1
|
Drotarova M, Asselta R, Caccia S, Skornova I, Zolkova J, Kolkova Z, Loderer D, Podusel V, Stasko J, Simurda T. A novel pathogenic variant in the fibrinogen gamma chain gene p.Glu275Lys causes congenital hypofibrinogenemia. Blood Coagul Fibrinolysis 2025:00001721-990000000-00200. [PMID: 40310436 DOI: 10.1097/mbc.0000000000001362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/27/2025] [Indexed: 05/02/2025]
Abstract
Congenital hypofibrinogenemia presents not only with bleeding, but also paradoxically with thrombosis. This heterogeneity of clinical phenotype complicates both diagnosis and management. The thrombotic phenotype is thought to arise from alterations in fibrin structure and stability, leading to abnormal clot formation and an increased risk of thrombosis. Coagulation assays, gene analysis, and protein modeling were utilized to elucidate the pathogenic variant. We highlight the pathophysiology of the novel missense variant in the FGG gene (c.823G/A, p.Glu275Lys), which causes mild hypofibrinogenemia and clinically manifests as an ischemic stroke. Protein modeling displays that the amino-acid substitution of glutamine with lysine at position 275 in mentioned missense variant causes local changes in the fibrinogen structure. The structural changes are mainly minor surface alterations and changes in physicochemical properties, which could potentially affect the recruitment of other proteins or lead to abnormal fibrin polymerization. This study provides novel insights into the pathophysiological mechanism, emphasizing the importance of molecular and structural analyses in understanding and managing atypical presentations of fibrinogen disorders.
Collapse
Affiliation(s)
- Miroslava Drotarova
- National Centre of Hemostasis and Thrombosis, Department of Hematology and Transfusiology, Comenius University in Bratislava, Jessenius Faculty of Medicine and University Hospital Martin, Slovakia
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele
- IRCCS Humanitas Research Hospital, Rozzano
| | - Sonia Caccia
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Ingrid Skornova
- National Centre of Hemostasis and Thrombosis, Department of Hematology and Transfusiology, Comenius University in Bratislava, Jessenius Faculty of Medicine and University Hospital Martin, Slovakia
| | - Jana Zolkova
- National Centre of Hemostasis and Thrombosis, Department of Hematology and Transfusiology, Comenius University in Bratislava, Jessenius Faculty of Medicine and University Hospital Martin, Slovakia
| | | | | | - Vladimir Podusel
- Department of Internal Medicine I., Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Slovakia
| | - Jan Stasko
- National Centre of Hemostasis and Thrombosis, Department of Hematology and Transfusiology, Comenius University in Bratislava, Jessenius Faculty of Medicine and University Hospital Martin, Slovakia
| | - Tomas Simurda
- National Centre of Hemostasis and Thrombosis, Department of Hematology and Transfusiology, Comenius University in Bratislava, Jessenius Faculty of Medicine and University Hospital Martin, Slovakia
| |
Collapse
|
2
|
Starikova EA, Mammedova JT, Rubinstein AA, Sokolov AV, Kudryavtsev IV. Activation of the Coagulation Cascade as a Universal Danger Sign. Curr Issues Mol Biol 2025; 47:108. [PMID: 39996829 PMCID: PMC11854423 DOI: 10.3390/cimb47020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/29/2025] [Accepted: 02/02/2025] [Indexed: 02/26/2025] Open
Abstract
Hemostasis is a mechanism that stops bleeding from an injured vessel, involves multiple interlinked steps, culminating in the formation of a "clot" sealing the damaged area. Moreover, it has long been recognized that inflammation also provokes the activation of the coagulation system. However, there has been an increasing amount of evidence revealing the immune function of the hemostasis system. This review collects and analyzes the results of the experimental studies and data from clinical observations confirming the inflammatory function of hemostasis. Here, we summarize the latest knowledge of the pathways in immune system activation under the influence of coagulation factors. The data analyzed allow us to consider the components of hemostasis as receptors recognizing «foreign» or damaged «self» or/and as «self» damage signals that initiate and reinforce inflammation and affect the direction of the adaptive immune response. To sum up, the findings collected in the review allow us to classify the coagulation factors, such as Damage-Associated Molecular Patterns that break down the conventional concepts of the coagulation system.
Collapse
Affiliation(s)
- Eleonora A. Starikova
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia (I.V.K.)
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
- Department of Microbiology and Virology, Institute of Medical Education Almazov National Medical Research Centre, 2 Akkuratova Street, 197341 Saint Petersburg, Russia
| | - Jennet T. Mammedova
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia (I.V.K.)
- Department of Molecular Biotechnology, Chemical and Biotechnology Faculty, Saint Petersburg State Institute of Technology, Moskovski Ave., 26, 190013 Saint Petersburg, Russia
| | - Artem A. Rubinstein
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia (I.V.K.)
| | - Alexey V. Sokolov
- Laboratory of Systemic Virology, Department of Molecular Biology of Viruses, Smorodintsev Research Institute of Influenza, 15/17, Prof. Popova Str., 197376 Saint Petersburg, Russia;
| | - Igor V. Kudryavtsev
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia (I.V.K.)
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L’va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| |
Collapse
|
3
|
Wang HR, Ma J, Guo YZ, Liu KF, Han B, Wang MH, Zou FH, Wang J, Tian Z, Qu HQ, Huang XL, Liu F. Combination of Albumin/Fibrinogen Ratio and Admission Hunt-Hess Scale Score as an Independent Predictor of Clinical Outcome in Aneurysmal Subarachnoid Hemorrhage. World Neurosurg 2024; 181:e322-e329. [PMID: 37839575 DOI: 10.1016/j.wneu.2023.10.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND The albumin/fibrinogen ratio (AFR) is an independent predictor of clinical outcomes of some diseases; however, the prognostic value of AFR and the admission Hunt-Hess (HH) score is still unclear for patients with an aneurysmal subarachnoid hemorrhage (aSAH). This study aimed to assess the relationship between the AFR-HH score and 6-month outcomes of aSAH patients. METHODS The clinical characteristics of aSAH patients admitted to our department between December 2017 and December 2021 were retrospectively analyzed. The candidate risk factors were screened using univariate regression analysis, and the independence of the resultant risk factors was evaluated by binary logistic regression analysis. The predictive value of the combined AFR and HH score for unfavorable outcomes was assessed using receiver operating characteristic curve analysis. RESULTS A total of 112 aSAH patients were included. Binary logistic regression analysis showed the perioperative period AFR, Glasgow coma scale score, and admission HH score were independent risk factors for unfavorable outcomes for aSAH patients. The receiver operating characteristic curve analysis showed the predictive capacity of AFR plus the admission HH score outperformed the AFR, Glasgow coma scale score, and admission HH scale alone and the combination of the AFR and Glasgow coma scale score. CONCLUSIONS A low AFR during the perioperative period is associated with unfavorable outcomes for aSAH patients at 6 months. The combination of the AFR and admission HH scale score provides superior predictive capacity to either the AFR or HH scale score alone.
Collapse
Affiliation(s)
- Hao Ran Wang
- Department of Neurosurgery, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Jie Ma
- Department of Neurosurgery, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Yi Zhuo Guo
- Department of Neurosurgery, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Ke Feng Liu
- Department of Neurosurgery, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Bin Han
- Department of Neurosurgery, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Ming Hai Wang
- Department of Neurosurgery, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Fei Hui Zou
- Department of Neurosurgery, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Jian Wang
- Department of Neurosurgery, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Zhen Tian
- Department of Neurosurgery, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - He Qi Qu
- Department of Neurosurgery, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Xian Long Huang
- Department of Neurosurgery, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Fang Liu
- Department of Neurosurgery, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou, China.
| |
Collapse
|
4
|
Silva L, Divaris K, Bugge T, Moutsopoulos N. Plasmin-Mediated Fibrinolysis in Periodontitis Pathogenesis. J Dent Res 2023; 102:972-978. [PMID: 37506226 PMCID: PMC10477773 DOI: 10.1177/00220345231171837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023] Open
Abstract
The hemostatic and inflammatory systems work hand in hand to maintain homeostasis at mucosal barrier sites. Among the factors of the hemostatic system, fibrin is well recognized for its role in mucosal homeostasis, wound healing, and inflammation. Here, we present a basic overview of the fibrinolytic system, discuss fibrin as an innate immune regulator, and provide recent work uncovering the role of fibrin-neutrophil activation as a regulator of mucosal/periodontal homeostasis. We reason that the role of fibrin in periodontitis becomes most evident in individuals with the Mendelian genetic defect, congenital plasminogen (PLG) deficiency, who are predisposed to severe periodontitis in childhood due to a defect in fibrinolysis. Consistent with plasminogen deficiency being a risk factor for periodontitis, recent genomics studies uncover genetic polymorphisms in PLG, encoding plasminogen, being significantly associated with periodontal disease, and suggesting PLG variants as candidate risk indicators for common forms of periodontitis.
Collapse
Affiliation(s)
- L.M. Silva
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - K. Divaris
- Division of Pediatric and Public Health, Adams School of Dentistry, University of North Carolina–Chapel Hill, Chapel Hill, NC,USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina–Chapel Hill, Chapel Hill, NC, USA
| | - T.H. Bugge
- Proteases and Tissue Remodeling Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - N.M. Moutsopoulos
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Wen T, Zhang Z. Cellular mechanisms of fibrin (ogen): insight from neurodegenerative diseases. Front Neurosci 2023; 17:1197094. [PMID: 37529232 PMCID: PMC10390316 DOI: 10.3389/fnins.2023.1197094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/27/2023] [Indexed: 08/03/2023] Open
Abstract
Neurodegenerative diseases are prevalent and currently incurable conditions that progressively impair cognitive, behavioral, and psychiatric functions of the central or peripheral nervous system. Fibrinogen, a macromolecular glycoprotein, plays a crucial role in the inflammatory response and tissue repair in the human body and interacts with various nervous system cells due to its unique molecular structure. Accumulating evidence suggests that fibrinogen deposits in the brains of patients with neurodegenerative diseases. By regulating pathophysiological mechanisms and signaling pathways, fibrinogen can exacerbate the neuro-pathological features of neurodegenerative diseases, while depletion of fibrinogen contributes to the amelioration of cognitive function impairment in patients. This review comprehensively summarizes the molecular mechanisms and biological functions of fibrinogen in central nervous system cells and neurodegenerative diseases, including Alzheimer's disease, Multiple Sclerosis, Parkinson's disease, Vascular dementia, Huntington's disease, and Amyotrophic Lateral Sclerosis. Additionally, we discuss the potential of fibrinogen-related treatments in the management of neurodegenerative disorders.
Collapse
|
6
|
Pereira RVS, EzEldeen M, Ugarte-Berzal E, Martens E, Malengier-Devlies B, Vandooren J, Vranckx J, Matthys P, Opdenakker G. Physiological fibrin hydrogel modulates immune cells and molecules and accelerates mouse skin wound healing. Front Immunol 2023; 14:1170153. [PMID: 37168862 PMCID: PMC10165074 DOI: 10.3389/fimmu.2023.1170153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/11/2023] [Indexed: 05/13/2023] Open
Abstract
Introduction Wound healing is a complex process to restore homeostasis after injury and insufficient skin wound healing is a considerable problem in medicine. Whereas many attempts of regenerative medicine have been made for wound healing with growth factors and cell therapies, simple pharmacological and immunological studies are lagging behind. We investigated how fibrin hydrogels modulate immune cells and molecules in skin wound healing in mice. Methods Physiological fibrin hydrogels (3.5 mg/mL fibrinogen) were generated, biophysically analyzed for stiffness and protein contents and were structurally studied by scanning electron microscopy. Physiological fibrin hydrogels were applied to full thickness skin wounds and, after 3 days, cells and molecules in wound tissues were analyzed. Leukocytes, endothelial cells, fibroblasts and keratinocytes were explored with the use of Flow Cytometry, whereas cytokines and matrix metalloproteinases were analyzed with the use of qPCR, ELISAs and zymography. Skin wound healing was analyzed microscopically at day 3, macroscopically followed daily during repair in mice and compared with commercially available fibrin sealant Tisseel. Results Exogenous fibrin at physiological concentrations decreased neutrophil and increased non-classical Ly6Clow monocyte and resolutive macrophage (CD206+ and CX3CR1+) populations, at day 3 after injury. Fibrin hydrogel reduced the expression of pro-inflammatory cytokines and increased IL-10 levels. In line with these findings, gelatinase B/MMP-9 was decreased, whereas gelatinase A/MMP-2 levels remained unaltered. Frequencies of dermal endothelial cells, fibroblasts and keratinocytes were increased and keratinocyte migration was enhanced by fibrin hydrogel. Importantly, physiological fibrin accelerated the healing of skin wounds in contrast to the highly concentrated fibrin sealant Tisseel, which delayed wound repair and possessed a higher fiber density. Conclusion Collectively, we show that adding a tailored fibrin hydrogel scaffold to a wound bed positively influences the healing process, modulating leukocyte populations and inflammatory responses towards a faster wound repair.
Collapse
Affiliation(s)
- Rafaela Vaz Sousa Pereira
- Laboratory of Immunobiology, Rega Institute for Medical Research/KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| | - Mostafa EzEldeen
- OMFS IMPATH Research Group, University Hospitals Leuven/KU Leuven, Department of Imaging and Pathology, Leuven, Belgium
- Pediatric Dentistry and Special Dental Care, University Hospitals Leuven/KU Leuven, Department of Oral Health Sciences, Leuven, Belgium
| | - Estefania Ugarte-Berzal
- Laboratory of Immunobiology, Rega Institute for Medical Research/KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| | - Erik Martens
- Laboratory of Immunobiology, Rega Institute for Medical Research/KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| | - Bert Malengier-Devlies
- Laboratory of Immunobiology, Rega Institute for Medical Research/KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| | - Jennifer Vandooren
- Laboratory of Immunobiology, Rega Institute for Medical Research/KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| | - Jan Jeroen Vranckx
- Department of Development and Regeneration, University Hospitals Leuven/KU Leuven, Leuven, Belgium
- Department of Plastic and Reconstructive Surgery, University Hospitals Leuven/KU Leuven, Leuven, Belgium
| | - Patrick Matthys
- Laboratory of Immunobiology, Rega Institute for Medical Research/KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Rega Institute for Medical Research/KU Leuven, Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
- *Correspondence: Ghislain Opdenakker,
| |
Collapse
|
7
|
Hur WS, King KC, Patel YN, Nguyen YV, Wei Z, Yang Y, Juang LJ, Leung J, Kastrup CJ, Wolberg AS, Luyendyk JP, Flick MJ. Elimination of fibrin polymer formation or crosslinking, but not fibrinogen deficiency, is protective against diet-induced obesity and associated pathologies. J Thromb Haemost 2022; 20:2873-2886. [PMID: 36111375 PMCID: PMC9669152 DOI: 10.1111/jth.15877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND Obesity predisposes individuals to metabolic syndrome, which increases the risk of cardiovascular diseases, non-alcoholic fatty liver disease (NAFLD), and type 2 diabetes. A pathological manifestation of obesity is the activation of the coagulation system. In turn, extravascular fibrin(ogen) deposits accumulate in adipose tissues and liver. These deposits promote adiposity and downstream sequelae by driving pro-inflammatory macrophage function through binding the leukocyte integrin receptor αM β2 . OBJECTIVES An unresolved question is whether conversion of soluble fibrinogen to a crosslinked fibrin matrix is required to exacerbate obesity-driven diseases. METHODS Here, fibrinogen-deficient/depleted mice (Fib- or treated with siRNA against fibrinogen [siFga]), mice expressing fibrinogen that cannot polymerize to fibrin (FibAEK ), and mice deficient in the fibrin crosslinking transglutaminase factor XIII (FXIII-) were challenged with a high-fat diet (HFD) and compared to mice expressing a mutant form of fibrinogen lacking the αM β2 -binding domain (Fib𝛾390-396A ). RESULTS AND CONCLUSIONS Consistent with prior studies, Fib𝛾390-396A mice were significantly protected from increased adiposity, NAFLD, hypercholesterolemia, and diabetes while Fib- and siFga-treated mice gained as much weight and developed obesity-associated pathologies identical to wildtype mice. FibAEK and FXIII- mice displayed an intermediate phenotype with partial protection from some obesity-associated pathologies. Results here indicate that fibrin(ogen) lacking αM β2 binding function offers substantial protection from obesity and associated disease that is partially recapitulated by preventing fibrin polymer formation or crosslinking of the wildtype molecule, but not by reduction or complete elimination of fibrinogen. Finally, these findings support the concept that fibrin polymerization and crosslinking are required for the full implementation of fibrin-driven inflammation in obesity.
Collapse
Affiliation(s)
- Woosuk S. Hur
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Katharine C. King
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yesha N. Patel
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Y-Van Nguyen
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zimu Wei
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Yi Yang
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lih Jiin Juang
- Michael Smith Laboratories, and Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Jerry Leung
- Michael Smith Laboratories, and Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Christian J. Kastrup
- Michael Smith Laboratories, and Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
- Blood Research institute, Versiti, Milwaukee, WI, USA
| | - Alisa S Wolberg
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - James P Luyendyk
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Matthew J. Flick
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
8
|
Yakovlev S, Strickland DK, Medved L. Current View on the Molecular Mechanisms Underlying Fibrin(ogen)-Dependent Inflammation. Thromb Haemost 2022; 122:1858-1868. [PMID: 35896433 PMCID: PMC10680782 DOI: 10.1055/a-1910-4538] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Numerous studies have revealed the involvement of fibrinogen in the inflammatory response. To explain the molecular mechanisms underlying fibrinogen-dependent inflammation, two bridging mechanisms have been proposed in which fibrin(ogen) bridges leukocytes to endothelial cells. The first mechanism suggests that bridging occurs via the interaction of fibrinogen with the leukocyte receptor Mac-1 and the endothelial receptor ICAM-1 (intercellular adhesion molecule-1), which promotes leukocyte transmigration and enhances inflammation. The second mechanism includes bridging of leukocytes to the endothelium by fibrin degradation product E1 fragment through its interaction with leukocyte receptor CD11c and endothelial VE-cadherin to promote leukocyte transmigration. The role of E1 in promoting inflammation is inhibited by the fibrin-derived β15-42 fragment, and this has been suggested to result from its ability to compete for the E1-VE-cadherin interaction and to trigger signaling pathways through the src kinase Fyn. Our recent study revealed that the β15-42 fragment is ineffective in inhibiting the E1- or fibrin-VE-cadherin interaction, leaving the proposed signaling mechanism as the only viable explanation for the inhibitory function of β15-42. We have discovered that fibrin interacts with the very-low-density lipoprotein (VLDL) receptor, and this interaction triggers a signaling pathway that promotes leukocyte transmigration through inhibition of the src kinase Fyn. This pathway is inhibited by another pathway induced by the interaction of β15-42 with a putative endothelial receptor. In this review, we briefly describe the previously proposed molecular mechanisms underlying fibrin-dependent inflammation and their advantages/disadvantages and summarize our recent studies of the novel VLDL receptor-dependent pathway of leukocyte transmigration which plays an important role in fibrin-dependent inflammation.
Collapse
Affiliation(s)
- Sergiy Yakovlev
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Dudley K. Strickland
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Leonid Medved
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
9
|
Poole LG, Kopec AK, Flick MJ, Luyendyk JP. Cross-linking by tissue transglutaminase-2 alters fibrinogen-directed macrophage proinflammatory activity. J Thromb Haemost 2022; 20:1182-1192. [PMID: 35158413 PMCID: PMC9035112 DOI: 10.1111/jth.15670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/21/2022] [Accepted: 02/07/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND The blood coagulation factor fibrin(ogen) can modulate inflammation by altering leukocyte activity. Analyses of fibrin(ogen)-mediated proinflammatory activity have largely focused on leukocyte integrin binding activity revealed by conversion of fibrinogen to a stabilized fibrin polymer by blood coagulation enzymes. In addition to coagulation enzymes, fibrinogen is a substrate for tissue transglutaminase-2 (TG2), a widely expressed enzyme that produces unique fibrinogen Aα-γ chain cross-linked products. OBJECTIVES We tested the hypothesis that TG2 dependent cross-linking alters the proinflammatory activity of surface-adhered fibrinogen. METHODS Mouse bone marrow-derived macrophages (BMDMs) were cultured on tissue culture plates coated with fibrinogen or TG2-cross-linked fibrinogen (10 µg/ml) and then stimulated with lipopolysaccharide (LPS, 1 ng/ml) or vehicle for various times. RESULTS In the absence of LPS stimulation, TG2-cross-linked fibrin(ogen) enhanced inflammatory gene induction (e.g., Tnfα) compared with unmodified fibrinogen. LPS stimulation induced mitogen-activated protein kinase phosphorylation, IκBα degradation, and expression of proinflammatory cytokines (e.g., tumor necrosis factor α) within 60 min. This initial cellular activation was unaffected by unmodified or TG2-cross-linked fibrinogen. In contrast, LPS induction of interleukin-10 mRNA and protein and STAT3 phosphorylation was selectively attenuated by TG2-cross-linked fibrinogen, which was associated with enhanced proinflammatory cytokine secretion by LPS-stimulated BMDMs at later time points (6 and 24 h). CONCLUSIONS The results indicate that atypical cross-linking by TG2 imparts unique proinflammatory activity to surface-adhered fibrinogen. The results suggest a novel coagulation-independent mechanism controlling fibrinogen-directed macrophage activation.
Collapse
Affiliation(s)
- Lauren G. Poole
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, Michigan
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan
| | - Anna K. Kopec
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, Michigan
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan
| | - Matthew J. Flick
- Department of Pathology and Laboratory Medicine, UNC Blood Research Center, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - James P. Luyendyk
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, Michigan
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
10
|
Kyriakides TR, Kim HJ, Zheng C, Harkins L, Tao W, Deschenes E. Foreign body response to synthetic polymer biomaterials and the role of adaptive immunity. Biomed Mater 2022; 17:10.1088/1748-605X/ac5574. [PMID: 35168213 PMCID: PMC9159526 DOI: 10.1088/1748-605x/ac5574] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 02/15/2022] [Indexed: 02/06/2023]
Abstract
Implanted biomaterials elicit a series of distinct immune and repair-like responses that are collectively known as the foreign body reaction (FBR). These include processes involving innate immune inflammatory cells and wound repair cells that contribute to the encapsulation of biomaterials with a dense collagenous and largely avascular capsule. Numerous studies have shown that the early phase is dominated by macrophages that fuse to form foreign body giant cells that are considered a hallmark of the FBR. With the advent of more precise cell characterization techniques, specific macrophage subsets have been identified and linked to more or less favorable outcomes. Moreover, studies comparing synthetic- and natural-based polymer biomaterials have allowed the identification of macrophage subtypes that distinguish between fibrotic and regenerative responses. More recently, cells associated with adaptive immunity have been shown to participate in the FBR to synthetic polymers. This suggests the existence of cross-talk between innate and adaptive immune cells that depends on the nature of the implants. However, the exact participation of adaptive immune cells, such as T and B cells, remains unclear. In fact, contradictory studies suggest either the independence or dependence of the FBR on these cells. Here, we review the evidence for the involvement of adaptive immunity in the FBR to synthetic polymers with a focus on cellular and molecular components. In addition, we examine the possibility that such biomaterials induce specific antibody responses resulting in the engagement of adaptive immune cells.
Collapse
Affiliation(s)
- Themis R. Kyriakides
- Department of Biomedical Engineering, Yale University. New Haven CT 06405,Department of Pathology, Yale University. New Haven CT 06405,Vascular Biology and Therapeutics Program. Yale University. New Haven CT 06405
| | - Hyun-Je Kim
- Department of Biomedical Engineering, Yale University. New Haven CT 06405
| | - Christy Zheng
- Department of Biomedical Engineering, Yale University. New Haven CT 06405
| | - Lauren Harkins
- Department of Biomedical Engineering, Yale University. New Haven CT 06405
| | - Wanyun Tao
- Department of Biomedical Engineering, Yale University. New Haven CT 06405
| | - Emily Deschenes
- Department of Biomedical Engineering, Yale University. New Haven CT 06405
| |
Collapse
|
11
|
Negrón O, Hur WS, Prasad J, Paul DS, Rowe SE, Degen JL, Abrahams SR, Antoniak S, Conlon BP, Bergmeier W, Hӧӧk M, Flick MJ. Fibrin(ogen) engagement of S. aureus promotes the host antimicrobial response and suppression of microbe dissemination following peritoneal infection. PLoS Pathog 2022; 18:e1010227. [PMID: 35041705 PMCID: PMC8797238 DOI: 10.1371/journal.ppat.1010227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/28/2022] [Accepted: 12/22/2021] [Indexed: 12/22/2022] Open
Abstract
The blood-clotting protein fibrin(ogen) plays a critical role in host defense against invading pathogens, particularly against peritoneal infection by the Gram-positive microbe Staphylococcus aureus. Here, we tested the hypothesis that direct binding between fibrin(ogen) and S. aureus is a component of the primary host antimicrobial response mechanism and prevention of secondary microbe dissemination from the peritoneal cavity. To establish a model system, we showed that fibrinogen isolated from FibγΔ5 mice, which express a mutant form lacking the final 5 amino acids of the fibrinogen γ chain (termed fibrinogenγΔ5), did not support S. aureus adherence when immobilized and clumping when in suspension. In contrast, purified wildtype fibrinogen supported robust adhesion and clumping that was largely dependent on S. aureus expression of the receptor clumping factor A (ClfA). Following peritoneal infection with S. aureus USA300, FibγΔ5 mice displayed worse survival compared to WT mice coupled to reduced bacterial killing within the peritoneal cavity and increased dissemination of the microbes into circulation and distant organs. The failure of acute bacterial killing, but not enhanced dissemination, was partially recapitulated by mice infected with S. aureus USA300 lacking ClfA. Fibrin polymer formation and coagulation transglutaminase Factor XIII each contributed to killing of the microbes within the peritoneal cavity, but only elimination of polymer formation enhanced systemic dissemination. Host macrophage depletion or selective elimination of the fibrin(ogen) β2-integrin binding motif both compromised local bacterial killing and enhanced S. aureus systemic dissemination, suggesting fibrin polymer formation in and of itself was not sufficient to retain S. aureus within the peritoneal cavity. Collectively, these findings suggest that following peritoneal infection, the binding of S. aureus to stabilized fibrin matrices promotes a local, macrophage-mediated antimicrobial response essential for prevention of microbe dissemination and downstream host mortality. The Gram-positive bacterium Staphylococcus aureus (S. aureus) produces a number of soluble and surface-associated proteins that bind the host coagulation protein fibrinogen. The contribution of fibrinogen-S. aureus binding through the fibrinogen receptor clumping factor A (ClfA) in peritoneal infection has not been defined. Elimination of the binding motif on fibrinogen for ClfA or deletion of ClfA from S. aureus significantly reduced S. aureus-fibrinogen binding and bacterial clumping in solution. In a mouse model of peritonitis, loss of these activities resulted in diminished bacterial killing, increased bacterial dissemination, and worsened host survival. Although fibrin polymer formation and fibrin(ogen)-macrophage binding are mechanistically linked to the local antimicrobial response, fibrin formation in and of itself is not sufficient to suppress microbe dissemination. These discoveries have identified important components of the fibrin(ogen)-dependent host antimicrobial response against S. aureus, providing further understanding of this physiological response to infection which could uncover potential therapeutic strategies for peritonitis patients.
Collapse
Affiliation(s)
- Oscar Negrón
- Department of Pathology and Laboratory Medicine, UNC Blood Research Center, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Woosuk S. Hur
- Department of Pathology and Laboratory Medicine, UNC Blood Research Center, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Joni Prasad
- Division of Experimental Hematology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati School of Medicine, Cincinnati, Ohio, United States of America
| | - David S. Paul
- Department of Biochemistry, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sarah E. Rowe
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jay L. Degen
- Division of Experimental Hematology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati School of Medicine, Cincinnati, Ohio, United States of America
| | - Sara R. Abrahams
- Department of Pathology and Laboratory Medicine, UNC Blood Research Center, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Silvio Antoniak
- Department of Pathology and Laboratory Medicine, UNC Blood Research Center, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Brian P. Conlon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Wolfgang Bergmeier
- Department of Biochemistry, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Magnus Hӧӧk
- Center of Infectious and Inflammatory Diseases, Texas A&M Health Sciences Center, Houston, Texas, United States of America
| | - Matthew J. Flick
- Department of Pathology and Laboratory Medicine, UNC Blood Research Center, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
12
|
Fibrin polymer on the surface of biomaterial implants drives the foreign body reaction. Biomaterials 2021; 277:121087. [PMID: 34478933 DOI: 10.1016/j.biomaterials.2021.121087] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/09/2021] [Accepted: 08/23/2021] [Indexed: 12/18/2022]
Abstract
Implantation of biomaterials and medical devices in the body triggers the foreign body reaction (FBR) which is characterized by macrophage fusion at the implant surface leading to the formation of foreign body giant cells and the development of the fibrous capsule enveloping the implant. While adhesion of macrophages to the surface is an essential step in macrophage fusion and implanted biomaterials are known to rapidly acquire a layer of host proteins, a biological substrate that is responsible for this process in vivo is unknown. Here we show that mice with genetically imposed fibrinogen deficiency display a dramatic reduction of macrophage fusion on biomaterials implanted intraperitoneally and subcutaneously and are protected from the formation of the fibrin-containing fibrous capsule. Furthermore, macrophage fusion on biomaterials implanted in FibAEK mice that express a mutated form of fibrinogen incapable of thrombin-mediated polymerization was strongly reduced. Despite the lack of fibrin, the capsule was formed in FibAEK mice, although it had a different composition and distinct mechanical properties than that in wild-type mice. Specifically, while mononuclear α-SMA-expressing macrophages embedded in the capsule of both strains of mice secreted collagen, the amount of collagen and its density in the tissue of FibAEK mice was reduced. These data identify fibrin polymer as a key biological substrate driving the development of the FBR.
Collapse
|
13
|
Kearney KJ, Ariëns RAS, Macrae FL. The Role of Fibrin(ogen) in Wound Healing and Infection Control. Semin Thromb Hemost 2021; 48:174-187. [PMID: 34428799 DOI: 10.1055/s-0041-1732467] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fibrinogen, one of the most abundant plasma proteins playing a key role in hemostasis, is an important modulator of wound healing and host defense against microbes. In the current review, we address the role of fibrin(ogen) throughout the process of wound healing and subsequent tissue repair. Initially fibrin(ogen) acts as a provisional matrix supporting incoming leukocytes and acting as reservoir for growth factors. It later goes on to support re-epithelialization, angiogenesis, and fibroplasia. Importantly, removal of fibrin(ogen) from the wound is essential for wound healing to progress. We also discuss how fibrin(ogen) functions through several mechanisms to protect the host against bacterial infection by providing a physical barrier, entrapment of bacteria in fibrin(ogen) networks, and by directing immune cell function. The central role of fibrin(ogen) in defense against bacterial infection has made it a target of bacterial proteins, evolved to interact with fibrin(ogen) to manipulate clot formation and degradation for the purpose of promoting microbial virulence and survival. Further understanding of the dual roles of fibrin(ogen) in wound healing and infection could provide novel means of therapy to improve recovery from surgical or chronic wounds and help to prevent infection from highly virulent bacterial strains, including those resistant to antibiotics.
Collapse
Affiliation(s)
- Katherine J Kearney
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Robert A S Ariëns
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom.,Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Fraser L Macrae
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
14
|
Bian Z, Yamashita T, Shi X, Feng T, Yu H, Hu X, Hu X, Bian Y, Sun H, Tadokoro K, Takemoto M, Omote Y, Morihara R, Abe K. Accelerated accumulation of fibrinogen peptide chains with Aβ deposition in Alzheimer's disease (AD) mice and human AD brains. Brain Res 2021; 1767:147569. [PMID: 34197775 DOI: 10.1016/j.brainres.2021.147569] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease that is characterized by the abnormal accumulation of intracellular and extracellular amyloid-β (Aβ) as well as disruption of the blood brain barrier (BBB). Fibrinogen plays an essential role in regulating thrombosis, wound healing, and other biological functions. In the present study, we investigated the relationship between three polypeptide chains α, β, and γ (FGA, FGB, and FGG) and Aβ deposition in the APP23 plus chronic cerebral hypoperfusion (CCH) mice model as well as the human AD brain. FGA, FGB, and FGG accumulated when Aβ was deposited in neural cells and cerebral vessels. This deposition was significantly higher in AD plus CCH mice models relative to wild-type brains, and in human AD brains compared to control brains. The present study demonstrates that FGA, FGB, and FGG are associated with AD progress, and can thus be potential targets for the diagnosis and therapy of AD.
Collapse
Affiliation(s)
- Zhihong Bian
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Toru Yamashita
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Xiaowen Shi
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Tian Feng
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Haibo Yu
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Xiao Hu
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Xinran Hu
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Yuting Bian
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Hongming Sun
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Koh Tadokoro
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Mami Takemoto
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Yoshio Omote
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Ryuta Morihara
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Koji Abe
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| |
Collapse
|
15
|
Stokum JA, Cannarsa GJ, Wessell AP, Shea P, Wenger N, Simard JM. When the Blood Hits Your Brain: The Neurotoxicity of Extravasated Blood. Int J Mol Sci 2021; 22:5132. [PMID: 34066240 PMCID: PMC8151992 DOI: 10.3390/ijms22105132] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 12/15/2022] Open
Abstract
Hemorrhage in the central nervous system (CNS), including intracerebral hemorrhage (ICH), intraventricular hemorrhage (IVH), and aneurysmal subarachnoid hemorrhage (aSAH), remains highly morbid. Trials of medical management for these conditions over recent decades have been largely unsuccessful in improving outcome and reducing mortality. Beyond its role in creating mass effect, the presence of extravasated blood in patients with CNS hemorrhage is generally overlooked. Since trials of surgical intervention to remove CNS hemorrhage have been generally unsuccessful, the potent neurotoxicity of blood is generally viewed as a basic scientific curiosity rather than a clinically meaningful factor. In this review, we evaluate the direct role of blood as a neurotoxin and its subsequent clinical relevance. We first describe the molecular mechanisms of blood neurotoxicity. We then evaluate the clinical literature that directly relates to the evacuation of CNS hemorrhage. We posit that the efficacy of clot removal is a critical factor in outcome following surgical intervention. Future interventions for CNS hemorrhage should be guided by the principle that blood is exquisitely toxic to the brain.
Collapse
Affiliation(s)
- Jesse A. Stokum
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (G.J.C.); (A.P.W.); (P.S.); (N.W.); (J.M.S.)
| | - Gregory J. Cannarsa
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (G.J.C.); (A.P.W.); (P.S.); (N.W.); (J.M.S.)
| | - Aaron P. Wessell
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (G.J.C.); (A.P.W.); (P.S.); (N.W.); (J.M.S.)
| | - Phelan Shea
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (G.J.C.); (A.P.W.); (P.S.); (N.W.); (J.M.S.)
| | - Nicole Wenger
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (G.J.C.); (A.P.W.); (P.S.); (N.W.); (J.M.S.)
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (G.J.C.); (A.P.W.); (P.S.); (N.W.); (J.M.S.)
- Departments of Pathology and Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
16
|
Lamers C, Plüss CJ, Ricklin D. The Promiscuous Profile of Complement Receptor 3 in Ligand Binding, Immune Modulation, and Pathophysiology. Front Immunol 2021; 12:662164. [PMID: 33995387 PMCID: PMC8118671 DOI: 10.3389/fimmu.2021.662164] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/12/2021] [Indexed: 12/19/2022] Open
Abstract
The β2-integrin receptor family has a broad spectrum of physiological functions ranging from leukocyte adhesion, cell migration, activation, and communication to the phagocytic uptake of cells and particles. Among the members of this family, complement receptor 3 (CR3; CD11b/CD18, Mac-1, αMβ2) is particularly promiscuous in its functional profile and ligand selectivity. There are close to 100 reported structurally unrelated ligands for CR3, and while many ligands appear to cluster at the αMI domain, molecular details about binding modes remain largely elusive. The versatility of CR3 is reflected in its functional portfolio, which includes prominent roles in the removal of invaders and cell debris, induction of tolerance and synaptic pruning, and involvement in the pathogenesis of numerous autoimmune and chronic inflammatory pathologies. While CR3 is an interesting therapeutic target for immune modulation due to these known pathophysiological associations, drug development efforts are limited by concerns of potential interference with host defense functions and, most importantly, an insufficient molecular understanding of the interplay between ligand binding and functional impact. Here, we provide a systematic summary of the various interaction partners of CR3 with a focus on binding mechanisms and functional implications. We also discuss the roles of CR3 as an immune receptor in health and disease, as an activation marker in research and diagnostics, and as a therapeutic target.
Collapse
Affiliation(s)
- Christina Lamers
- Molecular Pharmacy Unit, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | | | | |
Collapse
|
17
|
Hulshof AM, Hemker HC, Spronk HMH, Henskens YMC, ten Cate H. Thrombin-Fibrin(ogen) Interactions, Host Defense and Risk of Thrombosis. Int J Mol Sci 2021; 22:2590. [PMID: 33806700 PMCID: PMC7961882 DOI: 10.3390/ijms22052590] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
Fibrinogen is a well-known risk factor for arterial and venous thrombosis. Its function is not restricted to clot formation, however, as it partakes in a complex interplay between thrombin, soluble plasma fibrinogen, and deposited fibrin matrices. Fibrinogen, like thrombin, participates predominantly in hemostasis to maintain vascular integrity, but executes some important pleiotropic effects: firstly, as observed in thrombin generation experiments, fibrin removes thrombin from free solution by adsorption. The adsorbed thrombin is protected from antithrombins, notably α2-macroglobulin, and remains physiologically active as it can activate factors V, VIII, and platelets. Secondly, immobilized fibrinogen or fibrin matrices activate monocytes/macrophages and neutrophils via Mac-1 interactions. Immobilized fibrin(ogen) thereby elicits a pro-inflammatory response with a reciprocal stimulating effect of the immune system on coagulation. In contrast, soluble fibrinogen prohibits recruitment of these immune cells. Thus, while fibrin matrices elicit a procoagulant response, both directly by protecting thrombin and indirectly through the immune system, high soluble fibrinogen levels might protect patients due to its immune diminutive function. The in vivo influence of the 'protective' plasma fibrinogen versus the 'pro-thrombotic' fibrin matrices on thrombosis should be explored in future research.
Collapse
Affiliation(s)
- Anne-Marije Hulshof
- Central Diagnostic Laboratory, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands;
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - H. Coenraad Hemker
- Synapse Research Institute, Cardiovascular Research Institute Maastricht, Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Henri M. H. Spronk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Yvonne M. C. Henskens
- Central Diagnostic Laboratory, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands;
| | - Hugo ten Cate
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands;
- Thrombosis Expert Centre Maastricht and Department of Internal Medicine, Section Vascular Medicine, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
18
|
Prasad JM, Negrón O, Du X, Mullins ES, Palumbo JS, Gilbertie JM, Höök M, Grover SP, Pawlinski R, Mackman N, Degen JL, Flick MJ. Host fibrinogen drives antimicrobial function in Staphylococcus aureus peritonitis through bacterial-mediated prothrombin activation. Proc Natl Acad Sci U S A 2021; 118:e2009837118. [PMID: 33443167 PMCID: PMC7817220 DOI: 10.1073/pnas.2009837118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The blood-clotting protein fibrinogen has been implicated in host defense following Staphylococcus aureus infection, but precise mechanisms of host protection and pathogen clearance remain undefined. Peritonitis caused by staphylococci species is a complication for patients with cirrhosis, indwelling catheters, or undergoing peritoneal dialysis. Here, we sought to characterize possible mechanisms of fibrin(ogen)-mediated antimicrobial responses. Wild-type (WT) (Fib+) mice rapidly cleared S. aureus following intraperitoneal infection with elimination of ∼99% of an initial inoculum within 15 min. In contrast, fibrinogen-deficient (Fib-) mice failed to clear the microbe. The genotype-dependent disparity in early clearance resulted in a significant difference in host mortality whereby Fib+ mice uniformly survived whereas Fib- mice exhibited high mortality rates within 24 h. Fibrin(ogen)-mediated bacterial clearance was dependent on (pro)thrombin procoagulant function, supporting a suspected role for fibrin polymerization in this mechanism. Unexpectedly, the primary host initiator of coagulation, tissue factor, was found to be dispensable for this antimicrobial activity. Rather, the bacteria-derived prothrombin activator vWbp was identified as the source of the thrombin-generating potential underlying fibrin(ogen)-dependent bacterial clearance. Mice failed to eliminate S. aureus deficient in vWbp, but clearance of these same microbes in WT mice was restored if active thrombin was administered to the peritoneal cavity. These studies establish that the thrombin/fibrinogen axis is fundamental to host antimicrobial defense, offer a possible explanation for the clinical observation that coagulase-negative staphylococci are a highly prominent infectious agent in peritonitis, and suggest caution against anticoagulants in individuals susceptible to peritoneal infections.
Collapse
Affiliation(s)
- Joni M Prasad
- Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Oscar Negrón
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and the UNC Blood Research Center, University of North Carolina, Chapel Hill, NC 27599
| | - Xinli Du
- Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Eric S Mullins
- Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Joseph S Palumbo
- Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Jessica M Gilbertie
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606
| | - Magnus Höök
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technologies, Texas A&M Health Sciences Center, Houston, TX 77030
| | - Steven P Grover
- Department of Medicine, Lineberger Comprehensive Cancer Center, and the UNC Blood Research Center, University of North Carolina, Chapel Hill, NC 27599
| | - Rafal Pawlinski
- Department of Medicine, Lineberger Comprehensive Cancer Center, and the UNC Blood Research Center, University of North Carolina, Chapel Hill, NC 27599
| | - Nigel Mackman
- Department of Medicine, Lineberger Comprehensive Cancer Center, and the UNC Blood Research Center, University of North Carolina, Chapel Hill, NC 27599
| | - Jay L Degen
- Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Matthew J Flick
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, and the UNC Blood Research Center, University of North Carolina, Chapel Hill, NC 27599;
| |
Collapse
|
19
|
Mañucat-Tan N, Zeineddine Abdallah R, Kaur H, Saviane D, Wilson MR, Wyatt AR. Hypochlorite-induced aggregation of fibrinogen underlies a novel antioxidant role in blood plasma. Redox Biol 2020; 40:101847. [PMID: 33440293 PMCID: PMC7808953 DOI: 10.1016/j.redox.2020.101847] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 01/02/2023] Open
Abstract
Fibrinogen, a major constituent of blood plasma, is highly susceptible to reaction with biological oxidants. It has been proposed that fibrinogen plays a role in antioxidant defence, but oxidation of fibrinogen is also known to disrupt normal blood clotting and is implicated in the pathology of atherosclerosis. In the present study, we show that the biological oxidant hypochlorite promotes the formation of soluble high molecular weight fibrinogen assemblies ≥40 × 106 Da, that do not accumulate when fibrinogen is induced to aggregate by other stresses such as heating or hydroxyl-mediated damage in vitro. Hypochlorite-modified fibrinogen is stable at 37 °C as assessed by precipitation assays, and has reduced susceptibility to iron-induced (hydroxyl-mediated) precipitation compared to native fibrinogen. In contrast to hypochlorite-modified albumin, which is known to be immunostimulatory, hypochlorite-modified fibrinogen does not induce RAW 264.7 (macrophage-like) cells or EOC 13.31 (microglia-like) cells to produce reactive oxygen species or induce cell death. Furthermore, depletion of fibrinogen from human blood plasma increases the immunostimulatory property of blood plasma after it is supplemented with hypochlorite in situ. We propose that reaction of hypochlorite with fibrinogen in blood plasma potentially reduces the accumulation of other hypochlorite-modified species such as immunostimulatory hypochlorite-modified albumin. The latter represent a novel role for fibrinogen in blood plasma antioxidant defence.
Collapse
Affiliation(s)
- Noralyn Mañucat-Tan
- Flinders Health and Medical Research Institute and College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - Rafaa Zeineddine Abdallah
- Molecular Horizons and the School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, Australia; Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, Australia
| | - Harsimran Kaur
- Flinders Health and Medical Research Institute and College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - Daniel Saviane
- Flinders Health and Medical Research Institute and College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - Mark R Wilson
- Molecular Horizons and the School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Avenue, Wollongong, Australia; Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, Australia
| | - Amy R Wyatt
- Flinders Health and Medical Research Institute and College of Medicine and Public Health, Flinders University, Bedford Park, Australia.
| |
Collapse
|
20
|
Implication of the Association of Fibrinogen Citrullination and Osteoclastogenesis in Bone Destruction in Rheumatoid Arthritis. Cells 2020; 9:cells9122720. [PMID: 33419308 PMCID: PMC7766778 DOI: 10.3390/cells9122720] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023] Open
Abstract
Immune complexes containing citrullinated fibrinogen are present in the sera and synovium of rheumatoid arthritis patients and potentially contribute to synovitis. However, fibrinogen can inhibit the osteoclastogenesis of precursor cells. We investigated the direct effect of citrullinated fibrinogen on osteoclastogenesis to understand the role of citrullination on bone erosion of rheumatoid arthritis patients. We evaluated the fibrinogen citrullination sites using mass spectrometry and quantified osteoclast-related protein and gene expression levels by Western blotting, microarray, and real-time polymerase chain reaction. Differences in spectral peaks were noted between fibrinogen and citrullinated fibrinogen at five sites in α-chains, two sites in β-chains, and one site in a γ-chain. Transcriptome changes induced by fibrinogen and citrullinated fibrinogen were identified and differentially expressed genes grouped into three distinctive modules. Fibrinogen was then citrullinated in vitro using peptidylarginine deiminase. When increasing doses of soluble fibrinogen and citrullinated fibrinogen were applied to human CD14+ monocytes, citrullination restored osteoclastogenesis-associated changes, including NF-ATc1 and ß3-integrin. Finally, citrullination rescued the number of osteoclasts by restoring fibrinogen-induced suppression of osteoclastogenesis. Taken together, the results indicate that the inhibitory function of fibrinogen on osteoclastogenesis is reversed by citrullination and suggest that citrullinated fibrinogen may contribute to erosive bone destruction in rheumatoid arthritis.
Collapse
|
21
|
Asselta R, Paraboschi EM, Duga S. Hereditary Hypofibrinogenemia with Hepatic Storage. Int J Mol Sci 2020; 21:ijms21217830. [PMID: 33105716 PMCID: PMC7659954 DOI: 10.3390/ijms21217830] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022] Open
Abstract
Fibrinogen is a 340-kDa plasma glycoprotein constituted by two sets of symmetrical trimers, each formed by the Aα, Bβ, and γ chains (respectively coded by the FGA, FGB, and FGG genes). Quantitative fibrinogen deficiencies (hypofibrinogenemia, afibrinogenemia) are rare congenital disorders characterized by low or unmeasurable plasma fibrinogen antigen levels. Their genetic basis is represented by mutations within the fibrinogen genes. To date, only eight mutations, all affecting a small region of the fibrinogen γ chain, have been reported to cause hereditary hypofibrinogenemia with hepatic storage (HHHS), a disorder characterized by protein aggregation in the endoplasmic reticulum, hypofibrinogenemia, and liver disease of variable severity. Here, we will briefly review the clinic characteristics of HHHS patients and the histological feature of their hepatic inclusions, and we will focus on the molecular genetic basis of this peculiar type of coagulopathy.
Collapse
Affiliation(s)
- Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy; (E.M.P.); (S.D.)
- Humanitas Clinical and Research Center, IRCCS, Via Manzoni 56, Rozzano, 20089 Milan, Italy
- Correspondence: ; Tel.: +39-02-8224-5215
| | - Elvezia Maria Paraboschi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy; (E.M.P.); (S.D.)
- Humanitas Clinical and Research Center, IRCCS, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Stefano Duga
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy; (E.M.P.); (S.D.)
- Humanitas Clinical and Research Center, IRCCS, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| |
Collapse
|
22
|
Sulimai N, Lominadze D. Fibrinogen and Neuroinflammation During Traumatic Brain Injury. Mol Neurobiol 2020; 57:4692-4703. [PMID: 32776201 DOI: 10.1007/s12035-020-02012-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022]
Abstract
Many neurodegenerative diseases such as Alzheimer's disease (AD), multiple sclerosis, and traumatic brain injury (TBI) are associated with systemic inflammation. Inflammation itself results in increased blood content of fibrinogen (Fg), called hyperfibrinogenemia (HFg). Fg is not only considered an acute phase protein and a marker of inflammation, but has been shown that it can cause inflammatory responses. Fibrin deposits have been associated with memory reduction in neuroinflammatory diseases such as AD and TBI. Reduction in short-term memory has been seen during the most common form of TBI, mild-to-moderate TBI. Fibrin deposits have been found in brains of patients with mild-to-moderate TBI. The vast majority of the literature emphasizes the role of fibrin-activated microglia as the mediator in the neuroinflammation pathway. However, the recent discovery that astrocytes, which constitute approximately 30% of the cells in the mammalian central nervous system, manifest different reactive states warrants further investigations in the causative role of HFg in astrocyte-mediated neuroinflammation. Our previous study showed that Fg deposited in the vasculo-astrocyte interface-activated astrocytes. However, little is known of how Fg directly affects astrocytes and neurons. In this review, we summarize studies that show the effect of Fg on different types of cells in the vasculo-neuronal unit. We will also discuss the possible mechanism of HFg-induced neuroinflammation during TBI.
Collapse
Affiliation(s)
- Nurul Sulimai
- Departments of Surgery, University of South Florida Morsani College of Medicine, MDC-4024, 12901 Bruce B. Downs Blvd, Tampa, FL, 33612, USA
| | - David Lominadze
- Departments of Surgery, University of South Florida Morsani College of Medicine, MDC-4024, 12901 Bruce B. Downs Blvd, Tampa, FL, 33612, USA.
- Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA.
| |
Collapse
|
23
|
Locke M, Francis RJ, Tsaousi E, Longstaff C. Fibrinogen protects neutrophils from the cytotoxic effects of histones and delays neutrophil extracellular trap formation induced by ionomycin. Sci Rep 2020; 10:11694. [PMID: 32678135 PMCID: PMC7366688 DOI: 10.1038/s41598-020-68584-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/30/2020] [Indexed: 12/27/2022] Open
Abstract
Neutrophils are pivotal players in immune defence which includes a process of release of histones and DNA as neutrophil extracellular traps (NETs). Histones, while toxic to invading pathogens, also kill host cells, including neutrophils. Bacteria have evolved mechanisms to escape neutrophils, including the secretion of leucocidins (e.g. ionomycin). Live cell video microscopy showed how fibrinogen and fibrin influence NETosis and neutrophil responses to extracellular histones. Histones were rapidly lethal to neutrophils after binding to cells, but formation of fibrinogen/fibrin-histone aggregates prevented cell death. Histone cytotoxicity was also reduced by citrullination by peptidyl arginine deiminase 4, or digestion by serine proteases. Ionomycin and phorbol 12-myristate 13 acetate (PMA) are used to trigger NETosis. Fibrinogen was responsible for a second distinct mechanism of neutrophil protection after treatment with ionomycin. Fibrinogen clustered on the surface of ionomycin-stimulated neutrophils to delay NETosis; and blocking the β integrin receptor, αMβ2, abolished fibrinogen protection. Fibrinogen did not bind to or protect neutrophils stimulated with PMA. Fibrinogen is an acute phase protein that will protect exposed cells from damaging circulating histones or leucocidins; but fibrinogen depletion/consumption, as in trauma or sepsis will reduce protection. It is necessary to consider the role of fibrinogen in NETosis.
Collapse
Affiliation(s)
- Matthew Locke
- Biotherapeutics, National Institute for Biological Standards and Control, S Mimms, Herts, UK
| | - Robert J Francis
- Biological Imaging Group, Analytical Biological Sciences, National Institute for Biological Standards and Control, S Mimms, Herts, UK
| | - Evgenia Tsaousi
- Biotherapeutics, National Institute for Biological Standards and Control, S Mimms, Herts, UK.,School of Biological Sciences, University of Essex, Colchester, UK
| | - Colin Longstaff
- Biotherapeutics, National Institute for Biological Standards and Control, S Mimms, Herts, UK.
| |
Collapse
|
24
|
Song Z, Hudik E, Le Bars R, Roux B, Dang PMC, El Benna J, Nüsse O, Dupré-Crochet S. Class I phosphoinositide 3-kinases control sustained NADPH oxidase activation in adherent neutrophils. Biochem Pharmacol 2020; 178:114088. [PMID: 32531347 DOI: 10.1016/j.bcp.2020.114088] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/21/2022]
Abstract
Phagocytes, especially neutrophils, can produce reactive oxygen species (ROS), through the activation of the NADPH oxidase (NOX2). Although this enzyme is crucial for host-pathogen defense, ROS production by neutrophils can be harmful in several pathologies such as cardiovascular diseases or chronic pulmonary diseases. The ROS production by NOX2 involves the assembly of the cytosolic subunits (p67phox, p47phox, and p40phox) and Rac with the membrane subunits (gp91phox and p22phox). Many studies are devoted to the activation of NOX2. However, the mechanisms that cause NADPH oxidase deactivation and thus terminate ROS production are not well known. Here we investigated the ability of class I phosphoinositide 3-kinases (PI3Ks) to sustain NADPH oxidase activation. The NADPH oxidase activation was triggered by seeding neutrophil-like PLB-985 cells, or human neutrophils on immobilized fibrinogen. Adhesion of the neutrophils, mediated by β2 integrins, induced activation of the NADPH oxidase and translocation of the cytosolic subunits at the plasma membrane. Inhibition of class I PI3Ks, and especially PI3Kβ, terminated ROS production. This deactivation of NOX2 is due to the release of the cytosolic subunits, p67phox and p47phox from the plasma membrane. Overexpression of an active form of Rac 1 did not prevent the drop of ROS production upon inhibition of class I PI3Ks. Moreover, the phosphorylation of p47phox at S328, a potential target of kinases activated by the PI3K pathway, was unchanged. Our results indicate that the experimental downregulation of class I PI3K products triggers the plasma membrane NADPH oxidase deactivation. Release of p47phox from the plasma membrane may involve its PX domains that bind PI3K products.
Collapse
Affiliation(s)
- Zhimin Song
- Université Paris-Saclay, CNRS UMR 8000, Institut de Chimie Physique, 91405 Orsay, France
| | - Elodie Hudik
- Université Paris-Saclay, CNRS UMR 8000, Institut de Chimie Physique, 91405 Orsay, France
| | - Romain Le Bars
- Light microscopy core facility, Imagerie-Gif, Institut de Biologie Intégrative de la Cellule (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Blandine Roux
- Université Paris-Saclay, CNRS UMR 8000, Institut de Chimie Physique, 91405 Orsay, France
| | - Pham My-Chan Dang
- Université de Paris, Centre de Recherche sur l'Inflammation (CRI), Inserm, UMR 1149, CNRS, ERL8252, Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, F-75018 Paris, France
| | - Jamel El Benna
- Université de Paris, Centre de Recherche sur l'Inflammation (CRI), Inserm, UMR 1149, CNRS, ERL8252, Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, F-75018 Paris, France
| | - Oliver Nüsse
- Université Paris-Saclay, CNRS UMR 8000, Institut de Chimie Physique, 91405 Orsay, France
| | - Sophie Dupré-Crochet
- Université Paris-Saclay, CNRS UMR 8000, Institut de Chimie Physique, 91405 Orsay, France.
| |
Collapse
|
25
|
Li K, Liu S, Hu T, Razanau I, Wu X, Ao H, Huang L, Xie Y, Zheng X. Optimized Nanointerface Engineering of Micro/Nanostructured Titanium Implants to Enhance Cell-Nanotopography Interactions and Osseointegration. ACS Biomater Sci Eng 2020; 6:969-983. [PMID: 33464841 DOI: 10.1021/acsbiomaterials.9b01717] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The success of orthopedic implants requires rapid and complete osseointegration which relies on an implant surface with optimal features. To enhance cellular function in response to the implant surface, micro- and nanoscale topography have been suggested as essential. The aim of this study was to identify an optimized Ti nanostructure and to introduce it onto a titanium plasma-sprayed titanium implant (denoted NTPS-Ti) to confer enhanced immunomodulatory properties for optimal osseointegration. To this end, three types of titania nanostructures, namely, nanowires, nanonests, and nanoflakes, were achieved on hydrothermally prepared Ti substrates. The nanowire surface modulated protein conformation and directed integrin binding and specificity in such a way as to augment the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) and induce a desirable osteoimmune response of RAW264.7 macrophages. In a coculture system, BMSCs on the optimized micro/nanosurface exerted enhanced effects on nonactivated or lipopolysaccharide-stimulated macrophages, causing them to adopt a less inflammatory macrophage profile. The enhanced immunomodulatory properties of BMSCs grown on NTPS-Ti depended on a ROCK-medicated cyclooxygenase-2 (COX2) pathway to increase prostaglandin E2 (PGE2) production, as evidenced by decreased production of PGE2 and concurrent inhibition of immunomodulatory properties after treatment with ROCK or COX2 inhibitors. In vivo evaluation showed that the NTPS-Ti implant resulted in enhanced osseointegration compared with the TPS-Ti and Ti implants. The results obtained in our study may provide a prospective approach for enhancing osseointegration and supporting the application of micro/nanostructured Ti implants.
Collapse
Affiliation(s)
- Kai Li
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Shiwei Liu
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tao Hu
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P. R. China
| | - Ihar Razanau
- Science and Technology Park of BNTU "Polytechnic", Minsk 220013, Belarus
| | - Xiaodong Wu
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P. R. China
| | - Haiyong Ao
- School of Materials Science and Engineering, East China Jiao Tong University, Nanchang 330013, P. R. China
| | - Liping Huang
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Youtao Xie
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Xuebin Zheng
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| |
Collapse
|
26
|
Golanov EV, Sharpe MA, Regnier-Golanov AS, Del Zoppo GJ, Baskin DS, Britz GW. Fibrinogen Chains Intrinsic to the Brain. Front Neurosci 2019; 13:541. [PMID: 31191233 PMCID: PMC6549596 DOI: 10.3389/fnins.2019.00541] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/09/2019] [Indexed: 11/13/2022] Open
Abstract
We observed fine fibrin deposition along the paravascular spaces in naive animals, which increased dramatically following subarachnoid hemorrhage (SAH). Following SAH, fibrin deposits in the areas remote from the hemorrhage. Traditionally it is thought that fibrinogen enters subarachnoid space through damaged blood brain barrier. However, deposition of fibrin remotely from hemorrhage suggests that fibrinogen chains Aα, Bβ, and γ can originate in the brain. Here we demonstrate in vivo and in vitro that astroglia and neurons are capable of expression of fibrinogen chains. SAH in mice was induced by the filament perforation of the circle of Willis. Four days after SAH animals were anesthetized, transcardially perfused and fixed. Whole brain was processed for immunofluorescent (IF) analysis of fibrin deposition on the brain surface or in brains slices processed for fibrinogen chains Aα, Bβ, γ immunohistochemical detection. Normal human astrocytes were grown media to confluency and stimulated with NOC-18 (100 μM), TNF-α (100 nM), ATP-γ-S (100 μM) for 24 h. Culture was fixed and washed/permeabilized with 0.1% Triton and processed for IF. Four days following SAH fibrinogen chains Aα IF associated with glia limitans and superficial brain layers increased 3.2 and 2.5 times (p < 0.05 and p < 0.01) on the ventral and dorsal brain surfaces respectively; fibrinogen chains Bβ increased by 3 times (p < 0.01) on the dorsal surface and fibrinogen chain γ increased by 3 times (p < 0.01) on the ventral surface compared to sham animals. Human cultured astrocytes and neurons constitutively expressed all three fibrinogen chains. Their expression changed differentially when exposed for 24 h to biologically significant stimuli: TNFα, NO or ATP. Western blot and RT-qPCR confirmed presence of the products of the appropriate molecular weight and respective mRNA. We demonstrate for the first time that mouse and human astrocytes and neurons express fibrinogen chains suggesting potential presence of endogenous to the brain fibrinogen chains differentially changing to biologically significant stimuli. SAH is followed by increased expression of fibrinogen chains associated with glia limitans remote from the hemorrhage. We conclude that brain astrocytes and neurons are capable of production of fibrinogen chains, which may be involved in various normal and pathological processes.
Collapse
Affiliation(s)
- Eugene V Golanov
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, United States
| | - Martyn A Sharpe
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, United States
| | | | - Gregory J Del Zoppo
- Division of Hematology, University of Washington School of Medicine, Seattle, WA, United States
| | - David S Baskin
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, United States
| | - Gavin W Britz
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
27
|
Podolnikova NP, Hlavackova M, Wu Y, Yakubenko VP, Faust J, Balabiyev A, Wang X, Ugarova TP. Interaction between the integrin Mac-1 and signal regulatory protein α (SIRPα) mediates fusion in heterologous cells. J Biol Chem 2019; 294:7833-7849. [PMID: 30910815 DOI: 10.1074/jbc.ra118.006314] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/15/2019] [Indexed: 12/11/2022] Open
Abstract
Macrophage fusion leading to the formation of multinucleated giant cells is a hallmark of chronic inflammation. Several membrane proteins have been implicated in mediating cell-cell attachment during fusion, but their binding partners remain unknown. Recently, we demonstrated that interleukin-4 (IL-4)-induced fusion of mouse macrophages depends on the integrin macrophage antigen 1 (Mac-1). Surprisingly, the genetic deficiency of intercellular adhesion molecule 1 (ICAM-1), an established ligand of Mac-1, did not impair macrophage fusion, suggesting the involvement of other counter-receptors. Here, using various approaches, including signal regulatory protein α (SIRPα) knockdown, recombinant proteins, adhesion and fusion assays, biolayer interferometry, and peptide libraries, we show that SIRPα, which, similar to ICAM-1, belongs to the Ig superfamily and has previously been implicated in cell fusion, interacts with Mac-1. The following results support the conclusion that SIRPα is a ligand of Mac-1: (a) recombinant ectodomain of SIRPα supports adhesion of Mac-1-expressing cells; (b) Mac-1-SIRPα interaction is mediated through the ligand-binding αMI-domain of Mac-1; (c) recognition of SIRPα by the αMI-domain conforms to general principles governing binding of Mac-1 to many of its ligands; (d) SIRPα reportedly binds CD47; however, anti-CD47 function-blocking mAb produced only a limited inhibition of macrophage adhesion to SIRPα; and (e) co-culturing of SIRPα- and Mac-1-expressing HEK293 cells resulted in the formation of multinucleated cells. Taken together, these results identify SIRPα as a counter-receptor for Mac-1 and suggest that the Mac-1-SIRPα interaction may be involved in macrophage fusion.
Collapse
Affiliation(s)
- Nataly P Podolnikova
- From the Center for Metabolic and Vascular Biology, School of Life Sciences, and
| | - Marketa Hlavackova
- From the Center for Metabolic and Vascular Biology, School of Life Sciences, and
| | - Yifei Wu
- From the Center for Metabolic and Vascular Biology, School of Life Sciences, and
| | - Valentin P Yakubenko
- the College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614
| | - James Faust
- From the Center for Metabolic and Vascular Biology, School of Life Sciences, and
| | - Arnat Balabiyev
- From the Center for Metabolic and Vascular Biology, School of Life Sciences, and
| | - Xu Wang
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287 and
| | - Tatiana P Ugarova
- From the Center for Metabolic and Vascular Biology, School of Life Sciences, and
| |
Collapse
|
28
|
Luyendyk JP, Schoenecker JG, Flick MJ. The multifaceted role of fibrinogen in tissue injury and inflammation. Blood 2019; 133:511-520. [PMID: 30523120 PMCID: PMC6367649 DOI: 10.1182/blood-2018-07-818211] [Citation(s) in RCA: 337] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/26/2018] [Indexed: 02/08/2023] Open
Abstract
The canonical role of the hemostatic and fibrinolytic systems is to maintain vascular integrity. Perturbations in either system can prompt primary pathological end points of hemorrhage or thrombosis with vessel occlusion. However, fibrin(ogen) and proteases controlling its deposition and clearance, including (pro)thrombin and plasmin(ogen), have powerful roles in driving acute and reparative inflammatory pathways that affect the spectrum of tissue injury, remodeling, and repair. Indeed, fibrin(ogen) deposits are a near-universal feature of tissue injury, regardless of the nature of the inciting event, including injuries driven by mechanical insult, infection, or immunological derangements. Fibrin can modify multiple aspects of inflammatory cell function by engaging leukocytes through a variety of cellular receptors and mechanisms. Studies on the role of coagulation system activation and fibrin(ogen) deposition in models of inflammatory disease and tissue injury have revealed points of commonality, as well as context-dependent contributions of coagulation and fibrinolytic factors. However, there remains a critical need to define the precise temporal and spatial mechanisms by which fibrinogen-directed inflammatory events may dictate the severity of tissue injury and coordinate the remodeling and repair events essential to restore normal organ function. Current research trends suggest that future studies will give way to the identification of novel hemostatic factor-targeted therapies for a range of tissue injuries and disease.
Collapse
Affiliation(s)
- James P Luyendyk
- Department of Pathobiology and Diagnostic Investigation
- Department of Pharmacology and Toxicology, and
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI
| | - Jonathan G Schoenecker
- Department of Orthopaedics
- Department of Pharmacology
- Department of Pediatrics, and
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN; and
| | - Matthew J Flick
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| |
Collapse
|
29
|
Morales-Ortíz J, Deal V, Reyes F, Maldonado-Martínez G, Ledesma N, Staback F, Croft C, Pacheco A, Ortiz-Zuazaga H, Yost CC, Rowley JW, Madera B, John AS, Chen J, Lopez J, Rondina MT, Hunter R, Gibson A, Washington AV. Platelet-derived TLT-1 is a prognostic indicator in ALI/ARDS and prevents tissue damage in the lungs in a mouse model. Blood 2018; 132:2495-2505. [PMID: 30282800 PMCID: PMC6284217 DOI: 10.1182/blood-2018-03-841593] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 09/14/2018] [Indexed: 02/06/2023] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) affect >200 000 individuals yearly with a 40% mortality rate. Although platelets are implicated in the progression of ALI/ARDS, their exact role remains undefined. Triggering receptor expressed in myeloid cells (TREM)-like transcript 1 (TLT-1) is found on platelets, binds fibrinogen, and mediates clot formation. We hypothesized that platelets use TLT-1 to manage the progression of ALI/ARDS. Here we retrospectively measure plasma levels of soluble TLT-1 (sTLT-1) from the ARDS Network clinical trial and show that patients whose sTLT-1 levels were >1200 pg/mL had nearly twice the mortality risk as those with <1200 pg/mL (P < .001). After correcting for confounding factors such as creatinine levels, Acute Physiology And Chronic Health Evaluation III scores, age, platelet counts, and ventilation volume, sTLT-1 remains significant, suggesting that sTLT-1 is an independent prognostic factor (P < .0001). These data point to a role for TLT-1 during the progression of ALI/ARDS. We use a murine lipopolysaccharide-induced ALI model and demonstrate increased alveolar bleeding, aberrant neutrophil transmigration and accumulation associated with decreased fibrinogen deposition, and increased pulmonary tissue damage in the absence of TLT-1. The loss of TLT-1 resulted in an increased proportion of platelet-neutrophil conjugates (43.73 ± 24.75% vs 8.92 ± 2.4% in wild-type mice), which correlated with increased neutrophil death. Infusion of sTLT-1 restores normal fibrinogen deposition and reduces pulmonary hemorrhage by 40% (P ≤ .001) and tissue damage by 25% (P ≤ .001) in vivo. Our findings suggest that TLT-1 uses fibrinogen to govern the transition between inflammation and hemostasis and facilitate controlled leukocyte transmigration during the progression of ARDS.
Collapse
Affiliation(s)
| | - Victoria Deal
- Division of Natural Sciences, Maryville College, Maryville, TN
| | - Fiorella Reyes
- Department of Biology, University of Puerto Rico-Rio Piedras, San Juan, Puerto Rico
| | | | - Nahomy Ledesma
- Department of Biology, University of Puerto Rico-Rio Piedras, San Juan, Puerto Rico
| | - Franklin Staback
- Department of Biology, University of Puerto Rico-Rio Piedras, San Juan, Puerto Rico
| | - Cheyanne Croft
- Division of Natural Sciences, Maryville College, Maryville, TN
| | - Amanda Pacheco
- Department of Biology, University of Puerto Rico-Rio Piedras, San Juan, Puerto Rico
| | - Humberto Ortiz-Zuazaga
- Department of Computer Science, University of Puerto Rico-Rio Piedras, San Juan, Puerto Rico
| | - C Christian Yost
- Department of Pediatrics/Neonatology and Molecular Medicine Program and
| | - Jesse W Rowley
- Department of Internal Medicine and Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, UT
| | - Bismark Madera
- Department of Biology, University of Puerto Rico-Rio Piedras, San Juan, Puerto Rico
| | - Alex St John
- Bloodworks Northwest Research Institute, Seattle, WA; and
| | - Junmei Chen
- Bloodworks Northwest Research Institute, Seattle, WA; and
| | - Jose Lopez
- Bloodworks Northwest Research Institute, Seattle, WA; and
| | - Matthew T Rondina
- Department of Internal Medicine and Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, UT
- Geriatric Research, Education and Clinical Center, Department of Medicine, George E. Wahlen VA Medical Center, Salt Lake City, UT
| | - Robert Hunter
- Retroviral Research Center, Universidad Central del Caribe, Bayamón, Puerto Rico
| | - Angelia Gibson
- Division of Natural Sciences, Maryville College, Maryville, TN
| | - A Valance Washington
- Department of Biology, University of Puerto Rico-Rio Piedras, San Juan, Puerto Rico
| |
Collapse
|
30
|
Bare surface of gold nanoparticle induces inflammation through unfolding of plasma fibrinogen. Sci Rep 2018; 8:12557. [PMID: 30135553 PMCID: PMC6105630 DOI: 10.1038/s41598-018-30915-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 08/08/2018] [Indexed: 11/15/2022] Open
Abstract
The surface of nanoparticles (NPs) get coated by a wide range of biomolecules, upon exposure to biological fluids. It is now being increasingly accepted that NPs with particular physiochemical properties have a capacity to induce conformational changes to proteins and therefore influence their biological fates, we hypothesized that the gold NP’s metal surface may also be involved in the observed Fg unfolding and inflammatory response. To mechanistically test this hypothesis, we probed the interaction of Fg with gold surfaces using molecular dynamic simulation (MD) and revealed that the gold surface has a capacity to induce Fg conformational changes in favor of inflammation response. As the integrity of coatings at the surface of ultra-small gold NPs are not thorough, we also hypothesized that the ultra-small gold NPs have a capacity to induce unfolding of Fg regardless of the composition and surface charge of their coatings. Using different surface coatings at the surface of ultra-small gold NPs, we validated this hypothesis. Our findings suggest that gold NPs may cause unforeseen inflammatory effects, as their surface coatings may be degraded by physiological activity.
Collapse
|
31
|
Yakubenko VP, Cui K, Ardell CL, Brown KE, West XZ, Gao D, Stefl S, Salomon RG, Podrez EA, Byzova TV. Oxidative modifications of extracellular matrix promote the second wave of inflammation via β 2 integrins. Blood 2018; 132:78-88. [PMID: 29724896 PMCID: PMC6034644 DOI: 10.1182/blood-2017-10-810176] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 04/19/2018] [Indexed: 12/13/2022] Open
Abstract
Early stages of inflammation are characterized by extensive oxidative insult by recruited and activated neutrophils. Secretion of peroxidases, including the main enzyme, myeloperoxidase, leads to the generation of reactive oxygen species. We show that this oxidative insult leads to polyunsaturated fatty acid (eg, docosahexaenoate), oxidation, and accumulation of its product 2-(ω-carboxyethyl)pyrrole (CEP), which, in turn, is capable of protein modifications. In vivo CEP is generated predominantly at the inflammatory sites in macrophage-rich areas. During thioglycollate-induced inflammation, neutralization of CEP adducts dramatically reduced macrophage accumulation in the inflamed peritoneal cavity while exhibiting no effect on the early recruitment of neutrophils, suggesting a role in the second wave of inflammation. CEP modifications were abundantly deposited along the path of neutrophils migrating through the 3-dimensional fibrin matrix in vitro. Neutrophil-mediated CEP formation was markedly inhibited by the myeloperoxidase inhibitor, 4-ABH, and significantly reduced in myeloperoxidase-deficient mice. On macrophages, CEP adducts were recognized by cell adhesion receptors, integrin αMβ2 and αDβ2 Macrophage migration through CEP-fibrin gel was dramatically augmented when compared with fibrin alone, and was reduced by β2-integrin deficiency. Thus, neutrophil-mediated oxidation of abundant polyunsaturated fatty acids leads to the transformation of existing proteins into stronger adhesive ligands for αMβ2- and αDβ2-dependent macrophage migration. The presence of a carboxyl group rather than a pyrrole moiety on these adducts, resembling characteristics of bacterial and/or immobilized ligands, is critical for recognition by macrophages. Therefore, specific oxidation-dependent modification of extracellular matrix, aided by neutrophils, promotes subsequent αMβ2- and αDβ2-mediated migration/retention of macrophages during inflammation.
Collapse
Affiliation(s)
- Valentin P Yakubenko
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; and the
| | - Kui Cui
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN
| | - Christopher L Ardell
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN
| | - Kathleen E Brown
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; and the
| | - Xiaoxia Z West
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; and the
| | - Detao Gao
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; and the
| | - Samantha Stefl
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; and the
| | - Robert G Salomon
- Department of Chemistry, Case Western Reserve University, Cleveland, OH
| | - Eugene A Podrez
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; and the
| | - Tatiana V Byzova
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH; and the
| |
Collapse
|
32
|
Petersen MA, Ryu JK, Akassoglou K. Fibrinogen in neurological diseases: mechanisms, imaging and therapeutics. Nat Rev Neurosci 2018; 19:283-301. [PMID: 29618808 PMCID: PMC6743980 DOI: 10.1038/nrn.2018.13] [Citation(s) in RCA: 347] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The blood coagulation protein fibrinogen is deposited in the brain in a wide range of neurological diseases and traumatic injuries with blood-brain barrier (BBB) disruption. Recent research has uncovered pleiotropic roles for fibrinogen in the activation of CNS inflammation, induction of scar formation in the brain, promotion of cognitive decline and inhibition of repair. Such diverse roles are possible in part because of the unique structure of fibrinogen, which contains multiple binding sites for cellular receptors and proteins expressed in the nervous system. The cellular and molecular mechanisms underlying the actions of fibrinogen are beginning to be elucidated, providing insight into its involvement in neurological diseases, such as multiple sclerosis, Alzheimer disease and traumatic CNS injury. Selective drug targeting to suppress the damaging functions of fibrinogen in the nervous system without affecting its beneficial effects in haemostasis opens a new fibrinogen therapeutics pipeline for neurological disease.
Collapse
Affiliation(s)
- Mark A. Petersen
- Gladstone Institutes, San Francisco, CA USA
- Division of Neonatology, Department of Pediatrics, University of California, San Francisco, CA, USA
| | | | - Katerina Akassoglou
- Gladstone Institutes, San Francisco, CA USA
- Department of Neurology, University of California, San Francisco, CA, USA
| |
Collapse
|
33
|
Yakovlev S, Medved L. Effect of fibrinogen, fibrin, and fibrin degradation products on transendothelial migration of leukocytes. Thromb Res 2017; 162:93-100. [PMID: 29175090 DOI: 10.1016/j.thromres.2017.11.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/12/2017] [Accepted: 11/14/2017] [Indexed: 10/18/2022]
Abstract
In spite of numerous studies on the involvement of fibrinogen in transendothelial migration of leukocytes and thereby inflammation, there is still no clear understanding of which fibrin(ogen) species can stimulate leukocyte transmigration. Although we have previously proposed that interaction of fibrin with the VLDL receptor (VLDLR) promotes leukocyte transmigration, there is no direct experimental evidence for the involvement of fibrin in this process. To address these questions, we performed systematic studies of interaction of VLDLR with fibrinogen, fibrin, and their isolated recombinant BβN- and βN-domains, respectively, and the effect of various fibrin(ogen) species on transendothelial migration of leukocytes. The results obtained revealed that freshly purified fibrinogen does not interact with VLDLR in solution and has practically no effect on leukocyte transmigration. They also indicate that the VLDLR-binding site is cryptic in fibrinogen and becomes accessible upon its adsorption onto a surface or upon its conversion into fibrin. We also found that the D-D:E1 complex and higher molecular mass fibrin degradation products, as well as soluble fibrin and fibrin polymers (clots) anchored to the endothelial monolayer, promote leukocyte transmigration mainly through the VLDL receptor-dependent pathway. Thus, the results of the present study suggest that fibrin degradation products and soluble fibrin that may be present in the circulation in vivo, as well as fibrin clots that may be deposited on the surface of inflamed endothelium, promote leukocyte transmigration. These findings further clarify the molecular mechanisms underlying the fibrin-VLDLR-dependent pathway of leukocyte transmigration and provide an explanation for a possible (patho)physiological role of this pathway.
Collapse
Affiliation(s)
- Sergiy Yakovlev
- Center for Vascular and Inflammatory Diseases and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Leonid Medved
- Center for Vascular and Inflammatory Diseases and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
34
|
Campbell RA, Vieira-de-Abreu A, Rowley JW, Franks ZG, Manne BK, Rondina MT, Kraiss LW, Majersik JJ, Zimmerman GA, Weyrich AS. Clots Are Potent Triggers of Inflammatory Cell Gene Expression: Indications for Timely Fibrinolysis. Arterioscler Thromb Vasc Biol 2017; 37:1819-1827. [PMID: 28775073 DOI: 10.1161/atvbaha.117.309794] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 07/21/2017] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Blood vessel wall damage often results in the formation of a fibrin clot that traps inflammatory cells, including monocytes. The effect of clot formation and subsequent lysis on the expression of monocyte-derived genes involved in the development and progression of ischemic stroke and other vascular diseases, however, is unknown. Determine whether clot formation and lysis regulates the expression of human monocyte-derived genes that modulate vascular diseases. APPROACH AND RESULTS We performed next-generation RNA sequencing on monocytes extracted from whole blood clots and using a purified plasma clot system. Numerous mRNAs were differentially expressed by monocytes embedded in clots compared with unclotted controls, and IL-8 (interleukin 8) and MCP-1 (monocyte chemoattractant protein-1) were among the upregulated transcripts in both models. Clotted plasma also increased expression of IL-8 and MCP-1, which far exceeded responses observed in lipopolysaccharide-stimulated monocytes. Upregulation of IL-8 and MCP-1 occurred in a thrombin-independent but fibrin-dependent manner. Fibrinolysis initiated shortly after plasma clot formation (ie, 1-2 hours) reduced the synthesis of IL-8 and MCP-1, whereas delayed fibrinolysis was far less effective. Consistent with these in vitro models, monocytes embedded in unresolved thrombi from patients undergoing thrombectomy stained positively for IL-8 and MCP-1. CONCLUSIONS These findings demonstrate that clots are potent inducers of monocyte gene expression and that timely fibrinolysis attenuates inflammatory responses, specifically IL-8 and MCP-1. Dampening of inflammatory gene expression by timely clot lysis may contribute to the clinically proven efficacy of fibrinolytic drug treatment within hours of stroke onset.
Collapse
Affiliation(s)
- Robert A Campbell
- From the Program in Molecular Medicine (R.A.C., J.W.R., Z.G.F., B.K.M., M.T.R., L.W.K., A.S.W.) and Departments of Internal Medicine (R.A.C., A.V.-d.-A., J.W.R., M.T.R., G.A.Z., A.S.W.), Surgery (L.W.K.), and Neurology (J.J.M.), University of Utah, Salt Lake City.
| | - Adriana Vieira-de-Abreu
- From the Program in Molecular Medicine (R.A.C., J.W.R., Z.G.F., B.K.M., M.T.R., L.W.K., A.S.W.) and Departments of Internal Medicine (R.A.C., A.V.-d.-A., J.W.R., M.T.R., G.A.Z., A.S.W.), Surgery (L.W.K.), and Neurology (J.J.M.), University of Utah, Salt Lake City
| | - Jesse W Rowley
- From the Program in Molecular Medicine (R.A.C., J.W.R., Z.G.F., B.K.M., M.T.R., L.W.K., A.S.W.) and Departments of Internal Medicine (R.A.C., A.V.-d.-A., J.W.R., M.T.R., G.A.Z., A.S.W.), Surgery (L.W.K.), and Neurology (J.J.M.), University of Utah, Salt Lake City
| | - Zechariah G Franks
- From the Program in Molecular Medicine (R.A.C., J.W.R., Z.G.F., B.K.M., M.T.R., L.W.K., A.S.W.) and Departments of Internal Medicine (R.A.C., A.V.-d.-A., J.W.R., M.T.R., G.A.Z., A.S.W.), Surgery (L.W.K.), and Neurology (J.J.M.), University of Utah, Salt Lake City
| | - Bhanu Kanth Manne
- From the Program in Molecular Medicine (R.A.C., J.W.R., Z.G.F., B.K.M., M.T.R., L.W.K., A.S.W.) and Departments of Internal Medicine (R.A.C., A.V.-d.-A., J.W.R., M.T.R., G.A.Z., A.S.W.), Surgery (L.W.K.), and Neurology (J.J.M.), University of Utah, Salt Lake City
| | - Matthew T Rondina
- From the Program in Molecular Medicine (R.A.C., J.W.R., Z.G.F., B.K.M., M.T.R., L.W.K., A.S.W.) and Departments of Internal Medicine (R.A.C., A.V.-d.-A., J.W.R., M.T.R., G.A.Z., A.S.W.), Surgery (L.W.K.), and Neurology (J.J.M.), University of Utah, Salt Lake City
| | - Larry W Kraiss
- From the Program in Molecular Medicine (R.A.C., J.W.R., Z.G.F., B.K.M., M.T.R., L.W.K., A.S.W.) and Departments of Internal Medicine (R.A.C., A.V.-d.-A., J.W.R., M.T.R., G.A.Z., A.S.W.), Surgery (L.W.K.), and Neurology (J.J.M.), University of Utah, Salt Lake City
| | - Jennifer J Majersik
- From the Program in Molecular Medicine (R.A.C., J.W.R., Z.G.F., B.K.M., M.T.R., L.W.K., A.S.W.) and Departments of Internal Medicine (R.A.C., A.V.-d.-A., J.W.R., M.T.R., G.A.Z., A.S.W.), Surgery (L.W.K.), and Neurology (J.J.M.), University of Utah, Salt Lake City
| | - Guy A Zimmerman
- From the Program in Molecular Medicine (R.A.C., J.W.R., Z.G.F., B.K.M., M.T.R., L.W.K., A.S.W.) and Departments of Internal Medicine (R.A.C., A.V.-d.-A., J.W.R., M.T.R., G.A.Z., A.S.W.), Surgery (L.W.K.), and Neurology (J.J.M.), University of Utah, Salt Lake City
| | - Andrew S Weyrich
- From the Program in Molecular Medicine (R.A.C., J.W.R., Z.G.F., B.K.M., M.T.R., L.W.K., A.S.W.) and Departments of Internal Medicine (R.A.C., A.V.-d.-A., J.W.R., M.T.R., G.A.Z., A.S.W.), Surgery (L.W.K.), and Neurology (J.J.M.), University of Utah, Salt Lake City
| |
Collapse
|
35
|
Buzzacchera I, Vorobii M, Kostina NY, de Los Santos Pereira A, Riedel T, Bruns M, Ogieglo W, Möller M, Wilson CJ, Rodriguez-Emmenegger C. Polymer Brush-Functionalized Chitosan Hydrogels as Antifouling Implant Coatings. Biomacromolecules 2017; 18:1983-1992. [PMID: 28475307 DOI: 10.1021/acs.biomac.7b00516] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Implantable sensor devices require coatings that efficiently interface with the tissue environment to mediate biochemical analysis. In this regard, bioinspired polymer hydrogels offer an attractive and abundant source of coating materials. However, upon implantation these materials generally elicit inflammation and the foreign body reaction as a consequence of protein fouling on their surface and concomitant poor hemocompatibility. In this report we investigate a strategy to endow chitosan hydrogel coatings with antifouling properties by the grafting of polymer brushes in a "grafting-from" approach. Chitosan coatings were functionalized with polymer brushes of oligo(ethylene glycol) methyl ether methacrylate and 2-hydroxyethyl methacrylate using photoinduced single electron transfer living radical polymerization and the surfaces were thoroughly characterized by XPS, AFM, water contact angle goniometry, and in situ ellipsometry. The antifouling properties of these new bioinspired hydrogel-brush coatings were investigated by surface plasmon resonance. The influence of the modifications to the chitosan on hemocompatibility was assessed by contacting the surfaces with platelets and leukocytes. The coatings were hydrophilic and reached a thickness of up to 180 nm within 30 min of polymerization. The functionalization of the surface with polymer brushes significantly reduced the protein fouling and eliminated platelet activation and leukocyte adhesion. This methodology offers a facile route to functionalizing implantable sensor systems with antifouling coatings that improve hemocompatibility and pave the way for enhanced device integration in tissue.
Collapse
Affiliation(s)
| | - Mariia Vorobii
- DWI-Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University , Forckenbeckstraße 50, 52074 Aachen, Germany
| | - Nina Yu Kostina
- DWI-Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University , Forckenbeckstraße 50, 52074 Aachen, Germany
| | - Andres de Los Santos Pereira
- Department of Chemistry and Physics of Surfaces and Biointerfaces, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic , v.v.i., Heyrovsky Square 2, 16206 Prague, Czech Republic
| | - Tomáš Riedel
- Department of Chemistry and Physics of Surfaces and Biointerfaces, Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic , v.v.i., Heyrovsky Square 2, 16206 Prague, Czech Republic
| | - Michael Bruns
- Institute for Applied Materials (IAM) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Wojciech Ogieglo
- DWI-Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University , Forckenbeckstraße 50, 52074 Aachen, Germany
| | - Martin Möller
- DWI-Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University , Forckenbeckstraße 50, 52074 Aachen, Germany
| | | | - Cesar Rodriguez-Emmenegger
- DWI-Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University , Forckenbeckstraße 50, 52074 Aachen, Germany
| |
Collapse
|
36
|
αIIbβ3 binding to a fibrinogen fragment lacking the γ-chain dodecapeptide is activation dependent and EDTA inducible. Blood Adv 2017; 1:417-428. [PMID: 29296957 DOI: 10.1182/bloodadvances.2017004689] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 01/24/2017] [Indexed: 12/24/2022] Open
Abstract
Platelet integrin receptor αIIbβ3 supports platelet aggregation by binding fibrinogen. The interaction between the fibrinogen C-terminal γ-chain peptide composed of residues γ-404-411 (GAKQAGDV) and the Arg-Gly-Asp (RGD) binding pocket on αIIbβ3 is required for fibrinogen-mediated platelet aggregation, but data suggest that other ancillary binding sites on both fibrinogen and αIIbβ3 may lead to higher-affinity fibrinogen binding and clot retraction. To identify additional sites, we analyzed the ability of platelets and cells expressing normal and mutant αIIbβ3 to adhere to an immobilized fibrinogen plasmin fragment that lacks intact γ-404-411 ('D98'). We found the following: (1) Activated, but not unactivated, platelets adhere well to immobilized 'D98.' (2) Cells expressing constitutively active αIIbβ3 mutants, but not cells expressing normal αIIbβ3 or αVβ3, adhere well to 'D98.' (3) Monoclonal antibodies 10E5 and 7E3 inhibit the adhesion to 'D98' of activated platelets and cells expressing constitutively active αIIbβ3, as do small-molecule inhibitors that bind to the RGD pocket. (4) EDTA paradoxically induces normal αIIbβ3 to interact with 'D98.' Because molecular modeling and molecular dynamics simulations suggested that the αIIb L151-D159 helix may contribute to the interaction with 'D98,' we studied an αIIbβ3 mutant in which the αIIb 148-166 loop was swapped with the corresponding αV loop; it failed to bind to fibrinogen or 'D98.' Our data support a model in which conformational changes in αIIbβ3 and/or fibrinogen after platelet activation and the interaction between γ-404-411 and the RGD binding pocket make new ancillary sites available that support higher-affinity fibrinogen binding and clot retraction.
Collapse
|
37
|
Hsieh JY, Smith TD, Meli VS, Tran TN, Botvinick EL, Liu WF. Differential regulation of macrophage inflammatory activation by fibrin and fibrinogen. Acta Biomater 2017; 47:14-24. [PMID: 27662809 DOI: 10.1016/j.actbio.2016.09.024] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/12/2016] [Accepted: 09/19/2016] [Indexed: 12/20/2022]
Abstract
Fibrin is a major component of the provisional extracellular matrix formed during tissue repair following injury, and enables cell infiltration and anchoring at the wound site. Macrophages are dynamic regulators of this process, advancing and resolving inflammation in response to cues in their microenvironment. Although much is known about how soluble factors such as cytokines and chemokines regulate macrophage polarization, less is understood about how insoluble and adhesive cues, specifically the blood coagulation matrix fibrin, influence macrophage behavior. In this study, we observed that fibrin and its precursor fibrinogen elicit distinct macrophage functions. Culturing macrophages on fibrin gels fabricated by combining fibrinogen with thrombin stimulated secretion of the anti-inflammatory cytokine, interleukin-10 (IL-10). In contrast, exposure of macrophages to soluble fibrinogen stimulated high levels of inflammatory cytokine tumor necrosis factor alpha (TNF-α). Macrophages maintained their anti-inflammatory behavior when cultured on fibrin gels in the presence of soluble fibrinogen. In addition, adhesion to fibrin matrices inhibited TNF-α production in response to stimulation with LPS and IFN-γ, cytokines known to promote inflammatory macrophage polarization. Our data demonstrate that fibrin exerts a protective effect on macrophages, preventing inflammatory activation by stimuli including fibrinogen, LPS, and IFN-γ. Together, our study suggests that the presentation of fibrin(ogen) may be a key switch in regulating macrophage phenotype behavior, and this feature may provide a valuable immunomodulatory strategy for tissue healing and regeneration. STATEMENT OF SIGNIFICANCE Fibrin is a fibrous protein resulting from blood clotting and provides a provisional matrix into which cells migrate and to which they adhere during wound healing. Macrophages play an important role in this process, and are needed for both advancing and resolving inflammation. We demonstrate that culture of macrophages on fibrin matrices exerts an anti-inflammatory effect, whereas the soluble precursor fibrinogen stimulates inflammatory activation. Moreover, culture on fibrin completely abrogates inflammatory signaling caused by fibrinogen or known inflammatory stimuli including LPS and IFN-γ. Together, these studies show that the presentation of fibrin(ogen) is important for regulating a switch between macrophage pro- and anti-inflammatory behavior.
Collapse
Affiliation(s)
- Jessica Y Hsieh
- Department of Biomedical Engineering, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, United States; Department of Chemical Engineering and Materials Science, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, United States; The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, United States
| | - Tim D Smith
- Department of Biomedical Engineering, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, United States; Department of Chemical Engineering and Materials Science, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, United States; The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, United States
| | - Vijaykumar S Meli
- Department of Biomedical Engineering, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, United States; Department of Chemical Engineering and Materials Science, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, United States; The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, United States
| | - Thi N Tran
- Department of Biomedical Engineering, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, United States; Department of Chemical Engineering and Materials Science, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, United States; The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, United States
| | - Elliot L Botvinick
- Department of Biomedical Engineering, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, United States; Department of Chemical Engineering and Materials Science, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, United States; The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, United States
| | - Wendy F Liu
- Department of Biomedical Engineering, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, United States; Department of Chemical Engineering and Materials Science, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, United States; The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, 2412 Engineering Hall, Irvine, CA 92697-2730, United States.
| |
Collapse
|
38
|
Mortimer GM, Minchin RF. Cryptic epitopes and functional diversity in extracellular proteins. Int J Biochem Cell Biol 2016; 81:112-120. [DOI: 10.1016/j.biocel.2016.10.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 01/28/2023]
|
39
|
Sándor N, Lukácsi S, Ungai-Salánki R, Orgován N, Szabó B, Horváth R, Erdei A, Bajtay Z. CD11c/CD18 Dominates Adhesion of Human Monocytes, Macrophages and Dendritic Cells over CD11b/CD18. PLoS One 2016; 11:e0163120. [PMID: 27658051 PMCID: PMC5033469 DOI: 10.1371/journal.pone.0163120] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/03/2016] [Indexed: 12/13/2022] Open
Abstract
Complement receptors CR3 (CD11b/CD18) and CR4 (CD11c/CD18) belong to the family of beta2 integrins and are expressed mainly by myeloid cell types in humans. Previously, we proved that CR3 rather than CR4 plays a key role in phagocytosis. Here we analysed how CD11b and CD11c participate in cell adhesion to fibrinogen, a common ligand of CR3 and CR4, employing human monocytes, monocyte-derived macrophages (MDMs) and monocyte-derived dendritic cells (MDDCs) highly expressing CD11b as well as CD11c. We determined the exact numbers of CD11b and CD11c on these cell types by a bead-based technique, and found that the ratio of CD11b/CD11c is 1.2 for MDDCs, 1.7 for MDMs and 7.1 for monocytes, suggesting that the function of CD11c is preponderant in MDDCs and less pronounced in monocytes. Applying state-of-the-art biophysical techniques, we proved that cellular adherence to fibrinogen is dominated by CD11c. Furthermore, we found that blocking CD11b significantly enhances the attachment of MDDCs and MDMs to fibrinogen, demonstrating a competition between CD11b and CD11c for this ligand. On the basis of the cell surface receptor numbers and the measured adhesion strength we set up a model, which explains the different behavior of the three cell types.
Collapse
Affiliation(s)
- Noémi Sándor
- MTA-ELTE Immunology Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Szilvia Lukácsi
- Department of Immunology, Institute of Biology, Faculty of Science, Eötvös Loránd University, Budapest, Hungary
| | - Rita Ungai-Salánki
- Department of Biological Physics, Institute of Physics, Faculty of Science, Eötvös Loránd University, Budapest, Hungary
| | - Norbert Orgován
- Nanobiosensorics “Lendület” Group, Institute of Technical Physics and Material Sciences, Centre for Energy Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Bálint Szabó
- Department of Biological Physics, Institute of Physics, Faculty of Science, Eötvös Loránd University, Budapest, Hungary
| | - Róbert Horváth
- Nanobiosensorics “Lendület” Group, Institute of Technical Physics and Material Sciences, Centre for Energy Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Anna Erdei
- MTA-ELTE Immunology Research Group, Hungarian Academy of Sciences, Budapest, Hungary
- Department of Immunology, Institute of Biology, Faculty of Science, Eötvös Loránd University, Budapest, Hungary
| | - Zsuzsa Bajtay
- Department of Immunology, Institute of Biology, Faculty of Science, Eötvös Loránd University, Budapest, Hungary
- * E-mail:
| |
Collapse
|
40
|
The interaction between fibrinogen and zymogen FXIII-A2B2 is mediated by fibrinogen residues γ390-396 and the FXIII-B subunits. Blood 2016; 128:1969-1978. [PMID: 27561317 DOI: 10.1182/blood-2016-04-712323] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/22/2016] [Indexed: 01/07/2023] Open
Abstract
Coagulation transglutaminase factor XIII (FXIII) exists in circulation as heterotetrameric proenzyme FXIII-A2B2 Effectively all FXIII-A2B2 circulates bound to fibrinogen, and excess FXIII-B2 circulates in plasma. The motifs that mediate interaction of FXIII-A2B2 with fibrinogen have been elusive. We recently detected reduced binding of FXIII-A2B2 to murine fibrinogen that has γ-chain residues 390-396 mutated to alanines (Fibγ390-396A). Here, we evaluated binding features using human components, including recombinant fibrinogen variants, FXIII-A2B2, and isolated FXIII-A2 and -B2 homodimers. FXIII-A2B2 coprecipitated with wild-type (γA/γA), alternatively-spliced (γ'/γ'), and αC-truncated (Aα251) fibrinogens, whereas coprecipitation with human Fibγ390-396A was reduced by 75% (P <0001). Surface plasmon resonance showed γA/γA, γ'/γ', and Aα251 fibrinogens bound FXIII-A2B2 with high affinity (nanomolar); however, Fibγ390-396A did not bind FXIII-A2B2 These data indicate fibrinogen residues γ390-396 comprise the major binding motif for FXIII-A2B2 Compared with γA/γA clots, FXIII-A2B2 activation peptide release was 2.7-fold slower in Fibγ390-396A clots (P < .02). Conversely, activation of recombinant FXIII-A2 (lacking FXIII-B2) was similar in γA/γA and Fibγ390-396A clots, suggesting fibrinogen residues γ390-396 accelerate FXIII-A2B2 activation in a FXIII-B2-dependent mechanism. Recombinant FXIII-B2 bound γA/γA, γ'/γ', and Aα251 with similar affinities as FXIII-A2B2, but did not bind or coprecipitate with Fibγ390-396A FXIII-B2 also coprecipitated with fibrinogen from FXIII-A-deficient mouse and human plasmas. Collectively, these data indicate that FXIII-A2B2 binds fibrinogen residues γ390-396 via the B subunits, and that excess plasma FXIII-B2 is not free, but rather circulates bound to fibrinogen. These findings provide insight into assembly of the fibrinogen/FXIII-A2B2 complex in both physiologic and therapeutic situations.
Collapse
|
41
|
Ko YP, Flick MJ. Fibrinogen Is at the Interface of Host Defense and Pathogen Virulence in Staphylococcus aureus Infection. Semin Thromb Hemost 2016; 42:408-21. [PMID: 27056151 PMCID: PMC5514417 DOI: 10.1055/s-0036-1579635] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fibrinogen not only plays a pivotal role in hemostasis but also serves key roles in antimicrobial host defense. As a rapidly assembled provisional matrix protein, fibrin(ogen) can function as an early line of host protection by limiting bacterial growth, suppressing dissemination of microbes to distant sites, and mediating host bacterial killing. Fibrinogen-mediated host antimicrobial activity occurs predominantly through two general mechanisms, namely, fibrin matrices functioning as a protective barrier and fibrin(ogen) directly or indirectly driving host protective immune function. The potential of fibrin to limit bacterial infection and disease has been countered by numerous bacterial species evolving and maintaining virulence factors that engage hemostatic system components within vertebrate hosts. Bacterial factors have been isolated that simply bind fibrinogen or fibrin, promote fibrin polymer formation, or promote fibrin dissolution. Staphylococcus aureus is an opportunistic gram-positive bacterium, the causative agent of a wide range of human infectious diseases, and a prime example of a pathogen exquisitely sensitive to host fibrinogen. Indeed, current data suggest fibrinogen serves as a context-dependent determinant of host defense or pathogen virulence in Staphylococcus infection whose ultimate contribution is dictated by the expression of S. aureus virulence factors, the path of infection, and the tissue microenvironment.
Collapse
Affiliation(s)
- Ya-Ping Ko
- Center for Infectious and Inflammatory Diseases, Institute for Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas
| | - Matthew J. Flick
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
42
|
Dragneva N, Rubel O, Floriano WB. Molecular Dynamics of Fibrinogen Adsorption onto Graphene, but Not onto Poly(ethylene glycol) Surface, Increases Exposure of Recognition Sites That Trigger Immune Response. J Chem Inf Model 2016; 56:706-20. [DOI: 10.1021/acs.jcim.5b00703] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Nadiya Dragneva
- Thunder Bay Regional Research Institute, 290 Munro Street, Thunder Bay, Ontario P7A 7T1, Canada
- Biotechnology
Ph.D. Program, Faculty of Science and Environment Studies, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Oleg Rubel
- Thunder Bay Regional Research Institute, 290 Munro Street, Thunder Bay, Ontario P7A 7T1, Canada
- Department
of Materials Science and Engineering, McMaster University, 1280 Main
Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Wely B. Floriano
- Thunder Bay Regional Research Institute, 290 Munro Street, Thunder Bay, Ontario P7A 7T1, Canada
- Biotechnology
Ph.D. Program, Faculty of Science and Environment Studies, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
- Department
of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| |
Collapse
|
43
|
Zhou Z, Xu MJ, Gao B. Hepatocytes: a key cell type for innate immunity. Cell Mol Immunol 2015; 13:301-15. [PMID: 26685902 PMCID: PMC4856808 DOI: 10.1038/cmi.2015.97] [Citation(s) in RCA: 315] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 10/23/2015] [Accepted: 10/23/2015] [Indexed: 02/07/2023] Open
Abstract
Hepatocytes, the major parenchymal cells in the liver, play pivotal roles in metabolism, detoxification, and protein synthesis. Hepatocytes also activate innate immunity against invading microorganisms by secreting innate immunity proteins. These proteins include bactericidal proteins that directly kill bacteria, opsonins that assist in the phagocytosis of foreign bacteria, iron-sequestering proteins that block iron uptake by bacteria, several soluble factors that regulate lipopolysaccharide signaling, and the coagulation factor fibrinogen that activates innate immunity. In this review, we summarize the wide variety of innate immunity proteins produced by hepatocytes and discuss liver-enriched transcription factors (e.g. hepatocyte nuclear factors and CCAAT/enhancer-binding proteins), pro-inflammatory mediators (e.g. interleukin (IL)-6, IL-22, IL-1β and tumor necrosis factor-α), and downstream signaling pathways (e.g. signal transducer and activator of transcription factor 3 and nuclear factor-κB) that regulate the expression of these innate immunity proteins. We also briefly discuss the dysregulation of these innate immunity proteins in chronic liver disease, which may contribute to an increased susceptibility to bacterial infection in patients with cirrhosis.
Collapse
Affiliation(s)
- Zhou Zhou
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism National Institutes of Health, Bethesda, MD, USA
| | - Ming-Jiang Xu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism National Institutes of Health, Bethesda, MD, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
44
|
Blood coagulation protein fibrinogen promotes autoimmunity and demyelination via chemokine release and antigen presentation. Nat Commun 2015; 6:8164. [PMID: 26353940 PMCID: PMC4579523 DOI: 10.1038/ncomms9164] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 07/27/2015] [Indexed: 12/14/2022] Open
Abstract
Autoimmunity and macrophage recruitment into the central nervous system (CNS) are critical determinants of neuroinflammatory diseases. However, the mechanisms that drive immunological responses targeted to the CNS remain largely unknown. Here we show that fibrinogen, a central blood coagulation protein deposited in the CNS after blood–brain barrier disruption, induces encephalitogenic adaptive immune responses and peripheral macrophage recruitment into the CNS leading to demyelination. Fibrinogen stimulates a unique transcriptional signature in CD11b+ antigen-presenting cells inducing the recruitment and local CNS activation of myelin antigen-specific Th1 cells. Fibrinogen depletion reduces Th1 cells in the multiple sclerosis model, experimental autoimmune encephalomyelitis. Major histocompatibility complex (MHC) II-dependent antigen presentation, CXCL10- and CCL2-mediated recruitment of T cells and macrophages, respectively, are required for fibrinogen-induced encephalomyelitis. Inhibition of the fibrinogen receptor CD11b/CD18 protects from all immune and neuropathologic effects. Our results show that the final product of the coagulation cascade is a key determinant of CNS autoimmunity. Autoimmune brain inflammation is associated with activation of macrophages and microglia. Here the authors show that fibrinogen induces encephalitogenic T-cell activation and macrophage recruitment to the central nervous system, and promotes demyelination in a mouse model of multiple sclerosis.
Collapse
|
45
|
Asselta R, Robusto M, Braidotti P, Peyvandi F, Nastasio S, D'Antiga L, Perisic VN, Maggiore G, Caccia S, Duga S. Hepatic fibrinogen storage disease: identification of two novel mutations (p.Asp316Asn, fibrinogen Pisa and p.Gly366Ser, fibrinogen Beograd) impacting on the fibrinogen γ-module. J Thromb Haemost 2015; 13:1459-67. [PMID: 26039544 DOI: 10.1111/jth.13021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/13/2015] [Indexed: 08/31/2023]
Abstract
BACKGROUND Quantitative fibrinogen deficiencies (hypofibrinogenemia and afibrinogenemia) are rare congenital disorders characterized by low/unmeasurable plasma fibrinogen antigen levels. Their genetic basis is invariably represented by mutations within the fibrinogen genes (FGA, FGB and FGG coding for the Aα, Bβ and γ chains). Currently, only four mutations (p.Gly284Arg, p.Arg375Trp, delGVYYQ 346-350, p.Thr314Pro), all affecting the fibrinogen γ chain, have been reported to cause fibrinogen storage disease (FSD), a disorder characterized by protein aggregation, endoplasmic reticulum retention and hypofibrinogenemia. OBJECTIVES To investigate the genetic basis of FSD in two hypofibrinogenemic patients. METHODS The mutational screening of the fibrinogen genes was performed by direct DNA sequencing. The impact of identified mutations on fibrinogen structure was investigated by in-silico molecular modeling. Liver histology was evaluated by light microscopy, electron microscopy and immunocytochemistry. RESULTS Here, we describe two hypofibrinogenemic children with persistent abnormal liver function parameters. Direct sequencing of the coding portion of fibrinogen genes disclosed two novel FGG missense variants (p.Asp316Asn, fibrinogen Pisa; p.Gly366Ser, fibrinogen Beograd), both present in the heterozygous state and affecting residues located in the fibrinogen C-terminal γ-module. Liver sections derived from biopsies of the two patients were examined by immunocytochemical analyses, revealing hepatocyte cytoplasmic inclusions immunoreactive to anti-fibrinogen antibodies. CONCLUSIONS Our work strongly confirms the clustering of mutations causing FSD in the fibrinogen γ chain between residues 284 and 375. Based on an in-depth structural analysis of all FSD-causing mutations and on their resemblance to mutations leading to serpinopathies, we also comment on a possible mechanism explaining fibrinogen polymerization within hepatocytes.
Collapse
Affiliation(s)
- R Asselta
- Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy
- Humanitas Clinical and Research Center, Rozzano, Italy
| | - M Robusto
- Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy
- Humanitas Clinical and Research Center, Rozzano, Italy
| | - P Braidotti
- Pathology Department, S. Paolo Hospital, Milan, Italy
| | - F Peyvandi
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Angelo Bianchi Bonomi Haemophilia and Thrombosis Centre, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico and Luigi Villa Foundation, Milan, Italy
| | - S Nastasio
- Department of Clinical and Experimental Medicine, University of Pisa, Pediatric Gastroenterology, University Hospital Santa Chiara, Pisa, Italy
| | - L D'Antiga
- Paediatric Liver, GI and Transplantation, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy
| | - V N Perisic
- Department of Gastroenterology and Hepatology, University Children's Hospital, Belgrade, Serbia
| | - G Maggiore
- Department of Clinical and Experimental Medicine, University of Pisa, Pediatric Gastroenterology, University Hospital Santa Chiara, Pisa, Italy
| | - S Caccia
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Segrate, Milan, Italy
| | - S Duga
- Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy
- Humanitas Clinical and Research Center, Rozzano, Italy
| |
Collapse
|
46
|
Mice expressing a mutant form of fibrinogen that cannot support fibrin formation exhibit compromised antimicrobial host defense. Blood 2015; 126:2047-58. [PMID: 26228483 DOI: 10.1182/blood-2015-04-639849] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 07/26/2015] [Indexed: 12/14/2022] Open
Abstract
Fibrin(ogen) is central to hemostasis and thrombosis and also contributes to multiple physiologic and pathologic processes beyond coagulation. However, the precise contribution of soluble fibrinogen vs insoluble fibrin matrices to vascular integrity, tissue repair, inflammation, and disease has been undefined and unapproachable. To establish the means to distinguish fibrinogen- and fibrin-dependent processes in vivo, Fib(AEK) mice were generated that carry normal levels of circulating fibrinogen but lack the capacity for fibrin polymer formation due to a germ-line mutation in the Aα chain thrombin cleavage site. Homozygous Fib(AEK) mice developed to term and exhibited postnatal survival superior to that of fibrinogen-deficient mice. Unlike fibrinogen-deficient mice, platelet-rich plasma from Fib(AEK) mice supported normal platelet aggregation in vitro, highlighting that fibrinogen(AEK) retains the functional capacity to support interactions with platelets. Thrombin failed to release fibrinopeptide-A from fibrinogen(AEK) and failed to induce polymer formation with Fib(AEK) plasma or purified fibrinogen(AEK) in 37°C mixtures regardless of incubation time. Fib(AEK) mice displayed both an absence of fibrin polymer formation following liver injury, as assessed by electron microscopy, and a failure to generate stable occlusive thrombi following FeCl3 injury of carotid arteries. Fib(AEK) mice exhibited a profound impediment in Staphylococcus aureus clearance following intraperitoneal infection similar to fibrinogen-deficient mice, yet Fib(AEK) mice displayed a significant infection dose-dependent survival advantage over fibrinogen-deficient mice following peritonitis challenge. Collectively, these findings establish for the first time that fibrin polymer is the molecular form critical for antimicrobial mechanisms while simultaneously highlighting biologically meaningful contributions and functions of the soluble molecule.
Collapse
|
47
|
Safiullin R, Christenson W, Owaynat H, Yermolenko IS, Kadirov MK, Ros R, Ugarova TP. Fibrinogen matrix deposited on the surface of biomaterials acts as a natural anti-adhesive coating. Biomaterials 2015. [PMID: 26210181 DOI: 10.1016/j.biomaterials.2015.07.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Adsorption of fibrinogen on the luminal surface of biomaterials is a critical early event during the interaction of blood with implanted vascular graft prostheses which determines their thrombogenicity. We have recently identified a nanoscale process by which fibrinogen modifies the adhesive properties of various surfaces for platelets and leukocytes. In particular, adsorption of fibrinogen at low density promotes cell adhesion while its adsorption at high density results in the formation of an extensible multilayer matrix, which dramatically reduces cell adhesion. It remains unknown whether deposition of fibrinogen on the surface of vascular graft materials produces this anti-adhesive effect. Using atomic force spectroscopy, single cell force spectroscopy, and standard adhesion assays with platelets and leukocytes, we have characterized the adhesive and physical properties of the contemporary biomaterials, before and after coating with fibrinogen. We found that uncoated PET, PTFE and ePTFE exhibited high adhesion forces developed between the AFM tip or cells and the surfaces. Adsorption of fibrinogen at the increasing concentrations progressively reduced adhesion forces, and at ≥2 μg/ml all surfaces were virtually nonadhesive. Standard adhesion assays performed with platelets and leukocytes confirmed this dependence. These results provide a better understanding of the molecular events underlying thrombogenicity of vascular grafts.
Collapse
Affiliation(s)
- Roman Safiullin
- Center for Metabolic and Vascular Biology, School of Life Sciences, Tempe, AZ 85287, United States; Kazan National Research Technological University, Kazan 420088, Russian Federation
| | - Wayne Christenson
- Center for Biological Physics, Tempe, AZ 85287, United States; Department of Physics, Arizona State University, Tempe, AZ 85287, United States
| | - Hadil Owaynat
- Center for Metabolic and Vascular Biology, School of Life Sciences, Tempe, AZ 85287, United States
| | - Ivan S Yermolenko
- Center for Metabolic and Vascular Biology, School of Life Sciences, Tempe, AZ 85287, United States
| | - Marsil K Kadirov
- Kazan National Research Technological University, Kazan 420088, Russian Federation; Arbuzov Institute of Organic and Physical Chemistry, Kazan 420088, Russian Federation
| | - Robert Ros
- Center for Biological Physics, Tempe, AZ 85287, United States; Department of Physics, Arizona State University, Tempe, AZ 85287, United States
| | - Tatiana P Ugarova
- Center for Metabolic and Vascular Biology, School of Life Sciences, Tempe, AZ 85287, United States.
| |
Collapse
|
48
|
Muradashvili N, Benton RL, Saatman KE, Tyagi SC, Lominadze D. Ablation of matrix metalloproteinase-9 gene decreases cerebrovascular permeability and fibrinogen deposition post traumatic brain injury in mice. Metab Brain Dis 2015; 30:411-26. [PMID: 24771110 PMCID: PMC4213324 DOI: 10.1007/s11011-014-9550-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/15/2014] [Indexed: 12/14/2022]
Abstract
Traumatic brain injury (TBI) is accompanied with enhanced matrix metalloproteinase-9 (MMP-9) activity and elevated levels of plasma fibrinogen (Fg), which is a known inflammatory agent. Activation of MMP-9 and increase in blood content of Fg (i.e. hyperfibrinogenemia, HFg) both contribute to cerebrovascular disorders leading to blood brain barrier disruption. It is well-known that activation of MMP-9 contributes to vascular permeability. It has been shown that at an elevated level (i.e. HFg) Fg disrupts blood brain barrier. However, mechanisms of their actions during TBI are not known. Mild TBI was induced in wild type (WT, C57BL/6 J) and MMP-9 gene knockout (Mmp9(-/-)) homozygous, mice. Pial venular permeability to fluorescein isothiocyanate-conjugated bovine serum albumin in pericontusional area was observed 14 days after injury. Mice memory was tested with a novel object recognition test. Increased expression of Fg endothelial receptor intercellular adhesion protein-1 and formation of caveolae were associated with enhanced activity of MMP-9 causing an increase in pial venular permeability. As a result, an enhanced deposition of Fg and cellular prion protein (PrP(C)) were found in pericontusional area. These changes were attenuated in Mmp9(-/-) mice and were associated with lesser loss of short-term memory in these mice than in WT mice. Our data suggest that mild TBI-induced increased cerebrovascular permeability enhances deposition of Fg-PrP(C) and loss of memory, which is ameliorated in the absence of MMP-9 activity. Thus, targeting MMP-9 activity and blood level of Fg can be a possible therapeutic remedy to diminish vasculo-neuronal damage after TBI.
Collapse
Affiliation(s)
- Nino Muradashvili
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY
| | - Richard L. Benton
- Department of Anatomical Sciences and Neurobiology and Kentucky Spinal Cord Injury Research Center (KSCIRC), University of Louisville, School of Medicine, Louisville, KY
| | - Kathryn E. Saatman
- Department of Physiology and Neurosurgery and Spinal Cord & Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY, USA
| | - Suresh C. Tyagi
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY
| | - David Lominadze
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY
- Corresponding Author: David Lominadze, Ph. D., University of Louisville, Dept. of Physiology & Biophysics, School of Medicine, Bldg. A, Room 1115, 500 South Preston Street, Louisville, KY 40202, Phone (502) 852-4902, Fax (502) 852-6239,
| |
Collapse
|
49
|
Podolnikova NP, Podolnikov AV, Haas TA, Lishko VK, Ugarova TP. Ligand recognition specificity of leukocyte integrin αMβ2 (Mac-1, CD11b/CD18) and its functional consequences. Biochemistry 2015; 54:1408-20. [PMID: 25613106 DOI: 10.1021/bi5013782] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The broad recognition specificity exhibited by integrin α(M)β2 (Mac-1, CD11b/CD18) has allowed this adhesion receptor to play innumerable roles in leukocyte biology, yet we know little about how and why α(M)β2 binds its multiple ligands. Within α(M)β2, the α(M)I-domain is responsible for integrin's multiligand binding properties. To identify its recognition motif, we screened peptide libraries spanning sequences of many known protein ligands for α(M)I-domain binding and also selected the α(M)I-domain recognition sequences by phage display. Analyses of >1400 binding and nonbinding peptides derived from peptide libraries showed that a key feature of the α(M)I-domain recognition motif is a small core consisting of basic amino acids flanked by hydrophobic residues. Furthermore, the peptides selected by phage display conformed to a similar pattern. Identification of the recognition motif allowed the construction of an algorithm that reliably predicts the α(M)I-domain binding sites in the α(M)β2 ligands. The recognition specificity of the α(M)I-domain resembles that of some chaperones, which allows it to bind segments exposed in unfolded proteins. The disclosure of the α(M)β2 binding preferences allowed the prediction that cationic host defense peptides, which are strikingly enriched in the α(M)I-domain recognition motifs, represent a new class of α(M)β2 ligands. This prediction has been tested by examining the interaction of α(M)β2 with the human cathelicidin peptide LL-37. LL-37 induced a potent α(M)β2-dependent cell migratory response and caused activation of α(M)β2 on neutrophils. The newly revealed recognition specificity of α(M)β2 toward unfolded protein segments and cationic proteins and peptides suggests that α(M)β2 may serve as a previously proposed "alarmin" receptor with important roles in innate host defense.
Collapse
Affiliation(s)
- Nataly P Podolnikova
- Center for Metabolic and Vascular Biology, School of Life Sciences, Arizona State University , Tempe, Arizona 85287, United States
| | | | | | | | | |
Collapse
|
50
|
Ge C, Tian J, Zhao Y, Chen C, Zhou R, Chai Z. Towards understanding of nanoparticle–protein corona. Arch Toxicol 2015; 89:519-39. [DOI: 10.1007/s00204-015-1458-0] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/08/2015] [Indexed: 12/25/2022]
|