1
|
Luo R, Hu L, Wang D, Xiao K, Liu X, Kang Y, Wang Q. Enhanced biosynthesis of 6-aminocaproic acid in engineered Escherichia coli with artificial protein cage-organized enzymatic cascades. BIORESOURCE TECHNOLOGY 2025; 431:132641. [PMID: 40345342 DOI: 10.1016/j.biortech.2025.132641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 04/22/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
Microbial synthesis of 6-aminocaproic acid (6-ACA), a key nylon-6 monomer, was the focus of this study. Our previous work on 6-ACA biosynthesis using an artificial iterative carbon-chain-extension cycle showed potential, but the impact of intermediates on metabolism remained unresolved. To address this, a bacterial microcompartment (BMC) was engineered in Escherichia coli to encapsulate 6-ACA synthesis enzymes, effectively controlling the release of intermediate products. This intervention led to a 90.85 % increase in cell growth and a final 6-ACA yield increase from 46.76 mg/L to 1.12 g/L in a 1 L fermentor. The redesigned BMC demonstrated potential in regulating cascade enzymatic catalysis, particularly in managing intermediates that could impact enzyme proteins, cause cytotoxicity, or DNA damage in cells. This work highlights the potential of the redesigned BMC in enhancing production by controlling the effects of intermediates on cellular processes.
Collapse
Affiliation(s)
- Ruoshi Luo
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China; CAS Key Lab Syst Microbial Biotechnol, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin 300308, PR China
| | - Lin Hu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Dan Wang
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China.
| | - Kaixing Xiao
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Xuemei Liu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Yaqi Kang
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Qinhong Wang
- CAS Key Lab Syst Microbial Biotechnol, Chinese Academy of Sciences, Tianjin Institute of Industrial Biotechnology, Tianjin 300308, PR China.
| |
Collapse
|
2
|
Range K, Chiang TK, Pramanik A, Landa JF, Snyder SN, Zuo X, Tiede DM, Utschig LM, Hegg EL, Sutter M, Kerfeld CA, Ralston CY. Chaotrope-Based Approach for Rapid In Vitro Assembly and Loading of Bacterial Microcompartment Shells. ACS NANO 2025; 19:11913-11923. [PMID: 40113598 PMCID: PMC11966763 DOI: 10.1021/acsnano.4c15538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
Bacterial microcompartments (BMCs) are proteinaceous organelles that self-assemble into selectively permeable shells that encapsulate enzymatic cargo. BMCs enhance catalytic pathways by reducing crosstalk among metabolites, preventing harmful intermediates from leaking into the cytosol and increasing reaction efficiency via enzyme colocalization. The intrinsic properties of BMCs make them attractive for biotechnological engineering. However, in vivo expression methods for shell synthesis have significant drawbacks that limit the potential design space for these nanocompartments. Here, we describe the development of an efficient and rapid method for the in vitro assembly of BMC shells from their protein building blocks. Our method enables large-scale construction of BMC shells by utilizing urea as a chaotropic agent to control self-assembly and provides an approach for encapsulation of both biotic and abiotic cargo under a broad range of reaction conditions. We demonstrate an enhanced level of control over the assembly of BMC shells in vitro and expand the design parameter space for engineering BMC systems with specialized and enhanced catalytic properties.
Collapse
Affiliation(s)
- Kyleigh
L. Range
- MSU-DOE
Plant Research Laboratory, Michigan State
University, East Lansing, Michigan 48824, United States
- Molecular
Foundry Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Timothy K. Chiang
- Molecular
Foundry Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Arinita Pramanik
- Molecular
Foundry Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Joel F. Landa
- Cell
and Molecular Biology Department, Michigan
State University, East Lansing, Michigan 48824, United States
- Molecular
Plant Sciences Program, Michigan State University, East Lansing, Michigan 48824, United States
| | - Samuel N. Snyder
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Lemont, Illinois 60439, United States
| | - Xiaobing Zuo
- X-ray Science
Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - David M. Tiede
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Lemont, Illinois 60439, United States
| | - Lisa M. Utschig
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Lemont, Illinois 60439, United States
| | - Eric L. Hegg
- Cell
and Molecular Biology Department, Michigan
State University, East Lansing, Michigan 48824, United States
- Molecular
Plant Sciences Program, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Markus Sutter
- MSU-DOE
Plant Research Laboratory, Michigan State
University, East Lansing, Michigan 48824, United States
- Environmental
Genomics and Systems Biology Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 4720, United States
| | - Cheryl A. Kerfeld
- MSU-DOE
Plant Research Laboratory, Michigan State
University, East Lansing, Michigan 48824, United States
- Environmental
Genomics and Systems Biology Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 4720, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Corie Y. Ralston
- Molecular
Foundry Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Molecular
Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 4720, United States
| |
Collapse
|
3
|
Zuo X, Jussupow A, Ponomarenko NS, Grant TD, Tefft NM, Yadav NS, Range KL, Ralston CY, TerAvest MA, Sutter M, Kerfeld CA, Vermaas JV, Feig M, Tiede DM. Structure Characterization of Bacterial Microcompartment Shells via X-ray Scattering and Coordinate Modeling: Evidence for Adventitious Capture of Cytoplasmic Proteins. ACS APPLIED BIO MATERIALS 2025; 8:2090-2103. [PMID: 40014870 DOI: 10.1021/acsabm.4c01621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Bacterial microcompartments (BMCs) are self-assembling protein shell structures that are widely investigated across a broad range of biological and abiotic chemistry applications. A central challenge in BMC research is the targeted capture of enzymes during shell assembly. While crystallography and cryo-EM techniques have been successful in determining BMC shell structures, there has been only limited success in visualizing the location of BMC-captured enzyme cargo. Here, we demonstrate the opportunity to use small-angle X-ray scattering (SAXS) and pair distance distribution function (PDDF) measurements combined with quantitative comparison to coordinate structure models as an approach to characterize BMC shell structures in solution conditions directly relevant to biochemical function. Using this approach, we analyzed BMC shells from Haliangium ochraceum (HO) that were isolated following expression in E. coli. The analysis allowed the BMC shell structures and the extent of encapsulated enzyme cargo to be identified. Notably, the results demonstrate that HO-BMC shells adventitiously capture significant amounts of cytoplasmic cargo during assembly in E. coli. Our findings highlight the utility of SAXS/PDDF analysis for evaluating BMC architectures and enzyme encapsulation, offering valuable insights for designing BMC shells as platforms for biological and abiotic catalyst capture within confined environments.
Collapse
Affiliation(s)
- Xiaobing Zuo
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Alexander Jussupow
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Nina S Ponomarenko
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Thomas D Grant
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, SUNY University at Buffalo, Buffalo, New York 14203, United States
| | - Nicholas M Tefft
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Neetu Singh Yadav
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, United States
| | - Kyleigh L Range
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, United States
| | - Corie Y Ralston
- Molecular Foundry Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Michaela A TerAvest
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Markus Sutter
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Josh V Vermaas
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, United States
| | - Michael Feig
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - David M Tiede
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
4
|
Doron L, Kerfeld CA. Bacterial microcompartments as a next-generation metabolic engineering tool: utilizing nature's solution for confining challenging catabolic pathways. Biochem Soc Trans 2024; 52:997-1010. [PMID: 38813858 PMCID: PMC11346464 DOI: 10.1042/bst20230229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
Advancements in synthetic biology have facilitated the incorporation of heterologous metabolic pathways into various bacterial chassis, leading to the synthesis of targeted bioproducts. However, total output from heterologous production pathways can suffer from low flux, enzyme promiscuity, formation of toxic intermediates, or intermediate loss to competing reactions, which ultimately hinder their full potential. The self-assembling, easy-to-modify, protein-based bacterial microcompartments (BMCs) offer a sophisticated way to overcome these obstacles by acting as an autonomous catalytic module decoupled from the cell's regulatory and metabolic networks. More than a decade of fundamental research on various types of BMCs, particularly structural studies of shells and their self-assembly, the recruitment of enzymes to BMC shell scaffolds, and the involvement of ancillary proteins such as transporters, regulators, and activating enzymes in the integration of BMCs into the cell's metabolism, has significantly moved the field forward. These advances have enabled bioengineers to design synthetic multi-enzyme BMCs to promote ethanol or hydrogen production, increase cellular polyphosphate levels, and convert glycerol to propanediol or formate to pyruvate. These pioneering efforts demonstrate the enormous potential of synthetic BMCs to encapsulate non-native multi-enzyme biochemical pathways for the synthesis of high-value products.
Collapse
Affiliation(s)
- Lior Doron
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, U.S.A
| | - Cheryl A. Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, U.S.A
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrative Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA, U.S.A
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, U.S.A
| |
Collapse
|
5
|
Trettel DS, Kerfeld CA, Gonzalez-Esquer CR. Dynamic structural determinants in bacterial microcompartment shells. Curr Opin Microbiol 2024; 80:102497. [PMID: 38909546 DOI: 10.1016/j.mib.2024.102497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/07/2024] [Accepted: 06/03/2024] [Indexed: 06/25/2024]
Abstract
Bacterial microcompartments (BMCs) are polyhedral structures that segregate enzymatic cargo from the cytosol via encapsulation within a protein shell. Unlike other biological polyhedra, such as viral capsids and encapsulins, BMC shells can exhibit a highly advantageous structural and functional plasticity, conforming to a variety of anabolic (CO2 fixation in carboxysomes) and catabolic (nutrient assimilation in metabolosomes) roles. Consequently, understanding the subunit properties and associated protein-protein interaction processes that guide shell assembly and function is a necessary step to fully harness BMCs as modular, biotechnological nanomachines. Here, we describe the recent insights into the dynamics of structural features of the key BMC domain (Pfam00936)-containing proteins, which serve as a structural template for BMC-H and BMC-T shell building blocks.
Collapse
Affiliation(s)
- Daniel S Trettel
- Los Alamos National Laboratory, Bioscience Division, Microbial and Biome Sciences group, Los Alamos, NM, USA
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Cesar R Gonzalez-Esquer
- Los Alamos National Laboratory, Bioscience Division, Microbial and Biome Sciences group, Los Alamos, NM, USA.
| |
Collapse
|
6
|
Trettel DS, Pacheco SL, Laskie AK, Gonzalez-Esquer CR. Modeling bacterial microcompartment architectures for enhanced cyanobacterial carbon fixation. FRONTIERS IN PLANT SCIENCE 2024; 15:1346759. [PMID: 38425792 PMCID: PMC10902431 DOI: 10.3389/fpls.2024.1346759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
The carboxysome is a bacterial microcompartment (BMC) which plays a central role in the cyanobacterial CO2-concentrating mechanism. These proteinaceous structures consist of an outer protein shell that partitions Rubisco and carbonic anhydrase from the rest of the cytosol, thereby providing a favorable microenvironment that enhances carbon fixation. The modular nature of carboxysomal architectures makes them attractive for a variety of biotechnological applications such as carbon capture and utilization. In silico approaches, such as molecular dynamics (MD) simulations, can support future carboxysome redesign efforts by providing new spatio-temporal insights on their structure and function beyond in vivo experimental limitations. However, specific computational studies on carboxysomes are limited. Fortunately, all BMC (including the carboxysome) are highly structurally conserved which allows for practical inferences to be made between classes. Here, we review simulations on BMC architectures which shed light on (1) permeation events through the shell and (2) assembly pathways. These models predict the biophysical properties surrounding the central pore in BMC-H shell subunits, which in turn dictate the efficiency of substrate diffusion. Meanwhile, simulations on BMC assembly demonstrate that assembly pathway is largely dictated kinetically by cargo interactions while final morphology is dependent on shell factors. Overall, these findings are contextualized within the wider experimental BMC literature and framed within the opportunities for carboxysome redesign for biomanufacturing and enhanced carbon fixation.
Collapse
Affiliation(s)
- Daniel S. Trettel
- Los Alamos National Laboratory, Bioscience Division, Microbial and Biome Sciences Group, Los Alamos, NM, United States
| | | | | | | |
Collapse
|
7
|
Christians LF, Halingstad EV, Kram E, Okolovitch EM, Pak AJ. Formalizing Coarse-Grained Representations of Anisotropic Interactions at Multimeric Protein Interfaces Using Virtual Sites. J Phys Chem B 2024; 128:1394-1406. [PMID: 38316012 DOI: 10.1021/acs.jpcb.3c07023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Molecular simulations of biomacromolecules that assemble into multimeric complexes remain a challenge due to computationally inaccessible length and time scales. Low-resolution and implicit-solvent coarse-grained modeling approaches using traditional nonbonded interactions (both pairwise and spherically isotropic) have been able to partially address this gap. However, these models may fail to capture the complex anisotropic interactions present at macromolecular interfaces unless higher-order interaction potentials are incorporated at the expense of the computational cost. In this work, we introduce an alternate and systematic approach to represent directional interactions at protein-protein interfaces by using virtual sites restricted to pairwise interactions. We show that virtual site interaction parameters can be optimized within a relative entropy minimization framework by using only information from known statistics between coarse-grained sites. We compare our virtual site models to traditional coarse-grained models using two case studies of multimeric protein assemblies and find that the virtual site models predict pairwise correlations with higher fidelity and, more importantly, assembly behavior that is morphologically consistent with experiments. Our study underscores the importance of anisotropic interaction representations and paves the way for more accurate yet computationally efficient coarse-grained simulations of macromolecular assembly in future research.
Collapse
Affiliation(s)
- Luc F Christians
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Ethan V Halingstad
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Emiel Kram
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Evan M Okolovitch
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander J Pak
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- Quantitative Biosciences and Engineering Program, Colorado School of Mines, Golden, Colorado 80401, United States
- Materials Science Program, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
8
|
Česle EEL, Ta Rs K, Jansons J, Kalniņš G. Modulation of Hybrid GRM2-type Bacterial Microcompartment Shells through BMC-H Shell Protein Fusion and Incorporation of Non-native BMC-T Shell Proteins. ACS Synth Biol 2023; 12:3275-3286. [PMID: 37937366 DOI: 10.1021/acssynbio.3c00281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Bacterial microcompartments (BMCs) are organelle-like structures in bacteria that facilitate a wide range of enzymatic reactions. The microcompartment shell contains an encapsulated enzymatic core and, in contrast to phospholipid-based eukaryotic organelle membranes, has a pseudoicosahedral shape composed of BMC-H, BMC-T, and BMC-P proteins with conserved structures. This semipermeable microcompartment shell delineates the enzymatic core assemblies and the intermediates from the rest of the cell. It is also thought to function as a barrier against toxic intermediates as well as to increase the reaction rate. These properties of BMCs have made them intriguing candidates for biotechnological applications, for which it is important to explore the potential scope of the BMC shell modulation possibilities. In this work, we explore two BMC shell modulation mechanisms: first, confirming the incorporation of three trimeric BMC-T shell proteins and two truncated BMC-T shell proteins into Klebsiella pneumoniae GRM2-type BMC protein shells containing no representatives of this group, and second, producing BMC particles from double- and triple-fused hexameric BMC-H shell proteins. These results reveal the potential for "mix and match" synthetic BMC shell formation to ensure shell properties specifically suited to the encapsulated cargo and show for the first time the involvement of an essentially dimeric pseudohexameric shell protein in BMC shell formation.
Collapse
Affiliation(s)
- Eva Emi Lija Česle
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga LV-1067, Latvia
| | - Kaspars Ta Rs
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga LV-1067, Latvia
- University of Latvia, Jelgavas 1, Riga 1004, Latvia
| | - Juris Jansons
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga LV-1067, Latvia
| | - Gints Kalniņš
- Latvian Biomedical Research and Study Centre, Ratsupites 1 k-1, Riga LV-1067, Latvia
| |
Collapse
|
9
|
Waltmann C, Kennedy NW, Mills CE, Roth EW, Ikonomova SP, Tullman-Ercek D, Olvera de la Cruz M. Kinetic Growth of Multicomponent Microcompartment Shells. ACS NANO 2023; 17:15751-15762. [PMID: 37552700 DOI: 10.1021/acsnano.3c03353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
An important goal of systems and synthetic biology is to produce high value chemical species in large quantities. Microcompartments, which are protein nanoshells encapsulating catalytic enzyme cargo, could potentially function as tunable nanobioreactors inside and outside cells to generate these high value species. Modifying the morphology of microcompartments through genetic engineering of shell proteins is one viable strategy to tune cofactor and metabolite access to encapsulated enzymes. However, this is a difficult task without understanding how changing interactions between the many different types of shell proteins and enzymes affect microcompartment assembly and shape. Here, we use multiscale molecular dynamics and experimental data to describe assembly pathways available to microcompartments composed of multiple types of shell proteins with varied interactions. As the average interaction between the enzyme cargo and the multiple types of shell proteins is weakened, the shell assembly pathway transitions from (i) nucleating on the enzyme cargo to (ii) nucleating in the bulk and then binding the cargo as it grows to (iii) an empty shell. Atomistic simulations and experiments using the 1,2-propanediol utilization microcompartment system demonstrate that shell protein interactions are highly varied and consistent with our multicomponent, coarse-grained model. Furthermore, our results suggest that intrinsic bending angles control the size of these microcompartments. Overall, our simulations and experiments provide guidance to control microcomparmtent size and assembly by modulating the interactions between shell proteins.
Collapse
Affiliation(s)
- Curt Waltmann
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Nolan W Kennedy
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States
| | - Carolyn E Mills
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Eric W Roth
- Northwestern University Atomic and Nanoscale Characterization Experimentation Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Svetlana P Ikonomova
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
10
|
Ferlez BH, Kirst H, Greber BJ, Nogales E, Sutter M, Kerfeld CA. Heterologous Assembly of Pleomorphic Bacterial Microcompartment Shell Architectures Spanning the Nano- to Microscale. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212065. [PMID: 36932732 PMCID: PMC10330516 DOI: 10.1002/adma.202212065] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/09/2023] [Indexed: 06/09/2023]
Abstract
Many bacteria use protein-based organelles known as bacterial microcompartments (BMCs) to organize and sequester sequential enzymatic reactions. Regardless of their specialized metabolic function, all BMCs are delimited by a shell made of multiple structurally redundant, yet functionally diverse, hexameric (BMC-H), pseudohexameric/trimeric (BMC-T), or pentameric (BMC-P) shell protein paralogs. When expressed without their native cargo, shell proteins have been shown to self-assemble into 2D sheets, open-ended nanotubes, and closed shells of ≈40 nm diameter that are being developed as scaffolds and nanocontainers for applications in biotechnology. Here, by leveraging a strategy for affinity-based purification, it is demonstrated that a wide range of empty synthetic shells, many differing in end-cap structures, can be derived from a glycyl radical enzyme-associated microcompartment. The range of pleomorphic shells observed, which span ≈2 orders of magnitude in size from ≈25 nm to ≈1.8 µm, reveal the remarkable plasticity of BMC-based biomaterials. In addition, new capped nanotube and nanocone morphologies are observed that are consistent with a multicomponent geometric model in which architectural principles are shared among asymmetric carbon, viral protein, and BMC-based structures.
Collapse
Affiliation(s)
- Bryan H. Ferlez
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Henning Kirst
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrative Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Basil J. Greber
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, USA; Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Eva Nogales
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, USA; Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Markus Sutter
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrative Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Cheryl A. Kerfeld
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrative Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
11
|
Abrahamson CH, Palmero BJ, Kennedy NW, Tullman-Ercek D. Theoretical and Practical Aspects of Multienzyme Organization and Encapsulation. Annu Rev Biophys 2023; 52:553-572. [PMID: 36854212 DOI: 10.1146/annurev-biophys-092222-020832] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The advent of biotechnology has enabled metabolic engineers to assemble heterologous pathways in cells to produce a variety of products of industrial relevance, often in a sustainable way. However, many pathways face challenges of low product yield. These pathways often suffer from issues that are difficult to optimize, such as low pathway flux and off-target pathway consumption of intermediates. These issues are exacerbated by the need to balance pathway flux with the health of the cell, particularly when a toxic intermediate builds up. Nature faces similar challenges and has evolved spatial organization strategies to increase metabolic pathway flux and efficiency. Inspired by these strategies, bioengineers have developed clever strategies to mimic spatial organization in nature. This review explores the use of spatial organization strategies, including protein scaffolding and protein encapsulation inside of proteinaceous shells, toward overcoming bottlenecks in metabolic engineering efforts.
Collapse
Affiliation(s)
- Charlotte H Abrahamson
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA;
| | - Brett J Palmero
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois, USA
| | - Nolan W Kennedy
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois, USA
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA;
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
12
|
Raba DA, Kerfeld CA. The potential of bacterial microcompartment architectures for phytonanotechnology. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:700-710. [PMID: 35855583 DOI: 10.1111/1758-2229.13104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
The application of nanotechnology to plants, termed phytonanotechnology, has the potential to revolutionize plant research and agricultural production. Advancements in phytonanotechnology will allow for the time-controlled and target-specific release of bioactive compounds and agrochemicals to alter and optimize conventional plant production systems. A diverse range of engineered nanoparticles with unique physiochemical properties is currently being investigated to determine their suitability for plants. Improvements in crop yield, disease resistance and nutrient and pesticide management are all possible using designed nanocarriers. However, despite these prospective benefits, research to thoroughly understand the precise activity, localization and potential phytotoxicity of these nanoparticles within plant systems is required. Protein-based bacterial microcompartment shell proteins that self-assemble into spherical shells, nanotubes and sheets could be of immense value for phytonanotechnology due to their ease of manipulation, multifunctionality, rapid and efficient producibility and biodegradability. In this review, we explore bacterial microcompartment-based architectures within the scope of phytonanotechnology.
Collapse
Affiliation(s)
- Daniel A Raba
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
13
|
Mills CE, Waltmann C, Archer AG, Kennedy NW, Abrahamson CH, Jackson AD, Roth EW, Shirman S, Jewett MC, Mangan NM, Olvera de la Cruz M, Tullman-Ercek D. Vertex protein PduN tunes encapsulated pathway performance by dictating bacterial metabolosome morphology. Nat Commun 2022; 13:3746. [PMID: 35768404 PMCID: PMC9243111 DOI: 10.1038/s41467-022-31279-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 06/09/2022] [Indexed: 11/09/2022] Open
Abstract
Engineering subcellular organization in microbes shows great promise in addressing bottlenecks in metabolic engineering efforts; however, rules guiding selection of an organization strategy or platform are lacking. Here, we study compartment morphology as a factor in mediating encapsulated pathway performance. Using the 1,2-propanediol utilization microcompartment (Pdu MCP) system from Salmonella enterica serovar Typhimurium LT2, we find that we can shift the morphology of this protein nanoreactor from polyhedral to tubular by removing vertex protein PduN. Analysis of the metabolic function between these Pdu microtubes (MTs) shows that they provide a diffusional barrier capable of shielding the cytosol from a toxic pathway intermediate, similar to native MCPs. However, kinetic modeling suggests that the different surface area to volume ratios of MCP and MT structures alters encapsulated pathway performance. Finally, we report a microscopy-based assay that permits rapid assessment of Pdu MT formation to enable future engineering efforts on these structures.
Collapse
Affiliation(s)
- Carolyn E Mills
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Curt Waltmann
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Andre G Archer
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, USA
| | - Nolan W Kennedy
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA
| | - Charlotte H Abrahamson
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Alexander D Jackson
- Master of Science in Biotechnology Program, Northwestern University, Evanston, IL, USA
| | - Eric W Roth
- Northwestern University Atomic and Nanoscale Characterization Experimental Center, Evanston, IL, USA
| | - Sasha Shirman
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Niall M Mangan
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, USA
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
14
|
Abstract
Carboxysomes are anabolic bacterial microcompartments that play an essential role in carbon fixation in cyanobacteria and some chemoautotrophs. This self-assembling organelle encapsulates the key CO2-fixing enzymes, Rubisco, and carbonic anhydrase using a polyhedral protein shell that is constructed by hundreds of shell protein paralogs. The α-carboxysome from the chemoautotroph Halothiobacillus neapolitanus serves as a model system in fundamental studies and synthetic engineering of carboxysomes. In this study, we adopted a QconCAT-based quantitative mass spectrometry approach to determine the stoichiometric composition of native α-carboxysomes from H. neapolitanus. We further performed an in-depth comparison of the protein stoichiometry of native α-carboxysomes and their recombinant counterparts heterologously generated in Escherichia coli to evaluate the structural variability and remodeling of α-carboxysomes. Our results provide insight into the molecular principles that mediate carboxysome assembly, which may aid in rational design and reprogramming of carboxysomes in new contexts for biotechnological applications. IMPORTANCE A wide range of bacteria use special protein-based organelles, termed bacterial microcompartments, to encase enzymes and reactions to increase the efficiency of biological processes. As a model bacterial microcompartment, the carboxysome contains a protein shell filled with the primary carbon fixation enzyme Rubisco. The self-assembling organelle is generated by hundreds of proteins and plays important roles in converting carbon dioxide to sugar, a process known as carbon fixation. In this study, we uncovered the exact stoichiometry of all building components and the structural plasticity of the functional α-carboxysome, using newly developed quantitative mass spectrometry together with biochemistry, electron microscopy, and enzymatic assay. The study advances our understanding of the architecture and modularity of natural carboxysomes. The knowledge learned from natural carboxysomes will suggest feasible ways to produce functional carboxysomes in other hosts, such as crop plants, with the overwhelming goal of boosting cell metabolism and crop yields.
Collapse
|
15
|
Toward a glycyl radical enzyme containing synthetic bacterial microcompartment to produce pyruvate from formate and acetate. Proc Natl Acad Sci U S A 2022; 119:2116871119. [PMID: 35193962 PMCID: PMC8872734 DOI: 10.1073/pnas.2116871119] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2022] [Indexed: 12/15/2022] Open
Abstract
The enormous complexity of metabolic pathways, in both their regulation and propensity for metabolite cross-talk, represents a major obstacle for metabolic engineering. Self-assembling, catalytically programmable and genetically transferable bacterial microcompartments (BMCs) offer solutions to decrease this complexity through compartmentalization of enzymes within a selectively permeable protein shell. Synthetic BMCs can operate as autonomous metabolic modules decoupled from the cell’s regulatory network, only interfacing with the cell’s metabolism via the highly engineerable proteinaceous shell. Here, we build a synthetic, modular, multienzyme BMC. It functions not only as a proof-of-concept for next-generation metabolic engineering, but also provides the foundation for subsequent tuning, with the goal to create a microanaerobic environment protecting an oxygen-sensitive reaction in aerobic growth conditions that could be deployed. Formate has great potential to function as a feedstock for biorefineries because it can be sustainably produced by a variety of processes that don’t compete with agricultural production. However, naturally formatotrophic organisms are unsuitable for large-scale cultivation, difficult to engineer, or have inefficient native formate assimilation pathways. Thus, metabolic engineering needs to be developed for model industrial organisms to enable efficient formatotrophic growth. Here, we build a prototype synthetic formate utilizing bacterial microcompartment (sFUT) encapsulating the oxygen-sensitive glycyl radical enzyme pyruvate formate lyase and a phosphate acyltransferase to convert formate and acetyl-phosphate into the central biosynthetic intermediate pyruvate. This metabolic module offers a defined environment with a private cofactor coenzyme A that can cycle efficiently between the encapsulated enzymes. To facilitate initial design-build-test-refine cycles to construct an active metabolic core, we used a “wiffleball” architecture, defined as an icosahedral bacterial microcompartment (BMC) shell with unoccupied pentameric vertices to freely permit substrate and product exchange. The resulting sFUT prototype wiffleball is an active multi enzyme synthetic BMC functioning as platform technology.
Collapse
|
16
|
Liu LN. Advances in the bacterial organelles for CO 2 fixation. Trends Microbiol 2021; 30:567-580. [PMID: 34802870 DOI: 10.1016/j.tim.2021.10.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 02/08/2023]
Abstract
Carboxysomes are a family of bacterial microcompartments (BMCs), present in all cyanobacteria and some proteobacteria, which encapsulate the primary CO2-fixing enzyme, Rubisco, within a virus-like polyhedral protein shell. Carboxysomes provide significantly elevated levels of CO2 around Rubisco to maximize carboxylation and reduce wasteful photorespiration, thus functioning as the central CO2-fixation organelles of bacterial CO2-concentration mechanisms. Their intriguing architectural features allow carboxysomes to make a vast contribution to carbon assimilation on a global scale. In this review, we discuss recent research progress that provides new insights into the mechanisms of how carboxysomes are assembled and functionally maintained in bacteria and recent advances in synthetic biology to repurpose the metabolic module in diverse applications.
Collapse
Affiliation(s)
- Lu-Ning Liu
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK; College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, 266003 Qingdao, China.
| |
Collapse
|
17
|
Melnicki MR, Sutter M, Kerfeld CA. Evolutionary relationships among shell proteins of carboxysomes and metabolosomes. Curr Opin Microbiol 2021; 63:1-9. [PMID: 34098411 PMCID: PMC8525121 DOI: 10.1016/j.mib.2021.05.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/16/2021] [Accepted: 05/17/2021] [Indexed: 12/20/2022]
Abstract
Bacterial microcompartments (BMCs) are self-assembling prokaryotic organelles which encapsulate enzymes within a polyhedral protein shell. The shells are comprised of only two structural modules, distinct domains that form pentagonal and hexagonal building blocks, which occupy the vertices and facets, respectively. As all BMC loci encode at least one hexamer-forming and one pentamer-forming protein, the evolutionary history of BMCs can be interrogated from the perspective of their shells. Here, we discuss how structures of intact shells and detailed phylogenies of their building blocks from a recent phylogenomic survey distinguish families of these domains and reveal clade-specific structural features. These features suggest distinct functional roles that recur across diverse BMCs. For example, it is clear that carboxysomes independently arose twice from metabolosomes, yet the principles of shell assembly are remarkably conserved.
Collapse
Affiliation(s)
- Matthew R Melnicki
- Michigan State University-U.S. Department of Energy (MSU-DOE) Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Markus Sutter
- Michigan State University-U.S. Department of Energy (MSU-DOE) Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Environmental Genomics and Systems Biology Division and Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Cheryl A Kerfeld
- Michigan State University-U.S. Department of Energy (MSU-DOE) Plant Research Laboratory and Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Environmental Genomics and Systems Biology Division and Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
18
|
Kennedy NW, Mills CE, Nichols TM, Abrahamson CH, Tullman-Ercek D. Bacterial microcompartments: tiny organelles with big potential. Curr Opin Microbiol 2021; 63:36-42. [PMID: 34126434 DOI: 10.1016/j.mib.2021.05.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/13/2021] [Accepted: 05/17/2021] [Indexed: 11/28/2022]
Abstract
Organization of metabolic processes within the space of a cell is critical for the survival of many organisms. In bacteria, spatial organization is achieved via proteinaceous organelles called bacterial microcompartments, which encapsulate pathway enzymes, substrates, and co-factors to drive the safe and efficient metabolism of niche carbon sources. Microcompartments are self-assembled from shell proteins that encapsulate a core comprising various enzymes. This review discusses how recent advances in understanding microcompartment structure and assembly have informed engineering efforts to repurpose compartments and compartment-based structures for non-native functions. These advances, both in understanding of the native structure and function of compartments, as well as in the engineering of new functions, will pave the way for the use of these structures in bacterial cell factories.
Collapse
Affiliation(s)
- Nolan W Kennedy
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, 2205 Tech Drive, 2-100 Hogan Hall, Evanston, IL, 60208, USA
| | - Carolyn E Mills
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, IL, 60208, USA
| | - Taylor M Nichols
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, IL, 60208, USA
| | - Charlotte H Abrahamson
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, IL, 60208, USA
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, IL, 60208, USA; Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Technological Institute B486, Evanston, IL, 60208, USA.
| |
Collapse
|
19
|
Li Y, Kennedy NW, Li S, Mills CE, Tullman-Ercek D, Olvera de la Cruz M. Computational and Experimental Approaches to Controlling Bacterial Microcompartment Assembly. ACS CENTRAL SCIENCE 2021; 7:658-670. [PMID: 34056096 PMCID: PMC8155464 DOI: 10.1021/acscentsci.0c01699] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 05/13/2023]
Abstract
Bacterial microcompartments compartmentalize the enzymes that aid chemical and energy production in many bacterial species. They are postulated to help bacteria survive in hostile environments. Metabolic engineers are interested in repurposing these organelles for non-native functions. Here, we use computational, theoretical, and experimental approaches to determine mechanisms that effectively control microcompartment self-assembly. We find, via multiscale modeling and mutagenesis studies, the interactions responsible for the binding of hexamer-forming proteins in a model system, the propanediol utilization bacterial microcompartments from Salmonella enterica serovar Typhimurium LT2. We determine how the changes in the microcompartment hexamer protein preferred angles and interaction strengths can modify the assembled morphologies. We demonstrate that such altered strengths and angles are achieved via amino acid mutations. A thermodynamic model provides guidelines to design microcompartments of various morphologies. These findings yield insight in controlled protein assembly and provide principles for assembling microcompartments for biochemical or energy applications as nanoreactors.
Collapse
Affiliation(s)
- Yaohua Li
- Department
of Material Science and Engineering, Northwestern
University, Evanston, Illinois 60208, United States
- Applied
Physics Program, Northwestern University, Evanston, Illinois 60208, United States
| | - Nolan W. Kennedy
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Interdisciplinary
Biological Sciences Graduate Program, Northwestern
University, Evanston, Illinois 60208, United States
| | - Siyu Li
- Department
of Material Science and Engineering, Northwestern
University, Evanston, Illinois 60208, United States
| | - Carolyn E. Mills
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Danielle Tullman-Ercek
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- E-mail:
| | - Monica Olvera de la Cruz
- Department
of Material Science and Engineering, Northwestern
University, Evanston, Illinois 60208, United States
- Applied
Physics Program, Northwestern University, Evanston, Illinois 60208, United States
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- E-mail:
| |
Collapse
|
20
|
Abstract
Significant advances in enzyme discovery, protein and reaction engineering have transformed biocatalysis into a viable technology for the industrial scale manufacturing of chemicals. Multi-enzyme catalysis has emerged as a new frontier for the synthesis of complex chemicals. However, the in vitro operation of multiple enzymes simultaneously in one vessel poses challenges that require new strategies for increasing the operational performance of enzymatic cascade reactions. Chief among those strategies is enzyme co-immobilization. This review will explore how advances in synthetic biology and protein engineering have led to bioinspired co-localization strategies for the scaffolding and compartmentalization of enzymes. Emphasis will be placed on genetically encoded co-localization mechanisms as platforms for future autonomously self-organizing biocatalytic systems. Such genetically programmable systems could be produced by cell factories or emerging cell-free systems. Challenges and opportunities towards self-assembling, multifunctional biocatalytic materials will be discussed.
Collapse
|
21
|
Stewart KL, Stewart AM, Bobik TA. Prokaryotic Organelles: Bacterial Microcompartments in E. coli and Salmonella. EcoSal Plus 2020; 9:10.1128/ecosalplus.ESP-0025-2019. [PMID: 33030141 PMCID: PMC7552817 DOI: 10.1128/ecosalplus.esp-0025-2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Indexed: 02/07/2023]
Abstract
Bacterial microcompartments (MCPs) are proteinaceous organelles consisting of a metabolic pathway encapsulated within a selectively permeable protein shell. Hundreds of species of bacteria produce MCPs of at least nine different types, and MCP metabolism is associated with enteric pathogenesis, cancer, and heart disease. This review focuses chiefly on the four types of catabolic MCPs (metabolosomes) found in Escherichia coli and Salmonella: the propanediol utilization (pdu), ethanolamine utilization (eut), choline utilization (cut), and glycyl radical propanediol (grp) MCPs. Although the great majority of work done on catabolic MCPs has been carried out with Salmonella and E. coli, research outside the group is mentioned where necessary for a comprehensive understanding. Salient characteristics found across MCPs are discussed, including enzymatic reactions and shell composition, with particular attention paid to key differences between classes of MCPs. We also highlight relevant research on the dynamic processes of MCP assembly, protein targeting, and the mechanisms that underlie selective permeability. Lastly, we discuss emerging biotechnology applications based on MCP principles and point out challenges, unanswered questions, and future directions.
Collapse
Affiliation(s)
- Katie L. Stewart
- The Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA 50011
| | - Andrew M. Stewart
- The Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA 50011
| | - Thomas A. Bobik
- The Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA 50011
| |
Collapse
|
22
|
Dhankher A, Hernandez ME, Howard HC, Champion JA. Characterization and Control of Dynamic Rearrangement in a Self-Assembled Antibody Carrier. Biomacromolecules 2020; 21:1407-1416. [PMID: 32134251 DOI: 10.1021/acs.biomac.9b01712] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Thorough characterization of protein assemblies is required for the control of structure and robust performance in any given application, especially for the safety and stability of protein therapeutics. Here, we report the use of multiple, orthogonal characterization techniques to enable control over the structure of a multivalent antibody carrier for future use in drug delivery applications. The carrier, known as Hex, contains six antibody binding domains that bind the Fc region of antibodies. Using size exclusion chromatography, analytical ultracentrifugation, and dynamic light scattering, we identified the stoichiometry of assembled Hex-antibody complexes and observed changes in the stoichiometry of nanocarriers when incubated at higher temperatures over time. The characterization data informed the modification of Hex to achieve tighter control over the protein assembly structure for future therapeutic applications. This work demonstrates the importance of using orthogonal characterization techniques and observing protein assembly in different conditions over time to fully understand and control structure and dynamics.
Collapse
Affiliation(s)
- Anshul Dhankher
- School of Chemical & Biomolecular Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Manuel E Hernandez
- School of Chemical & Biomolecular Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Hannah C Howard
- School of Chemical & Biomolecular Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Julie A Champion
- School of Chemical & Biomolecular Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
23
|
Kalnins G, Cesle EE, Jansons J, Liepins J, Filimonenko A, Tars K. Encapsulation mechanisms and structural studies of GRM2 bacterial microcompartment particles. Nat Commun 2020; 11:388. [PMID: 31959751 PMCID: PMC6971018 DOI: 10.1038/s41467-019-14205-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 12/18/2019] [Indexed: 11/08/2022] Open
Abstract
Bacterial microcompartments (BMCs) are prokaryotic organelles consisting of a protein shell and an encapsulated enzymatic core. BMCs are involved in several biochemical processes, such as choline, glycerol and ethanolamine degradation and carbon fixation. Since non-native enzymes can also be encapsulated in BMCs, an improved understanding of BMC shell assembly and encapsulation processes could be useful for synthetic biology applications. Here we report the isolation and recombinant expression of BMC structural genes from the Klebsiella pneumoniae GRM2 locus, the investigation of mechanisms behind encapsulation of the core enzymes, and the characterization of shell particles by cryo-EM. We conclude that the enzymatic core is encapsulated in a hierarchical manner and that the CutC choline lyase may play a secondary role as an adaptor protein. We also present a cryo-EM structure of a pT = 4 quasi-symmetric icosahedral shell particle at 3.3 Å resolution, and demonstrate variability among the minor shell forms.
Collapse
Affiliation(s)
- Gints Kalnins
- Latvian Biomedical Research and Study Centre, Ratsupites 1, Riga, 1067, Latvia.
| | - Eva-Emilija Cesle
- Latvian Biomedical Research and Study Centre, Ratsupites 1, Riga, 1067, Latvia
| | - Juris Jansons
- Latvian Biomedical Research and Study Centre, Ratsupites 1, Riga, 1067, Latvia
| | - Janis Liepins
- Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas 1, Riga, 1004, Latvia
| | - Anatolij Filimonenko
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| | - Kaspars Tars
- Latvian Biomedical Research and Study Centre, Ratsupites 1, Riga, 1067, Latvia
- University of Latvia, Jelgavas 1, Riga, 1004, Latvia
| |
Collapse
|
24
|
Young EJ, Sakkos JK, Huang J, Wright JK, Kachel B, Fuentes-Cabrera M, Kerfeld CA, Ducat DC. Visualizing in Vivo Dynamics of Designer Nanoscaffolds. NANO LETTERS 2020; 20:208-217. [PMID: 31747755 DOI: 10.1021/acs.nanolett.9b03651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Enzymes of natural biochemical pathways are routinely subcellularly organized in space and time in order to improve pathway efficacy and control. Designer scaffolding platforms are under development to confer similar benefits upon engineered pathways. Herein, we evaluate bacterial microcompartment shell (pfam0936-domain) proteins as modules for constructing well-defined nanometer scale scaffolds in vivo. We use a suite of visualization techniques to evaluate scaffold assembly and dynamics. We demonstrate recruitment of target cargo molecules onto assembled scaffolds by appending reciprocally interacting adaptor domains. These interactions can be refined by fine-tuning the scaffold expression level. Real-time observation of this system reveals a nucleation-limited step where multiple scaffolds initially form within a cell. Over time, nucleated scaffolds reorganize into a single intracellular assembly, likely due to interscaffold competition for protein subunits. Our results suggest design considerations for using self-assembling proteins as building blocks to construct nanoscaffolds, while also providing a platform to visualize scaffold-cargo dynamics in vivo.
Collapse
Affiliation(s)
- Eric J Young
- MSU-DOE Plant Research Laboratory , Michigan State University , East Lansing , Michigan 48824 United States
- Department of Biochemistry & Molecular Biology , Michigan State University , East Lansing , Michigan 48824 United States
| | - Jonathan K Sakkos
- MSU-DOE Plant Research Laboratory , Michigan State University , East Lansing , Michigan 48824 United States
- Department of Biochemistry & Molecular Biology , Michigan State University , East Lansing , Michigan 48824 United States
| | - Jingcheng Huang
- MSU-DOE Plant Research Laboratory , Michigan State University , East Lansing , Michigan 48824 United States
- Department of Biochemistry & Molecular Biology , Michigan State University , East Lansing , Michigan 48824 United States
| | - Jacob K Wright
- MSU-DOE Plant Research Laboratory , Michigan State University , East Lansing , Michigan 48824 United States
- Department of Biochemistry & Molecular Biology , Michigan State University , East Lansing , Michigan 48824 United States
| | - Benjamin Kachel
- Institute for Technical Microbiology , Mannheim University of Applied Sciences , Mannheim , Germany
| | - Miguel Fuentes-Cabrera
- Computational Sciences and Engineering Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37830 United States
- Center for Nanophase Material Sciences Oak Ridge National Laboratory , Oak Ridge , Tennessee 37830 United States
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory , Michigan State University , East Lansing , Michigan 48824 United States
- Department of Biochemistry & Molecular Biology , Michigan State University , East Lansing , Michigan 48824 United States
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrated Bioimaging Divisions , Lawrence Berkeley National Laboratory , 1 Cyclotron Road , Berkeley , California 94720 , United States
| | - Daniel C Ducat
- MSU-DOE Plant Research Laboratory , Michigan State University , East Lansing , Michigan 48824 United States
- Department of Biochemistry & Molecular Biology , Michigan State University , East Lansing , Michigan 48824 United States
| |
Collapse
|