1
|
Ahn J, Kim T, Bae J, Jung J, Lee J, Lee H, Mun J, Kim S, Park J, Kim J, Koh M. Reversible Protein Labeling via Genetically Encoded Dithiolane-Containing Amino Acid and Organoarsenic Probes. Bioconjug Chem 2025; 36:1034-1039. [PMID: 40213874 DOI: 10.1021/acs.bioconjchem.5c00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Conventional protein labeling techniques often rely on irreversible covalent bonds, limiting dynamic control over protein modifications. Here, we present a reversible protein labeling strategy using genetically encoded dithiolane-containing amino acid (dtF) and organoarsenic conjugation chemistry. Using dithiarsolane dicarboxylic acid probe A2, we achieved near-quantitative labeling and ethanedithiol-mediated removal within 1 h at room temperature. A2 exhibited reduced toxicity with a 7-fold higher IC50 compared to arsenoxide, and its fluorescent derivative A2-FB showed no cytotoxicity up to 100 μM, enabling live-cell applications. This is the first demonstration of dithiol-arsenic chemistry at a single amino acid residue, providing a structural alternative to dicysteine motifs. Reversible labeling was validated in purified proteins (sfGFP-Y151dtF and MYO-K99dtF) and live Escherichia coli, offering a versatile tool for dynamic protein modifications and molecular tracking in biological systems.
Collapse
Affiliation(s)
- Jiyeun Ahn
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea
- Institute for Future Earth, Pusan National University, Busan 46241, Republic of Korea
| | - Taegwan Kim
- Department of Chemistry and Integrative Institute of Basic Science, Soongsil University, Seoul 06978, Republic of Korea
| | - Jieun Bae
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea
- Institute for Future Earth, Pusan National University, Busan 46241, Republic of Korea
| | - Jinjoo Jung
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jeongeun Lee
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea
| | - Hwiyoung Lee
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea
| | - Jinhee Mun
- Department of Green Chemistry and Materials Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Sohee Kim
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea
| | - Jongmin Park
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jonghoon Kim
- Department of Chemistry and Integrative Institute of Basic Science, Soongsil University, Seoul 06978, Republic of Korea
- Department of Green Chemistry and Materials Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Minseob Koh
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea
- Institute for Future Earth, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
2
|
Durham ND, Jain A, Howard A, Luban J, Munro JB. Molecular basis for the increased fusion activity of the Ebola virus glycoprotein epidemic variant A82V: Insights from simulations and experiments. Cell Rep 2025; 44:115521. [PMID: 40186866 PMCID: PMC12087377 DOI: 10.1016/j.celrep.2025.115521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/29/2025] [Accepted: 03/14/2025] [Indexed: 04/07/2025] Open
Abstract
During the 2013-2016 Ebola virus (EBOV) epidemic in Western Africa, an A82V mutation emerged in the envelope glycoprotein (GP) that persisted in most circulating isolates. Previous studies demonstrated that A82V increased GP-mediated membrane fusion and altered its dependence on host factors. The mechanistic basis for these observations, in particular the impact of A82V on the conformational changes in GP that are needed for membrane fusion, has not been evaluated in molecular detail. Here, using molecular dynamics simulations, fluorescence correlation spectroscopy, and single-molecule Förster resonance energy transfer imaging, we specify the molecular mechanism by which A82V alters GP conformation to enhance viral entry. In so doing, we identify an allosteric network of interactions that links the receptor-binding site to the fusion loop of GP. Thus, the naturally occurring A82V mutation can tune the conformational dynamics of EBOV GP to enhance fusion loop mobility and subsequent viral fusion and infectivity in human cells.
Collapse
Affiliation(s)
- Natasha D Durham
- Department of Microbiology, UMass Chan Medical School, Worcester, MA 01605, USA.
| | - Aastha Jain
- Department of Microbiology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Angela Howard
- Program in Molecular Microbiology, Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Jeremy Luban
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - James B Munro
- Department of Microbiology, UMass Chan Medical School, Worcester, MA 01605, USA; Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
3
|
Streit M, Budiarta M, Jungblut M, Beliu G. Fluorescent labeling strategies for molecular bioimaging. BIOPHYSICAL REPORTS 2025; 5:100200. [PMID: 39947326 PMCID: PMC11914189 DOI: 10.1016/j.bpr.2025.100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/28/2025] [Accepted: 02/06/2025] [Indexed: 03/16/2025]
Abstract
Super-resolution microscopy (SRM) has transformed biological imaging by circumventing the diffraction limit of light and enabling the visualization of cellular structures and processes at the molecular level. Central to the capabilities of SRM is fluorescent labeling, which ensures the precise attachment of fluorophores to biomolecules and has direct impact on the accuracy and resolution of imaging. Continuous innovation and optimization in fluorescent labeling are essential for the successful application of SRM in cutting-edge biological research. In this review, we discuss recent advances in fluorescent labeling strategies for molecular bioimaging, with a special focus on protein labeling. We compare different approaches, highlight technological breakthroughs, and address challenges such as linkage error and labeling density. By evaluating both established and emerging methods, we aim to guide researchers through all aspects that should be considered before opting for any labeling technique.
Collapse
Affiliation(s)
- Marcel Streit
- Rudolf Virchow Center, Research Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany
| | - Made Budiarta
- Rudolf Virchow Center, Research Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany
| | - Marvin Jungblut
- Rudolf Virchow Center, Research Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany
| | - Gerti Beliu
- Rudolf Virchow Center, Research Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany.
| |
Collapse
|
4
|
Seifert-Dávila W, Chaban A, Baudin F, Girbig M, Hauptmann L, Hoffmann T, Duss O, Eustermann S, Müller C. Structural and kinetic insights into tRNA promoter engagement by yeast general transcription factor TFIIIC. Nucleic Acids Res 2025; 53:gkae1174. [PMID: 39657784 PMCID: PMC11724288 DOI: 10.1093/nar/gkae1174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Transcription of transfer RNA (tRNA) genes by RNA polymerase (Pol) III requires the general transcription factor IIIC (TFIIIC), which recognizes intragenic A-box and B-box DNA motifs of type II gene promoters. However, the underlying mechanism has remained elusive, in part due to missing structural information for A-box recognition. In this study, we use single-particle cryogenic electron microscopy (cryo-EM) and single-molecule fluorescence resonance energy transfer (smFRET) to reveal structural and real-time kinetic insights into how the 520-kDa yeast TFIIIC complex engages A-box and B-box DNA motifs in the context of a tRNA gene promoter. Cryo-EM structures of τA and τB subcomplexes bound to the A-box and B-box were obtained at 3.7 and 2.5 Å resolution, respectively, while cryo-EM single-particle mapping determined the specific distance and relative orientation of the τA and τB subcomplexes revealing a fully engaged state of TFIIIC. smFRET experiments show that overall recruitment and residence times of TFIIIC on a tRNA gene are primarily governed by B-box recognition, while footprinting experiments suggest a key role of τA and the A-box in TFIIIB and Pol III recruitment following TFIIIC recognition of type II promoters.
Collapse
Affiliation(s)
- Wolfram Seifert-Dávila
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Anastasiia Chaban
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany
| | - Florence Baudin
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Mathias Girbig
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | - Luis Hauptmann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Thomas Hoffmann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Olivier Duss
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Sebastian Eustermann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Christoph W Müller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| |
Collapse
|
5
|
Qureshi NS, Duss O. Tracking transcription-translation coupling in real time. Nature 2025; 637:487-495. [PMID: 39633055 PMCID: PMC11711091 DOI: 10.1038/s41586-024-08308-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 10/30/2024] [Indexed: 12/07/2024]
Abstract
A central question in biology is how macromolecular machines function cooperatively. In bacteria, transcription and translation occur in the same cellular compartment, and can be physically and functionally coupled1-4. Although high-resolution structures of the ribosome-RNA polymerase (RNAP) complex have provided initial mechanistic insights into the coupling process5-10, we lack knowledge of how these structural snapshots are placed along a dynamic reaction trajectory. Here we reconstitute a complete and active transcription-translation system and develop multi-colour single-molecule fluorescence microscopy experiments to directly and simultaneously track transcription elongation, translation elongation and the physical and functional coupling between the ribosome and the RNAP in real time. Our data show that physical coupling between ribosome and RNAP can occur over hundreds of nucleotides of intervening mRNA by mRNA looping, a process facilitated by NusG. We detect active transcription elongation during mRNA looping and show that NusA-paused RNAPs can be activated by the ribosome by long-range physical coupling. Conversely, the ribosome slows down while colliding with the RNAP. We hereby provide an alternative explanation for how the ribosome can efficiently rescue RNAP from frequent pausing without requiring collisions by a closely trailing ribosome. Overall, our dynamic data mechanistically highlight an example of how two central macromolecular machineries, the ribosome and RNAP, can physically and functionally cooperate to optimize gene expression.
Collapse
Affiliation(s)
- Nusrat Shahin Qureshi
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Olivier Duss
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
- Molecular Systems Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
6
|
De Faveri C, Mattheisen JM, Sakmar TP, Coin I. Noncanonical Amino Acid Tools and Their Application to Membrane Protein Studies. Chem Rev 2024; 124:12498-12550. [PMID: 39509680 PMCID: PMC11613316 DOI: 10.1021/acs.chemrev.4c00181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 11/15/2024]
Abstract
Methods rooted in chemical biology have contributed significantly to studies of integral membrane proteins. One recent key approach has been the application of genetic code expansion (GCE), which enables the site-specific incorporation of noncanonical amino acids (ncAAs) with defined chemical properties into proteins. Efficient GCE is challenging, especially for membrane proteins, which have specialized biogenesis and cell trafficking machinery and tend to be expressed at low levels in cell membranes. Many eukaryotic membrane proteins cannot be expressed functionally in E. coli and are most effectively studied in mammalian cell culture systems. Recent advances have facilitated broader applications of GCE for studies of membrane proteins. First, AARS/tRNA pairs have been engineered to function efficiently in mammalian cells. Second, bioorthogonal chemical reactions, including cell-friendly copper-free "click" chemistry, have enabled linkage of small-molecule probes such as fluorophores to membrane proteins in live cells. Finally, in concert with advances in GCE methodology, the variety of available ncAAs has increased dramatically, thus enabling the investigation of protein structure and dynamics by multidisciplinary biochemical and biophysical approaches. These developments are reviewed in the historical framework of the development of GCE technology with a focus on applications to studies of membrane proteins.
Collapse
Affiliation(s)
- Chiara De Faveri
- Faculty
of Life Science, Institute of Biochemistry, Leipzig University, Leipzig 04103, Germany
| | - Jordan M. Mattheisen
- Laboratory
of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York 10065, United States
- Tri-Institutional
PhD Program in Chemical Biology, New York, New York 10065, United States
| | - Thomas P. Sakmar
- Laboratory
of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York 10065, United States
| | - Irene Coin
- Faculty
of Life Science, Institute of Biochemistry, Leipzig University, Leipzig 04103, Germany
| |
Collapse
|
7
|
Wang W, Liu X. Mechanism of human α3β GlyR modulation in inflammatory pain and 2, 6-DTBP interaction. RESEARCH SQUARE 2024:rs.3.rs-4402878. [PMID: 39149480 PMCID: PMC11326354 DOI: 10.21203/rs.3.rs-4402878/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
α3β glycine receptor (GlyR) is a subtype of the GlyRs that belongs to the Cys-loop receptor superfamily. It is a target for non-psychoactive pain control drug development due to its high expression in the spinal dorsal horn and indispensable roles in pain sensation. α3β GlyR activity is inhibited by a phosphorylation in the large internal M3/M4 loop of α3 through the prostaglandin E2 (PGE2) pathway, which can be reverted by a small molecule analgesic, 2, 6-DTBP. However, the mechanism of regulation by phosphorylation or 2, 6-DTBP is unknown. Here we show M3/M4 loop compaction through phosphorylation and 2, 6-DTBP binding, which in turn changes the local environment and rearranges ion conduction pore conformation to modulate α3β GlyR activity. We resolved glycine-bound structures of α3β GlyR with and without phosphorylation, as well as in the presence of 2, 6-DTBP and found no change in functional states upon phosphorylation, but transition to an asymmetric super open pore by 2, 6-DTBP binding. Single-molecule Forster resonance energy transfer (smFRET) experiment shows compaction of M3/M4 loop towards the pore upon phosphorylation, and further compaction by 2, 6-DTBP. Our results reveal a localized interaction model where M3/M4 loop modulate GlyR function through physical proximation. This regulation mechanism should inform on pain medication development targeting GlyRs. Our strategy allowed investigation of how post-translational modification of an unstructured loop modulate channel conduction, which we anticipate will be applicable to intrinsically disordered loops ubiquitously found in ion channels.
Collapse
Affiliation(s)
- Weiwei Wang
- University of Texas Southwestern Medical Center
| | - Xiaofen Liu
- University of Texas Southwestern Medical Center
| |
Collapse
|
8
|
Pérez-Mitta G, Sezgin Y, Wang W, MacKinnon R. Freestanding bilayer microscope for single-molecule imaging of membrane proteins. SCIENCE ADVANCES 2024; 10:eado4722. [PMID: 38905330 PMCID: PMC11192074 DOI: 10.1126/sciadv.ado4722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/16/2024] [Indexed: 06/23/2024]
Abstract
Integral membrane proteins (IMPs) constitute a large fraction of organismal proteomes, playing fundamental roles in physiology and disease. Despite their importance, the mechanisms underlying dynamic features of IMPs, such as anomalous diffusion, protein-protein interactions, and protein clustering, remain largely unknown due to the high complexity of cell membrane environments. Available methods for in vitro studies are insufficient to study IMP dynamics systematically. This publication introduces the freestanding bilayer microscope (FBM), which combines the advantages of freestanding bilayers with single-particle tracking. The FBM, based on planar lipid bilayers, enables the study of IMP dynamics with single-molecule resolution and unconstrained diffusion. This paper benchmarks the FBM against total internal reflection fluorescence imaging on supported bilayers and is used here to estimate ion channel open probability and to examine the diffusion behavior of an ion channel in phase-separated bilayers. The FBM emerges as a powerful tool to examine membrane protein/lipid organization and dynamics to understand cell membrane processes.
Collapse
Affiliation(s)
- Gonzalo Pérez-Mitta
- Laboratory of Molecular Neurobiology and Biophysics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Yeliz Sezgin
- Laboratory of Molecular Neurobiology and Biophysics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | | | - Roderick MacKinnon
- Laboratory of Molecular Neurobiology and Biophysics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| |
Collapse
|
9
|
Hao M, Ling X, Sun Y, Wang X, Li W, Chang L, Zeng Z, Shi X, Niu M, Chen L, Liu T. Tracking endogenous proteins based on RNA editing-mediated genetic code expansion. Nat Chem Biol 2024; 20:721-731. [PMID: 38302606 DOI: 10.1038/s41589-023-01533-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/19/2023] [Indexed: 02/03/2024]
Abstract
Protein labeling approaches are important to study proteins in living cells, and genome editing tools make it possible to tag endogenous proteins to address the concerns associated with overexpression. Here we established RNA editing-mediated noncanonical amino acids (ncAAs) protein tagging (RENAPT) to site-specifically label endogenous proteins with ncAAs in living cells. RENAPT labels protein in a temporary and nonheritable manner and is not restricted by protospacer adjacent motif sequence. Using a fluorescent ncAA or ncAA with a bio-orthogonal reaction handle for subsequent dye labeling, we demonstrated that a variety of endogenous proteins can be imaged at their specific subcellular locations. In addition, two proteins can be tagged individually and simultaneously using two different ncAAs. Furthermore, endogenous ion channels and neuron-specific proteins can be real-time labeled in primary neurons. Thus, RENAPT presents a promising platform with broad applicability for tagging endogenous proteins in living cells to study their localization and functions.
Collapse
Affiliation(s)
- Min Hao
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xinyu Ling
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, Pharmaceutical Sciences, Peking University, Beijing, China
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Yi Sun
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xue Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, Pharmaceutical Sciences, Peking University, Beijing, China
| | - Wenzhe Li
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, Pharmaceutical Sciences, Peking University, Beijing, China
| | - Liying Chang
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhiying Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiaomeng Shi
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, Pharmaceutical Sciences, Peking University, Beijing, China
| | - Mengxiao Niu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, College of Future Technology, Peking University, Beijing, China
| | - Liangyi Chen
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, College of Future Technology, Peking University, Beijing, China
| | - Tao Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, Pharmaceutical Sciences, Peking University, Beijing, China.
| |
Collapse
|
10
|
Liu L, Gray JL, Tate EW, Yang A. Bacterial enzymes: powerful tools for protein labeling, cell signaling, and therapeutic discovery. Trends Biotechnol 2023; 41:1385-1399. [PMID: 37328400 DOI: 10.1016/j.tibtech.2023.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 06/18/2023]
Abstract
Bacteria have evolved a diverse set of enzymes that enable them to subvert host defense mechanisms as well as to form part of the prokaryotic immune system. Due to their unique and varied biochemical activities, these bacterial enzymes have emerged as key tools for understanding and investigating biological systems. In this review, we summarize and discuss some of the most prominent bacterial enzymes used for the site-specific modification of proteins, in vivo protein labeling, proximity labeling, interactome mapping, signaling pathway manipulation, and therapeutic discovery. Finally, we provide a perspective on the complementary advantages and limitations of using bacterial enzymes compared with chemical probes for exploring biological systems.
Collapse
Affiliation(s)
- Lu Liu
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Janine L Gray
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Edward W Tate
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK.
| | - Aimin Yang
- School of Life Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
11
|
Schirripa Spagnolo C, Moscardini A, Amodeo R, Beltram F, Luin S. Quantitative determination of fluorescence labeling implemented in cell cultures. BMC Biol 2023; 21:190. [PMID: 37697318 PMCID: PMC10496409 DOI: 10.1186/s12915-023-01685-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 08/18/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Labeling efficiency is a crucial parameter in fluorescence applications, especially when studying biomolecular interactions. Current approaches for estimating the yield of fluorescent labeling have critical drawbacks that usually lead them to be inaccurate or not quantitative. RESULTS We present a method to quantify fluorescent-labeling efficiency that addresses the critical issues marring existing approaches. The method operates in the same conditions of the target experiments by exploiting a ratiometric evaluation with two fluorophores used in sequential reactions. We show the ability of the protocol to extract reliable quantification for different fluorescent probes, reagents concentrations, and reaction timing and to optimize labeling performance. As paradigm, we consider the labeling of the membrane-receptor TrkA through 4'-phosphopantetheinyl transferase Sfp in living cells, visualizing the results by TIRF microscopy. This investigation allows us to find conditions for demanding single and multi-color single-molecule studies requiring high degrees of labeling. CONCLUSIONS The developed method allows the quantitative determination and the optimization of staining efficiency in any labeling strategy based on stable reactions.
Collapse
Affiliation(s)
| | - Aldo Moscardini
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Rosy Amodeo
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
- Present address: Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy
| | - Fabio Beltram
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
- NEST Laboratory, Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Stefano Luin
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy.
- NEST Laboratory, Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127, Pisa, Italy.
| |
Collapse
|
12
|
Holm M, Natchiar SK, Rundlet EJ, Myasnikov AG, Watson ZL, Altman RB, Wang HY, Taunton J, Blanchard SC. mRNA decoding in human is kinetically and structurally distinct from bacteria. Nature 2023; 617:200-207. [PMID: 37020024 PMCID: PMC10156603 DOI: 10.1038/s41586-023-05908-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 03/01/2023] [Indexed: 04/07/2023]
Abstract
In all species, ribosomes synthesize proteins by faithfully decoding messenger RNA (mRNA) nucleotide sequences using aminoacyl-tRNA substrates. Current knowledge of the decoding mechanism derives principally from studies on bacterial systems1. Although key features are conserved across evolution2, eukaryotes achieve higher-fidelity mRNA decoding than bacteria3. In human, changes in decoding fidelity are linked to ageing and disease and represent a potential point of therapeutic intervention in both viral and cancer treatment4-6. Here we combine single-molecule imaging and cryogenic electron microscopy methods to examine the molecular basis of human ribosome fidelity to reveal that the decoding mechanism is both kinetically and structurally distinct from that of bacteria. Although decoding is globally analogous in both species, the reaction coordinate of aminoacyl-tRNA movement is altered on the human ribosome and the process is an order of magnitude slower. These distinctions arise from eukaryote-specific structural elements in the human ribosome and in the elongation factor eukaryotic elongation factor 1A (eEF1A) that together coordinate faithful tRNA incorporation at each mRNA codon. The distinct nature and timing of conformational changes within the ribosome and eEF1A rationalize how increased decoding fidelity is achieved and potentially regulated in eukaryotic species.
Collapse
Affiliation(s)
- Mikael Holm
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - S Kundhavai Natchiar
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Emily J Rundlet
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA
- Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Medicine, New York, NY, USA
| | - Alexander G Myasnikov
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA
- Dubochet Center for Imaging (DCI), EPFL, Lausanne, Switzerland
| | - Zoe L Watson
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
| | - Roger B Altman
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Hao-Yuan Wang
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Jack Taunton
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Scott C Blanchard
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA.
- Chemical Biology & Therapeutics, St Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
13
|
Ramírez Montero D, Sánchez H, van Veen E, van Laar T, Solano B, Diffley JFX, Dekker NH. Nucleotide binding halts diffusion of the eukaryotic replicative helicase during activation. Nat Commun 2023; 14:2082. [PMID: 37059705 PMCID: PMC10104875 DOI: 10.1038/s41467-023-37093-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/02/2023] [Indexed: 04/16/2023] Open
Abstract
The eukaryotic replicative helicase CMG centrally orchestrates the replisome and leads the way at the front of replication forks. Understanding the motion of CMG on the DNA is therefore key to our understanding of DNA replication. In vivo, CMG is assembled and activated through a cell-cycle-regulated mechanism involving 36 polypeptides that has been reconstituted from purified proteins in ensemble biochemical studies. Conversely, single-molecule studies of CMG motion have thus far relied on pre-formed CMG assembled through an unknown mechanism upon overexpression of individual constituents. Here, we report the activation of CMG fully reconstituted from purified yeast proteins and the quantification of its motion at the single-molecule level. We observe that CMG can move on DNA in two ways: by unidirectional translocation and by diffusion. We demonstrate that CMG preferentially exhibits unidirectional translocation in the presence of ATP, whereas it preferentially exhibits diffusive motion in the absence of ATP. We also demonstrate that nucleotide binding halts diffusive CMG independently of DNA melting. Taken together, our findings support a mechanism by which nucleotide binding allows newly assembled CMG to engage with the DNA within its central channel, halting its diffusion and facilitating the initial DNA melting required to initiate DNA replication.
Collapse
Affiliation(s)
- Daniel Ramírez Montero
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Humberto Sánchez
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Edo van Veen
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Theo van Laar
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Belén Solano
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - John F X Diffley
- Chromosome Replication Laboratory, Francis Crick Institute, London, UK.
| | - Nynke H Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
14
|
Wang L, Watters JW, Ju X, Lu G, Liu S. Head-on and co-directional RNA polymerase collisions orchestrate bidirectional transcription termination. Mol Cell 2023; 83:1153-1164.e4. [PMID: 36917983 PMCID: PMC10081963 DOI: 10.1016/j.molcel.2023.02.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/03/2023] [Accepted: 02/15/2023] [Indexed: 03/14/2023]
Abstract
Genomic DNA is a crowded track where motor proteins frequently collide. It remains underexplored whether these collisions carry physiological function. In this work, we develop a single-molecule assay to visualize the trafficking of individual E. coli RNA polymerases (RNAPs) on DNA. Based on transcriptomic data, we hypothesize that RNAP collisions drive bidirectional transcription termination of convergent gene pairs. Single-molecule results show that the head-on collision between two converging RNAPs is necessary to prevent transcriptional readthrough but insufficient to release the RNAPs from the DNA. Remarkably, co-directional collision of a trailing RNAP into the head-on collided complex dramatically increases the termination efficiency. Furthermore, stem-loop structures formed in the nascent RNA are required for collisions to occur at well-defined positions between convergent genes. These findings suggest that physical collisions between RNAPs furnish a mechanism for transcription termination and that programmed genomic conflicts can be exploited to co-regulate the expression of multiple genes.
Collapse
Affiliation(s)
- Ling Wang
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA.
| | - John W Watters
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
| | - Xiangwu Ju
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
| | - Genzhe Lu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
15
|
Schirripa Spagnolo C, Luin S. Setting up multicolour TIRF microscopy down to the single molecule level. Biomol Concepts 2023; 14:bmc-2022-0032. [PMID: 37428621 DOI: 10.1515/bmc-2022-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023] Open
Abstract
Investigating biological mechanisms in ever greater detail requires continuous advances in microscopy techniques and setups. Total internal reflection fluorescence (TIRF) microscopy is a well-established technique for visualizing processes on the cell membrane. TIRF allows studies down to the single molecule level, mainly in single-colour applications. Instead, multicolour setups are still limited. Here, we describe our strategies for implementing a multi-channel TIRF microscopy system capable of simultaneous two-channel excitation and detection, starting from a single-colour commercial setup. First, we report some applications at high molecule density and then focus on the challenges we faced for achieving the single molecule level simultaneously in different channels, showing that rigorous optimizations on the setup are needed to increase its sensitivity up to this point, from camera setting to background minimization. We also discuss our strategies regarding crucial points of fluorescent labelling for this type of experiment: labelling strategy, kind of probe, efficiency, and orthogonality of the reaction, all of which are aspects that can influence the achievable results. This work may provide useful guidelines for setting up advanced single-molecule multi-channel TIRF experiments to obtain insights into interaction mechanisms on the cell membrane of living cells.
Collapse
Affiliation(s)
| | - Stefano Luin
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, I-56127, Pisa, Italy
- NEST Laboratory, Istituto Nanoscienze-Consiglio Nazionale delle ricerche (CNR), Piazza San Silvestro 12, I-56127, Pisa, Italy
| |
Collapse
|
16
|
Geiger F, Wendlandt T, Berking T, Spatz JP, Wege C. Convenient site-selective protein coupling from bacterial raw lysates to coenzyme A-modified tobacco mosaic virus (TMV) by Bacillus subtilis Sfp phosphopantetheinyl transferase. Virology 2023; 578:61-70. [PMID: 36473278 DOI: 10.1016/j.virol.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
A facile enzyme-mediated strategy enables site-specific covalent one-step coupling of genetically tagged luciferase molecules to coenzyme A-modified tobacco mosaic virus (TMV-CoA) both in solution and on solid supports. Bacillus subtilis surfactin phosphopantetheinyl transferase Sfp produced in E. coli mediated the conjugation of firefly luciferase N-terminally extended by eleven amino acids forming a 'ybbR tag' as Sfp-selective substrate, which even worked in bacterial raw lysates. The enzymes displayed on the protein coat of the TMV nanocarriers exhibited high activity. As TMV has proven a beneficial high surface-area adapter template stabilizing enzymes in different biosensing layouts in recent years, the use of TMV-CoA for fishing ybbR-tagged proteins from complex mixtures might become an advantageous concept for the versatile equipment of miniaturized devices with biologically active proteins. It comes along with new opportunities for immobilizing multiple functionalities on TMV adapter coatings, as desired, e.g., in handheld systems for point-of-care detection.
Collapse
Affiliation(s)
- Fania Geiger
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, 69120, Heidelberg, Germany; Heidelberg University, Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM), Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Tim Wendlandt
- University of Stuttgart, Institute of Biomaterials and Biomolecular Systems, Research Unit Molecular and Synthetic Plant Virology, Pfaffenwaldring 57, 70569, Stuttgart, Germany
| | - Tim Berking
- University of Stuttgart, Institute of Organic Chemistry, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Joachim P Spatz
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, 69120, Heidelberg, Germany; Heidelberg University, Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM), Im Neuenheimer Feld 225, 69120, Heidelberg, Germany; Max Planck School Matter to Life, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Christina Wege
- University of Stuttgart, Institute of Biomaterials and Biomolecular Systems, Research Unit Molecular and Synthetic Plant Virology, Pfaffenwaldring 57, 70569, Stuttgart, Germany.
| |
Collapse
|
17
|
Zheng Y, Luo W, Yang J, Wang H, Hu Q, Zeng Z, Li X, Wang S. Controlled co-immobilisation of proteins via 4'-phosphopantetheine-mediated site-selective covalent linkage. N Biotechnol 2022; 72:114-121. [PMID: 36307012 DOI: 10.1016/j.nbt.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 07/12/2022] [Accepted: 10/22/2022] [Indexed: 11/05/2022]
Abstract
In Escherichia coli, acyl carrier protein (ACP) is posttranslationally converted into its active holo-ACP form via covalent linkage of 4'-phosphopantetheine (4'-PP) to residue serine-36. We found that the long flexible 4'-PP arm could react chemoselectively with the iodoacetyl group introduced on solid supports with high efficiency under mild conditions. Based on this finding, we developed site-selective immobilisation of proteins via the active holo-ACP fusion tag, independently of the physicochemical properties of the protein of interest. Furthermore, the molecular ratios of co-immobilised proteins can be manipulated because the tethering process is predominantly directed by the molar concentrations of diverse holo-ACP fusions during co-immobilisation. Conveniently tuning the molecular ratios of co-immobilised proteins allows their cooperation, leading to a highly productive multi-protein co-immobilisation system. Kinetic studies of enzymes demonstrated that α-amylase (Amy) and methyl parathion hydrolase (MPH) immobilised via active tag holo-ACP had higher catalytic efficiency (kcat/Km) in comparison with their corresponding counterparts immobilised via the sulfhydryl groups (-SH) of these proteins. The immobilised holo-ACP-Amy also presented higher thermostability compared with free Amy. The enhanced α-amylase thermostability upon immobilisation via holo-ACP renders it more suitable for industrial application.
Collapse
Affiliation(s)
- Yujiao Zheng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou 541642, PR China; College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Wenshi Luo
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou 541642, PR China; College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Jia Yang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou 541642, PR China; College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Huazhen Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou 541642, PR China; College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Quan Hu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou 541642, PR China; College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Zaohai Zeng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou 541642, PR China; College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Xuefeng Li
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou 541642, PR China; College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Shengbin Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou 541642, PR China; College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
18
|
Choosing the Probe for Single-Molecule Fluorescence Microscopy. Int J Mol Sci 2022; 23:ijms232314949. [PMID: 36499276 PMCID: PMC9735909 DOI: 10.3390/ijms232314949] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Probe choice in single-molecule microscopy requires deeper evaluations than those adopted for less sensitive fluorescence microscopy studies. Indeed, fluorophore characteristics can alter or hide subtle phenomena observable at the single-molecule level, wasting the potential of the sophisticated instrumentation and algorithms developed for advanced single-molecule applications. There are different reasons for this, linked, e.g., to fluorophore aspecific interactions, brightness, photostability, blinking, and emission and excitation spectra. In particular, these spectra and the excitation source are interdependent, and the latter affects the autofluorescence of sample substrate, medium, and/or biological specimen. Here, we review these and other critical points for fluorophore selection in single-molecule microscopy. We also describe the possible kinds of fluorophores and the microscopy techniques based on single-molecule fluorescence. We explain the importance and impact of the various issues in fluorophore choice, and discuss how this can become more effective and decisive for increasingly demanding experiments in single- and multiple-color applications.
Collapse
|
19
|
Wang J, Shin BS, Alvarado C, Kim JR, Bohlen J, Dever TE, Puglisi JD. Rapid 40S scanning and its regulation by mRNA structure during eukaryotic translation initiation. Cell 2022; 185:4474-4487.e17. [PMID: 36334590 PMCID: PMC9691599 DOI: 10.1016/j.cell.2022.10.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 08/22/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
How the eukaryotic 43S preinitiation complex scans along the 5' untranslated region (5' UTR) of a capped mRNA to locate the correct start codon remains elusive. Here, we directly track yeast 43S-mRNA binding, scanning, and 60S subunit joining by real-time single-molecule fluorescence spectroscopy. 43S engagement with mRNA occurs through a slow, ATP-dependent process driven by multiple initiation factors including the helicase eIF4A. Once engaged, 43S scanning occurs rapidly and directionally at ∼100 nucleotides per second, independent of multiple cycles of ATP hydrolysis by RNA helicases post ribosomal loading. Scanning ribosomes can proceed through RNA secondary structures, but 5' UTR hairpin sequences near start codons drive scanning ribosomes at start codons backward in the 5' direction, requiring rescanning to arrive once more at a start codon. Direct observation of scanning ribosomes provides a mechanistic framework for translational regulation by 5' UTR structures and upstream near-cognate start codons.
Collapse
Affiliation(s)
- Jinfan Wang
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Byung-Sik Shin
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Carlos Alvarado
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Joo-Ran Kim
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Jonathan Bohlen
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Paris, France; University of Paris, Imagine Institute, Paris, France
| | - Thomas E Dever
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
20
|
Li S, Wasserman MR, Yurieva O, Bai L, O'Donnell ME, Liu S. Nucleosome-directed replication origin licensing independent of a consensus DNA sequence. Nat Commun 2022; 13:4947. [PMID: 35999198 PMCID: PMC9399094 DOI: 10.1038/s41467-022-32657-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/09/2022] [Indexed: 02/08/2023] Open
Abstract
The numerous enzymes and cofactors involved in eukaryotic DNA replication are conserved from yeast to human, and the budding yeast Saccharomyces cerevisiae (S.c.) has been a useful model organism for these studies. However, there is a gap in our knowledge of why replication origins in higher eukaryotes do not use a consensus DNA sequence as found in S.c. Using in vitro reconstitution and single-molecule visualization, we show here that S.c. origin recognition complex (ORC) stably binds nucleosomes and that ORC-nucleosome complexes have the intrinsic ability to load the replicative helicase MCM double hexamers onto adjacent nucleosome-free DNA regardless of sequence. Furthermore, we find that Xenopus laevis nucleosomes can substitute for yeast ones in engaging with ORC. Combined with re-analyses of genome-wide ORC binding data, our results lead us to propose that the yeast origin recognition machinery contains the cryptic capacity to bind nucleosomes near a nucleosome-free region and license origins, and that this nucleosome-directed origin licensing paradigm generalizes to all eukaryotes.
Collapse
Affiliation(s)
- Sai Li
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
| | - Michael R Wasserman
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA
- Syros Pharmaceuticals, Cambridge, MA, USA
| | - Olga Yurieva
- Laboratory of DNA Replication, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Lu Bai
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
- Department of Physics, The Pennsylvania State University, University Park, PA, USA
| | - Michael E O'Donnell
- Laboratory of DNA Replication, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
21
|
Corpuz JC, Sanlley JO, Burkart MD. Protein-protein interface analysis of the non-ribosomal peptide synthetase peptidyl carrier protein and enzymatic domains. Synth Syst Biotechnol 2022; 7:677-688. [PMID: 35224236 PMCID: PMC8857579 DOI: 10.1016/j.synbio.2022.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/16/2022] Open
Abstract
Non-ribosomal peptide synthetases (NRPSs) are attractive targets for biosynthetic pathway engineering due to their modular architecture and the therapeutic relevance of their products. With catalysis mediated by specific protein-protein interactions formed between the peptidyl carrier protein (PCP) and its partner enzymes, NRPS enzymology and control remains fertile ground for discovery. This review focuses on the recent efforts within structural biology by compiling high-resolution structural data that shed light into the various protein-protein interfaces formed between the PCP and its partner enzymes, including the phosphopantetheinyl transferase (PPTase), adenylation (A) domain, condensation (C) domain, thioesterase (TE) domain and other tailoring enzymes within the synthetase. Integrating our understanding of how the PCP recognizes partner proteins with the potential to use directed evolution and combinatorial biosynthetic methods will enhance future efforts in discovery and production of new bioactive compounds.
Collapse
Affiliation(s)
- Joshua C. Corpuz
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| | - Javier O. Sanlley
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| |
Collapse
|
22
|
Tong Y, Loonstra MR, Fraaije M. Broadening the scope of the Flavin-tag method by improving flavin incorporation and incorporating flavin analogs. Chembiochem 2022; 23:e202200144. [PMID: 35373879 PMCID: PMC9400968 DOI: 10.1002/cbic.202200144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Indexed: 11/10/2022]
Abstract
Methods for facile site-selective modifications of proteins are in high demand. We have recently shown that a flavin transferase can be used for site-specific covalent attachment of a chromo- and fluorogenic flavin (FMN) to any targeted protein. Although this Flavin-tag method resulted in efficient labeling of proteins in vitro , labelling in E. coli cells resulted in partial flavin incorporation. It was also restricted in the type of installed label with only type of flavin, FMN, being incorporated. Here, we report on an extension of the Flavin-tag method that addresses previous limitations. We demonstrate that coexpression of FAD synthetase improves the flavin incorporation efficiency, allowing complete flavin-labeling of a target protein in E. coli cells. Furthermore, we have found that various flavin derivatives and even a nicotinamide can be covalently attached to a target protein, rendering this method even more versatile and valuable.
Collapse
Affiliation(s)
- Yapei Tong
- University of Groningen: Rijksuniversiteit Groningen, Molecular Enzymology, NETHERLANDS
| | - Marnix R Loonstra
- University of Groningen: Rijksuniversiteit Groningen, Molecular Enzymology, NETHERLANDS
| | - Marco Fraaije
- University of Groningen, Molecular Enzymology group, Nijenborgh 4, 9747AG, Groningen, NETHERLANDS
| |
Collapse
|
23
|
Kumar P, Lavis LD. Melding Synthetic Molecules and Genetically Encoded Proteins to Forge New Tools for Neuroscience. Annu Rev Neurosci 2022; 45:131-150. [PMID: 35226826 DOI: 10.1146/annurev-neuro-110520-030031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Unraveling the complexity of the brain requires sophisticated methods to probe and perturb neurobiological processes with high spatiotemporal control. The field of chemical biology has produced general strategies to combine the molecular specificity of small-molecule tools with the cellular specificity of genetically encoded reagents. Here, we survey the application, refinement, and extension of these hybrid small-molecule:protein methods to problems in neuroscience, which yields powerful reagents to precisely measure and manipulate neural systems. Expected final online publication date for the Annual Review of Neuroscience, Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Pratik Kumar
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA;
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA;
| |
Collapse
|
24
|
Cong M, Tavakolpour S, Berland L, Glöckner H, Andreiuk B, Rakhshandehroo T, Uslu S, Mishra S, Clark L, Rashidian M. Direct N- or C-Terminal Protein Labeling Via a Sortase-Mediated Swapping Approach. Bioconjug Chem 2021; 32:2397-2406. [PMID: 34748323 PMCID: PMC9595177 DOI: 10.1021/acs.bioconjchem.1c00442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Site-specific protein labeling is important in biomedical research and biotechnology. While many methods allow site-specific protein modification, a straightforward approach for efficient N-terminal protein labeling is not available. We introduce a novel sortase-mediated swapping approach for a one-step site-specific N-terminal labeling with a near-quantitative yield. We show that this method allows rapid and efficient cleavage and simultaneous labeling of the N or C termini of fusion proteins. The method does not require any prior modification beyond the genetic incorporation of the sortase recognition motif. This new approach provides flexibility for protein engineering and site-specific protein modifications.
Collapse
Affiliation(s)
- Min Cong
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Soheil Tavakolpour
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Lea Berland
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Université Côte d'Azur, CNRS, INSERM, IRCAN, 06100 Nice, France
| | - Hannah Glöckner
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Bohdan Andreiuk
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Taha Rakhshandehroo
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Safak Uslu
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Medical Scientist Training Program, Hacettepe University Faculty of Medicine, Ankara, 06230, Turkey
| | - Shruti Mishra
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Louise Clark
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Mohammad Rashidian
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, United States
| |
Collapse
|
25
|
Wagner HJ, Mohsenin H, Weber W. Synthetic Biology-Empowered Hydrogels for Medical Diagnostics. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 178:197-226. [PMID: 33582837 DOI: 10.1007/10_2020_158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Synthetic biology is strongly inspired by concepts of engineering science and aims at the design and generation of artificial biological systems in different fields of research such as diagnostics, analytics, biomedicine, or chemistry. To this aim, synthetic biology uses an engineering approach relying on a toolbox of molecular sensors and switches that endows cellular hosts with non-natural computing functions and circuits. Importantly, this concept is not only limited to cellular approaches. Synthetic biological building blocks have also conferred sensing and switching capability to otherwise inactive materials. This principle has attracted high interest for the development of biohybrid materials capable of sensing and responding to specific molecular stimuli, such as disease biomarkers, antibiotics, or heavy metals. Moreover, the interconnection of individual sense-and-respond materials to complex materials systems has enabled the processing of, for example, multiple inputs or the amplification of signals using feedback topologies. Such systems holding high potential for applications in the analytical and diagnostic sectors will be described in this chapter.
Collapse
Affiliation(s)
- Hanna J Wagner
- Faculty of Biology, Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, Germany.,Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Hasti Mohsenin
- Faculty of Biology, Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, Germany
| | - Wilfried Weber
- Faculty of Biology, Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg im Breisgau, Germany.
| |
Collapse
|
26
|
Wolf P, Gavins G, Beck‐Sickinger AG, Seitz O. Strategies for Site-Specific Labeling of Receptor Proteins on the Surfaces of Living Cells by Using Genetically Encoded Peptide Tags. Chembiochem 2021; 22:1717-1732. [PMID: 33428317 PMCID: PMC8248378 DOI: 10.1002/cbic.202000797] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/08/2021] [Indexed: 12/14/2022]
Abstract
Fluorescence microscopy imaging enables receptor proteins to be investigated within their biological context. A key challenge is to site-specifically incorporate reporter moieties into proteins without interfering with biological functions or cellular networks. Small peptide tags offer the opportunity to combine inducible labeling with small tag sizes that avoid receptor perturbation. Herein, we review the current state of live-cell labeling of peptide-tagged cell-surface proteins. Considering their importance as targets in medicinal chemistry, we focus on membrane receptors such as G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs). We discuss peptide tags that i) are subject to enzyme-mediated modification reactions, ii) guide the complementation of reporter proteins, iii) form coiled-coil complexes, and iv) interact with metal complexes. Given our own contributions in the field, we place emphasis on peptide-templated labeling chemistry.
Collapse
Affiliation(s)
- Philipp Wolf
- Faculty of Life SciencesInstitute of BiochemistryLeipzig UniversityBrüderstrasse 3404103LeipzigGermany
| | - Georgina Gavins
- Faculty of Mathematics and Natural SciencesDepartment of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
| | - Annette G. Beck‐Sickinger
- Faculty of Life SciencesInstitute of BiochemistryLeipzig UniversityBrüderstrasse 3404103LeipzigGermany
| | - Oliver Seitz
- Faculty of Mathematics and Natural SciencesDepartment of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
| |
Collapse
|
27
|
A Versatile Toolkit for Semi-Automated Production of Fluorescent Chemokines to Study CCR7 Expression and Functions. Int J Mol Sci 2021; 22:ijms22084158. [PMID: 33923834 PMCID: PMC8072677 DOI: 10.3390/ijms22084158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 01/14/2023] Open
Abstract
Chemokines guide leukocyte migration in different contexts, including homeostasis, immune surveillance and immunity. The chemokines CCL19 and CCL21 control lymphocyte and dendritic cell migration and homing to lymphoid organs. Thereby they orchestrate adaptive immunity in a chemokine receptor CCR7-dependent manner. Likewise, cancer cells that upregulate CCR7 expression are attracted by these chemokines and metastasize to lymphoid organs. In-depth investigation of CCR7 expression and chemokine-mediated signaling is pivotal to understand their role in health and disease. Appropriate fluorescent probes to track these events are increasingly in demand. Here, we present an approach to cost-effectively produce and fluorescently label CCL19 and CCL21 in a semi-automated process. We established a versatile protocol for the production of recombinant chemokines harboring a small C-terminal S6-tag for efficient and site-specific enzymatic labelling with an inorganic fluorescent dye of choice. We demonstrate that the fluorescently labeled chemokines CCL19-S6Dy649P1 and CCL21-S6Dy649P1 retain their full biological function as assessed by their abilities to mobilize intracellular calcium, to recruit β-arrestin to engaged receptors and to attract CCR7-expressing leukocytes. Moreover, we show that CCL19-S6Dy649P1 serves as powerful reagent to monitor CCR7 internalization by time-lapse confocal video microscopy and to stain CCR7-positive primary human and mouse T cell sub-populations.
Collapse
|
28
|
Toward Homogenous Antibody Drug Conjugates Using Enzyme-Based Conjugation Approaches. Pharmaceuticals (Basel) 2021; 14:ph14040343. [PMID: 33917962 PMCID: PMC8068374 DOI: 10.3390/ph14040343] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 01/17/2023] Open
Abstract
In the last few decades, antibody-based diagnostic and therapeutic applications have been well established in medicine and have revolutionized cancer managements by improving tumor detection and treatment. Antibodies are unique medical elements due to their powerful properties of being able to recognize specific antigens and their therapeutic mechanisms such as blocking specific pathways, antibody-dependent cellular cytotoxicity, and complement-dependent cytotoxicity. Furthermore, modification techniques have paved the way for improving antibody properties and to develop new classes of antibody-conjugate-based diagnostic and therapeutic agents. These techniques allow arming antibodies with various effector molecules. However, these techniques are utilizing the most frequently used amino acid residues for bioconjugation, such as cysteine and lysine. These bioconjugation approaches generate heterogeneous products with different functional and safety profiles. This is mainly due to the abundance of lysine and cysteine side chains. To overcome these limitations, different site-direct conjugation methods have been applied to arm the antibodies with therapeutic or diagnostics molecules to generate unified antibody conjugates with tailored properties. This review summarizes some of the enzyme-based site-specific conjugation approaches.
Collapse
|
29
|
Chen N, Wang C. Chemical Labeling of Protein 4'-Phosphopantetheinylation. Chembiochem 2021; 22:1357-1367. [PMID: 33289264 DOI: 10.1002/cbic.202000747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/01/2020] [Indexed: 11/11/2022]
Abstract
Nature uses a diverse array of protein post-translational modifications (PTMs) to regulate protein structure, activity, localization, and function. Among them, protein 4'-phosphopantetheinylation derived from coenzyme A (CoA) is an essential PTM for the biosynthesis of fatty acids, polyketides, and nonribosomal peptides in prokaryotes and eukaryotes. To explore its functions, various chemical probes mimicking the natural structure of 4'-phosphopantetheinylation have been developed. In this minireview, we summarize these chemical probes and describe their applications in direct and metabolic labeling of proteins in bacterial and mammalian cells.
Collapse
Affiliation(s)
- Nan Chen
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education, Peking University, Beijing, 100871, P. R. China
| | - Chu Wang
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education, Peking University, Beijing, 100871, P. R. China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
30
|
Brown AS, Sissons JA, Owen JG, Ackerley DF. Directed Evolution of the Nonribosomal Peptide Synthetase BpsA to Enable Recognition by the Human Phosphopantetheinyl Transferase for Counter-Screening Antibiotic Candidates. ACS Infect Dis 2020; 6:2879-2886. [PMID: 33118808 DOI: 10.1021/acsinfecdis.0c00606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bacterial type II phosphopantetheinyl transferases (PPTases), required for the activation of many cellular mega-synthases, have been validated as promising drug targets in several pathogens. Activation of the blue-pigment-synthesizing nonribosomal peptide synthetase BpsA by a target PPTase can be used to screen in vitro for new antibiotic candidates from chemical libraries. For a complete screening platform, there is a need to also counter-screen inhibitors for cross-reactivity with the endogenous human Type II PPTase (hPPTase), as this is a likely source of toxicity. As hPPTase is unable to recognize the PCP-domain of native BpsA, we used a combination of directed evolution and rational engineering to generate a triple-substitution variant that is able to be efficiently activated by hPPTase. Our engineered BpsA variant was able to readily detect inhibition of both hPPTase and the equivalent rat PPTase by broad-spectrum PPTase inhibitors, demonstrating its potential for high-throughput counter-screening of novel antibiotic candidates.
Collapse
Affiliation(s)
- Alistair S. Brown
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Jack A. Sissons
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Jeremy G. Owen
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - David F. Ackerley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
31
|
Sueda S. Enzyme-based protein-tagging systems for site-specific labeling of proteins in living cells. ACTA ACUST UNITED AC 2020; 69:156-166. [PMID: 32166307 DOI: 10.1093/jmicro/dfaa011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 11/13/2022]
Abstract
Various protein-labeling methods based on the specific interactions between genetically encoded tags and synthetic probes have been proposed to complement fluorescent protein-based labeling. In particular, labeling methods based on enzyme reactions have been intensively developed by taking advantage of the highly specific interactions between enzymes and their substrates. In this approach, the peptides or proteins are genetically attached to the target proteins as a tag, and the various labels are then incorporated into the tags by enzyme reactions with the substrates carrying those labels. On the other hand, we have been developing an enzyme-based protein-labeling system distinct from the existing ones. In our system, the substrate protein is attached to the target proteins as a tag, and the labels are incorporated into the tag by post-translational modification with an enzyme carrying those labels followed by tight complexation between the enzyme and the substrate protein. In this review, I summarize the enzyme-based protein-labeling systems with a focus on several typical methods and then describe our labeling system based on tight complexation between the enzyme and the substrate protein.
Collapse
Affiliation(s)
- Shinji Sueda
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka 820-8502, Japan.,Research Center for Bio-microsensing Technology, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu 804-8550, Japan
| |
Collapse
|
32
|
Matti C, D'Uonnolo G, Artinger M, Melgrati S, Salnikov A, Thelen S, Purvanov V, Strobel TD, Spannagel L, Thelen M, Legler DF. CCL20 is a novel ligand for the scavenging atypical chemokine receptor 4. J Leukoc Biol 2020; 107:1137-1154. [PMID: 32533638 DOI: 10.1002/jlb.2ma0420-295rrr] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 12/12/2022] Open
Abstract
The chemokine CCL20 is broadly produced by endothelial cells in the liver, the lung, in lymph nodes and mucosal lymphoid tissues, and recruits CCR6 expressing leukocytes, particularly dendritic cells, mature B cells, and subpopulations of T cells. How CCL20 is systemically scavenged is currently unknown. Here, we identify that fluorescently labeled human and mouse CCL20 are efficiently taken-up by the atypical chemokine receptor ACKR4. CCL20 shares ACKR4 with the homeostatic chemokines CCL19, CCL21, and CCL25, although with a lower affinity. We demonstrate that all 4 human chemokines recruit β-arrestin1 and β-arrestin2 to human ACKR4. Similarly, mouse CCL19, CCL21, and CCL25 equally activate the human receptor. Interestingly, at the same chemokine concentration, mouse CCL20 did not recruit β-arrestins to human ACKR4. Further cross-species analysis suggests that human ACKR4 preferentially takes-up human CCL20, whereas mouse ACKR4 similarly internalizes mouse and human CCL20. Furthermore, we engineered a fluorescently labeled chimeric chemokine consisting of the N-terminus of mouse CCL25 and the body of mouse CCL19, termed CCL25_19, which interacts with and is taken-up by human and mouse ACKR4.
Collapse
Affiliation(s)
- Christoph Matti
- Biotechnology Institute Thurgau (BITg), University of Konstanz, Kreuzlingen, Switzerland
| | - Giulia D'Uonnolo
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Marc Artinger
- Biotechnology Institute Thurgau (BITg), University of Konstanz, Kreuzlingen, Switzerland
| | - Serena Melgrati
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Angela Salnikov
- Biotechnology Institute Thurgau (BITg), University of Konstanz, Kreuzlingen, Switzerland
| | - Sylvia Thelen
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Vladimir Purvanov
- Biotechnology Institute Thurgau (BITg), University of Konstanz, Kreuzlingen, Switzerland
| | - Tobias D Strobel
- Biotechnology Institute Thurgau (BITg), University of Konstanz, Kreuzlingen, Switzerland
| | - Lisa Spannagel
- Biotechnology Institute Thurgau (BITg), University of Konstanz, Kreuzlingen, Switzerland
| | - Marcus Thelen
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Daniel F Legler
- Biotechnology Institute Thurgau (BITg), University of Konstanz, Kreuzlingen, Switzerland.,Faculty of Biology, University of Konstanz, Konstanz, Germany.,Theodor Kocher Institute, University of Bern, Bern, Switzerland
| |
Collapse
|
33
|
Li J, Gu J, Lin C, Zhou J, Wang S, Lei J, Wen F, Sun B, Zhou J. Conformational Dynamics of Nonenveloped Circovirus Capsid to the Host Cell Receptor. iScience 2020; 23:101547. [PMID: 33083716 PMCID: PMC7519355 DOI: 10.1016/j.isci.2020.101547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/12/2020] [Accepted: 09/07/2020] [Indexed: 10/25/2022] Open
Abstract
Circovirus, comprising one capsid protein, is the smallest nonenveloped virus and induces lymphopenia. Circovirus can be used to explore the cell adhesion mechanism of nonenveloped viruses. We developed a single-molecule fluorescence resonance energy transfer (smFRET) assay to directly visualize the capsid's conformational feature. The capsid underwent reversible dynamic transformation between three conformations. The cell surface receptor heparan sulfate (HS) altered the dynamic equilibrium of the capsid to the high-FRET state, revealing the HS-binding region. Neutralizing antibodies restricted capsid transition to a low-FRET state, masking the HS-binding domain. The lack of positively charged amino acids in the HS-binding site reduced cell surface affinity and attenuated virus infectivity via conformational changes. These intrinsic characteristics of the capsid suggested that conformational dynamics is critical for the structural changes occurring upon cell surface receptor binding, supporting a dynamics-based mechanism of receptor binding.
Collapse
Affiliation(s)
- Jiarong Li
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jinyan Gu
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Cui Lin
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jianwei Zhou
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shengnan Wang
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jin Lei
- Institute of Immunology and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Fengcai Wen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Bo Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jiyong Zhou
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.,Collaborative Innovation Center and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
34
|
Wang L, Johnson ZL, Wasserman MR, Levring J, Chen J, Liu S. Characterization of the kinetic cycle of an ABC transporter by single-molecule and cryo-EM analyses. eLife 2020; 9:56451. [PMID: 32458799 PMCID: PMC7253176 DOI: 10.7554/elife.56451] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/15/2020] [Indexed: 01/21/2023] Open
Abstract
ATP-binding cassette (ABC) transporters are molecular pumps ubiquitous across all kingdoms of life. While their structures have been widely reported, the kinetics governing their transport cycles remain largely unexplored. Multidrug resistance protein 1 (MRP1) is an ABC exporter that extrudes a variety of chemotherapeutic agents and native substrates. Previously, the structures of MRP1 were determined in an inward-facing (IF) or outward-facing (OF) conformation. Here, we used single-molecule fluorescence spectroscopy to track the conformational changes of bovine MRP1 (bMRP1) in real time. We also determined the structure of bMRP1 under active turnover conditions. Our results show that substrate stimulates ATP hydrolysis by accelerating the IF-to-OF transition. The rate-limiting step of the transport cycle is the dissociation of the nucleotide-binding-domain dimer, while ATP hydrolysis per se does not reset MRP1 to the resting state. The combination of structural and kinetic data illustrates how different conformations of MRP1 are temporally linked and how substrate and ATP alter protein dynamics to achieve active transport.
Collapse
Affiliation(s)
- Ling Wang
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, United States
| | - Zachary Lee Johnson
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, United States
| | - Michael R Wasserman
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, United States
| | - Jesper Levring
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, United States
| | - Jue Chen
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, United States.,Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, United States
| |
Collapse
|
35
|
Liu J, Cui Z. Fluorescent Labeling of Proteins of Interest in Live Cells: Beyond Fluorescent Proteins. Bioconjug Chem 2020; 31:1587-1595. [PMID: 32379972 DOI: 10.1021/acs.bioconjchem.0c00181] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Live cell imaging brings us into a new era of direct visualization of biological processes and molecular dynamics in real time. To visualize dynamic cellular processes and virus-host interactions, fluorescent labeling of proteins of interest is often necessary. Fluorescent proteins are widely used for protein imaging, but they have some intrinsic deficiencies such as big size, photobleaching, and spectrum restriction. Thus, a variety of labeling strategies have been established and continuously developed. To protect the natural biological function(s) of the protein of interest, especially in viral life cycle, in vivo labeling requires smaller-sized tags, more specificity, and lower cytotoxicity. Here, we briefly summarized the principles, development, and their applications mainly in the virology field of three strategies for fluorescent labeling of proteins of interest including self-labeling enzyme derivatives, stainable peptide tags, and non-canonical amino acid incorporation. These labeling techniques greatly expand the fluorescent labeling toolbox and provide new opportunities for imaging biological processes.
Collapse
Affiliation(s)
- Ji Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
36
|
Nemec AA, Tomko RJ. A suite of polymerase chain reaction-based peptide tagging plasmids for epitope-targeted enzymatic functionalization of yeast proteins. Yeast 2020; 37:327-335. [PMID: 32401365 DOI: 10.1002/yea.3471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 04/13/2020] [Accepted: 05/05/2020] [Indexed: 11/08/2022] Open
Abstract
The budding yeast and model eukaryote Saccharomyces cerevisiae has been invaluable for purification and analysis of numerous evolutionarily conserved proteins and multisubunit complexes that cannot be readily reconstituted in Escherichia coli. For many studies, it is desirable to functionalize a particular protein or subunit of a complex with a ligand, fluorophore or other small molecule. Enzyme-catalysed site-specific modification of proteins bearing short peptide tags is a powerful strategy to overcome the limitations associated with traditional nonselective labelling chemistries. Towards this end, we developed a suite of template plasmids for C-terminal tagging with short peptide sequences that can be site-specifically functionalized with high efficiency and selectivity. We have also combined these sequences with the FLAG tag as a handle for purification or immunological detection of the modified protein. We demonstrate the utility of these plasmids by site-specifically labelling the 28-subunit core particle subcomplex of the 26S proteasome with the small molecule fluorophore Cy5. The full set of plasmids has been deposited in the non-profit plasmid repository Addgene (http://www.addgene.org).
Collapse
Affiliation(s)
- Antonia A Nemec
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Robert J Tomko
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida, USA
| |
Collapse
|
37
|
Balatskaya MN, Baglay AI, Rubtsov YP, Sharonov GV. Analysis of GPI-Anchored Receptor Distribution and Dynamics in Live Cells by Tag-mediated Enzymatic Labeling and FRET. Methods Protoc 2020; 3:mps3020033. [PMID: 32349461 PMCID: PMC7359698 DOI: 10.3390/mps3020033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/25/2020] [Accepted: 04/26/2020] [Indexed: 01/17/2023] Open
Abstract
The analysis of glycosylphosphatidylinositol (GPI)-anchored receptor distribution and dynamics in live cells is challenging, because their clusters exhibit subdiffraction-limited sizes and are highly dynamic. However, the cellular response depends on the GPI-anchored receptor clusters' distribution and dynamics. Here, we compare three approaches to GPI-anchored receptor labeling (with antibodies, fluorescent proteins, and enzymatically modified small peptide tags) and use several variants of Förster resonance energy transfer (FRET) detection by confocal microscopy and flow cytometry in order to obtain insight into the distribution and the ligand-induced dynamics of GPI-anchored receptors. We found that the enzyme-mediated site-specific fluorescence labeling of T-cadherin modified with a short peptide tag (12 residues in length) have several advantages over labeling by fluorescent proteins or antibodies, including (i) the minimized distortion of the protein's properties, (ii) the possibility to use a cell-impermeable fluorescent substrate that allows for selective labeling of surface-exposed proteins in live cells, and (iii) superior control of the donor to acceptor molar ratio. We successfully detected the FRET of GPI-anchored receptors, T-cadherin, and ephrin-A1, without ligands, and showed in real time that adiponectin induces stable T-cadherin cluster formation. In this paper (which is complementary to our recent research (Balatskaya et al., 2019)), we present the practical aspects of labeling and the heteroFRET measurements of GPI-anchored receptors to study their dynamics on a plasma membrane in live cells.
Collapse
Affiliation(s)
- Maria N. Balatskaya
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovskiy av. 27-1, 119192 Moscow, Russia; (A.I.B.); (Y.P.R.); (G.V.S.)
- Correspondence:
| | - Alexandra I. Baglay
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovskiy av. 27-1, 119192 Moscow, Russia; (A.I.B.); (Y.P.R.); (G.V.S.)
| | - Yury P. Rubtsov
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovskiy av. 27-1, 119192 Moscow, Russia; (A.I.B.); (Y.P.R.); (G.V.S.)
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, str. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - George V. Sharonov
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovskiy av. 27-1, 119192 Moscow, Russia; (A.I.B.); (Y.P.R.); (G.V.S.)
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, str. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovitianov str. 1, 117997 Moscow, Russia
- Laboratory of Genomics of Antitumor Adaptive Immunity, Privolzhsky Research Medical University, 10/1 Minin & Pozharsky sq., 603005 Nizhny Novgorod, Russia
| |
Collapse
|
38
|
Wasserman MR, Schauer GD, O'Donnell ME, Liu S. Replication Fork Activation Is Enabled by a Single-Stranded DNA Gate in CMG Helicase. Cell 2020; 178:600-611.e16. [PMID: 31348887 DOI: 10.1016/j.cell.2019.06.032] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 04/05/2019] [Accepted: 06/24/2019] [Indexed: 10/26/2022]
Abstract
The eukaryotic replicative helicase CMG is a closed ring around double-stranded (ds)DNA at origins yet must transition to single-stranded (ss)DNA for helicase action. CMG must also handle repair intermediates, such as reversed forks that lack ssDNA. Here, using correlative single-molecule fluorescence and force microscopy, we show that CMG harbors a ssDNA gate that enables transitions between ss and dsDNA. When coupled to DNA polymerase, CMG remains on ssDNA, but when uncoupled, CMG employs this gate to traverse forked junctions onto dsDNA. Surprisingly, CMG undergoes rapid diffusion on dsDNA and can transition back onto ssDNA to nucleate a functional replisome. The gate-distinct from that between Mcm2/5 used for origin loading-is intrinsic to CMG; however, Mcm10 promotes strand passage by enhancing the affinity of CMG to DNA. This gating process may explain the dsDNA-to-ssDNA transition of CMG at origins and help preserve CMG on dsDNA during fork repair.
Collapse
Affiliation(s)
- Michael R Wasserman
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY 10065, USA
| | - Grant D Schauer
- Laboratory of DNA Replication, The Rockefeller University, New York, NY 10065, USA
| | - Michael E O'Donnell
- Laboratory of DNA Replication, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| | - Shixin Liu
- Laboratory of Nanoscale Biophysics and Biochemistry, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
39
|
Carravilla P, Nieva JL, Eggeling C. Fluorescence Microscopy of the HIV-1 Envelope. Viruses 2020; 12:E348. [PMID: 32245254 PMCID: PMC7150788 DOI: 10.3390/v12030348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/18/2022] Open
Abstract
Human immunodeficiency virus (HIV) infection constitutes a major health and social issue worldwide. HIV infects cells by fusing its envelope with the target cell plasma membrane. This process is mediated by the viral Env glycoprotein and depends on the envelope lipid composition. Fluorescent microscopy has been employed to investigate the envelope properties, and the processes of viral assembly and fusion, but the application of this technique to the study of HIV is still limited by a number of factors, such as the small size of HIV virions or the difficulty to label the envelope components. Here, we review fluorescence imaging studies of the envelope lipids and proteins, focusing on labelling strategies and model systems.
Collapse
Affiliation(s)
- Pablo Carravilla
- Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Max-Wien Platz 1, 07743 Jena, Germany;
- Leibniz Institute of Photonic Technology, Albert Einstein Strasse 9, 07743 Jena, Germany
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain;
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, E-48940 Leioa, Spain
| | - José L. Nieva
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), P.O. Box 644, 48080 Bilbao, Spain;
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, E-48940 Leioa, Spain
| | - Christian Eggeling
- Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Max-Wien Platz 1, 07743 Jena, Germany;
- Leibniz Institute of Photonic Technology, Albert Einstein Strasse 9, 07743 Jena, Germany
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
40
|
Liu SL, Wang ZG, Xie HY, Liu AA, Lamb DC, Pang DW. Single-Virus Tracking: From Imaging Methodologies to Virological Applications. Chem Rev 2020; 120:1936-1979. [PMID: 31951121 PMCID: PMC7075663 DOI: 10.1021/acs.chemrev.9b00692] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Uncovering
the mechanisms of virus infection and assembly is crucial
for preventing the spread of viruses and treating viral disease. The
technique of single-virus tracking (SVT), also known as single-virus
tracing, allows one to follow individual viruses at different parts
of their life cycle and thereby provides dynamic insights into fundamental
processes of viruses occurring in live cells. SVT is typically based
on fluorescence imaging and reveals insights into previously unreported
infection mechanisms. In this review article, we provide the readers
a broad overview of the SVT technique. We first summarize recent advances
in SVT, from the choice of fluorescent labels and labeling strategies
to imaging implementation and analytical methodologies. We then describe
representative applications in detail to elucidate how SVT serves
as a valuable tool in virological research. Finally, we present our
perspectives regarding the future possibilities and challenges of
SVT.
Collapse
Affiliation(s)
- Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine , Nankai University , Tianjin 300071 , P. R. China.,Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry , China University of Geosciences , Wuhan 430074 , P. R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine , Nankai University , Tianjin 300071 , P. R. China
| | - Hai-Yan Xie
- School of Life Science , Beijing Institute of Technology , Beijing 100081 , P. R. China
| | - An-An Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine , Nankai University , Tianjin 300071 , P. R. China
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry, Center for Nanoscience (CeNS), and Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM) , Ludwig-Maximilians-Universität , München , 81377 , Germany
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine , Nankai University , Tianjin 300071 , P. R. China.,College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, The Institute for Advanced Studies, and Wuhan Institute of Biotechnology , Wuhan University , Wuhan 430072 , P. R. China
| |
Collapse
|
41
|
Durham ND, Howard AR, Govindan R, Senjobe F, Fels JM, Diehl WE, Luban J, Chandran K, Munro JB. Real-Time Analysis of Individual Ebola Virus Glycoproteins Reveals Pre-Fusion, Entry-Relevant Conformational Dynamics. Viruses 2020; 12:v12010103. [PMID: 31952255 PMCID: PMC7019799 DOI: 10.3390/v12010103] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/21/2022] Open
Abstract
The Ebola virus (EBOV) envelope glycoprotein (GP) mediates the fusion of the virion membrane with the membrane of susceptible target cells during infection. While proteolytic cleavage of GP by endosomal cathepsins and binding of the cellular receptor Niemann-Pick C1 protein (NPC1) are essential steps for virus entry, the detailed mechanisms by which these events promote membrane fusion remain unknown. Here, we applied single-molecule Förster resonance energy transfer (smFRET) imaging to investigate the structural dynamics of the EBOV GP trimeric ectodomain, and the functional transmembrane protein on the surface of pseudovirions. We show that in both contexts, pre-fusion GP is dynamic and samples multiple conformations. Removal of the glycan cap and NPC1 binding shift the conformational equilibrium, suggesting stabilization of conformations relevant to viral fusion. Furthermore, several neutralizing antibodies enrich alternative conformational states. This suggests that these antibodies neutralize EBOV by restricting access to GP conformations relevant to fusion. This work demonstrates previously unobserved dynamics of pre-fusion EBOV GP and presents a platform with heightened sensitivity to conformational changes for the study of GP function and antibody-mediated neutralization.
Collapse
Affiliation(s)
- Natasha D. Durham
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA;
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine and Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA; (A.R.H.); (F.S.)
- Correspondence: (N.D.D.); (J.B.M.)
| | - Angela R. Howard
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine and Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA; (A.R.H.); (F.S.)
| | - Ramesh Govindan
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA;
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine and Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA; (A.R.H.); (F.S.)
| | - Fernando Senjobe
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine and Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA; (A.R.H.); (F.S.)
| | - J. Maximilian Fels
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (J.M.F.); (K.C.)
| | - William E. Diehl
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; (W.E.D.); (J.L.)
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; (W.E.D.); (J.L.)
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (J.M.F.); (K.C.)
| | - James B. Munro
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA;
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine and Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA; (A.R.H.); (F.S.)
- Correspondence: (N.D.D.); (J.B.M.)
| |
Collapse
|
42
|
Stüber JC, Plückthun A. Labeling surface proteins with high specificity: Intrinsic limitations of phosphopantetheinyl transferase systems. PLoS One 2019; 14:e0226579. [PMID: 31856184 PMCID: PMC6922365 DOI: 10.1371/journal.pone.0226579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/28/2019] [Indexed: 12/04/2022] Open
Abstract
Objective Fluorescent labeling of specific cell-surface proteins enables a manifold of techniques to study their function in health and disease. A frequently cited family of methods employs phosphopantetheinyl transferases (PPTases) to attach probes, provided as conjugates of Coenzyme A. This method appears attractive, as only short peptide tags genetically fused to the protein of interest are needed as conjugation sites. Here, we describe observations we made when evaluating such protocols for delicate single-molecule applications where we require a particular combination of dyes, low background binding or low labeling of other proteins, and a high degree of labeling. Results When we tested a PPTase-acceptor peptide couple with several experimental protocols and various CoA conjugates for labeling of a protein on the cell surface, we noticed substantial non-specific labeling. For the first time, we provide here a quantification of the non-specific fraction of the signals obtained using appropriate controls. We further present evidence that this background is due to CoA-dye conjugates entering the cell, where they may be covalently attached to endogenous proteins. However, when studying cell-surface proteins, most fluorescent readouts require that labeling is strictly limited to the protein of interest located at the cell surface. While such data have so far been missing in the literature, they suggest that for applications where labeling of unwanted molecules would affect the conclusions, researchers need to be aware of this potential non-specificity of PPTase methods when selecting a labeling strategy. We show, again by quantitative comparison, that the HaloTag is a viable alternative.
Collapse
Affiliation(s)
- Jakob C. Stüber
- Department of Biochemistry, University of Zurich, Winterthurerstrasse, Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
43
|
Lewis JS, Spenkelink LM, Schauer GD, Yurieva O, Mueller SH, Natarajan V, Kaur G, Maher C, Kay C, O'Donnell ME, van Oijen AM. Tunability of DNA Polymerase Stability during Eukaryotic DNA Replication. Mol Cell 2019; 77:17-25.e5. [PMID: 31704183 DOI: 10.1016/j.molcel.2019.10.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/25/2019] [Accepted: 10/01/2019] [Indexed: 12/29/2022]
Abstract
Structural and biochemical studies have revealed the basic principles of how the replisome duplicates genomic DNA, but little is known about its dynamics during DNA replication. We reconstitute the 34 proteins needed to form the S. cerevisiae replisome and show how changing local concentrations of the key DNA polymerases tunes the ability of the complex to efficiently recycle these proteins or to dynamically exchange them. Particularly, we demonstrate redundancy of the Pol α-primase DNA polymerase activity in replication and show that Pol α-primase and the lagging-strand Pol δ can be re-used within the replisome to support the synthesis of large numbers of Okazaki fragments. This unexpected malleability of the replisome might allow it to deal with barriers and resource challenges during replication of large genomes.
Collapse
Affiliation(s)
- Jacob S Lewis
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Lisanne M Spenkelink
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Grant D Schauer
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Olga Yurieva
- Laboratory of DNA Replication, Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, Cambridge, MA 02138, USA
| | - Stefan H Mueller
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Varsha Natarajan
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Gurleen Kaur
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Claire Maher
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Callum Kay
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Michael E O'Donnell
- Laboratory of DNA Replication, Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, Cambridge, MA 02138, USA.
| | - Antoine M van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Illawarra Health & Medical Research Institute, Wollongong, NSW 2522, Australia.
| |
Collapse
|
44
|
Different spatiotemporal organization of GPI-anchored T-cadherin in response to low-density lipoprotein and adiponectin. Biochim Biophys Acta Gen Subj 2019; 1863:129414. [DOI: 10.1016/j.bbagen.2019.129414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 07/23/2019] [Accepted: 08/07/2019] [Indexed: 01/10/2023]
|
45
|
Shen Z, Liu S, Li X, Wan Z, Mao Y, Chen C, Liu W. Conformational change within the extracellular domain of B cell receptor in B cell activation upon antigen binding. eLife 2019; 8:42271. [PMID: 31290744 PMCID: PMC6620044 DOI: 10.7554/elife.42271] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 06/27/2019] [Indexed: 12/20/2022] Open
Abstract
B lymphocytes use B cell receptors (BCRs) to recognize antigens. It is still not clear how BCR transduces antigen-specific physical signals upon binding across cell membrane for the conversion to chemical signals, triggering downstream signaling cascades. It is hypothesized that through a series of conformational changes within BCR, antigen engagement in the extracellular domain of BCR is transduced to its intracellular domain. By combining site-specific labeling methodology and FRET-based assay, we monitored conformational changes in the extracellular domains within BCR upon antigen engagement. Conformational changes within heavy chain of membrane-bound immunoglobulin (mIg), as well as conformational changes in the spatial relationship between mIg and Igβ were observed. These conformational changes were correlated with the strength of BCR activation and were distinct in IgM- and IgG-BCR. These findings provide molecular mechanisms to explain the fundamental aspects of BCR activation and a framework to investigate ligand-induced molecular events in immune receptors.
Collapse
Affiliation(s)
- Zhixun Shen
- Laboratory of Lymphocyte Signaling & Molecular Imaging, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Institute for Immunology, Center for Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Sichen Liu
- Laboratory of Lymphocyte Signaling & Molecular Imaging, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Institute for Immunology, Center for Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Xinxin Li
- Laboratory of Lymphocyte Signaling & Molecular Imaging, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Institute for Immunology, Center for Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Zhengpeng Wan
- Laboratory of Lymphocyte Signaling & Molecular Imaging, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Institute for Immunology, Center for Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Youxiang Mao
- Laboratory of Lymphocyte Signaling & Molecular Imaging, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Institute for Immunology, Center for Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Chunlai Chen
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Wanli Liu
- Laboratory of Lymphocyte Signaling & Molecular Imaging, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Institute for Immunology, Center for Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| |
Collapse
|
46
|
Lee KJ, Kang D, Park HS. Site-Specific Labeling of Proteins Using Unnatural Amino Acids. Mol Cells 2019; 42:386-396. [PMID: 31122001 PMCID: PMC6537655 DOI: 10.14348/molcells.2019.0078] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/02/2019] [Indexed: 12/11/2022] Open
Abstract
Labeling of a protein with a specific dye or tag at defined positions is a critical step in tracing the subtle behavior of the protein and assessing its cellular function. Over the last decade, many strategies have been developed to achieve selective labeling of proteins in living cells. In particular, the site-specific unnatural amino acid (UAA) incorporation technique has gained increasing attention since it enables attachment of various organic probes to a specific position of a protein in a more precise way. In this review, we describe how the UAA incorporation technique has expanded our ability to achieve site-specific labeling and visualization of target proteins for functional analyses in live cells.
Collapse
Affiliation(s)
- Kyung Jin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Deokhee Kang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| | - Hee-Sung Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Korea
| |
Collapse
|
47
|
Hatlem D, Trunk T, Linke D, Leo JC. Catching a SPY: Using the SpyCatcher-SpyTag and Related Systems for Labeling and Localizing Bacterial Proteins. Int J Mol Sci 2019; 20:E2129. [PMID: 31052154 PMCID: PMC6539128 DOI: 10.3390/ijms20092129] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 01/05/2023] Open
Abstract
The SpyCatcher-SpyTag system was developed seven years ago as a method for protein ligation. It is based on a modified domain from a Streptococcus pyogenes surface protein (SpyCatcher), which recognizes a cognate 13-amino-acid peptide (SpyTag). Upon recognition, the two form a covalent isopeptide bond between the side chains of a lysine in SpyCatcher and an aspartate in SpyTag. This technology has been used, among other applications, to create covalently stabilized multi-protein complexes, for modular vaccine production, and to label proteins (e.g., for microscopy). The SpyTag system is versatile as the tag is a short, unfolded peptide that can be genetically fused to exposed positions in target proteins; similarly, SpyCatcher can be fused to reporter proteins such as GFP, and to epitope or purification tags. Additionally, an orthogonal system called SnoopTag-SnoopCatcher has been developed from an S. pneumoniae pilin that can be combined with SpyCatcher-SpyTag to produce protein fusions with multiple components. Furthermore, tripartite applications have been produced from both systems allowing the fusion of two peptides by a separate, catalytically active protein unit, SpyLigase or SnoopLigase. Here, we review the current state of the SpyCatcher-SpyTag and related technologies, with a particular emphasis on their use in vaccine development and in determining outer membrane protein localization and topology of surface proteins in bacteria.
Collapse
Affiliation(s)
- Daniel Hatlem
- Bacterial Cell Surface Group, Section for Evolution and Genetics, Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| | - Thomas Trunk
- Bacterial Cell Surface Group, Section for Evolution and Genetics, Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| | - Dirk Linke
- Bacterial Cell Surface Group, Section for Evolution and Genetics, Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| | - Jack C Leo
- Bacterial Cell Surface Group, Section for Evolution and Genetics, Department of Biosciences, University of Oslo, 0316 Oslo, Norway.
| |
Collapse
|
48
|
Pick a Tag and Explore the Functions of Your Pet Protein. Trends Biotechnol 2019; 37:1078-1090. [PMID: 31036349 DOI: 10.1016/j.tibtech.2019.03.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 01/01/2023]
Abstract
Protein tags have been essential for advancing our knowledge of the function of proteins, their localization, and the mapping of their interaction partners. Expressing epitope-tagged proteins has become a standard practice in every life science laboratory and, thus, continues to enable new studies. In recent years, several new tagging moieties have entered the limelight, many of them bringing new functionalities, such as targeted protein degradation, accurate quantification, and proximity labeling. Other novel tags aim at tackling research questions in challenging niches. In this review, we elaborate on recently introduced tags and the opportunities they provide for future research endeavors. In addition, we highlight how the genome-engineering revolution may boost the field of protein tags.
Collapse
|
49
|
Munro JB, Lee KK. Probing Structural Variation and Dynamics in the HIV-1 Env Fusion Glycoprotein. Curr HIV Res 2019; 16:5-12. [PMID: 29268688 DOI: 10.2174/1570162x16666171222110025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Recent advances in structural characterization of the HIV envelope glycoprotein (Env) have provided a high-resolution glimpse of the architecture of this target for neutralizing antibodies and the machinery responsible for mediating receptor binding and membrane fusion. These structures primarily capture the detailed organization of the receptor-naive, prefusion conformation of Env, but under native solution conditions Env is highly dynamic, sampling multiple conformational states as well as exhibiting local protein flexibility. METHODS Special emphasis is placed on the use of biophysical methods, including single-molecule fluorescence microscopy and hydrogen/deuterium-exchange mass spectrometry. RESULTS Using novel biophysical approaches, striking isolate-specific differences in Env's dynamic profile have been revealed that appear to underlie phenotypic differences of the viral isolates such as neutralization sensitivity and CD4 receptor reactivity. CONCLUSION Structural studies are complemented by novel biophysical investigations that enable visualization of the dynamics of HIV-1 Env under native conditions. These approaches will also enable us to gain new insights into the mechanisms of action of antibodies and drugs.
Collapse
Affiliation(s)
- James B Munro
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States
| | - Kelly K Lee
- Department of Medicinal Chemistry and Biological Physics Structure and Design Program, University of Washington, Seattle, WA, United States
| |
Collapse
|
50
|
Uchański T, Zögg T, Yin J, Yuan D, Wohlkönig A, Fischer B, Rosenbaum DM, Kobilka BK, Pardon E, Steyaert J. An improved yeast surface display platform for the screening of nanobody immune libraries. Sci Rep 2019; 9:382. [PMID: 30674983 PMCID: PMC6344588 DOI: 10.1038/s41598-018-37212-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/30/2018] [Indexed: 11/08/2022] Open
Abstract
Fusions to the C-terminal end of the Aga2p mating adhesion of Saccharomyces cerevisiae have been used in many studies for the selection of affinity reagents by yeast display followed by flow cytometric analysis. Here we present an improved yeast display system for the screening of Nanobody immune libraries where we fused the Nanobody to the N-terminal end of Aga2p to avoid steric hindrance between the fused Nanobody and the antigen. Moreover, the display level of a cloned Nanobody on the surface of an individual yeast cell can be monitored through a covalent fluorophore that is attached in a single enzymatic step to an orthogonal acyl carrier protein (ACP). Additionally, the displayed Nanobody can be easily released from the yeast surface and immobilised on solid surfaces for rapid analysis. To prove the generic nature of this novel Nanobody discovery platform, we conveniently selected Nanobodies against three different antigens, including two membrane proteins.
Collapse
Affiliation(s)
- Tomasz Uchański
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Thomas Zögg
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Jie Yin
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Daopeng Yuan
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Alexandre Wohlkönig
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Baptiste Fischer
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Daniel M Rosenbaum
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Brian K Kobilka
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, 94305, USA
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium.
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium.
| |
Collapse
|