1
|
Maurya D, Mittal S, Jena MK, Pathak B. Machine Learning-Driven Quantum Sequencing of Natural and Chemically Modified DNA. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20778-20789. [PMID: 40156522 DOI: 10.1021/acsami.4c22809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
Simultaneous identification of natural and chemically modified DNA nucleotides at molecular resolution remains a pivotal challenge in genomic science. Despite significant advances in current sequencing technologies, the ability to identify subtle changes in natural and chemically modified nucleotides is hindered by structural and configurational complexity. Given the critical role of nucleobase modifications in data storage and personalized medicine, we propose a computational approach using a graphene nanopore coupled with machine learning (ML) to simultaneously recognize both natural and chemically modified nucleotides, exploring a wide range of modifications in the nucleobase, sugar, and phosphate moieties while investigating quantum transport mechanisms to uncover distinct molecular signatures and detailed electronic and orbital insights of the nucleotides. Integrating with the best-fitted model, the graphene nanopore achieves a good classification accuracy of up to 96% for each natural, chemically modified, purine, and pyrimidine nucleotide. Our approach offers a rapid and precise solution for real-time DNA sequencing by decoding natural and chemically modified nucleotides on a single platform.
Collapse
Affiliation(s)
- Dipti Maurya
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh 453552, India
| | - Sneha Mittal
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh 453552, India
| | - Milan Kumar Jena
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh 453552, India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh 453552, India
| |
Collapse
|
2
|
Fallah A, Imani Fooladi AA, Havaei SA, Mahboobi M, Sedighian H. Recent advances in aptamer discovery, modification and improving performance. Biochem Biophys Rep 2024; 40:101852. [PMID: 39525567 PMCID: PMC11546948 DOI: 10.1016/j.bbrep.2024.101852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/06/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Aptamers are nucleic acid (Ribonucleic acid (RNA) and single strand deoxyribonucleic acid (ssDNA)) with a length of approximately 25-80 bases that can bind to particular target molecules, similar to monoclonal antibodies. Due to their many benefits, which include a long shelf life, minimal batch-to-batch variations, extremely low immunogenicity, the possibility of chemical modifications for improved stability, an extended serum half-life, and targeted delivery, they are receiving a lot of attention in a variety of clinical applications. The development of high-affinity modification approaches has attracted significant attention in aptamer applications. Stable three-dimensional aptamers that have undergone chemical modification can engage firmly with target proteins through improved non-covalent binding, potentially leading to hundreds of affinity improvements. This review demonstrates how cutting-edge methodologies for aptamer discovery are being developed to consistently and effectively construct high-performing aptamers that need less money and resources yet have a high chance of success. Also, High-affinity aptamer modification techniques were discussed.
Collapse
Affiliation(s)
- Arezoo Fallah
- Department of Bacteriology and Virology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Asghar Havaei
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdieh Mahboobi
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Novgorodtseva AI, Lomzov AA, Vasilyeva SV. Synthesis and Properties of α-Phosphate-Modified Nucleoside Triphosphates. Molecules 2024; 29:4121. [PMID: 39274969 PMCID: PMC11397104 DOI: 10.3390/molecules29174121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/16/2024] Open
Abstract
This review article is focused on the progress made in the synthesis of 5'-α-P-modified nucleoside triphosphates (α-phosphate mimetics). A variety of α-P-modified nucleoside triphosphates (NTPαXYs, Y = O, S; X = S, Se, BH3, alkyl, amine, N-alkyl, imido, or others) have been developed. There is a unique class of nucleoside triphosphate analogs with different properties. The main chemical approaches to the synthesis of NTPαXYs are analyzed and systematized here. Using the data presented here on the diversity of NTPαXYs and their synthesis protocols, it is possible to select an appropriate method for obtaining a desired α-phosphate mimetic. Triphosphates' substrate properties toward nucleic acid metabolism enzymes are highlighted too. We reviewed some of the most prominent applications of NTPαXYs including the use of modified dNTPs in studies on mechanisms of action of polymerases or in systematic evolution of ligands by exponential enrichment (SELEX). The presence of heteroatoms such as sulfur, selenium, or boron in α-phosphate makes modified triphosphates nuclease resistant. The most distinctive feature of NTPαXYs is that they can be recognized by polymerases. As a result, S-, Se-, or BH3-modified phosphate residues can be incorporated into DNA or RNA. This property has made NTPαXYs a multifunctional tool in molecular biology. This review will be of interest to synthetic chemists, biochemists, biotechnologists, or biologists engaged in basic or applied research.
Collapse
Affiliation(s)
- Alina I Novgorodtseva
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Alexander A Lomzov
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Svetlana V Vasilyeva
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia
| |
Collapse
|
4
|
Didarian R, Ozbek HK, Ozalp VC, Erel O, Yildirim-Tirgil N. Enhanced SELEX Platforms for Aptamer Selection with Improved Characteristics: A Review. Mol Biotechnol 2024:10.1007/s12033-024-01256-w. [PMID: 39152308 DOI: 10.1007/s12033-024-01256-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/26/2024] [Indexed: 08/19/2024]
Abstract
This review delves into the advancements in molecular recognition through enhanced SELEX (Systematic Evolution of Ligands by Exponential Enrichment) platforms and post-aptamer modifications. Aptamers, with their superior specificity and affinity compared to antibodies, are central to this discussion. Despite the advantages of the SELEX process-encompassing stages like ssDNA library preparation, incubation, separation, and PCR amplification-it faces challenges, such as nuclease susceptibility. To address these issues and propel aptamer technology forward, we examine next-generation SELEX platforms, including microfluidic-based SELEX, capillary electrophoresis SELEX, cell-based aptamer selection, counter-SELEX, in vivo SELEX, and high-throughput sequencing SELEX, highlighting their respective merits and innovations. Furthermore, this article underscores the significance of post-aptamer modifications, particularly chemical strategies that enhance aptamer stability, reduce renal filtration, and expand their target range, thereby broadening their utility in diagnostics, therapeutics, and nanotechnology. By synthesizing these advanced SELEX platforms and modifications, this review illuminates the dynamic progress in aptamer research and outlines the ongoing efforts to surmount existing challenges and enhance their clinical applicability, charting a path for future breakthroughs in this evolving field.
Collapse
Affiliation(s)
- Reza Didarian
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Ankara Yıldırım Beyazıt University, Ayvalı Mh. Takdir Cad.150 Sk. No:5, Etlik-Keçiören, Ankara, 06010, Türkiye
| | - Hatice K Ozbek
- Metallurgical and Materials Engineering Department, Faculty of Engineering and Natural Sciences, Ankara Yıldırım Beyazıt University, Ankara, 06010, Türkiye
| | - Veli C Ozalp
- Department of Medical Biology, School of Medicine, Atilim University, Ankara, 06830, Türkiye
| | - Ozcan Erel
- Department of Biochemistry, Faculty of Medicine, Yıldırım Beyazıt University, Ankara, 06010, Türkiye
| | - Nimet Yildirim-Tirgil
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Ankara Yıldırım Beyazıt University, Ayvalı Mh. Takdir Cad.150 Sk. No:5, Etlik-Keçiören, Ankara, 06010, Türkiye.
| |
Collapse
|
5
|
Sett A, Gadewar M, Babu MA, Panja A, Sachdeva P, Almutary AG, Upadhye V, Jha SK, Jha NK. Orchestration and theranostic applications of synthetic genome with Hachimoji bases/building blocks. Chem Biol Drug Des 2024; 103:e14378. [PMID: 38230795 DOI: 10.1111/cbdd.14378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 01/18/2024]
Abstract
Synthetic genomics is a novel field of chemical biology where the chemically modified genetic alphabets have been considered in central dogma of life. Tweaking of chemical compositions of natural nucleotide bases could be developed as novel building blocks of DNA/RNA. The modified bases (dP, dZ, dS, and dB etc.) have been demonstrated to be adaptable for replication, transcription and follow Darwinism law of evolution. With advancement of chemical biology especially nucleotide chemistry, synthetic genetic codes have been discovered and Hachimoji nucleotides are the most important and significant one among them. These additional nucleotide bases can form orthogonal base-pairing, and also follow Darwinian evolution and other structural features. In the Hachimoji base pairing, synthetic building blocks are formed using eight modified nucleotide (DNA/RNA) letters (hence the name "Hachimoji"). Their structural conformations, like polyelectrolyte backbones and stereo-regular building blocks favor thermodynamic stability and confirm Schrodinger aperiodic crystal. From the structural genomics aspect, these synthetic bases could be incorporated into the central dogma of life. Researchers have shown Hachimoji building blocks were transcribed to its RNA counterpart as a functional fluorescent Hachimoji aptamer. Apart from several unnatural nucleotide base pairs maneuvered into its in vitro and in vivo applications, this review describes future perspective towards the development and therapeutic utilization of the genetic codes, a primary objective of synthetic and chemical biology.
Collapse
Affiliation(s)
- Arghya Sett
- ERIN Department, Luxembourg Institute of Science and Technology, 5 Av. des Hauts-Fourneaux, Belval, 4362, Esch, Luxembourg
| | - Manoj Gadewar
- Department of Pharmacology, School of Medical and Allied Sciences, K R Mangalam University, Gurgaon, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | | | | | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Vijay Upadhye
- Centre of Research for Development (CR4D) and Department of Microbiology, Parul University, Vadodara, Gujarat, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Centre of Research Impact and Outreach, Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India
| |
Collapse
|
6
|
Wang D, Li Y, Deng X, Torre M, Zhang Z, Li X, Zhang W, Cullion K, Kohane DS, Weldon CB. An aptamer-based depot system for sustained release of small molecule therapeutics. Nat Commun 2023; 14:2444. [PMID: 37117194 PMCID: PMC10147605 DOI: 10.1038/s41467-023-37002-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/24/2023] [Indexed: 04/30/2023] Open
Abstract
Delivery of hydrophilic small molecule therapeutics by traditional drug delivery systems is challenging. Herein, we have used the specific interaction between DNA aptamers and drugs to create simple and effective drug depot systems. The specific binding of a phosphorothioate-modified aptamer to drugs formed non-covalent aptamer/drug complexes, which created a sustained release system. We demonstrated the effectiveness of this system with small hydrophilic molecules, the site 1 sodium channel blockers tetrodotoxin and saxitoxin. The aptamer-based delivery system greatly prolonged the duration of local anesthesia and reduced systemic toxicity. The beneficial effects of the aptamers were restricted to the compounds they were specific to. These studies establish aptamers as a class of highly specific, modifiable drug delivery systems, and demonstrate potential usefulness in the management of postoperative pain.
Collapse
Affiliation(s)
- Dali Wang
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yang Li
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Xiaoran Deng
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Matthew Torre
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Zipei Zhang
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Xiyu Li
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Wei Zhang
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kathleen Cullion
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Daniel S Kohane
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Christopher B Weldon
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
7
|
Pundir M, Papagerakis S, De Rosa MC, Chronis N, Kurabayashi K, Abdulmawjood S, Prince MEP, Lobanova L, Chen X, Papagerakis P. Emerging biotechnologies for evaluating disruption of stress, sleep, and circadian rhythm mechanism using aptamer-based detection of salivary biomarkers. Biotechnol Adv 2022; 59:107961. [PMID: 35427723 DOI: 10.1016/j.biotechadv.2022.107961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/30/2022] [Accepted: 04/09/2022] [Indexed: 12/26/2022]
|
8
|
Wang F, Li P, Chu HC, Lo PK. Nucleic Acids and Their Analogues for Biomedical Applications. BIOSENSORS 2022; 12:93. [PMID: 35200353 PMCID: PMC8869748 DOI: 10.3390/bios12020093] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 05/07/2023]
Abstract
Nucleic acids are emerging as powerful and functional biomaterials due to their molecular recognition ability, programmability, and ease of synthesis and chemical modification. Various types of nucleic acids have been used as gene regulation tools or therapeutic agents for the treatment of human diseases with genetic disorders. Nucleic acids can also be used to develop sensing platforms for detecting ions, small molecules, proteins, and cells. Their performance can be improved through integration with other organic or inorganic nanomaterials. To further enhance their biological properties, various chemically modified nucleic acid analogues can be generated by modifying their phosphodiester backbone, sugar moiety, nucleobase, or combined sites. Alternatively, using nucleic acids as building blocks for self-assembly of highly ordered nanostructures would enhance their biological stability and cellular uptake efficiency. In this review, we will focus on the development and biomedical applications of structural and functional natural nucleic acids, as well as the chemically modified nucleic acid analogues over the past ten years. The recent progress in the development of functional nanomaterials based on self-assembled DNA-based platforms for gene regulation, biosensing, drug delivery, and therapy will also be presented. We will then summarize with a discussion on the advanced development of nucleic acid research, highlight some of the challenges faced and propose suggestions for further improvement.
Collapse
Affiliation(s)
- Fei Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China; (F.W.); (P.L.); (H.C.C.)
| | - Pan Li
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China; (F.W.); (P.L.); (H.C.C.)
| | - Hoi Ching Chu
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China; (F.W.); (P.L.); (H.C.C.)
| | - Pik Kwan Lo
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China; (F.W.); (P.L.); (H.C.C.)
- Key Laboratory of Biochip Technology, Biotech and Health Care, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
9
|
Oliveira R, Pinho E, Sousa AL, DeStefano JJ, Azevedo NF, Almeida C. Improving aptamer performance with nucleic acid mimics: de novo and post-SELEX approaches. Trends Biotechnol 2021; 40:549-563. [PMID: 34756455 DOI: 10.1016/j.tibtech.2021.09.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022]
Abstract
Aptamers are structural single-stranded oligonucleotides generated in vitro to bind to a specific target molecule. Aptamers' versatility can be enhanced with nucleic acid mimics (NAMs) during or after a selection process, also known as systematic evolution of ligands by exponential enrichment (SELEX). We address advantages and limitations of the technologies used to generate NAM aptamers, especially the applicability of existing engineered polymerases to replicate NAMs and methodologies to improve aptamers after SELEX. We also discuss the limitations of existing methods for sequencing NAM sequences and bioinformatic tools to predict NAM aptamer structures. As a conclusion, we suggest that NAM aptamers might successfully compete with molecular tools based on proteins such as antibodies for future application.
Collapse
Affiliation(s)
- Ricardo Oliveira
- INIAV - National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vairão, Vila do Conde, Portugal; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Eva Pinho
- INIAV - National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vairão, Vila do Conde, Portugal
| | - Ana Luísa Sousa
- INIAV - National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vairão, Vila do Conde, Portugal; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Jeffrey J DeStefano
- Cell Biology and Molecular Genetics, Bioscience Research Building, University of Maryland, College Park, MD 20742, USA
| | - Nuno Filipe Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Carina Almeida
- INIAV - National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vairão, Vila do Conde, Portugal; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
10
|
Ștefan G, Hosu O, De Wael K, Lobo-Castañón MJ, Cristea C. Aptamers in biomedicine: Selection strategies and recent advances. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137994] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Wu L, Wang Y, Xu X, Liu Y, Lin B, Zhang M, Zhang J, Wan S, Yang C, Tan W. Aptamer-Based Detection of Circulating Targets for Precision Medicine. Chem Rev 2021; 121:12035-12105. [PMID: 33667075 DOI: 10.1021/acs.chemrev.0c01140] [Citation(s) in RCA: 339] [Impact Index Per Article: 84.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The past decade has witnessed ongoing progress in precision medicine to improve human health. As an emerging diagnostic technique, liquid biopsy can provide real-time, comprehensive, dynamic physiological and pathological information in a noninvasive manner, opening a new window for precision medicine. Liquid biopsy depends on the sensitive and reliable detection of circulating targets (e.g., cells, extracellular vesicles, proteins, microRNAs) from body fluids, the performance of which is largely governed by recognition ligands. Aptamers are single-stranded functional oligonucleotides, capable of folding into unique tertiary structures to bind to their targets with superior specificity and affinity. Their mature evolution procedure, facile modification, and affinity regulation, as well as versatile structural design and engineering, make aptamers ideal recognition ligands for liquid biopsy. In this review, we present a broad overview of aptamer-based liquid biopsy techniques for precision medicine. We begin with recent advances in aptamer selection, followed by a summary of state-of-the-art strategies for multivalent aptamer assembly and aptamer interface modification. We will further describe aptamer-based micro-/nanoisolation platforms, aptamer-enabled release methods, and aptamer-assisted signal amplification and detection strategies. Finally, we present our perspectives regarding the opportunities and challenges of aptamer-based liquid biopsy for precision medicine.
Collapse
Affiliation(s)
- Lingling Wu
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yidi Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xing Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yilong Liu
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bingqian Lin
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Mingxia Zhang
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jialu Zhang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shuang Wan
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Weihong Tan
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China.,The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
12
|
Ni S, Zhuo Z, Pan Y, Yu Y, Li F, Liu J, Wang L, Wu X, Li D, Wan Y, Zhang L, Yang Z, Zhang BT, Lu A, Zhang G. Recent Progress in Aptamer Discoveries and Modifications for Therapeutic Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9500-9519. [PMID: 32603135 DOI: 10.1021/acsami.0c05750] [Citation(s) in RCA: 324] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Aptamers are oligonucleotide sequences with a length of about 25-80 bases which have abilities to bind to specific target molecules that rival those of monoclonal antibodies. They are attracting great attention in diverse clinical translations on account of their various advantages, including prolonged storage life, little batch-to-batch differences, very low immunogenicity, and feasibility of chemical modifications for enhancing stability, prolonging the half-life in serum, and targeted delivery. In this Review, we demonstrate the emerging aptamer discovery technologies in developing advanced techniques for producing aptamers with high performance consistently and efficiently as well as requiring less cost and resources but offering a great chance of success. Further, the diverse modifications of aptamers for therapeutic applications including therapeutic agents, aptamer-drug conjugates, and targeted delivery materials are comprehensively summarized.
Collapse
Affiliation(s)
- Shuaijian Ni
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong 999077, China
- HKBU and IncreasePharm Joint Centre for Nucleic Acid Drug Discovery, Hong Kong 999077, China
| | - Zhenjian Zhuo
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Yufei Pan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yuanyuan Yu
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong 999077, China
- HKBU and IncreasePharm Joint Centre for Nucleic Acid Drug Discovery, Hong Kong 999077, China
| | - Fangfei Li
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong 999077, China
- HKBU and IncreasePharm Joint Centre for Nucleic Acid Drug Discovery, Hong Kong 999077, China
| | - Jin Liu
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong 999077, China
- HKBU and IncreasePharm Joint Centre for Nucleic Acid Drug Discovery, Hong Kong 999077, China
| | - Luyao Wang
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong 999077, China
- HKBU and IncreasePharm Joint Centre for Nucleic Acid Drug Discovery, Hong Kong 999077, China
| | - Xiaoqiu Wu
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong 999077, China
- HKBU and IncreasePharm Joint Centre for Nucleic Acid Drug Discovery, Hong Kong 999077, China
| | - Dijie Li
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong 999077, China
- HKBU and IncreasePharm Joint Centre for Nucleic Acid Drug Discovery, Hong Kong 999077, China
| | - Youyang Wan
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong 999077, China
- HKBU and IncreasePharm Joint Centre for Nucleic Acid Drug Discovery, Hong Kong 999077, China
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhenjun Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bao-Ting Zhang
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Aiping Lu
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong 999077, China
- HKBU and IncreasePharm Joint Centre for Nucleic Acid Drug Discovery, Hong Kong 999077, China
| | - Ge Zhang
- Institute of Precision Medicine and Innovative Drug Discovery, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong 999077, China
- Guangdong-Hong Kong-Macao Greater Bay Area International Research Platform for Aptamer-based Translational Medicine and Drug Discovery, Hong Kong 999077, China
- HKBU and IncreasePharm Joint Centre for Nucleic Acid Drug Discovery, Hong Kong 999077, China
| |
Collapse
|
13
|
Saran R, Huang Z, Liu J. Phosphorothioate nucleic acids for probing metal binding, biosensing and nanotechnology. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213624] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
McKenzie LK, El-Khoury R, Thorpe JD, Damha MJ, Hollenstein M. Recent progress in non-native nucleic acid modifications. Chem Soc Rev 2021; 50:5126-5164. [DOI: 10.1039/d0cs01430c] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
While Nature harnesses RNA and DNA to store, read and write genetic information, the inherent programmability, synthetic accessibility and wide functionality of these nucleic acids make them attractive tools for use in a vast array of applications.
Collapse
Affiliation(s)
- Luke K. McKenzie
- Institut Pasteur
- Department of Structural Biology and Chemistry
- Laboratory for Bioorganic Chemistry of Nucleic Acids
- CNRS UMR3523
- 75724 Paris Cedex 15
| | | | | | | | - Marcel Hollenstein
- Institut Pasteur
- Department of Structural Biology and Chemistry
- Laboratory for Bioorganic Chemistry of Nucleic Acids
- CNRS UMR3523
- 75724 Paris Cedex 15
| |
Collapse
|
15
|
Ochoa S, Milam VT. Modified Nucleic Acids: Expanding the Capabilities of Functional Oligonucleotides. Molecules 2020; 25:E4659. [PMID: 33066073 PMCID: PMC7587394 DOI: 10.3390/molecules25204659] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/20/2022] Open
Abstract
In the last three decades, oligonucleotides have been extensively investigated as probes, molecular ligands and even catalysts within therapeutic and diagnostic applications. The narrow chemical repertoire of natural nucleic acids, however, imposes restrictions on the functional scope of oligonucleotides. Initial efforts to overcome this deficiency in chemical diversity included conservative modifications to the sugar-phosphate backbone or the pendant base groups and resulted in enhanced in vivo performance. More importantly, later work involving other modifications led to the realization of new functional characteristics beyond initial intended therapeutic and diagnostic prospects. These results have inspired the exploration of increasingly exotic chemistries highly divergent from the canonical nucleic acid chemical structure that possess unnatural physiochemical properties. In this review, the authors highlight recent developments in modified oligonucleotides and the thrust towards designing novel nucleic acid-based ligands and catalysts with specifically engineered functions inaccessible to natural oligonucleotides.
Collapse
Affiliation(s)
- Steven Ochoa
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Valeria T. Milam
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
16
|
Chemical Modification of Aptamers for Increased Binding Affinity in Diagnostic Applications: Current Status and Future Prospects. Int J Mol Sci 2020; 21:ijms21124522. [PMID: 32630547 PMCID: PMC7350236 DOI: 10.3390/ijms21124522] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Aptamers are short single stranded DNA or RNA oligonucleotides that can recognize analytes with extraordinary target selectivity and affinity. Despite their promising properties and diagnostic potential, the number of commercial applications remains scarce. In order to endow them with novel recognition motifs and enhanced properties, chemical modification of aptamers has been pursued. This review focuses on chemical modifications, aimed at increasing the binding affinity for the aptamer's target either in a non-covalent or covalent fashion, hereby improving their application potential in a diagnostic context. An overview of current methodologies will be given, thereby distinguishing between pre- and post-SELEX (Systematic Evolution of Ligands by Exponential Enrichment) modifications.
Collapse
|
17
|
Wu Y, Belmonte I, Sykes KS, Xiao Y, White RJ. Perspective on the Future Role of Aptamers in Analytical Chemistry. Anal Chem 2019; 91:15335-15344. [PMID: 31714748 PMCID: PMC10184572 DOI: 10.1021/acs.analchem.9b03853] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It has been almost 30 years since the invention of Systematic Evolution of Ligands by Exponential Enrichment (SELEX) methodology and the description of the first aptamers. In retrospect over the past 30 years, advances in aptamer development and application have demonstrated that aptamers are potentially useful reagents that can be employed in diverse areas within analytical chemistry, biotechnology, biomedicine, and molecular biology. While often touted as artificial antibodies with an ability to be selected for any target, aptamer development, unfortunately, lags behind development of analytical methodologies that employ aptamers, hindering deeper integration into the application of analytical tool development. This perspective covers recent advances in SELEX methodology for improving efficiency of the SELEX procedure and enhancing affinity and specificity of the selected aptamers, what we view as a critical barrier in the future role of aptamers in analytical chemistry. We discuss postselection modifications that can be used for enhancing performance of the selected aptamers in an analytical device by including understanding intermolecular interaction forces in the binding domain. While highlighting promising properties of aptamers that enable several analytical advances, we provide discussion on the challenges of penetration of aptamers in the analytical field.
Collapse
Affiliation(s)
- Yao Wu
- Department of Chemistry , University of Cincinnati , Cincinnati , Ohio 45221 , United States
| | - Israel Belmonte
- Department of Chemistry , University of Cincinnati , Cincinnati , Ohio 45221 , United States
| | - Kiana S Sykes
- Department of Chemistry , University of Cincinnati , Cincinnati , Ohio 45221 , United States
| | - Yi Xiao
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| | - Ryan J White
- Department of Chemistry , University of Cincinnati , Cincinnati , Ohio 45221 , United States.,Department of Electrical Engineering and Computer Science , University of Cincinnati , Cincinnati , Ohio 45221 , United States
| |
Collapse
|
18
|
Aptamers: A Review of Their Chemical Properties and Modifications for Therapeutic Application. Molecules 2019; 24:molecules24234229. [PMID: 31766318 PMCID: PMC6930564 DOI: 10.3390/molecules24234229] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 11/20/2019] [Indexed: 12/29/2022] Open
Abstract
Aptamers are short, single-stranded oligonucleotides that bind to specific target molecules. The shape-forming feature of single-stranded oligonucleotides provides high affinity and excellent specificity toward targets. Hence, aptamers can be used as analogs of antibodies. In December 2004, the US Food and Drug Administration approved the first aptamer-based therapeutic, pegaptanib (Macugen), targeting vascular endothelial growth factor, for the treatment of age-related macular degeneration. Since then, however, no aptamer medication for public health has appeared. During these relatively silent years, many trials and improvements of aptamer therapeutics have been performed, opening multiple novel directions for the therapeutic application of aptamers. This review summarizes the basic characteristics of aptamers and the chemical modifications available for aptamer therapeutics.
Collapse
|
19
|
Yan J, Xiong H, Cai S, Wen N, He Q, Liu Y, Peng D, Liu Z. Advances in aptamer screening technologies. Talanta 2019; 200:124-144. [DOI: 10.1016/j.talanta.2019.03.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/20/2019] [Accepted: 03/02/2019] [Indexed: 02/07/2023]
|
20
|
Arangundy-Franklin S, Taylor AI, Porebski BT, Genna V, Peak-Chew S, Vaisman A, Woodgate R, Orozco M, Holliger P. A synthetic genetic polymer with an uncharged backbone chemistry based on alkyl phosphonate nucleic acids. Nat Chem 2019; 11:533-542. [PMID: 31011171 DOI: 10.1038/s41557-019-0255-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 03/15/2019] [Indexed: 12/24/2022]
Abstract
The physicochemical properties of nucleic acids are dominated by their highly charged phosphodiester backbone chemistry. This polyelectrolyte structure decouples information content (base sequence) from bulk properties, such as solubility, and has been proposed as a defining trait of all informational polymers. However, this conjecture has not been tested experimentally. Here, we describe the encoded synthesis of a genetic polymer with an uncharged backbone chemistry: alkyl phosphonate nucleic acids (phNAs) in which the canonical, negatively charged phosphodiester is replaced by an uncharged P-alkyl phosphonodiester backbone. Using synthetic chemistry and polymerase engineering, we describe the enzymatic, DNA-templated synthesis of P-methyl and P-ethyl phNAs, and the directed evolution of specific streptavidin-binding phNA aptamer ligands directly from random-sequence mixed P-methyl/P-ethyl phNA repertoires. Our results establish an example of the DNA-templated enzymatic synthesis and evolution of an uncharged genetic polymer and provide a foundational methodology for their exploration as a source of novel functional molecules.
Collapse
Affiliation(s)
| | - Alexander I Taylor
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| | - Benjamin T Porebski
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| | - Vito Genna
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Sew Peak-Chew
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK
| | - Alexandra Vaisman
- Section on DNA Replication, Repair and Mutagenesis, Bethesda, MD, USA
| | - Roger Woodgate
- Section on DNA Replication, Repair and Mutagenesis, Bethesda, MD, USA
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Department of Biochemistry and Biomedicine, University of Barcelona, Barcelona, Spain
| | - Philipp Holliger
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
21
|
Antipova OM, Zavyalova EG, Golovin AV, Pavlova GV, Kopylov AM, Reshetnikov RV. Advances in the Application of Modified Nucleotides in SELEX Technology. BIOCHEMISTRY (MOSCOW) 2018; 83:1161-1172. [PMID: 30472954 DOI: 10.1134/s0006297918100024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aptamers are widely used as molecular recognition elements for detecting and blocking functional biological molecules. Since the common "alphabet" of DNA and RNA consists of only four letters, the chemical diversity of aptamers is less than the diversity of protein recognition elements built of 20 amino acids. Chemical modification of nucleotides enlarges the potential of DNA/RNA aptamers. This review describes the latest achievements in a variety of approaches to aptamers selection with an extended genetic alphabet.
Collapse
Affiliation(s)
- O M Antipova
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia. .,Apto-Pharm Ltd., Moscow, 115564, Russia
| | - E G Zavyalova
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia.,Apto-Pharm Ltd., Moscow, 115564, Russia
| | - A V Golovin
- Apto-Pharm Ltd., Moscow, 115564, Russia.,Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119234, Russia.,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia
| | - G V Pavlova
- Apto-Pharm Ltd., Moscow, 115564, Russia.,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia.,Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.,Burdenko National Scientific and Practical Center for Neurosurgery, Ministry of Healthcare of the Russian Federation, Moscow, 125047, Russia
| | - A M Kopylov
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia.,Apto-Pharm Ltd., Moscow, 115564, Russia
| | - R V Reshetnikov
- Apto-Pharm Ltd., Moscow, 115564, Russia.,Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119234, Russia.,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia.,Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
22
|
Current state of in vivo panning technologies: Designing specificity and affinity into the future of drug targeting. Adv Drug Deliv Rev 2018; 130:39-49. [PMID: 29964079 DOI: 10.1016/j.addr.2018.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/24/2018] [Accepted: 06/22/2018] [Indexed: 11/20/2022]
Abstract
Targeting ligands are used in drug delivery to improve drug distribution to desired cells or tissues and to facilitate cellular entry. In vivo biopanning, whereby billions of potential ligand sequences are screened in biologically-relevant and complex conditions, is a powerful method for identification of novel target ligands. This tool has impacted drug delivery technologies and expanded our arsenal of therapeutics and diagnostics. Within this review we will discuss current in vivo panning technologies and ways that these technologies can be improved to advance next-generation drug delivery strategies.
Collapse
|
23
|
RAGE-aptamer attenuates deoxycorticosterone acetate/salt-induced renal injury in mice. Sci Rep 2018; 8:2686. [PMID: 29422652 PMCID: PMC5805738 DOI: 10.1038/s41598-018-21176-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/31/2018] [Indexed: 12/20/2022] Open
Abstract
The mineralocorticoid receptor (MR) and its downstream signaling play an important role in hypertensive renal injury. The interaction of advanced glycation end products (AGE) with their receptor (RAGE) is involved in the progression of renal disease. However, the pathological crosstalk between AGE–RAGE axis and MR system in kidney derangement remains unclear. We screened DNA-aptamer directed against RAGE (RAGE-apt) in vitro and examined its effects on renal injury in uninephrectomized deoxycorticosterone acetate (DOCA)/salt-induced hypertensive mice. RAGE, GTP-bound Rac-1 (Rac1), and MR were co-localized in the podocytes of DOCA mice. The deletion of RAGE gene significantly inhibited mesangial matrix expansion and tubulointerstitial fibrosis in DOCA mice, which was associated with the reduction of glomerular oxidative stress, MR, Rac1, and urinary albumin excretion (UAE) levels. RAGE-apt attenuated the increase in carboxymethyllysine (CML), RAGE, nitrotyrosine, Rac1, and MR levels in the kidneys and reduced UAE in DOCA mice. Aldosterone (Aldo) increased nitrotyrosine, CML, and RAGE gene expression in murine podocytes, whereas CML stimulated MR and Rac1 levels, which were blocked by RAGE-apt. The present study indicates the crosstalk between the AGE–RAGE axis and Aldo–MR system, suggesting that RAGE-apt may be a novel therapeutic tool for the treatment of MR-associated renal diseases.
Collapse
|
24
|
Liu H, Mai J, Shen J, Wolfram J, Li Z, Zhang G, Xu R, Li Y, Mu C, Zu Y, Li X, Lokesh GL, Thiviyanathan V, Volk DE, Gorenstein DG, Ferrari M, Hu Z, Shen H. A Novel DNA Aptamer for Dual Targeting of Polymorphonuclear Myeloid-derived Suppressor Cells and Tumor Cells. Am J Cancer Res 2018; 8:31-44. [PMID: 29290791 PMCID: PMC5743458 DOI: 10.7150/thno.21342] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/28/2017] [Indexed: 12/17/2022] Open
Abstract
Aptamers have the potential to be used as targeting ligands for cancer treatment as they form unique spatial structures. Methods: In this study, a DNA aptamer (T1) that accumulates in the tumor microenvironment was identified through in vivo selection and validation in breast cancer models. The use of T1 as a targeting ligand was evaluated by conjugating the aptamer to liposomal doxorubicin. Results: T1 exhibited a high affinity for both tumor cells and polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs). Treatment with T1 targeted doxorubicin liposomes triggered apoptosis of breast cancer cells and PMN-MDSCs. Suppression of PMN-MDSCs, which serve an immunosuppressive function, leads to increased intratumoral infiltration of cytotoxic T cells. Conclusion: The cytotoxic and immunomodulatory effects of T1-liposomes resulted in superior therapeutic efficacy compared to treatment with untargeted liposomes, highlighting the promise of T1 as a targeting ligand in cancer therapy.
Collapse
|
25
|
Volk DE, Lokesh GLR. Development of Phosphorothioate DNA and DNA Thioaptamers. Biomedicines 2017; 5:E41. [PMID: 28703779 PMCID: PMC5618299 DOI: 10.3390/biomedicines5030041] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/03/2017] [Accepted: 07/11/2017] [Indexed: 02/07/2023] Open
Abstract
Nucleic acid aptamers are short RNA- or DNA-based affinity reagents typically selected from combinatorial libraries to bind to a specific target such as a protein, a small molecule, whole cells or even animals. Aptamers have utility in the development of diagnostic, imaging and therapeutic applications due to their size, physico-chemical nature and ease of synthesis and modification to suit the application. A variety of oligonucleotide modifications have been used to enhance the stability of aptamers from nuclease degradation in vivo. The non-bridging oxygen atoms of the phosphodiester backbones of RNA and DNA aptamers can be substituted with one or two sulfur atoms, resulting in thioaptamers with phosphorothioate or phosphorodithioate linkages, respectively. Such thioaptamers are known to have increased binding affinity towards their target, as well as enhanced resistance to nuclease degradation. In this review, we discuss the development of phosphorothioate chemistry and thioaptamers, with a brief review of selection methods.
Collapse
Affiliation(s)
- David E Volk
- McGovern Medical School, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center, Houston, TX 77030, USA.
| | - Ganesh L R Lokesh
- McGovern Medical School, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center, Houston, TX 77030, USA.
| |
Collapse
|
26
|
Thirunavukarasu D, Chen T, Liu Z, Hongdilokkul N, Romesberg FE. Selection of 2'-Fluoro-Modified Aptamers with Optimized Properties. J Am Chem Soc 2017; 139:2892-2895. [PMID: 28218835 DOI: 10.1021/jacs.6b13132] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
RNA or single-stranded DNA aptamers with 2'-F pyrimidines have been pursued to increase resistance to nucleases, and while it seems likely that these and other modifications, including the modification of purines, could be used to optimize additional properties, this has been much less explored because such aptamers are challenging to discover. Using a thermostable DNA polymerase, SFM4-3, which was previously evolved to accept nucleotides with 2'-modifications, we now report the selection of 2'-F purine aptamers that bind human neutrophil elastase (HNE). Two aptamers were identified, 2fHNE-1 and 2fHNE-2, that bind HNE with reasonable affinity. Interestingly, the 2'-F substituents facilitate the selection of specific interactions with HNE and overcome nonspecific electrostatic interactions that can otherwise dominate. The data demonstrate that inclusion of only a few 2'-F substituents can optimize properties far beyond simple nuclease resistance and that SFM4-3 should prove valuable for the further exploration and production of aptamers with properties optimized for various applications.
Collapse
Affiliation(s)
- Deepak Thirunavukarasu
- Department of Chemistry, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Tingjian Chen
- Department of Chemistry, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Zhixia Liu
- Department of Chemistry, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Narupat Hongdilokkul
- Department of Chemistry, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Floyd E Romesberg
- Department of Chemistry, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
27
|
Sharma TK, Bruno JG, Dhiman A. ABCs of DNA aptamer and related assay development. Biotechnol Adv 2017; 35:275-301. [PMID: 28108354 DOI: 10.1016/j.biotechadv.2017.01.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/19/2016] [Accepted: 01/17/2017] [Indexed: 12/14/2022]
Abstract
This review is intended to guide the novice in aptamer research and development to understand virtually all of the aptamer development options and currently available assay modalities. Aptamer development topics range from discussions of basic and advanced versions of Systematic Evolution of Ligands by EXponential Enrichment (SELEX) and SELEX variations involving incorporation of exotic unnatural nucleotides to expand library diversity for even greater aptamer affinity and specificity to improved next generation methods of DNA sequencing, screening and tracking aptamer development throughout the SELEX process and characterization of lead aptamer candidates. Aptamer assay development topics include descriptions of various colorimetric and fluorescent assays in microplates or on membranes including homogeneous beacon and multiplexed Fluorescence Resonance Energy Transfer (FRET) assays. Finally, a discussion of the potential for marketing successful aptamer-based assays or test kits is included.
Collapse
Affiliation(s)
- Tarun Kumar Sharma
- Center for Biodesign and Diagnostics, Translational Health Science and Technology Institute, Faridabad, Haryana 121001, India; AptaBharat Innovation Private Limited, Translational Health Science and Technology Institute Incubator, Haryana 121001, India.
| | - John G Bruno
- Operational Technologies Corporation, 4100 NW Loop 410, Suite, 230, San Antonio, TX 78229, USA..
| | - Abhijeet Dhiman
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi 110029, India.; Faculty of Pharmacy, Uttarakhand Technical University, Dehradun 248007, Uttarakhand, India
| |
Collapse
|
28
|
Morita Y, Kamal M, Kang SA, Zhang R, Lokesh GL, Thiviyanathan V, Hasan N, Woo S, Zhao D, Leslie M, Suh S, Razaq W, Rui H, Gorenstein DG, Volk DE, Tanaka T. E-selectin Targeting PEGylated-thioaptamer Prevents Breast Cancer Metastases. MOLECULAR THERAPY-NUCLEIC ACIDS 2016; 5:e399. [PMID: 27959340 DOI: 10.1038/mtna.2016.103] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 10/21/2016] [Indexed: 02/06/2023]
Abstract
E-selectin is an adhesion molecule expressed on the luminal surface of inflamed blood vessels that mediates hematogenous metastasis by assisting shear-resistant adhesion of circulating tumor cells to the vessel surface under dynamic blood flow. Previously, we developed an E-selectin antagonistic thioaptamer (ESTA) for the prevention of hematogenous metastasis through the blockade of CD44high breast cancer cells (BCa) adhesion to E-selectin-expressing premetastatic endothelial niche. The current study focuses on developing a PEGylated E-selectin targeting thioaptamer with improved pharmaceutical properties. A serial deletion of stem-loops reveled that loop-1 and -2 (ESTA7) are the minimally effective backbone structure necessary to obtain inhibition of the E-selectin/CD44 interaction and shear resistant adhesion of CD44high BCa to E-selectin-expressing human endothelial cells (HMVECs) at a level equal to ESTA. Chemical conjugation of methoxy-polyethylene-glycol (PEG) at the sizes of 5 and 10 kDa did not interfere with ESTA7-mediated shear-resistant adhesion. However, in vivo study demonstrated that only 10 kDa PEG-conjugated ESTA7 (ESTA7-p10) retains the activity to inhibit metastases at a level equal to parental ESTA. Additionally, a single intravenous injection of ESTA7-p10 inhibited the development of lung, brain, and bone metastases of MDA-MB-231, through the blockade of E-selectin. Moreover, PEGylation led to an extension of elimination half-life and increase of AUC, resulting in superior inhibition of metastasis development compared to parental ESTA with a longer interval between dosing in a spontaneous metastasis model. Lastly, repeated intravenous administration of ESTA7-p10 was tolerated in mice, highlighting the potential prophylactic application of ESTA7-p10 for metastasis prevention.
Collapse
Affiliation(s)
- Yoshihiro Morita
- University of Oklahoma Health Sciences Center, Stephenson Cancer Center, Oklahoma City, Oklahoma, USA
| | - Mohamed Kamal
- University of Oklahoma Health Sciences Center, Stephenson Cancer Center, Oklahoma City, Oklahoma, USA
| | - Shin-Ae Kang
- University of Oklahoma Health Sciences Center, Stephenson Cancer Center, Oklahoma City, Oklahoma, USA
| | - Roy Zhang
- Department of Pathology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Ganesh Lr Lokesh
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Varatharasa Thiviyanathan
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Nafis Hasan
- Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Sukyung Woo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Daniel Zhao
- University of Oklahoma Health Sciences Center, College of Public Health, Oklahoma City, Oklahoma, USA
| | - Macall Leslie
- University of Oklahoma Health Sciences Center, Stephenson Cancer Center, Oklahoma City, Oklahoma, USA
| | - Stephen Suh
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Wajeeha Razaq
- Department of Hematology and Oncology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Hallgeir Rui
- Department of Pathology, Medical College of Wisconsin Cancer Center, Milwaukee, Wisconsin, USA
| | - David G Gorenstein
- AM Biotechnologies, Houston, Texas, USA.,Department of Nanomedicine and Biomedical Engineering, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - David E Volk
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA.,Department of Nanomedicine and Biomedical Engineering, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Takemi Tanaka
- University of Oklahoma Health Sciences Center, Stephenson Cancer Center, Oklahoma City, Oklahoma, USA.,Department of Pathology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
29
|
Morph-X-Select: Morphology-based tissue aptamer selection for ovarian cancer biomarker discovery. Biotechniques 2016; 61:249-259. [PMID: 27839510 DOI: 10.2144/000114473] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 09/09/2016] [Indexed: 12/28/2022] Open
Abstract
High affinity aptamer-based biomarker discovery has the advantage of simultaneously discovering an aptamer affinity reagent and its target biomarker protein. Here, we demonstrate a morphology-based tissue aptamer selection method that enables us to use tissue sections from individual patients and identify high-affinity aptamers and their associated target proteins in a systematic and accurate way. We created a combinatorial DNA aptamer library that has been modified with thiophosphate substitutions of the phosphate ester backbone at selected 5´dA positions for enhanced nuclease resistance and targeting. Based on morphological assessment, we used image-directed laser microdissection (LMD) to dissect regions of interest bound with the thioaptamer (TA) library and further identified target proteins for the selected TAs. We have successfully identified and characterized the lead candidate TA, V5, as a vimentin-specific sequence that has shown specific binding to tumor vasculature of human ovarian tissue and human microvascular endothelial cells. This new Morph-X-Select method allows us to select high-affinity aptamers and their associated target proteins in a specific and accurate way, and could be used for personalized biomarker discovery to improve medical decision-making and to facilitate the development of targeted therapies to achieve more favorable outcomes.
Collapse
|
30
|
Lipi F, Chen S, Chakravarthy M, Rakesh S, Veedu RN. In vitro evolution of chemically-modified nucleic acid aptamers: Pros and cons, and comprehensive selection strategies. RNA Biol 2016; 13:1232-1245. [PMID: 27715478 PMCID: PMC5207382 DOI: 10.1080/15476286.2016.1236173] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Nucleic acid aptamers are single-stranded DNA or RNA oligonucleotide sequences that bind to a specific target molecule with high affinity and specificity through their ability to adopt 3-dimensional structure in solution. Aptamers have huge potential as targeted therapeutics, diagnostics, delivery agents and as biosensors. However, aptamers composed of natural nucleotide monomers are quickly degraded in vivo and show poor pharmacodynamic properties. To overcome this, chemically-modified nucleic acid aptamers are developed by incorporating modified nucleotides after or during the selection process by Systematic Evolution of Ligands by EXponential enrichment (SELEX). This review will discuss the development of chemically-modified aptamers and provide the pros and cons, and new insights on in vitro aptamer selection strategies by using chemically-modified nucleic acid libraries.
Collapse
Affiliation(s)
- Farhana Lipi
- a Western Australian Neuroscience Research Institute , Perth , Australia
| | - Suxiang Chen
- a Western Australian Neuroscience Research Institute , Perth , Australia.,b Centre for Comparative Genomics, Murdoch University , Perth , Australia
| | - Madhuri Chakravarthy
- a Western Australian Neuroscience Research Institute , Perth , Australia.,b Centre for Comparative Genomics, Murdoch University , Perth , Australia
| | - Shilpa Rakesh
- a Western Australian Neuroscience Research Institute , Perth , Australia
| | - Rakesh N Veedu
- a Western Australian Neuroscience Research Institute , Perth , Australia.,b Centre for Comparative Genomics, Murdoch University , Perth , Australia
| |
Collapse
|
31
|
Aptamers in hematological malignancies and their potential therapeutic implications. Crit Rev Oncol Hematol 2016; 106:108-17. [PMID: 27637356 DOI: 10.1016/j.critrevonc.2016.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 06/06/2016] [Accepted: 08/09/2016] [Indexed: 02/07/2023] Open
Abstract
Aptamers are short DNA/RNA oligonucleotides selected by the process called Systematic Evolution of Ligands by Exponential Enrichment (SELEX). Due to their functional similarity to monoclonal antibodies with some superior characters, such as high specificity and affinity, flexible modification and stability, and lack of toxicity and immunogenicity, they are promising alternative and complementary targeted therapy for hematologic malignancies. The trends in aptamer technology including production, selection, modifications are briefly discussed in this review. The key aspect is to illustrate aptamers against cancer cells in hematologic malignancies especially those that have entered clinical trials. We also discuss some challenges remain in the application of aptamers.
Collapse
|
32
|
Post-SELEX optimization of aptamers. Anal Bioanal Chem 2016; 408:4567-73. [PMID: 27173394 DOI: 10.1007/s00216-016-9556-2] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/04/2016] [Accepted: 04/08/2016] [Indexed: 12/14/2022]
Abstract
Aptamers are functional single-stranded DNA or RNA oligonucleotides, selected in vitro by SELEX (Systematic Evolution of Ligands by Exponential Enrichment), which can fold into stable unique three-dimensional structures that bind their target ligands with high affinity and specificity. Although aptamers show a number of favorable advantages such as better stability and easier modification when compared with the properties of antibodies, only a handful of aptamers have entered clinical trials and only one, pegaptanib, has received US Food and Drug Administration approval for clinical use. The main reasons that limit the practical application of aptamers are insufficient nuclease stability, bioavailability, thermal stability, or even affinity. Some aptamers obtained from modified libraries show better properties; however, polymerase amplification of nucleic acids containing non-natural bases is currently a primary drawback of the SELEX process. This review focuses on several post-SELEX optimization strategies of aptamers identified in recent years. We describe four common methods in detail: truncation, chemical modification, bivalent or multivalent aptamer construction, and mutagenesis. We believe that these optimization strategies should improve one or more specific properties of aptamers, and the type of feature(s) selected for improvement will be dependent on the application purpose.
Collapse
|
33
|
Zandarashvili L, Esadze A, Iwahara J. NMR studies on the dynamics of hydrogen bonds and ion pairs involving lysine side chains of proteins. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 93:37-80. [PMID: 24018322 DOI: 10.1016/b978-0-12-416596-0.00002-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Hydrogen bonds and ion pairs involving side chains play vital roles in protein functions such as molecular recognition and catalysis. Despite the wealth of structural information about hydrogen bonds and ion pairs at functionally crucial sites on proteins, the dynamics of these fundamental chemical interactions are not well understood largely due to the lack of suitable experimental tools in the past. NMR spectroscopy is a powerful tool for investigations of protein dynamics, but the vast majority of NMR methods had been applicable only to the backbone or methyl groups. Recently, a substantial progress has been made in the research on the dynamics of hydrogen bonds and ion pairs involving lysine side-chain NH3+ groups. Together with computational/theoretical approaches, the new NMR methods provide unique insights into the dynamics of hydrogen bonds and ion pairs involving lysine side chains. Here, the methodology and its applications are reviewed.
Collapse
Affiliation(s)
- Levani Zandarashvili
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas, USA
| | | | | |
Collapse
|
34
|
Zhu Q, Liu G, Kai M. DNA Aptamers in the Diagnosis and Treatment of Human Diseases. Molecules 2015; 20:20979-97. [PMID: 26610462 PMCID: PMC6332121 DOI: 10.3390/molecules201219739] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/16/2015] [Accepted: 11/16/2015] [Indexed: 02/07/2023] Open
Abstract
Aptamers have a promising role in the field of life science and have been extensively researched for application as analytical tools, therapeutic agents and as vehicles for targeted drug delivery. Compared with RNA aptamers, DNA aptamers have inherent advantages in stability and facility of generation and synthesis. To better understand the specific potential of DNA aptamers, an overview of the progress in the generation and application of DNA aptamers in human disease diagnosis and therapy are presented in this review. Special attention is given to researches that are relatively close to practical application. DNA aptamers are expected to have great potential in the diagnosis and treatment of human diseases.
Collapse
Affiliation(s)
- Qinchang Zhu
- Faculty of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| | - Ge Liu
- Department of Genomic Epidemiology, Research Center for Environment and Developmental Medical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan.
| | - Masaaki Kai
- Faculty of Pharmaceutical Sciences, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| |
Collapse
|
35
|
A Highlight of Recent Advances in Aptamer Technology and Its Application. Molecules 2015; 20:11959-80. [PMID: 26133761 PMCID: PMC6331864 DOI: 10.3390/molecules200711959] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 06/23/2015] [Accepted: 06/25/2015] [Indexed: 01/10/2023] Open
Abstract
Aptamers and SELEX (systematic evolution of ligands by exponential enrichment) technology have gained increasing attention over the past 25 years. Despite their functional similarity to protein antibodies, oligonucleotide aptamers have many unique properties that are suitable for clinical applications and industrialization. Aptamers may be superior to antibodies in fields such as biomarker discovery, in vitro and in vivo diagnosis, precisely controlled drug release, and targeted therapy. However, aptamer commercialization has not occurred as quickly as expected, and few aptamer-based products have yet successfully entered clinical and industrial use. Thus, it is important to critically review some technical barriers of aptamer and SELEX technology per se that may impede aptamer development and application. To date, how to rapidly obtain aptamers with superior bioavailability over antibodies remains the key issue. In this review, we discuss different chemical and structural modification strategies aimed to enhance aptamer bioavailability. We also discuss improvements to SELEX process steps to shorten the selection period and improve the SELEX process success rate. Applications in which aptamers are particularly suited and perform differently or superior to antibodies are briefly introduced.
Collapse
|
36
|
Wu C, Wan S, Hou W, Zhang L, Xu J, Cui C, Wang Y, Hu J, Tan W. A survey of advancements in nucleic acid-based logic gates and computing for applications in biotechnology and biomedicine. Chem Commun (Camb) 2015; 51:3723-34. [PMID: 25597946 PMCID: PMC4442017 DOI: 10.1039/c4cc10047f] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nucleic acid-based logic devices were first introduced in 1994. Since then, science has seen the emergence of new logic systems for mimicking mathematical functions, diagnosing disease and even imitating biological systems. The unique features of nucleic acids, such as facile and high-throughput synthesis, Watson-Crick complementary base pairing, and predictable structures, together with the aid of programming design, have led to the widespread applications of nucleic acids (NA) for logic gate and computing in biotechnology and biomedicine. In this feature article, the development of in vitro NA logic systems will be discussed, as well as the expansion of such systems using various input molecules for potential cellular, or even in vivo, applications.
Collapse
Affiliation(s)
- Cuichen Wu
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States, , Fax: +1-352-392-4651, Tel: +1-352-846-2410
| | - Shuo Wan
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States, , Fax: +1-352-392-4651, Tel: +1-352-846-2410
| | - Weijia Hou
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States, , Fax: +1-352-392-4651, Tel: +1-352-846-2410
| | - Liqin Zhang
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States, , Fax: +1-352-392-4651, Tel: +1-352-846-2410
| | - Jiehua Xu
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States, , Fax: +1-352-392-4651, Tel: +1-352-846-2410
- Department of Nuclear Medicine, the third affiliated hospital, Sun Yat-sen University, Guangzhou 510630, P. R. China
| | - Cheng Cui
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States, , Fax: +1-352-392-4651, Tel: +1-352-846-2410
| | - Yanyue Wang
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States, , Fax: +1-352-392-4651, Tel: +1-352-846-2410
| | - Jun Hu
- Hunan Tumor Hospital, Changsha 410082, P. R. China
| | - Weihong Tan
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States, , Fax: +1-352-392-4651, Tel: +1-352-846-2410
| |
Collapse
|
37
|
Maruyama H, Furukawa K, Kamiya H, Minakawa N, Matsuda A. Transcription of 4′-thioDNA templates to natural RNA in vitro and in mammalian cells. Chem Commun (Camb) 2015; 51:7887-90. [DOI: 10.1039/c4cc08862j] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Synthetic chemically modified nucleic acids, which are compatible with DNA/RNA polymerases, have great potential as a genetic material for synthetic biological studies.
Collapse
Affiliation(s)
- Hideto Maruyama
- Faculty of Pharmaceutical Sciences
- Hokkaido University
- Sapporo 060-0812
- Japan
| | - Kazuhiro Furukawa
- Graduate School of Pharmaceutical Sciences
- The University of Tokushima
- Tokushima 770-8505
- Japan
| | - Hiroyuki Kamiya
- Graduate School of Biomedical & Health Sciences
- Hiroshima University
- Hiroshima 734-8553
- Japan
| | - Noriaki Minakawa
- Graduate School of Pharmaceutical Sciences
- The University of Tokushima
- Tokushima 770-8505
- Japan
| | - Akira Matsuda
- Faculty of Pharmaceutical Sciences
- Hokkaido University
- Sapporo 060-0812
- Japan
| |
Collapse
|
38
|
Gandham SHA, Volk DE, Lokesh GLR, Neerathilingam M, Gorenstein DG. Thioaptamers targeting dengue virus type-2 envelope protein domain III. Biochem Biophys Res Commun 2014; 453:309-15. [PMID: 25261724 PMCID: PMC4272640 DOI: 10.1016/j.bbrc.2014.09.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 09/14/2014] [Indexed: 12/24/2022]
Abstract
Thioaptamers targeting the dengue-2 virus (DENV-2) envelope protein domain III (EDIII) were developed. EDIII, which contains epitopes for binding neutralizing antibodies, is the putative host-receptor binding domain and is thus an attractive target for development of vaccines, anti-viral therapeutic and diagnostic agents. Thioaptamer DENTA-1 bound to DENV-2 EDIII adjacent to a known neutralizing antibody binding site with a dissociation constant of 154nM.
Collapse
Affiliation(s)
- Sai Hari A Gandham
- Center for Proteomics and Systems Biology of The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - David E Volk
- Center for Proteomics and Systems Biology of The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Nanomedicine and Biomedical Engineering, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ganesh L R Lokesh
- Center for Proteomics and Systems Biology of The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Nanomedicine and Biomedical Engineering, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Muniasamy Neerathilingam
- Center for Proteomics and Systems Biology of The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - David G Gorenstein
- Center for Proteomics and Systems Biology of The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Department of Nanomedicine and Biomedical Engineering, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
39
|
Stovall GM, Bedenbaugh RS, Singh S, Meyer AJ, Hatala PJ, Ellington AD, Hall B. In vitro selection using modified or unnatural nucleotides. ACTA ACUST UNITED AC 2014; 56:9.6.1-33. [PMID: 25606981 DOI: 10.1002/0471142700.nc0906s56] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Incorporation of modified nucleotides into in vitro RNA or DNA selections offers many potential advantages, such as the increased stability of selected nucleic acids against nuclease degradation, improved affinities, expanded chemical functionality, and increased library diversity. This unit provides useful information and protocols for in vitro selection using modified nucleotides. It includes a discussion of when to use modified nucleotides; protocols for evaluating and optimizing transcription reactions, as well as confirming the incorporation of the modified nucleotides; protocols for evaluating modified nucleotide transcripts as template in reverse transcription reactions; protocols for the evaluation of the fidelity of modified nucleotides in the replication and the regeneration of the pool; and a protocol to compare modified nucleotide pools and selection conditions.
Collapse
Affiliation(s)
- Gwendolyn M Stovall
- The University of Texas at Austin, Austin, Texas; Altermune Technologies LLC, Austin, Texas
| | | | | | | | | | | | | |
Collapse
|
40
|
Thiviyanathan V, Gorenstein DG. Aptamers and the next generation of diagnostic reagents. Proteomics Clin Appl 2014; 6:563-73. [PMID: 23090891 DOI: 10.1002/prca.201200042] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 09/17/2012] [Accepted: 09/20/2012] [Indexed: 01/06/2023]
Abstract
Antibodies have been extensively used as capture and detection reagents in diagnostic applications of proteomics-based technologies. Proteomic assays need high sensitivity and specificity, a wide dynamic range for detection, and accurate, reproducible quantification with small confidence values. However, several inherent limitations of monoclonal antibodies in meeting the emerging challenges of proteomics led to the development of a new class of oligonucleotide-based reagents. Natural and derivatized nucleic acid aptamers are emerging as promising alternatives to monoclonal antibodies. Aptamers can be effectively used to simultaneously detect thousands of proteins in multiplex discovery platforms, where antibodies often fail due to cross-reactivity problems. Through chemical modification, vast range of additional functional groups can be added at any desired position in the oligonucleotide sequence, therefore the best features of small molecule drugs, proteins, and antibodies can be brought together into aptamers, making aptamers the most versatile reagent in proteomics. In this review, we discuss the recent developments in aptamer technology, including new selection methods and the aptamers' application in proteomics.
Collapse
Affiliation(s)
- Varatharasa Thiviyanathan
- Centers for Proteomics & Systems Biology, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, USA
| | | |
Collapse
|
41
|
Kaida Y, Fukami K, Matsui T, Higashimoto Y, Nishino Y, Obara N, Nakayama Y, Ando R, Toyonaga M, Ueda S, Takeuchi M, Inoue H, Okuda S, Yamagishi SI. DNA aptamer raised against AGEs blocks the progression of experimental diabetic nephropathy. Diabetes 2013; 62:3241-50. [PMID: 23630304 PMCID: PMC3749365 DOI: 10.2337/db12-1608] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Advanced glycation end products (AGEs) and their receptor (RAGE) play a role in diabetic nephropathy. We screened DNA aptamer directed against AGEs (AGEs-aptamer) in vitro and examined its effects on renal injury in KKAy/Ta mice, an animal model of type 2 diabetes. Eight-week-old male KKAy/Ta or C57BL/6J mice received continuous intraperitoneal infusion of AGEs- or control-aptamer for 8 weeks. AGEs-aptamer was detected and its level was increased in the kidney for at least 7 days. The elimination half-lives of AGEs-aptamer in the kidney were about 7 days. Compared with those in C57BL/6J mice, glomerular AGEs levels were significantly increased in KKAy/Ta mice, which were blocked by AGEs-aptamer. Urinary albumin and 8-hydroxy-2'-deoxy-guanosine levels were increased, and glomerular hypertrophy and enhanced extracellular matrix accumulation were observed in KKAy/Ta mice, all of which were prevented by AGEs-aptamer. Moreover, AGEs-aptamer significantly reduced gene expression of RAGE, monocyte chemoattractant protein-1, connective tissue growth factor, and type IV collagen both in the kidney of KKAy/Ta mice and in AGE-exposed human cultured mesangial cells. Our present data suggest that continuous administration of AGEs-aptamer could protect against experimental diabetic nephropathy by blocking the AGEs-RAGE axis and may be a feasible and promising therapeutic strategy for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Yusuke Kaida
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Kei Fukami
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
- Corresponding authors: Kei Fukami, , and Sho-ichi Yamagishi,
| | - Takanori Matsui
- Department of Pathophysiology and Therapeutics of Diabetic Complications, Kurume University School of Medicine, Kurume, Japan
| | - Yuichiro Higashimoto
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Japan
| | - Yuri Nishino
- Department of Pathophysiology and Therapeutics of Diabetic Complications, Kurume University School of Medicine, Kurume, Japan
| | - Nana Obara
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Yosuke Nakayama
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Ryotaro Ando
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Maki Toyonaga
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Seiji Ueda
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Masayoshi Takeuchi
- Department of Advanced Medicine Medical Research Institute, Kanazawa Medical University, Ishikawa, Japan
| | - Hiroyoshi Inoue
- Department of Chemistry, Keio University School of Medicine, Tokyo, Japan
| | - Seiya Okuda
- Division of Nephrology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Sho-ichi Yamagishi
- Department of Pathophysiology and Therapeutics of Diabetic Complications, Kurume University School of Medicine, Kurume, Japan
- Corresponding authors: Kei Fukami, , and Sho-ichi Yamagishi,
| |
Collapse
|
42
|
Abstract
For over 20 years, laboratories around the world have been applying the principles of Darwinian evolution to isolate DNA and RNA molecules with specific ligand-binding or catalytic activities. This area of synthetic biology, commonly referred to as in vitro genetics, is made possible by the availability of natural polymerases that can replicate genetic information in the laboratory. Moving beyond natural nucleic acids requires organic chemistry to synthesize unnatural analogues and polymerase engineering to create enzymes that recognize artificial substrates. Progress in both of these areas has led to the emerging field of synthetic genetics, which explores the structural and functional properties of synthetic genetic polymers by in vitro evolution. This review examines recent advances in the Darwinian evolution of artificial genetic polymers and their potential downstream applications in exobiology, molecular medicine, and synthetic biology.
Collapse
Affiliation(s)
- John C Chaput
- Center for Evolutionary Medicine and Informatics in the Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-5301, USA.
| | | | | |
Collapse
|
43
|
Bruno JG. A review of therapeutic aptamer conjugates with emphasis on new approaches. Pharmaceuticals (Basel) 2013; 6:340-57. [PMID: 24276022 PMCID: PMC3816688 DOI: 10.3390/ph6030340] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 03/09/2013] [Accepted: 03/11/2013] [Indexed: 12/14/2022] Open
Abstract
The potential to emulate or enhance antibodies with nucleic acid aptamers while lowering costs has prompted development of new aptamer-protein, siRNA, drug, and nanoparticle conjugates. Specific focal points of this review discuss DNA aptamers covalently bound at their 3' ends to various proteins for enhanced stability and greater pharmacokinetic lifetimes in vivo. The proteins can include Fc tails of IgG for opsonization, and the first component of complement (C1q) to trigger complement-mediated lysis of antibiotic-resistant Gram negative bacteria, cancer cells and possibly some parasites during vulnerable stages. In addition, the 3' protein adduct may be a biotoxin, enzyme, or may simply be human serum albumin (HSA) or a drug known to bind HSA, thereby retarding kidney and other organ clearance and inhibiting serum exonucleases. In this review, the author summarizes existing therapeutic aptamer conjugate categories and describes his patented concept for PCR-based amplification of double-stranded aptamers followed by covalent attachment of proteins or other agents to the chemically vulnerable overhanging 3' adenine added by Taq polymerase. PCR amplification of aptamers could dramatically lower the current $2,000/gram cost of parallel chemical oligonucleotide synthesis, thereby enabling mass production of aptamer-3'-protein or drug conjugates to better compete against expensive humanized monoclonal antibodies.
Collapse
Affiliation(s)
- John G Bruno
- Operational Technologies Corporation, 4100 NW Loop 410, Suite 230, San Antonio, TX 78229, USA.
| |
Collapse
|
44
|
Anderson KM, Esadze A, Manoharan M, Brüschweiler R, Gorenstein DG, Iwahara J. Direct observation of the ion-pair dynamics at a protein-DNA interface by NMR spectroscopy. J Am Chem Soc 2013; 135:3613-9. [PMID: 23406569 PMCID: PMC3721336 DOI: 10.1021/ja312314b] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ion pairing is one of the most fundamental chemical interactions and is essential for molecular recognition by biological macromolecules. From an experimental standpoint, very little is known to date about ion-pair dynamics in biological macromolecular systems. Absorption, infrared, and Raman spectroscopic methods were previously used to characterize dynamic properties of ion pairs, but these methods can be applied only to small compounds. Here, using NMR (15)N relaxation and hydrogen-bond scalar (15)N-(31)P J-couplings ((h3)J(NP)), we have investigated the dynamics of the ion pairs between lysine side-chain NH3(+) amino groups and DNA phosphate groups at the molecular interface of the HoxD9 homeodomain-DNA complex. We have determined the order parameters and the correlation times for C-N bond rotation and reorientation of the lysine NH3(+) groups. Our data indicate that the NH3(+) groups in the intermolecular ion pairs are highly dynamic at the protein-DNA interface, which should lower the entropic costs for protein-DNA association. Judging from the C-N bond-rotation correlation times along with experimental and quantum-chemically derived (h3)J(NP) hydrogen-bond scalar couplings, it seems that breakage of hydrogen bonds in the ion pairs occurs on a sub-nanosecond time scale. Interestingly, the oxygen-to-sulfur substitution in a DNA phosphate group was found to enhance the mobility of the NH3(+) group in the intermolecular ion pair. This can partially account for the affinity enhancement of the protein-DNA association by the oxygen-to-sulfur substitution, which is a previously observed but poorly understood phenomenon.
Collapse
Affiliation(s)
- Kurtis M. Anderson
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555
- Department of NanoMedicine and Biomedical Engineering, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77225
| | - Alexandre Esadze
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555
| | - Mariappan Manoharan
- Chemical Sciences Laboratory, Department of Chemistry and Biochemistry, and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306
| | - Rafael Brüschweiler
- Chemical Sciences Laboratory, Department of Chemistry and Biochemistry, and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306
| | - David G. Gorenstein
- Department of NanoMedicine and Biomedical Engineering, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77225
| | - Junji Iwahara
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555
| |
Collapse
|
45
|
Tolle F, Mayer G. Dressed for success – applying chemistry to modulate aptamer functionality. Chem Sci 2013. [DOI: 10.1039/c2sc21510a] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
46
|
Mascini M, Palchetti I, Tombelli S. Nucleic acid and peptide aptamers: fundamentals and bioanalytical aspects. Angew Chem Int Ed Engl 2011; 51:1316-32. [PMID: 22213382 DOI: 10.1002/anie.201006630] [Citation(s) in RCA: 252] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Indexed: 12/11/2022]
Abstract
In recent years new nucleic acid and protein-based combinatorial molecules have attracted the attention of researchers working in various areas of science, ranging from medicine to analytical chemistry. These molecules, called aptamers, have been proposed as alternatives to antibodies in many different applications. The aim of this Review is to illustrate the peculiarities of these combinatorial molecules which have initially been explored for their importance in molecular medicine, but have enormous potential in other biotechnological fields historically dominated by antibodies, such as bioassays. A description of these molecules is given, and the methods for their selection and production are also summarized. Moreover, critical aspects related to these molecules are discussed.
Collapse
Affiliation(s)
- Marco Mascini
- Dipartimento di Chimica Ugo Schiff, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.
| | | | | |
Collapse
|
47
|
Mascini M, Palchetti I, Tombelli S. Nucleinsäure- und Peptidaptamere: Grundlagen und bioanalytische Aspekte. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201006630] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
48
|
Abstract
IMPORTANCE OF THE FIELD Therapeutic aptamers are synthetic, structured oligonucleotides that bind to a very broad range of targets with high affinity and specificity. They are an emerging class of targeting ligand that show great promise for treating a number of diseases. A series of aptamers currently in various stages of clinical development highlights the potential of aptamers for therapeutic applications. AREAS COVERED IN THIS REVIEW This review covers in vitro selection of oligonucleotide ligands, called aptamers, from a combinatorial library using the Systematic Evolution of Ligands by Exponential Enrichment process as well as the other known strategies for finding aptamers against various targets. WHAT THE READER WILL GAIN Readers will gain an understanding of the highly useful strategies for successful aptamer discovery. They may also be able to combine two or more of the presented strategies for their aptamer discovery projects. TAKE HOME MESSAGE Although many processes are available for discovering aptamers, it is not easy to discover an aptamer candidate that is ready to move toward pharmaceutical drug development. It is also apparent that there have been relatively few therapeutic advances and clinical trials undertaken due to the small number of companies that participate in aptamer development.
Collapse
Affiliation(s)
- Xianbin Yang
- AM Biotechnologies LLC, 12521 Gulf Freeway, Houston, TX 77034, USA
| | | | - David G. Gorenstein
- Centers for Proteomics and Systems Biology, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, 1825 Pressler St., Suite 205, Houston, TX 77030, USA
| |
Collapse
|
49
|
Somasunderam A, Thiviyanathan V, Tanaka T, Li X, Neerathilingam M, Lokesh GLR, Mann A, Peng Y, Ferrari M, Klostergaard J, Gorenstein DG. Combinatorial selection of DNA thioaptamers targeted to the HA binding domain of human CD44. Biochemistry 2010; 49:9106-12. [PMID: 20843027 PMCID: PMC2981344 DOI: 10.1021/bi1009503] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CD44, the primary receptor for hyaluronic acid, plays an important role in tumor growth and metastasis. CD44-hyaluronic acid interactions can be exploited for targeted delivery of anticancer agents specifically to cancer cells. Although various splicing variants of CD44 are expressed on the plasma membrane of cancer cells, the hyaluronic acid binding domain (HABD) is highly conserved among the CD44 splicing variants. Using a novel two-step process, we have identified monothiophosphate-modified aptamers (thioaptamers) that specifically bind to the CD44's HABD with high affinities. Binding affinities of the selected thioaptamers for the HABD were in the range of 180-295 nM, an affinity significantly higher than that of hyaluronic acid (K(d) above the micromolar range). The selected thioaptamers bound to CD44 positive human ovarian cancer cell lines (SKOV3, IGROV, and A2780) but failed to bind the CD44 negative NIH3T3 cell line. Our results indicated that thio substitution at specific positions of the DNA phosphate backbone results in specific and high-affinity binding of thioaptamers to CD44. The selected thioaptamers will be of great interest for further development as a targeting or imaging agent for the delivery of therapeutic payloads for cancer tissues.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jim Klostergaard
- Corresponding authors David G. Gorenstein, Institute of Molecular Medicine, University of Texas Health Science Center, 1825 Pressler, Houston, TX 77030, ; Phone: 713 500 2233; Fax: 713 500 2420. Jim Klostergaard, Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030. Phone: 713 792 8962; Fax: 713 794 3270
| | - David G. Gorenstein
- Corresponding authors David G. Gorenstein, Institute of Molecular Medicine, University of Texas Health Science Center, 1825 Pressler, Houston, TX 77030, ; Phone: 713 500 2233; Fax: 713 500 2420. Jim Klostergaard, Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030. Phone: 713 792 8962; Fax: 713 794 3270
| |
Collapse
|
50
|
Mann AP, Somasunderam A, Nieves-Alicea R, Li X, Hu A, Sood AK, Ferrari M, Gorenstein DG, Tanaka T. Identification of thioaptamer ligand against E-selectin: potential application for inflamed vasculature targeting. PLoS One 2010; 5:e13050. [PMID: 20927342 PMCID: PMC2948018 DOI: 10.1371/journal.pone.0013050] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 09/02/2010] [Indexed: 01/16/2023] Open
Abstract
Active targeting of a drug carrier to a specific target site is crucial to provide a safe and efficient delivery of therapeutics and imaging contrast agents. E-selectin expression is induced on the endothelial cell surface of vessels in response to inflammatory stimuli but is absent in the normal vessels. Thus, E-selectin is an attractive molecular target, and high affinity ligands for E-selectin could be powerful tools for the delivery of therapeutics and/or imaging agents to inflamed vessels. In this study, we identified a thiophosphate modified aptamer (thioaptamer, TA) against E-selectin (ESTA-1) by employing a two-step selection strategy: a recombinant protein-based TA binding selection from a combinatorial library followed by a cell-based TA binding selection using E-selectin expressing human microvascular endothelial cells. ESTA-1 selectively bound to E-selectin with nanomolar binding affinity (K(D) = 47 nM) while exhibiting minimal cross reactivity to P- and L-selectin. Furthermore, ESTA-1 binding to E-selectin on the endothelial cells markedly antagonized the adhesion (over 75% inhibition) of sLe(x) positive HL-60 cells at nanomolar concentration. ESTA-1 also bound specifically to the inflamed tumor-associated vasculature of human carcinomas derived from breast, ovarian, and skin but not to normal organs, and this binding was highly associated with the E-selectin expression level. Similarly, intravenously injected ESTA-1 demonstrated distinct binding to the tumor vasculature in a breast cancer xenograft model. Together, our data substantiates the discovery of a thioaptamer (ESTA-1) that binds to E-selectin with high affinity and specificity, thereby highlighting the potential application of ESTA-1 for E-selectin targeted delivery.
Collapse
Affiliation(s)
- Aman P. Mann
- Department of Nanomedicine and Biomedical Engineering, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Anoma Somasunderam
- Department of Nanomedicine and Biomedical Engineering, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - René Nieves-Alicea
- Department of Nanomedicine and Biomedical Engineering, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Xin Li
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Austin Hu
- Department of Biomedical Engineering, University of Texas Austin, Austin, Texas, United States of America
| | - Anil K. Sood
- Department of Gynecologic Oncology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- Department of Cancer Biology, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Mauro Ferrari
- Department of Nanomedicine and Biomedical Engineering, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Department of Biomedical Engineering, University of Texas Austin, Austin, Texas, United States of America
- Department of Experimental Therapeutics, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
| | - David G. Gorenstein
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Takemi Tanaka
- Department of Nanomedicine and Biomedical Engineering, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Department of Biomedical Engineering, University of Texas Austin, Austin, Texas, United States of America
- Department of Pharmaceutical Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|