluidic, morphological, and fluorescence measurements, we show that while the enclosed microchip with its robust glass-silicon bonding can withstand higher pressure and thus generate higher streaming current, the removable-top configuration offers several practical benefits, including easy surface preparation, uniform probe conjugation, and improvement in the limit of detection (LoD). We further compared two common surface functionalization strategies and showed that the developed microchip can achieve both high sensitivity for membrane protein profiling and low LoD for detection of sEV detection. At the optimum working condition, we demonstrated that the microchip could detect sEVs reaching an LoD of 104 sEVs/mL (when captured by membrane-sensing peptide (MSP) probes), which is among the lowest in the so far reported microchip-based methods.
Collapse
Affiliation(s)
- Moein Talebian Gevari
- Division
of Solid-State Electronics, Department of Electrical Engineering, Uppsala University, 75 121 Uppsala, Sweden
| | - Siddharth Sourabh Sahu
- Department
of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, 10 691 Stockholm, Sweden
| | - Fredrik Stridfeldt
- Department
of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, 10 691 Stockholm, Sweden
| | - Petra Hååg
- Department
of Oncology-Pathology, Karolinska Institutet, 171 64 Solna, Sweden
| | - Luigi De Petris
- Department
of Oncology-Pathology, Karolinska Institutet, 171 64 Solna, Sweden
- Theme
Cancer, Medical Unit Head and Neck, Lung, and Skin Tumors, Thoracic
Oncology Center, Karolinska University Hospital, 171 64 Solna, Sweden
| | - Kristina Viktorsson
- Department
of Oncology-Pathology, Karolinska Institutet, 171 64 Solna, Sweden
| | - Rolf Lewensohn
- Department
of Oncology-Pathology, Karolinska Institutet, 171 64 Solna, Sweden
- Theme
Cancer, Medical Unit Head and Neck, Lung, and Skin Tumors, Thoracic
Oncology Center, Karolinska University Hospital, 171 64 Solna, Sweden
| | - Alessandro Gori
- Consiglio
Nazionale delle Ricerche, Istituto di Scienze
e Tecnologie Chimiche “Giulio Natta” (SCITEC), 20131 Milan, Italy
| | - Marina Cretich
- Consiglio
Nazionale delle Ricerche, Istituto di Scienze
e Tecnologie Chimiche “Giulio Natta” (SCITEC), 20131 Milan, Italy
| | - Apurba Dev
- Division
of Solid-State Electronics, Department of Electrical Engineering, Uppsala University, 75 121 Uppsala, Sweden
- Department
of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, 10 691 Stockholm, Sweden
| |
Collapse
|
5
|
Bhadra M, Sachan M. An overview of challenges associated with exosomal miRNA isolation toward liquid biopsy-based ovarian cancer detection. Heliyon 2024; 10:e30328. [PMID: 38707279 PMCID: PMC11068823 DOI: 10.1016/j.heliyon.2024.e30328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024] Open
Abstract
As one of the deadliest gynaecological cancers, ovarian cancer has been on the list. With lesser-known symptoms and lack of an accurate detection method, it is still difficult to catch it early. In terms of both the diagnosis and outlook for cancer, liquid biopsy has come a long way with significant advancements. Exosomes, extracellular components commonly shed by cancerous cells, are nucleic acid-rich particles floating in almost all body fluids and hold enormous promise, leading to minimallyinvasive molecular diagnostics. They have been shown as potential biomarkers in liquid biopsy, being implicated in tumour growth and metastasis. In order to address the drawbacks of ovarian cancer tumor heterogeneity, a liquid biopsy-based approach is being investigated by detecting cell-free nucleic acids, particularly non-coding RNAs, having the advantage of being less invasive and more prominent in nature. microRNAs are known to actively contribute to cancer development and their existence inside exosomes has also been made quite apparent which can be leveraged to diagnose and treat the disease. Extraction of miRNAs and exosomes is an arduous execution, and while other approaches have been investigated, none have produced results that are as encouraging due to limits in time commitment, yield, and, most significantly, damage to the exosomal structure resulting discrepancies in miRNA-based expression profiling for disease diagnosis. We have briefly outlined and reviewed the difficulties with exosome isolation techniques and the need for their standardization. The several widely used procedures and their drawbacks in terms of the exosomal purity they may produce have also been outlined.
Collapse
Affiliation(s)
- Mridula Bhadra
- Department of Biotechnology, Motilal Nehru National Institute of Technology-Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology-Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| |
Collapse
|
6
|
Leggio L, Paternò G, Vivarelli S, Bonasera A, Pignataro B, Iraci N, Arrabito G. Label-free approaches for extracellular vesicle detection. iScience 2023; 26:108105. [PMID: 37867957 PMCID: PMC10589885 DOI: 10.1016/j.isci.2023.108105] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023] Open
Abstract
Extracellular vesicles (EVs) represent pivotal mediators in cell-to-cell communication. They are lipid-membranous carriers of several biomolecules, which can be produced by almost all cells. In the current Era of precision medicine, EVs gained growing attention thanks to their potential in both biomarker discovery and nanotherapeutics applications. However, current technical limitations in isolating and/or detecting EVs restrain their standard use in clinics. This review explores all the state-of-the-art analytical technologies which are currently overcoming these issues. On one end, several innovative optical-, electrical-, and spectroscopy-based detection methods represent advantageous label-free methodologies for faster EV detection. On the other end, microfluidics-based lab-on-a-chip tools support EV purification from low-concentrated samples. Altogether, these technologies will strengthen the routine application of EVs in clinics.
Collapse
Affiliation(s)
- Loredana Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Greta Paternò
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Silvia Vivarelli
- Department of Biomedical and Dental Sciences, Morphological and Functional Imaging, Section of Occupational Medicine, University of Messina, Messina, Italy
| | - Aurelio Bonasera
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle Scienze, building 17, 90128 Palermo, Italy
| | - Bruno Pignataro
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle Scienze, building 17, 90128 Palermo, Italy
| | - Nunzio Iraci
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuseppe Arrabito
- Department of Physics and Chemistry - Emilio Segrè, University of Palermo, Viale delle Scienze, building 17, 90128 Palermo, Italy
| |
Collapse
|
7
|
Qian Q, Wei Y, Xu Y, Zheng M, Wang C, Zhang S, Xie X, Ye C, Mi X. Microfluidic magnetic detection system combined with a DNA framework-mediated immune-sandwich assay for rapid and sensitive detection of tumor-derived exosomes. MICROSYSTEMS & NANOENGINEERING 2023; 9:139. [PMID: 38025882 PMCID: PMC10630345 DOI: 10.1038/s41378-023-00617-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/03/2023] [Accepted: 09/22/2023] [Indexed: 12/01/2023]
Abstract
Tumor-derived circulating exosomes (TDEs) are being pursued as informative and noninvasive biomarkers. However, quantitatively detecting TDEs is still challenging. Herein, we constructed a DNA tetrahedral-structured probe (TSP)-mediated microfluidic magnetic detection system (μFMS) to provide a rapid and sensitive platform for analyzing TDEs. CD63 aptamer-modified Fe3O4 magnetic nanoparticles (MNPs) were constructed to form magnetic nano-report probes (MNRs). The microfluidic chips were fabricated from glass functionalized with DNA TSP-modified aldehyde groups and a PDMS layer designed with serpentine microchannels. An induction coil-based magnetic detector was used to measure the magnetic signal. The linear dynamic range of the μFMS system for TDE assays was 1.98 × 103-1.98 × 107 particles/mL with a limit of detection of 1.98 × 103 particles/mL in PBS. There was no significant difference in TDE detection between the simulated serum and PBS, which indicated the feasibility of the constructed μFMS system for TDE analysis in complex biological systems. In terms of cost, reaction time and operation procedure, this μFMS has the potential to be developed as a clinical point-of-care testing tool for cancer diagnosis and therapeutics.
Collapse
Affiliation(s)
- Qiuling Qian
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai, 200050 China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yutong Wei
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai, 200050 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- School of Information Science and Technology, Shanghai Tech University, Shanghai, 201210 China
| | - Yi Xu
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai, 200050 China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Mengmeng Zheng
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
- School of Life Sciences, Shanghai University, Shanghai, 200444 China
| | - Chenguang Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Shulin Zhang
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai, 200050 China
| | - Xiaoming Xie
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai, 200050 China
| | - Chaofeng Ye
- School of Information Science and Technology, Shanghai Tech University, Shanghai, 201210 China
| | - Xianqiang Mi
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai, 200050 China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- School of Physics and Optoelectronic Engineering Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 310024 China
| |
Collapse
|
8
|
Agrawal V, Pandey V, Mitra D. Active buckling of pressurized spherical shells: Monte Carlo simulation. Phys Rev E 2023; 108:L032601. [PMID: 37849090 DOI: 10.1103/physreve.108.l032601] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/06/2023] [Indexed: 10/19/2023]
Abstract
We study the buckling of pressurized spherical shells by Monte Carlo simulations in which the detailed balance is explicitly broken-thereby driving the shell to be active, out of thermal equilibrium. Such a shell typically has either higher (active) or lower (sedate) fluctuations compared to one in thermal equilibrium depending on how the detailed balance is broken. We show that, for the same set of elastic parameters, a shell that is not buckled in thermal equilibrium can be buckled if turned active. Similarly a shell that is buckled in thermal equilibrium can unbuckle if sedated. Based on this result, we suggest that it is possible to experimentally design microscopic elastic shells whose buckling can be optically controlled.
Collapse
Affiliation(s)
- Vipin Agrawal
- Nordita, KTH Royal Institute of Technology and Stockholm University, Hannes Alfvéns väg 12, 106 91 Stockholm, Sweden
- Department of Physics, Stockholm University, AlbaNova University Centre, Fysikum, 106 91 Stockholm, Sweden
| | - Vikash Pandey
- Nordita, KTH Royal Institute of Technology and Stockholm University, Hannes Alfvéns väg 12, 106 91 Stockholm, Sweden
| | - Dhrubaditya Mitra
- Nordita, KTH Royal Institute of Technology and Stockholm University, Hannes Alfvéns väg 12, 106 91 Stockholm, Sweden
| |
Collapse
|
9
|
Liu X, Xiao C, Xiao K. Engineered extracellular vesicles-like biomimetic nanoparticles as an emerging platform for targeted cancer therapy. J Nanobiotechnology 2023; 21:287. [PMID: 37608298 PMCID: PMC10463632 DOI: 10.1186/s12951-023-02064-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/14/2023] [Indexed: 08/24/2023] Open
Abstract
Nanotechnology offers the possibility of revolutionizing cancer theranostics in the new era of precision oncology. Extracellular vesicles (EVs)-like biomimetic nanoparticles (EBPs) have recently emerged as a promising platform for targeted cancer drug delivery. Compared with conventional synthetic vehicles, EBPs have several advantages, such as lower immunogenicity, longer circulation time, and better targeting capability. Studies on EBPs as cancer therapeutics are rapidly progressing from in vitro experiments to in vivo animal models and early-stage clinical trials. Here, we describe engineering strategies to further improve EBPs as effective anticancer drug carriers, including genetic manipulation of original cells, fusion with synthetic nanomaterials, and direct modification of EVs. These engineering approaches can improve the anticancer performance of EBPs, especially in terms of tumor targeting effectiveness, stealth property, drug loading capacity, and integration with other therapeutic modalities. Finally, the current obstacles and future perspectives of engineered EBPs as the next-generation delivery platform for anticancer drugs are discussed.
Collapse
Affiliation(s)
- Xinyi Liu
- Precision Medicine Research Center, Sichuan Provincial Key Laboratory of Precision Medicine, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chunxiu Xiao
- Precision Medicine Research Center, Sichuan Provincial Key Laboratory of Precision Medicine, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kai Xiao
- Precision Medicine Research Center, Sichuan Provincial Key Laboratory of Precision Medicine, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Tianfu Jingcheng Laboratory (Frontier Medical Center), Chengdu, 610041, China.
| |
Collapse
|
10
|
Sahu SS, Gevari MT, Nagy Á, Gestin M, Hååg P, Lewensohn R, Viktorsson K, Karlström AE, Dev A. Multi-marker profiling of extracellular vesicles using streaming current and sequential electrostatic labeling. Biosens Bioelectron 2023; 227:115142. [PMID: 36805937 DOI: 10.1016/j.bios.2023.115142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/24/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
High heterogeneity in the membrane protein expression of small extracellular vesicles (sEVs) means that bulk methods relying on antibody-based capture for expression analysis have a drawback that each type of antibody may capture a different sub-population. An improved approach is to capture a representative sEV population, without any bias, and then perform a multiplexed protein expression analysis on this population. However, such a possibility has been largely limited to fluorescence-based methods. Here, we present a novel electrostatic labelling strategy and a microchip-based all-electric method for membrane protein analysis of sEVs. The method allows us to profile multiple surface proteins on the captured sEVs using alternating charge labels. It also permits the comparison of expression levels in different sEV-subtypes. The proof of concept was tested by capturing sEVs both non-specifically (unbiased) as well as via anti-CD9 capture probes (biased), and then profiling the expression levels of various surface proteins using the charge labelled antibodies. The method is the first of its kind, demonstrating an all-electrical and microchip based method that allows for unbiased analysis of sEV membrane protein expression, comparison of expression levels in different sEV subsets, and fractional estimation of different sEV sub-populations. These results were also validated in parallel using a single-sEV fluorescence technique.
Collapse
Affiliation(s)
- Siddharth S Sahu
- Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, 10691, Stockholm, Sweden.
| | - Moein T Gevari
- Division of Solid-State Electronics, Department of Electrical Engineering, Uppsala University, 75121, Uppsala, Sweden
| | - Ábel Nagy
- Department of Protein Science, School of Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Maxime Gestin
- Department of Protein Science, School of Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Petra Hååg
- Department of Oncology-Pathology, Karolinska Institutet, 17164, Stockholm, Sweden
| | - Rolf Lewensohn
- Department of Oncology-Pathology, Karolinska Institutet, 17164, Stockholm, Sweden; Theme Cancer, Medical Unit Head and Neck, Lung, and Skin Tumors, Thoracic Oncology Center, Karolinska University Hospital, S-171 64, Solna, Sweden
| | - Kristina Viktorsson
- Department of Oncology-Pathology, Karolinska Institutet, 17164, Stockholm, Sweden
| | - Amelie E Karlström
- Department of Protein Science, School of Chemistry, Biotechnology, and Health (CBH), KTH Royal Institute of Technology, Stockholm, Sweden
| | - Apurba Dev
- Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, 10691, Stockholm, Sweden; Division of Solid-State Electronics, Department of Electrical Engineering, Uppsala University, 75121, Uppsala, Sweden.
| |
Collapse
|
11
|
Wang Y, Wang S, Li L, Zou Y, Liu B, Fang X. Microfluidics‐based molecular profiling of tumor‐derived exosomes for liquid biopsy. VIEW 2023. [DOI: 10.1002/viw.20220048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Yuqing Wang
- School of Pharmacy Shanghai Stomatological Hospital Department of Chemistry Fudan University Shanghai China
| | - Shurong Wang
- School of Pharmacy Shanghai Stomatological Hospital Department of Chemistry Fudan University Shanghai China
| | - Lanting Li
- School of Pharmacy Shanghai Stomatological Hospital Department of Chemistry Fudan University Shanghai China
| | - Yan Zou
- School of Pharmacy Shanghai Stomatological Hospital Department of Chemistry Fudan University Shanghai China
| | - Baohong Liu
- School of Pharmacy Shanghai Stomatological Hospital Department of Chemistry Fudan University Shanghai China
| | - Xiaoni Fang
- School of Pharmacy Shanghai Stomatological Hospital Department of Chemistry Fudan University Shanghai China
| |
Collapse
|
12
|
Suthar J, Taub M, Carney RP, Williams GR, Guldin S. Recent developments in biosensing methods for extracellular vesicle protein characterization. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1839. [PMID: 35999185 PMCID: PMC10078591 DOI: 10.1002/wnan.1839] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/27/2022] [Accepted: 07/13/2022] [Indexed: 01/31/2023]
Abstract
Research into extracellular vesicles (EVs) has grown significantly over the last few decades with EVs being widely regarded as a source of biomarkers for human health and disease with massive clinical potential. Secreted by every cell type in the body, EVs report on the internal cellular conditions across all tissue types. Their presence in readily accessible biofluids makes the potential of EV biosensing highly attractive as a noninvasive diagnostic platform via liquid biopsies. However, their small size (50-250 nm), inherent heterogeneity, and the complexity of the native biofluids introduce challenges for effective characterization, thus, limiting their clinical utility. This has led to a surge in the development of various novel EV biosensing techniques, with capabilities beyond those of conventional methods that have been directly transferred from cell biology. In this review, key detection principles used for EV biosensing are summarized, with a focus on some of the most recent and fundamental developments in the field over the last 5 years. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > In Vitro Nanoparticle-Based Sensing.
Collapse
Affiliation(s)
- Jugal Suthar
- Department of Chemical Engineering, University College London, London, UK.,UCL School of Pharmacy, University College London, London, UK
| | - Marissa Taub
- UCL School of Pharmacy, University College London, London, UK
| | - Randy P Carney
- Department of Biomedical Engineering, University of California, Davis, Davis, California, USA
| | | | - Stefan Guldin
- Department of Chemical Engineering, University College London, London, UK
| |
Collapse
|
13
|
Sfragano PS, Pillozzi S, Condorelli G, Palchetti I. Practical tips and new trends in electrochemical biosensing of cancer-related extracellular vesicles. Anal Bioanal Chem 2023; 415:1087-1106. [PMID: 36683059 PMCID: PMC9867925 DOI: 10.1007/s00216-023-04530-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 01/24/2023]
Abstract
To tackle cancer and provide prompt diagnoses and prognoses, the constantly evolving biosensing field is continuously on the lookout for novel markers that can be non-invasively analysed. Extracellular vesicles (EVs) may represent a promising biomarker that also works as a source of biomarkers. The augmented cellular activity of cancerous cells leads to the production of higher numbers of EVs, which can give direct information on the disease due to the presence of general and cancer-specific surface-tethered molecules. Moreover, the intravesicular space is enriched with other molecules that can considerably help in the early detection of neoplasia. Even though EV-targeted research has indubitably received broad attention lately, there still is a wide lack of practical and effective quantitative procedures due to difficulties in pre-analytical and analytical phases. This review aims at providing an exhaustive outline of the recent progress in EV detection using electrochemical and photoelectrochemical biosensors, with a focus on handling approaches and trends in the selection of bioreceptors and molecular targets related to EVs that might guide researchers that are approaching such an unstandardised field.
Collapse
Affiliation(s)
- Patrick Severin Sfragano
- grid.8404.80000 0004 1757 2304Department of Chemistry Ugo Schiff, University of Florence, Via Della Lastruccia 3, 50019 Sesto, Fiorentino, Italy
| | - Serena Pillozzi
- grid.24704.350000 0004 1759 9494Medical Oncology Unit, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Gerolama Condorelli
- grid.4691.a0000 0001 0790 385XDepartment of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Via Pansini, 5, 80131 Naples, Italy ,grid.419543.e0000 0004 1760 3561IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| | - Ilaria Palchetti
- grid.8404.80000 0004 1757 2304Department of Chemistry Ugo Schiff, University of Florence, Via Della Lastruccia 3, 50019 Sesto, Fiorentino, Italy
| |
Collapse
|
14
|
Meggiolaro A, Moccia V, Brun P, Pierno M, Mistura G, Zappulli V, Ferraro D. Microfluidic Strategies for Extracellular Vesicle Isolation: Towards Clinical Applications. BIOSENSORS 2022; 13:bios13010050. [PMID: 36671885 PMCID: PMC9855931 DOI: 10.3390/bios13010050] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 05/15/2023]
Abstract
Extracellular vesicles (EVs) are double-layered lipid membrane vesicles released by cells. Currently, EVs are attracting a lot of attention in the biological and medical fields due to their role as natural carriers of proteins, lipids, and nucleic acids. Thus, they can transport useful genomic information from their parental cell through body fluids, promoting cell-to-cell communication even between different organs. Due to their functionality as cargo carriers and their protein expression, they can play an important role as possible diagnostic and prognostic biomarkers in various types of diseases, e.g., cancers, neurodegenerative, and autoimmune diseases. Today, given the invaluable importance of EVs, there are some pivotal challenges to overcome in terms of their isolation. Conventional methods have some limitations: they are influenced by the starting sample, might present low throughput and low purity, and sometimes a lack of reproducibility, being operator dependent. During the past few years, several microfluidic approaches have been proposed to address these issues. In this review, we summarize the most important microfluidic-based devices for EV isolation, highlighting their advantages and disadvantages compared to existing technology, as well as the current state of the art from the perspective of the use of these devices in clinical applications.
Collapse
Affiliation(s)
- Alessio Meggiolaro
- Department of Physics and Astronomy, University of Padua, Via Marzolo 8, 35131 Padua, Italy
| | - Valentina Moccia
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy
| | - Paola Brun
- Department of Molecular Medicine, University of Padua, Via Gabelli 63, 35121 Padua, Italy
| | - Matteo Pierno
- Department of Physics and Astronomy, University of Padua, Via Marzolo 8, 35131 Padua, Italy
| | - Giampaolo Mistura
- Department of Physics and Astronomy, University of Padua, Via Marzolo 8, 35131 Padua, Italy
| | - Valentina Zappulli
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, 35020 Legnaro, Italy
| | - Davide Ferraro
- Department of Physics and Astronomy, University of Padua, Via Marzolo 8, 35131 Padua, Italy
- Correspondence:
| |
Collapse
|
15
|
Wu J, Lin Z, Zou Z, Liang S, Wu M, Hu TY, Zhang Y. Identifying the Phenotypes of Tumor-Derived Extracellular Vesicles Using Size-Coded Affinity Microbeads. J Am Chem Soc 2022; 144:23483-23491. [PMID: 36527408 DOI: 10.1021/jacs.2c10042] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tumor-derived extracellular vesicle (tEV) biomarkers can reflect cancer cell phenotypes and have great potential for cancer diagnosis and treatment. However, tEVs display high heterogeneity, and rapid and sensitive identification of EV biomarkers remains challenging due to their low expression. Spectral overlap also significantly limits the multiplex analysis of EV biomarkers by fluorescent probes. Herein, we developed a method for highly sensitive tEV phenotyping that uses size-coded microbeads that carry hairpin probes that can bind to aptamers targeting distinct tEV biomarkers. We also designed a microfluidic chip containing spacer arrays that segregate these microbeads in distinct chip regions according to their size to generate location-specific signals indicating the level of different EV biomarkers. The EV biomarker signal on these microbeads was amplified by in situ rolling cyclic amplification (RCA). This strategy permits the simultaneous detection of multiple tEV phenotypes by fluorescence spectroscopy without the limitations of spectral overlap. This study demonstrates that this tEV phenotyping method can rapidly and simultaneously detect six different tEV phenotypes with high sensitivity. Due to the programmability of the sensing platform, this method can be rapidly adapted to detect different tEV phenotype substitutions of the detected biomarkers. Notably, clinical cohort studies show that this strategy may provide new ideas for the precise diagnosis and personalized treatment of cancer patients.
Collapse
Affiliation(s)
- Jiacheng Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhun Lin
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhengyu Zou
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Siping Liang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Minhao Wu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Tony Y Hu
- Center of Cellular and Molecular Diagnosis, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Yuanqing Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
16
|
Nasrollahpour H, Khalilzadeh B, Hasanzadeh M, Rahbarghazi R, Estrela P, Naseri A, Tasoglu S, Sillanpää M. Nanotechnology‐based electrochemical biosensors for monitoring breast cancer biomarkers. Med Res Rev 2022; 43:464-569. [PMID: 36464910 DOI: 10.1002/med.21931] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 10/01/2022] [Accepted: 11/04/2022] [Indexed: 12/07/2022]
Abstract
Breast cancer is categorized as the most widespread cancer type among women globally. On-time diagnosis can decrease the mortality rate by making the right decision in the therapy procedure. These features lead to a reduction in medication time and socioeconomic burden. The current review article provides a comprehensive assessment for breast cancer diagnosis using nanomaterials and related technologies. Growing use of the nano/biotechnology domain in terms of electrochemical nanobiosensor designing was discussed in detail. In this regard, recent advances in nanomaterial applied for amplified biosensing methodologies were assessed for breast cancer diagnosis by focusing on the advantages and disadvantages of these approaches. We also monitored designing methods, advantages, and the necessity of suitable (nano) materials from a statistical standpoint. The main objective of this review is to classify the applicable biosensors based on breast cancer biomarkers. With numerous nano-sized platforms published for breast cancer diagnosis, this review tried to collect the most suitable methodologies for detecting biomarkers and certain breast cancer cell types.
Collapse
Affiliation(s)
- Hassan Nasrollahpour
- Department of Analytical Chemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Applied Cellular Sciences, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Pedro Estrela
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio) and Department of Electronic and Electrical Engineering University of Bath Bath UK
| | - Abdolhossein Naseri
- Department of Analytical Chemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Savas Tasoglu
- Koç University Translational Medicine Research Center (KUTTAM) Rumeli Feneri, Sarıyer Istanbul Turkey
| | - Mika Sillanpää
- Environmental Engineering and Management Research Group Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Environment and Labour Safety Ton Duc Thang University Ho Chi Minh City Vietnam
| |
Collapse
|
17
|
Tracking matricellular protein SPARC in extracellular vesicles as a non-destructive method to evaluate lipid-based antifibrotic treatments. Commun Biol 2022; 5:1155. [PMID: 36310239 PMCID: PMC9618575 DOI: 10.1038/s42003-022-04123-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 10/17/2022] [Indexed: 11/10/2022] Open
Abstract
Uncovering the complex cellular mechanisms underlying hepatic fibrogenesis could expedite the development of effective treatments and noninvasive diagnosis for liver fibrosis. The biochemical complexity of extracellular vesicles (EVs) and their role in intercellular communication make them an attractive tool to look for biomarkers as potential alternative to liver biopsies. We developed a solid set of methods to isolate and characterize EVs from differently treated human hepatic stellate cell (HSC) line LX-2, and we investigated their biological effect onto naïve LX-2, proving that EVs do play an active role in fibrogenesis. We mined our proteomic data for EV-associated proteins whose expression correlated with HSC treatment, choosing the matricellular protein SPARC as proof-of-concept for the feasibility of fluorescence nanoparticle-tracking analysis to determine an EV-based HSCs’ fibrogenic phenotype. We thus used EVs to directly evaluate the efficacy of treatment with S80, a polyenylphosphatidylcholines-rich lipid, finding that S80 reduces the relative presence of SPARC-positive EVs. Here we correlated the cellular response to lipid-based antifibrotic treatment to the relative presence of a candidate protein marker associated with the released EVs. Along with providing insights into polyenylphosphatidylcholines treatments, our findings pave the way for precise and less invasive diagnostic analyses of hepatic fibrogenesis. A method is developed to isolate and characterize extracellular vesicles (EVs) from human hepatic stellate cells and proteomics reveals that the matricellular protein SPARC may be used as an EV marker after lipid-based antifibrotic treatment.
Collapse
|
18
|
Hallal S, Tűzesi Á, Grau GE, Buckland ME, Alexander KL. Understanding the extracellular vesicle surface for clinical molecular biology. J Extracell Vesicles 2022; 11:e12260. [PMID: 36239734 PMCID: PMC9563386 DOI: 10.1002/jev2.12260] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 12/17/2022] Open
Abstract
Extracellular vesicles (EVs) are lipid-membrane enclosed nanoparticles that play significant roles in health and disease. EVs are abundant in body fluids and carry an array of molecules (proteins, lipids, nucleic acids and glycans) that reflect the identity and activity of their cell-of-origin. While the advent of high throughput omics technologies has allowed in-depth characterisation of EV compositions, how these molecular species are spatially distributed within EV structures is not well appreciated. This is particularly true of the EV surface where a plethora of molecules are reported to be both integral and peripherally associated to the EV membrane. This coronal layer or 'atmosphere' that surrounds the EV membrane contributes to a large, highly interactive and dynamic surface area that is responsible for facilitating EV interactions with the extracellular environment. The EV coronal layer harbours surface molecules that reflect the identity of parent cells, which is likely a highly valuable property in the context of diagnostic liquid biopsies. In this review, we describe the current understanding of the mechanical, electrostatic and molecular properties of the EV surface that offer significant biomarker potential and contribute to a highly dynamic interactome.
Collapse
Affiliation(s)
- Susannah Hallal
- Neurosurgery DepartmentChris O'Brien LifehouseCamperdownNSWAustralia,Brainstorm Brain Cancer Research, Brain and Mind CentreThe University of SydneyNSWAustralia,Neuropathology DepartmentRoyal Prince Alfred HospitalCamperdownNSWAustralia
| | - Ágota Tűzesi
- Brainstorm Brain Cancer Research, Brain and Mind CentreThe University of SydneyNSWAustralia,Neuropathology DepartmentRoyal Prince Alfred HospitalCamperdownNSWAustralia,School of Medical SciencesFaculty of Medicine & HealthThe University of SydneyCamperdownNSWAustralia
| | - Georges E. Grau
- School of Medical SciencesFaculty of Medicine & HealthThe University of SydneyCamperdownNSWAustralia
| | - Michael E. Buckland
- Brainstorm Brain Cancer Research, Brain and Mind CentreThe University of SydneyNSWAustralia,Neuropathology DepartmentRoyal Prince Alfred HospitalCamperdownNSWAustralia,School of Medical SciencesFaculty of Medicine & HealthThe University of SydneyCamperdownNSWAustralia
| | - Kimberley L. Alexander
- Neurosurgery DepartmentChris O'Brien LifehouseCamperdownNSWAustralia,Brainstorm Brain Cancer Research, Brain and Mind CentreThe University of SydneyNSWAustralia,Neuropathology DepartmentRoyal Prince Alfred HospitalCamperdownNSWAustralia,School of Medical SciencesFaculty of Medicine & HealthThe University of SydneyCamperdownNSWAustralia
| |
Collapse
|
19
|
Theel EK, Schwaminger SP. Microfluidic Approaches for Affinity-Based Exosome Separation. Int J Mol Sci 2022; 23:ijms23169004. [PMID: 36012270 PMCID: PMC9409173 DOI: 10.3390/ijms23169004] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 12/13/2022] Open
Abstract
As a subspecies of extracellular vesicles (EVs), exosomes have provided promising results in diagnostic and theranostic applications in recent years. The nanometer-sized exosomes can be extracted by liquid biopsy from almost all body fluids, making them especially suitable for mainly non-invasive point-of-care (POC) applications. To achieve this, exosomes must first be separated from the respective biofluid. Impurities with similar properties, heterogeneity of exosome characteristics, and time-related biofouling complicate the separation. This practical review presents the state-of-the-art methods available for the separation of exosomes. Furthermore, it is shown how new separation methods can be developed. A particular focus lies on the fabrication and design of microfluidic devices using highly selective affinity separation. Due to their compactness, quick analysis time and portable form factor, these microfluidic devices are particularly suitable to deliver fast and reliable results for POC applications. For these devices, new manufacturing methods (e.g., laminating, replica molding and 3D printing) that use low-cost materials and do not require clean rooms are presented. Additionally, special flow routes and patterns that increase contact surfaces, as well as residence time, and thus improve affinity purification are displayed. Finally, various analyses are shown that can be used to evaluate the separation results of a newly developed device. Overall, this review paper provides a toolbox for developing new microfluidic affinity devices for exosome separation.
Collapse
Affiliation(s)
- Eike K. Theel
- Bioseparation Engineering Group, School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching bei München, Germany
| | - Sebastian P. Schwaminger
- Bioseparation Engineering Group, School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, 85748 Garching bei München, Germany
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
- Correspondence:
| |
Collapse
|
20
|
Bioprobes-regulated precision biosensing of exosomes: From the nanovesicle surface to the inside. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Suthar J, Prieto-Simon B, Williams GR, Guldin S. Dual-Mode and Label-Free Detection of Exosomes from Plasma Using an Electrochemical Quartz Crystal Microbalance with Dissipation Monitoring. Anal Chem 2022. [PMID: 35072456 DOI: 10.1021/acs.analchem.1c04282/suppl_file/ac1c04282_si_001.pdf] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The biomolecular contents of extracellular vesicles, such as exosomes, have been shown to be crucial in intercellular communication and disease propagation. As a result, there has been a recent surge in the exploration of novel biosensing platforms that can sensitively and specifically detect exosomal content such as proteins and nucleic acids, with a view toward application in diagnostic assays. Here, we demonstrate dual-mode and label-free detection of plasma exosomes using an electrochemical quartz crystal microbalance with dissipation monitoring (EQCM-D). The platform adopts a direct immunosensing approach to effectively capture exosomes via their surface protein expression of CD63. By combining QCM-D with a tandem in situ electrochemical impedance spectroscopy measurement, we are able to demonstrate relationships between mass, viscoelasticity and impedance inducing properties of each functional layer and analyte. In addition to lowering the limit of detection (by a factor of 2-4) to 6.71 × 107 exosome-sized particles (ESP) per mL in 25% v/v serum, the synergy between dissipation and impedance response introduces improved sensing specificity by offering further distinction between soft and rigid analytes, thereby promoting EQCM-D as an important technique for exosome analysis.
Collapse
Affiliation(s)
- Jugal Suthar
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, United Kingdom
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, United Kingdom
| | - Beatriz Prieto-Simon
- Department of Electronic Engineering, Universitat Rovira i Virgili, 43007, Tarragona, Spain
- ICREA, Pg. Lluis Companys 23, 08010, Barcelona, Spain
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, United Kingdom
| | - Stefan Guldin
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, United Kingdom
| |
Collapse
|
22
|
Suthar J, Prieto-Simon B, Williams GR, Guldin S. Dual-Mode and Label-Free Detection of Exosomes from Plasma Using an Electrochemical Quartz Crystal Microbalance with Dissipation Monitoring. Anal Chem 2022; 94:2465-2475. [PMID: 35072456 PMCID: PMC9096790 DOI: 10.1021/acs.analchem.1c04282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
The
biomolecular contents of extracellular vesicles, such as exosomes,
have been shown to be crucial in intercellular communication and disease
propagation. As a result, there has been a recent surge in the exploration
of novel biosensing platforms that can sensitively and specifically
detect exosomal content such as proteins and nucleic acids, with a
view toward application in diagnostic assays. Here, we demonstrate
dual-mode and label-free detection of plasma exosomes using an electrochemical
quartz crystal microbalance with dissipation monitoring (EQCM-D).
The platform adopts a direct immunosensing approach to effectively
capture exosomes via their surface protein expression of CD63. By
combining QCM-D with a tandem in situ electrochemical impedance spectroscopy
measurement, we are able to demonstrate relationships between mass,
viscoelasticity and impedance inducing properties of each functional
layer and analyte. In addition to lowering the limit of detection
(by a factor of 2–4) to 6.71 × 107 exosome-sized
particles (ESP) per mL in 25% v/v serum, the synergy between dissipation
and impedance response introduces improved sensing specificity by
offering further distinction between soft and rigid analytes, thereby
promoting EQCM-D as an important technique for exosome analysis.
Collapse
Affiliation(s)
- Jugal Suthar
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, United Kingdom
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, United Kingdom
| | - Beatriz Prieto-Simon
- Department of Electronic Engineering, Universitat Rovira i Virgili, 43007, Tarragona, Spain
- ICREA, Pg. Lluis Companys 23, 08010, Barcelona, Spain
| | - Gareth R. Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, United Kingdom
| | - Stefan Guldin
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, United Kingdom
| |
Collapse
|
23
|
Zhao W, Hu J, Liu J, Li X, Sun S, Luan X, Zhao Y, Wei S, Li M, Zhang Q, Huang C. Si nanowire Bio-FET for electrical and label-free detection of cancer cell-derived exosomes. MICROSYSTEMS & NANOENGINEERING 2022; 8:57. [PMID: 35655901 PMCID: PMC9151647 DOI: 10.1038/s41378-022-00387-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/17/2022] [Accepted: 04/13/2022] [Indexed: 05/11/2023]
Abstract
Exosomes are highly important in clinical diagnosis due to their high homology with their parental cells. However, conventional exosome detection methods still face the challenges of expensive equipment, low sensitivity, and complex procedures. Field effect transistors (FETs) are not only the most essential electronic component in the modern microelectronics industry but also show great potential for biomolecule detection owing to the advantages of rapid response, high sensitivity, and label-free detection. In this study, we proposed a Si nanowire field-effect transistor (Si-NW Bio-FET) device chemically modified with specific antibodies for the electrical and label-free detection of exosomes. The Si-NW FETs were fabricated by standard microelectronic processes with 45 nm width nanowires and packaged in a polydimethylsiloxane (PDMS) microfluidic channel. The nanowires were further modified with the specific CD63 antibody to form a Si-NW Bio-FET. The use of the developed Si-NW Bio-FET for the electrical and label-free detection of exosomes was successfully demonstrated with a limit of detection (LOD) of 2159 particles/mL. In contrast to other technologies, in this study, Si-NW Bio-FET provides a unique strategy for directly quantifying and real-time detecting exosomes without labeling, indicating its potential as a tool for the early diagnosis of cancer.
Collapse
Affiliation(s)
- Wenjie Zhao
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029 People’s Republic of China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Jiawei Hu
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029 People’s Republic of China
- School of Information Science and Technology, North China University of Technology, Beijing, 100144 People’s Republic of China
| | - Jinlong Liu
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029 People’s Republic of China
| | - Xin Li
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029 People’s Republic of China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Sheng Sun
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029 People’s Republic of China
| | - Xiaofeng Luan
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029 People’s Republic of China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Yang Zhao
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029 People’s Republic of China
| | - Shuhua Wei
- School of Information Science and Technology, North China University of Technology, Beijing, 100144 People’s Republic of China
| | - Mingxiao Li
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029 People’s Republic of China
| | - Qingzhu Zhang
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029 People’s Republic of China
| | - Chengjun Huang
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029 People’s Republic of China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| |
Collapse
|
24
|
Whittle K, Kao S, Clarke S, Grau GE, Hosseini-Beheshti E. Exploring the role of extracellular vesicles and their protein cargo in lung cancer metastasis: a review. Crit Rev Oncol Hematol 2022; 171:103603. [DOI: 10.1016/j.critrevonc.2022.103603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
|
25
|
Raghav A, Jeong GB. A systematic review on the modifications of extracellular vesicles: a revolutionized tool of nano-biotechnology. J Nanobiotechnology 2021; 19:459. [PMID: 34965878 PMCID: PMC8716303 DOI: 10.1186/s12951-021-01219-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
Background Tailoring extracellular vesicles (EVs) can bequeath them with diverse functions and efficient performance in nano-biotechnology. Engineering and modification of EVs improves the targeted drug delivery efficiency. Here, we performed systematic review of various methods for EVs modifications. Methods PubMed, Scopus, ISI Web of Science, EMBASE, and Google Scholar were searched for available articles on EVs modifications (up to March 2021). In total, 1208 articles were identified and assessed, and then only 36 articles were found eligible and included. Results Six studies demonstrate the application of click chemistry, seven studies used co-incubation, two studies used chemical transfection, four studies implicated electroporation and sonication approach for modification of EVs. Moreover, two studies utilized microfluidics as suitable approach for loading cargo into EVs, while eight studies showed freeze–thaw method as feasible for these biological nanoparticles. Conclusion Freeze–thaw approach is found to be convenient and popular among researchers for performing modifications in EVs for the purpose of targeted drug delivery loading. Clinical-grade EVs production with good clinical practices (GCPs) is challenging in the current scenario. More studies are needed to determine the best suitable approach for cargo loading of EVs that may be exploited for research and therapeutic use. Graphical Abstract ![]()
Extracellular vesicles (EVs) can be modified using various methods available including physical, chemical and engineering based. These tailoring methods are helpful in targeting drug delivery to treat various diseases. Moreover, EVs have the ability to modify that’s due to presence of lipid bilayer membrane, that’s effectively participate in loading and unloading of desired drug. EVs expressed from the specific cell types can give useful information about the pathogenesis of a particular disease in the form of unique nucleic acids, protein and lipid sequences and therefore, EVs derived from these cells can be used as specific diagnostic biomarker for diagnosis of diseases. Modified EVs using various drugs or miRNAs can be used for targeted drug delivery to specific cells.
Collapse
Affiliation(s)
- Alok Raghav
- Multidisciplinary Research Unit, Department of Health Research, MoHFW, GSVM Medical College, Kanpur, India, 208002
| | - Goo-Bo Jeong
- Department of Anatomy and Cell Biology, College of Medicine, Gachon University, 155 Getbeol-roYeonsu-gu, Incheon, 21999, Korea.
| |
Collapse
|
26
|
|
27
|
A sandwich-based evanescent wave fluorescent biosensor for simple, real-time exosome detection †. Biosens Bioelectron 2021; 200:113902. [PMID: 34954570 DOI: 10.1016/j.bios.2021.113902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 12/14/2022]
Abstract
Exosomes are regarded as a promising biomarker for the noninvasive diagnosis and treatment of diseases. The value of exosomes for medical research has promoted the search for a fast, efficient, and sensitive detection method. This study reported a sandwich-based evanescent wave fluorescent biosensor (S-EWFB) for exosome detection. A two-step strategy was implemented to take advantages of the simple binding of fluorescent probes with exosomes via the hydrophobic interaction between the cholesteryl and phospholipid bilayer membrane, as well as real-time detection on an evanescent wave liquid-solid interface based on CD63 aptamer-specific capture to form an exosome@fluorescence probe/aptamer sandwich structure. The one-to-many connection between exosomes and signal molecules and the aptamer-modified evanescent wave optical fiber detection platform reduced the detection limit of exosomes to 7.66 particles/mL, with a linear range of 47.5-4.75 × 106 particles/mL. The entire detection process was simple, rapid, and real-time and lasted about 1 h while requiring no separation and purification. Additionally, this platform showed excellent surface regeneration capability and exhibited good performance during the analysis of tumor and non-tumor-derived exosomes.
Collapse
|
28
|
Cavallaro S, Hååg P, Sahu SS, Berisha L, Kaminskyy VO, Ekman S, Lewensohn R, Linnros J, Viktorsson K, Dev A. Multiplexed electrokinetic sensor for detection and therapy monitoring of extracellular vesicles from liquid biopsies of non-small-cell lung cancer patients. Biosens Bioelectron 2021; 193:113568. [PMID: 34428672 DOI: 10.1016/j.bios.2021.113568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/09/2021] [Accepted: 08/15/2021] [Indexed: 12/20/2022]
Abstract
Liquid biopsies based on extracellular vesicles (EVs) represent a promising tool for treatment monitoring of tumors, including non-small-cell lung cancers (NSCLC). In this study, we report on a multiplexed electrokinetic sensor for surface protein profiling of EVs from clinical samples. The method detects the difference in the streaming current generated by EV binding to the surface of a functionalized microcapillary, thereby estimating the expression level of a marker. Using multiple microchannels functionalized with different antibodies in a parallel fluidic connection, we first demonstrate the capacity for simultaneous detection of multiple surface markers in small EVs (sEVs) from NSCLC cells. To investigate the prospects of liquid biopsies based on EVs, we then apply the method to profile sEVs isolated from the pleural effusion (PE) fluids of five NSCLC patients with different genomic alterations (ALK, KRAS or EGFR) and applied treatments (chemotherapy, EGFR- or ALK-tyrosine kinase inhibitors). The vesicles were targeted against CD9, as well as EGFR and PD-L1, two treatment targets in NSCLC. The electrokinetic signals show detection of these markers on sEVs, highlighting distinct interpatient differences, e.g., increased EGFR levels in sEVs from a patient with EGFR mutation as compared to an ALK-fusion one. The sensors also detect differences in PD-L1 expressions. The analysis of sEVs from a patient prior and post ALK-TKI crizotinib treatment reveals significant increases in the expressions of some markers (EGFR and PD-L1). These results hold promise for the application of the method for tumor treatment monitoring based on sEVs from patient liquid biopsies.
Collapse
Affiliation(s)
- Sara Cavallaro
- Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, 10691, Stockholm, Sweden.
| | - Petra Hååg
- Department of Oncology/Pathology, Karolinska Institutet, 17164, Stockholm, Sweden
| | - Siddharth S Sahu
- Department of Electrical Engineering, The Ångström Laboratory, Uppsala University, 75121, Uppsala, Sweden
| | | | - Vitaliy O Kaminskyy
- Department of Oncology/Pathology, Karolinska Institutet, 17164, Stockholm, Sweden
| | - Simon Ekman
- Department of Oncology/Pathology, Karolinska Institutet, 17164, Stockholm, Sweden; Theme Cancer, Patient Area Head and Neck, Lung, and Skin, Karolinska University Hospital, 17164, Solna, Sweden
| | - Rolf Lewensohn
- Department of Oncology/Pathology, Karolinska Institutet, 17164, Stockholm, Sweden; Theme Cancer, Patient Area Head and Neck, Lung, and Skin, Karolinska University Hospital, 17164, Solna, Sweden
| | - Jan Linnros
- Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, 10691, Stockholm, Sweden
| | - Kristina Viktorsson
- Department of Oncology/Pathology, Karolinska Institutet, 17164, Stockholm, Sweden
| | - Apurba Dev
- Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, 10691, Stockholm, Sweden; Department of Electrical Engineering, The Ångström Laboratory, Uppsala University, 75121, Uppsala, Sweden.
| |
Collapse
|
29
|
Ma X, Hao Y, Liu L. Progress in Nanomaterials-Based Optical and Electrochemical Methods for the Assays of Exosomes. Int J Nanomedicine 2021; 16:7575-7608. [PMID: 34803380 PMCID: PMC8599324 DOI: 10.2147/ijn.s333969] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/28/2021] [Indexed: 12/11/2022] Open
Abstract
Exosomes with diameters of 30-150 nm are small membrane-bound vesicles secreted by a variety of cells. They play an important role in many biological processes, such as tumor-related immune response and intercellular signal transduction. Exosomes have been considered as emerging and noninvasive biomarkers for cancer diagnosis. Recently, a large number of optical and electrochemical biosensors have been proposed for sensitive detection of exosomes. To meet the increasing demands for ultrasensitive detection, nanomaterials have been integrated with various techniques as powerful components. Because of their intrinsic merits of biological compatibility, excellent physicochemical features and unique catalytic ability, nanomaterials have significantly improved the analytical performances of exosome biosensors. In this review, we summarized the recent progress in nanomaterials-based biosensors for the detection of cancer-derived exosomes, including fluorescence, colorimetry, surface plasmon resonance spectroscopy, surface enhanced Raman scattering spectroscopy, electrochemistry, electrochemiluminescence and so on.
Collapse
Affiliation(s)
- Xiaohua Ma
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu, Henan, 476000, People’s Republic of China
| | - Yuanqiang Hao
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu, Henan, 476000, People’s Republic of China
| | - Lin Liu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Shangqiu Normal University, Shangqiu, Henan, 476000, People’s Republic of China
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan, 455000, People’s Republic of China
| |
Collapse
|
30
|
Affibody Functionalized Beads for the Highly Sensitive Detection of Cancer Cell-Derived Exosomes. Int J Mol Sci 2021; 22:ijms222112014. [PMID: 34769444 PMCID: PMC8584739 DOI: 10.3390/ijms222112014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 12/14/2022] Open
Abstract
Exosomes belong to the class of extracellular vesicles of endocytic origin, which are regarded as a promising source of cancer biomarkers in liquid biopsy. As a result, an accurate, sensitive, and specific quantification of these nano-sized particles is of significant importance. Affinity-based approaches are recognized as the most valuable technique for exosome isolation and characterization. Indeed, Affibody biomolecules are a type of protein scaffold engineered with small size and enjoy the features of high thermal stability, affinity, and specificity. While the utilization of antibodies, aptamers, and other biologically active substances for exosome detection has been reported widely, there are no reports describing Affibody molecules’ usage for exosome detection. In this study, for the first time, we have proposed a novel strategy of using Affibody functionalized microbeads (AffiBeads) for exosome detection with a high degree of efficiency. As a proof-of-concept, anti-EGFR-AffiBeads were fabricated and applied to capture and detect human lung A549 cancer cell-derived EGFR-positive exosomes using flow cytometry and fluorescent microscopy. Moreover, the capture efficiency of the AffiBeads were compared with its counterpart antibody. Our results showed that the Affibody probe had a detection limit of 15.6 ng exosomes per mL (~12 exosomes per AffiBead). The approach proposed in the current study can be used for sensitive detection of low expression level markers on tumor-derived exosomes, providing a basis for early-stage cancer diagnosis.
Collapse
|
31
|
Sardarabadi P, Kojabad AA, Jafari D, Liu CH. Liquid Biopsy-Based Biosensors for MRD Detection and Treatment Monitoring in Non-Small Cell Lung Cancer (NSCLC). BIOSENSORS 2021; 11:394. [PMID: 34677350 PMCID: PMC8533977 DOI: 10.3390/bios11100394] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
Globally, non-small cell lung cancer (NSCLC) is the leading cause of cancer deaths. Despite advancements in chemotherapy and targeted therapies, the 5-year survival rate has remained at 16% for the past forty years. Minimal residual disease (MRD) is described as the existence of either isolated tumour cells or circulating tumour cells in biological liquid of patients after removal of the primary tumour without any clinical signs of cancer. Recently, liquid biopsy has been promising as a non-invasive method of disease monitoring and treatment guidelines as an MRD marker. Liquid biopsy could be used to detect and assess earlier stages of NSCLC, post-treatment MRD, resistance to targeted therapies, immune checkpoint inhibitors (ICIs) and tumour mutational burden. MRD surveillance has been proposed as a potential marker for lung cancer relapse. Principally, biosensors provide the quantitative analysis of various materials by converting biological functions into quantifiable signals. Biosensors are usually operated to detect antibodies, enzymes, DNA, RNA, extracellular vesicles (EVs) and whole cells. Here, we present a category of biosensors based on the signal transduction method for identifying biosensor-based biomarkers in liquid biopsy specimens to monitor lung cancer treatment.
Collapse
Affiliation(s)
- Parvaneh Sardarabadi
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 30044, Taiwan;
| | - Amir Asri Kojabad
- Department of Hematology, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran 14535, Iran;
| | - Davod Jafari
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Sciences, Tehran 14535, Iran;
| | - Cheng-Hsien Liu
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 30044, Taiwan;
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30044, Taiwan
| |
Collapse
|
32
|
Min L, Wang B, Bao H, Li X, Zhao L, Meng J, Wang S. Advanced Nanotechnologies for Extracellular Vesicle-Based Liquid Biopsy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102789. [PMID: 34463056 PMCID: PMC8529441 DOI: 10.1002/advs.202102789] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Indexed: 05/09/2023]
Abstract
Extracellular vesicles (EVs) are emerging as a new source of biomarkers in liquid biopsy because of their wide presence in most body fluids and their ability to load cargoes from disease-related cells. Owing to the crucial role of EVs in disease diagnosis and treatment, significant efforts have been made to isolate, detect, and analyze EVs with high efficiency. A recent overview of advanced EV detection nanotechnologies is discussed here. First, several key challenges in EV-based liquid biopsies are introduced. Then, the related pivotal advances in nanotechnologies for EV isolation based on physical features, chemical affinity, and the combination of nanostructures and chemical affinity are summarized. Next, a summary of high-sensitivity sensors for EV detection and advanced approaches for single EV detection are provided. Later, EV analysis is introduced in practical clinical scenarios, and the application of machine learning in this field is highlighted. Finally, future opportunities for the development of next-generation nanotechnologies for EV detection are presented.
Collapse
Affiliation(s)
- Li Min
- Department of GastroenterologyBeijing Friendship HospitalCapital Medical UniversityNational Clinical Research Center for Digestive DiseasesBeijing Digestive Disease CenterBeijing Key Laboratory for Precancerous Lesion of Digestive DiseaseBeijing100050P. R. China
| | - Binshuai Wang
- Department of UrologyPeking University Third HospitalBeijing100191P. R. China
| | - Han Bao
- Key Laboratory of Bio‐inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Xinran Li
- Department of UrologyPeking University Third HospitalBeijing100191P. R. China
| | - Libo Zhao
- Echo Biotech Co., Ltd.Beijing102206P. R. China
| | - Jingxin Meng
- Key Laboratory of Bio‐inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Shutao Wang
- Key Laboratory of Bio‐inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
33
|
Zhao W, Zhang L, Ye Y, Li Y, Luan X, Liu J, Cheng J, Zhao Y, Li M, Huang C. Microsphere mediated exosome isolation and ultra-sensitive detection on a dielectrophoresis integrated microfluidic device. Analyst 2021; 146:5962-5972. [PMID: 34494041 DOI: 10.1039/d1an01061a] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tumor-derived exosomes have been recognized as potential biomarkers for cancer diagnosis because they are actively involved in cancer progression and metastasis. However, progress in practical exosome analysis is still slow due to the limitation in exosome isolation and detection. The development of microfluidic devices has provided a promising analytical platform compared with traditional methods. In this study, we develop an exosome isolation and detection method based on a microfluidic device (ExoDEP-chip), which realized microsphere mediated dielectrophoretic isolation and immunoaffinity detection. Exosomes were firstly isolated by binding to antibodies pre-immobilized on the polystyrene (PS) microsphere surface and were further detected using fluorescently labeled antibodies by fluorescence microscopy. Single microspheres were then trapped into single microwells under the DEP force in the ExoDEP-chip. A wide range from 1.4 × 103 to 1.4 × 108 exosomes per mL with a detection limit of 193 exosomes per mL was obtained. Through monitoring five proteins (CD81, CEA, EpCAM, CD147, and AFP) of exosomes from three different cell lines (A549, HEK293, and HepG2), a significant difference in marker expression levels was observed in different cell lines. Therefore, this method has good prospects in exosome-based tumor marker detection and cancer diagnosis.
Collapse
Affiliation(s)
- Wenjie Zhao
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, People's Republic of China. .,School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| | - Lingqian Zhang
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, People's Republic of China.
| | - Yifei Ye
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, People's Republic of China. .,School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| | - Yuang Li
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, People's Republic of China. .,School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| | - Xiaofeng Luan
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, People's Republic of China.
| | - Jinlong Liu
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, People's Republic of China.
| | - Jie Cheng
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, People's Republic of China. .,School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| | - Yang Zhao
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, People's Republic of China.
| | - Mingxiao Li
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, People's Republic of China.
| | - Chengjun Huang
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, People's Republic of China. .,School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| |
Collapse
|
34
|
Sahu SS, Cavallaro S, Hååg P, Nagy Á, Karlström AE, Lewensohn R, Viktorsson K, Linnros J, Dev A. Exploiting Electrostatic Interaction for Highly Sensitive Detection of Tumor-Derived Extracellular Vesicles by an Electrokinetic Sensor. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42513-42521. [PMID: 34473477 PMCID: PMC8447189 DOI: 10.1021/acsami.1c13192] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We present an approach to improve the detection sensitivity of a streaming current-based biosensor for membrane protein profiling of small extracellular vesicles (sEVs). The experimental approach, supported by theoretical investigation, exploits electrostatic charge contrast between the sensor surface and target analytes to enhance the detection sensitivity. We first demonstrate the feasibility of the approach using different chemical functionalization schemes to modulate the zeta potential of the sensor surface in a range -16.0 to -32.8 mV. Thereafter, we examine the sensitivity of the sensor surface across this range of zeta potential to determine the optimal functionalization scheme. The limit of detection (LOD) varied by 2 orders of magnitude across this range, reaching a value of 4.9 × 106 particles/mL for the best performing surface for CD9. We then used the optimized surface to profile CD9, EGFR, and PD-L1 surface proteins of sEVs derived from non-small cell lung cancer (NSCLC) cell-line H1975, before and after treatment with EGFR tyrosine kinase inhibitors, as well as sEVs derived from pleural effusion fluid of NSCLC adenocarcinoma patients. Our results show the feasibility to monitor CD9, EGFR, and PD-L1 expression on the sEV surface, illustrating a good prospect of the method for clinical application.
Collapse
Affiliation(s)
- Siddharth Sourabh Sahu
- Department
of Electrical Engineering, The Ångström Laboratory, Uppsala University, 75121 Uppsala, Sweden
| | - Sara Cavallaro
- Department
of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Petra Hååg
- Department
of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
| | - Ábel Nagy
- Department
of Protein Science, School of Chemistry, Biotechnology, and Health
(CBH), KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Amelie Eriksson Karlström
- Department
of Protein Science, School of Chemistry, Biotechnology, and Health
(CBH), KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Rolf Lewensohn
- Department
of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
- Theme
Cancer, Patient Area Head and Neck, Lung, and Skin, Karolinska University Hospital, 17164 Solna, Sweden
| | - Kristina Viktorsson
- Department
of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
| | - Jan Linnros
- Department
of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Apurba Dev
- Department
of Electrical Engineering, The Ångström Laboratory, Uppsala University, 75121 Uppsala, Sweden
- Department
of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| |
Collapse
|
35
|
Raghav A, Tripathi P, Mishra BK, Jeong GB, Banday S, Gautam KA, Mateen QN, Singh P, Singh M, Singla A, Ahmad J. Mesenchymal Stromal Cell-Derived Tailored Exosomes Treat Bacteria-Associated Diabetes Foot Ulcers: A Customized Approach From Bench to Bed. Front Microbiol 2021; 12:712588. [PMID: 34385994 PMCID: PMC8354005 DOI: 10.3389/fmicb.2021.712588] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/16/2021] [Indexed: 12/18/2022] Open
Abstract
Exosomes are nano-vesicles of endosomal origin inherited with characteristics of drug delivery and cargo loading. Exosomes offer a diverse range of opportunities that can be exploited in the treatment of various diseases post-functionalization. This membrane engineering is recently being used in the management of bacteria-associated diabetic foot ulcers (DFUs). Diabetes mellitus (DM) is among the most crippling disease of society with a large share of its imposing economic burden. DM in a chronic state is associated with the development of micro- and macrovascular complications. DFU is among the diabetic microvascular complications with the consequent occurrence of diabetic peripheral neuropathy. Mesenchymal stromal cell (MSC)-derived exosomes post-tailoring hold promise to accelerate the diabetic wound repair in DFU associated with bacterial inhabitant. These exosomes promote the antibacterial properties with regenerative activity by loading bioactive molecules like growth factors, nucleic acids, and proteins, and non-bioactive substances like antibiotics. Functionalization of MSC-derived exosomes is mediated by various physical, chemical, and biological processes that effectively load the desired cargo into the exosomes for targeted delivery at specific bacterial DFUs and wound. The present study focused on the application of the cargo-loaded exosomes in the treatment of DFU and also emphasizes the different approaches for loading the desired cargo/drug inside exosomes. However, more studies and clinical trials are needed in the domain to explore this membrane engineering.
Collapse
Affiliation(s)
- Alok Raghav
- Multidisciplinary Research Unit, Department of Health Research, MoHFW, GSVM Medical College, Kanpur, India
| | | | | | - Goo-Bo Jeong
- Department of Anatomy and Cell Biology, College of Medicine, Gachon University, Incheon, South Korea
| | - Shahid Banday
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Kirti Amresh Gautam
- Multidisciplinary Research Unit, Department of Health Research, MoHFW, GSVM Medical College, Kanpur, India
| | - Qazi Noorul Mateen
- Department of Biochemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Prem Singh
- Department of Medicine, GSVM Medical College, Kanpur, India
| | - Manish Singh
- Department of Neurosurgery, GSVM Medical College, Kanpur, India
| | - Akhil Singla
- Department of Medicine, Maharishi Markandeshwar College and Hospital, Maharishi Markandeshwar University, Solan, India
| | - Jamal Ahmad
- Faculty of Medicine, Rajiv Gandhi Centre for Diabetes and Endocrinology, JN Medical College, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
36
|
Mishra A, Singh P, Qayoom I, Prasad A, Kumar A. Current strategies in tailoring methods for engineered exosomes and future avenues in biomedical applications. J Mater Chem B 2021; 9:6281-6309. [PMID: 34286815 DOI: 10.1039/d1tb01088c] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Exosomes are naturally occurring nanovesicles of endosomal origin, responsible for cellular communication. Depending on the cell type, exosomes display disparity in the cargo and are involved in up/down regulation of different biological pathways. Naturally secreted exosomes, owing to their inherent delivery potential, non-immunogenic nature and limited structural resemblance to the cells have emerged as ideal candidates for various drug delivery and therapeutic applications. Moreover, the structural versatility of exosomes provides greater flexibility for surface modifications to be made in the native configuration, by different methods, like genetic-engineering, chemical procedures, physical methods and microfluidic-technology, to enhance the cargo quality for expanded biomedical applications. Post isolation and prior to engineering exosomes for various applications, the internal and external structural compositions of exosomes are studied via different techniques. Efficiency and scalability of the exosome modification methods are pivotal in determining the scope of the technique for clinical applications. This review majorly focuses on different methods employed for engineering exosomes, and advantages/disadvantages associated with different tailoring approaches, along with the efficacy of engineered exosomes in biomedical applications. Further, the review highlights the importance of a relatively recent avenue for delivery of exosomes via scaffold-based delivery of naïve/engineered exosomes for regenerative medicine and tissue engineering. This review is based on the recent knowledge generated in this field and our comprehension in this domain.
Collapse
Affiliation(s)
- Ankita Mishra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur-208016, UP, India.
| | | | | | | | | |
Collapse
|
37
|
Ding L, Yang X, Gao Z, Effah CY, Zhang X, Wu Y, Qu L. A Holistic Review of the State-of-the-Art Microfluidics for Exosome Separation: An Overview of the Current Status, Existing Obstacles, and Future Outlook. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007174. [PMID: 34047052 DOI: 10.1002/smll.202007174] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Exosomes, a class of small extracellular vesicles (30-150 nm), are secreted by almost all types of cells into virtually all body fluids. These small vesicles are attracting increasing research attention owing to their potential for disease diagnosis and therapy. However, their inherent heterogeneity and the complexity of bio-fluids pose significant challenges for their isolation. Even the "gold standard," differential centrifugation, suffers from poor yields and is time-consuming. In this context, recent developments in microfluidic technologies have provided an ideal system for exosome extraction and these devices exhibit some fascinating properties such as high speeds, good portability, and low sample volumes. In this review, the focus is on the state-of-the-art microfluidic technologies for exosome isolation and highlight potential directions for future research and development by analyzing the challenges faced by the current strategies.
Collapse
Affiliation(s)
- Lihua Ding
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaonan Yang
- School of Information Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Zibo Gao
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Clement Yaw Effah
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Lingbo Qu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
38
|
Zhu X, Chen H, Zhou Y, Wu J, Ramakrishna S, Peng X, Nanda HS, Zhou Y. Recent advances in biosensors for detection of exosomes. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021. [DOI: 10.1016/j.cobme.2021.100280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Cavallaro S, Hååg P, Viktorsson K, Krozer A, Fogel K, Lewensohn R, Linnros J, Dev A. Comparison and optimization of nanoscale extracellular vesicle imaging by scanning electron microscopy for accurate size-based profiling and morphological analysis. NANOSCALE ADVANCES 2021; 3:3053-3063. [PMID: 36133670 PMCID: PMC9419097 DOI: 10.1039/d0na00948b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/21/2021] [Indexed: 05/05/2023]
Abstract
Nanosized extracellular vesicles (EVs) have been found to play a key role in intercellular communication, offering opportunities for both disease diagnostics and therapeutics. However, lying below the diffraction limit and also being highly heterogeneous in their size, morphology and abundance, these vesicles pose significant challenges for physical characterization. Here, we present a direct visual approach for their accurate morphological and size-based profiling by using scanning electron microscopy (SEM). To achieve that, we methodically examined various process steps and developed a protocol to improve the throughput, conformity and image quality while preserving the shape of EVs. The study was performed with small EVs (sEVs) isolated from a non-small-cell lung cancer (NSCLC) cell line as well as from human serum, and the results were compared with those obtained from nanoparticle tracking analysis (NTA). While the comparison of the sEV size distributions showed good agreement between the two methods for large sEVs (diameter > 70 nm), the microscopy based approach showed a better capacity for analyses of smaller vesicles, with higher sEV counts compared to NTA. In addition, we demonstrated the possibility of identifying non-EV particles based on size and morphological features. The study also showed process steps that can generate artifacts bearing resemblance with sEVs. The results therefore present a simple way to use a widely available microscopy tool for accurate and high throughput physical characterization of EVs.
Collapse
Affiliation(s)
- Sara Cavallaro
- Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology 10691 Stockholm Sweden
| | - Petra Hååg
- Department of Oncology-Pathology, Karolinska Institutet 17164 Solna Sweden
| | | | - Anatol Krozer
- Department of Smart Hardware, Division of Digital Systems, Research Institutes of Sweden AB 40014 Gothenburg Sweden
| | - Kristina Fogel
- Department of Smart Hardware, Division of Digital Systems, Research Institutes of Sweden AB 40014 Gothenburg Sweden
| | - Rolf Lewensohn
- Department of Oncology-Pathology, Karolinska Institutet 17164 Solna Sweden
- Theme Cancer, Medical Unit Head and Neck, Lung, and Skin Tumors, Thoracic Oncology Center, Karolinska University Hospital 17164 Solna Sweden
| | - Jan Linnros
- Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology 10691 Stockholm Sweden
| | - Apurba Dev
- Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology 10691 Stockholm Sweden
- Department of Electrical Engineering, The Ångström Laboratory, Uppsala University 75121 Uppsala Sweden
| |
Collapse
|
40
|
Cavallaro S, Pevere F, Stridfeldt F, Görgens A, Paba C, Sahu SS, Mamand DR, Gupta D, El Andaloussi S, Linnros J, Dev A. Multiparametric Profiling of Single Nanoscale Extracellular Vesicles by Combined Atomic Force and Fluorescence Microscopy: Correlation and Heterogeneity in Their Molecular and Biophysical Features. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2008155. [PMID: 33682363 DOI: 10.1002/smll.202008155] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Indexed: 05/22/2023]
Abstract
Being a key player in intercellular communications, nanoscale extracellular vesicles (EVs) offer unique opportunities for both diagnostics and therapeutics. However, their cellular origin and functional identity remain elusive due to the high heterogeneity in their molecular and physical features. Here, for the first time, multiple EV parameters involving membrane protein composition, size and mechanical properties on single small EVs (sEVs) are simultaneously studied by combined fluorescence and atomic force microscopy. Furthermore, their correlation and heterogeneity in different cellular sources are investigated. The study, performed on sEVs derived from human embryonic kidney 293, cord blood mesenchymal stromal and human acute monocytic leukemia cell lines, identifies both common and cell line-specific sEV subpopulations bearing distinct distributions of the common tetraspanins (CD9, CD63, and CD81) and biophysical properties. Although the tetraspanin abundances of individual sEVs are independent of their sizes, the expression levels of CD9 and CD63 are strongly correlated. A sEV population co-expressing all the three tetraspanins in relatively high abundance, however, having average diameters of <100 nm and relatively low Young moduli, is also found in all cell lines. Such a multiparametric approach is expected to provide new insights regarding EV biology and functions, potentially deciphering unsolved questions in this field.
Collapse
Affiliation(s)
- Sara Cavallaro
- Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Stockholm, 10691, Sweden
| | - Federico Pevere
- Department of Electrical Engineering, The Ångström Laboratory, Uppsala University, Uppsala, 75121, Sweden
| | - Fredrik Stridfeldt
- Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Stockholm, 10691, Sweden
| | - André Görgens
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, 17177, Sweden
- Evox Therapeutics Limited, Oxford Science Park, Oxford, OX4 4HG, UK
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, 45141, Essen, Germany
| | | | - Siddharth S Sahu
- Department of Electrical Engineering, The Ångström Laboratory, Uppsala University, Uppsala, 75121, Sweden
| | - Doste R Mamand
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Dhanu Gupta
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, 17177, Sweden
- Evox Therapeutics Limited, Oxford Science Park, Oxford, OX4 4HG, UK
| | - Samir El Andaloussi
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, 17177, Sweden
- Evox Therapeutics Limited, Oxford Science Park, Oxford, OX4 4HG, UK
| | - Jan Linnros
- Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Stockholm, 10691, Sweden
| | - Apurba Dev
- Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Stockholm, 10691, Sweden
- Department of Electrical Engineering, The Ångström Laboratory, Uppsala University, Uppsala, 75121, Sweden
| |
Collapse
|
41
|
Lin B, Lei Y, Wang J, Zhu L, Wu Y, Zhang H, Wu L, Zhang P, Yang C. Microfluidic-Based Exosome Analysis for Liquid Biopsy. SMALL METHODS 2021; 5:e2001131. [PMID: 34927834 DOI: 10.1002/smtd.202001131] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/29/2020] [Indexed: 06/14/2023]
Abstract
Liquid biopsy offers non-invasive and real-time molecular profiling of individual patients, and is thus considered a revolutionary technology in precision medicine. Exosomes have been acknowledged as significant biomarkers in liquid biopsy, as they play a central role in cell-cell communication and are closely related to the pathogenesis of most human malignancies. Nevertheless, in biofluids exosomes always co-exist with other particles, and the cargo components of exosomes are highly heterogeneous. Thus, the isolation and molecular characterization of exosomes are still technically challenging. Microfluidics technology effectively addresses this challenge by virtue of its inherent advantages, such as precise manipulation of fluids, low consumption of samples and reagents, and a high level of integration. Recent advances in microfluidics allow in situ exosome capture and molecular detection with unprecedented selectivity and sensitivity. In this review, the state-of-the-art developments in microfluidics-based exosome research, including exosome isolation approaches and molecular detection strategies, with highlights of the characterization of exosomal biomarkers in cancer liquid biopsy is summarized. The major challenges are also discussed and some perspectives for the future directions of exosome-based liquid biopsy in microfluidic systems are presented.
Collapse
Affiliation(s)
- Bingqian Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yanmei Lei
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Junxia Wang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Lin Zhu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yuqi Wu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Huimin Zhang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Lingling Wu
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Peng Zhang
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| |
Collapse
|
42
|
Stiller C, Viktorsson K, Paz Gomero E, Hååg P, Arapi V, Kaminskyy VO, Kamali C, De Petris L, Ekman S, Lewensohn R, Karlström AE. Detection of Tumor-Associated Membrane Receptors on Extracellular Vesicles from Non-Small Cell Lung Cancer Patients via Immuno-PCR. Cancers (Basel) 2021; 13:cancers13040922. [PMID: 33671772 PMCID: PMC7926549 DOI: 10.3390/cancers13040922] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/11/2021] [Accepted: 02/18/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Lung cancer is often detected at late stages when metastases are present and the genomic make-ups of the tumors are heterogeneous. Analyses of genomic alterations in non-small-cell lung cancer (NSCLC) have revealed mutated tumor-associated membrane receptors and fusion proteins, which can be targeted via tyrosine kinase inhibitors (TKIs). TKIs initially often have a good effect, but a fraction of the tumor lesions may develop resistance through additional mutations in the targeted kinases or by increased expression/function of other membrane receptors. Detection of TKI-bypassing mechanisms is difficult in tissue biopsies as these analyze only a subpart of tumors or lesions. Liquid biopsies based on tumor-secreted small extracellular vesicles (sEVs) into body fluids can assess tumor heterogeneity. We present an immuno-PCR method for the detection of the epidermal growth factor receptor (EGFR), the human epidermal growth factor receptor 2 (HER2), and the insulin-like growth factor 1 receptor (IGF-1R) on sEVs. Initial investigations of sEVs from EGFR-mutant NSCLC tumor cells or pleural effusion (PE) fluid from patients with NSCLC or benign diseases showed different protein profiles for individual sEV samples. Further development of the immuno-PCR could complement DNA/mRNA-based assays detecting kinase mutations to allow longitudinal treatment monitoring of diverse TKI-bypassing mechanisms. Abstract Precision cancer medicine for non-small-cell lung cancer (NSCLC) has increased patient survival. Nevertheless, targeted agents towards tumor-associated membrane receptors only result in partial remission for a limited time, calling for approaches which allow longitudinal treatment monitoring. Rebiopsy of tumors in the lung is challenging, and metastatic lesions may have heterogeneous signaling. One way ahead is to use liquid biopsies such as circulating tumor DNA or small extracellular vesicles (sEVs) secreted by the tumor into blood or other body fluids. Herein, an immuno-PCR-based detection of the tumor-associated membrane receptors EGFR, HER2, and IGF-1R on CD9-positive sEVs from NSCLC cells and pleural effusion fluid (PE) of NSCLC patients is developed utilizing DNA conjugates of antibody mimetics and affibodies, as detection agents. Results on sEVs purified from culture media of NSCLC cells treated with anti-EGFR siRNA, showed that the reduction of EGFR expression can be detected via immuno-PCR. Protein profiling of sEVs from NSCLC patient PE samples revealed the capacity to monitor EGFR, HER2, and IGF-1R with the immuno-PCR method. We detected a significantly higher EGFR level in sEVs derived from a PE sample of a patient with an EGFR-driven NSCLC adenocarcinoma than in sEVs from PE samples of non-EGFR driven adenocarcinoma patients or in samples from patients with benign lung disease. In summary, we have developed a diagnostic method for sEVs in liquid biopsies of cancer patients which may be used for longitudinal treatment monitoring to detect emerging bypassing resistance mechanisms in a noninvasive way.
Collapse
Affiliation(s)
- Christiane Stiller
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, SE-10691 Stockholm, Sweden; (C.S.); (E.P.G.)
- Biomedical Centre, Department of Pharmaceutical Biosciences, Uppsala University, SE-75123 Uppsala, Sweden
| | - Kristina Viktorsson
- Department of Oncology-Pathology, Karolinska Institutet, SE-17177 Stockholm, Sweden; (K.V.); (P.H.); (V.A.); (V.O.K.); (C.K.); (L.D.P.); (S.E.); (R.L.)
| | - Elizabeth Paz Gomero
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, SE-10691 Stockholm, Sweden; (C.S.); (E.P.G.)
| | - Petra Hååg
- Department of Oncology-Pathology, Karolinska Institutet, SE-17177 Stockholm, Sweden; (K.V.); (P.H.); (V.A.); (V.O.K.); (C.K.); (L.D.P.); (S.E.); (R.L.)
| | - Vasiliki Arapi
- Department of Oncology-Pathology, Karolinska Institutet, SE-17177 Stockholm, Sweden; (K.V.); (P.H.); (V.A.); (V.O.K.); (C.K.); (L.D.P.); (S.E.); (R.L.)
| | - Vitaliy O. Kaminskyy
- Department of Oncology-Pathology, Karolinska Institutet, SE-17177 Stockholm, Sweden; (K.V.); (P.H.); (V.A.); (V.O.K.); (C.K.); (L.D.P.); (S.E.); (R.L.)
| | - Caroline Kamali
- Department of Oncology-Pathology, Karolinska Institutet, SE-17177 Stockholm, Sweden; (K.V.); (P.H.); (V.A.); (V.O.K.); (C.K.); (L.D.P.); (S.E.); (R.L.)
- Theme Cancer, Medical Unit Head and Neck, Lung, and Skin Tumors, Thoracic Oncology Center, Karolinska University Hospital, SE-17177 Stockholm, Sweden
| | - Luigi De Petris
- Department of Oncology-Pathology, Karolinska Institutet, SE-17177 Stockholm, Sweden; (K.V.); (P.H.); (V.A.); (V.O.K.); (C.K.); (L.D.P.); (S.E.); (R.L.)
- Theme Cancer, Medical Unit Head and Neck, Lung, and Skin Tumors, Thoracic Oncology Center, Karolinska University Hospital, SE-17177 Stockholm, Sweden
| | - Simon Ekman
- Department of Oncology-Pathology, Karolinska Institutet, SE-17177 Stockholm, Sweden; (K.V.); (P.H.); (V.A.); (V.O.K.); (C.K.); (L.D.P.); (S.E.); (R.L.)
- Theme Cancer, Medical Unit Head and Neck, Lung, and Skin Tumors, Thoracic Oncology Center, Karolinska University Hospital, SE-17177 Stockholm, Sweden
| | - Rolf Lewensohn
- Department of Oncology-Pathology, Karolinska Institutet, SE-17177 Stockholm, Sweden; (K.V.); (P.H.); (V.A.); (V.O.K.); (C.K.); (L.D.P.); (S.E.); (R.L.)
- Theme Cancer, Medical Unit Head and Neck, Lung, and Skin Tumors, Thoracic Oncology Center, Karolinska University Hospital, SE-17177 Stockholm, Sweden
| | - Amelie Eriksson Karlström
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, SE-10691 Stockholm, Sweden; (C.S.); (E.P.G.)
- Correspondence: ; Tel.: +46-8-790-99-78
| |
Collapse
|
43
|
Garcia-Cordero JL, Maerkl SJ. Microfluidic systems for cancer diagnostics. Curr Opin Biotechnol 2020; 65:37-44. [DOI: 10.1016/j.copbio.2019.11.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022]
|
44
|
Zhang J, Zhu Y, Shi J, Zhang K, Zhang Z, Zhang H. Sensitive Signal Amplifying a Diagnostic Biochip Based on a Biomimetic Periodic Nanostructure for Detecting Cancer Exosomes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:33473-33482. [PMID: 32603586 DOI: 10.1021/acsami.0c06785] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tumor-derived exosomes are emerging noninvasive biomarker reservoirs that reflect biological information from their parental cells, especially specific markers, including proteins, DNA fragments and RNAs. Recently, analytical methods of tumor-derived exosomes have been increasing growth. However, developing a convenient signal amplification technique to improve the sensitivity of exosomes detection still remains a challenge. Herein, an ultrasensitive and specific exosomes diagnostic biochip is constructed and further applied to circulating tumor exosomes detection in serum. Using an exosomes diagnostic biochip, signal amplification is achieved by combining the advantages of quantum dots with the biomimetic periodic nanostructure of photonic crystals. Glypican-1 (GPC1), a membrane-anchored protein that is overexpressed in exosomes from pancreatic cancer, is detected using nanosized molecular beacons with high luminescence efficiency; then the signal is amplified through photonic crystals. Moreover, the method allows the quantitative analysis of various disease-specific surface proteins on exosomes. We believe that this exosomes diagnostic biochip is likely to have potential as an effective bioassay, which may be helpful for quantification of disease-specific exosomes in clinical use.
Collapse
Affiliation(s)
- Junli Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Yifan Zhu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, Henan Province 450001, China
| | - Hongling Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, Henan Province 450001, China
| |
Collapse
|
45
|
Sierra J, Marrugo-Ramírez J, Rodriguez-Trujillo R, Mir M, Samitier J. Sensor-Integrated Microfluidic Approaches for Liquid Biopsies Applications in Early Detection of Cancer. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1317. [PMID: 32121271 PMCID: PMC7085501 DOI: 10.3390/s20051317] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/13/2022]
Abstract
Cancer represents one of the conditions with the most causes of death worldwide. Common methods for its diagnosis are based on tissue biopsies-the extraction of tissue from the primary tumor, which is used for its histological analysis. However, this technique represents a risk for the patient, along with being expensive and time-consuming and so it cannot be frequently used to follow the progress of the disease. Liquid biopsy is a new cancer diagnostic alternative, which allows the analysis of the molecular information of the solid tumors via a body fluid draw. This fluid-based diagnostic method displays relevant advantages, including its minimal invasiveness, lower risk, use as often as required, it can be analyzed with the use of microfluidic-based platforms with low consumption of reagent, and it does not require specialized personnel and expensive equipment for the diagnosis. In recent years, the integration of sensors in microfluidics lab-on-a-chip devices was performed for liquid biopsies applications, granting significant advantages in the separation and detection of circulating tumor nucleic acids (ctNAs), circulating tumor cells (CTCs) and exosomes. The improvements in isolation and detection technologies offer increasingly sensitive and selective equipment's, and the integration in microfluidic devices provides a better characterization and analysis of these biomarkers. These fully integrated systems will facilitate the generation of fully automatized platforms at low-cost for compact cancer diagnosis systems at an early stage and for the prediction and prognosis of cancer treatment through the biomarkers for personalized tumor analysis.
Collapse
Affiliation(s)
- Jessica Sierra
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC) Barcelona Institute of Science and Technology (BIST), 12 Baldiri Reixac 15-21, 08028 Barcelona, Spain; (J.S.); (R.R.-T.); (J.S.)
- Department of Electronics and Biomedical Engineering, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain;
| | - José Marrugo-Ramírez
- Department of Electronics and Biomedical Engineering, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain;
| | - Romen Rodriguez-Trujillo
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC) Barcelona Institute of Science and Technology (BIST), 12 Baldiri Reixac 15-21, 08028 Barcelona, Spain; (J.S.); (R.R.-T.); (J.S.)
- Department of Electronics and Biomedical Engineering, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain;
| | - Mònica Mir
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC) Barcelona Institute of Science and Technology (BIST), 12 Baldiri Reixac 15-21, 08028 Barcelona, Spain; (J.S.); (R.R.-T.); (J.S.)
- Department of Electronics and Biomedical Engineering, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain;
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain
| | - Josep Samitier
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC) Barcelona Institute of Science and Technology (BIST), 12 Baldiri Reixac 15-21, 08028 Barcelona, Spain; (J.S.); (R.R.-T.); (J.S.)
- Department of Electronics and Biomedical Engineering, University of Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain;
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain
| |
Collapse
|
46
|
Myrhammar A, Rosik D, Karlström AE. Photocontrolled Reversible Binding between the Protein A-Derived Z Domain and Immunoglobulin G. Bioconjug Chem 2020; 31:622-630. [DOI: 10.1021/acs.bioconjchem.9b00786] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Anders Myrhammar
- Department of Protein Science School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology AlbaNova University Center, S−106 91 Stockholm, Sweden
| | - Daniel Rosik
- Department of Protein Science School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology AlbaNova University Center, S−106 91 Stockholm, Sweden
| | - Amelie Eriksson Karlström
- Department of Protein Science School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology AlbaNova University Center, S−106 91 Stockholm, Sweden
| |
Collapse
|
47
|
Wu D, Rigo S, Di Leone S, Belluati A, Constable EC, Housecroft CE, Palivan CG. Brushing the surface: cascade reactions between immobilized nanoreactors. NANOSCALE 2020; 12:1551-1562. [PMID: 31859312 DOI: 10.1039/c9nr08502e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Functionalization of hard or soft surfaces with, for example, ligands, enzymes or proteins, is an effective and practical methodology for the development of new applications. We report the assembly of two types of nanoreactors based upon poly(dimethylsiloxane)-block-poly(2-methyl-2-oxazoline) (PDMS-b-PMOXA) diblock copolymers as scaffold, uricase and lactoperoxidase as bio-catalysts located within the nanoreactors, and melittin as the biopores inserted into the hydrophobic shell. The nanoreactors were immobilized on poly(2-hydroxyethyl methacrylate)-co-poly(2-aminoethyl methacrylate hydrochloride) (PHEMA-co-P(2-AEMA·HCl) brushes-grafted wafer surfaces by utilizing the strong supramolecular interactions between biotin and streptavidin. The (PHEMA-co-P(2-AEMA·HCl) brushes on silicon surfaces were prepared by a surface initiating atom transfer radical polymerization (ATRP) "graft-from" technique. Cascade reactions between different surface-anchored nanoreactors were demonstrated by converting Amplex® Red to the fluorescent probe resorufin by using the H2O2 produced from uric acid and H2O. The detailed properties of the nanoreactors on the functionalized surface including the binding behaviours and cascade reactions were investigated using emission spectroscopy, transmission electron microscopy (TEM), light scattering (LS), atomic force microscopy (AFM) and a quartz crystal microbalance (QCM-D). The results are proof-of-principle for the preparation of catalytically functional engineered surface materials and lay the foundation for applying this advanced functional surface material in biosensing, implanting and antimicrobial materials preparation.
Collapse
Affiliation(s)
- Dalin Wu
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
48
|
Gaillard M, Thuaire A, Nonglaton G, Agache V, Roupioz Y, Raillon C. Biosensing extracellular vesicles: contribution of biomolecules in affinity-based methods for detection and isolation. Analyst 2020; 145:1997-2013. [PMID: 31960838 DOI: 10.1039/c9an01949a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Extracellular Vesicles (EVs) are lipid vesicles secreted by cells that allow intercellular communication. They are decorated with surface proteins, which are membrane proteins that can be targeted by biochemical techniques to isolate EVs from background particles. EVs have recently attracted attention for their potential applications as biomarkers for numerous diseases. This review focuses on the contribution of biomolecules used as ligands in affinity-based biosensors for the detection and isolation of EVs. Capturing biological objects like EVs with antibodies is well described in the literature through different biosensing techniques. However, since handling proteins can be challenging due to stability issues, sensors using non-denaturable biomolecules are emerging. DNA aptamers, short DNA fragments that mimic antibody action, are currently being developed and considered as the future of antibody-like ligands. These molecules offer undeniable advantages: unparalleled ease of production, very high stability in air, similar affinity constants to antibodies, and compatibility with many organic solvents. The use of peptides specific to EVs is also an exciting biochemical solution to target EV membrane proteins and complement other probes. These different ligands have been used in several types of biosensors: electrochemical, optical, microfluidic using both generic probes (targeting widely expressed membrane proteins such as the tetraspanins) and specific probes (targeting disease biomarkers such as proteins overexpressed in cancer).
Collapse
Affiliation(s)
- M Gaillard
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France.
| | | | | | | | | | | |
Collapse
|
49
|
Rapid and sensitive exosome detection with CRISPR/Cas12a. Anal Bioanal Chem 2020; 412:601-609. [PMID: 31897558 DOI: 10.1007/s00216-019-02211-4] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023]
Abstract
Numerous studies have shown that exosomes are closely related to the pathogenesis of various diseases, especially cancers. Therefore, a rapid and sensitive method for exosome detection will be of great importance for the diagnosis and prognosis of diseases. We report here a method for exosome detection based on the CD63 aptamer and clustered regular interspaced short palindromic repeats (CRISPR)/Cas12a system. This method consists mainly of exosomal membrane protein recognition based on the CD63 aptamer and signal amplification based on CRISPR/Cas12a. The CD63 aptamer, as an easily adaptable nucleic acid strand, is responsible for the conversion of the amounts of exosomes into nucleic acid detection, whereas CRISPR/Cas12a is responsible for highly specific nucleic acid signal amplification. The detection range of the method was determined as 3 × 103-6 × 107 particles per microliter. Additionally, we successfully applied this method to detect exosomes in clinical samples from both healthy individuals and patients with lung cancer, and the results were highly consistent with those obtained by nanoparticle tracking analysis. In general, this method provides a highly sensitive and specific method for the detection of exosomes and offers an avenue toward future exosome-based diagnosis of diseases.
Collapse
|
50
|
Zhang Y, Wang D, Yue S, Lu Y, Yang C, Fang J, Xu Z. Sensitive Multicolor Visual Detection of Exosomes via Dual Signal Amplification Strategy of Enzyme-Catalyzed Metallization of Au Nanorods and Hybridization Chain Reaction. ACS Sens 2019; 4:3210-3218. [PMID: 31820935 DOI: 10.1021/acssensors.9b01644] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Exosomes as nanosized vesicles have been recognized as potential noninvasive biomarkers for early cancer diagnosis. Herein, we presented a sensitive multicolor visual method for exosome detection based on enzyme-induced silver deposition on gold nanorods (Au NRs). To achieve highly sensitive determination of exosomes, hybridization chain reaction (HCR) was employed to introduce more alkaline phosphatase (ALP) for signal amplification. First, exosomes were captured by magnetic bead-labeled CD63 aptamer, and, then, cholesterol-modified DNA probes were spontaneously inserted into the exosomal lipid membrane. The ends of the DNA probes act as the initiator to trigger the HCR for signal amplification. Finally, with the help of HCR, increased sites led to enhanced ALP loading and thus boosted the ascorbic acid generation. Silver ions were reduced by ascorbic acid, and silver shells were formed on Au NRs, giving rise to the blue shift of the longitudinal localized surface plasmon resonance peak. Correspondingly, the concentration of exosomes can be obviously distinguished with naked eyes via the vivid color variation. Due to the dual signal amplification of HCR and metallization of Au NRs, highly sensitive detection for exosomes were realized with detection limits as low as 1.6 × 102 particles/μL by UV-vis spectroscopy and 9 × 103 particles/μL by naked eyes. Compared to the reported colorimetric methods for exosome quantification, visualization based on plentiful color tonalities is the most captivating merit of our approach, and HCR-induced signal amplification highlights the virtue of the strategy. The applicability of the method was validated by the analysis of clinical samples.
Collapse
Affiliation(s)
- Yingzhi Zhang
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Danni Wang
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Shuai Yue
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, P. R. China
| | - Yanbing Lu
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, P. R. China
| | - Chunguang Yang
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Jin Fang
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, P. R. China
| | - Zhangrun Xu
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, P. R. China
| |
Collapse
|