1
|
Kramer M, Hoang TH, Yang H, Shchyglo O, Böge J, Neubacher U, Colitti-Klausnitzer J, Manahan-Vaughan D. Intracerebral inoculation of healthy non-transgenic rats with a single aliquot of oligomeric amyloid-β (1-42) profoundly and progressively alters brain function throughout life. Front Aging Neurosci 2024; 16:1397901. [PMID: 39156737 PMCID: PMC11327071 DOI: 10.3389/fnagi.2024.1397901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/09/2024] [Indexed: 08/20/2024] Open
Abstract
One of the puzzling aspects of sporadic Alzheimer's disease (AD) is how it commences. Changes in one key brain peptide, amyloid-beta (Aβ), accompany disease progression, but whether this comprises a trigger or a consequence of AD is still a topic of debate. It is clear however that the cerebral presence of oligomeric Aβ (1-42) is a key factor in early AD-pathogenesis. Furthermore, treatment of rodent brains with oligomeric Aβ (1-42) either in vitro or in vivo, acutely impairs hippocampal synaptic plasticity, creating a link between Aβ-pathology and learning impairments. Here, we show that a once-off inoculation of the brains of healthy adult rats with oligomeric Aβ (1-42) exerts debilitating effects on the long-term viability of the hippocampus, one of the primary targets of AD. Changes are progressive: months after treatment, synaptic plasticity, neuronal firing and spatial learning are impaired and expression of plasticity-related proteins are changed, in the absence of amyloid plaques. Early changes relate to activation of microglia, whereas later changes are associated with a reconstruction of astroglial morphology. These data suggest that a disruption of Aβ homeostasis may suffice to trigger an irreversible cascade, underlying progressive loss of hippocampal function, that parallels the early stages of AD.
Collapse
|
2
|
Im D, Choi TS. Distinctive contribution of two additional residues in protein aggregation of Aβ42 and Aβ40 isoforms. BMB Rep 2024; 57:263-272. [PMID: 38835114 PMCID: PMC11214890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/16/2024] [Accepted: 04/26/2024] [Indexed: 06/06/2024] Open
Abstract
Amyloid-β (Aβ) is one of the amyloidogenic intrinsically disordered proteins (IDPs) that self-assemble to protein aggregates, incurring cell malfunction and cytotoxicity. While Aβ has been known to regulate multiple physiological functions, such as enhancing synaptic functions, aiding in the recovery of the blood-brain barrier/brain injury, and exhibiting tumor suppression/antimicrobial activities, the hydrophobicity of the primary structure promotes pathological aggregations that are closely associated with the onset of Alzheimer's disease (AD). Aβ proteins consist of multiple isoforms with 37-43 amino acid residues that are produced by the cleavage of amyloid-β precursor protein (APP). The hydrolytic products of APP are secreted to the extracellular regions of neuronal cells. Aβ 1-42 (Aβ42) and Aβ 1-40 (Aβ40) are dominant isoforms whose significance in AD pathogenesis has been highlighted in numerous studies to understand the molecular mechanism and develop AD diagnosis and therapeutic strategies. In this review, we focus on the differences between Aβ42 and Aβ40 in the molecular mechanism of amyloid aggregations mediated by the two additional residues (Ile41 and Ala42) of Aβ42. The current comprehension of Aβ42 and Aβ40 in AD progression is outlined, together with the structural features of Aβ42/Aβ40 amyloid fibrils, and the aggregation mechanisms of Aβ42/Aβ40. Furthermore, the impact of the heterogeneous distribution of Aβ isoforms during amyloid aggregations is discussed in the system mimicking the coexistence of Aβ42 and Aβ40 in human cerebrospinal fluid (CSF) and plasma. [BMB Reports 2024; 57(6): 263-272].
Collapse
Affiliation(s)
- Dongjoon Im
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Tae Su Choi
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| |
Collapse
|
3
|
Aßfalg M, Güner G, Müller SA, Breimann S, Langosch D, Muhle-Goll C, Frishman D, Steiner H, Lichtenthaler SF. Cleavage efficiency of the intramembrane protease γ-secretase is reduced by the palmitoylation of a substrate's transmembrane domain. FASEB J 2024; 38:e23442. [PMID: 38275103 DOI: 10.1096/fj.202302152r] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 01/27/2024]
Abstract
The intramembrane protease γ-secretase has broad physiological functions, but also contributes to Notch-dependent tumors and Alzheimer's disease. While γ-secretase cleaves numerous membrane proteins, only few nonsubstrates are known. Thus, a fundamental open question is how γ-secretase distinguishes substrates from nonsubstrates and whether sequence-based features or post-translational modifications of membrane proteins contribute to substrate recognition. Using mass spectrometry-based proteomics, we identified several type I membrane proteins with short ectodomains that were inefficiently or not cleaved by γ-secretase, including 'pituitary tumor-transforming gene 1-interacting protein' (PTTG1IP). To analyze the mechanism preventing cleavage of these putative nonsubstrates, we used the validated substrate FN14 as a backbone and replaced its transmembrane domain (TMD), where γ-cleavage occurs, with the one of nonsubstrates. Surprisingly, some nonsubstrate TMDs were efficiently cleaved in the FN14 backbone, demonstrating that a cleavable TMD is necessary, but not sufficient for cleavage by γ-secretase. Cleavage efficiencies varied by up to 200-fold. Other TMDs, including that of PTTG1IP, were still barely cleaved within the FN14 backbone. Pharmacological and mutational experiments revealed that the PTTG1IP TMD is palmitoylated, which prevented cleavage by γ-secretase. We conclude that the TMD sequence of a membrane protein and its palmitoylation can be key factors determining substrate recognition and cleavage efficiency by γ-secretase.
Collapse
Affiliation(s)
- Marlene Aßfalg
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Gökhan Güner
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stephan Breimann
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Bioinformatics, School of Life Sciences, Technical University of Munich, Freising, Germany
- Biomedical Center (BMC), Division of Metabolic Biochemistry, Faculty of Medicine, LMU Munich, Munich, Germany
| | | | - Claudia Muhle-Goll
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Dmitrij Frishman
- Department of Bioinformatics, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Harald Steiner
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Biomedical Center (BMC), Division of Metabolic Biochemistry, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
4
|
Abstract
Probabilistic and parsimony-based arguments regarding available genetics data are used to propose that Hardy and Higgin's amyloid cascade hypothesis is valid but is commonly interpreted too narrowly to support, incorrectly, the primacy of the amyloid-β peptide (Aβ) in driving Alzheimer's disease pathogenesis. Instead, increased activity of the βCTF (C99) fragment of AβPP is the critical pathogenic determinant altered by mutations in the APP gene. This model is consistent with the regulation of APP mRNA translation via its 5' iron responsive element. Similar arguments support that the pathological effects of familial Alzheimer's disease mutations in the genes PSEN1 and PSEN2 are not exerted directly via changes in AβPP cleavage to produce different ratios of Aβ length. Rather, these mutations likely act through effects on presenilin holoprotein conformation and function, and possibly the formation and stability of multimers of presenilin holoprotein and/or of the γ-secretase complex. All fAD mutations in APP, PSEN1, and PSEN2 likely find unity of pathological mechanism in their actions on endolysosomal acidification and mitochondrial function, with detrimental effects on iron homeostasis and promotion of "pseudo-hypoxia" being of central importance. Aβ production is enhanced and distorted by oxidative stress and accumulates due to decreased lysosomal function. It may act as a disease-associated molecular pattern enhancing oxidative stress-driven neuroinflammation during the cognitive phase of the disease.
Collapse
Affiliation(s)
- Michael Lardelli
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
5
|
Kleffman K, Levinson G, Rose IVL, Blumenberg LM, Shadaloey SAA, Dhabaria A, Wong E, Galan-Echevarria F, Karz A, Argibay D, Von Itter R, Floristan A, Baptiste G, Eskow NM, Tranos JA, Chen J, Vega Y Saenz de Miera EC, Call M, Rogers R, Jour G, Wadghiri YZ, Osman I, Li YM, Mathews P, DeMattos R, Ueberheide B, Ruggles KV, Liddelow SA, Schneider RJ, Hernando E. Melanoma-secreted Amyloid Beta Suppresses Neuroinflammation and Promotes Brain Metastasis. Cancer Discov 2022; 12:1314-1335. [PMID: 35262173 PMCID: PMC9069488 DOI: 10.1158/2159-8290.cd-21-1006] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/21/2021] [Accepted: 02/18/2022] [Indexed: 11/16/2022]
Abstract
Brain metastasis is a significant cause of morbidity and mortality in multiple cancer types and represents an unmet clinical need. The mechanisms that mediate metastatic cancer growth in the brain parenchyma are largely unknown. Melanoma, which has the highest rate of brain metastasis among common cancer types, is an ideal model to study how cancer cells adapt to the brain parenchyma. Our unbiased proteomics analysis of melanoma short-term cultures revealed that proteins implicated in neurodegenerative pathologies are differentially expressed in melanoma cells explanted from brain metastases compared to those derived from extracranial metastases. We showed that melanoma cells require amyloid beta (AB) for growth and survival in the brain parenchyma. Melanoma-secreted AB activates surrounding astrocytes to a pro-metastatic, anti-inflammatory phenotype and prevents phagocytosis of melanoma by microglia. Finally, we demonstrate that pharmacological inhibition of AB decreases brain metastatic burden.
Collapse
Affiliation(s)
- Kevin Kleffman
- NYU Langone Medical Center, New York, New York, United States
| | - Grace Levinson
- NYU Langone Medical Center, New York, New York, United States
| | - Indigo V L Rose
- NYU Langone Medical Center, New York, New York, United States
| | | | | | - Avantika Dhabaria
- Proteomics Laboratory, Division of Advanced Research and Technology, NYU Langone Health, New York, New York., New York, NY, United States
| | - Eitan Wong
- Memorial Sloan Kettering Cancer Center, New York, New York, United States
| | | | - Alcida Karz
- NYU Langone Medical Center, New York, New York, United States
| | - Diana Argibay
- NYU Langone Medical Center, New York, NY, United States
| | | | | | - Gillian Baptiste
- New York University Grossman School of Medicine, New York, NY, United States
| | | | - James A Tranos
- NYU Langone Medical Center, New York, New York, United States
| | - Jenny Chen
- NYU Langone Medical Center, New York, New York, United States
| | | | - Melissa Call
- NYU Langone Medical Center, New York, New York, United States
| | - Robert Rogers
- NYU Langone Medical Center, New York, New York, United States
| | - George Jour
- New York University, New York, New York, United States
| | | | - Iman Osman
- New York University School of Medicine, New York, New York, United States
| | - Yue-Ming Li
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Paul Mathews
- NYU Langone Medical Center, New York, New York, United States
| | - Ronald DeMattos
- Eli Lilly (United States), Indianapolis, Indiana, United States
| | - Beatrix Ueberheide
- Proteomics Laboratory, Division of Advanced Research and Technology, NYU Langone Health, New York, New York., United States
| | - Kelly V Ruggles
- New York University Langone Medical Center, New York, United States
| | | | | | - Eva Hernando
- NYU Langone Medical Center, New York, NY, United States
| |
Collapse
|
6
|
Güner G, Lichtenthaler SF. The substrate repertoire of γ-secretase/presenilin. Semin Cell Dev Biol 2020; 105:27-42. [PMID: 32616437 DOI: 10.1016/j.semcdb.2020.05.019] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/17/2020] [Accepted: 05/25/2020] [Indexed: 12/09/2022]
Abstract
The intramembrane protease γ-secretase is a hetero-tetrameric protein complex with presenilin as the catalytic subunit and cleaves its membrane protein substrates within their single transmembrane domains. γ-Secretase is well known for its role in Notch signalling and in Alzheimer's disease, where it catalyzes the formation of the pathogenic amyloid β (Aβ) peptide. However, in the 21 years since its discovery many more substrates and substrate candidates of γ-secretase were identified. Although the physiological relevance of the cleavage of many substrates remains to be studied in more detail, the substrates demonstrate a broad role for γ-secretase in embryonic development, adult tissue homeostasis, signal transduction and protein degradation. Consequently, chronic γ-secretase inhibition may cause significant side effects due to inhibition of cleavage of multiple substrates. This review provides a list of 149 γ-secretase substrates identified to date and highlights by which expeirmental approach substrate cleavage was validated. Additionally, the review lists the cleavage sites where they are known and discusses the functional implications of γ-secretase cleavage with a focus on substrates identified in the recent past, such as CHL1, TREM2 and TNFR1. A comparative analysis demonstrates that γ-secretase substrates mostly have a long extracellular domain and require ectodomain shedding before γ-secretase cleavage, but that γ-secretase is also able to cleave naturally short substrates, such as the B cell maturation antigen. Taken together, the list of substrates provides a resource that may help in the future development of drugs inhibiting or modulating γ-secretase activity in a substrate-specific manner.
Collapse
Affiliation(s)
- Gökhan Güner
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
7
|
Fernandez MA, Biette KM, Dolios G, Seth D, Wang R, Wolfe MS. Transmembrane Substrate Determinants for γ-Secretase Processing of APP CTFβ. Biochemistry 2016; 55:5675-5688. [PMID: 27649271 DOI: 10.1021/acs.biochem.6b00718] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The amyloid β-peptide (Aβ) of Alzheimer's disease (AD) is generated by proteolysis within the transmembrane domain (TMD) of a C-terminal fragment of the amyloid β protein-precursor (APP CTFβ) by the γ-secretase complex. This processing produces Aβ ranging from 38 to 49 residues in length. Evidence suggests that this spectrum of Aβ peptides is the result of successive γ-secretase cleavages, with endoproteolysis first occurring at the ε sites to generate Aβ48 or Aβ49, followed by C-terminal trimming mostly every three residues along two product lines to generate shorter, secreted forms of Aβ: the primary Aβ49-46-43-40 line and a minor Aβ48-45-42-38 line. The major secreted Aβ species are Aβ40 and Aβ42, and an increased proportion of the longer, aggregation-prone Aβ42 compared to Aβ40 is widely thought to be important in AD pathogenesis. We examined TMD substrate determinants of the specificity and efficiency of ε site endoproteolysis and carboxypeptidase trimming of CTFβ by γ-secretase. We determined that the C-terminal negative charge of the intermediate Aβ49 does not play a role in its trimming by γ-secretase. Peptidomimetic probes suggest that γ-secretase has S1', S2', and S3' pockets, through which trimming by tripeptides may be determined. However, deletion of residues around the ε sites demonstrates that a depth of three residues within the TMD is not a determinant of the location of endoproteolytic ε cleavage of CTFβ. We also show that instability of the CTFβ TMD helix near the ε site significantly increases endoproteolysis, and that helical instability near the carboxypeptidase cleavage sites facilitates C-terminal trimming by γ-secretase. In addition, we found that CTFβ dimers are not endoproteolyzed by γ-secretase. These results support a model in which initial interaction of the array of residues along the undimerized single helical TMD of substrates dictates the site of initial ε cleavage and that helix unwinding is essential for both endoproteolysis and carboxypeptidase trimming.
Collapse
Affiliation(s)
- Marty A Fernandez
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Kelly M Biette
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Georgia Dolios
- Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Divya Seth
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Rong Wang
- Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Michael S Wolfe
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts 02115, United States
| |
Collapse
|
8
|
Impact of membrane lipid composition on the structure and stability of the transmembrane domain of amyloid precursor protein. Proc Natl Acad Sci U S A 2016; 113:E5281-7. [PMID: 27559086 DOI: 10.1073/pnas.1606482113] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cleavage of the amyloid precursor protein (APP) by γ-secretase is a crucial first step in the evolution of Alzheimer's disease. To discover the cleavage mechanism, it is urgent to predict the structures of APP monomers and dimers in varying membrane environments. We determined the structures of the C9923-55 monomer and homodimer as a function of membrane lipid composition using a multiscale simulation approach that blends atomistic and coarse-grained models. We demonstrate that the C9923-55 homodimer structures form a heterogeneous ensemble with multiple conformational states, each stabilized by characteristic interpeptide interactions. The relative probabilities of each conformational state are sensitive to the membrane environment, leading to substantial variation in homodimer peptide structure as a function of membrane lipid composition or the presence of an anionic lipid environment. In contrast, the helicity of the transmembrane domain of monomeric C991-55 is relatively insensitive to the membrane lipid composition, in agreement with experimental observations. The dimer structures of human EphA2 receptor depend on the lipid environment, which we show is linked to the location of the structural motifs in the dimer interface, thereby establishing that both sequence and membrane composition modulate the complete energy landscape of membrane-bound proteins. As a by-product of our work, we explain the discrepancy in structures predicted for C99 congener homodimers in membrane and micelle environments. Our study provides insight into the observed dependence of C99 protein cleavage by γ-secretase, critical to the formation of amyloid-β protein, on membrane thickness and lipid composition.
Collapse
|
9
|
Yeates EFA, Tesco G. The Endosome-associated Deubiquitinating Enzyme USP8 Regulates BACE1 Enzyme Ubiquitination and Degradation. J Biol Chem 2016; 291:15753-66. [PMID: 27302062 DOI: 10.1074/jbc.m116.718023] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Indexed: 01/04/2023] Open
Abstract
The β-site amyloid precursor protein-cleaving enzyme (BACE1) is the rate-limiting enzyme in the production of amyloid-β, the toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that that depletion of the trafficking molecule Golgi-localized γ-ear-containing ARF-binding protein 3 (GGA3) results in increased BACE1 levels and activity because of impaired lysosomal degradation. We also determined that GGA3 regulation of BACE1 levels requires its ability to bind ubiquitin. Accordingly, we reported that BACE1 is ubiquitinated at lysine 501 and that lack of ubiquitination at lysine 501 produces BACE1 stabilization. Ubiquitin conjugation is a reversible process mediated by deubiquitinating enzymes. The ubiquitin-specific peptidase 8 (USP8), an endosome-associated deubiquitinating enzyme, regulates the ubiquitination, trafficking, and lysosomal degradation of several plasma membrane proteins. Here, we report that RNAi-mediated depletion of USP8 reduced levels of both ectopically expressed and endogenous BACE1 in H4 human neuroglioma cells. Moreover, USP8 depletion increased BACE1 ubiquitination, promoted BACE1 accumulation in the early endosomes and late endosomes/lysosomes, and decreased levels of BACE1 in the recycling endosomes. We also found that decreased BACE1 protein levels were accompanied by a decrease in BACE1-mediated amyloid precursor protein cleavage and amyloid-β levels. Our findings demonstrate that USP8 plays a key role in the trafficking and degradation of BACE1 by deubiquitinating lysine 501. These studies suggest that therapies able to accelerate BACE1 degradation (e.g. by increasing BACE1 ubiquitination) may represent a potential treatment for Alzheimer disease.
Collapse
Affiliation(s)
| | - Giuseppina Tesco
- From the Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| |
Collapse
|
10
|
Substrate determinants of signal peptide peptidase-like 2a (SPPL2a)-mediated intramembrane proteolysis of the invariant chain CD74. Biochem J 2016; 473:1405-22. [DOI: 10.1042/bcj20160156] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/16/2016] [Indexed: 11/17/2022]
Abstract
Intramembrane proteolysis of CD74 by SPPL2a is essential for B- and dendritic cells. We show that CD74 is proteolysed in the luminal third of the transmembrane segment and identify determinants within its transmembrane and luminal membrane-proximal domain facilitating this cleavage.
Collapse
|
11
|
Endogenous Apolipoprotein E (ApoE) Fragmentation Is Linked to Amyloid Pathology in Transgenic Mouse Models of Alzheimer’s Disease. Mol Neurobiol 2016; 54:319-327. [DOI: 10.1007/s12035-015-9674-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/18/2015] [Indexed: 01/03/2023]
|
12
|
Chen MK, Hung MC. Proteolytic cleavage, trafficking, and functions of nuclear receptor tyrosine kinases. FEBS J 2015; 282:3693-721. [PMID: 26096795 DOI: 10.1111/febs.13342] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/18/2015] [Accepted: 06/09/2015] [Indexed: 01/18/2023]
Abstract
Intracellular localization has been reported for over three-quarters of receptor tyrosine kinase (RTK) families in response to environmental stimuli. Internalized RTK may bind to non-canonical substrates and affect various cellular processes. Many of the intracellular RTKs exist as fragmented forms that are generated by γ-secretase cleavage of the full-length receptor, shedding, alternative splicing, or alternative translation initiation. Soluble RTK fragments are stabilized and intracellularly transported into subcellular compartments, such as the nucleus, by binding to chaperone or transcription factors, while membrane-bound RTKs (full-length or truncated) are transported from the plasma membrane to the ER through the well-established Rab- or clathrin adaptor protein-coated vesicle retrograde trafficking pathways. Subsequent nuclear transport of membrane-bound RTK may occur via two pathways, INFS or INTERNET, with the former characterized by release of receptors from the ER into the cytosol and the latter characterized by release of membrane-bound receptor from the ER into the nucleoplasm through the inner nuclear membrane. Although most non-canonical intracellular RTK signaling is related to transcriptional regulation, there may be other functions that have yet to be discovered. In this review, we summarize the proteolytic processing, intracellular trafficking and nuclear functions of RTKs, and discuss how they promote cancer progression, and their clinical implications.
Collapse
Affiliation(s)
- Mei-Kuang Chen
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mien-Chie Hung
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center of Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
13
|
Venkatachalam TK, Pierens GK, Bernhardt PV, Reutens DC. Heteronuclear NMR spectroscopic investigations of hydrogen bonding in 2-(benzo[d]thiazole-2'-yl)-N-alkylanilines. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2015; 53:448-453. [PMID: 25865956 DOI: 10.1002/mrc.4228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 01/18/2015] [Accepted: 01/25/2015] [Indexed: 06/04/2023]
Abstract
The 2-(benzo[d]thiazole-2'-yl)-N-alkylanilines have previously revealed the presence of a strong intramolecular hydrogen bond. This in turn gives rise to a more complicated multiplet for the protons attached to the carbon adjacent to the amino group. This intramolecular hydrogen bond was investigated by a deuterium exchange experiment using heteronuclear NMR spectroscopy (1H, 13C, 15N and 2H). We observed changes in the multiplet structure and chemical shifts providing further evidence that the deuterium replaces the hydrogen in the intramolecular hydrogen bond. A time course study of the D2O exchange confirmed the presence of a strong hydrogen bond. The comparison of the structures obtained by X-ray crystallography showed a very small difference in planarity between the two-substituted and four-substituted amino compounds. In both the cases, the phenyl ring is not absolutely coplanar with the thiazole unit. The existence of this intramolecular hydrogen bond in 2-(benzo[d]thiazole-2'-yl)-N-alkylanilines was further confirmed by single crystal X-ray crystallography.
Collapse
Affiliation(s)
- T K Venkatachalam
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - G K Pierens
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - P V Bernhardt
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - D C Reutens
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
14
|
Oestereich F, Bittner HJ, Weise C, Grohmann L, Janke LK, Hildebrand PW, Multhaup G, Munter LM. Impact of amyloid precursor protein hydrophilic transmembrane residues on amyloid-beta generation. Biochemistry 2015; 54:2777-84. [PMID: 25875527 DOI: 10.1021/acs.biochem.5b00217] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Amyloid-β (Aβ) peptides are likely the molecular cause of neurodegeneration observed in Alzheimer's disease. In the brain, Aβ42 and Aβ40 are toxic and the most important proteolytic fragments generated through sequential processing of the amyloid precursor protein (APP) by β- and γ-secretases. Impeding the generation of Aβ42 and Aβ40 is thus considered as a promising strategy to prevent Alzheimer's disease. We therefore wanted to determine key parameters of the APP transmembrane sequence enabling production of these Aβ species. Here we show that the hydrophilicity of amino acid residues G33, T43, and T48 critically determines the generation of Aβ42 and Aβ40 peptides (amino acid numbering according to Aβ nomenclature starting with aspartic acid 1). First, we performed a comprehensive mutational analysis of glycine residue G33 positioned within the N-terminal half of the APP transmembrane sequence by exchanging it against the 19 other amino acids. We found that hydrophilicity of the residue at position 33 positively correlated with Aβ42 and Aβ40 generation. Second, we analyzed two threonine residues at positions T43 and T48 in the C-terminal half of the APP-transmembrane sequence. Replacement of single threonine residues by hydrophobic valines inversely affected Aβ42 and Aβ40 generation. We observed that threonine mutants affected the initial γ-secretase cut, which is associated with levels of Aβ42 or Aβ40. Overall, hydrophilic residues of the APP transmembrane sequence decide on the exact initial γ-cut and the amounts of Aβ42 and Aβ40.
Collapse
Affiliation(s)
- Felix Oestereich
- †Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, H3G 1Y6 Montréal, Canada.,‡Institut für Chemie und Biochemie, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany.,∥Integrated Program in Neuroscience, McGill University, Montréal, Canada
| | - Heiko J Bittner
- §Institut für Medizinische Physik und Biophysik, Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - Christoph Weise
- ‡Institut für Chemie und Biochemie, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Lisa Grohmann
- ‡Institut für Chemie und Biochemie, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Lisa-Kristin Janke
- ‡Institut für Chemie und Biochemie, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Peter W Hildebrand
- §Institut für Medizinische Physik und Biophysik, Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - Gerhard Multhaup
- †Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, H3G 1Y6 Montréal, Canada.,‡Institut für Chemie und Biochemie, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Lisa-Marie Munter
- †Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, H3G 1Y6 Montréal, Canada.,‡Institut für Chemie und Biochemie, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| |
Collapse
|
15
|
Scharnagl C, Pester O, Hornburg P, Hornburg D, Götz A, Langosch D. Side-chain to main-chain hydrogen bonding controls the intrinsic backbone dynamics of the amyloid precursor protein transmembrane helix. Biophys J 2014; 106:1318-26. [PMID: 24655507 DOI: 10.1016/j.bpj.2014.02.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 01/28/2014] [Accepted: 02/07/2014] [Indexed: 01/19/2023] Open
Abstract
Many transmembrane helices contain serine and/or threonine residues whose side chains form intrahelical H-bonds with upstream carbonyl oxygens. Here, we investigated the impact of threonine side-chain/main-chain backbonding on the backbone dynamics of the amyloid precursor protein transmembrane helix. This helix consists of a N-terminal dimerization region and a C-terminal cleavage region, which is processed by γ-secretase to a series of products. Threonine mutations within this transmembrane helix are known to alter the cleavage pattern, which can lead to early-onset Alzheimer's disease. Circular dichroism spectroscopy and amide exchange experiments of synthetic transmembrane domain peptides reveal that mutating threonine enhances the flexibility of this helix. Molecular dynamics simulations show that the mutations reduce intrahelical amide H-bonding and H-bond lifetimes. In addition, the removal of side-chain/main-chain backbonding distorts the helix, which alters bending and rotation at a diglycine hinge connecting the dimerization and cleavage regions. We propose that the backbone dynamics of the substrate profoundly affects the way by which the substrate is presented to the catalytic site within the enzyme. Changing this conformational flexibility may thus change the pattern of proteolytic processing.
Collapse
Affiliation(s)
| | - Oxana Pester
- Munich Center for Integrated Protein Science (CIPS(M)) at Lehrstuhl Chemie der Biopolymere, Technische Universität München, Freising, Germany
| | - Philipp Hornburg
- Fakultät für Physik E14, Technische Universität München, Freising, Germany
| | - Daniel Hornburg
- Fakultät für Physik E14, Technische Universität München, Freising, Germany
| | - Alexander Götz
- Munich Center for Integrated Protein Science (CIPS(M)) at Lehrstuhl Chemie der Biopolymere, Technische Universität München, Freising, Germany
| | - Dieter Langosch
- Munich Center for Integrated Protein Science (CIPS(M)) at Lehrstuhl Chemie der Biopolymere, Technische Universität München, Freising, Germany
| |
Collapse
|
16
|
Pierens GK, Venkatachalam TK, Reutens D. A comparative study between para-aminophenyl and ortho-aminophenyl benzothiazoles using NMR and DFT calculations. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2014; 52:453-459. [PMID: 24890025 DOI: 10.1002/mrc.4088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/11/2014] [Accepted: 05/15/2014] [Indexed: 06/03/2023]
Abstract
Ortho-substituted and para-substituted aminophenyl benzothiazoles were synthesised and characterised using NMR spectroscopy. A comparison of the proton chemical shift values reveals significant differences in the observed chemical shift values for the NH protons indicating the presence of a hydrogen bond in all ortho-substituted compounds as compared to the para compounds. The presence of intramolecular hydrogen bond in the ortho amino substituted aminophenyl benzothiazole forces the molecule to be planar which may be an additional advantage in developing these compounds as Alzheimer's imaging agent because the binding to amyloid fibrils prefers planar compounds. The splitting pattern of the methylene proton next to the amino group also showed significant coupling to the amino proton consistent with the notion of the existence of slow exchange and hydrogen bond in the ortho-substituted compounds. This is further verified by density functional theory calculations which yielded a near planar low energy conformer for all the o-aminophenyl benzothiazoles and displayed a hydrogen bond from the amine proton to the nitrogen of the thiazole ring. A detailed analysis of the (1)H, (13)C and (15)N NMR chemical shifts and density functional theory calculated structures of the compounds are described.
Collapse
Affiliation(s)
- G K Pierens
- Centre for Advanced Imaging, The University of Queensland, St. Lucia, Brisbane, 4072, Australia
| | | | | |
Collapse
|
17
|
Venkatachalam TK, Stimson DHR, Bhalla R, Pierens GK, Reutens DC. Synthesis, characterization and (11) C-radiolabeling of aminophenyl benzothiazoles: structural effects on the alkylation of amino group. J Labelled Comp Radiopharm 2014; 57:566-73. [PMID: 24996114 DOI: 10.1002/jlcr.3216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 11/06/2022]
Abstract
Several aminophenyl benzothiazoles were prepared with a view to using them as amyloid binding agents for imaging β-amyloid in Alzheimer's disease. These precursors were radiolabeled with (11) C-positron-emitting radioisotope using an automated synthesizer and selected radiolabeled compounds were further purified by HPLC. Our results demonstrate that changes in structure have a major influence on the radioactive yield and the ease with which the radiolabel can be introduced. Aminophenyl benzothiazoles with an attached isopropyl group resisted dialkylation perhaps due to steric hindrance caused by this group. Straight chain attachment of methyl, ethyl, butyl, and crotyl groups in the structure decreased the radiochemical yield. Notably, the o-aminophenyl benzothiazole derivatives were difficult to alkylate despite stringent experimental conditions. This reactivity difference is attributed to the hydrogen bonding characteristics of the o-amino group with the nitrogen atom of the thiazole ring.
Collapse
Affiliation(s)
- T K Venkatachalam
- Centre for Advanced Imaging, The University of Queensland, St. Lucia, Brisbane, 4072, Australia
| | | | | | | | | |
Collapse
|
18
|
Golde TE, Koo EH, Felsenstein KM, Osborne BA, Miele L. γ-Secretase inhibitors and modulators. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1828:2898-907. [PMID: 23791707 PMCID: PMC3857966 DOI: 10.1016/j.bbamem.2013.06.005] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 06/04/2013] [Indexed: 12/11/2022]
Abstract
γ-Secretase is a fascinating, multi-subunit, intramembrane cleaving protease that is now being considered as a therapeutic target for a number of diseases. Potent, orally bioavailable γ-secretase inhibitors (GSIs) have been developed and tested in humans with Alzheimer's disease (AD) and cancer. Preclinical studies also suggest the therapeutic potential for GSIs in other disease conditions. However, due to inherent mechanism based-toxicity of non-selective inhibition of γ-secretase, clinical development of GSIs will require empirical testing with careful evaluation of benefit versus risk. In addition to GSIs, compounds referred to as γ-secretase modulators (GSMs) remain in development as AD therapeutics. GSMs do not inhibit γ-secretase, but modulate γ-secretase processivity and thereby shift the profile of the secreted amyloid β peptides (Aβ) peptides produced. Although GSMs are thought to have an inherently safe mechanism of action, their effects on substrates other than the amyloid β protein precursor (APP) have not been extensively investigated. Herein, we will review the current state of development of GSIs and GSMs and explore pertinent biological and pharmacological questions pertaining to the use of these agents for select indications. This article is part of a Special Issue entitled: Intramembrane Proteases.
Collapse
Affiliation(s)
- Todd E Golde
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| | | | | | | | | |
Collapse
|
19
|
O'Toole SA, Beith JM, Millar EKA, West R, McLean A, Cazet A, Swarbrick A, Oakes SR. Therapeutic targets in triple negative breast cancer. J Clin Pathol 2013; 66:530-42. [DOI: 10.1136/jclinpath-2012-201361] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Ousson S, Saric A, Baguet A, Losberger C, Genoud S, Vilbois F, Permanne B, Hussain I, Beher D. Substrate determinants in the C99 juxtamembrane domains differentially affect γ-secretase cleavage specificity and modulator pharmacology. J Neurochem 2013; 125:610-9. [PMID: 23253155 DOI: 10.1111/jnc.12129] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 12/12/2012] [Accepted: 12/13/2012] [Indexed: 11/29/2022]
Abstract
The molecular mechanisms governing γ-secretase cleavage specificity are not fully understood. Herein, we demonstrate that extending the transmembrane domain of the amyloid precursor protein-derived C99 substrate in proximity to the cytosolic face strongly influences γ-secretase cleavage specificity. Sequential insertion of leucines or replacement of membrane-anchoring lysines by leucines elevated the production of Aβ42, whilst lowering production of Aβ40. A single insertion or replacement was sufficient to produce this phenotype, suggesting that the helical length distal to the ε-site is a critical determinant of γ-secretase cleavage specificity. Replacing the lysine at the luminal membrane border (K28) with glutamic acid (K28E) increased Aβ37 and reduced Aβ42 production. Maintaining a positive charge with an arginine replacement, however, did not alter cleavage specificity. Using two potent and structurally distinct γ-secretase modulators (GSMs), we elucidated the contribution of K28 to the modulatory mechanism. Surprisingly, whilst lowering the potency of the non-steroidal anti-inflammatory drug-type GSM, the K28E mutation converted a heteroaryl-type GSM to an inverse GSM. This result implies the proximal lysine is critical for the GSM mechanism and pharmacology. This region is likely a major determinant for substrate binding and we speculate that modulation of substrate binding is the fundamental mechanism by which GSMs exert their action.
Collapse
Affiliation(s)
- Solenne Ousson
- Global Research and Early Development, Merck Serono SA, Geneva, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Targeting Notch signaling for cancer therapeutic intervention. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2012; 65:191-234. [PMID: 22959027 DOI: 10.1016/b978-0-12-397927-8.00007-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Notch signaling pathway is an evolutionarily conserved, intercellular signaling cascade. The Notch proteins are single-pass receptors that are activated upon interaction with the Delta (or Delta-like) and Jagged/Serrate families of membrane-bound ligands. Association of ligand-receptor leads to proteolytic cleavages that liberate the Notch intracellular domain (NICD) from the plasma membrane. The NICD translocates to the nucleus, where it forms a complex with the DNA-binding protein CSL, displacing a histone deacetylase (HDAc)-corepressor (CoR) complex from CSL. Components of a transcriptional complex, such as MAML1 and histone acetyltransferases (HATs), are recruited to the NICD-CSL complex, leading to the transcriptional activation of Notch target genes. The Notch signaling pathway plays a critical role in cell fate decision, tissue patterning, morphogenesis, and is hence regarded as a developmental pathway. However, if this pathway goes awry, it contributes to cellular transformation and tumorigenesis. There is mounting evidence that this pathway is dysregulated in a variety of malignancies, and can behave as either an oncogene or a tumor suppressor depending upon cell context. This chapter highlights the current evidence for aberration of the Notch signaling pathway in a wide range of tumors from hematological cancers, such as leukemia and lymphoma, through to lung, skin, breast, pancreas, colon, prostate, ovarian, brain, and liver tumors. It proposes that the Notch signaling pathway may represent novel target for cancer therapeutic intervention.
Collapse
|
22
|
Xiang J, Ouyang Y, Cui Y, Lin F, Ren J, Long M, Chen X, Wei J, Zhang H, Zhang H. Silencing of Notch3 Using shRNA driven by survivin promoter inhibits growth and promotes apoptosis of human T-cell acute lymphoblastic leukemia cells. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2011; 12:59-65. [PMID: 21940234 DOI: 10.1016/j.clml.2011.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 07/15/2011] [Accepted: 07/15/2011] [Indexed: 10/17/2022]
Abstract
BACKGROUND As a highly conserved system, the activation of the Notch pathway has been implicated in the tumorigenesis of various hematologic diseases, including leukemias, lymphomas, and multiple myeloma. The Notch3 receptor is frequently expressed in T-cell acute lymphoblastic leukemia (T-ALL). METHODS To explore its possibility as a therapeutic target for T-ALL, we investigated the effect of Notch3 silencing on Jurkat and SupT1 cells using a novel tumor-specific short hairpin RNA (shRNA) driven by survivin promoters. RESULTS We found that downregulated expression of Notch3 correlated with significant apoptosis and inhibition of proliferation. CONCLUSION These facts suggest that downregulating expression of Notch3 could attenuate the Notch signaling activity in T-ALL. All these results indicate that inhibition of Notch3 expression can result in potent antitumor activity in T-ALL.
Collapse
Affiliation(s)
- Jie Xiang
- Department of Clinical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Sagi SA, Lessard CB, Winden KD, Maruyama H, Koo JC, Weggen S, Kukar TL, Golde TE, Koo EH. Substrate sequence influences γ-secretase modulator activity, role of the transmembrane domain of the amyloid precursor protein. J Biol Chem 2011; 286:39794-803. [PMID: 21868380 DOI: 10.1074/jbc.m111.277228] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A subset of non-steroidal anti-inflammatory drugs modulates the γ cleavage site in the amyloid precursor protein (APP) to selectively reduce production of Aβ42. It is unclear precisely how these γ-secretase modulators (GSMs) act to preferentially spare Aβ40 production as well as Notch processing and signaling. In an effort to determine the substrate requirements in NSAID/GSM activity, we determined the effects of sulindac sulfide and flurbiprofen on γ-cleavage of artificial constructs containing several γ-secretase substrates. Using FLAG-tagged constructs that expressed extracellularly truncated APP, Notch-1, or CD44, we found that these substrates have different sensitivities to sulindac sulfide. γ-Secretase cleavage of APP was altered by sulindac sulfide, but CD44 and Notch-1 were either insensitive or only minimally altered by this compound. Using chimeric APP constructs, we observed that the transmembrane domain (TMD) of APP played a pivotal role in determining drug sensitivity. Substituting the APP TMD with that of APLP2 retained the sensitivity to γ-cleavage modulation, but replacing TMDs from Notch-1 or ErbB4 rendered the resultant molecules insensitive to drug treatment. Specifically, the GXXXG motif within APP appeared to be critical to GSM activity. Consequently, the modulatory effects on γ-cleavage appears to be substrate-dependent. We hypothesize that the substrate present in the γ-secretase complex influences the conformation of the complex so that the binding site of GSMs is either stabilized or less favorable to influence the cleavage of the respective substrates.
Collapse
Affiliation(s)
- Sarah A Sagi
- Department of Neurosciences, University of California San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Amtul Z, Uhrig M, Beyreuther K. Additive effects of fatty acid mixtures on the levels and ratio of amyloid β40/42 peptides differ from the effects of individual fatty acids. J Neurosci Res 2011; 89:1795-801. [DOI: 10.1002/jnr.22706] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Revised: 05/07/2011] [Accepted: 05/09/2011] [Indexed: 11/05/2022]
|
25
|
Amtul Z, Westaway D, Cechetto DF, Rozmahel RF. Oleic acid ameliorates amyloidosis in cellular and mouse models of Alzheimer's disease. Brain Pathol 2010; 21:321-9. [PMID: 21040071 DOI: 10.1111/j.1750-3639.2010.00449.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Several lines of evidence support protective as well as deleterious effects of oleic acid (OA) on Alzheimer's disease (AD) and other neurological disorders; however, the bases of these effects are unclear. Our investigation demonstrates that amyloid precursor protein (APP) 695 transfected Cos-7 cells supplemented with OA have reduced secreted amyloid-beta (Aβ) levels. An early-onset AD transgenic mouse model expressing the double-mutant form of human APP, Swedish (K670N/M671L) and Indiana (V717F), corroborated our in vitro findings when they were fed a high-protein, low-fat (18% reduction), cholesterol-free diet enriched with OA. These mice exhibited an increase in Aβ40/Aβ42 ratio, reduced levels of beta-site APP cleaving enzyme (BACE) and reduced presenilin levels along with reduced amyloid plaques in the brain. The decrease in BACE levels was accompanied by increased levels of a non-amyloidogenic soluble form of APP (sAPPα). Furthermore, the low-fat/+OA diet resulted in an augmentation of insulin-degrading enzyme and insulin-like growth factor-II. These results suggest that OA supplementation and cholesterol intake restriction in a mouse model of AD reduce AD-type neuropathology.
Collapse
Affiliation(s)
- Zareen Amtul
- Department of Biochemistry, University of Western Ontario, London, ON, Canada.
| | | | | | | |
Collapse
|
26
|
Ullrich S, Münch A, Neumann S, Kremmer E, Tatzelt J, Lichtenthaler SF. The novel membrane protein TMEM59 modulates complex glycosylation, cell surface expression, and secretion of the amyloid precursor protein. J Biol Chem 2010; 285:20664-74. [PMID: 20427278 DOI: 10.1074/jbc.m109.055608] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ectodomain shedding of the amyloid precursor protein (APP) by the two proteases alpha- and beta-secretase is a key regulatory event in the generation of the Alzheimer disease amyloid beta peptide (Abeta). At present, little is known about the cellular mechanisms that control APP shedding and Abeta generation. Here, we identified a novel protein, transmembrane protein 59 (TMEM59), as a new modulator of APP shedding. TMEM59 was found to be a ubiquitously expressed, Golgi-localized protein. TMEM59 transfection inhibited complex N- and O-glycosylation of APP in cultured cells. Additionally, TMEM59 induced APP retention in the Golgi and inhibited Abeta generation as well as APP cleavage by alpha- and beta-secretase cleavage, which occur at the plasma membrane and in the endosomes, respectively. Moreover, TMEM59 inhibited the complex N-glycosylation of the prion protein, suggesting a more general modulation of Golgi glycosylation reactions. Importantly, TMEM59 did not affect the secretion of soluble proteins or the alpha-secretase like shedding of tumor necrosis factor alpha, demonstrating that TMEM59 did not disturb the general Golgi function. The phenotype of TMEM59 transfection on APP glycosylation and shedding was similar to the one observed in cells lacking conserved oligomeric Golgi (COG) proteins COG1 and COG2. Both proteins are required for normal localization and activity of Golgi glycosylation enzymes. In summary, this study shows that TMEM59 expression modulates complex N- and O-glycosylation and suggests that TMEM59 affects APP shedding by reducing access of APP to the cellular compartments, where it is normally cleaved by alpha- and beta-secretase.
Collapse
Affiliation(s)
- Sylvia Ullrich
- German Center for Neurodegenerative Diseases Munich (DZNE) and Adolf Butenandt-Institute, Biochemistry, Ludwig-Maximilians University Munich, 80336 Munich, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Yin L, Velazquez OC, Liu ZJ. Notch signaling: emerging molecular targets for cancer therapy. Biochem Pharmacol 2010; 80:690-701. [PMID: 20361945 DOI: 10.1016/j.bcp.2010.03.026] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 03/23/2010] [Accepted: 03/24/2010] [Indexed: 02/07/2023]
Abstract
The Notch signaling pathway is a highly conserved developmental pathway, which plays a critical role in cell-fate decision, tissue patterning and morphogenesis. There is increasing evidence that this pathway is dysregulated in a variety of malignancies, and can behave as either an oncogene or a tumor suppressor depending upon cell context. This review highlights the current evidence for aberration of the Notch signaling pathway in a wide range of tumors from hematological cancers, such as leukemia and lymphoma through to skin, breast, lung, pancreas, colon and brain tumors. It proposes that the Notch signaling pathway may represent novel therapeutic targets and will be a welcome asset to the cancer therapeutic arena.
Collapse
Affiliation(s)
- Ling Yin
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | | | | |
Collapse
|
28
|
Clinical, neuropathologic, and biochemical profile of the amyloid precursor protein I716F mutation. J Neuropathol Exp Neurol 2010; 69:53-9. [PMID: 20010303 DOI: 10.1097/nen.0b013e3181c6b84d] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
We report the clinical, pathologic, and biochemical characteristics of the recently described amyloid precursor protein (APP) I716F mutation. We present the clinical findings of individuals carrying the APP I716F mutation and the neuropathologic examination of the proband. The mutation was found in a patient with Alzheimer disease with onset at the age of 31 years and death at age 36 years and who had a positive family history of early-onset Alzheimer disease. Neuropathologic examination showed abundant diffuse amyloid plaques mainly composed of amyloid-beta42 and widespread neurofibrillary pathology. Lewy bodies were found in the amygdala. Chinese hamster ovary cells transfected with this mutation showed a marked increase in the amyloid-beta42/40 ratio and APP C-terminal fragments and a decrease in APP intracellular domain production, suggesting reduced APP proteolysis by gamma-secretase. Taken together, these findings indicate that the APP I716F mutation is associated with the youngest age of onset for this locus and strengthen the inverse association between amyloid-beta42/40 ratio and age of onset. The mutation leads to a protein that is poorly processed by gamma-secretase. This loss of function may be an additional mechanism by which some mutations around the gamma-secretase cleavage site lead to familial Alzheimer disease.
Collapse
|
29
|
Tian Y, Bassit B, Chau D, Li YM. An APP inhibitory domain containing the Flemish mutation residue modulates gamma-secretase activity for Abeta production. Nat Struct Mol Biol 2010; 17:151-8. [PMID: 20062056 DOI: 10.1038/nsmb.1743] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 11/17/2009] [Indexed: 11/09/2022]
Abstract
Gamma-secretase is an aspartyl protease that cleaves multiple substrates within their transmembrane domains. Gamma-secretase processes the amyloid precursor protein (APP) to generate gamma-amyloid (Agamma) peptides associated with Alzheimer's disease. Here, we show that APP possesses a substrate inhibitory domain (ASID) that negatively modulates gamma-secretase activity for Agamma production by binding to an allosteric site within the gamma-secretase complex. Alteration of this ASID by deletion or mutation, as is seen with the Flemish mutation (A21G), reduces its inhibitory potency and promotes Agamma production. Notably, peptides derived from ASID show selective inhibition of gamma-secretase activity for Agamma production over Notch1 processing. Therefore, this mode of regulation represents an unprecedented mechanism for modulating gamma-secretase, providing insight into the molecular basis of Alzheimer's disease pathogenesis and a potential strategy for the development of therapeutics.
Collapse
Affiliation(s)
- Yuan Tian
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | | | | | |
Collapse
|
30
|
Inhibition of gamma-secretase induces G2/M arrest and triggers apoptosis in breast cancer cells. Br J Cancer 2009; 100:1879-88. [PMID: 19513078 PMCID: PMC2714234 DOI: 10.1038/sj.bjc.6605034] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
γ-Secretase activity is vital for the transmembrane cleavage of Notch receptors and the subsequent migration of their intracellular domains to the nucleus. Notch overexpression has been associated with breast, colon, cervical and prostate cancers. We tested the effect of three different γ-secretase inhibitors (GSIs) in breast cancer cells. One inhibitor (GSI1) was lethal to breast cancer cell lines at concentrations of 2 μM and above but had a minimal effect on the non-malignant breast lines. GSI1 was also cytotoxic for a wide variety of cancer cell lines in the NCI60 cell screen. GSI1 treatment resulted in a marked decrease in γ-secretase activity and downregulation of the Notch signalling pathway with no effects on expression of the γ-secretase components or ligands. Flow cytometric and western blot analyses indicated that GSI1 induces a G2/M arrest leading to apoptosis, through downregulation of Bcl-2, Bax and Bcl-XL. GSI1 also inhibited proteasome activity. Thus, the γ-secretase inhibitor GSI1 has a complex mode of action to inhibit breast cancer cell survival and may represent a novel therapy in breast cancer.
Collapse
|
31
|
Srikanth V, Maczurek A, Phan T, Steele M, Westcott B, Juskiw D, Münch G. Advanced glycation endproducts and their receptor RAGE in Alzheimer's disease. Neurobiol Aging 2009; 32:763-77. [PMID: 19464758 DOI: 10.1016/j.neurobiolaging.2009.04.016] [Citation(s) in RCA: 364] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 04/14/2009] [Accepted: 04/19/2009] [Indexed: 12/22/2022]
Abstract
Alzheimer's disease (AD) is the most common dementing disorder of late life. Although there might be various different triggering events in the early stages of the disease, they seem to converge on a few characteristic final pathways in the late stages, characterized by inflammation and neurodegeneration. In this review, we revisit the hypothesis that advanced glycation endproducts (AGEs) and their receptor RAGE may play an important role in disease pathogenesis. Accumulation of AGEs in cells and tissues is a normal feature of aging, but is accelerated in AD. In AD, AGEs can be detected in pathological deposits such as amyloid plaques and neurofibrillary tangles. AGEs explain many of the neuropathological and biochemical features of AD such as extensive protein crosslinking, glial induction of oxidative stress and neuronal cell death. Oxidative stress and AGEs initiate a positive feedback loop, where normal age-related changes develop into a pathophysiological cascade. RAGE and its decoy receptor soluble RAGE, may contribute to or protect against AD pathogenesis by influencing transport of β-amyloid into the brain or by manipulating inflammatory mechanisms. Targeted pharmacological interventions using AGE-inhibitors, RAGE-antagonists, RAGE-antibodies, soluble RAGE or RAGE signalling inhibitors such as membrane-permeable antioxidants may be promising therapeutic strategies to slow down the progression of AD.
Collapse
Affiliation(s)
- Velandai Srikanth
- Department of Medicine, Southern Clinical School, Monash University, Melbourne, VIC, 3800, Australia
| | | | | | | | | | | | | |
Collapse
|
32
|
Beel AJ, Mobley CK, Kim HJ, Tian F, Hadziselimovic A, Jap B, Prestegard JH, Sanders CR. Structural studies of the transmembrane C-terminal domain of the amyloid precursor protein (APP): does APP function as a cholesterol sensor? Biochemistry 2008; 47:9428-46. [PMID: 18702528 DOI: 10.1021/bi800993c] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The amyloid precursor protein (APP) is subject to alternative pathways of proteolytic processing, leading either to production of the amyloid-beta (Abeta) peptides or to non-amyloidogenic fragments. Here, we report the first structural study of C99, the 99-residue transmembrane C-terminal domain of APP liberated by beta-secretase cleavage. We also show that cholesterol, an agent that promotes the amyloidogenic pathway, specifically binds to this protein. C99 was purified into model membranes where it was observed to homodimerize. NMR data show that the transmembrane domain of C99 is an alpha-helix that is flanked on both sides by mostly disordered extramembrane domains, with two exceptions. First, there is a short extracellular surface-associated helix located just after the site of alpha-secretase cleavage that helps to organize the connecting loop to the transmembrane domain, which is known to be essential for Abeta production. Second, there is a surface-associated helix located at the cytosolic C-terminus, adjacent to the YENPTY motif that plays critical roles in APP trafficking and protein-protein interactions. Cholesterol was seen to participate in saturable interactions with C99 that are centered at the critical loop connecting the extracellular helix to the transmembrane domain. Binding of cholesterol to C99 and, most likely, to APP may be critical for the trafficking of these proteins to cholesterol-rich membrane domains, which leads to cleavage by beta- and gamma-secretase and resulting amyloid-beta production. It is proposed that APP may serve as a cellular cholesterol sensor that is linked to mechanisms for suppressing cellular cholesterol uptake.
Collapse
Affiliation(s)
- Andrew J Beel
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232-8725, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Gamma-Secretase is a promiscuous protease that cleaves bitopic membrane proteins within the lipid bilayer. Elucidating both the mechanistic basis of gamma-secretase proteolysis and the precise factors regulating substrate identification is important because modulation of this biochemical degradative process can have important consequences in a physiological and pathophysiological context. Here, we briefly review such information for all major classes of intramembranously cleaving proteases (I-CLiPs), with an emphasis on gamma-secretase, an I-CLiP closely linked to the etiology of Alzheimer's disease. A large body of emerging data allows us to survey the substrates of gamma-secretase to ascertain the conformational features that predispose a peptide to cleavage by this enigmatic protease. Because substrate specificity in vivo is closely linked to the relative subcellular compartmentalization of gamma-secretase and its substrates, we also survey the voluminous body of literature concerning the traffic of gamma-secretase and its most prominent substrate, the amyloid precursor protein.
Collapse
Affiliation(s)
- A. J. Beel
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University School of Medicine, Rm. 5142 MRBIII, 21st Ave. S., Nashville, Tennessee 37232-8725 USA
| | - C. R. Sanders
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University School of Medicine, Rm. 5142 MRBIII, 21st Ave. S., Nashville, Tennessee 37232-8725 USA
| |
Collapse
|
34
|
Schöbel S, Neumann S, Hertweck M, Dislich B, Kuhn PH, Kremmer E, Seed B, Baumeister R, Haass C, Lichtenthaler SF. A novel sorting nexin modulates endocytic trafficking and alpha-secretase cleavage of the amyloid precursor protein. J Biol Chem 2008; 283:14257-68. [PMID: 18353773 DOI: 10.1074/jbc.m801531200] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ectodomain shedding of the amyloid precursor protein (APP) by the two proteases alpha- and beta-secretase is a key regulatory event in the generation of the Alzheimer disease amyloid beta peptide (Abeta). beta-Secretase catalyzes the first step in Abeta generation, whereas alpha-secretase cleaves within the Abeta domain, prevents Abeta generation, and generates a secreted form of APP with neuroprotective properties. At present, little is known about the cellular mechanisms that control APP alpha-secretase cleavage and Abeta generation. To explore the contributory pathways, we carried out an expression cloning screen. We identified a novel member of the sorting nexin (SNX) family of endosomal trafficking proteins, called SNX33, as a new activator of APP alpha-secretase cleavage. SNX33 is a homolog of SNX9 and was found to be a ubiquitously expressed phosphoprotein. Exogenous expression of SNX33 in cultured cells increased APP alpha-secretase cleavage 4-fold but surprisingly had little effect on beta-secretase cleavage. This effect was similar to the expression of the dominant negative dynamin-1 mutant K44A. SNX33 bound the endocytic GTPase dynamin and reduced the rate of APP endocytosis in a dynamin-dependent manner. This led to an increase of APP at the plasma membrane, where alpha-secretase cleavage mostly occurs. In summary, our study identifies SNX33 as a new endocytic protein, which modulates APP endocytosis and APP alpha-secretase cleavage, and demonstrates that the rate of APP endocytosis is a major control factor for APP alpha-secretase cleavage.
Collapse
Affiliation(s)
- Susanne Schöbel
- Center for Integrated Protein Science and the Adolf-Butenandt-Institut, Ludwig Maximilians University, Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Grimm MOW, Grimm HS, Tomic I, Beyreuther K, Hartmann T, Bergmann C. Independent inhibition of Alzheimer disease beta- and gamma-secretase cleavage by lowered cholesterol levels. J Biol Chem 2008; 283:11302-11. [PMID: 18308724 DOI: 10.1074/jbc.m801520200] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The major molecular risk factor for Alzheimer disease so far identified is the amyloidogenic peptide Abeta(42). In addition, growing evidence suggests a role of cholesterol in Alzheimer disease pathology and Abeta generation. However, the cellular mechanism of lipid-dependent Abeta production remains unclear. Here we describe that the two enzymatic activities responsible for Abeta production, beta-secretase and gamma-secretase, are inhibited in parallel by cholesterol reduction. Importantly, our data indicate that cholesterol depletion within the cellular context inhibits both secretases additively and independently from each other. This is unexpected because the beta-secretase beta-site amyloid precursor protein cleaving enzyme and the presenilin-containing gamma-secretase complex are structurally different from each other, and these enzymes are apparently located in different subcellular compartments. The parallel and additive inhibition has obvious consequences for therapeutic research and may indicate an intrinsic cross-talk between Alzheimer disease-related amyloid precursor protein processing, amyloid precursor protein function, and lipid biology.
Collapse
Affiliation(s)
- Marcus O W Grimm
- Department of Neurology, Saarland University, Kirrbergerstrasse, 66421 Homburg/Saar, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Gorman PM, Kim S, Guo M, Melnyk RA, McLaurin J, Fraser PE, Bowie JU, Chakrabartty A. Dimerization of the transmembrane domain of amyloid precursor proteins and familial Alzheimer's disease mutants. BMC Neurosci 2008; 9:17. [PMID: 18234110 PMCID: PMC2266763 DOI: 10.1186/1471-2202-9-17] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 01/30/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Amyloid precursor protein (APP) is enzymatically cleaved by gamma-secretase to form two peptide products, either Abeta40 or the more neurotoxic Abeta42. The Abeta42/40 ratio is increased in many cases of familial Alzheimer's disease (FAD). The transmembrane domain (TM) of APP contains the known dimerization motif GXXXA. We have investigated the dimerization of both wild type and FAD mutant APP transmembrane domains. RESULTS Using synthetic peptides derived from the APP-TM domain, we show that this segment is capable of forming stable transmembrane dimers. A model of a dimeric APP-TM domain reveals a putative dimerization interface, and interestingly, majority of FAD mutations in APP are localized to this interface region. We find that FAD-APP mutations destabilize the APP-TM dimer and increase the population of APP peptide monomers. CONCLUSION The dissociation constants are correlated to both the Abeta42/Abeta40 ratio and the mean age of disease onset in AD patients. We also show that these TM-peptides reduce Abeta production and Abeta42/Abeta40 ratios when added to HEK293 cells overexpressing the Swedish FAD mutation and gamma-secretase components, potentially revealing a new class of gamma-secretase inhibitors.
Collapse
Affiliation(s)
- Paul M Gorman
- Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 2M9, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Ren Z, Schenk D, Basi GS, Shapiro IP. Amyloid beta-protein precursor juxtamembrane domain regulates specificity of gamma-secretase-dependent cleavages. J Biol Chem 2007; 282:35350-60. [PMID: 17890228 DOI: 10.1074/jbc.m702739200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amyloid beta-protein (Abeta), the major component of cerebral plaques associated with Alzheimer disease, is derived from amyloid beta-protein precursor (APP) through sequential proteolytic cleavage involving beta- and gamma-secretase. The intramembrane cleavage of APP by gamma-secretase occurs at two major sites, gamma and epsilon, although the temporal and/or mechanistic relationships between these cleavages remain unknown. In our attempt to address this issue, we uncovered an important regulatory role for the APP luminal juxtamembrane domain. We demonstrated in cell-based assays that domain replacements in this region can greatly reduce secreted Abeta resulting from gamma-cleavage without affecting the epsilon-cleavage product. This Abeta reduction is likely due to impaired proteolysis at the gamma-cleavage site. Further analyses with site-directed mutagenesis identified two juxtamembrane residues, Lys-28 and Ser-26 (Abeta numbering), as the critical determinants for efficient intramembrane proteolysis at the gamma-site. Consistent with the growing evidence that epsilon-cleavage of APP precedes gamma-processing, longer Abeta species derived from the gamma-cleavage-deficient substrates were detected intracellularly. These results indicate that the luminal juxtamembrane region of APP is an important regulatory domain that modulates gamma-secretase-dependent intramembrane proteolysis, particularly in differentiating gamma- and epsilon-cleavages.
Collapse
Affiliation(s)
- Zhao Ren
- Elan Pharmaceuticals, Inc., South San Francisco, California 94080, USA
| | | | | | | |
Collapse
|
38
|
Yin YI, Bassit B, Zhu L, Yang X, Wang C, Li YM. γ-Secretase Substrate Concentration Modulates the Aβ42/Aβ40 Ratio. J Biol Chem 2007; 282:23639-44. [PMID: 17556361 DOI: 10.1074/jbc.m704601200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutation of the amyloid precursor protein (APP), presenilin-1, or presenilin-2 results in the development of early onset autosomal dominant forms of Alzheimer disease (AD). These mutations lead to an increased Abeta42/Abeta40 ratio that correlates with the onset of disease. However, it remains unknown how these mutations affect gamma-secretase, a protease that generates the termini of Abeta40 and Abeta42. Here we have determined the reaction mechanism of gamma-secretase with wild type and three mutated APP substrates. Our findings indicate that despite the overall outcome of an increased Abeta42/Abeta40 ratio, these mutations each display rather distinct reactivity to gamma-secretase. Intriguingly, we found that the ratio of Abeta42/Abeta40 is variable with substrate concentration; increased substrate concentrations result in higher ratios of Abeta42/Abeta40. Moreover, we demonstrated that reduction of gamma-secretase substrate concentration by BACE1 inhibition in cells decreased the Abeta42/Abeta40 ratio. This study indicates that biological factors affecting targets such as BACE1 and APP, which ultimately cause an increased concentration of gamma-secretase substrate, can augment the Abeta42/Abeta40 ratio and may play a causative role in sporadic AD. Therefore, strategies lowering the Abeta42/Abeta40 ratio through partial reduction of gamma-secretase substrate production may introduce a practical therapeutic modality for treatment of AD.
Collapse
Affiliation(s)
- Ye Ingrid Yin
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021 and Department of Biology, Rensselaer Polytechnic Institute, Troy, New York 12180
| | | | | | | | | | | |
Collapse
|
39
|
Hiratochi M, Nagase H, Kuramochi Y, Koh CS, Ohkawara T, Nakayama K. The Delta intracellular domain mediates TGF-beta/Activin signaling through binding to Smads and has an important bi-directional function in the Notch-Delta signaling pathway. Nucleic Acids Res 2007; 35:912-22. [PMID: 17251195 PMCID: PMC1807952 DOI: 10.1093/nar/gkl1128] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Delta is a major transmembrane ligand for Notch receptor that mediates numerous cell fate decisions. The Notch signaling pathway has long been thought to be mono-directional, because ligands for Notch were generally believed to be unable to transmit signals into the cells expressing them. However, we showed here that Notch also supplies signals to neighboring mouse neural stem cells (NSCs). To investigate the Notch-Delta signaling pathway in a bi-directional manner, we analyzed functional roles of the intracellular domain of mouse Delta like protein 1 (Dll1IC). In developing mouse NSCs, Dll1IC, which is released from cell membrane by proteolysis, is present in the nucleus. Furthermore, we screened for transcription factors that bind to Dll1IC and demonstrated that Dll1IC binds specifically to transcription factors involved in TGF-beta/Activin signaling--Smad2, Smad3 and Smad4--and enhances Smad-dependent transcription. In addition, the results of the present study indicated that over-expression of Dll1IC in embryonic carcinoma P19 cells induced neurons, and this induction was blocked by SB431542, which is a specific inhibitor of TGF-beta/Activin signaling. These observations strongly suggested that Dll1IC mediates TGF-beta/Activin signaling through binding to Smads and plays an important role for bi-directional Notch-Delta signaling pathway.
Collapse
Affiliation(s)
- Masahiro Hiratochi
- Department of Anatomy, Shinshu University, School of Medicine, Matsumoto, Nagano 390-8621, Japan Department of Molecular Oncology, Shinshu University, School of Medicine, Matsumoto, Nagano 390-8621, Japan Department of Immunology and Infectious Diseases, Shinshu University, School of Medicine, Matsumoto, Nagano 390-8621, Japan, Department of Biomedical Sciences, Shinshu University, School of Health Sciences, Matsumoto, Nagano 390-8621, Japan and Discovery Research II, Kissei Pharmaceutical Co., Ltd., Azumino, Nagano 399-8304, Japan
| | - Hisashi Nagase
- Department of Anatomy, Shinshu University, School of Medicine, Matsumoto, Nagano 390-8621, Japan Department of Molecular Oncology, Shinshu University, School of Medicine, Matsumoto, Nagano 390-8621, Japan Department of Immunology and Infectious Diseases, Shinshu University, School of Medicine, Matsumoto, Nagano 390-8621, Japan, Department of Biomedical Sciences, Shinshu University, School of Health Sciences, Matsumoto, Nagano 390-8621, Japan and Discovery Research II, Kissei Pharmaceutical Co., Ltd., Azumino, Nagano 399-8304, Japan
| | - Yu Kuramochi
- Department of Anatomy, Shinshu University, School of Medicine, Matsumoto, Nagano 390-8621, Japan Department of Molecular Oncology, Shinshu University, School of Medicine, Matsumoto, Nagano 390-8621, Japan Department of Immunology and Infectious Diseases, Shinshu University, School of Medicine, Matsumoto, Nagano 390-8621, Japan, Department of Biomedical Sciences, Shinshu University, School of Health Sciences, Matsumoto, Nagano 390-8621, Japan and Discovery Research II, Kissei Pharmaceutical Co., Ltd., Azumino, Nagano 399-8304, Japan
| | - Chang-Sung Koh
- Department of Anatomy, Shinshu University, School of Medicine, Matsumoto, Nagano 390-8621, Japan Department of Molecular Oncology, Shinshu University, School of Medicine, Matsumoto, Nagano 390-8621, Japan Department of Immunology and Infectious Diseases, Shinshu University, School of Medicine, Matsumoto, Nagano 390-8621, Japan, Department of Biomedical Sciences, Shinshu University, School of Health Sciences, Matsumoto, Nagano 390-8621, Japan and Discovery Research II, Kissei Pharmaceutical Co., Ltd., Azumino, Nagano 399-8304, Japan
| | - Takeshi Ohkawara
- Department of Anatomy, Shinshu University, School of Medicine, Matsumoto, Nagano 390-8621, Japan Department of Molecular Oncology, Shinshu University, School of Medicine, Matsumoto, Nagano 390-8621, Japan Department of Immunology and Infectious Diseases, Shinshu University, School of Medicine, Matsumoto, Nagano 390-8621, Japan, Department of Biomedical Sciences, Shinshu University, School of Health Sciences, Matsumoto, Nagano 390-8621, Japan and Discovery Research II, Kissei Pharmaceutical Co., Ltd., Azumino, Nagano 399-8304, Japan
| | - Kohzo Nakayama
- Department of Anatomy, Shinshu University, School of Medicine, Matsumoto, Nagano 390-8621, Japan Department of Molecular Oncology, Shinshu University, School of Medicine, Matsumoto, Nagano 390-8621, Japan Department of Immunology and Infectious Diseases, Shinshu University, School of Medicine, Matsumoto, Nagano 390-8621, Japan, Department of Biomedical Sciences, Shinshu University, School of Health Sciences, Matsumoto, Nagano 390-8621, Japan and Discovery Research II, Kissei Pharmaceutical Co., Ltd., Azumino, Nagano 399-8304, Japan
- *To whom correspondence should be addressed. Tel/Fax: +81 263 37 2594; E-mail:
| |
Collapse
|
40
|
Hoke DE, Tan JL, Ilaya NT, Culvenor JG, Smith SJ, White AR, Masters CL, Evin GM. In vitro gamma-secretase cleavage of the Alzheimer's amyloid precursor protein correlates to a subset of presenilin complexes and is inhibited by zinc. FEBS J 2005; 272:5544-57. [PMID: 16262694 DOI: 10.1111/j.1742-4658.2005.04950.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The gamma-secretase complex mediates the final proteolytic event in Alzheimer's disease amyloid-beta biogenesis. This membrane complex of presenilin, anterior pharynx defective, nicastrin, and presenilin enhancer-2 cleaves the C-terminal 99-amino acid fragment of the amyloid precursor protein intramembranously at gamma-sites to form C-terminally heterogeneous amyloid-beta and cleaves at an epsilon-site to release the intracellular domain or epsilon-C-terminal fragment. In this work, two novel in vitro gamma-secretase assays are developed to further explore the biochemical characteristics of gamma-secretase activity. During development of a bacterial expression system for a substrate based on the amyloid precursor protein C-terminal 99-amino acid sequence, fragments similar to amyloid-beta and an epsilon-C-terminal fragment were observed. Upon purification this substrate was used in parallel with a transfected source of substrate to measure gamma-secretase activity from detergent extracted membranes. With these systems, it was determined that recovery of size-fractionated cellular and tissue-derived gamma-secretase activity is dependent upon detergent concentration and that activity correlates to a subset of high molecular mass presenilin complexes. We also show that by changing the solvent environment with dimethyl sulfoxide, detection of epsilon-C-terminal fragments can be elevated. Lastly, we show that zinc causes an increase in the apparent molecular mass of an amyloid precursor protein gamma-secretase substrate and inhibits its cleavage. These studies further refine our knowledge of the complexes and biochemical factors needed for gamma-secretase activity and suggest a mechanism by which zinc dysregulation may contribute to Alzheimer's disease pathogenesis.
Collapse
Affiliation(s)
- David E Hoke
- Department of Pathology, The University of Melbourne and the Mental Health Research Institute, Parkville, Victoria, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Sato T, Tanimura Y, Hirotani N, Saido TC, Morishima-Kawashima M, Ihara Y. Blocking the cleavage at midportion between gamma- and epsilon-sites remarkably suppresses the generation of amyloid beta-protein. FEBS Lett 2005; 579:2907-12. [PMID: 15890346 DOI: 10.1016/j.febslet.2005.04.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 04/04/2005] [Accepted: 04/18/2005] [Indexed: 11/29/2022]
Abstract
To examine how gamma- and epsilon-cleavages of beta-amyloid precursor protein (APP) are related, each cleavage site was replaced with a stretch of Trp that cannot be cleaved by gamma-secretase. Replacement of the gamma- or epsilon-site significantly suppressed secretion of amyloid beta-protein (Abeta), and produced longer Abeta or longer APP intracellular domain, respectively. This cleavage at the midportion between gamma- and epsilon-sites was also gamma-secretase-dependent. Blocking this cleavage with a Trp stretch remarkably suppressed Abeta generation, indicating that the midportion cleavage is required for the generation of Abeta.
Collapse
Affiliation(s)
- Toru Sato
- Department of Neuropathology, Faculty of Medicine, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Cupers P, Annaert WG, Strooper BD. The presenilins as potential drug targets in Alzheimer’s disease. ACTA ACUST UNITED AC 2005. [DOI: 10.1517/14728222.3.3.413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
43
|
Hecimovic S, Wang J, Dolios G, Martinez M, Wang R, Goate AM. Mutations in APP have independent effects on Aβ and CTFγ generation. Neurobiol Dis 2004; 17:205-18. [PMID: 15474359 DOI: 10.1016/j.nbd.2004.04.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2003] [Revised: 04/02/2004] [Accepted: 04/15/2004] [Indexed: 11/26/2022] Open
Abstract
Understanding the molecular mechanism of beta-amyloid (Abeta) generation is crucial for Alzheimer's disease pathogenesis as well as for normal APP function. The transmembrane domain (TM) of APP appears to undergo presenilin-dependent gamma-secretase cleavage at two topologically distinct sites: a site in the middle of the TM domain that is crucial for the generation of Abeta-peptides, and a site close to the cytoplasmic border (S3-like/epsilon site) of the TM domain that leads to production of the APP intracellular domain (CTFgamma/AICD). We demonstrate that, in contrast to the unique effect of familial Alzheimer's disease (FAD) mutations in APP on Abeta42 production, some but not all FAD mutations also affect CTFgamma generation. Furthermore, changes in total CTFgamma levels do not correlate with either an increase or a decrease of any Abeta species, and inhibition of Abeta-peptide formation starting from position +1 (Abeta1-x) does not affect CTFgamma production. These results suggest that cleavage at the gamma40/42- and the S3-like sites can be dissociated, and that APP signaling and Abeta production are not tightly linked.
Collapse
Affiliation(s)
- Silva Hecimovic
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
44
|
Beher D, Clarke EE, Wrigley JDJ, Martin ACL, Nadin A, Churcher I, Shearman MS. Selected non-steroidal anti-inflammatory drugs and their derivatives target gamma-secretase at a novel site. Evidence for an allosteric mechanism. J Biol Chem 2004; 279:43419-26. [PMID: 15304503 DOI: 10.1074/jbc.m404937200] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Gamma-secretase is a multi-component enzyme complex that performs an intramembranous cleavage, releasing amyloid-beta (Abeta) peptides from processing intermediates of the beta-amyloid precursor protein. Because Abeta peptides are thought to be causative for Alzheimer's disease, inhibiting gamma-secretase represents a potential treatment for this neurodegenerative condition. Whereas inhibitors directed at the active center of gamma-secretase inhibit the cleavage of all its substrates, certain non-steroidal antiinflammatory drugs (NSAIDs) have been shown to selectively reduce the production of the more amyloidogenic Abeta(1-42) peptide without inhibiting alternative cleavages. In contrast to the majority of previous studies, however, we demonstrate that in cell-free systems the mode of action of selected NSAIDs and their derivatives, depending on the concentrations used, can either be classified as modulatory or inhibitory. At modulatory concentrations, a selective and, with respect to the substrate, noncompetitive inhibition of Abeta(1-42) production was observed. At inhibitory concentrations, on the other hand, biochemical readouts reminiscent of a nonselective gamma-secretase inhibition were obtained. When these compounds were analyzed for their ability to displace a radiolabeled, transition-state analog inhibitor from solubilized enzyme, noncompetitive antagonism was observed. The allosteric nature of radioligand displacement suggests that NSAID-like inhibitors change the conformation of the gamma-secretase enzyme complex by binding to a novel site, which is discrete from the binding site for transition-state analogs and therefore distinct from the catalytic center. Consequently, drug discovery efforts aimed at this site may identify novel allosteric inhibitors that could benefit from a wider window for inhibition of gamma (42)-cleavage over alternative cleavages in the beta-amyloid precursor protein and, more importantly, alternative substrates.
Collapse
Affiliation(s)
- Dirk Beher
- Department of Molecular and Cellular Neuroscience, Merck Sharp & Dohme Research Laboratories, The Neuroscience Research Centre, Terlings Park, Harlow, Essex CM20 2QR, UK.
| | | | | | | | | | | | | |
Collapse
|
45
|
Wilhelmsen K, van der Geer P. Phorbol 12-myristate 13-acetate-induced release of the colony-stimulating factor 1 receptor cytoplasmic domain into the cytosol involves two separate cleavage events. Mol Cell Biol 2004; 24:454-64. [PMID: 14673177 PMCID: PMC303356 DOI: 10.1128/mcb.24.1.454-464.2004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The colony-stimulating factor 1 (CSF-1) receptor is a protein-tyrosine kinase that regulates cell division, differentiation, and development. In response to phorbol 12-myristate 13-acetate (PMA), the CSF-1 receptor is subject to proteolytic processing. Use of chimeric receptors indicates that the CSF-1 receptor is cleaved at least two times, once in the extracellular domain and once in the transmembrane domain. Cleavage in the extracellular domain results in ectodomain shedding while the cytoplasmic domain remains associated with the membrane. Intramembrane cleavage depends on the sequence of the transmembrane domain and results in the release of the cytoplasmic domain. This process can be blocked by gamma-secretase inhibitors. The cytoplasmic domain localizes partially to the nucleus, displays limited stability, and is degraded by the proteosome. CSF-1 receptors are continuously subject to down-modulation and regulated intramembrane proteolysis (RIP). RIP is stimulated by granulocyte-macrophage-CSF, CSF-1, interleukin-2 (IL-2), IL-4, lipopolysaccharide, and PMA and may provide the CSF-1 receptor with an additional mechanism for signal transduction.
Collapse
Affiliation(s)
- Kevin Wilhelmsen
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0601, USA
| | | |
Collapse
|
46
|
Schroeter EH, Ilagan MXG, Brunkan AL, Hecimovic S, Li YM, Xu M, Lewis HD, Saxena MT, De Strooper B, Coonrod A, Tomita T, Iwatsubo T, Moore CL, Goate A, Wolfe MS, Shearman M, Kopan R. A presenilin dimer at the core of the gamma-secretase enzyme: insights from parallel analysis of Notch 1 and APP proteolysis. Proc Natl Acad Sci U S A 2003; 100:13075-80. [PMID: 14566063 PMCID: PMC240747 DOI: 10.1073/pnas.1735338100] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Notch receptors and the amyloid precursor protein are type I membrane proteins that are proteolytically cleaved within their transmembrane domains by a presenilin (PS)-dependent gamma-secretase activity. In both proteins, two peptide bonds are hydrolyzed: one near the inner leaflet and the other in the middle of the transmembrane domain. Under saturating conditions the substrates compete with each other for proteolysis, but not for binding to PS. At least some Alzheimer's disease-causing PS mutations reside in proteins possessing low catalytic activity. We demonstrate (i) that differentially tagged PS molecules coimmunoprecipitate, and (ii) that PS N-terminal fragment dimers exist by using a photoaffinity probe based on a transition state analog gamma-secretase inhibitor. We propose that gamma-secretase contains a PS dimer in its catalytic core, that binding of substrate is at a site separate from the active site, and that substrate is cleaved at the interface of two PS molecules.
Collapse
Affiliation(s)
- Eric H. Schroeter
- Departments of Molecular Biology and Pharmacology and Psychiatry, Washington University School of Medicine, St. Louis, MO 63110; Department of Biological Chemistry, Merck Research Laboratories, West Point, PA 19486-0004; Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo Bunkyoku, Tokyo 113-0033, Japan; Department of Biochemistry and Molecular Biology, Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Harlow, Essex CM20 2QR, United Kingdom; Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115; Department of Pharmaceutical Sciences, University of Tennessee, Memphis, TN 38163; and Neuronal Cell Biology and Gene Transfer Laboratory, Center for Human Genetics, Katholieke Universiteit and Flanders Interuniversity Institute for Biotechnology, VIB4 Leuven, Belgium
| | - Ma. Xenia G. Ilagan
- Departments of Molecular Biology and Pharmacology and Psychiatry, Washington University School of Medicine, St. Louis, MO 63110; Department of Biological Chemistry, Merck Research Laboratories, West Point, PA 19486-0004; Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo Bunkyoku, Tokyo 113-0033, Japan; Department of Biochemistry and Molecular Biology, Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Harlow, Essex CM20 2QR, United Kingdom; Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115; Department of Pharmaceutical Sciences, University of Tennessee, Memphis, TN 38163; and Neuronal Cell Biology and Gene Transfer Laboratory, Center for Human Genetics, Katholieke Universiteit and Flanders Interuniversity Institute for Biotechnology, VIB4 Leuven, Belgium
| | - Anne L. Brunkan
- Departments of Molecular Biology and Pharmacology and Psychiatry, Washington University School of Medicine, St. Louis, MO 63110; Department of Biological Chemistry, Merck Research Laboratories, West Point, PA 19486-0004; Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo Bunkyoku, Tokyo 113-0033, Japan; Department of Biochemistry and Molecular Biology, Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Harlow, Essex CM20 2QR, United Kingdom; Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115; Department of Pharmaceutical Sciences, University of Tennessee, Memphis, TN 38163; and Neuronal Cell Biology and Gene Transfer Laboratory, Center for Human Genetics, Katholieke Universiteit and Flanders Interuniversity Institute for Biotechnology, VIB4 Leuven, Belgium
| | - Silva Hecimovic
- Departments of Molecular Biology and Pharmacology and Psychiatry, Washington University School of Medicine, St. Louis, MO 63110; Department of Biological Chemistry, Merck Research Laboratories, West Point, PA 19486-0004; Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo Bunkyoku, Tokyo 113-0033, Japan; Department of Biochemistry and Molecular Biology, Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Harlow, Essex CM20 2QR, United Kingdom; Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115; Department of Pharmaceutical Sciences, University of Tennessee, Memphis, TN 38163; and Neuronal Cell Biology and Gene Transfer Laboratory, Center for Human Genetics, Katholieke Universiteit and Flanders Interuniversity Institute for Biotechnology, VIB4 Leuven, Belgium
| | - Yue-ming Li
- Departments of Molecular Biology and Pharmacology and Psychiatry, Washington University School of Medicine, St. Louis, MO 63110; Department of Biological Chemistry, Merck Research Laboratories, West Point, PA 19486-0004; Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo Bunkyoku, Tokyo 113-0033, Japan; Department of Biochemistry and Molecular Biology, Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Harlow, Essex CM20 2QR, United Kingdom; Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115; Department of Pharmaceutical Sciences, University of Tennessee, Memphis, TN 38163; and Neuronal Cell Biology and Gene Transfer Laboratory, Center for Human Genetics, Katholieke Universiteit and Flanders Interuniversity Institute for Biotechnology, VIB4 Leuven, Belgium
| | - Min Xu
- Departments of Molecular Biology and Pharmacology and Psychiatry, Washington University School of Medicine, St. Louis, MO 63110; Department of Biological Chemistry, Merck Research Laboratories, West Point, PA 19486-0004; Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo Bunkyoku, Tokyo 113-0033, Japan; Department of Biochemistry and Molecular Biology, Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Harlow, Essex CM20 2QR, United Kingdom; Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115; Department of Pharmaceutical Sciences, University of Tennessee, Memphis, TN 38163; and Neuronal Cell Biology and Gene Transfer Laboratory, Center for Human Genetics, Katholieke Universiteit and Flanders Interuniversity Institute for Biotechnology, VIB4 Leuven, Belgium
| | - Huw D. Lewis
- Departments of Molecular Biology and Pharmacology and Psychiatry, Washington University School of Medicine, St. Louis, MO 63110; Department of Biological Chemistry, Merck Research Laboratories, West Point, PA 19486-0004; Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo Bunkyoku, Tokyo 113-0033, Japan; Department of Biochemistry and Molecular Biology, Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Harlow, Essex CM20 2QR, United Kingdom; Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115; Department of Pharmaceutical Sciences, University of Tennessee, Memphis, TN 38163; and Neuronal Cell Biology and Gene Transfer Laboratory, Center for Human Genetics, Katholieke Universiteit and Flanders Interuniversity Institute for Biotechnology, VIB4 Leuven, Belgium
| | - Meera T. Saxena
- Departments of Molecular Biology and Pharmacology and Psychiatry, Washington University School of Medicine, St. Louis, MO 63110; Department of Biological Chemistry, Merck Research Laboratories, West Point, PA 19486-0004; Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo Bunkyoku, Tokyo 113-0033, Japan; Department of Biochemistry and Molecular Biology, Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Harlow, Essex CM20 2QR, United Kingdom; Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115; Department of Pharmaceutical Sciences, University of Tennessee, Memphis, TN 38163; and Neuronal Cell Biology and Gene Transfer Laboratory, Center for Human Genetics, Katholieke Universiteit and Flanders Interuniversity Institute for Biotechnology, VIB4 Leuven, Belgium
| | - Bart De Strooper
- Departments of Molecular Biology and Pharmacology and Psychiatry, Washington University School of Medicine, St. Louis, MO 63110; Department of Biological Chemistry, Merck Research Laboratories, West Point, PA 19486-0004; Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo Bunkyoku, Tokyo 113-0033, Japan; Department of Biochemistry and Molecular Biology, Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Harlow, Essex CM20 2QR, United Kingdom; Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115; Department of Pharmaceutical Sciences, University of Tennessee, Memphis, TN 38163; and Neuronal Cell Biology and Gene Transfer Laboratory, Center for Human Genetics, Katholieke Universiteit and Flanders Interuniversity Institute for Biotechnology, VIB4 Leuven, Belgium
| | - Archie Coonrod
- Departments of Molecular Biology and Pharmacology and Psychiatry, Washington University School of Medicine, St. Louis, MO 63110; Department of Biological Chemistry, Merck Research Laboratories, West Point, PA 19486-0004; Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo Bunkyoku, Tokyo 113-0033, Japan; Department of Biochemistry and Molecular Biology, Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Harlow, Essex CM20 2QR, United Kingdom; Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115; Department of Pharmaceutical Sciences, University of Tennessee, Memphis, TN 38163; and Neuronal Cell Biology and Gene Transfer Laboratory, Center for Human Genetics, Katholieke Universiteit and Flanders Interuniversity Institute for Biotechnology, VIB4 Leuven, Belgium
| | - Taisuke Tomita
- Departments of Molecular Biology and Pharmacology and Psychiatry, Washington University School of Medicine, St. Louis, MO 63110; Department of Biological Chemistry, Merck Research Laboratories, West Point, PA 19486-0004; Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo Bunkyoku, Tokyo 113-0033, Japan; Department of Biochemistry and Molecular Biology, Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Harlow, Essex CM20 2QR, United Kingdom; Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115; Department of Pharmaceutical Sciences, University of Tennessee, Memphis, TN 38163; and Neuronal Cell Biology and Gene Transfer Laboratory, Center for Human Genetics, Katholieke Universiteit and Flanders Interuniversity Institute for Biotechnology, VIB4 Leuven, Belgium
| | - Takeshi Iwatsubo
- Departments of Molecular Biology and Pharmacology and Psychiatry, Washington University School of Medicine, St. Louis, MO 63110; Department of Biological Chemistry, Merck Research Laboratories, West Point, PA 19486-0004; Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo Bunkyoku, Tokyo 113-0033, Japan; Department of Biochemistry and Molecular Biology, Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Harlow, Essex CM20 2QR, United Kingdom; Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115; Department of Pharmaceutical Sciences, University of Tennessee, Memphis, TN 38163; and Neuronal Cell Biology and Gene Transfer Laboratory, Center for Human Genetics, Katholieke Universiteit and Flanders Interuniversity Institute for Biotechnology, VIB4 Leuven, Belgium
| | - Chad L. Moore
- Departments of Molecular Biology and Pharmacology and Psychiatry, Washington University School of Medicine, St. Louis, MO 63110; Department of Biological Chemistry, Merck Research Laboratories, West Point, PA 19486-0004; Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo Bunkyoku, Tokyo 113-0033, Japan; Department of Biochemistry and Molecular Biology, Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Harlow, Essex CM20 2QR, United Kingdom; Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115; Department of Pharmaceutical Sciences, University of Tennessee, Memphis, TN 38163; and Neuronal Cell Biology and Gene Transfer Laboratory, Center for Human Genetics, Katholieke Universiteit and Flanders Interuniversity Institute for Biotechnology, VIB4 Leuven, Belgium
| | - Alison Goate
- Departments of Molecular Biology and Pharmacology and Psychiatry, Washington University School of Medicine, St. Louis, MO 63110; Department of Biological Chemistry, Merck Research Laboratories, West Point, PA 19486-0004; Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo Bunkyoku, Tokyo 113-0033, Japan; Department of Biochemistry and Molecular Biology, Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Harlow, Essex CM20 2QR, United Kingdom; Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115; Department of Pharmaceutical Sciences, University of Tennessee, Memphis, TN 38163; and Neuronal Cell Biology and Gene Transfer Laboratory, Center for Human Genetics, Katholieke Universiteit and Flanders Interuniversity Institute for Biotechnology, VIB4 Leuven, Belgium
| | - Michael S. Wolfe
- Departments of Molecular Biology and Pharmacology and Psychiatry, Washington University School of Medicine, St. Louis, MO 63110; Department of Biological Chemistry, Merck Research Laboratories, West Point, PA 19486-0004; Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo Bunkyoku, Tokyo 113-0033, Japan; Department of Biochemistry and Molecular Biology, Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Harlow, Essex CM20 2QR, United Kingdom; Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115; Department of Pharmaceutical Sciences, University of Tennessee, Memphis, TN 38163; and Neuronal Cell Biology and Gene Transfer Laboratory, Center for Human Genetics, Katholieke Universiteit and Flanders Interuniversity Institute for Biotechnology, VIB4 Leuven, Belgium
| | - Mark Shearman
- Departments of Molecular Biology and Pharmacology and Psychiatry, Washington University School of Medicine, St. Louis, MO 63110; Department of Biological Chemistry, Merck Research Laboratories, West Point, PA 19486-0004; Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo Bunkyoku, Tokyo 113-0033, Japan; Department of Biochemistry and Molecular Biology, Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Harlow, Essex CM20 2QR, United Kingdom; Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115; Department of Pharmaceutical Sciences, University of Tennessee, Memphis, TN 38163; and Neuronal Cell Biology and Gene Transfer Laboratory, Center for Human Genetics, Katholieke Universiteit and Flanders Interuniversity Institute for Biotechnology, VIB4 Leuven, Belgium
| | - Raphael Kopan
- Departments of Molecular Biology and Pharmacology and Psychiatry, Washington University School of Medicine, St. Louis, MO 63110; Department of Biological Chemistry, Merck Research Laboratories, West Point, PA 19486-0004; Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo Bunkyoku, Tokyo 113-0033, Japan; Department of Biochemistry and Molecular Biology, Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Harlow, Essex CM20 2QR, United Kingdom; Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115; Department of Pharmaceutical Sciences, University of Tennessee, Memphis, TN 38163; and Neuronal Cell Biology and Gene Transfer Laboratory, Center for Human Genetics, Katholieke Universiteit and Flanders Interuniversity Institute for Biotechnology, VIB4 Leuven, Belgium
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
47
|
Lashuel HA, Hartley DM, Petre BM, Wall JS, Simon MN, Walz T, Lansbury PT. Mixtures of wild-type and a pathogenic (E22G) form of Abeta40 in vitro accumulate protofibrils, including amyloid pores. J Mol Biol 2003; 332:795-808. [PMID: 12972252 DOI: 10.1016/s0022-2836(03)00927-6] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Although APP mutations associated with inherited forms of Alzheimer's disease (AD) are relatively rare, detailed studies of these mutations may prove critical for gaining important insights into the mechanism(s) and etiology of AD. Here, we present a detailed biophysical characterization of the structural properties of protofibrils formed by the Arctic variant (E22G) of amyloid-beta protein (Abeta40(ARC)) as well as the effect of Abeta40(WT) on the distribution of the protofibrillar species formed by Abeta40(ARC) by characterizing biologically relevant mixtures of both proteins that may mimic the situation in the heterozygous patients. These studies revealed that the Arctic mutation accelerates both Abeta oligomerization and fibrillogenesis in vitro. In addition, Abeta40(ARC) was observed to affect both the morphology and the size distribution of Abeta protofibrils. Electron microscopy examination of the protofibrils formed by Abeta40(ARC) revealed several morphologies, including: (1) relatively compact spherical particles roughly 4-5 nm in diameter; (2) annular pore-like protofibrils; (3) large spherical particles 18-25 nm in diameter; and (4) short filaments with chain-like morphology. Conversion of Abeta40(ARC) protofibrils to fibrils occurred more rapidly than protofibrils formed in mixed solutions of Abeta40(WT)/Abeta40(ARC), suggesting that co-incubation of Abeta40(ARC) with Abeta40(WT) leads to kinetic stabilization of Abeta40(ARC) protofibrils. An increase in the ratio of Abeta(WT)/Abeta(MUT(Arctic)), therefore, may result in the accumulation of potential neurotoxic protofibrils and acceleration of disease progression in familial Alzheimer's disease mutation carriers.
Collapse
Affiliation(s)
- Hilal A Lashuel
- Harvard Center for Neurodegeneration and Repair, 65 Landsdowne St., Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Grimm HS, Beher D, Lichtenthaler SF, Shearman MS, Beyreuther K, Hartmann T. gamma-Secretase cleavage site specificity differs for intracellular and secretory amyloid beta. J Biol Chem 2003; 278:13077-85. [PMID: 12556458 DOI: 10.1074/jbc.m210380200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The final step in A beta generation is the cleavage of the C-terminal 99 amino acid residues of the amyloid precursor protein by gamma-secretase. gamma-Secretase activity is closely linked to the multi-transmembrane-spanning proteins presenilin 1 and presenilin 2. To elucidate whether the cleavage site specificities of gamma-secretase leading to the formation of secreted and intracellular A beta are identical, we made use of point mutations close to the gamma-cleavage site, known to have a dramatic effect on the 42/40 ratio of secreted A beta. We found that the selected point mutations only marginally influenced the 42/40 ratio of intracellular A beta, suggesting differences in the gamma-secretase cleavage site specificity for the generation of secreted and intracellular A beta. The analysis of the subcellular compartments involved in the generation of intracellular A beta revealed that A beta is not generated in the early secretory pathway in the human SH-SY5Y neuroblastoma cell line. In this study we identified late Golgi compartments to be involved in the generation of intracellular A beta. Moreover, we demonstrate that the presence of processed PS1 is not sufficient to obtain gamma-secretase processing of the truncated amyloid precursor protein construct C99, proposing the existence of an additional factor downstream of the endoplasmic reticulum and early Golgi required for the formation of an active gamma-secretase complex.
Collapse
Affiliation(s)
- Heike S Grimm
- Center for Molecular Biology Heidelberg (ZMBH), University of Heidelberg, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
49
|
Grziwa B, Grimm MOW, Masters CL, Beyreuther K, Hartmann T, Lichtenthaler SF. The transmembrane domain of the amyloid precursor protein in microsomal membranes is on both sides shorter than predicted. J Biol Chem 2003; 278:6803-8. [PMID: 12454010 DOI: 10.1074/jbc.m210047200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The amyloid precursor protein is cleaved within its ectodomain by beta-amyloid-converting enzyme (BACE) yielding C99, which is further cleaved by gamma-secretase within its putative transmembrane domain (TMD). Because it is difficult to envisage how a protease may cleave within the membrane, alternative mechanisms have been proposed for gamma-cleavage in which the TMD is shorter than predicted or positioned such that the gamma-cleavage site is accessible to cytosolic proteases. Here, we have biochemically determined the length of the TMD of C99 in microsomal membranes. Using a single cysteine mutagenesis scan of C99 combined with cysteine modification with a membrane-impermeable labeling reagent, we identified which residues are accessible to modification and thus located outside of the membrane. We find that in endoplasmic reticulum-derived microsomes the TMD of C99 consists of 12 residues that span from residues 37 to 48, which is N- and C-terminally shorter than predicted. Thus, the gamma-cleavage sites are positioned around the middle of the lipid bilayer and are unlikely to be accessible to cytosolic proteases. Moreover, the center of the TMD is positioned at the gamma-cleavage site at residue 42. Our data are consistent with a model in which gamma-secretase is a membrane protein that cleaves at the center of the membrane.
Collapse
Affiliation(s)
- Beate Grziwa
- Center for Molecular Biology Heidelberg, University of Heidelberg, INF 282, D-69120 Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
50
|
Lashuel HA, Hartley DM, Balakhaneh D, Aggarwal A, Teichberg S, Callaway DJE. New class of inhibitors of amyloid-beta fibril formation. Implications for the mechanism of pathogenesis in Alzheimer's disease. J Biol Chem 2002; 277:42881-90. [PMID: 12167652 DOI: 10.1074/jbc.m206593200] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The amyloid hypothesis suggests that the process of amyloid-beta protein (Abeta) fibrillogenesis is responsible for triggering a cascade of physiological events that contribute directly to the initiation and progression of Alzheimer's disease. Consequently, preventing this process might provide a viable therapeutic strategy for slowing and/or preventing the progression of this devastating disease. A promising strategy to achieve prevention of this disease is to discover compounds that inhibit Abeta polymerization and deposition. Herein, we describe a new class of small molecules that inhibit Abeta aggregation, which is based on the chemical structure of apomorphine. These molecules were found to interfere with Abeta1-40 fibrillization as determined by transmission electron microscopy, Thioflavin T fluorescence and velocity sedimentation analytical ultracentrifugation studies. Using electron microscopy, time-dependent studies demonstrate that apomorphine and its derivatives promote the oligomerization of Abeta but inhibit its fibrillization. Preliminary structural activity studies demonstrate that the 10,11-dihydroxy substitutions of the D-ring of apomorphine are required for the inhibitory effectiveness of these aporphines, and methylation of these hydroxyl groups reduces their inhibitory potency. The ability of these small molecules to inhibit Abeta amyloid fibril formation appears to be linked to their tendency to undergo rapid autoxidation, suggesting that autoxidation product(s) acts directly or indirectly on Abeta and inhibits its fibrillization. The inhibitory properties of the compounds presented suggest a new class of small molecules that could serve as a scaffold for the design of more efficient inhibitors of Abeta amyloidogenesis in vivo.
Collapse
Affiliation(s)
- Hilal A Lashuel
- Center for Neurologic Diseases, Brigham and Women's Hospital and Department of Neurology, Harvard Medical School, Cambridge, Massachusetts 02139, USA.
| | | | | | | | | | | |
Collapse
|