1
|
Kronn D, Davison J, Broomfield A, Brassier A, Labarthe F, Hahn SH, Kumada S, Ohki H, Prakalapakorn SG, Wilson C, Haack KA, Huynh-Ba O, Richards S, Sparks S, Tammireddy S, Zhou T, Chien YH, Kishnani PS, Mini-COMET investigators. The Mini-COMET Clinical Trial: Safety and Efficacy of Avalglucosidase Alfa after 97 Weeks of Treatment in Children with Infantile-Onset Pompe Disease Previously Treated with Alglucosidase Alfa. J Pediatr 2025:114664. [PMID: 40449831 DOI: 10.1016/j.jpeds.2025.114664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 05/13/2025] [Accepted: 05/19/2025] [Indexed: 06/03/2025]
Abstract
OBJECTIVE To evaluate long-term safety and efficacy of avalglucosidase alfa in children with infantile-onset Pompe disease (IOPD) experiencing clinical decline (cohorts 1 and 2) or suboptimal response (cohort 3) to pre-study alglucosidase alfa. STUDY DESIGN The Mini-COMET clinical trial, a phase 2, open-label, ascending-dose, 3-cohort study, has a 25-week primary analysis period (PAP) and an extension treatment period (ETP). In the PAP, cohorts 1 (n=6) and 2 (n=5) received avalglucosidase alfa 20 or 40 mg/kg every other week (qow), respectively. Cohort 3 received avalglucosidase alfa 40 mg/kg qow (n=5) or alglucosidase alfa (pre-study [>6 months] stable dose: 20 mg/kg qow to 40 mg/kg weekly; n=6). All children completed the PAP and entered the ETP. Children receiving avalglucosidase alfa in the PAP continued the same dose in the ETP. Those receiving alglucosidase alfa in the PAP received avalglucosidase alfa 40 mg/kg qow in the ETP. RESULTS At baseline, children were 1-12 years old. Interim data (≥97 weeks) are presented from all 22 children, 20 receiving avalglucosidase alfa 40 mg/kg qow and 2 receiving 20 mg/kg qow in the ETP. Among the 6 who received 20 mg/kg qow avalglucosidase alfa in PAP (cohort 1), 4 had their dose increase to 40 mg/kg qow because of further clinical decline in the ETP. No child died or discontinued at data cut-off. PAP and ETP safety profiles were similar; no treatment-related serious or severe treatment-emergent adverse events occurred. Avalglucosidase alfa was well-tolerated, with no increased safety risk or immunogenicity concerns post-treatment switch. Echocardiography revealed persistent left-ventricular mass Z-score normalization. Compared with baseline, biomarkers of Pompe disease burden decreased, and motor function improved or stabilized. CONCLUSION Results support the positive clinical impact of long-term avalglucosidase alfa in children with IOPD.
Collapse
Affiliation(s)
- David Kronn
- Departments of Pathology and Pediatrics, New York Medical College, Valhalla, NY
| | - James Davison
- Great Ormond Street Hospital NHS Foundation Trust, London, and National Institute of Health Research Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Alexander Broomfield
- Great Ormond Street Hospital NHS Foundation Trust, London, and National Institute of Health Research Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Anaïs Brassier
- Reference Center of Inherited Metabolic Diseases, Imagine Institute, Hospital Necker Enfants Malades, APHP, University Paris Descartes, Paris, France
| | - François Labarthe
- Pediatrics Department, Center for Inborn Errors of Metabolism ToTeM, CHU Tours, and N2C, INSERM U1069, Tours University, Tours, France
| | - Si Houn Hahn
- Department of Pediatrics, University of Washington School of Medicine, Seattle Children's Hospital, Seattle, WA
| | - Satoko Kumada
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Hirotaka Ohki
- Department of Cardiology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | | | | | | | | | | | | | | | | | - Yin-Hsiu Chien
- Department of Medical Genetics and Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC.
| | | |
Collapse
|
2
|
Corsini A. Improving the treatment of Pompe disease with enzyme replacement therapy: current strategies and clinical evidence. Expert Opin Pharmacother 2025; 26:835-848. [PMID: 40237692 DOI: 10.1080/14656566.2025.2491508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 04/07/2025] [Indexed: 04/18/2025]
Abstract
INTRODUCTION Pompe disease (PD) is a rare genetic disorder that leads to intralysosomal glycogen accumulation because of a deficiency in the lysosomal enzyme acid α-glucosidase (GAA), which is required to break down glycogen to glucose. Enzyme replacement therapy (ERT) with recombinant human GAA (rhGAA) supplies exogenous GAA to reduce glycogen deposits, thereby improving motor and respiratory functioning. AREA COVERED The first approved ERT for PD was the rhGAA alglucosidase alfa. Limitations associated with this treatment led to the development of two other rhGAAs: avalglucosidase alfa and cipaglucosidase alfa. This review describes the limitations of alglucosidase alfa and focuses on the strategies used to overcome these limitations, including the conjugation of multiple synthetic bis-M6P - containing hexasaccharides to sialic acids present on the enzyme, thus enhancing M6PR targeting, enzyme uptake, glycogen clearance, and therapeutic outcomes. Efficacy and safety of avalglucosidase alfa in late-onset and infantile-onset PD are also discussed. A brief overview of the newest ERT, cipaglucosidase alfa, is also provided. EXPERT OPINION While ERT for PD continues to improve with more effective enzymes like avalglucosidase alfa, the future lies in integrated approaches that combine different therapeutic modalities (gene therapy, substrate reduction therapy) and the use of biomarkers to individualize treatment.
Collapse
Affiliation(s)
- Alberto Corsini
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
3
|
Padhy A, Gupta M, Das A, Farook I, Dutta T, Datta S, Datta R, Gupta SS. Lysosome-Specific Delivery of β-Glucosidase Enzyme Using Protein-Glycopolypeptide Conjugate via Protein Engineering and Bioconjugation. Bioconjug Chem 2025; 36:383-394. [PMID: 39988831 DOI: 10.1021/acs.bioconjchem.4c00430] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Lysosomal enzyme replacement therapy (ERT) holds potential for treating lysosomal storage disorders, but achieving targeted delivery of deficient therapeutic enzymes remains a significant challenge. This study presents a novel approach for the lysosome-specific delivery of the β-glucosidase (B8CYA8) enzyme by covalently conjugating lysosome-targeting mannose-6-phosphate functionalized glycopolypeptides (M6P-GP). We used a protein-glycopolypeptide conjugate developed through advanced protein engineering and bioconjugation techniques. By conjugating β-glucosidase to M6P-GP that has a high affinity for the cation-independent mannose-6-phosphate receptors (CI-MPR) and lysosomal receptors, we enhance the enzyme's selective intracellular uptake and lysosome-specific localization. To attain maximum activity of the near-native enzyme after delivery, we have designed and synthesized an acetal linkage containing the pH-responsive linker maleimide-acetal-azide (MAA), which will cleave in the lysosomal acidic pH to detach the glycopolypeptide from the protein backbone. We demonstrated the efficient cellular uptake of the protein-glycopolypeptide conjugate and showed targeted lysosome delivery, leading to increased enzymatic activity compared to untreated cells. Our results proved that the approach mainly improves the specificity and efficiency of enzyme delivery, particularly into lysosomes, which may enable new methods for ERT. These findings suggest that protein-glycopolypeptide conjugates could represent a class of bioconjugates to design targeted enzyme therapies, offering a pathway to the effective treatment of Gaucher disease (GD) and potentially other related lysosomal storage disorders.
Collapse
Affiliation(s)
- Abinash Padhy
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Mani Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Apurba Das
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Isha Farook
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Tahiti Dutta
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Supratim Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, West Bengal 741246, India
- Center for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Rupak Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Sayam Sen Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| |
Collapse
|
4
|
van der Beek NAME, Theunissen MTM, van den Hout JMP, Pijnappel WWM, Schoser B, Laforêt P, Parenti G, van Doorn PA, van der Ploeg AT. Clinical insights in enzyme replacement therapy for metabolic storage disorders: lessons from Pompe disease. Lancet Neurol 2025; 24:230-245. [PMID: 39986311 DOI: 10.1016/s1474-4422(24)00518-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 02/24/2025]
Abstract
Metabolic storage disorders, including lysosomal storage disorders, pose complex challenges in management due to their progressive and life-threatening nature. Although enzyme replacement therapy has substantially improved outcomes for patients with lysosomal storage disorders, limitations of this therapy have become apparent throughout two decades of use. New clinical features of these diseases have emerged as patients live longer, leading to unresolved questions regarding ongoing treatment and long-term care. Innovative therapies are emerging that aim to improve targeting of tissues, particularly for previously inaccessible areas such as the CNS. These next-generation treatments hold promise for enhancing patient outcomes beyond what enzyme replacement therapy can do. Continued exploration of novel therapeutic strategies will be crucial for providing more effective and personalised care for these complex diseases.
Collapse
Affiliation(s)
- Nadine A M E van der Beek
- Department of Neurology, Center for Lysosomal and Metabolic Diseases, University Medical Center Rotterdam, Erasmus MC, Rotterdam, Netherlands.
| | - Maudy T M Theunissen
- Department of Neurology, Center for Lysosomal and Metabolic Diseases, University Medical Center Rotterdam, Erasmus MC, Rotterdam, Netherlands; Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, University Medical Center Rotterdam, Erasmus MC, Rotterdam, Netherlands
| | - Johanna M P van den Hout
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, University Medical Center Rotterdam, Erasmus MC, Rotterdam, Netherlands
| | - Wilhelmus W M Pijnappel
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, University Medical Center Rotterdam, Erasmus MC, Rotterdam, Netherlands; Department of Clinical Genetics, Center for Lysosomal and Metabolic Diseases, University Medical Center Rotterdam, Erasmus MC, Rotterdam, Netherlands
| | - Benedikt Schoser
- Department of Neurology, Friedrich-Baur-Institute, Ludwig Maximilians University, Munich, Germany
| | - Pascal Laforêt
- Nord/Est/Île-de-France Neuromuscular Reference Center, FHU PHENIX, AP-HP, Raymond-Poincaré Hospital, Department of Neurology, Garches, France
| | - Giancarlo Parenti
- Federico II University, Department of Translational Medicine, Naples, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Pieter A van Doorn
- Department of Neurology, Center for Lysosomal and Metabolic Diseases, University Medical Center Rotterdam, Erasmus MC, Rotterdam, Netherlands
| | - Ans T van der Ploeg
- Department of Pediatrics, Center for Lysosomal and Metabolic Diseases, University Medical Center Rotterdam, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
5
|
Mori-Yoshimura M, Ohki H, Mashimo H, Inoue K, Kumada S, Kiyono T, Arimori A, Ikeda M, Komaki H. Efficacy and safety of avalglucosidase alfa in Japanese patients with late-onset and infantile-onset Pompe diseases: A case series from clinical trials. Mol Genet Metab Rep 2025; 42:101163. [PMID: 39835171 PMCID: PMC11743810 DOI: 10.1016/j.ymgmr.2024.101163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 01/22/2025] Open
Abstract
Background The efficacy and safety of avalglucosidase alfa for Pompe disease (PD) have been demonstrated in a global Phase 3 trial (COMET) in patients with late-onset PD (LOPD) and a global Phase 2 trial (Mini-COMET) in patients with infantile-onset PD (IOPD). This case series examines the individual results of three Japanese patients enrolled in these trials. Methods Case reports were assembled from data collected in the COMET and Mini-COMET trials. Detailed methods have been reported previously. The primary endpoint of COMET was change from baseline to week 49 in upright forced vital capacity percent (FVC %) predicted. The primary endpoint of Mini-COMET was safety and tolerability of avalglucosidase alfa. In both trials, key secondary endpoints included motor function tests and other qualitative measures of improvement. Changes in biomarkers and anti-drug antibodies were also assessed in both trials. Results Results for Japanese patients were representative of those from the overall populations in the COMET and Mini-COMET trials. We detail results for one Japanese patient with LOPD enrolled in the COMET trial and two Japanese patients with IOPD enrolled in the Mini-COMET trial. Importantly, avalglucosidase alfa was well tolerated at doses of both 20 mg/kg and 40 mg/kg in Japanese patients with LOPD and IOPD, respectively. Conclusions Although the number of patients was small, avalglucosidase alfa provides an efficacy and safety profile in Japanese patients representative of the overall populations from key global clinical trials.
Collapse
Affiliation(s)
- Madoka Mori-Yoshimura
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hirotaka Ohki
- Department of Cardiology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Hideaki Mashimo
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Kenji Inoue
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
- Department of Neuropediatrics, Chiba Rehabilitation Center, Chiba, Japan
| | - Satoko Kumada
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | | | | | | | - Hirofumi Komaki
- Translational Medical Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
6
|
Ishii N, Mascherpa A, Fairbanks AJ. Synthesis of a heptasaccharide N-glycan comprising two mannose-6-phosphate residues. Carbohydr Res 2025; 547:109327. [PMID: 39580870 DOI: 10.1016/j.carres.2024.109327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
A deprotected biantennary high mannose heptasaccharide N-glycan comprising two mannose-6-phosphate residues was synthesised as a putative ligand for the mannose 6-phosphate receptors, using a convergent [3 + 4] glycosylation strategy.
Collapse
Affiliation(s)
- Nozomi Ishii
- School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand; Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Andrea Mascherpa
- School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| | - Antony J Fairbanks
- School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand.
| |
Collapse
|
7
|
Davalos L, Kushlaf H. Advances in Disease-Modifying Therapeutics for Chronic Neuromuscular Disorders. Semin Respir Crit Care Med 2024. [PMID: 39708835 DOI: 10.1055/a-2463-3385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
Neuromuscular disorders can cause respiratory impairment by affecting the muscle fibers, neuromuscular junction, or innervation of respiratory muscles, leading to significant morbidity and mortality. Over the past few years, new disease-modifying therapies have been developed and made available for treating different neuromuscular disorders. Some of these therapies have remarkable effectiveness, resulting in the prevention and reduction of respiratory complications. For myasthenia gravis (MG), efgartigimod, ravulizumab, rozanolixizumab, and zilucoplan have been Food and Drug Administration (FDA)-approved for the treatment of acetylcholine receptor (AChR) antibody-positive generalized MG in the past 2 years. Rozanolixiumab is also approved for treating MG caused by muscle-specific tyrosine kinase (MuSK) antibodies. The new MG therapeutics target the complement system or block the neonatal fragment crystallizable (Fc) receptors (FcRn), leading to significant clinical improvement. For spinal muscular atrophy (SMA), nusinersen (intrathecal route) and risdiplam (oral route) modify the splicing of the SMN2 gene, increasing the production of normal survival motor neuron (SMN) protein. Onasemnogene abeparvovec is a gene replacement therapy that encodes a functional SMN protein. All SMA medications, particularly onasemnogene abeparvovec, have led to clinically meaningful improvement. For late-onset Pompe disease (LOPD), avalglucosidase alfa has shown a greater improvement in respiratory function, ambulation, and functional outcomes in comparison to alglucosidase alfa, and cipaglucosidase alfa combined with miglustat has shown improvement in respiratory and motor function in a cohort of enzyme replacement therapy-experienced LOPD patients. Amyotrophic lateral sclerosis (ALS) remains a challenge. The two most recent FDA-approved medications, namely sodium phenylbutyrate and tofersen, may slow down the disease by a few months in a selected population but do not stop the progression of the disease.
Collapse
Affiliation(s)
- Long Davalos
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Hani Kushlaf
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
8
|
Díaz-Manera J, Hughes D, Erdem-Özdamar S, Tard C, Béhin A, Bouhour F, Davison J, Hahn SH, Haack KA, Huynh-Ba O, Periquet M, Tammireddy S, Thibault N, Zhou T, van der Ploeg AT. Home infusion experience in patients with Pompe disease receiving avalglucosidase alfa during three clinical trials. Mol Genet Metab 2024; 143:108608. [PMID: 39566417 DOI: 10.1016/j.ymgme.2024.108608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/22/2024]
Abstract
During three previously reported clinical trials of avalglucosidase alfa in patients with Pompe disease, 17 out of 142 participants were considered by the investigators to be appropriate candidates for home infusion. During their respective trials, these participants received a total of 419 avalglucosidase alfa infusions at home under healthcare professional supervision. They were clinically stable with no history of moderate or severe infusion-associated reactions within at least 12 months prior to starting home infusions. As of February 25, 2022, the 15 participants with late-onset Pompe disease (LOPD) had received between 2 and 48 home infusions and the 2 participants with infantile-onset Pompe disease (IOPD) had received 19 and 20 infusions. Adverse events occurred in 8 (53 %) participants with LOPD and neither of the participants with IOPD. Seven participants with LOPD had a total of 15 non-treatment-related, non-serious adverse events. One participant with LOPD experienced infusion-associated reactions of eyelid edema and flushing during the first home infusion; both were non-serious adverse events classified as grade 1 (mild). Home infusion was later resumed for this participant. Among LOPD participants, event rates for home infusions were comparable to those for clinic infusions: overall adverse events (0.028 vs 0.039 participants with events/infusion, respectively) and adverse events classified as infusion-associated reactions (0.003 vs. 0.006, respectively). No medication errors occurred during home infusion. These data suggest that infusion of avalglucosidase alfa at home is feasible and does not compromise safety for patients who have not experienced an infusion-associated reaction during the preceding 12 months of infusions in a clinical setting. Evaluation of real-world experience with avalglucosidase alfa home infusion in countries where it is already approved is ongoing.
Collapse
Affiliation(s)
- Jordi Díaz-Manera
- John Walton Muscular Dystrophy Research Centre, Newcastle University International Centre for Life Newcastle upon Tyne, UK.
| | - Derralynn Hughes
- Lysosomal Storage Disorders Unit, Royal Free Hospital, London, UK
| | - Sevim Erdem-Özdamar
- Department of Neurology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Céline Tard
- CHU de Lille, Centre de Référence des Maladies Neuromusculaires Nord Est Ile de France, Lille, France
| | - Anthony Béhin
- AP-HP, Centre de Référence des Pathologies Neuromusculaires Nord-Est-Ile de France, Service de Neuromyologie, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Françoise Bouhour
- Referral Centre for Neuromuscular Diseases, Hôpital Neurologique, Lyon-Bron, France
| | - James Davison
- Great Ormond Street Hospital NHS Foundation Trust, London, UK; National Institute of Health Research Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Si Houn Hahn
- Department of Pediatrics, University of Washington School of Medicine, Seattle Children's Hospital, Seattle, WA, USA
| | | | | | | | | | | | | | - Ans T van der Ploeg
- Center for Lysosomal and Metabolic Diseases, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
9
|
Tsukimura T, Shiga T, Togawa T, Sakuraba H. Comparative study on incorporation of three recombinant human α-galactosidase A drugs (agalsidases) into cultured fibroblasts and organs/tissues of Fabry mice. Mol Genet Metab Rep 2024; 40:101118. [PMID: 39257531 PMCID: PMC11384131 DOI: 10.1016/j.ymgmr.2024.101118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/22/2024] [Accepted: 07/05/2024] [Indexed: 09/12/2024] Open
Abstract
Enzyme replacement therapy (ERT) with recombinant human α-galactosidase A (α-Gal A) drugs (agalsidases) has been successfully used for treatment of Fabry disease, and three kinds of agalsidases are now available in Japan. To compare the biochemical characteristics of these drugs, especially focusing on their incorporation into cultured fibroblasts and organs/tissues of Fabry mice, we performed in vitro, cell, and animal experiments. The results revealed that there were no differences in the kinetic parameters and enzyme activity between these agalsidases. But their affinity for domain 9 of cation-independent mannose 6-phosphate receptor (CI-M6PR), which exists in various cells, was higher in the order: agalsidase beta biosimilar 1 (agalsidase beta BS) > agalsidase beta > agalsidase alfa, which almost coincided with the experimental results regarding the efficiency of their incorporation into cultured fibroblasts derived from a Fabry mouse. The results of animal experiments using Fabry mice revealed that the incorporation of the agalsidases into the kidneys and heart, where CI-M6PRs are widely distributed, was efficient in the order: agalsidase beta/agalsidase beta BS > agalsidase alfa, which reflected the degree of reduction of glycosphingolipids accumulated in the organs/tissues. On the other hand, no differences in the efficiency of their uptake or reduction of the accumulated substances were observed in the liver, probably due to asialoglycoprotein receptors expressed on the surface of hepatocytes. This information will be useful for making a suitable ERT plan for individual Fabry patients with various backgrounds and for developing new ERT drugs in the future.
Collapse
Affiliation(s)
- Takahiro Tsukimura
- Department of Functional Bioanalysis, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Tomoko Shiga
- Department of Clinical Genetics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Tadayasu Togawa
- Department of Functional Bioanalysis, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Hitoshi Sakuraba
- Department of Clinical Genetics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| |
Collapse
|
10
|
Kishnani PS, Chien YH, Berger KI, Thibault N, Sparks S. Clinical insight meets scientific innovation to develop a next generation ERT for Pompe disease. Mol Genet Metab 2024; 143:108559. [PMID: 39154400 DOI: 10.1016/j.ymgme.2024.108559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/20/2024]
Abstract
Years of research into the structure, processing, and function of acid alpha-glucosidase led to the development and 2006 approval of alglucosidase alfa (recombinant human acid alpha-glucosidase, Myozyme®/Lumizyme®), an enzyme replacement therapy and the first approved treatment for Pompe disease. Alglucosidase alfa has been a lifesaving treatment for patients with infantile-onset Pompe disease and radically improved daily life for patients with late-onset Pompe disease; however, long-term experience with alglucosidase alfa unraveled key unmet needs in these populations. Despite treatment, Pompe disease continues to progress, especially from a skeletal muscle perspective, resulting in a multitude of functional limitations. Strong collaboration between the scientific and patient communities led to increased awareness of Pompe disease, a better understanding of disease pathophysiology, knowledge of the clinical course of the disease as patients surpassed the first decade of life, and the strengths and limitations of enzyme replacement therapy. Taken together, these advancements spurred the need for development of a next generation of enzyme replacement therapy and provided a framework for progress toward other novel treatments. This review provides an overview of the development of avalglucosidase alfa as a model to highlight the interaction between clinical experience with existing treatments, the role of the clinician scientist, translational research at both system and cellular levels, and the iterative and collaborative process that optimizes the development of therapeutics.
Collapse
Affiliation(s)
- Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA.
| | - Yin-Hsiu Chien
- Department of Medical Genetics and Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | |
Collapse
|
11
|
Colpaert M, Singh PK, Donohue KJ, Pires NT, Fuller DD, Corti M, Byrne BJ, Sun RC, Vander Kooi CW, Gentry MS. Neurological glycogen storage diseases and emerging therapeutics. Neurotherapeutics 2024; 21:e00446. [PMID: 39277505 PMCID: PMC11581880 DOI: 10.1016/j.neurot.2024.e00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/17/2024] Open
Abstract
Glycogen storage diseases (GSDs) comprise a group of inherited metabolic disorders characterized by defects in glycogen metabolism, leading to abnormal glycogen accumulation in multiple tissues, most notably affecting the liver, skeletal muscle, and heart. Recent findings have uncovered the importance of glycogen metabolism in the brain, sustaining a myriad of physiological functions and linking its perturbation to central nervous system (CNS) pathology. This link resulted in classification of neurological-GSDs (n-GSDs), a group of diseases with shared deficits in neurological glycogen metabolism. The n-GSD patients exhibit a spectrum of clinical presentations with common etiology while requiring tailored therapeutic approaches from the traditional GSDs. Recent research has elucidated the genetic and biochemical mechanisms and pathophysiological basis underlying different n-GSDs. Further, the last decade has witnessed some promising developments in novel therapeutic approaches, including enzyme replacement therapy (ERT), substrate reduction therapy (SRT), small molecule drugs, and gene therapy targeting key aspects of glycogen metabolism in specific n-GSDs. This preclinical progress has generated noticeable success in potentially modifying disease course and improving clinical outcomes in patients. Herein, we provide an overview of current perspectives on n-GSDs, emphasizing recent advances in understanding their molecular basis, therapeutic developments, underscore key challenges and the need to deepen our understanding of n-GSDs pathogenesis to develop better therapeutic strategies that could offer improved treatment and sustainable benefits to the patients.
Collapse
Affiliation(s)
- Matthieu Colpaert
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Pankaj K Singh
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | | | | | - David D Fuller
- Department of Physical Therapy and Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - Manuela Corti
- Department of Pediatrics, Powell Gene Therapy Center, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Barry J Byrne
- Department of Pediatrics, Powell Gene Therapy Center, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Ramon C Sun
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research (CASBR), University of Florida, Gainesville, FL, USA
| | - Craig W Vander Kooi
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research (CASBR), University of Florida, Gainesville, FL, USA
| | - Matthew S Gentry
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research (CASBR), University of Florida, Gainesville, FL, USA.
| |
Collapse
|
12
|
Dumitriu A, Lucas A, Colzani R. Real-world evidence study finds no new-onset diabetes or drug-related hyperglycemia in Pompe disease patients treated with avalglucosidase alfa. Mol Genet Metab Rep 2024; 38:101064. [PMID: 38469102 PMCID: PMC10926186 DOI: 10.1016/j.ymgmr.2024.101064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/22/2023] [Accepted: 02/11/2024] [Indexed: 03/13/2024] Open
Abstract
Avalglucosidase alfa therapy for Pompe disease is diluted in dextrose 5% solution in water (D5W) for infusion, which raises questions about the potential for hyperglycemia or worsening diabetes. Using United States insurance claims data, we assessed the impact of biweekly infusions on hyperglycemia, new-onset diabetes mellitus, insulin resistance, and prediabetes in patients with Pompe disease. After starting avalglucosidase alfa treatment, 1 of 26 patients had one claim for hyperglycemia, which was attributed to acute pancreatitis.
Collapse
|
13
|
Boentert M, Campana ES, Attarian S, Diaz-Manera J, Dimachkie MM, Periquet M, Thibault N, Miossec P, Zhou T, Berger KI. Post-hoc Nonparametric Analysis of Forced Vital Capacity in the COMET Trial Demonstrates Superiority of Avalglucosidase Alfa vs Alglucosidase Alfa. J Neuromuscul Dis 2024; 11:369-374. [PMID: 38160363 DOI: 10.3233/jnd-230175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
In the COMET trial of patients with late-onset Pompe disease, greater improvement in upright forced vital capacity (FVC) % predicted was observed with avalglucosidase alfa (AVA) vs alglucosidase alfa (ALGLU) (estimated treatment difference: 2.43%). The pre-specified mixed model repeated measures (MMRM) analysis demonstrated non-inferiority of AVA (P = 0.0074) and narrowly missed superiority (P = 0.063; 95% CI: -0.13-4.99). We report superiority of AVA in two post-hoc analyses that account for an extreme outlier participant with low FVC and severe chronic obstructive pulmonary disease at baseline: MMRM excluding the outlier (P = 0.013) and non-parametric analysis of all data with repeated measures analysis of covariance (P = 0.019).
Collapse
Affiliation(s)
- Matthias Boentert
- Department of Neurology and Institute of Translational Neurology, Münster University Hospital, Münster, Germany
- Department of Medicine, UKM-Marienhospital Steinfurt, Steinfurt, Germany
| | | | - Shahram Attarian
- Referral Centre for Neuromuscular Diseases and ALS, Hôpital La Timone, Marseille, France
| | | | - Mazen M Dimachkie
- University of Kansas Medical Center, Department of Neurology, Kansas City, KS, USA
| | | | | | | | | | | |
Collapse
|
14
|
Mukai K, Cost R, Zhang XS, Condiff E, Cotton J, Liu X, Boudanova E, Niebel B, Piepenhagen P, Cai X, Park A, Zhou Q. Targeted protein degradation through site-specific antibody conjugation with mannose 6-phosphate glycan. MAbs 2024; 16:2415333. [PMID: 39434219 PMCID: PMC11497922 DOI: 10.1080/19420862.2024.2415333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024] Open
Abstract
Recent developments in targeted protein degradation have provided great opportunities to eliminating extracellular protein targets using potential therapies with unique mechanisms of action and pharmacology. Among them, Lysosome-Targeting Chimeras (LYTACs) acting through mannose 6-phosphate receptor (M6PR) have been shown to facilitate degradation of several soluble and membrane-associated proteins in lysosomes with high efficiency. Herein we have developed a novel site-specific antibody conjugation approach to generate antibody mannose 6-phosphate (M6P) conjugates. The method uses a high affinity synthetic M6P glycan, bisM6P, that is coupled to an Fc-engineered antibody NNAS. This mutant without any effector function was generated by switching the native glycosylation site from position 297 to 298 converting non-sialylated structures to highly sialylated N-glycans. The sialic acid of the glycans attached to Asn298 in the engineered antibody was selectively conjugated to bisM6P without chemoenzymatic modification, which is often used for site-specific antibody conjugation through glycans. The conjugate is mainly homogeneous by analysis using mass spectrometry, typically with one or two glycans coupled. The M6P-conjugated antibody against a protein of interest (POI) efficiently internalized targeted soluble proteins, such as human tumor necrosis factor (TNF), in both cancer cell lines and human immune cells, through the endo-lysosomal pathway as demonstrated by confocal microscopy and flow cytometry. TNF in cell culture media was significantly depleted after the cells were incubated with the M6P-conjugated antibody. TNF internalization is mediated through M6PR, and it is correlated well with cell surface expression of cation-independent M6PR (CI-MPR) in immune cells. A significant amount of CI-MPR remains on the cell surface, while internalized TNF is degraded in lysosomes. Thus, the antibody-M6P conjugate is highly efficient in inducing internalization and subsequent lysosome-mediated protein degradation. Our platform provides a unique method for producing biologics-based degraders that may be used to treat diseases through event-driven pharmacology, thereby addressing unmet medical needs.
Collapse
Affiliation(s)
- Kaori Mukai
- Immunology & Inflammation Research, Sanofi, Cambridge, MA, USA
| | - Robert Cost
- Large Molecules Research, Sanofi, Cambridge, MA, USA
| | - Xin Sheen Zhang
- Translational In Vivo Models Research, Sanofi, Cambridge, MA, USA
| | - Emily Condiff
- Translational In Vivo Models Research, Sanofi, Cambridge, MA, USA
| | | | - Xiaohua Liu
- Large Molecules Research, Sanofi, Cambridge, MA, USA
| | | | - Björn Niebel
- Large Molecules Research, Sanofi R&D Ghent, Ghent, Belgium
| | | | - Xinming Cai
- Immunology & Inflammation Research, Sanofi, Cambridge, MA, USA
| | - Anna Park
- Large Molecules Research, Sanofi, Cambridge, MA, USA
| | - Qun Zhou
- Large Molecules Research, Sanofi, Cambridge, MA, USA
| |
Collapse
|
15
|
Anding A, Kinton S, Baranowski K, Brezzani A, De Busser H, Dufault MR, Finn P, Keefe K, Tetrault T, Li Y, Qiu W, Raes K, Vitse O, Zhang M, Ziegler R, Sardi SP, Hunter B, George K. Increasing Enzyme Mannose-6-Phosphate Levels but Not Miglustat Coadministration Enhances the Efficacy of Enzyme Replacement Therapy in Pompe Mice. J Pharmacol Exp Ther 2023; 387:188-203. [PMID: 37679046 DOI: 10.1124/jpet.123.001593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/17/2023] [Accepted: 06/01/2023] [Indexed: 09/09/2023] Open
Abstract
Pompe disease is a rare glycogen storage disorder caused by a deficiency in the lysosomal enzyme acid α-glucosidase, which leads to muscle weakness, cardiac and respiratory failure, and early mortality. Alglucosidase alfa, a recombinant human acid α-glucosidase, was the first approved treatment of Pompe disease, but its uptake into skeletal muscle via the cation-independent mannose-6-phosphate (M6P) receptor (CIMPR) is limited. Avalglucosidase alfa has received marketing authorization in several countries for infantile-onset and/or late-onset Pompe disease. This recently approved enzyme replacement therapy (ERT) was glycoengineered to maximize CIMPR binding through high-affinity interactions with ∼7 bis-M6P moieties. Recently, small molecules like the glucosylceramide synthase inhibitor miglustat were reported to increase the stability of recombinant human acid α-glucosidase, and it was suggested that an increased serum half-life would result in better glycogen clearance. Here, the effects of miglustat on alglucosidase alfa and avalglucosidase alfa stability, activity, and efficacy in Pompe mice were evaluated. Although miglustat increased the stability of both enzymes in fluorescent protein thermal shift assays and when incubated in neutral pH buffer over time, it reduced their enzymatic activity by ∼50%. Improvement in tissue glycogen clearance and transcriptional dysregulation in Pompe mice correlated with M6P levels but not with miglustat coadministration. These results further substantiate the crucial role of CIMPR binding in lysosomal targeting of ERTs. SIGNIFICANCE STATEMENT: This work describes important new insights into the treatment of Pompe disease using currently approved enzyme replacement therapies (ERTs) coadministered with miglustat. Although miglustat increased the stability of ERTs in vitro, there was no positive impact to glycogen clearance and transcriptional correction in Pompe mice. However, increasing mannose-6-phosphate levels resulted in increased cell uptake in vitro and increased glycogen clearance and transcriptional correction in Pompe mice, further underscoring the crucial role of cation-independent mannose-6-phosphate receptor-mediated lysosomal targeting for ERTs.
Collapse
Affiliation(s)
- Allyson Anding
- Metabolic and Lysosomal Storage Disease Research, Rare and Neurologic Diseases Therapeutic Area (A.A., S.K., K.B., A.B., P.F., K.K., T.T., R.Z., S.P.S., B.H., K.G.), Precision Medicine and Computational Biology (M.R.D., M.Z.), and Nonclinical Efficacy and Safety (W.Q.), Sanofi, Cambridge, Massachusetts; Manufacturing Sciences, Analytics, and Technology (MSAT), Sanofi, Geel, Belgium (H.D.B., K.R.); Medicinal Chemistry, Integrated Drug Discovery, Sanofi, Waltham, Massachusetts (Y.L.); and Pharmacokinetics Dynamics and Metabolism, Sanofi, Montpellier, France (O.V.)
| | - Sofia Kinton
- Metabolic and Lysosomal Storage Disease Research, Rare and Neurologic Diseases Therapeutic Area (A.A., S.K., K.B., A.B., P.F., K.K., T.T., R.Z., S.P.S., B.H., K.G.), Precision Medicine and Computational Biology (M.R.D., M.Z.), and Nonclinical Efficacy and Safety (W.Q.), Sanofi, Cambridge, Massachusetts; Manufacturing Sciences, Analytics, and Technology (MSAT), Sanofi, Geel, Belgium (H.D.B., K.R.); Medicinal Chemistry, Integrated Drug Discovery, Sanofi, Waltham, Massachusetts (Y.L.); and Pharmacokinetics Dynamics and Metabolism, Sanofi, Montpellier, France (O.V.)
| | - Kaitlyn Baranowski
- Metabolic and Lysosomal Storage Disease Research, Rare and Neurologic Diseases Therapeutic Area (A.A., S.K., K.B., A.B., P.F., K.K., T.T., R.Z., S.P.S., B.H., K.G.), Precision Medicine and Computational Biology (M.R.D., M.Z.), and Nonclinical Efficacy and Safety (W.Q.), Sanofi, Cambridge, Massachusetts; Manufacturing Sciences, Analytics, and Technology (MSAT), Sanofi, Geel, Belgium (H.D.B., K.R.); Medicinal Chemistry, Integrated Drug Discovery, Sanofi, Waltham, Massachusetts (Y.L.); and Pharmacokinetics Dynamics and Metabolism, Sanofi, Montpellier, France (O.V.)
| | - Alexander Brezzani
- Metabolic and Lysosomal Storage Disease Research, Rare and Neurologic Diseases Therapeutic Area (A.A., S.K., K.B., A.B., P.F., K.K., T.T., R.Z., S.P.S., B.H., K.G.), Precision Medicine and Computational Biology (M.R.D., M.Z.), and Nonclinical Efficacy and Safety (W.Q.), Sanofi, Cambridge, Massachusetts; Manufacturing Sciences, Analytics, and Technology (MSAT), Sanofi, Geel, Belgium (H.D.B., K.R.); Medicinal Chemistry, Integrated Drug Discovery, Sanofi, Waltham, Massachusetts (Y.L.); and Pharmacokinetics Dynamics and Metabolism, Sanofi, Montpellier, France (O.V.)
| | - Hilde De Busser
- Metabolic and Lysosomal Storage Disease Research, Rare and Neurologic Diseases Therapeutic Area (A.A., S.K., K.B., A.B., P.F., K.K., T.T., R.Z., S.P.S., B.H., K.G.), Precision Medicine and Computational Biology (M.R.D., M.Z.), and Nonclinical Efficacy and Safety (W.Q.), Sanofi, Cambridge, Massachusetts; Manufacturing Sciences, Analytics, and Technology (MSAT), Sanofi, Geel, Belgium (H.D.B., K.R.); Medicinal Chemistry, Integrated Drug Discovery, Sanofi, Waltham, Massachusetts (Y.L.); and Pharmacokinetics Dynamics and Metabolism, Sanofi, Montpellier, France (O.V.)
| | - Michael R Dufault
- Metabolic and Lysosomal Storage Disease Research, Rare and Neurologic Diseases Therapeutic Area (A.A., S.K., K.B., A.B., P.F., K.K., T.T., R.Z., S.P.S., B.H., K.G.), Precision Medicine and Computational Biology (M.R.D., M.Z.), and Nonclinical Efficacy and Safety (W.Q.), Sanofi, Cambridge, Massachusetts; Manufacturing Sciences, Analytics, and Technology (MSAT), Sanofi, Geel, Belgium (H.D.B., K.R.); Medicinal Chemistry, Integrated Drug Discovery, Sanofi, Waltham, Massachusetts (Y.L.); and Pharmacokinetics Dynamics and Metabolism, Sanofi, Montpellier, France (O.V.)
| | - Patrick Finn
- Metabolic and Lysosomal Storage Disease Research, Rare and Neurologic Diseases Therapeutic Area (A.A., S.K., K.B., A.B., P.F., K.K., T.T., R.Z., S.P.S., B.H., K.G.), Precision Medicine and Computational Biology (M.R.D., M.Z.), and Nonclinical Efficacy and Safety (W.Q.), Sanofi, Cambridge, Massachusetts; Manufacturing Sciences, Analytics, and Technology (MSAT), Sanofi, Geel, Belgium (H.D.B., K.R.); Medicinal Chemistry, Integrated Drug Discovery, Sanofi, Waltham, Massachusetts (Y.L.); and Pharmacokinetics Dynamics and Metabolism, Sanofi, Montpellier, France (O.V.)
| | - Kelly Keefe
- Metabolic and Lysosomal Storage Disease Research, Rare and Neurologic Diseases Therapeutic Area (A.A., S.K., K.B., A.B., P.F., K.K., T.T., R.Z., S.P.S., B.H., K.G.), Precision Medicine and Computational Biology (M.R.D., M.Z.), and Nonclinical Efficacy and Safety (W.Q.), Sanofi, Cambridge, Massachusetts; Manufacturing Sciences, Analytics, and Technology (MSAT), Sanofi, Geel, Belgium (H.D.B., K.R.); Medicinal Chemistry, Integrated Drug Discovery, Sanofi, Waltham, Massachusetts (Y.L.); and Pharmacokinetics Dynamics and Metabolism, Sanofi, Montpellier, France (O.V.)
| | - Tanya Tetrault
- Metabolic and Lysosomal Storage Disease Research, Rare and Neurologic Diseases Therapeutic Area (A.A., S.K., K.B., A.B., P.F., K.K., T.T., R.Z., S.P.S., B.H., K.G.), Precision Medicine and Computational Biology (M.R.D., M.Z.), and Nonclinical Efficacy and Safety (W.Q.), Sanofi, Cambridge, Massachusetts; Manufacturing Sciences, Analytics, and Technology (MSAT), Sanofi, Geel, Belgium (H.D.B., K.R.); Medicinal Chemistry, Integrated Drug Discovery, Sanofi, Waltham, Massachusetts (Y.L.); and Pharmacokinetics Dynamics and Metabolism, Sanofi, Montpellier, France (O.V.)
| | - Yi Li
- Metabolic and Lysosomal Storage Disease Research, Rare and Neurologic Diseases Therapeutic Area (A.A., S.K., K.B., A.B., P.F., K.K., T.T., R.Z., S.P.S., B.H., K.G.), Precision Medicine and Computational Biology (M.R.D., M.Z.), and Nonclinical Efficacy and Safety (W.Q.), Sanofi, Cambridge, Massachusetts; Manufacturing Sciences, Analytics, and Technology (MSAT), Sanofi, Geel, Belgium (H.D.B., K.R.); Medicinal Chemistry, Integrated Drug Discovery, Sanofi, Waltham, Massachusetts (Y.L.); and Pharmacokinetics Dynamics and Metabolism, Sanofi, Montpellier, France (O.V.)
| | - Weiliang Qiu
- Metabolic and Lysosomal Storage Disease Research, Rare and Neurologic Diseases Therapeutic Area (A.A., S.K., K.B., A.B., P.F., K.K., T.T., R.Z., S.P.S., B.H., K.G.), Precision Medicine and Computational Biology (M.R.D., M.Z.), and Nonclinical Efficacy and Safety (W.Q.), Sanofi, Cambridge, Massachusetts; Manufacturing Sciences, Analytics, and Technology (MSAT), Sanofi, Geel, Belgium (H.D.B., K.R.); Medicinal Chemistry, Integrated Drug Discovery, Sanofi, Waltham, Massachusetts (Y.L.); and Pharmacokinetics Dynamics and Metabolism, Sanofi, Montpellier, France (O.V.)
| | - Katrien Raes
- Metabolic and Lysosomal Storage Disease Research, Rare and Neurologic Diseases Therapeutic Area (A.A., S.K., K.B., A.B., P.F., K.K., T.T., R.Z., S.P.S., B.H., K.G.), Precision Medicine and Computational Biology (M.R.D., M.Z.), and Nonclinical Efficacy and Safety (W.Q.), Sanofi, Cambridge, Massachusetts; Manufacturing Sciences, Analytics, and Technology (MSAT), Sanofi, Geel, Belgium (H.D.B., K.R.); Medicinal Chemistry, Integrated Drug Discovery, Sanofi, Waltham, Massachusetts (Y.L.); and Pharmacokinetics Dynamics and Metabolism, Sanofi, Montpellier, France (O.V.)
| | - Olivier Vitse
- Metabolic and Lysosomal Storage Disease Research, Rare and Neurologic Diseases Therapeutic Area (A.A., S.K., K.B., A.B., P.F., K.K., T.T., R.Z., S.P.S., B.H., K.G.), Precision Medicine and Computational Biology (M.R.D., M.Z.), and Nonclinical Efficacy and Safety (W.Q.), Sanofi, Cambridge, Massachusetts; Manufacturing Sciences, Analytics, and Technology (MSAT), Sanofi, Geel, Belgium (H.D.B., K.R.); Medicinal Chemistry, Integrated Drug Discovery, Sanofi, Waltham, Massachusetts (Y.L.); and Pharmacokinetics Dynamics and Metabolism, Sanofi, Montpellier, France (O.V.)
| | - Mindy Zhang
- Metabolic and Lysosomal Storage Disease Research, Rare and Neurologic Diseases Therapeutic Area (A.A., S.K., K.B., A.B., P.F., K.K., T.T., R.Z., S.P.S., B.H., K.G.), Precision Medicine and Computational Biology (M.R.D., M.Z.), and Nonclinical Efficacy and Safety (W.Q.), Sanofi, Cambridge, Massachusetts; Manufacturing Sciences, Analytics, and Technology (MSAT), Sanofi, Geel, Belgium (H.D.B., K.R.); Medicinal Chemistry, Integrated Drug Discovery, Sanofi, Waltham, Massachusetts (Y.L.); and Pharmacokinetics Dynamics and Metabolism, Sanofi, Montpellier, France (O.V.)
| | - Robin Ziegler
- Metabolic and Lysosomal Storage Disease Research, Rare and Neurologic Diseases Therapeutic Area (A.A., S.K., K.B., A.B., P.F., K.K., T.T., R.Z., S.P.S., B.H., K.G.), Precision Medicine and Computational Biology (M.R.D., M.Z.), and Nonclinical Efficacy and Safety (W.Q.), Sanofi, Cambridge, Massachusetts; Manufacturing Sciences, Analytics, and Technology (MSAT), Sanofi, Geel, Belgium (H.D.B., K.R.); Medicinal Chemistry, Integrated Drug Discovery, Sanofi, Waltham, Massachusetts (Y.L.); and Pharmacokinetics Dynamics and Metabolism, Sanofi, Montpellier, France (O.V.)
| | - S Pablo Sardi
- Metabolic and Lysosomal Storage Disease Research, Rare and Neurologic Diseases Therapeutic Area (A.A., S.K., K.B., A.B., P.F., K.K., T.T., R.Z., S.P.S., B.H., K.G.), Precision Medicine and Computational Biology (M.R.D., M.Z.), and Nonclinical Efficacy and Safety (W.Q.), Sanofi, Cambridge, Massachusetts; Manufacturing Sciences, Analytics, and Technology (MSAT), Sanofi, Geel, Belgium (H.D.B., K.R.); Medicinal Chemistry, Integrated Drug Discovery, Sanofi, Waltham, Massachusetts (Y.L.); and Pharmacokinetics Dynamics and Metabolism, Sanofi, Montpellier, France (O.V.)
| | - Bridge Hunter
- Metabolic and Lysosomal Storage Disease Research, Rare and Neurologic Diseases Therapeutic Area (A.A., S.K., K.B., A.B., P.F., K.K., T.T., R.Z., S.P.S., B.H., K.G.), Precision Medicine and Computational Biology (M.R.D., M.Z.), and Nonclinical Efficacy and Safety (W.Q.), Sanofi, Cambridge, Massachusetts; Manufacturing Sciences, Analytics, and Technology (MSAT), Sanofi, Geel, Belgium (H.D.B., K.R.); Medicinal Chemistry, Integrated Drug Discovery, Sanofi, Waltham, Massachusetts (Y.L.); and Pharmacokinetics Dynamics and Metabolism, Sanofi, Montpellier, France (O.V.)
| | - Kelly George
- Metabolic and Lysosomal Storage Disease Research, Rare and Neurologic Diseases Therapeutic Area (A.A., S.K., K.B., A.B., P.F., K.K., T.T., R.Z., S.P.S., B.H., K.G.), Precision Medicine and Computational Biology (M.R.D., M.Z.), and Nonclinical Efficacy and Safety (W.Q.), Sanofi, Cambridge, Massachusetts; Manufacturing Sciences, Analytics, and Technology (MSAT), Sanofi, Geel, Belgium (H.D.B., K.R.); Medicinal Chemistry, Integrated Drug Discovery, Sanofi, Waltham, Massachusetts (Y.L.); and Pharmacokinetics Dynamics and Metabolism, Sanofi, Montpellier, France (O.V.)
| |
Collapse
|
16
|
Tuffal G, Tiraboschi G, Hurbin F, Boittet P, Palmer R, Martinez JM, Fabre D. Population Pharmacokinetic Modeling and Determination of Individual Exposure to Avalglucosidase Alfa in Adolescent and Adult Patients With Late-Onset Pompe Disease: Analysis of Pooled Data From Phase I to III Clinical Trials. Ther Drug Monit 2023; 45:644-652. [PMID: 37556417 PMCID: PMC10497203 DOI: 10.1097/ftd.0000000000001086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
BACKGROUND Pompe disease is a rare genetic disorder caused by a deficiency of a lysosomal enzyme called acid alpha-glucosidase and is classified into infantile and late-onset forms. Since 2006, an enzyme replacement therapy involving alglucosidase alfa has been available. In 2021, a new enzyme replacement therapy involving avalglucosidase alfa demonstrated improved clinical benefits. In this article, the authors describe the pharmacokinetics of avalglucosidase alfa using a population pharmacokinetic approach. METHODS The population pharmacokinetic model was developed using a data set that included 75 patients and 2042 plasma drug concentrations determined through enzymatic activity assay from 3 studies (phases I/II and III) and involved 3 dose levels (5, 10, and 20 mg/kg). The analysis was performed using NONMEM software. RESULTS Two sequences were observed in the plasma drug concentration profile: the first kinetic driving exposure, and after 12 hours postdose, a slight rebound addressing very low concentrations that lasted up to 2 weeks. Following model screening, a model with a central compartment with parallel linear and nonlinear elimination and 2 concatenated peripheral compartments was proposed. A putative back-redistribution of a marginal fraction of the drug from the second peripheral compartment to the central compartment may explain the slight rebound in concentration. The final model's mean bias and precision for individual predictions were -2.66% and 30.7%, respectively, and -0.433% and 38.9%, respectively, for population predictions. CONCLUSIONS A concatenated 3-compartment model was developed to describe the avalglucosidase alfa concentrations in patients with late-onset Pompe disease. None of the covariates tested could explain the interindividual variability.
Collapse
Affiliation(s)
- Gilles Tuffal
- Pharmacokinetics Dynamics and Metabolism, Translational Medicine and Early Development, Sanofi, Montpellier
| | - Gilles Tiraboschi
- Pharmacokinetics Dynamics and Metabolism, Translational Medicine and Early Development, Sanofi, Montpellier
| | - Fabrice Hurbin
- Pharmacokinetics Dynamics and Metabolism, Translational Medicine and Early Development, Sanofi, Montpellier
| | | | - Rachel Palmer
- Biomarkers and Clinical Bioanalysis, Translational Medicine and Early Development, Sanofi, Framingham, Massachusetts
| | - Jean-Marie Martinez
- Pharmacokinetics Dynamics and Metabolism, Translational Medicine and Early Development, Sanofi, Montpellier
| | - David Fabre
- Pharmacokinetics Dynamics and Metabolism, Translational Medicine and Early Development, Sanofi, Montpellier
| |
Collapse
|
17
|
Kishnani PS, Diaz-Manera J, Toscano A, Clemens PR, Ladha S, Berger KI, Kushlaf H, Straub V, Carvalho G, Mozaffar T, Roberts M, Attarian S, Chien YH, Choi YC, Day JW, Erdem-Ozdamar S, Illarioshkin S, Goker-Alpan O, Kostera-Pruszczyk A, van der Ploeg AT, An Haack K, Huynh-Ba O, Tammireddy S, Thibault N, Zhou T, Dimachkie MM, Schoser B. Efficacy and Safety of Avalglucosidase Alfa in Patients With Late-Onset Pompe Disease After 97 Weeks: A Phase 3 Randomized Clinical Trial. JAMA Neurol 2023; 80:558-567. [PMID: 37036722 PMCID: PMC10087094 DOI: 10.1001/jamaneurol.2023.0552] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/29/2022] [Indexed: 04/11/2023]
Abstract
Importance In the previously reported Comparative Enzyme Replacement Trial With neoGAA Versus rhGAA (COMET) trial, avalglucosidase alfa treatment for 49 weeks showed clinically meaningful improvements in upright forced vital capacity (FVC) percent predicted and 6-minute walk test (6MWT) compared with alglucosidase alfa. Objective To report avalglucosidase alfa treatment outcomes during the COMET trial extension. Design, Setting, and Participants This phase 3 double-blind randomized clinical trial with crossover in the extension period enrolled patients 3 years and older with previously untreated late-onset Pompe disease (LOPD) between November 2, 2016, and February 10, 2021, with primary analysis after 49 weeks. Patients were treated at 55 referral centers in 20 countries. Efficacy outcomes were assessed at 97 weeks and safety outcomes to last follow-up, with data cutoff at February 10, 2021. Data were analyzed from May to June 2021. Interventions Random assignment (1:1) to receive 20 mg/kg of avalglucosidase alfa or alglucosidase alfa by intravenous infusion every other week for 49 weeks; thereafter, all patients received 20 mg/kg of avalglucosidase alfa every other week. Main Outcomes and Measures The primary outcome was the least squares (LS) mean change from baseline in FVC percent predicted. Secondary outcomes included the LS mean change from baseline in 6MWT, muscle strength, motor function, quality of life, and disease biomarkers. Safety and tolerability were also assessed. Results Of 100 participants from the double-blind treatment period, 95 entered the extension period. Of these, 51 (54%) were men, and the mean (range) age was 48.3 (10-79) years. At the start of this study, mean upright FVC percent predicted was similar between treatment arms, and 6MWT distance was greater in the avalglucosidase alfa arm. From baseline to week 97, LS mean (SE) FVC percent predicted increased by 2.65 (1.05) for those who continued avalglucosidase alfa and 0.36 (1.12) for those who switched to avalglucosidase alfa. The LS mean (SE) 6MWT distance increased by 18.60 (12.01) m and 4.56 (12.44) m, respectively. For participants who switched to avalglucosidase alfa, FVC percent predicted remained stable (LS mean [SE] change from week 49 to 97, 0.09 [0.88]) and 6MWT distance improved (LS mean [SE] change from week 49 to 97, 5.33 [10.81] m). Potentially treatment-related adverse events were reported in 29 patients (56.9%) who continued avalglucosidase alfa and in 25 patients (56.8%) who switched. Conclusions and Relevance In this randomized clinical trial extension, maintenance of positive clinical outcomes was demonstrated for patients continuing avalglucosidase alfa treatment and, to a lesser extent, patients who switched from alglucosidase alfa. No new safety concerns were observed. Trial Registration ClinicalTrials.gov Identifier: NCT02782741.
Collapse
Affiliation(s)
- Priya S. Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina
| | - Jordi Diaz-Manera
- Newcastle University John Walton Muscular Dystrophy Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom
| | - Antonio Toscano
- Department of Clinical and Experimental Medicine, Reference Center for Rare Neuromuscular Disorders, University of Messina, Messina, Italy
| | - Paula R. Clemens
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Veterans Affairs Medical Center, Pittsburgh, Pennsylvania
| | - Shafeeq Ladha
- Gregory W. Fulton ALS and Neuromuscular Center, Barrow Neurological Institute, Phoenix, Arizona
| | - Kenneth I. Berger
- Division of Pulmonary, Critical Care and Sleep Medicine, NYU Grossman School of Medicine, New York, New York
- André Cournand Pulmonary Physiology Laboratory, Bellevue Hospital, New York, New York
| | - Hani Kushlaf
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, Ohio
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Volker Straub
- Newcastle University John Walton Muscular Dystrophy Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom
| | | | - Tahseen Mozaffar
- Department of Neurology, University of California, Irvine, Orange
| | - Mark Roberts
- Salford Royal NHS Foundation Trust, Salford, United Kingdom
| | - Shahram Attarian
- Referral Centre for Neuromuscular Diseases and ALS, European Reference Network Neuromuscular Diseases, Hôpital La Timone, Marseille, France
| | - Yin-Hsiu Chien
- Department of Medical Genetics and Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Young-Chul Choi
- Gangnam Severance Hospital, Yonsei University, College of Medicine, Seoul, Korea
| | - John W. Day
- Department of Neurology, Stanford University, Stanford, California
- Department of Pediatrics, Stanford University, Stanford, California
| | - Sevim Erdem-Ozdamar
- Department of Neurology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | | | - Ozlem Goker-Alpan
- Lysosomal and Rare Disorders Research and Treatment Center, Fairfax, Virginia
| | | | - Ans T. van der Ploeg
- Center for Lysosomal and Metabolic Diseases, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | | | | | | | | | | | - Mazen M. Dimachkie
- University of Kansas Medical Center, Department of Neurology, Kansas City
| | - Benedikt Schoser
- Friedrich-Baur-Institute, Department of Neurology, LMU Klinikum, München, München, Germany
| |
Collapse
|
18
|
van Kuilenburg ABP, Hollak CEM, Travella A, Jacobs M, Gentilini LD, Leen R, der Vlugt KMMGV, Stet FSB, Goorden SMI, van der Veen S, Criscuolo M, Papouchado M. Development of a Biosimilar of Agalsidase Beta for the Treatment of Fabry Disease: Preclinical Evaluation. Drugs R D 2023:10.1007/s40268-023-00421-x. [PMID: 37083901 DOI: 10.1007/s40268-023-00421-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Fabry disease (FD) is a rare lysosomal storage disorder caused by a deficiency of the enzyme α-galactosidase A (aGal A). Since 2001, two different enzyme replacement therapies have been authorized, with agalsidase beta being used in most parts of the Western world. Currently, biosimilars of several expensive enzyme therapies are under development to improve their accessibility for patients. We present the preclinical results of the development of a biosimilar to agalsidase beta. METHODS Produced in a Chinese hamster ovary (CHO)-cell system, the biosimilar aGal A Biosidus (AGABIO), was compared with agalsidase beta with respect to amino acid sequence, glycosylation, specific α-galactosidase activity, stability in plasma, and effects on cultured human Fabry fibroblasts and Fabry mice. RESULTS AGABIO had the same amino acid composition and similar glycosylation, enzymatic activity, and stability as compared with agalsidase beta. After uptake in fibroblasts, α-galactosidase A activity increased in a dose-dependent manner, with maximum uptake observed after 24 h, which remained stable until at least 48 h. Both enzymes were localized to lysosomes. Reduction of accumulated globotriaosylceramide (Gb3) and lysoGb3 in cultured Fabry fibroblasts by AGABIO and agalsidase beta showed comparable dose-response curves. In Fabry knockout mice, after a single injection, both enzymes were rapidly cleared from the plasma and showed equal reductions in tissue and plasma sphingolipids. Repeated dose studies in rats did not raise any safety concerns. Anti-drug antibodies from patients with FD treated with agalsidase beta showed equal neutralization activity toward AGABIO. CONCLUSION These findings support the biosimilarity of AGABIO in comparison with agalsidase beta. The clinical study phase is currently under development.
Collapse
Affiliation(s)
- André B P van Kuilenburg
- Amsterdam UMC location University of Amsterdam, Laboratory Genetic Metabolic Diseases F0-220, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands.
| | - Carla E M Hollak
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Endocrinology and Metabolism, Meibergdreef 9, Amsterdam, The Netherlands
- Medicine for Society, Platform at Amsterdam, UMC-University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | - René Leen
- Amsterdam UMC location University of Amsterdam, Laboratory Genetic Metabolic Diseases F0-220, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Karen M M Ghauharali-van der Vlugt
- Amsterdam UMC location University of Amsterdam, Laboratory Genetic Metabolic Diseases F0-220, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Femke S Beers Stet
- Amsterdam UMC location University of Amsterdam, Laboratory Genetic Metabolic Diseases F0-220, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Susan M I Goorden
- Amsterdam UMC location University of Amsterdam, Laboratory Genetic Metabolic Diseases F0-220, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Sanne van der Veen
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Endocrinology and Metabolism, Meibergdreef 9, Amsterdam, The Netherlands
- Medicine for Society, Platform at Amsterdam, UMC-University of Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
19
|
Kishnani PS, Kronn D, Brassier A, Broomfield A, Davison J, Hahn SH, Kumada S, Labarthe F, Ohki H, Pichard S, Prakalapakorn SG, Haack KA, Kittner B, Meng X, Sparks S, Wilson C, Zaher A, Chien YH. Safety and efficacy of avalglucosidase alfa in individuals with infantile-onset Pompe disease enrolled in the phase 2, open-label Mini-COMET study: The 6-month primary analysis report. Genet Med 2023; 25:100328. [PMID: 36542086 DOI: 10.1016/j.gim.2022.10.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Mini-COMET (NCT03019406; Sanofi) is a phase 2, open-label, ascending-dose, 3-cohort study, evaluating avalglucosidase alfa safety, pharmacokinetics, and efficacy in individuals with infantile-onset Pompe disease aged <18 years who previously received alglucosidase alfa and showed clinical decline (cohorts 1 and 2) or suboptimal response (cohort 3). METHODS During a 25-week primary analysis period, cohorts 1 and 2 received avalglucosidase alfa 20 and 40 mg/kg every other week, respectively, for 6 months, whereas cohort 3 individuals were randomized (1:1) to receive avalglucosidase alfa 40 mg/kg every other week or alglucosidase alfa (current stable dose) for 6 months. RESULTS In total, 22 individuals were enrolled (cohort 1 [n = 6], cohort 2 [n = 5], cohort 3-avalglucosidase alfa [n = 5], and cohort 3-alglucosidase alfa [n = 6]). Median treatment compliance was 100%. None of the individuals discontinued treatment or died. Percentages of individuals with treatment-emergent adverse events were similar across dose and treatment groups. No serious or severe treatment-related treatment-emergent adverse events occurred. Trends for better motor function from baseline to week 25 were observed for 40 mg/kg every other week avalglucosidase alfa compared with either 20 mg/kg every other week avalglucosidase alfa or alglucosidase alfa up to 40 mg/kg weekly. CONCLUSION These data support the positive clinical effect of avalglucosidase alfa in patients with infantile-onset Pompe disease previously declining on alglucosidase alfa.
Collapse
Affiliation(s)
- Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC.
| | - David Kronn
- Departments of Pathology and Pediatrics, New York Medical College, Valhalla, NY
| | - Anaïs Brassier
- Reference Center of Inherited Metabolic Diseases, Imagine Institute, Hospital Necker Enfants Malades, APHP, University Paris Descartes, Paris, France
| | - Alexander Broomfield
- Willink Biochemical Genetics Unit, Manchester Center for Genomic Medicine, St Mary's Hospital, Central Manchester Foundation Trust, Manchester, United Kingdom
| | - James Davison
- Great Ormond Street Hospital NHS Foundation Trust, London, UK and National Institute of Health Research Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Si Houn Hahn
- Department of Pediatrics, University of Washington School of Medicine, Seattle Children's Hospital, Seattle, WA
| | - Satoko Kumada
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - François Labarthe
- Pediatrics Department, Center for Inborn Errors of Metabolism ToTeM, CHU Tours, and N2C, INSERM U1069, Tours University, Tours, France
| | - Hirotaka Ohki
- Department of Cardiology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Samia Pichard
- Reference Center of Inherited Metabolic Diseases, Imagine Institute, Hospital Necker Enfants Malades, APHP, University Paris Descartes, Paris, France
| | | | | | | | | | | | | | | | - Yin-Hsiu Chien
- Departments of Medical Genetics and Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
20
|
Pardridge WM. Blood-brain barrier delivery for lysosomal storage disorders with IgG-lysosomal enzyme fusion proteins. Adv Drug Deliv Rev 2022; 184:114234. [PMID: 35307484 DOI: 10.1016/j.addr.2022.114234] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/25/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022]
Abstract
The majority of lysosomal storage diseases affect the brain. Treatment of the brain with intravenous enzyme replacement therapy is not successful, because the recombinant lysosomal enzymes do not cross the blood-brain barrier (BBB). Biologic drugs, including lysosomal enzymes, can be re-engineered for BBB delivery as IgG-enzyme fusion proteins. The IgG domain of the fusion protein is a monoclonal antibody directed against an endogenous receptor-mediated transporter at the BBB, such as the insulin receptor or the transferrin receptor. This receptor transports the IgG across the BBB, in parallel with the endogenous receptor ligand, and the IgG acts as a molecular Trojan horse to ferry into brain the lysosomal enzyme genetically fused to the IgG. The IgG-enzyme fusion protein is bi-functional and retains both high affinity binding for the BBB receptor, and high lysosomal enzyme activity. IgG-lysosomal enzymes are presently in clinical trials for treatment of the brain in Mucopolysaccharidosis.
Collapse
|
21
|
Diaz-Manera J, Kishnani PS, Kushlaf H, Ladha S, Mozaffar T, Straub V, Toscano A, van der Ploeg AT, Berger KI, Clemens PR, Chien YH, Day JW, Illarioshkin S, Roberts M, Attarian S, Borges JL, Bouhour F, Choi YC, Erdem-Ozdamar S, Goker-Alpan O, Kostera-Pruszczyk A, Haack KA, Hug C, Huynh-Ba O, Johnson J, Thibault N, Zhou T, Dimachkie MM, Schoser B. Safety and efficacy of avalglucosidase alfa versus alglucosidase alfa in patients with late-onset Pompe disease (COMET): a phase 3, randomised, multicentre trial. Lancet Neurol 2021; 20:1012-1026. [PMID: 34800399 DOI: 10.1016/s1474-4422(21)00241-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Pompe disease is a rare, progressive neuromuscular disorder caused by deficiency of acid α-glucosidase (GAA) and accumulation of lysosomal glycogen. We assessed the safety and efficacy of avalglucosidase alfa, a recombinant human GAA enzyme replacement therapy specifically designed for enhanced mannose-6-phosphate-receptor targeting and enzyme uptake aimed at increased glycogen clearance, compared with the current approved standard of care, alglucosidase alfa, in patients with late-onset Pompe disease. METHODS We did a randomised, double-blind, phase 3 trial at 55 sites in 20 countries. We enrolled individuals (aged ≥3 years) with enzymatically confirmed late-onset Pompe disease who had never received treatment. We used a centralised treatment allocation system to randomly allocate participants to either avalglucosidase alfa or alglucosidase alfa. Participants and investigators were unaware of their treatment allocation. The primary outcome measure was change from baseline to week 49 in upright forced vital capacity percent (FVC%) predicted. We used a hierarchical fixed sequential testing strategy, whereby non-inferiority of avalglucosidase alfa compared with alglucosidase alfa was assessed first, with a non-inferiority margin of 1·1. If non-inferiority was seen, then superiority was tested with a 5% significance level. The key secondary objective was effect on functional endurance, measured by the 6-minute walk test (6MWT). Safety was assessed, including treatment-emergent adverse events and infusion-associated reactions. The modified intent-to-treat population was the primary analysis population for all efficacy analyses. The safety population was the analysis population for safety analyses. This trial is registered with ClinicalTrials.gov, NCT02782741. We report results of the 49-week primary analysis period. FINDINGS Between Nov 2, 2016, and March 29, 2019, 100 participants were randomly allocated avalglucosidase alfa (n=51) or alglucosidase alfa (n=49). Treatment with avalglucosidase alfa resulted in a least-squares mean improvement in upright FVC% predicted of 2·89% (SE 0·88) compared with 0·46% (0·93) with alglucosidase alfa at week 49 (difference 2·43% [95% CI -0·13 to 4·99]). Non-inferiority was shown because the lower bound of the 95% CI for the difference far exceeded the predefined non-inferiority margin but did not exclude 0 (p=0·0074). Superiority was not reached (p=0·063), so formal testing was stopped, as per the testing hierarchy. Improvements were also seen in the 6MWT with avalglucosidase alfa compared with alglucosidase alfa, with greater increases in distance covered (difference 30·01 m [95% CI 1·33 to 58·69]) and percent predicted (4·71% [0·25 to 9·17]). Treatment-emergent adverse events potentially related to treatment were reported in 23 (45%) of 51 participants in the avalglucosidase alfa group and in 24 (49%) of 49 in the alglucosidase alfa group, and infusion-associated reactions were reported in 13 (26%) participants in the avalglucosidase alfa group and 16 (33%) in the alglucosidase alfa group. Of the five trial withdrawals, all in the alglucosidase alfa group, four were due to adverse events, including two infusion-associated reactions. Serious treatment-emergent adverse events were reported in eight (16%) participants who received avalglucosidase alfa and in 12 (25%) who received alglucosidase alfa. One participant treated with alglucosidase alfa died because of acute myocardial infarction determined to be unrelated to treatment. Antidrug antibody responses were similar in both groups. High and persistent titres (≥12 800) and neutralising antibodies were more common with alglucosidase alfa (in 16 [33%] participants) than with avalglucosidase alfa (ten [20%]). INTERPRETATION We consider that this study provides evidence of clinically meaningful improvement with avalglucosidase alfa therapy over alglucosidase alfa in respiratory function, ambulation, and functional endurance, with no new safety signals reported. An open-label extended-treatment period is ongoing to confirm the long-term safety and efficacy of avalglucosidase alfa, with the aim for this therapy to become the new standard treatment in late-onset Pompe disease. FUNDING Sanofi Genzyme.
Collapse
Affiliation(s)
- Jordi Diaz-Manera
- John Walton Muscular Dystrophy Research Centre, Newcastle University Centre for Life, Newcastle upon Tyne, UK; Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain.
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Hani Kushlaf
- Department of Neurology and Rehabilitation Medicine, and Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Shafeeq Ladha
- Gregory W Fulton ALS and Neuromuscular Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Tahseen Mozaffar
- Department of Neurology, University of California, Irvine, Orange, CA, USA
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Newcastle University Centre for Life, Newcastle upon Tyne, UK
| | - Antonio Toscano
- Department of Clinical and Experimental Medicine, Reference Centre for Rare Neuromuscular Disorders, University of Messina, Messina, Italy
| | - Ans T van der Ploeg
- Center for Lysosomal and Metabolic Diseases, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Kenneth I Berger
- Division of Pulmonary, Critical Care and Sleep Medicine, New York University Grossman School of Medicine, New York, NY, USA; André Cournand Pulmonary Physiology Laboratory, Bellevue Hospital, New York, NY, USA
| | - Paula R Clemens
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Veterans Affairs Medical Center, Pittsburgh, PA, USA
| | - Yin-Hsiu Chien
- Department of Medical Genetics and Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - John W Day
- Department of Neurology, and Department of Pediatrics, Stanford University, Stanford, CA, USA
| | | | | | - Shahram Attarian
- Referral Centre for Neuromuscular Diseases and ALS, Hôpital La Timone, Marseille, France
| | | | - Francoise Bouhour
- Referral Centre for Neuromuscular Diseases, Hopîtal Neurologique, Lyon-Bron, France
| | - Young Chul Choi
- Gangnam Severance Hospital, Yonsei University, College of Medicine, Seoul, South Korea
| | | | - Ozlem Goker-Alpan
- Lysosomal and Rare Disorders Research and Treatment Center (LDRTC), Fairfax, VA, USA
| | | | | | | | | | | | | | | | - Mazen M Dimachkie
- University of Kansas Medical Center, Department of Neurology, Kansas City, KS, USA
| | - Benedikt Schoser
- Friedrich-Baur-Institute, Department of Neurology, LMU Klinikum München, Munich, Germany
| | | |
Collapse
|
22
|
Zhang X, Liu H, Meena N, Li C, Zong G, Raben N, Puertollano R, Wang LX. Chemoenzymatic glycan-selective remodeling of a therapeutic lysosomal enzyme with high-affinity M6P-glycan ligands. Enzyme substrate specificity is the name of the game. Chem Sci 2021; 12:12451-12462. [PMID: 34603676 PMCID: PMC8480326 DOI: 10.1039/d1sc03188k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/13/2021] [Indexed: 11/21/2022] Open
Abstract
Functionalization of therapeutic lysosomal enzymes with mannose-6-phosphate (M6P) glycan ligands represents a major strategy for enhancing the cation-independent M6P receptor (CI-MPR)-mediated cellular uptake, thus improving the overall therapeutic efficacy of the enzymes. However, the minimal high-affinity M6P-containing N-glycan ligands remain to be identified and their efficient and site-selective conjugation to therapeutic lysosomal enzymes is a challenging task. We report here the chemical synthesis of truncated M6P-glycan oxazolines and their use for enzymatic glycan remodeling of recombinant human acid α-glucosidase (rhGAA), an enzyme used for treatment of Pompe disease which is a disorder caused by a deficiency of the glycogen-degrading lysosomal enzyme. Structure-activity relationship studies identified M6P tetrasaccharide oxazoline as the minimal substrate for enzymatic transglycosylation yielding high-affinity M6P glycan ligands for the CI-MPR. Taking advantage of the substrate specificity of endoglycosidases Endo-A and Endo-F3, we found that Endo-A and Endo-F3 could efficiently deglycosylate the respective high-mannose and complex type N-glycans in rhGAA and site-selectively transfer the synthetic M6P N-glycan to the deglycosylated rhGAA without product hydrolysis. This discovery enabled a highly efficient one-pot deglycosylation/transglycosylation strategy for site-selective M6P-glycan remodeling of rhGAA to obtain a more homogeneous product. The Endo-A and Endo-F3 remodeled rhGAAs maintained full enzyme activity and demonstrated 6- and 20-fold enhanced binding affinities for CI-MPR receptor, respectively. Using an in vitro cell model system for Pompe disease, we demonstrated that the M6P-glycan remodeled rhGAA greatly outperformed the commercial rhGAA (Lumizyme) and resulted in the reversal of cellular pathology. This study provides a general and efficient method for site-selective M6P-glycan remodeling of recombinant lysosomal enzymes to achieve enhanced M6P receptor binding and cellular uptake, which could lead to improved overall therapeutic efficacy of enzyme replacement therapy.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Chemistry and Biochemistry, University of Maryland 8051 Regents Drive College Park Maryland 20742 USA
| | - Huiying Liu
- Department of Chemistry and Biochemistry, University of Maryland 8051 Regents Drive College Park Maryland 20742 USA
| | - Naresh Meena
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH Bethesda Maryland 20892 USA
| | - Chao Li
- Department of Chemistry and Biochemistry, University of Maryland 8051 Regents Drive College Park Maryland 20742 USA
| | - Guanghui Zong
- Department of Chemistry and Biochemistry, University of Maryland 8051 Regents Drive College Park Maryland 20742 USA
| | - Nina Raben
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH Bethesda Maryland 20892 USA
| | - Rosa Puertollano
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, NIH Bethesda Maryland 20892 USA
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland 8051 Regents Drive College Park Maryland 20742 USA
| |
Collapse
|
23
|
Kang JY, Choi HY, Kim DI, Kwon O, Oh DB. In Vitro N-Glycan Mannosyl-Phosphorylation of a Therapeutic Enzyme by Using Recombinant Mnn14 Produced from Pichia pastoris. J Microbiol Biotechnol 2021; 31:163-170. [PMID: 33144549 PMCID: PMC9705852 DOI: 10.4014/jmb.2010.10033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022]
Abstract
Enzyme replacement therapy for lysosomal storage diseases usually requires recombinant enzymes containing mannose-6-phosphate (M6P) glycans for cellular uptake and lysosomal targeting. For the first time, a strategy is established here for the in vitro mannosyl-phosphorylation of high-mannose type N-glycans that utilizes a recombinant Mnn14 protein derived from Saccharomyces cerevisiae. Among a series of N-terminal- or C-terminal-deleted recombinant Mnn14 proteins expressed in Pichia pastoris, rMnn1477-935 with deletion of N-terminal 76 amino acids spanning the transmembrane domain (46 amino acids) and part of the stem region (30 amino acids), showed the highest level of mannosyl-phosphorylation activity. The optimum reaction conditions for rMnn1477-935 were determined through enzyme assays with a high-mannose type N-glycan (Man8GlcNAc2) as a substrate. In addition, rMnn1477-935 was shown to mannosyl-phosphorylate high-mannose type Nglycans (Man7-9GlcNAc2) on recombinant human lysosomal alpha-glucosidase (rhGAA) with remarkably high efficiency. Moreover, the majority of the resulting mannosyl-phosphorylated glycans were bis-form which can be converted to bis-phosphorylated M6P glycans having a superior lysosomal targeting capability. An in vitro N-glycan mannosyl-phosphorylation reaction using rMnn1477-935 will provide a flexible and straightforward method to increase the M6P glycan content for the generation of "Biobetter" therapeutic enzymes.
Collapse
Affiliation(s)
- Ji-Yeon Kang
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 344, Republic of Korea
| | - Hong-Yeol Choi
- Department of Biological Engineering, Inha University, Incheon 1, Republic of Korea
| | - Dong-Il Kim
- Department of Biological Engineering, Inha University, Incheon 1, Republic of Korea
| | - Ohsuk Kwon
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 344, Republic of Korea,Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 411, Republic of Korea,O.Kwon Phone : +82-42-860-4457 Fax : +42-860-4549 E-mail:
| | - Doo-Byoung Oh
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 344, Republic of Korea,Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 411, Republic of Korea,Corresponding authors D-B.Oh Phone : +82-42-860-4459 Fax : +42-860-4549 E-mail:
| |
Collapse
|
24
|
Kanzaki M, Tsukimura T, Chiba Y, Sakuraba H, Togawa T. Surface plasmon resonance analysis of complex formation of therapeutic recombinant lysosomal enzymes with domain 9 of human cation-independent mannose 6-phosphate receptor. Mol Genet Metab Rep 2020; 25:100639. [PMID: 32884906 PMCID: PMC7451420 DOI: 10.1016/j.ymgmr.2020.100639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 11/25/2022] Open
Abstract
The efficacy of enzyme replacement therapy (ERT) for lysosomal storage diseases (LSDs) possibly depends on the cellular uptake of recombinant lysosomal enzymes (LEs), and it is known that cation-independent mannose 6-phosphate receptor (CI-M6PR) on the cell membrane is predominantly involved in the endocytosis of many LEs. To examine the biomolecular interaction between therapeutic LEs and CI-M6PR, we biophysically analyzed the complex formation of four LEs available with domain 9 of human CI-M6PR, a binding site of the receptor, by means of surface plasmon resonance (SPR) biosensor assays. The results revealed that the affinity of the LEs for domain 9 of the receptor increased in the following order: laronidase, agalsidase beta, idursulfase, and alglucosidase alfa; and the high affinity of laronidase for domain 9 of CI-M6PR was due to fast complex formation rather than slow dissociation of the complex. The affinity of the enzymes for domain 9 of CI-M6PR almost coincided with their cellular uptake. The SPR biosensor assay is sensitive and provides important information for the development of effective therapeutic LEs for LSDs. The biomolecular interaction between LEs and domain 9 of human CI-M6PR was examined by means of SPR biosensor assays. The binding of LEs with the receptor increased in the order: laronidase, agalsidase beta, idursulfase, and agalsidase alfa. The strong binding of laronidase with the receptor was due to fast complex formation rather than slow dissociation of the complex. The affinity of the LEs for domain 9 of CI-M6PR almost coincided with the cellular uptake of the enzymes.
Collapse
Affiliation(s)
- Minori Kanzaki
- Department of Functional Bioanalysis, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Takahiro Tsukimura
- Department of Functional Bioanalysis, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Yasunori Chiba
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Center 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Hitoshi Sakuraba
- Department of Clinical Genetics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Tadayasu Togawa
- Department of Functional Bioanalysis, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| |
Collapse
|
25
|
Sanapala SR, Seco BMS, Baek JY, Awan SI, Pereira CL, Seeberger PH. Chimeric oligosaccharide conjugate induces opsonic antibodies against Streptococcus pneumoniae serotypes 19A and 19F. Chem Sci 2020; 11:7401-7407. [PMID: 34123020 PMCID: PMC8159444 DOI: 10.1039/d0sc02230f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Streptococcus pneumoniae 19A (ST19A) and 19F (ST19F) are among the prevalent serotypes causing pneumococcal disease worldwide even after introduction of a 13-valent pneumococcal conjugate vaccine (PCV13). Synthetic glycoconjugate vaccines have defined chemical structures rather than isolated polysaccharide mixtures utilized in marketed vaccines. Ideally, a minimal number of synthetic antigens would cover as many bacterial serotypes to lower cost of goods and minimize the response to carrier proteins. To demonstrate that a chimeric oligosaccharide antigen can induce a protective immune response against multiple serotypes, we synthesized a chimeric antigen (ST19AF) that is comprised of a repeating unit of ST19A and ST19F capsular polysaccharide each. Synthetic glycan epitopes representing only ST19A, and ST19F were prepared for comparison. Semisynthetic glycoconjugates containing chimeric antigen ST19AF induced high antibody titers able to recognize native CPS from ST19A and ST19F in rabbits. The antibodies were able to kill both strains of pneumococci. Chimeric antigens are an attractive means to induce an immune response against multiple bacterial serotypes. Chimeric antigens are an attractive means to induce an immune response against multiple bacterial serotypes. The chimeric semisynthetic glycoconjugate ST19AF induced antibodies with opsonic activity able to kill ST19A and ST19F bacteria in rabbits.![]()
Collapse
Affiliation(s)
- Someswara Rao Sanapala
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces Am Mūhlenberg 1 D-14424 Potsdam Germany
| | - Bruna M S Seco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces Am Mūhlenberg 1 D-14424 Potsdam Germany .,Department of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 22 D-14195 Berlin Germany
| | - Ju Yuel Baek
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces Am Mūhlenberg 1 D-14424 Potsdam Germany
| | - Shahid I Awan
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces Am Mūhlenberg 1 D-14424 Potsdam Germany
| | - Claney L Pereira
- Department of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 22 D-14195 Berlin Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces Am Mūhlenberg 1 D-14424 Potsdam Germany .,Department of Chemistry and Biochemistry, Freie Universität Berlin Arnimallee 22 D-14195 Berlin Germany
| |
Collapse
|
26
|
Zhou Q, Qiu H. The Mechanistic Impact of N-Glycosylation on Stability, Pharmacokinetics, and Immunogenicity of Therapeutic Proteins. J Pharm Sci 2018; 108:1366-1377. [PMID: 30471292 DOI: 10.1016/j.xphs.2018.11.029] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/09/2018] [Accepted: 11/14/2018] [Indexed: 01/03/2023]
Abstract
N-glycosylation is one of major post-translational modifications in nature, and it is essential for protein structure and function. As hydrophilic moieties of glycoproteins, N-glycans play important roles in protein stability. They protect the proteins against proteolytic degradation, aggregation, and thermal denaturation through maintaining optimal conformations. There are extensive evidences showing the involvement of N-glycans in the pharmacodynamics and pharmacokinetics of recombinant therapeutic proteins and antibodies. Highly sialylated complex-type glycans enable the longer serum half-lives of proteins against uptake through hepatic asialoglycoprotein receptor and mannose receptor for degradation in lysosomes. Moreover, the presence of nonhuman glycans results in clearance through pre-existing antibodies from serum and induces IgE-mediated anaphylaxis. N-glycans also facilitate or reduce the adverse immune responses of the proteins through interacting with multiple glycan-binding proteins, including those specific for mannose or mannose 6-phosphate. Due to the glycan impacts, a few therapeutic proteins were glycoengineered to improve the pharmacokinetics and stability. Thus, N-glycosylation should be extensively investigated and optimized for each individual protein for better efficacy and safety.
Collapse
Affiliation(s)
- Qun Zhou
- Biologics Research, Sanofi, 49 New York Avenue, Framingham, Massachusetts 01701.
| | - Huawei Qiu
- Biologics Research, Sanofi, 49 New York Avenue, Framingham, Massachusetts 01701
| |
Collapse
|
27
|
Abstract
Glycosylation is one of the most prevalent posttranslational modifications that profoundly affects the structure and functions of proteins in a wide variety of biological recognition events. However, the structural complexity and heterogeneity of glycoproteins, usually resulting from the variations of glycan components and/or the sites of glycosylation, often complicates detailed structure-function relationship studies and hampers the therapeutic applications of glycoproteins. To address these challenges, various chemical and biological strategies have been developed for producing glycan-defined homogeneous glycoproteins. This review highlights recent advances in the development of chemoenzymatic methods for synthesizing homogeneous glycoproteins, including the generation of various glycosynthases for synthetic purposes, endoglycosidase-catalyzed glycoprotein synthesis and glycan remodeling, and direct enzymatic glycosylation of polypeptides and proteins. The scope, limitation, and future directions of each method are discussed.
Collapse
Affiliation(s)
- Chao Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
28
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2013-2014. MASS SPECTROMETRY REVIEWS 2018; 37:353-491. [PMID: 29687922 DOI: 10.1002/mas.21530] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/29/2016] [Indexed: 06/08/2023]
Abstract
This review is the eighth update of the original article published in 1999 on the application of Matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2014. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly- saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2018 Wiley Periodicals, Inc. Mass Spec Rev 37:353-491, 2018.
Collapse
Affiliation(s)
- David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
29
|
Lysosomal Targeting Enhancement by Conjugation of Glycopeptides Containing Mannose-6-phosphate Glycans Derived from Glyco-engineered Yeast. Sci Rep 2018; 8:8730. [PMID: 29880804 PMCID: PMC5992200 DOI: 10.1038/s41598-018-26913-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 05/21/2018] [Indexed: 11/08/2022] Open
Abstract
Many therapeutic enzymes for lysosomal storage diseases require a high content of mannose-6-phosphate (M6P) glycan, which is important for cellular uptake and lysosomal targeting. We constructed glyco-engineered yeast harboring a high content of mannosylphosphorylated glycans, which can be converted to M6P glycans by uncapping of the outer mannose residue. In this study, the cell wall of this yeast was employed as a natural M6P glycan source for conjugation to therapeutic enzymes. The extracted cell wall mannoproteins were digested by pronase to generate short glycopeptides, which were further elaborated by uncapping and α(1,2)-mannosidase digestion steps. The resulting glycopeptides containing M6P glycans (M6PgPs) showed proper cellular uptake and lysosome targeting. The purified M6PgPs were successfully conjugated to a recombinant acid α-glucosidase (rGAA), used for the treatment of Pompe disease, by two-step reactions using two hetero-bifunctional crosslinkers. First, rGAA and M6PgPs were modified with crosslinkers containing azide and dibenzocyclooctyne, respectively. In the second reaction using copper-free click chemistry, the azide-functionalized rGAA was conjugated with dibenzocyclooctyne-functionalized M6PgPs without the loss of enzyme activity. The M6PgP-conjugated rGAA had a 16-fold higher content of M6P glycan than rGAA, which resulted in greatly increased cellular uptake and efficient digestion of glycogen accumulated in Pompe disease patient fibroblasts.
Collapse
|
30
|
Bennett LD, Yang Q, Berquist BR, Giddens JP, Ren Z, Kommineni V, Murray RP, White EL, Holtz BR, Wang LX, Marcel S. Implementation of Glycan Remodeling to Plant-Made Therapeutic Antibodies. Int J Mol Sci 2018; 19:E421. [PMID: 29385073 PMCID: PMC5855643 DOI: 10.3390/ijms19020421] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 01/09/2018] [Accepted: 01/27/2018] [Indexed: 11/16/2022] Open
Abstract
N-glycosylation profoundly affects the biological stability and function of therapeutic proteins, which explains the recent interest in glycoengineering technologies as methods to develop biobetter therapeutics. In current manufacturing processes, N-glycosylation is host-specific and remains difficult to control in a production environment that changes with scale and production batches leading to glycosylation heterogeneity and inconsistency. On the other hand, in vitro chemoenzymatic glycan remodeling has been successful in producing homogeneous pre-defined protein glycoforms, but needs to be combined with a cost-effective and scalable production method. An efficient chemoenzymatic glycan remodeling technology using a plant expression system that combines in vivo deglycosylation with an in vitro chemoenzymatic glycosylation is described. Using the monoclonal antibody rituximab as a model therapeutic protein, a uniform Gal2GlcNAc2Man3GlcNAc2 (A2G2) glycoform without α-1,6-fucose, plant-specific α-1,3-fucose or β-1,2-xylose residues was produced. When compared with the innovator product Rituxan®, the plant-made remodeled afucosylated antibody showed similar binding affinity to the CD20 antigen but significantly enhanced cell cytotoxicity in vitro. Using a scalable plant expression system and reducing the in vitro deglycosylation burden creates the potential to eliminate glycan heterogeneity and provide affordable customization of therapeutics' glycosylation for maximal and targeted biological activity. This feature can reduce cost and provide an affordable platform to manufacture biobetter antibodies.
Collapse
Affiliation(s)
- Lindsay D Bennett
- Metropolitan Nashville Police Department Crime Lab, 400 Myatt Drive, Madison, TN 37115, USA.
| | - Qiang Yang
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742, USA.
| | - Brian R Berquist
- iBio CDMO, 8800 Health Science Center Parkway, Bryan, TX 77807, USA.
| | - John P Giddens
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742, USA.
| | - Zhongjie Ren
- iBio CDMO, 8800 Health Science Center Parkway, Bryan, TX 77807, USA.
| | - Vally Kommineni
- iBio CDMO, 8800 Health Science Center Parkway, Bryan, TX 77807, USA.
| | - Ryan P Murray
- Lonza Houston, Inc., 8066 El Rio St., Houston, TX 77054, USA.
| | - Earl L White
- MDx BioAnalytical Laboratory, Inc., 5890 Imperial loop, Suite 12, College Station, TX 77845, USA.
| | - Barry R Holtz
- iBio CDMO, 8800 Health Science Center Parkway, Bryan, TX 77807, USA.
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742, USA.
| | - Sylvain Marcel
- iBio CDMO, 8800 Health Science Center Parkway, Bryan, TX 77807, USA.
| |
Collapse
|
31
|
Efficient therapy for refractory Pompe disease by mannose 6-phosphate analogue grafting on acid α-glucosidase. J Control Release 2018; 269:15-23. [DOI: 10.1016/j.jconrel.2017.10.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 01/30/2023]
|
32
|
Fei X, Zavorka ME, Malik G, Connelly CM, MacDonald RG, Berkowitz DB. General Linker Diversification Approach to Bivalent Ligand Assembly: Generation of an Array of Ligands for the Cation-Independent Mannose 6-Phosphate Receptor. Org Lett 2017; 19:4267-4270. [PMID: 28753028 PMCID: PMC6208139 DOI: 10.1021/acs.orglett.7b01914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A generalized strategy is presented for the rapid assembly of a set of bivalent ligands with a variety of linking functionalities from a common monomer. Herein, an array of phosphatase-inert mannose-6-phosphonate-presenting ligands for the cation-independent-mannose 6-phosphate receptor (CI-MPR) is constructed. Receptor binding affinity varies with linking functionality-the simple amide and 1,5-triazole(tetrazole) being preferred over the 1,4-triazole. This approach is expected to find application across chemical biology, particularly in glycoscience, wherein multivalency often governs molecular recognition.
Collapse
Affiliation(s)
- Xiang Fei
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Megan E. Zavorka
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870, United States
| | - Guillaume Malik
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Christopher M. Connelly
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870, United States
| | - Richard G. MacDonald
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870, United States
| | - David B. Berkowitz
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| |
Collapse
|
33
|
Yamaguchi T, Amin MN, Toonstra C, Wang LX. Chemoenzymatic Synthesis and Receptor Binding of Mannose-6-Phosphate (M6P)-Containing Glycoprotein Ligands Reveal Unusual Structural Requirements for M6P Receptor Recognition. J Am Chem Soc 2016; 138:12472-85. [PMID: 27500601 DOI: 10.1021/jacs.6b05762] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mannose-6-phosphate (M6P)-terminated oligosaccharides are important signals for M6P-receptor-mediated targeting of newly synthesized hydrolases from Golgi to lysosomes, but the precise structural requirement for the M6P ligand-receptor recognition has not been fully understood due to the difficulties in obtaining homogeneous M6P-containing glycoproteins. We describe here a chemoenzymatic synthesis of homogeneous phosphoglycoproteins carrying natural M6P-containing N-glycans. The method includes the chemical synthesis of glycan oxazolines with varied number and location of the M6P moieties and their transfer to the GlcNAc-protein by an endoglycosynthase to provide homogeneous M6P-containing glycoproteins. Simultaneous attachment of two M6P-oligosaccahrides to a cyclic polypeptide was also accomplished to yield bivalent M6P-glycopeptides. Surface plasmon resonance binding studies reveal that a single M6P moiety located at the low α-1,3-branch of the oligomannose context is sufficient for a high-affinity binding to receptor CI-MPR, while the presence of a M6P moiety at the α-1,6-branch is dispensable. In addition, a binding study with the bivalent cyclic and linear polypeptides reveals that a close proximity of two M6P-oligosaccharide ligands is critical to achieve high affinity for the CI-MPR receptor. Taken together, the present study indicates that the location and valency of the M6P moieties and the right oligosaccharide context are all critical for high-affinity binding with the major M6P receptor. The chemoenzymatic method described here provides a new avenue for glycosylation remodeling of recombinant enzymes to enhance the uptake and delivery of enzymes to lysosomes in enzyme replacement therapy for the treatment of lysosomal storage diseases.
Collapse
Affiliation(s)
- Takahiro Yamaguchi
- Institute of Human Virology, University of Maryland School of Medicine , Baltimore, Maryland 21201, United States
| | - Mohammed N Amin
- Institute of Human Virology, University of Maryland School of Medicine , Baltimore, Maryland 21201, United States.,Department of Chemistry and Biochemistry, University of Maryland , College Park, Maryland 20742, United States
| | - Christian Toonstra
- Department of Chemistry and Biochemistry, University of Maryland , College Park, Maryland 20742, United States
| | - Lai-Xi Wang
- Institute of Human Virology, University of Maryland School of Medicine , Baltimore, Maryland 21201, United States.,Department of Chemistry and Biochemistry, University of Maryland , College Park, Maryland 20742, United States
| |
Collapse
|
34
|
Oh DB. Glyco-engineering strategies for the development of therapeutic enzymes with improved efficacy for the treatment of lysosomal storage diseases. BMB Rep 2016; 48:438-44. [PMID: 25999178 PMCID: PMC4576951 DOI: 10.5483/bmbrep.2015.48.8.101] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Indexed: 11/20/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are a group of inherent diseases characterized by massive accumulation of undigested compounds in lysosomes, which is caused by genetic defects resulting in the deficiency of a lysosomal hydrolase. Currently, enzyme replacement therapy has been successfully used for treatment of 7 LSDs with 10 approved therapeutic enzymes whereas new approaches such as pharmacological chaperones and gene therapy still await evaluation in clinical trials. While therapeutic enzymes for Gaucher disease have N-glycans with terminal mannose residues for targeting to macrophages, the others require N-glycans containing mannose-6-phosphates that are recognized by mannose-6-phosphate receptors on the plasma membrane for cellular uptake and targeting to lysosomes. Due to the fact that efficient lysosomal delivery of therapeutic enzymes is essential for the clearance of accumulated compounds, the suitable glycan structure and its high content are key factors for efficient therapeutic efficacy. Therefore, glycan remodeling strategies to improve lysosomal targeting and tissue distribution have been highlighted. This review describes the glycan structures that are important for lysosomal targeting and provides information on recent glyco-engineering technologies for the development of therapeutic enzymes with improved efficacy. [BMB Reports 2015; 48(8): 438-444]
Collapse
Affiliation(s)
- Doo-Byoung Oh
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB); Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 34141, Korea
| |
Collapse
|