1
|
Badami MM, Tohidi R, Sioutas C. Los Angeles Basin's air quality transformation: a long-term investigation on the impacts of PM regulations on the trends of ultrafine particles and co-pollutants. JOURNAL OF AEROSOL SCIENCE 2024; 176:106316. [PMID: 38223364 PMCID: PMC10783618 DOI: 10.1016/j.jaerosci.2023.106316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
This study investigates the long-term trends of ambient ultrafine particles (UFPs) and associated airborne pollutants in the Los Angeles Basin from 2007 to 2022, focusing on the indirect effects of regulations on UFP levels. The particle number concentration (PNC) of UFPs was compiled from previous studies in the area, and associated co-pollutant data, including nitrogen oxides (NOx), carbon monoxide (CO), elemental carbon (EC), organic carbon (OC), and ozone (O3), were obtained from the chemical speciation network (CSN) database. Over the study period, a general decrease was noted in the PNC of UFPs, NOx, EC, and OC, except for CO, the concentration trends of which did not exhibit a consistent pattern. UFPs, NOx, EC, and OC were positively correlated, while O3 had a negative correlation, especially with NOx. Our analysis discerned two distinct subperiods in pollutant trends: 2007-2015 and 2016-2022. For example, there was an overall decrease in the PNC of UFPs at an annual rate of -850.09 particles/cm3/year. This rate was more pronounced during the first sub-period (2007-2015) at -1814.9 particles/cm3/year and then slowed to -227.21 particles/cm3/year in the second sub-period (2016-2023). The first sub-period (2007-2015) significantly influenced pollutant level changes, exhibiting more pronounced and statistically significant changes than the second sub-period (2016-2022). Since 2016, almost all primary pollutants have stabilized, indicating a reduced impact of current regulations, and emphasizing the need for stricter standards. In addition, the study included an analysis of Vehicle Miles Traveled (VMT) trends from 2007 to 2022 within the Los Angeles Basin. Despite the general increase in VMT, current regulations and cleaner technologies seem to have successfully mitigated the potential increase in increase in PNC. Overall, while a decline in UFPs and co-pollutant levels was observed, the apparent stabilization of these levels underscores the need for more stringent regulatory measures and advanced emission standards.
Collapse
Affiliation(s)
- Mohammad Mahdi Badami
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
| | - Ramin Tohidi
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
| | - Constantinos Sioutas
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
| |
Collapse
|
2
|
Aldekheel M, Farahani VJ, Tohidi R, Altuwayjiri A, Sioutas C. Development and performance evaluation of a two-stage cascade impactor equipped with gelatin filter substrates for the collection of multi-sized particulate matter. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2023; 294:119493. [PMID: 36504702 PMCID: PMC9733700 DOI: 10.1016/j.atmosenv.2022.119493] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This study presents the development and evaluation of a high flow rate gelatin cascade impactor (GCI) to collect different PM particle sizes on water-soluble gelatin substrates. The GCI operates at a flow rate of 100 lpm, and consists of two impaction stages, followed by a filter holder to separate particles in the following diameter ranges: >2.5 μm, 0.2-2.5 μm, and <0.2 μm. Laboratory characterization of the GCI performance was conducted using monodisperse polystyrene latex (PSL) particles as well as polydisperse ammonium sulfate, sodium chloride, and ammonium nitrate aerosols to obtain the particle collection efficiency curves for both impaction stages. In addition to the laboratory characterization, we performed concurrent field experiments to collect PM2.5 employing both GCI equipped with gelatin filter and personal cascade impactor sampler (PCIS) equipped with PTFE filter for further toxicological analysis using macrophage-based reactive oxygen species (ROS) and dithiothreitol consumption (DTT) assays. Our results showed that the experimentally determined cut-point diameters for the first and second impaction stages were 2.4 μm and 0.21 μm, respectively, which agreed with the theoretical predictions. Although the GCI has been developed primarily to collect particles on gelatin filters, the use of a different type of substrate (i.e., quartz) led to similar particle separation characteristics. The findings of the field tests demonstrated the advantage of using the GCI in toxicological studies due to its ability to collect considerable PM-toxic constituents, as corroborated by the DTT and ROS values for the GCI-collected particles which were 26.44 nmoles/min/mg PM and 8813.2 μg Zymosan Units/mg PM, respectively. These redox activity values were more than twice those of particles collected concurrently on PTFE filter using the PCIS. This high-flow-rate impactor can collect considerable amounts of size-fractionated PM on water-soluble filters (i.e., gelatin), which can completely dissolve in water allowing for the extraction of soluble and insoluble PM species for further toxicological analysis.
Collapse
Affiliation(s)
- Mohammad Aldekheel
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
- Kuwait University, Department of Civil Engineering, P.O Box 5969, Safat 13060, Kuwait
| | - Vahid Jalali Farahani
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
| | - Ramin Tohidi
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
| | - Abdulmalik Altuwayjiri
- Department of Civil and Environmental Engineering, College of Engineering, Majmaah University, AL-Majmaah 11952, Saudi Arabia
| | - Constantinos Sioutas
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California, USA
| |
Collapse
|
3
|
Rovelli S, Cattaneo A, Nischkauer W, Borghi F, Spinazzè A, Keller M, Campagnolo D, Limbeck A, Cavallo DM. Toxic trace metals in size-segregated fine particulate matter: Mass concentration, respiratory deposition, and risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115242. [PMID: 32712529 DOI: 10.1016/j.envpol.2020.115242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
To characterise the mass concentration, size-distribution, and respiratory deposition of selected trace metals (Cr, Mn, Fe, Ni, Cu, Zn, Ba, and Pb) in size-segregated PM2.5, a long-term monitoring campaign was undertaken at an urban background site in Como (Northern Italy). 96-h aerosol samples were collected weekly, from May 2015 to March 2016, using a 13-stage low pressure impactor and analysed via laser ablation-inductively coupled plasma-mass spectrometry. Significantly higher levels of trace metals were generally found during the heating season (two to more than four times) compared to the non-heating period at all size ranges, especially for concentrations in PM0.1-1. Distinct distribution profiles characterised the different elements, even though the corresponding heating and non-heating shapes always exhibited similar features, with negligible seasonal shifts in the average mass median aerodynamic diameters. Fe, Ba, and Cu had >70% of their mass in PM1-2.5, whereas Pb, Zn, and Ni showed higher contributions in the accumulation mode (>60%). Finally, broad size-distributions were found for Cr and Mn. The multiple-path particle dosimetry model estimated the overall deposition fractions in human airways varying between 27% (Pb) and 48% (Ba). The greatest deposition variability was always registered in the head region of the respiratory system, with the highest contributions for those metals predominantly accumulated in the PM2.5 coarse modes. In contrast, the deposition in the deepest respiratory tract maintained nearly constant proportions over time, becoming notably important for Pb, Ni, and Zn (∼13%) with respect to their total deposition. The comparison with national limits established for Pb and Ni suggested the absence of significant risks for the local population, as expected, with average concentrations two orders of magnitude lower than the corresponding annual limit and objective value. Similar findings were reported for all the other metals, for which the estimated hazard quotients were always well <1.
Collapse
Affiliation(s)
- Sabrina Rovelli
- Department of Science and High Technology, University of Insubria, via Valleggio 11, 22100, Como, Italy.
| | - Andrea Cattaneo
- Department of Science and High Technology, University of Insubria, via Valleggio 11, 22100, Como, Italy
| | - Winfried Nischkauer
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9/164-IAC, A-1060, Vienna, Austria
| | - Francesca Borghi
- Department of Science and High Technology, University of Insubria, via Valleggio 11, 22100, Como, Italy
| | - Andrea Spinazzè
- Department of Science and High Technology, University of Insubria, via Valleggio 11, 22100, Como, Italy
| | - Marta Keller
- Department of Science and High Technology, University of Insubria, via Valleggio 11, 22100, Como, Italy
| | - Davide Campagnolo
- Department of Science and High Technology, University of Insubria, via Valleggio 11, 22100, Como, Italy
| | - Andreas Limbeck
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9/164-IAC, A-1060, Vienna, Austria
| | - Domenico M Cavallo
- Department of Science and High Technology, University of Insubria, via Valleggio 11, 22100, Como, Italy
| |
Collapse
|
4
|
Pirhadi M, Mousavi A, Taghvaee S, Shafer MM, Sioutas C. Semi-volatile components of PM 2.5 in an urban environment: volatility profiles and associated oxidative potential. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2020; 223:117197. [PMID: 32577088 PMCID: PMC7311065 DOI: 10.1016/j.atmosenv.2019.117197] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The volatility profiles of PM2.5 semi-volatile compounds and relationships to the oxidative potential of urban airborne particles were investigated in central Los Angeles, CA. Ambient and thermodenuded fine (PM2.5) particles were collected during both warm and cold seasons by employing the Versatile Aerosol Concentration Enrichment System (VACES) combined with a thermodenuder. When operated at 50 °C and 100 °C, the VACES/thermodenuder system removed about 50% and 75% of the PM2.5 volume concentration, respectively. Most of the quantified PM2.5 semi-volatile species including organic carbon (OC), water soluble organic carbon (WSOC), polycyclic aromatic hydrocarbons (PAHs), organic acids, n-alkanes, and levoglucosan, as well as inorganic ions (i.e., nitrate, sulfate, and ammonium) exhibited concentration losses in the ranges of 40-66% and 67-92%, respectively, as the thermodenuder temperature increased to 50 °C and 100 °C. Species in the PM2.5 such as elemental carbon (EC) and inorganic elements (including trace metals) were minimally impacted by the heating process - thus can be considered refractory. On average, nearly half of the PM2.5 oxidative potential (as measured by the dichlorodihydrofluorescein (DCFH) alveolar macrophage in vitro assay) was associated with the semi-volatile species removed by heating the aerosols to only 50 °C, highlighting the importance of this quite volatile compartment to the ambient PM2.5 toxicity. The fraction of PM2.5 oxidative potential lost upon heating the aerosols to 100 °C further increased to around 75-85%. Furthermore, we document statistically significant correlations between the PM2.5 oxidative potential and different semi-volatile organic compounds originating from primary and secondary sources, including OC (Rwarm, and Rcold) (0.86, and 0.74), WSOC (0.60, and 0.98), PAHs (0.88, and 0.76), organic acids (0.76, and 0.88), and n-alkanes (0.67, and 0.83) in warm and cold seasons, respectively, while a strong correlation between oxidative potential and levoglucosan, a tracer of biomass burning, was observed only during the cold season (Rcold=0.81).
Collapse
Affiliation(s)
- Milad Pirhadi
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Amirhosein Mousavi
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Sina Taghvaee
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Martin M. Shafer
- University of Wisconsin-Madison, Wisconsin State Laboratory of Hygiene, Madison, WI, USA
| | - Constantinos Sioutas
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| |
Collapse
|
5
|
Gali NK, Li G, Ning Z, Brimblecombe P. Diurnal trends in redox characteristics of water-soluble and -insoluble PM components. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:112841. [PMID: 31369911 DOI: 10.1016/j.envpol.2019.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
Densely populated cities with a compact urban built environment have concerns over health risks derived from high levels of airborne particulate matter (PM) exposure. Understanding the association between PM and reactive oxygen species (ROS) is an important step towards unravelling the mechanisms behind. This study investigated the role of time-integrated PM sampling on cellular toxicity mechanism on a diurnal scale. The sampling took place in a highly urbanized part of Hong Kong at two contrast roadside and background sites, with simultaneous solid-PM and semi-volatile-PM (SV-PM) collection in both summer and winter seasons. A sampling day consisted three sampling intervals of 6 h each - 04:00-10:00, 12:00-18:00 and 20:00-02:00 h, representing morning rush hours, afternoon and night periods, respectively. Water and organic extracts of PM were prepared, with and without filtration, and exposed to RAW264.7 and A549 cell lines on a dose and time-dependent manner. Solid-PM and SV-PM contribution to total PM2.5 mass concentration was 9:1, with much higher SV-PM fraction at roadside over urban background (p < 0.001, n = 36). Also, the SV-PM mass concentration increased by 10-20% during 20:00-02:00 h compared to morning and afternoon sampling periods. Organic PM extract was observed to cause 23-29% higher cell death compared to water-soluble PM, which is complemented with increased ROS production in both cell lines. The cellular damage caused by oxidative stress, determined from increased HO-1 and TNF-α expression in RAW264.7 was higher compared to the A549, which demonstrated the greater induction of toxicity from organic PM extract over soluble PM. Similarly, the SV-PM induced greater than 2-fold cellular ROS generation on PM mass basis compared to solid-PM. Lack of phagocytic action in A549 compared to RAW264.7 suggested novel toxicity routes for water-soluble and organic PM that can be expected to occur during human PM inhalation-bronchi-alveolar exposure.
Collapse
Affiliation(s)
- Nirmal Kumar Gali
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Hong Kong Special Administrative Region
| | - Guoliang Li
- School of Energy and Environment, City University of Hong Kong, Hong Kong Special Administrative Region
| | - Zhi Ning
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Hong Kong Special Administrative Region.
| | - Peter Brimblecombe
- School of Energy and Environment, City University of Hong Kong, Hong Kong Special Administrative Region
| |
Collapse
|
6
|
Ji J, Ganguly K, Mihai X, Sun J, Malmlöf M, Gerde P, Upadhyay S, Palmberg L. Exposure of normal and chronic bronchitis-like mucosa models to aerosolized carbon nanoparticles: comparison of pro-inflammatory oxidative stress and tissue injury/repair responses. Nanotoxicology 2019; 13:1362-1379. [PMID: 31462114 DOI: 10.1080/17435390.2019.1655600] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Carbon nanoparticles (CNP) are generated by incomplete combustion of diesel engines. Several epidemiological studies associated higher susceptibility to particulate matter related adverse respiratory outcomes with preexisting conditions like chronic bronchitis (CB). Therefore, we compared the effect of CNP exposure on primary bronchial epithelial cells (PBEC) developed in air-liquid interface (ALI) models of normal versus CB-like-mucosa.PBEC cultured at ALI represented normal mucosa (PBEC-ALI). To develop CB-like-mucosa (PBEC-ALI/CB), 1 ng/ml interleukin-13 was added to the basal media of PBEC-ALI culturing. PBEC-ALI and PBEC-ALI/CB were exposed to sham or to aerosolized CNP using XposeALI® system. Protein levels of CXCL-8 and MMP-9 were measured in the basal media using ELISA. Transcript expression of pro-inflammatory (CXCL8, IL6, TNF, NFKB), oxidative stress (HMOX1, SOD3, GSTA1, GPx), tissue injury/repair (MMP9/TIMP1) and bronchial cell type markers (MUC5AC, CC10) were assessed using qRT-PCR.Increased secretion of CXCL-8 and MMP-9 markers was detected 24 h post-exposure in both PBEC-ALI and PBEC-ALI/CB with more pronounced effect in the later. Pro-inflammatory and tissue injury markers were increased at both 6 h and 24 h post-exposure in PBEC-ALI/CB. Oxidative stress markers exhibited similar responses at 6 h and 24 h post-exposure in PBEC-ALI/CB. The club cell specific marker CC10 was increased by 300 fold in PBEC-ALI/CB and 20 fold in PBEC-ALI following CNP exposure.Our data indicates an earlier and stronger reaction of pro-inflammatory, oxidative stress and tissue injury markers in PBEC-ALI/CB models compared to PBEC-ALI models following CNP exposure. The findings may provide insight into the plausible mechanisms of higher susceptibility among predisposed individuals to nanoparticle exposure.
Collapse
Affiliation(s)
- Jie Ji
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Koustav Ganguly
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Xenia Mihai
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jitong Sun
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria Malmlöf
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Inhalation Sciences Sweden AB, Stockholm, Sweden
| | - Per Gerde
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Inhalation Sciences Sweden AB, Stockholm, Sweden
| | - Swapna Upadhyay
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lena Palmberg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Breton CV, Song AY, Xiao J, Kim SJ, Mehta HH, Wan J, Yen K, Sioutas C, Lurmann F, Xue S, Morgan TE, Zhang J, Cohen P. Effects of air pollution on mitochondrial function, mitochondrial DNA methylation, and mitochondrial peptide expression. Mitochondrion 2019; 46:22-29. [PMID: 30980914 DOI: 10.1016/j.mito.2019.04.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/25/2019] [Accepted: 04/01/2019] [Indexed: 12/30/2022]
Abstract
Mitochondrial DNA is sensitive to damage by exogenous reactive oxygen sources, including traffic-related air pollution (TRAP). Given the important role for mitochondria in human disease, we hypothesized that prenatal air pollution exposure may be associated with mitochondrial dysfunction and that mitochondrial-derived peptides (MDPs) might protect against these effects. In in vitro studies, 24-hour exposure to nanoparticulate matter (nPM) increased oxidation of mtDNA, decreased mitochondrial consumption rate (OCR), and decreased mtDNAcn in SH-SY5Y cells. Addition of MDPs rescued these effects to varying degrees. Liver tissue taken from C57Bl/6 males exposed for 10 weeks to nPM had lower OCR, lower mtDNAcn and higher MDP levels, similar to in vitro studies. In newborn cord blood, MDP levels were positively associated with prenatal TRAP exposures. Moreover, DNA methylation of two distinct regions of the D-Loop in the mitochondria genome was associated with levels of several MDPs. Our in vitro and in vivo data indicate that TRAP can directly affect mitochondrial respiratory function and mtDNAcn. Treatment of cells with MDPs can counteract TRAP induced-effects. Lastly, we present evidence that suggests MDPs may be regulated in part by mitochondrial DNA methylation in humans.
Collapse
Affiliation(s)
- Carrie V Breton
- Department of Preventive Medicine, Keck School of Medicine USC, 2001 N Soto St., Los Angeles, CA 90032, United States of America.
| | - Ashley Y Song
- Department of Preventive Medicine, Keck School of Medicine USC, 2001 N Soto St., Los Angeles, CA 90032, United States of America
| | - Jialin Xiao
- USC Leonard School of Gerontology, 3715 McClintock Ave, Los Angeles, CA 90089, United States of America
| | - Su-Jeong Kim
- USC Leonard School of Gerontology, 3715 McClintock Ave, Los Angeles, CA 90089, United States of America
| | - Hemal H Mehta
- USC Leonard School of Gerontology, 3715 McClintock Ave, Los Angeles, CA 90089, United States of America
| | - Junxiang Wan
- USC Leonard School of Gerontology, 3715 McClintock Ave, Los Angeles, CA 90089, United States of America
| | - Kelvin Yen
- USC Leonard School of Gerontology, 3715 McClintock Ave, Los Angeles, CA 90089, United States of America
| | - Constantinos Sioutas
- USC Viterbi School of Engineering, 3620 South Vermont Ave, Los Angeles, CA 90089, United States of America
| | - Fred Lurmann
- Sonoma Technology, 1450 N. McDowell Blvd., Suite 200, Petaluma, CA 94954, United States of America
| | - Shanyan Xue
- Department of Preventive Medicine, Keck School of Medicine USC, 2001 N Soto St., Los Angeles, CA 90032, United States of America
| | - Todd E Morgan
- USC Leonard School of Gerontology, 3715 McClintock Ave, Los Angeles, CA 90089, United States of America
| | - Junfeng Zhang
- Nicholas School of the Enviroment, Duke University, 308 Research Drive LSRC, Durham, NC 27708, United States of America
| | - Pinchas Cohen
- USC Leonard School of Gerontology, 3715 McClintock Ave, Los Angeles, CA 90089, United States of America
| |
Collapse
|
8
|
Exposure to Nanoscale Particulate Matter from Gestation to Adulthood Impairs Metabolic Homeostasis in Mice. Sci Rep 2019; 9:1816. [PMID: 30755631 PMCID: PMC6372675 DOI: 10.1038/s41598-018-37704-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 12/12/2018] [Indexed: 12/13/2022] Open
Abstract
Emerging evidence from epidemiological and animal studies suggests that exposure to traffic-related air pollutants and particulate matter less than 2.5 µm in diameter (PM2.5) contributes to development of obesity and related metabolic abnormalities. However, it is not known whether nanoscale particulate matter (nPM) with aerodynamic diameter ≤200 nm have similar adverse metabolic effects. The goal of the present study was to determine the effects of prenatal and early life exposure to nPM on metabolic homeostasis in mice. C57BL/6 J mice were exposed to nPM or filtered air from gestation until 17 weeks of age and characterized for metabolic and behavioral parameters. In male mice, nPM exposure increased food intake, body weight, fat mass, adiposity, and whole-body glucose intolerance (p < 0.05). Consistent with these effects, male mice exposed to nPM displayed alterations in the expression of metabolically-relevant neuropeptides in the hypothalamus and decreased expression of insulin receptor signaling genes in adipose (p < 0.05). There were no differences in exploratory behavior or motor function, fasting lipid levels, or the inflammatory profile of adipose tissue. Our results provide evidence that chronic nPM exposure from gestation to early adulthood in male mice promotes metabolic dysregulation in part through modulation of feeding behavior and in the absence of an obesogenic diet.
Collapse
|
9
|
Woodward NC, Haghani A, Johnson RG, Hsu TM, Saffari A, Sioutas C, Kanoski SE, Finch CE, Morgan TE. Prenatal and early life exposure to air pollution induced hippocampal vascular leakage and impaired neurogenesis in association with behavioral deficits. Transl Psychiatry 2018; 8:261. [PMID: 30498214 PMCID: PMC6265287 DOI: 10.1038/s41398-018-0317-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 11/08/2018] [Accepted: 11/13/2018] [Indexed: 01/12/2023] Open
Abstract
Exposure to traffic-related air pollution (TRAP) is associated with a range of neurodevelopmental disorders in human populations. In rodent models, prenatal TRAP exposure increased depressive behaviors and increased brain microglial activity. To identify cellular mechanisms, we examined adult neurogenesis and the blood-brain barrier (BBB) in relation to cognition and motivated behaviors in rats that were exposed to a nano-sized TRAP subfraction from gestation into adulthood. At age 5 months, exposed male rats had 70% fewer newly generated neurons in the dentate gyrus (DG) of the hippocampus. Microglia were activated in DG and CA1 subfields (35% more Iba1). The BBB was altered, with a 75% decrease of the tight junction protein ZO-1 in the CA1 layer, and twofold more iron deposits, a marker of microhemorrhages. The exposed rats had impaired contextual memory (novel object in context), reduced food-seeking behavior, and increased depressive behaviors (forced swim). Deficits of de novo neurogenesis were inversely correlated with depressive behavior, whereas increased microbleeds were inversely correlated with deficits in contextual memory. These findings give the first evidence that prenatal and early life exposure to TRAP impairs adult hippocampal neurogenesis and increases microbleeds in association with behavioral deficits.
Collapse
Affiliation(s)
- N. C. Woodward
- 0000 0001 2156 6853grid.42505.36Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA USA
| | - A. Haghani
- 0000 0001 2156 6853grid.42505.36Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA USA
| | - R. G. Johnson
- 0000 0001 2156 6853grid.42505.36Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA USA
| | - T. M. Hsu
- 0000 0001 2156 6853grid.42505.36Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA USA ,0000 0001 2156 6853grid.42505.36Neuroscience Program, University of Southern California, Los Angeles, CA USA
| | - A. Saffari
- 0000 0001 2156 6853grid.42505.36Viterbi School of Engineering, University of Southern California, Los Angeles, CA USA
| | - C. Sioutas
- 0000 0001 2156 6853grid.42505.36Viterbi School of Engineering, University of Southern California, Los Angeles, CA USA
| | - S. E. Kanoski
- 0000 0001 2156 6853grid.42505.36Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA USA ,0000 0001 2156 6853grid.42505.36Neuroscience Program, University of Southern California, Los Angeles, CA USA
| | - C. E. Finch
- 0000 0001 2156 6853grid.42505.36Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA USA ,0000 0001 2156 6853grid.42505.36Dornsife College, University of Southern California, Los Angeles, CA USA
| | - T. E. Morgan
- 0000 0001 2156 6853grid.42505.36Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA USA
| |
Collapse
|
10
|
Abstract
Nearly 3 billion people are exposed to household air pollution emitted from inefficient cooking and heating stoves, and almost the entire global population is exposed to detectable levels of outdoor air pollution from traffic, industry, and other sources. Over 3 million people die annually of ischemic heart disease or stroke attributed to air pollution, more than from traditional cardiac risk factors such as obesity, diabetes mellitus, or smoking. Clinicians have a role to play in reducing the burden of pollution-attributable cardiovascular disease. However, there currently exists no clear clinical approach to this problem. Here, we provide a blueprint for an evidence-based clinical approach to assessing and mitigating cardiovascular risk from exposure to air pollution. We begin with a discussion of the global burden of pollution-attributable cardiovascular disease, including a review of the mechanisms by which particulate matter air pollution leads to cardiovascular outcomes. Next, we offer a simple patient-screening tool using known risk factors for pollution exposure. We then discuss approaches to quantifying air pollution exposures and cardiovascular risk, including the development of risk maps for clinical catchment areas. We review a collection of interventions for household and outdoor air pollution, which clinicians can tailor to patients and populations at risk. Finally, we identify future research needed to quantify pollution exposures and validate clinical interventions. Overall, we demonstrate that clinicians can be empowered to mitigate the global burden of cardiovascular disease attributable to air pollution.
Collapse
Affiliation(s)
- Michael B Hadley
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York (M.B.H.)
| | - Jill Baumgartner
- Institute for Health and Social Policy and Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Quebec, Montreal, Canada (J.B.)
| | - Rajesh Vedanthan
- Institute for Health and Social Policy and Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Quebec, Montreal, Canada (J.B.)
| |
Collapse
|
11
|
Bliss B, Tran KI, Sioutas C, Campbell A. Ambient ultrafine particles activate human monocytes: Effect of dose, differentiation state and age of donors. ENVIRONMENTAL RESEARCH 2018; 161:314-320. [PMID: 29178980 PMCID: PMC5748008 DOI: 10.1016/j.envres.2017.11.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/14/2017] [Accepted: 11/15/2017] [Indexed: 05/22/2023]
Abstract
Exposure to ambient particulate matter (PM) has been linked to adverse pulmonary and cardiovascular health effects. Activation of both inflammatory and oxidative stress pathways has been observed and may be a probable cause of these outcomes. We tested the hypothesis that in human monocytes, PM-induced oxidative and inflammatory responses are interrelated. A human monocytic cell line (THP-1) was used to determine if dose and differentiation state plays a role in the cellular response after a 24hr exposure to particles. Primary human monocytes derived from eight female, non-smoker donors (aged: 21, 24, 27, 28, 48, 49, 54 & 60yo) were used to determine if the age of donors modulates the response. Cells were treated with aqueous suspensions of ambient ultrafine particles (UFP, defined as smaller than 0.2µm in size) or a media control for 24hr. After exposure, reactive oxygen species (ROS) formation was increased irrespective of dose or differentiation state of THP-1 cells. In the primary human monocytes, ROS formation was not significantly changed. The release of the proinflammatory cytokine, tumor necrosis factor alpha (TNF-α), was dose-dependent and greatest in differentiated compared to undifferentiated THP-1 cells exposed to UFP. In the Primary human monocytes, TNF-α secretion was increased irrespective of the age of the donor. Our results suggest that after a 24hr exposure to particles, general reactive oxygen species formation was nonspecific and uncorrelated to cytokine secretion which was consistently enhanced. Cytokines play an important role in orchestrating many immune responses and thus the ability of ambient particles to enhance robust secretion of a proinflammatory cytokine from primary human monocytes, and how this may influence the response to pathogens and alter disease states, needs to be further evaluated.
Collapse
Affiliation(s)
- Bishop Bliss
- Department of Pharmaceutical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Kevin Ivan Tran
- Department of Pharmaceutical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Constantinos Sioutas
- Department of Civil & Environmental Engineering, University of Southern California, Los Angeles, CA, USA
| | - Arezoo Campbell
- Department of Pharmaceutical Sciences, Western University of Health Sciences, Pomona, CA, USA.
| |
Collapse
|
12
|
van Drooge BL, Marqueño A, Grimalt JO, Fernández P, Porte C. Comparative toxicity and endocrine disruption potential of urban and rural atmospheric organic PM 1 in JEG-3 human placental cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 230:378-386. [PMID: 28672150 DOI: 10.1016/j.envpol.2017.06.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/08/2017] [Accepted: 06/10/2017] [Indexed: 06/07/2023]
Abstract
Outdoor ambient air particulate matter and air pollution are related to adverse effects on human health. The present study assesses the cytotoxicity and ability to disrupt aromatase activity of organic PM1 extracts from rural and urban areas at equivalent air volumes from 2 to 30 m3, in human placental JEG-3 cells. Samples were chemically analyzed for particle bounded organic compounds with endocrine disrupting potential, i.e. PAH, O-PAH, phthalate esters, but also for organic molecular tracer compounds for the emission source identification. Rural samples collected in winter were cytotoxic at the highest concentration tested and strongly inhibited aromatase activity in JEG-3 cells. No cytotoxicity was detected in summer samples from the rural site and the urban samples, while aromatase activity was moderately inhibited in these samples. In the urban area, the street site samples, collected close to intensive traffic, showed stronger inhibition of aromatase activity than the samples simultaneously collected at a roof site, 50 m above ground level. The cytotoxicity and endocrine disruption potential of the samples were linked to combustion products, i.e. PAH and O-PAH, especially from biomass burning in the rural site in winter.
Collapse
Affiliation(s)
- Barend L van Drooge
- Institute of Environmental Assessment and Water Research, c/Jordi Girona 18-26, Barcelona 08034, Spain.
| | - Anna Marqueño
- Institute of Environmental Assessment and Water Research, c/Jordi Girona 18-26, Barcelona 08034, Spain
| | - Joan O Grimalt
- Institute of Environmental Assessment and Water Research, c/Jordi Girona 18-26, Barcelona 08034, Spain
| | - Pilar Fernández
- Institute of Environmental Assessment and Water Research, c/Jordi Girona 18-26, Barcelona 08034, Spain
| | - Cinta Porte
- Institute of Environmental Assessment and Water Research, c/Jordi Girona 18-26, Barcelona 08034, Spain
| |
Collapse
|
13
|
Mortamais M, Pujol J, van Drooge BL, Macià D, Martínez-Vilavella G, Reynes C, Sabatier R, Rivas I, Grimalt J, Forns J, Alvarez-Pedrerol M, Querol X, Sunyer J. Effect of exposure to polycyclic aromatic hydrocarbons on basal ganglia and attention-deficit hyperactivity disorder symptoms in primary school children. ENVIRONMENT INTERNATIONAL 2017; 105:12-19. [PMID: 28482185 DOI: 10.1016/j.envint.2017.04.011] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/12/2017] [Accepted: 04/25/2017] [Indexed: 05/05/2023]
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAHs) have been proposed as environmental risk factors for attention deficit hyperactivity disorder (ADHD). The effects of these pollutants on brain structures potentially involved in the pathophysiology of ADHD are unknown. OBJECTIVE The aim of this study was to investigate the effects of PAHs on basal ganglia volumes and ADHD symptoms in school children. METHODS We conducted an imaging study in 242 children aged 8-12years, recruited through a set of representative schools of the city of Barcelona, Spain. Indoor and outdoor PAHs and benzo[a]pyrene (BPA) levels were assessed in the school environment, one year before the MRI assessment. Whole-brain volumes and basal ganglia volumes (caudate nucleus, globus pallidus, putamen) were derived from structural MRI scans using automated tissue segmentation. ADHD symptoms (ADHD/DSM-IV Scales, American Psychiatric Association 2002) were reported by teachers, and inattentiveness was evaluated with standard error of hit reaction time in the attention network computer-based test. RESULTS Total PAHs and BPA were associated with caudate nucleus volume (CNV) (i.e., an interquartile range increase in BPA outdoor level (67pg/m3) and indoor level (76pg/m3) was significantly linked to a decrease in CNV (mm3) (β=-150.6, 95% CI [-259.1, -42.1], p=0.007, and β=-122.4, 95% CI [-232.9, -11.8], p=0.030 respectively) independently of intracranial volume, age, sex, maternal education and socioeconomic vulnerability index at home). ADHD symptoms and inattentiveness increased in children with higher exposure to BPA, but these associations were not statistically significant. CONCLUSIONS Exposure to PAHs, and in particular to BPA, is associated with subclinical changes on the caudate nucleus, even below the legislated annual target levels established in the European Union. The behavioral consequences of this induced brain change were not identified in this study, but given the caudate nucleus involvement in many crucial cognitive and behavior processes, this volume reduction is concerning for the children's neurodevelopment.
Collapse
Affiliation(s)
- Marion Mortamais
- ISGLOBAL, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Pompeu Fabra University, Barcelona, Catalonia, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain.
| | - Jesus Pujol
- MRI Research Unit, Hospital del Mar, Barcelona, Spain; Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM G21, Barcelona, Spain
| | | | - Didac Macià
- MRI Research Unit, Hospital del Mar, Barcelona, Spain
| | | | - Christelle Reynes
- University of Montpellier, , Montpellier, France; 3 EA 2415, Faculté de Pharmacie, Montpellier, France
| | - Robert Sabatier
- University of Montpellier, , Montpellier, France; 3 EA 2415, Faculté de Pharmacie, Montpellier, France
| | - Ioar Rivas
- ISGLOBAL, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Pompeu Fabra University, Barcelona, Catalonia, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain; Institute of Environmental Assessment and Water Research, Barcelona, Spain
| | - Joan Grimalt
- Institute of Environmental Assessment and Water Research, Barcelona, Spain
| | - Joan Forns
- ISGLOBAL, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Pompeu Fabra University, Barcelona, Catalonia, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Mar Alvarez-Pedrerol
- ISGLOBAL, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Pompeu Fabra University, Barcelona, Catalonia, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Xavier Querol
- Institute of Environmental Assessment and Water Research, Barcelona, Spain
| | - Jordi Sunyer
- ISGLOBAL, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Pompeu Fabra University, Barcelona, Catalonia, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain; Institut Hospital del Mar d'Investigacions Mèdiques-Parc de Salut Mar, Barcelona, Catalonia, Spain
| |
Collapse
|
14
|
Ganguly K, Ettehadieh D, Upadhyay S, Takenaka S, Adler T, Karg E, Krombach F, Kreyling WG, Schulz H, Schmid O, Stoeger T. Early pulmonary response is critical for extra-pulmonary carbon nanoparticle mediated effects: comparison of inhalation versus intra-arterial infusion exposures in mice. Part Fibre Toxicol 2017. [PMID: 28637465 PMCID: PMC5480131 DOI: 10.1186/s12989-017-0200-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background The death toll associated with inhaled ambient particulate matter (PM) is attributed mainly to cardio-vascular rather than pulmonary effects. However, it is unclear whether the key event for cardiovascular impairment is particle translocation from lung to circulation (direct effect) or indirect effects due to pulmonary particle-cell interactions. In this work, we addressed this issue by exposing healthy mice via inhalation and intra-arterial infusion (IAI) to carbon nanoparticles (CNP) as surrogate for soot, a major constituent of (ultrafine) urban PM. Methods Equivalent surface area CNP doses in the blood (30mm2 per animal) were applied by IAI or inhalation (lung-deposited dose 10,000mm2; accounting for 0.3% of lung-to-blood CNP translocation). Mice were analyzed for changes in hematology and molecular markers of endothelial/epithelial dysfunction, pro-inflammatory reactions, oxidative stress, and coagulation in lungs and extra-pulmonary organs after CNP inhalation (4 h and 24 h) and CNP infusion (4 h). For methodological reasons, we used two different CNP types (spark-discharge and Printex90), with very similar physicochemical properties [≥98 and ≥95% elemental carbon; 10 and 14 nm primary particle diameter; and 800 and 300 m2/g specific surface area] for inhalation and IAI respectively. Results Mild pulmonary inflammatory responses and significant systemic effects were observed following 4 h and 24 h CNP inhalation. Increased retention of activated leukocytes, secondary thrombocytosis, and pro-inflammatory responses in secondary organs were detected following 4 h and 24 h of CNP inhalation only. Interestingly, among the investigated extra-pulmonary tissues (i.e. aorta, heart, and liver); aorta revealed as the most susceptible extra-pulmonary target following inhalation exposure. Bypassing the lungs by IAI however did not induce any extra-pulmonary effects at 4 h as compared to inhalation. Conclusions Our findings indicate that extra-pulmonary effects due to CNP inhalation are dominated by indirect effects (particle-cell interactions in the lung) rather than direct effects (translocated CNPs) within the first hours after exposure. Hence, CNP translocation may not be the key event inducing early cardiovascular impairment following air pollution episodes. The considerable response detected in the aorta after CNP inhalation warrants more emphasis on this tissue in future studies. Electronic supplementary material The online version of this article (doi:10.1186/s12989-017-0200-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Koustav Ganguly
- Unit of Lung and Airway Research, Institute of Environmental Medicine (IMM), Karolinska Institutet, SE-171 77, Stockholm, Sweden.,Unit of Work Environment Toxicology, Institute of Environmental Medicine (IMM), Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Dariusch Ettehadieh
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Helmholtz Zentrum München, German Research Center for Environmental Health, D85764, Neuherberg, Germany
| | - Swapna Upadhyay
- Unit of Lung and Airway Research, Institute of Environmental Medicine (IMM), Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Shinji Takenaka
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Helmholtz Zentrum München, German Research Center for Environmental Health, D85764, Neuherberg, Germany
| | - Thure Adler
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, D85764, Neuherberg, Germany
| | - Erwin Karg
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Helmholtz Zentrum München, German Research Center for Environmental Health, D85764, Neuherberg, Germany.,Cooperationgroup Comprehensive Molecular Analytics (CMA), Joint Mass Spectrometry Centre (JMSC), Helmholtz Zentrum München, German Research Center for Environmental Health, D85764, Neuherberg, Germany
| | - Fritz Krombach
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität, D81377, Munich, Germany
| | - Wolfgang G Kreyling
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Helmholtz Zentrum München, German Research Center for Environmental Health, D85764, Neuherberg, Germany
| | - Holger Schulz
- Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, D85764, Neuherberg, Germany.,Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research, D85764, Munich, Germany
| | - Otmar Schmid
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Helmholtz Zentrum München, German Research Center for Environmental Health, D85764, Neuherberg, Germany
| | - Tobias Stoeger
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Helmholtz Zentrum München, German Research Center for Environmental Health, D85764, Neuherberg, Germany.
| |
Collapse
|
15
|
Mesquita SR, van Drooge BL, Dall'Osto M, Grimalt JO, Barata C, Vieira N, Guimarães L, Piña B. Toxic potential of organic constituents of submicron particulate matter (PM1) in an urban road site (Barcelona). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:15406-15415. [PMID: 28508335 DOI: 10.1007/s11356-017-9201-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 05/03/2017] [Indexed: 06/07/2023]
Abstract
Atmospheric particulate matter (PM) is a recognized risk factor contributing to a number of diseases in human populations and wildlife globally. Organic matter is a major component of PM, but its contribution to overall toxicity of PM has not been thoroughly evaluated yet. In the present work, the biological activity of organic extracts from PM1 (particles with less than 1 μm of aerodynamic diameter) collected from an urban road site in the centre of Barcelona (NE Spain) was evaluated using a yeast-based assay (AhR-RYA) and different gene expression markers in zebrafish embryos. Dioxin-like activity of the extracts correlated to primary emissions from local traffic exhausts, reflecting weekday/weekend alternance. Expression levels of cyp1a and of gene markers for key cellular processes and development (ier2, fos) also correlated to vehicle emissions, whereas expression of gene markers related to antioxidant defence and endocrine effects (gstal, hao1, ttr) was strongly reduced in samples with strong contribution from regional air masses with aged secondary organic species or with strong influence of biomass burning emissions. Our data suggest that the toxic potential of PM1 organic chemical constituents strongly depends on the emission sources and on the process of ageing from primary to secondary organic aerosols.
Collapse
Affiliation(s)
- Sofia R Mesquita
- Institute of Environmental Assessment and Water Research, Carrer Jordi Girona 18-26, 08034, Barcelona, Spain.
- Interdisciplinary Centre of Marine and Environmental Research, Rua dos Bragas 289, 4050-123, Porto, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
| | - Barend L van Drooge
- Institute of Environmental Assessment and Water Research, Carrer Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Manuel Dall'Osto
- Institute of Environmental Assessment and Water Research, Carrer Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Joan O Grimalt
- Institute of Environmental Assessment and Water Research, Carrer Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Carlos Barata
- Institute of Environmental Assessment and Water Research, Carrer Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Natividade Vieira
- Interdisciplinary Centre of Marine and Environmental Research, Rua dos Bragas 289, 4050-123, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Laura Guimarães
- Interdisciplinary Centre of Marine and Environmental Research, Rua dos Bragas 289, 4050-123, Porto, Portugal
| | - Benjamin Piña
- Institute of Environmental Assessment and Water Research, Carrer Jordi Girona 18-26, 08034, Barcelona, Spain
| |
Collapse
|
16
|
Woodward NC, Pakbin P, Saffari A, Shirmohammadi F, Haghani A, Sioutas C, Cacciottolo M, Morgan TE, Finch CE. Traffic-related air pollution impact on mouse brain accelerates myelin and neuritic aging changes with specificity for CA1 neurons. Neurobiol Aging 2017; 53:48-58. [PMID: 28212893 PMCID: PMC5388507 DOI: 10.1016/j.neurobiolaging.2017.01.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/16/2016] [Accepted: 01/05/2017] [Indexed: 12/28/2022]
Abstract
Traffic-related air pollution (TRAP) is associated with lower cognition and reduced white matter volume in older adults, specifically for particulate matter <2.5-μm diameter (PM2.5). Rodents exposed to TRAP have shown microglial activation and neuronal atrophy. We further investigated age differences of TRAP exposure, with focus on hippocampus for neuritic atrophy, white matter degeneration, and microglial activation. Young- and middle-aged mice (3 and 18 months female C57BL/6J) were exposed to nanoscale-PM (nPM, <0.2 μm diameter). Young mice showed selective changes in the hippocampal CA1 region, with neurite atrophy (-25%), decreased MBP (-50%), and increased Iba1 (+50%), with dentate gyrus relatively unaffected. Exposure to nPM of young mice decreased GluA1 protein (-40%) and increased TNFa mRNA (10×). Older controls had age changes approximating nPM effects on young, with no response to nPM, suggesting an age-ceiling effect. The CA1 selective vulnerability in young mice parallels CA1 vulnerability in Alzheimer's disease. We propose that TRAP-associated human cognitive and white matter changes involve hippocampal responses to nPM that begin at younger ages.
Collapse
Affiliation(s)
- Nicholas C Woodward
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Payam Pakbin
- Department of Civil and Environmental Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Arian Saffari
- Department of Civil and Environmental Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Farimah Shirmohammadi
- Department of Civil and Environmental Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Amin Haghani
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Constantinos Sioutas
- Department of Civil and Environmental Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Mafalda Cacciottolo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Todd E Morgan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Caleb E Finch
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA; Department of Molecular and Computational Biology, Dornsife College, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
17
|
Woodward NC, Levine MC, Haghani A, Shirmohammadi F, Saffari A, Sioutas C, Morgan TE, Finch CE. Toll-like receptor 4 in glial inflammatory responses to air pollution in vitro and in vivo. J Neuroinflammation 2017; 14:84. [PMID: 28410596 PMCID: PMC5391610 DOI: 10.1186/s12974-017-0858-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/29/2017] [Indexed: 12/05/2022] Open
Abstract
Background Exposure to traffic-related air pollution (TRAP) is associated with accelerated cognitive aging and higher dementia risk in human populations. Rodent brains respond to TRAP with activation of astrocytes and microglia, increased inflammatory cytokines, and neurite atrophy. A role for Toll-like receptor 4 (TLR4) was suggested in mouse TLR4-knockouts, which had attenuated lung macrophage responses to air pollution. Methods To further analyze these mechanisms, we examined mixed glial cultures (astrocytes and microglia) for RNA responses to nanoscale particulate matter (nPM; diameter <0.2 μm), a well-characterized nanoscale particulate matter subfraction of TRAP collected from a local freeway (Morgan et al. Environ Health Perspect 2011; 119,1003–1009, 2011). The nPM was compared with responses to the endotoxin lipopolysaccharide (LPS), a classic TLR4 ligand, using Affymetrix whole genome microarray in rats. Expression patterns were analyzed by significance analysis of microarrays (SAM) for fold change and by weighted gene co-expression network analysis (WGCNA) to identify modules of shared responses between nPM and LPS. Finally, we examined TLR4 activation in hippocampal tissue from mice chronically exposed to nPM. Results SAM and WGCNA analyses showed strong activation of TLR4 and NF-κB by both nPM and LPS. TLR4 siRNA attenuated TNFα and other inflammatory responses to nPM in vitro, via the MyD88-dependent pathway. In vivo, mice chronically exposed to nPM showed increased TLR4, MyD88, TNFα, and TNFR2 RNA, and decreased NF-κB and TRAF6 RNA TLR4 and NF-κB responses in the hippocampus. Conclusions These results show TLR4 activation is integral in brain inflammatory responses to air pollution, and warrant further study of TLR4 in accelerated cognitive aging by air pollution. Electronic supplementary material The online version of this article (doi:10.1186/s12974-017-0858-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicholas C Woodward
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Morgan C Levine
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Amin Haghani
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Farimah Shirmohammadi
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Arian Saffari
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Constantinos Sioutas
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Todd E Morgan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Caleb E Finch
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA. .,Dornsife College, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
18
|
Jung S, Lim J, Kwon S, Jeon S, Kim J, Lee J, Kim S. Characterization of particulate matter from diesel passenger cars tested on chassis dynamometers. J Environ Sci (China) 2017; 54:21-32. [PMID: 28391931 DOI: 10.1016/j.jes.2016.01.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 01/12/2016] [Accepted: 01/15/2016] [Indexed: 06/07/2023]
Abstract
Emission characterization of particle number as well as particle mass from three diesel passenger cars equipped with diesel particulate filter (DPF), diesel oxidation catalyst (DOC) and exhaust gas recirculation (EGR) under the vehicle driving cycles and regulatory cycle. Total particle number emissions (PNEs) decreased gradually during speed-up of vehicle from 17.3 to 97.3km/hr. As the average vehicle speed increases, the size-segregated peak of particle number concentration shifts to smaller size ranges of particles. The correlation analysis with various particulate components such as particle number concentration (PNC), ultrafine particle number concentration (UFPNC) and particulate matter (PM) mass was conducted to compare gaseous compounds (CO, CO2, HC and NOx). The UFPNC and PM were not only emitted highly in Seoul during severe traffic jam conditions, but also have good correlation with hydrocarbons and NOx influencing high potential on secondary aerosol generation. The effect of the dilution temperature on total PNC under the New European Driving Cycle (NEDC), was slightly higher than the dilution ratio. In addition, the nuclei mode (DP: ≤13nm) was confirmed to be more sensitive to the dilution temperature rather than other particle size ranges. Comparison with particle composition between vehicle speed cycles and regulatory cycle showed that sulfate was slightly increased at regulatory cycle, while other components were relatively similar. During cold start test, semivolatile nucleation particles were increased due to effect of cold environment. Research on particle formation dependent on dilution conditions of diesel passenger cars under the NEDC is important to verify impact on vehicular traffic and secondary aerosol formation in Seoul.
Collapse
Affiliation(s)
- Sungwoon Jung
- Transportation Pollution Research Center, National Institute of Environmental Research, Incheon, Republic of Korea.
| | - Jaehyun Lim
- Division of Global Environment Research, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Sangil Kwon
- Transportation Pollution Research Center, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Sangwoo Jeon
- Compliance & Defects Investigation Office, Korea Automobile Testing & Research Institute, Hwasung, Republic of Korea
| | - Jeongsoo Kim
- Transportation Pollution Research Center, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Jongtae Lee
- Transportation Pollution Research Center, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Sunmoon Kim
- Transportation Pollution Research Center, National Institute of Environmental Research, Incheon, Republic of Korea
| |
Collapse
|
19
|
Choi W, Ranasinghe D, Bunavage K, DeShazo JR, Wu L, Seguel R, Winer AM, Paulson SE. The effects of the built environment, traffic patterns, and micrometeorology on street level ultrafine particle concentrations at a block scale: Results from multiple urban sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 553:474-485. [PMID: 26938315 DOI: 10.1016/j.scitotenv.2016.02.083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/04/2016] [Accepted: 02/12/2016] [Indexed: 06/05/2023]
Abstract
This study attempts to explain explicitly the direct and quantitative effects of complicated urban built-environment on near-road dispersion and levels of vehicular emissions at the scale of several city blocks, based on ultrafine particle concentrations ([UFP]). On short timescales, ultrafine particles are an excellent proxy for other roadway emissions. Five measurement sites in the greater Los Angeles with different built environments but similar mesoscale meteorology were explored. After controlling for traffic, for most sampling days and sites, morning [UFP] were higher than those in the afternoon due to limited dispersion capacity combined with a relatively stable surface layer. [UFP] at the intersection corners were also higher than those over the sampling sites, implying that accelerating vehicles around the intersections contributed to [UFP] elevation. In the calm morning, the areal aspect ratio (Ararea), developed in this study for real urban configurations, showed a strong relationship with block-scale [UFP]. Ararea includes the building area-weighted building height, the amount of open space, and the building footprint. In the afternoon, however, when wind speeds were generally higher and turbulence was stronger, vertical turbulence intensity σw was the most effective factor controlling [UFP]. The surrounding built environment appears to play an indirect role in observed [UFP], by affecting surface level micrometeorology. The effects are substantial; controlling for traffic, differences in Ararea and building heterogeneity were related to differences in [UFP] of factors of two to three among our five study sites. These results have significant implications for pedestrian exposure as well as transit-oriented urban planning.
Collapse
Affiliation(s)
- Wonsik Choi
- University of California, Los Angeles, Department of Atmospheric and Oceanic Sciences, 405 Hilgard Ave., Los Angeles, CA 90095, USA; University of California, Los Angeles, Institute of the Environment and Sustainability, La Kretz Hall, Suite 300, Los Angeles, CA 90095, USA.
| | - Dilhara Ranasinghe
- University of California, Los Angeles, Department of Atmospheric and Oceanic Sciences, 405 Hilgard Ave., Los Angeles, CA 90095, USA
| | - Karen Bunavage
- University of California, Los Angeles, Department of Atmospheric and Oceanic Sciences, 405 Hilgard Ave., Los Angeles, CA 90095, USA
| | - J R DeShazo
- University of California, Los Angeles, Luskin Center for Innovation, Luskin School of Public Affairs, 3250 Public Affairs Bldg., Los Angeles, CA 90095, USA
| | - Lisa Wu
- University of California, Los Angeles, Luskin Center for Innovation, Luskin School of Public Affairs, 3250 Public Affairs Bldg., Los Angeles, CA 90095, USA
| | - Rodrigo Seguel
- University of California, Los Angeles, Department of Atmospheric and Oceanic Sciences, 405 Hilgard Ave., Los Angeles, CA 90095, USA; Center for Environmental Sciences, Faculty of Sciences, University of Chile, Las Palmeras 3425 Ñuñoa, Santiago, Chile
| | - Arthur M Winer
- University of California, Los Angeles, Fielding School of Public Health, Environmental Health Sciences Department, 650 Charles Young Dr., Los Angeles, CA 90095, USA
| | - Suzanne E Paulson
- University of California, Los Angeles, Department of Atmospheric and Oceanic Sciences, 405 Hilgard Ave., Los Angeles, CA 90095, USA; University of California, Los Angeles, Institute of the Environment and Sustainability, La Kretz Hall, Suite 300, Los Angeles, CA 90095, USA
| |
Collapse
|
20
|
Stroke Damage Is Exacerbated by Nano-Size Particulate Matter in a Mouse Model. PLoS One 2016; 11:e0153376. [PMID: 27071057 PMCID: PMC4829199 DOI: 10.1371/journal.pone.0153376] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 03/29/2016] [Indexed: 11/19/2022] Open
Abstract
This study examines the effects of nano-size particulate matter (nPM) exposure in the setting of murine reperfused stroke. Particulate matter is a potent source of inflammation and oxidative stress. These processes are known to influence stroke progression through recruitment of marginally viable penumbral tissue into the ischemic core. nPM was collected in an urban area in central Los Angeles, impacted primarily by traffic emissions. Re-aerosolized nPM or filtered air was then administered to mice through whole body exposure chambers for forty-five cumulative hours. Exposed mice then underwent middle cerebral artery occlusion/ reperfusion. Following cerebral ischemia/ reperfusion, mice exposed to nPM exhibited significantly larger infarct volumes and less favorable neurological deficit scores when compared to mice exposed to filtered air. Mice exposed to nPM also demonstrated increases in markers of inflammation and oxidative stress in the region of the ischemic core. The findings suggest a detrimental effect of urban airborne particulate matter exposure in the setting of acute ischemic stroke.
Collapse
|
21
|
Forns J, Dadvand P, Foraster M, Alvarez-Pedrerol M, Rivas I, López-Vicente M, Suades-Gonzalez E, Garcia-Esteban R, Esnaola M, Cirach M, Grellier J, Basagaña X, Querol X, Guxens M, Nieuwenhuijsen MJ, Sunyer J. Traffic-Related Air Pollution, Noise at School, and Behavioral Problems in Barcelona Schoolchildren: A Cross-Sectional Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:529-35. [PMID: 26241036 PMCID: PMC4829987 DOI: 10.1289/ehp.1409449] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 07/30/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND The available evidence of the effects of air pollution and noise on behavioral development is limited, and it overlooks exposure at schools, where children spend a considerable amount of time. OBJECTIVE We aimed to investigate the associations of exposure to traffic-related air pollutants (TRAPs) and noise at school on behavioral development of schoolchildren. METHODS We evaluated children 7-11 years of age in Barcelona (Catalonia, Spain) during 2012-2013 within the BREATHE project. Indoor and outdoor concentrations of elemental carbon (EC), black carbon (BC), and nitrogen dioxide (NO2) were measured at schools in two separate 1-week campaigns. In one campaign we also measured noise levels inside classrooms. Parents filled out the strengths and difficulties questionnaire (SDQ) to assess child behavioral development, while teachers completed the attention deficit/hyperactivity disorder criteria of the DSM-IV (ADHD-DSM-IV) list to assess specific ADHD symptomatology. Negative binomial mixed-effects models were used to estimate associations between the exposures and behavioral development scores. RESULTS Interquartile range (IQR) increases in indoor and outdoor EC, BC, and NO2 concentrations were positively associated with SDQ total difficulties scores (suggesting more frequent behavioral problems) in adjusted multivariate models, whereas noise was significantly associated with ADHD-DSM-IV scores. CONCLUSION In our study population of 7- to 11-year-old children residing in Barcelona, exposure to TRAPs at school was associated with increased behavioral problems in schoolchildren. Noise exposure at school was associated with more ADHD symptoms. CITATION Forns J, Dadvand P, Foraster M, Alvarez-Pedrerol M, Rivas I, López-Vicente M, Suades-Gonzalez E, Garcia-Esteban R, Esnaola M, Cirach M, Grellier J, Basagaña X, Querol X, Guxens M, Nieuwenhuijsen MJ, Sunyer J. 2016. Traffic-related air pollution, noise at school, and behavioral problems in Barcelona schoolchildren: a cross-sectional study. Environ Health Perspect 124:529-535; http://dx.doi.org/10.1289/ehp.1409449.
Collapse
Affiliation(s)
- Joan Forns
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Catalonia, Spain
- Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- CIBER Epidemiologia y Salud Pública (CIBERESP), Barcelona, Catalonia, Spain
- Department of Genes and Environment, Division of Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
- Address correspondence to J. Forns, Centre for Research in Environmental Epidemiology (CREAL), C. Doctor Aiguader 88, 08003 Barcelona, Spain. Telephone: 34 93 214 73 11. E-mail:
| | - Payam Dadvand
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Catalonia, Spain
- Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- CIBER Epidemiologia y Salud Pública (CIBERESP), Barcelona, Catalonia, Spain
| | - Maria Foraster
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Catalonia, Spain
- Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- CIBER Epidemiologia y Salud Pública (CIBERESP), Barcelona, Catalonia, Spain
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Mar Alvarez-Pedrerol
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Catalonia, Spain
- Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- CIBER Epidemiologia y Salud Pública (CIBERESP), Barcelona, Catalonia, Spain
| | - Ioar Rivas
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Catalonia, Spain
- Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- CIBER Epidemiologia y Salud Pública (CIBERESP), Barcelona, Catalonia, Spain
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Catalonia, Spain
| | - Mònica López-Vicente
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Catalonia, Spain
- Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- CIBER Epidemiologia y Salud Pública (CIBERESP), Barcelona, Catalonia, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Catalonia, Spain
| | - Elisabet Suades-Gonzalez
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Catalonia, Spain
- Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- CIBER Epidemiologia y Salud Pública (CIBERESP), Barcelona, Catalonia, Spain
| | - Raquel Garcia-Esteban
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Catalonia, Spain
- Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- CIBER Epidemiologia y Salud Pública (CIBERESP), Barcelona, Catalonia, Spain
| | - Mikel Esnaola
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Catalonia, Spain
- Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- CIBER Epidemiologia y Salud Pública (CIBERESP), Barcelona, Catalonia, Spain
| | - Marta Cirach
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Catalonia, Spain
- Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- CIBER Epidemiologia y Salud Pública (CIBERESP), Barcelona, Catalonia, Spain
| | - James Grellier
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Catalonia, Spain
- Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- CIBER Epidemiologia y Salud Pública (CIBERESP), Barcelona, Catalonia, Spain
- Department of Epidemiology and Biostatistics, Imperial College London, United Kingdom
| | - Xavier Basagaña
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Catalonia, Spain
- Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- CIBER Epidemiologia y Salud Pública (CIBERESP), Barcelona, Catalonia, Spain
| | - Xavier Querol
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Catalonia, Spain
| | - Mònica Guxens
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Catalonia, Spain
- Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- CIBER Epidemiologia y Salud Pública (CIBERESP), Barcelona, Catalonia, Spain
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre–Sophia Children’s Hospital, Rotterdam, the Netherlands
| | - Mark J. Nieuwenhuijsen
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Catalonia, Spain
- Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- CIBER Epidemiologia y Salud Pública (CIBERESP), Barcelona, Catalonia, Spain
| | - Jordi Sunyer
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Catalonia, Spain
- Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- CIBER Epidemiologia y Salud Pública (CIBERESP), Barcelona, Catalonia, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Catalonia, Spain
| |
Collapse
|
22
|
Cheng H, Davis DA, Hasheminassab S, Sioutas C, Morgan TE, Finch CE. Urban traffic-derived nanoparticulate matter reduces neurite outgrowth via TNFα in vitro. J Neuroinflammation 2016; 13:19. [PMID: 26810976 PMCID: PMC4727336 DOI: 10.1186/s12974-016-0480-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/11/2016] [Indexed: 12/05/2022] Open
Abstract
Background The basis for air pollution-associated neurodegenerative changes in humans is being studied in rodent models. We and others find that the ultrafine particulate matter (PM) derived from vehicular exhaust can induce synaptic dysfunction and inflammatory responses in vivo and in vitro. In particular, a nano-sized subfraction of particulate matter (nPM, PM0.2) from a local urban traffic corridor can induce glial TNFα production in mixed glia (astrocytes and microglia) derived from neonatal rat cerebral cortex. Methods Here, we examine the role of TNFα in neurite dysfunctions induced by nPM in aqueous suspensions at 12 μg/ml. First, we show that the proximal brain gateway to nPM, the olfactory neuroepithelium (OE), rapidly responds to nPM ex vivo, with induction of TNFα, activation of macrophages, and dendritic shrinkage. Cell interactions were further analyzed with mixed glia and neurons from neonatal rat cerebral cortex. Results Microglia contributed more than astrocytes to TNFα induction by nPM. We then showed that the threefold higher TNFα in conditioned media (nPM-CM) from mixed glia was responsible for the inhibition of neurite outgrowth by small interfering RNA (siRNA) TNFα knockdown and by TNFα immunoneutralization. Despite lack of TNFR1 induction by nPM in the OE, experimental blocking of TNFR1 by TNFα receptor blockers restored total neurite length. Conclusions These findings implicate microglia-derived TNFα as a mediator of nPM in air pollution-associated neurodegenerative changes which alter synaptic functions and neuronal growth.
Collapse
Affiliation(s)
- Hank Cheng
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA. .,USC Dornsife College, University of Southern California, Los Angeles, CA, 90089, USA.
| | - David A Davis
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Sina Hasheminassab
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Constantinos Sioutas
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Todd E Morgan
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Caleb E Finch
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA. .,USC Dornsife College, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
23
|
Shirmohammadi F, Hasheminassab S, Saffari A, Schauer JJ, Delfino RJ, Sioutas C. Fine and ultrafine particulate organic carbon in the Los Angeles basin: Trends in sources and composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 541:1083-1096. [PMID: 26473710 PMCID: PMC4656077 DOI: 10.1016/j.scitotenv.2015.09.133] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 09/09/2015] [Accepted: 09/25/2015] [Indexed: 04/15/2023]
Abstract
In this study, PM2.5 and PM0.18 (particles with dp<2.5 μm and dp<0.18 μm, respectively) were collected during 2012-2013 in Central Los Angeles (LA) and 2013-2014 in Anaheim. Samples were chemically analyzed for carbonaceous species (elemental and organic carbons) and individual organic compounds. Concentrations of organic compounds were reported and compared with many previous studies in Central LA to quantify the impact of emissions control measurements that have been implemented for vehicular emissions over the past decades in this area. Moreover, a novel hybrid approach of molecular marker-based chemical mass balance (MM-CMB) analysis was conducted, in which a combination of source profiles that were previously obtained from a Positive Matrix Factorization (PMF) model in Central LA, were combined with some traditional source profiles. The model estimated the relative contributions from mobile sources (including gasoline, diesel, and smoking vehicles), wood smoke, primary biogenic sources (including emissions from vegetative detritus, food cooking, and re-suspended soil dust), and anthropogenic secondary organic carbon (SOC). Mobile sources contributed to 0.65 ± 0.25 μg/m(3) and 0.32 ± 0.25 μg/m(3) of PM2.5 OC in Central LA and Anaheim, respectively. Primary biogenic and anthropogenic SOC sources were major contributors to OC concentrations in both size fractions and sites. Un-apportioned OC ("other OC") accounted for an average 8.0 and 26% of PM2.5 OC concentration in Central LA and Anaheim, respectively. A comparison with previous studies in Central LA revealed considerable reduction of EC and OC, along with tracers of mobile sources (e.g. PAHs, hopanes and steranes) as a result of implemented regulations on vehicular emissions. Given the significant reduction of the impacts of mobile sources in the past decade in the LA Basin, the impact of SOC and primary biogenic emissions have a larger relative impact and the new hybrid model allows the impact of these sources to be better quantified.
Collapse
Affiliation(s)
- Farimah Shirmohammadi
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Sina Hasheminassab
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Arian Saffari
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - James J Schauer
- University of Wisconsin-Madison, Environmental Chemistry and Technology Program, Madison, WI, USA
| | - Ralph J Delfino
- University of California, Irvine, Department of Epidemiology, School of Medicine, Irvine, CA, USA
| | - Constantinos Sioutas
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA.
| |
Collapse
|
24
|
Clark J, Gregory CC, Matthews IP, Hoogendoorn B. The biological effects upon the cardiovascular system consequent to exposure to particulates of less than 500 nm in size. Biomarkers 2015; 21:1-47. [PMID: 26643755 DOI: 10.3109/1354750x.2015.1118540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Ultrafine particulate matter contribution to cardiovascular disease is not known and not regulated. PM up to 500 nm are abundant in urban air and alveolar deposition is significant. OBJECTIVE Effects beyond the alveolar barrier within the body or in vitro tissues exposed to particles <500 nm. METHODS AND RESULTS DATABASES MEDLINE; Ovid-MEDLINE PREM; Web of Science; PubMed (SciGlobe). 127 articles. Results in tables: "subject type exposed", "exposure type", "technique". CONCLUSION Heart rate, vasoactivity, atherosclerotic advancement, oxidative stress, coagulability, inflammatory changes are affected. Production of reactive oxygen species is a useful target to limit outcomes associated with UFP exposure.
Collapse
Affiliation(s)
- James Clark
- a Institute of Primary Care and Public Health, School of Medicine, Cardiff University , Cardiff , UK
| | - Clive C Gregory
- a Institute of Primary Care and Public Health, School of Medicine, Cardiff University , Cardiff , UK
| | - Ian P Matthews
- a Institute of Primary Care and Public Health, School of Medicine, Cardiff University , Cardiff , UK
| | - Bastiaan Hoogendoorn
- a Institute of Primary Care and Public Health, School of Medicine, Cardiff University , Cardiff , UK
| |
Collapse
|
25
|
Sijan Z, Antkiewicz DS, Heo J, Kado NY, Schauer JJ, Sioutas C, Shafer MM. An in vitro alveolar macrophage assay for the assessment of inflammatory cytokine expression induced by atmospheric particulate matter. ENVIRONMENTAL TOXICOLOGY 2015; 30:836-851. [PMID: 24497439 DOI: 10.1002/tox.21961] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 01/09/2014] [Accepted: 01/19/2014] [Indexed: 06/03/2023]
Abstract
Exposures to air pollution in the form of particulate matter (PM) can result in excess production of reactive oxygen species (ROS) in the respiratory system, potentially causing both localized cellular injury and triggering a systemic inflammatory response. PM-induced inflammation in the lung is modulated in large part by alveolar macrophages and their biochemical signaling, including production of inflammatory cytokines, the primary mechanism via which inflammation is initiated and sustained. We developed a robust, relevant, and flexible method employing a rat alveolar macrophage cell line (NR8383) which can be applied to routine samples of PM from air quality monitoring sites to gain insight into the drivers of PM toxicity that lead to oxidative stress and inflammation. Method performance was characterized using extracts of ambient and vehicular engine exhaust PM samples. Our results indicate that the reproducibility and the sensitivity of the method are satisfactory and comparisons between PM samples can be made with good precision. The average relative percent difference for all genes detected during 10 different exposures was 17.1%. Our analysis demonstrated that 71% of genes had an average signal to noise ratio (SNR) ≥ 3. Our time course study suggests that 4 h may be an optimal in vitro exposure time for observing short-term effects of PM and capturing the initial steps of inflammatory signaling. The 4 h exposure resulted in the detection of 57 genes (out of 84 total), of which 86% had altered expression. Similarities and conserved gene signaling regulation among the PM samples were demonstrated through hierarchical clustering and other analyses. Overlying the core congruent patterns were differentially regulated genes that resulted in distinct sample-specific gene expression "fingerprints." Consistent upregulation of Il1f5 and downregulation of Ccr7 was observed across all samples, while TNFα was upregulated in half of the samples and downregulated in the other half. Overall, this PM-induced cytokine expression assay could be effectively integrated into health studies and air quality monitoring programs to better understand relationships between specific PM components, oxidative stress activity and inflammatory signaling potential.
Collapse
Affiliation(s)
- Zana Sijan
- Department of Environmental Chemistry and Technology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Dagmara S Antkiewicz
- Department of Environmental Toxicology, Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, Wisconsin, 53718, USA
| | - Jongbae Heo
- Department of Environmental Chemistry and Technology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Norman Y Kado
- Department of Environmental Toxicology, University of California-Davis, Davis, California, USA
- California Environmental Protection Agency, Air Resources Board, Sacramento, California, USA
| | - James J Schauer
- Department of Environmental Chemistry and Technology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
- Department of Environmental Toxicology, Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, Wisconsin, 53718, USA
| | - Constantinos Sioutas
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, California, 90089, USA
| | - Martin M Shafer
- Department of Environmental Chemistry and Technology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
- Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, Wisconsin 53718, USA
| |
Collapse
|
26
|
Wang D, Shafer MM, Schauer JJ, Sioutas C. A new technique for online measurement of total and water-soluble copper (Cu) in coarse particulate matter (PM). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 199:227-234. [PMID: 25681818 DOI: 10.1016/j.envpol.2015.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 01/29/2015] [Accepted: 02/02/2015] [Indexed: 06/04/2023]
Abstract
This study presents a novel system for online, field measurement of copper (Cu) in ambient coarse (2.5-10 μm) particulate matter (PM). This new system utilizes two virtual impactors combined with a modified liquid impinger (BioSampler) to collect coarse PM directly as concentrated slurry samples. The total and water-soluble Cu concentrations are subsequently measured by a copper Ion Selective Electrode (ISE). Laboratory evaluation results indicated excellent collection efficiency (over 85%) for particles in the coarse PM size ranges. In the field evaluations, very good agreements for both total and water-soluble Cu concentrations were obtained between online ISE-based monitor measurements and those analyzed by means of inductively coupled plasma mass spectrometry (ICP-MS). Moreover, the field tests indicated that the Cu monitor could achieve near-continuous operation for at least 6 consecutive days (a time resolution of 2-4 h) without obvious shortcomings.
Collapse
Affiliation(s)
- Dongbin Wang
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, USA
| | - Martin M Shafer
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, WI, USA
| | - James J Schauer
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, WI, USA
| | - Constantinos Sioutas
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
27
|
Gali NK, Yang F, Jiang SY, Chan KL, Sun L, Ho KF, Ning Z. Spatial and seasonal heterogeneity of atmospheric particles induced reactive oxygen species in urban areas and the role of water-soluble metals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 198:86-96. [PMID: 25576744 DOI: 10.1016/j.envpol.2015.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 12/31/2014] [Accepted: 01/04/2015] [Indexed: 06/04/2023]
Abstract
Adverse health effects are associated with exposure to atmospheric particulate matter (PM), which carry various chemical constituents and induce both exogenous and endogenous oxidative stress. This study investigated the spatial and seasonal variability of PM-induced ROS at four sites with different characteristics in Hong Kong. Cytotoxicity, exogenous and endogenous ROS was determined on a dose and time dependent analysis. Large spatial variation of ROS was observed with fine PM at urban site showing highest ROS levels while coarse PM at traffic site ranks the top. No consistent seasonal difference was observed for ROS levels among all sites. The highly heterogeneous distribution of PM-induced ROS demonstrates the differential capability of PM to produce oxidative stress, and the need to use appropriate metrics as surrogates of exposure instead of PM mass in epidemiologic studies. Several transition metals were found associated with ROS by different degree illustrating the complexity of mechanisms involved.
Collapse
Affiliation(s)
- Nirmal Kumar Gali
- School of Energy and Environment, City University of Hong Kong, Hong Kong
| | - Fenhuan Yang
- School of Energy and Environment, City University of Hong Kong, Hong Kong
| | | | - Ka Lok Chan
- School of Energy and Environment, City University of Hong Kong, Hong Kong
| | - Li Sun
- School of Energy and Environment, City University of Hong Kong, Hong Kong
| | - Kin-fai Ho
- The Jockey Club, School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong
| | - Zhi Ning
- School of Energy and Environment, City University of Hong Kong, Hong Kong.
| |
Collapse
|
28
|
Alghamdi MA, Alam MS, Yin J, Stark C, Jang E, Harrison RM, Shamy M, Khoder MI, Shabbaj II. Receptor modelling study of polycyclic aromatic hydrocarbons in Jeddah, Saudi Arabia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 506-507:401-408. [PMID: 25460975 DOI: 10.1016/j.scitotenv.2014.10.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/23/2014] [Accepted: 10/17/2014] [Indexed: 06/04/2023]
Abstract
Measurements of 14 polycyclic aromatic hydrocarbons (PAH) have been made in Jeddah, Saudi Arabia, with a view to establishing the concentrations in this major city, and quantifying the contributions of major sources. Particulate and vapour forms have been sampled and analysed separately. The concentrations are compared to measurements from other sites in the Middle Eastern region and are towards the lower end of the range, being far lower than concentrations reported from Riyadh (Saudi Arabia), Assiut (Egypt) and Tehran (Iran) but broadly similar to those measured in Damascus (Syria) and higher than those measured in Kuwait. The partitioning between vapour and particle phases is similar to that in data from Egypt and China, but with many compounds showing a higher particle-associated percentage than in Birmingham (UK) possibly reflecting a higher concentration of airborne particulate matter in the former countries. Concentrations in Jeddah were significantly higher at a site close to the oil refinery and a site close to a major ring road than at a suburban site to the north of the city. Application of positive matrix factorisation to the pooled data elicited three factors accounting respectively for 17%, 33% and 50% of the measured sum of PAH and these are interpreted as arising from gasoline vehicles, industrial sources, particularly the oil refinery, and to diesel/fuel oil combustion.
Collapse
Affiliation(s)
- Mansour A Alghamdi
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed S Alam
- Division of Environmental Health & Risk Management, School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| | - Jianxin Yin
- Division of Environmental Health & Risk Management, School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Christopher Stark
- Division of Environmental Health & Risk Management, School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Eunhwa Jang
- Division of Environmental Health & Risk Management, School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Roy M Harrison
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia; Division of Environmental Health & Risk Management, School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| | - Magdy Shamy
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mamdouh I Khoder
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ibrahim I Shabbaj
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
29
|
Campbell A, Daher N, Solaimani P, Mendoza K, Sioutas C. Human brain derived cells respond in a type-specific manner after exposure to urban particulate matter (PM). Toxicol In Vitro 2014; 28:1290-5. [DOI: 10.1016/j.tiv.2014.06.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/24/2014] [Accepted: 06/26/2014] [Indexed: 01/27/2023]
|
30
|
Saffari A, Daher N, Shafer MM, Schauer JJ, Sioutas C. Seasonal and spatial variation in dithiothreitol (DTT) activity of quasi-ultrafine particles in the Los Angeles Basin and its association with chemical species. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2014; 49:441-51. [PMID: 24345242 DOI: 10.1080/10934529.2014.854677] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A year-long sampling campaign of quasi-ultrafine particles (dp < 0.25 μm) was conducted at 10 distinct sites representing source, urban and/or near-freeway, rural receptor and desert locations across the Los Angeles air basin. Redox activity of the PM samples was measured by means of the Dithiothreitol (DTT) assay and detailed chemical analysis was performed to measure the concentrations of chemical species. DTT activity per unit air volume and unit PM mass (expressed in nmol min(-1) m(-3) and nmol/min/μg PM, respectively) showed similar trends across sites and seasons. DTT activity was generally higher during cold seasons (winter and fall) compared to warm seasons (summer and spring). Noticeable peaks were observed at urban near-freeway locations representing "source" sites impacted by fresh traffic emissions. Regression analysis indicated strong association (R > 0.7) between the DTT activity and the concentrations of carbonaceous species (OC, EC, WSOC and WIOC) across all seasons and strong winter-time correlations with organic tracers of primary vehicular emissions including polycyclic aromatic hydrocarbons (PAHs), alkanes, hopanes and steranes. Strong correlations were also observed, particularly during winter, between DTT activity and transition metals (e.g., Cr, Mn, V, Fe, Cu, Cd and Zn), which share similar vehicular sources with primary organics. A multivariate linear regression analysis indicated that the variability in DTT activity is best explained by the variability in concentrations of WSOC, WIOC, EC and hopanes. Combined contributions from these species explained 88% of the DTT activity. The appearance of WSOC as a typical tracer of secondary organic aerosol, along with EC, WIOC and hopanes, all markers of emissions from primary combustion sources, emphasizes the contributions of both primary and secondary sources to the overall oxidative potential of quasi-ultrafine particles. Supplemental materials are available for this article. Go to the publisher's online edition of the Journal of Environmental Science and Health, Part A, to view the supplemental file.
Collapse
Affiliation(s)
- Arian Saffari
- a University of Southern California , Department of Civil and Environmental Engineering , Los Angeles , California , USA
| | | | | | | | | |
Collapse
|
31
|
Davis DA, Akopian G, Walsh JP, Sioutas C, Morgan TE, Finch CE. Urban air pollutants reduce synaptic function of CA1 neurons via an NMDA/NȮ pathway in vitro. J Neurochem 2013; 127:509-19. [PMID: 23927064 DOI: 10.1111/jnc.12395] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/27/2013] [Accepted: 07/29/2013] [Indexed: 12/18/2022]
Abstract
Airborne particulate matter (PM) from urban vehicular aerosols altered glutamate receptor functions and induced glial inflammatory responses in rodent models after chronic exposure. Potential neurotoxic mechanisms were analyzed in vitro. In hippocampal slices, 2 h exposure to aqueous nanosized PM (nPM) selectively altered post-synaptic proteins in cornu ammonis area 1 (CA1) neurons: increased GluA1, GluN2A, and GluN2B, but not GluA2, GluN1, or mGlur5; increased post synaptic density 95 and spinophilin, but not synaptophysin, while dentate gyrus (DG) neurons were unresponsive. In hippocampal slices and neurons, MitoSOX red fluorescence was increased by nPM, implying free radical production. Specifically, NȮ production by slices was increased within 15 min of exposure to nPM with dose dependence, 1-10 μg/mL. Correspondingly, CA1 neurons exhibited increased nitrosylation of the GluN2A receptor and dephosphorylation of GluN2B (S1303) and of GluA1 (S831 & S845). Again, DG neurons were unresponsive to nPM. The induction of NȮ and nitrosylation were inhibited by AP5, an NMDA receptor antagonist, which also protects neurite outgrowth in vitro from inhibition by nPM. Membrane injury (EthidiumD-1 uptake) showed parallel specificity. Finally, nPM decreased evoked excitatory post-synaptic currents of CA1 neurons. These findings further document the selective impact of nPM on glutamatergic functions and identify novel responses of NMDA receptor-stimulated NȮ production and nitrosylation reactions during nPM-mediated neurotoxicity. We present three new findings of rapid hippocampal slice responses to nPM (nano-sized particulate matter from urban traffic): increased NȮ production within 15 min; nitrosylation of glutamatergic NMDA receptors; and, reduced excitatory postsynaptic currents in CA1 neurons. AP5 (NMDA receptor antagonist) blocked nPM-mediated NȮ and receptor nitrosylation. Ca(2+) influx is a likely mechanism.
Collapse
Affiliation(s)
- David A Davis
- Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
| | | | | | | | | | | |
Collapse
|
32
|
Davis DA, Bortolato M, Godar SC, Sander TK, Iwata N, Pakbin P, Shih JC, Berhane K, McConnell R, Sioutas C, Finch CE, Morgan TE. Prenatal exposure to urban air nanoparticles in mice causes altered neuronal differentiation and depression-like responses. PLoS One 2013; 8:e64128. [PMID: 23734187 PMCID: PMC3667185 DOI: 10.1371/journal.pone.0064128] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 04/10/2013] [Indexed: 01/20/2023] Open
Abstract
Emerging evidence suggests that excessive exposure to traffic-derived air pollution during pregnancy may increase the vulnerability to neurodevelopmental alterations that underlie a broad array of neuropsychiatric disorders. We present a mouse model for prenatal exposure to urban freeway nanoparticulate matter (nPM). In prior studies, we developed a model for adult rodent exposure to re-aerosolized urban nPM which caused inflammatory brain responses with altered neuronal glutamatergic functions. nPMs are collected continuously for one month from a local freeway and stored as an aqueous suspension, prior to re-aerosolization for exposure of mice under controlled dose and duration. This paradigm was used for a pilot study of prenatal nPM impact on neonatal neurons and adult behaviors. Adult C57BL/6J female mice were exposed to re-aerosolized nPM (350 µg/m3) or control filtered ambient air for 10 weeks (3×5 hour exposures per week), encompassing gestation and oocyte maturation prior to mating. Prenatal nPM did not alter litter size, pup weight, or postnatal growth. Neonatal cerebral cortex neurons at 24 hours in vitro showed impaired differentiation, with 50% reduction of stage 3 neurons with long neurites and correspondingly more undifferentiated neurons at Stages 0 and 1. Neuron number after 24 hours of culture was not altered by prenatal nPM exposure. Addition of exogenous nPM (2 µg/ml) to the cultures impaired pyramidal neuron Stage 3 differentiation by 60%. Adult males showed increased depression-like responses in the tail-suspension test, but not anxiety-related behaviors. These pilot data suggest that prenatal exposure to nPM can alter neuronal differentiation with gender-specific behavioral sequelae that may be relevant to human prenatal exposure to urban vehicular aerosols.
Collapse
Affiliation(s)
- David A. Davis
- Davis School of Gerontology, USC, Los Angeles, California, United States of America
| | - Marco Bortolato
- Dept. of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas, United States of America
| | - Sean C. Godar
- School of Pharmacy, USC, Los Angeles, California, United States of America
| | - Thomas K. Sander
- Dornsife College of Letters, Arts and Sciences, USC, Los Angeles, California, United States of America
| | - Nahoko Iwata
- Davis School of Gerontology, USC, Los Angeles, California, United States of America
| | - Payam Pakbin
- Viterbi School of Engineering, USC, Los Angeles, California, United States of America
| | - Jean C. Shih
- School of Pharmacy, USC, Los Angeles, California, United States of America
| | - Kiros Berhane
- Keck School of Medicine, USC, Los Angeles, California, United States of America
| | - Rob McConnell
- Keck School of Medicine, USC, Los Angeles, California, United States of America
| | - Constantinos Sioutas
- Viterbi School of Engineering, USC, Los Angeles, California, United States of America
| | - Caleb E. Finch
- Davis School of Gerontology, USC, Los Angeles, California, United States of America
- Dept. of Neurobiology, Dornsife College, USC, Los Angeles, California, United States of America
- * E-mail:
| | - Todd E. Morgan
- Davis School of Gerontology, USC, Los Angeles, California, United States of America
| |
Collapse
|
33
|
Competition of nuclear factor-erythroid 2 factors related transcription factor isoforms, Nrf1 and Nrf2, in antioxidant enzyme induction. Redox Biol 2013; 1:183-9. [PMID: 24024152 PMCID: PMC3757680 DOI: 10.1016/j.redox.2013.01.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 01/09/2013] [Accepted: 01/10/2013] [Indexed: 12/01/2022] Open
Abstract
Although the Nrf2 (nuclear factor-erythroid 2 p45 subunit-related factor 2) regulated expression of multiple antioxidant and cytoprotective genes through the electrophile responsive element (EpRE) is well established, interaction of Nrf2/EpRE with Nrf1, a closely-related transcription factor, is less well understood. Due to either proteolysis or alternative translation, Nrf1 has been found as proteins of varying size, p120, p95, and p65, which have been described as either activators of EpRE or competitive inhibitors of Nrf2. We investigated the effect of Nrf1 on EpRE-regulated gene expression using the catalytic and modifier subunits of glutamate cysteine ligase (GCLC and GCLM) as models and explored the potential role of Nrf1 in altering their expression in aging and upon chronic exposure to airborne nano-sized particulate matter (nPM). Nrf1 knockout resulted in the increased expression of GCLC and GCLM in human bronchial epithelial (HBE1) cells. Overexpression Nrf2 in combination with either p120 or p65 diminished or failed to further increase the GCLC- and GLCM-EpRE luciferase activity. All known forms of Nrf1 protein, remained unchanged in the lungs of mice with age or in response to nPM. Our study shows that Nrf1 could inhibit EpRE activity in vitro, whereas the precise role of Nrf1 in vivo requires further investigations. We conclude that Nrf1 may not be directly responsible for the loss of Nrf2-dependent inducibility of antioxidant and cytoprotective genes observed in aged animals.
Collapse
Key Words
- Air pollution
- ER, endoplasmic reticulum
- Electrophile response element
- EpRE, electrophile response element
- GCL, glutamate cysteine ligase
- GCLC, catalytic subunit of GCL
- GCLM, modifier subunit of GCL
- Glutamate cysteine ligase
- HBE1, human bronchial epithelial cells
- HO-1, heme oxygenase
- Nrf1
- Nrf1, nuclear factor-erythroid 2 p45 subunit-related factor 1
- Nrf2
- Nrf2, nuclear factor-erythroid 2 p45 subunit-related factor 2
- Phase II genes
- nPM, nanoparticulate air pollution
Collapse
|
34
|
Kam W, Delfino RJ, Schauer JJ, Sioutas C. A comparative assessment of PM2.5 exposures in light-rail, subway, freeway, and surface street environments in Los Angeles and estimated lung cancer risk. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2013; 15:234-243. [PMID: 24592440 DOI: 10.1039/c2em30495c] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
According to the U.S. Census Bureau, 570000+ commuters in Los Angeles travel for over 60 minutes to work. Studies have shown that a substantial portion of particulate matter (PM) exposure can occur during this commute. This study represents the integration of the results from five commute environments in Los Angeles. Personal PM exposures are discussed for the: (1) METRO gold line, a ground-level light-rail route, (2) METRO red line, a subway line, (3) the 110, a high volume freeway with low heavy-duty vehicle (HDV) fraction, (4) the 710, a major corridor for HDVs from the Port of Los Angeles, and (5) Wilshire/Sunset Boulevards, major surface streets. Chemical analysis including total and water-soluble metals and trace elements, elemental and organic carbon (EC/OC), and polycyclic aromatic hydrocarbons (PAHs) was performed. The focus of this study is to compare the composition and estimated lung cancer risk of PM2.5 (dp < 2.5 μm) for the five differential commute environments. Metals associated with stainless steel, notably Fe, Cr, and Mn, were elevated for the red line (subway), most likely from abrasion processes between the rail and brakes; elements associated with tire and brake wear and oil additives (Ca, Ti, Sn, Sb, and Pb) were elevated on roadways. Elemental concentrations on the gold line (light-rail) were the lowest. For water-solubility, metals observed on the red line (subway) were the least soluble. PAHs are primarily derived from vehicular emissions. Overall, the 710 exhibited high levels of PAHs (3.0 ng m−3), most likely due to its high volume of HDVs, while the red and gold lines exhibited low PAH concentrations (0.6 and 0.8 ng m−3 for red and gold lines, respectively). Lastly, lung cancer risk due to inhalation of PAHs was calculated based on a commuter lifetime (45 years for 2 hours per workday). Results showed that lung cancer risk for the 710 is 3.8 and 4.5 times higher than the light-rail (gold line) and subway (red line), respectively. With low levels of both metal and PAH pollutants, our results indicate that commuting on the light-rail (gold line) may have potential health benefits when compared to driving on freeways and busy roadways.
Collapse
|
35
|
Daher N, Hasheminassaba S, Shafer MM, Schauer JJ, Sioutas C. Seasonal and spatial variability in chemical composition and mass closure of ambient ultrafine particles in the megacity of Los Angeles. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2013; 15:283-95. [PMID: 24592446 DOI: 10.1039/c2em30615h] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Emerging toxicological research has shown that ultrafine particles (UFP, dp < 0.1–0.2 μm) may be more potent than coarse or fine particulate matter. To better characterize quasi-UFP (PM0.25, dp < 0.25 μm), we conducted a year-long sampling campaign at 10 distinct areas in the megacity of Los Angeles, including source, near-freeway, semi-rural receptor and desert-like locations. Average PM0.25 mass concentration ranged from 5.9 to 16.1 μg m−3 across the basin and over different seasons. Wintertime levels were highest at the source site, while lowest at the desert-like site. Conversely, summertime concentrations peaked at the inland receptor locations. Chemical mass reconstruction revealed that quasi-UFP in the basin consisted of 49–64% organic matter, 3–6.4% elemental carbon, 9–15% secondary ions (SI), 0.7–1.3% trace ions, and 5.7–17% crustal material and trace elements, on a yearly average basis. Organic carbon (OC), a major constituent of PM0.25, exhibited greatest concentrations in fall and winter at all sites, with the exception of the inland areas. Atmospheric stability conditions and particle formation favored by condensation of low-volatility organics contributed to these levels. Inland, OC concentrations peaked in summer due to increased PM0.25 advection from upwind sources coupled with secondary organic aerosol formation. Among SI, nitrate peaked at semi-rural Riverside sites, located downwind of strong ammonia sources. Moreover, ionic balance indicated an overall neutral quasi-UFP aerosol, with somewhat lower degree of neutralization at near-freeway sites in winter. Anthropogenic metals peaked at the urban sites in winter while generally increased at the receptor areas in summer. Lastly, coefficients of divergence analysis showed that while PM0.25 mass is relatively spatially homogeneous in the basin, some of its components, mainly EC, nitrate and several toxic metals, are unevenly distributed. These results suggest that population exposure to quasi-UFP can substantially vary by season and over short spatial scales in the megacity of Los Angeles.
Collapse
|
36
|
Liacos JW, Kam W, Delfino RJ, Schauer JJ, Sioutas C. Characterization of organic, metal and trace element PM2.5 species and derivation of freeway-based emission rates in Los Angeles, CA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 435-436:159-166. [PMID: 22850400 DOI: 10.1016/j.scitotenv.2012.06.106] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 06/22/2012] [Accepted: 06/29/2012] [Indexed: 06/01/2023]
Abstract
On-road particulate matter (PM) was collected during a sampling campaign in March-April of 2011 on two major Los Angeles freeways, I-710 and Route 110. I-710 is a major route for heavy-duty vehicles (HDVs) traveling to and from the Ports of Long Beach and Los Angeles, while Route 110 has a much lower HDV fraction -3.9% versus 11.4%. Two sets of samples were collected for each roadway, each set representing approximately 50°h of on-road sampling. Concurrent sampling at a fixed site at the University of Southern California's (USC) downtown Los Angeles campus provided estimates of urban background levels. Chemical analysis was performed for elemental carbon (EC), organic carbon (OC), polycyclic aromatic hydrocarbons (PAHs), hopanes and steranes, and metals and trace elements. Freeway-based emission rates (ERs) - mass per kilometer of freeway per hour - were calculated using mass concentrations, fuel characteristics, and traffic flow rates. These ERs are presented such that freeways could be treated as a line source of emissions for use in predictive models of population exposure for nearby communities. This data could also be used to assess the exposure of commuters to traffic-related PM2.5 emissions. ERs are compared to data from a previous fixed-site roadside study of I-710 as well as to reconstructed values from a tunnel study. ERs were generally lower (or comparable) on the gasoline-vehicle dominated freeway (Route 110) than the freeway with more diesel trucks (I-710), with EC and pyrene being notably lower on Route 110, findings consistent with the Route 110's lower HDV fraction. We found EC emission rates decreased over time suggesting that efforts to reduce diesel emissions from HDVs at the Ports of Los Angeles and Long Beach have been successful. While ERs for most of the organic species were within the range of values reported by previous studies, the present study found much higher ERs for metals and trace elements. This suggests that the sampling methods employed in this campaign are more efficient at capturing particles from sources such as resuspended road dust and wear from tires and brakes, which are usually not included in traditional sampling methodologies for assessing vehicular emissions (e.g. dynamometer studies).
Collapse
Affiliation(s)
- James W Liacos
- Department of Civil and Environmental Engineering, University of Southern California, 3620 South Vermont Avenue, Los Angeles, CA 90089, USA
| | | | | | | | | |
Collapse
|
37
|
Zhang H, Liu H, Davies KJ, Sioutas C, Finch CE, Morgan TE, Forman HJ. Nrf2-regulated phase II enzymes are induced by chronic ambient nanoparticle exposure in young mice with age-related impairments. Free Radic Biol Med 2012; 52:2038-46. [PMID: 22401859 PMCID: PMC3342863 DOI: 10.1016/j.freeradbiomed.2012.02.042] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 01/30/2012] [Accepted: 02/25/2012] [Indexed: 01/05/2023]
Abstract
Many xenobiotic detoxifying (phase II) enzymes are induced by sublethal doses of environmental toxicants. However, these adaptive mechanisms have not been studied in response to vehicular-derived airborne nano-sized particulate matter (nPM). Because aging is associated with increased susceptibility to environmental toxicants, we also examined the expression of Nrf2-regulated phase II genes in middle-aged mice and their inducibility by chronic nPM. The nPM from vehicular traffic was collected in urban Los Angeles and reaerosolized for exposure of C57BL/6J male mice (3 and 18 months old) for 150 h over 10 weeks. Brain (cerebellum), liver, and lung were assayed by RT-PCR and/or Western blots for the expression of phase II enzymes, glutamate cysteine ligase (catalytic GCLC, and modifier GCLM subunits), NAD(P)H:quinone oxidoreductase 1 (NQO1), heme oxygenase 1 (HO-1), and relevant transcription factors, NF-E2-related factor 2 (Nrf2), c-Myc, Bach1. Chronic nPM exposure induced GCLC, GCLM, HO-1, NQO1 mRNA, and protein similarly in cerebellum, liver, and lung of young mice. Middle-aged mice had elevated basal levels, but showed impaired further induction by nPM. Similarly, Nrf2 increased with age and was induced by nPM in young but not old. c-Myc showed the same age and induction profile while the age increase in Bach1 was further induced by nPM. Chronic exposure to nanoparticles induced Nrf2-regulated detoxifying enzymes in brain (cerebellum), liver, and lung of young adult mice, indicating a systemic impact of nPM. In contrast, middle-aged mice did not respond above their elevated basal levels except for Bach1. The lack of induction of phase II enzymes in aging mice may be a model for the vulnerability of elderly to air pollution.
Collapse
Affiliation(s)
- Hongqiao Zhang
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Honglei Liu
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Kelvin J.A. Davies
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Constantinos Sioutas
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Caleb E. Finch
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Todd E. Morgan
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Henry Jay Forman
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
- University of California at Merced, Merced, CA 95343
| |
Collapse
|
38
|
Hu S, Paulson SE, Fruin S, Kozawa K, Mara S, Winer AM. Observation of Elevated Air Pollutant Concentrations in a Residential Neighborhood of Los Angeles California Using a Mobile Platform. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2012; 51:311-319. [PMID: 23997642 PMCID: PMC3755476 DOI: 10.1016/j.atmosenv.2011.12.055] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We observed elevated air pollutant concentrations, especially of ultrafine particles (UFP), black carbon (BC) and NO, across the residential neighborhood of the Boyle Heights Community (BH) of Los Angeles, California. Using an electric vehicle mobile platform equipped with fast response instruments, real-time air pollutant concentrations were measured in BH in spring and summer of 2008. Pollutant concentrations varied significantly in the two seasons, on different days, and by time of day, with an overall average UFP concentration in the residential areas of ~33 000 cm-3. The averaged UFP, BC, and NO concentrations measured on Soto St, a major surface street in BH, were 57 000 cm-3, 5.1 µg m-3, and 67 ppb, respectively. Concentrations of UFP across the residential areas in BH were nearly uniform spatially, in contrast to other areas in the greater metropolitan area of Los Angeles where UFP concentrations exhibit strong gradients downwind of roadways. We attribute this "UFP cloud" to high traffic volumes, including heavy duty diesel trucks on the freeways which surround and traverse BH, and substantial numbers of high-emitting vehicles (HEVs) on the surface streets traversing BH. Additionally, the high density of stop signs and lights and short block lengths, requiring frequent accelerations of vehicles, may contribute. The data also support a role for photochemical production of UFP in the afternoon. UFP concentration peaks (5 s average) of up to 9 million particles cm-3 were also observed immediately behind HEVs when they accelerated from stop lights in the BH neighborhood and areas immediately adjacent. Although encounters with HEV during mornings accounted for only about 6% and 17% of time spent monitoring residential areas and major surface streets, HEV contributed to about 28% and 53% of total ultrafine particles measured on the route, respectively. The observation of elevated pollutant number concentrations across the Boyle Heights community highlights how multiple factors combine to create high pollutant levels, and has important human exposure assessment implications, including the potential utility of our data as inputs to epidemiological studies.
Collapse
Affiliation(s)
- Shishan Hu
- California Air Resources Board, Monitoring and Laboratory Division, 9528 Telstar Ave, El Monte, CA 91731
- Environmental Health Sciences Department, School of Public Health, 650 Charles E. Young Drive South, University of California, Los Angeles, CA 90095-1772
- Department of Atmospheric and Oceanic Sciences, 405 Hilgard Ave., University of California, Los Angeles, CA 90095-1565
| | - Suzanne E. Paulson
- Department of Atmospheric and Oceanic Sciences, 405 Hilgard Ave., University of California, Los Angeles, CA 90095-1565
| | - Scott Fruin
- Environmental Health Division, Keck School of Medicine, University of Southern California,1540 Alcazar Street CHP-236 Los Angeles, CA 90032
| | - Kathleen Kozawa
- California Air Resources Board, Research Division, 1001 I Street, Sacramento, CA 95814
| | - Steve Mara
- California Air Resources Board, Research Division, 1001 I Street, Sacramento, CA 95814
| | - Arthur M. Winer
- Environmental Health Sciences Department, School of Public Health, 650 Charles E. Young Drive South, University of California, Los Angeles, CA 90095-1772
| |
Collapse
|
39
|
Bzdek BR, Zordan CA, Pennington MR, Luther GW, Johnston MV. Quantitative assessment of the sulfuric acid contribution to new particle growth. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:4365-4373. [PMID: 22435616 DOI: 10.1021/es204556c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The Nano Aerosol Mass Spectrometer (NAMS) was deployed to rural/coastal and urban sites to measure the composition of 20-25 nm diameter nanoparticles during new particle formation (NPF). NAMS provides a quantitative measure of the elemental composition of individual, size-selected nanoparticles. In both environments, particles analyzed during NPF were found to be enhanced in elements associated with inorganic species (nitrogen, sulfur) relative to that associated with organic species (carbon). A molecular apportionment algorithm was applied to the elemental data in order to place the elemental composition into a molecular context. These measurements show that sulfate constitutes a substantial fraction of total particle mass in both environments. The contribution of sulfuric acid to new particle growth was quantitatively determined and the gas-phase sulfuric acid concentration required to incorporate the measured sulfate fraction was calculated. The calculated values were compared to those calculated by a sulfuric acid proxy that considers solar radiation and SO(2) levels. The two values agree within experimental uncertainty. Sulfate accounts for 29-46% of the total mass growth of particles. Other species contributing to growth include ammonium, nitrate, and organics. For each location, the relative amounts of these species do not change significantly with growth rate. However, for the coastal location, sulfate contribution increases with increasing temperature whereas nitrate contribution decreases with increasing temperature.
Collapse
Affiliation(s)
- Bryan R Bzdek
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, United States
| | | | | | | | | |
Collapse
|
40
|
Cheung K, Shafer MM, Schauer JJ, Sioutas C. Diurnal trends in oxidative potential of coarse particulate matter in the Los Angeles Basin and their relation to sources and chemical composition. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:3779-87. [PMID: 22380575 DOI: 10.1021/es204211v] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
To investigate the relationship among sources, chemical composition, and redox activity of coarse particulate matter (CPM), three sampling sites were set up up in the Los Angeles Basin to collect ambient coarse particles at four time periods (morning, midday, afternoon, and overnight) in summer 2009 and winter 2010. The generation of reactive oxygen species (ROS) was used to assess the redox activity of these particles. Our results present distinct diurnal profiles of CPM-induced ROS formation in the two seasons, with much higher levels in summer than winter. Higher ROS activity was observed in the midday/afternoon during summertime, while the peak activity occurred in the overnight period in winter. Crustal materials, the major component of CPM, demonstrated very low water-solubility, in contrast with the modestly water-soluble anthropogenic metals, including Ba and Cu. The water-soluble fraction of four elements (V, Pd, Cu, and Rh) with primary anthropogenic origins displayed the highest associations with ROS activity (R(2) > 0.60). Our results show that coarse particles generated by anthropogenic activities, despite their low contribution to CPM mass, are important to the biological activity of CPM, and that a more targeted control strategy may be needed to protect the public health from these toxic CPM sources.
Collapse
Affiliation(s)
- Kalam Cheung
- University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, California 90089, United States
| | | | | | | |
Collapse
|
41
|
Pennington MR, Klems JP, Bzdek BR, Johnston MV. Nanoparticle chemical composition and diurnal dependence at the CalNex Los Angeles ground site. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd017061] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
42
|
Vidotto JP, Pereira LAA, Braga ALF, Silva CA, Sallum AM, Campos LM, Martins LC, Farhat SCL. Atmospheric pollution: influence on hospital admissions in paediatric rheumatic diseases. Lupus 2012; 21:526-33. [DOI: 10.1177/0961203312437806] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objective: To investigate the lag structure effects from exposure to atmospheric pollution in acute outbursts in hospital admissions of paediatric rheumatic diseases (PRDs). Methods: Morbidity data were obtained from the Brazilian Hospital Information System in seven consecutive years, including admissions due to seven PRDs (juvenile idiopathic arthritis, systemic lupus erythematosus, dermatomyositis, Henoch–Schönlein purpura, polyarteritis nodosa, systemic sclerosis and ankylosing spondylitis). Cases with secondary diagnosis of respiratory diseases were excluded. Daily concentrations of inhaled particulate matter (PM10), sulphur dioxide (SO2) nitrogen dioxide (NO2), ozone (O3) and carbon monoxide (CO) were evaluated. Generalized linear Poisson regression models controlling for short-term trend, seasonality, holidays, temperature and humidity were used. Lag structures and magnitude of air pollutants’ effects were adopted to estimate restricted polynomial distributed lag models. Results: The total number of admissions due to acute outbursts PRD was 1,821. The SO2 interquartile range (7.79 µg/m3) was associated with an increase of 1.98% (confidence interval 0.25–3.69) in the number of hospital admissions due to outcome studied after 14 days of exposure. This effect was maintained until day 17. Of note, the other pollutants, with the exception of O3, showed an increase in the number of hospital admissions from the second week. Conclusion: This study is the first to demonstrate a delayed association between SO2 and PRD outburst, suggesting that oxidative stress reaction could trigger the inflammation of these diseases.
Collapse
Affiliation(s)
- JP Vidotto
- Environmental Epidemiology Study Group, Laboratory of Experimental Air Pollution, Faculdade de Medicina da Universidade de Sao Paulo, Brazil
| | - LAA Pereira
- Environmental Epidemiology Study Group, Laboratory of Experimental Air Pollution, Faculdade de Medicina da Universidade de Sao Paulo, Brazil
- Environmental Exposure and Risk Assessment Group, Collective Health Post-graduation Program, Universidade Catolica de Santos, Brazil
| | - ALF Braga
- Environmental Epidemiology Study Group, Laboratory of Experimental Air Pollution, Faculdade de Medicina da Universidade de Sao Paulo, Brazil
- Environmental Exposure and Risk Assessment Group, Collective Health Post-graduation Program, Universidade Catolica de Santos, Brazil
| | - CA Silva
- Environmental Epidemiology Study Group, Laboratory of Experimental Air Pollution, Faculdade de Medicina da Universidade de Sao Paulo, Brazil
- Paediatric Rheumatology Unit, Children’s Institute, Faculdade de Medicina da Universidade de Sao Paulo, Brazil
- Division of Rheumatology, Faculdade de Medicina da Universidade de Sao Paulo, Brazil
| | - AM Sallum
- Environmental Epidemiology Study Group, Laboratory of Experimental Air Pollution, Faculdade de Medicina da Universidade de Sao Paulo, Brazil
- Paediatric Rheumatology Unit, Children’s Institute, Faculdade de Medicina da Universidade de Sao Paulo, Brazil
| | - LM Campos
- Environmental Epidemiology Study Group, Laboratory of Experimental Air Pollution, Faculdade de Medicina da Universidade de Sao Paulo, Brazil
- Paediatric Rheumatology Unit, Children’s Institute, Faculdade de Medicina da Universidade de Sao Paulo, Brazil
| | - LC Martins
- Environmental Epidemiology Study Group, Laboratory of Experimental Air Pollution, Faculdade de Medicina da Universidade de Sao Paulo, Brazil
- Environmental Exposure and Risk Assessment Group, Collective Health Post-graduation Program, Universidade Catolica de Santos, Brazil
| | - SCL Farhat
- Environmental Epidemiology Study Group, Laboratory of Experimental Air Pollution, Faculdade de Medicina da Universidade de Sao Paulo, Brazil
- Paediatric Department, Hospital das Clínicas, Faculdade de Medicina da Universidade de Sao Paulo, Brazil
| |
Collapse
|
43
|
Cheung K, Daher N, Shafer MM, Ning Z, Schauer JJ, Sioutas C. Diurnal trends in coarse particulate matter composition in the Los Angeles Basin. ACTA ACUST UNITED AC 2011; 13:3277-87. [PMID: 22025084 DOI: 10.1039/c1em10296f] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To investigate the diurnal profile of the concentration and composition of ambient coarse particles, three sampling sites were set up in the Los Angeles Basin to collect coarse particulate matter (CPM) in four different time periods of the day (morning, midday, afternoon and overnight) in summer and winter. The samples were analyzed for total and water-soluble elements, inorganic ions and water-soluble organic carbon (WSOC). In summer, highest concentrations of CPM gravimetric mass, mineral and road dust, and WSOC were observed in midday and afternoon, when the prevailing onshore wind was stronger. In general, atmospheric dilution was lower in winter, contributing to the accumulation of air pollutants during stagnation conditions. Turbulences induced by traffic become a significant particle re-suspension mechanism, particularly during winter night time, when mixing height was lowest. This is evident by the high levels of CPM mass, mineral and road dust in winter overnight at the near-freeway sites located in urban Los Angeles, and to a lesser extent in Riverside. WSOC levels were higher in summer, with a similar diurnal profile with mineral and road dust, indicating that they either share common sources, or that WSOC may be adsorbed or absorbed onto the surfaces of these dust particles. In general, the contribution of inorganic ions to CPM mass was greater in the overnight sampling period at all sampling sites, suggesting that the prevailing meteorological conditions (lower temperature and higher relative humidity) favor the formation of these ions in the coarse mode. Nitrate, the most abundant CPM-bound inorganic species in this basin, is found to be predominantly formed by reactions with sea salt particles in summer. When the sea salt concentrations were low, the reaction with mineral dust particles and the condensation of ammonium nitrate on CPM surfaces also contributes to the formation of nitrate in the coarse mode.
Collapse
Affiliation(s)
- Kalam Cheung
- University of Southern California, Department of Civil and Environmental Engineering, 3620 South Vermont Avenue, Los Angeles, CA 90089, USA
| | | | | | | | | | | |
Collapse
|
44
|
Kam W, Ning Z, Shafer MM, Schauer JJ, Sioutas C. Chemical characterization and redox potential of coarse and fine particulate matter (PM) in underground and ground-level rail systems of the Los Angeles Metro. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:6769-6776. [PMID: 21728353 DOI: 10.1021/es201195e] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A campaign was conducted to assess personal exposure of coarse (2.5 μm < d(p) < 10 μm) and fine (d(p) < 2.5 μm) PM for two lines of the L.A. Metro-a subway (red) and light-rail (gold) line. Concurrent measurements were taken at University of Southern California (USC) to represent ambient conditions. A comprehensive chemical analysis was performed including total and water-soluble metals, inorganic ions, elemental and organic carbon, and organic compounds. Mass balance showed that in coarse PM, iron makes up 27%, 6%, and 2% of gravimetric mass for the red line, the gold line, and USC, respectively; in fine PM, iron makes up 32%, 3%, and 1%. Ambient air is the primary source of inorganic ions and organic compounds for both lines. Noncrustal metals, particularly Cr, Mn, Co, Ni, Mo, Cd, and Eu, were elevated for the red line and, to a lesser degree, the gold line. Mo exhibited the greatest crustal enrichment factors. The enriched species were less water-soluble on the red line than corresponding species on the gold line. Bivariate analysis showed that reactive oxygen species (ROS) activity is strongly correlated with water-soluble Fe (R(2) = 0.77), Ni (R(2 )= 0.95), and OC (R(2 )= 0.92). A multiple linear regression model (R(2) = 0.94, p < 0.001) using water-soluble Fe and OC as predictor variables was developed to explain the variance in ROS. In addition, PM from the red line generates 65% and 55% more ROS activity per m(3) of air than PM from USC and the gold line, respectively; however, one unit of PM mass from the gold line may be as intrinsically toxic as one unit of PM from the red line.
Collapse
Affiliation(s)
- Winnie Kam
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
45
|
Jian L, Zhu YP, Zhao Y. Monitoring fine and ultrafine particles in the atmosphere of a Southeast Chinese city. JOURNAL OF ENVIRONMENTAL MONITORING : JEM 2011; 13:2623. [PMID: 21826358 DOI: 10.1039/c1em10383k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
There have been few studies on submicron particles in the atmosphere reported from developing countries. With rapid economic development, the size of the road vehicle fleet has increased dramatically in China. The increase in vehicle emissions has raised concerns about air quality, especially in the urban areas of this developing country. A model study was conducted in Hangzhou, a city in Southeast China, with the aim of characterizing the emission patterns of submicron particles ≤1.0 micron from on-road vehicles and the impact of vehicle density and speed on the concentrations of submicron particles in the atmosphere. Results showed that the average ultrafine particle (UFP) number concentration was 45 805 particles cm(-3) and the average mass concentration of particulate matter 1.0 (PM1.0) was 217 μg m(-3) during the survey period. Autoregressive Integrated Moving Average modelling results indicated that an increase of vehicle density and driving speed were positively correlated with the increase of UFP and PM1.0 concentrations (p < 0.05) in the atmosphere. Results from this study suggest that vehicle density and driving speed are significant predictors of submicron particle emissions. This study provides first hand information for future investigations on the submicron particle emissions in Hangzhou, a city with rapidly increasing vehicle numbers and for further investigations into a possible causal relationship between submicron particles and health effects on local residents.
Collapse
Affiliation(s)
- Le Jian
- School of Public Health, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia.
| | | | | |
Collapse
|
46
|
Farhat SCL, Silva CA, Orione MAM, Campos LMA, Sallum AME, Braga ALF. Air pollution in autoimmune rheumatic diseases: a review. Autoimmun Rev 2011; 11:14-21. [PMID: 21763467 DOI: 10.1016/j.autrev.2011.06.008] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 06/06/2011] [Indexed: 12/11/2022]
Abstract
Air pollution consists of a heterogeneous mixture of gasses and particles that include carbon monoxide, nitrates, sulfur dioxide, ozone, lead, toxic by-product of tobacco smoke and particulate matter. Oxidative stress and inflammation induced by inhaled pollutants may result in acute and chronic disorders in the respiratory system, as well as contribute to a state of systemic inflammation and autoimmunity. This paper reviews the mechanisms of air contaminants influencing the immune response and autoimmunity, and it focuses on studies of inhaled pollutants triggering and/or exacerbating rheumatic diseases in cities around the world. Remarkably, environmental factors contribute to the onset of autoimmune diseases, especially smoking and occupational exposure to silica in rheumatoid arthritis and systemic lupus erythematosus. Other diseases such as scleroderma may be triggered by the inhalation of chemical solvents, herbicides and silica. Likewise, primary vasculitis associated with anti-neutrophil cytoplasmic antibody (ANCA) may be triggered by silica exposure. Only few studies showed that air pollutants could trigger or exacerbate juvenile idiopathic arthritis and systemic lupus erythematosus. In contrast, no studies of tropospheric pollution triggering inflammatory myopathies and spondyloarthropathies were carried out. In conclusion, air pollution is one of the environmental factors involved in systemic inflammation and autoimmunity. Further studies are needed in order to evaluate air pollutants and their potentially serious effects on autoimmune rheumatic diseases and the mechanisms involved in the onset and the exacerbation of these diseases.
Collapse
Affiliation(s)
- Sylvia C L Farhat
- Environmental Epidemiology Study Group, Laboratory of Experimental Air Pollution, University of Sao Paulo Faculty of Medical Sciences, Brazil
| | | | | | | | | | | |
Collapse
|
47
|
Morgan TE, Davis DA, Iwata N, Tanner JA, Snyder D, Ning Z, Kam W, Hsu YT, Winkler JW, Chen JC, Petasis NA, Baudry M, Sioutas C, Finch CE. Glutamatergic neurons in rodent models respond to nanoscale particulate urban air pollutants in vivo and in vitro. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:1003-9. [PMID: 21724521 PMCID: PMC3222976 DOI: 10.1289/ehp.1002973] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 03/29/2011] [Indexed: 05/06/2023]
Abstract
BACKGROUND Inhalation of airborne particulate matter (PM) derived from urban traffic is associated with pathology in the arteries, heart, and lung; effects on brain are also indicated but are less documented. OBJECTIVE We evaluated rodent brain responses to urban nanoscale (< 200 nm) PM (nPM). METHODS Ambient nPM collected near an urban freeway was transferred to aqueous suspension and reaerosolized for 10-week inhalation exposure of mice or directly applied to rat brain cell cultures. RESULTS Free radicals were detected by electron paramagnetic resonance in the nPM 30 days after initial collection. Chronic inhalation of reaerosolized nPM altered selected neuronal and glial activities in mice. The neuronal glutamate receptor subunit (GluA1) was decreased in hippocampus, whereas glia were activated and inflammatory cytokines were induced [interleukin-1α (IL-1α), tumor necrosis factor-α (TNFα)] in cerebral cortex. Two in vitro models showed effects of nPM suspensions within 24-48 hr of exposure that involved glutamatergic functions. In hippocampal slice cultures, nPM increased the neurotoxicity of NMDA (N-methyl-d-aspartic acid), a glutamatergic agonist, which was in turn blocked by the NMDA antagonist AP5 [(2R)-amino-5-phosphonopentanoate]. In embryonic neuron cultures, nPM impaired neurite outgrowth, also blocked by AP5. Induction of IL-1α and TNFα in mixed glia cultures required higher nPM concentrations than did neuronal effects. Because conditioned media from nPM-exposed glia also impaired outgrowth of embryonic neurites, nPM can act indirectly, as well as directly, on neurons in vitro. CONCLUSIONS nPM can affect embryonic and adult neurons through glutamatergic mechanisms. The interactions of nPM with glutamatergic neuronal functions suggest that cerebral ischemia, which involves glutamatergic excitotoxicity, could be exacerbated by nPM.
Collapse
Affiliation(s)
- Todd E Morgan
- Davis School of Gerontology, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hochstetler HA, Yermakov M, Reponen T, Ryan PH, Grinshpun SA. Aerosol particles generated by diesel-powered school buses at urban schools as a source of children's exposure. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2011; 45:1444-1453. [PMID: 25904818 PMCID: PMC4402945 DOI: 10.1016/j.atmosenv.2010.12.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Various heath effects in children have been associated with exposure to traffic-related particulate matter (PM), including emissions from school buses. In this study, the indoor and outdoor aerosol at four urban elementary schools serviced by diesel-powered school buses was characterized with respect to the particle number concentrations and size distributions as well as the PM2.5 mass concentrations and elemental compositions. It was determined that the presence of school buses significantly affected the outdoor particle size distribution, specifically in the ultrafine fraction. The time-weighted average of the total number concentration measured outside the schools was significantly associated with the bus and the car counts. The concentration increase was consistently observed during the morning drop-off hours and in most of the days during the afternoon pick-up period (although at a lower degree). Outdoor PM2.5 mass concentrations measured at schools ranged from 3.8 to 27.6 µg m-3. The school with the highest number of operating buses exhibited the highest average PM2.5 mass concentration. The outdoor mass concentrations of elemental carbon (EC) and organic carbon (OC) were also highest at the school with the greatest number of buses. Most (47/55) correlations between traffic-related elements identified in the outdoor PM2.5 were significant with elements identified in the indoor PM2.5. Significant associations were observed between indoor and outdoor aerosols for EC, EC/OC, and the total particle number concentration. Day-to-day and school-to-school variations in Indoor/Outdoor (I/O) ratios were related to the observed differences in opening windows and doors, which enhanced the particle penetration, as well as indoor activities at schools. Overall, the results on I/O ratio obtained in this study reflect the sizes of particles emitted by diesel-powered school bus engines (primarily, an ultrafine fraction capable of penetrating indoors).
Collapse
Affiliation(s)
| | - Mikhail Yermakov
- Department of Environmental Health, University of Cincinnati, Ohio, USA
| | - Tiina Reponen
- Department of Environmental Health, University of Cincinnati, Ohio, USA
| | - Patrick H. Ryan
- Department of Environmental Health, University of Cincinnati, Ohio, USA
| | | |
Collapse
|
49
|
van Drooge BL, Pérez Ballesta P. The influence of the North-Föhn on tracer organic compounds in ambient air PM10 at a pre-alpine site in Northern Italy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:2880-2887. [PMID: 20633969 DOI: 10.1016/j.envpol.2010.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 05/31/2010] [Accepted: 06/10/2010] [Indexed: 05/29/2023]
Abstract
The ambient air in Northern Italy is characterised by relatively high PAH and PM10 concentrations in relation to calm wind and intensive temperature inversions, especially during cold periods. These stagnant conditions are occasionally interrupted by North-Föhn events, which cause a drop in relative humidity and an increase in O3 levels, indicating the mixing of local and free troposphere air flows. In this study the influence of the North-Föhn on concentrations of tracer organic compounds, including polycyclic aromatic hydrocarbons (PAHs), PM10, O3 and black carbon (BC) was studied during a North-Föhn event in November 2007. Large fluctuations in the concentration of these compounds, as well as changes in PM(10) composition due to daytime and night-time variations of local source emissions were observed. Although these events occur at low frequencies (6-10%) they can for short periods, strongly affect the regional air quality by quickly decreasing the concentrations of these tracer organic compounds.
Collapse
Affiliation(s)
- Barend L van Drooge
- European Commission-Joint Research Centre, Institute for Environment and Sustainability, TP-441, 21027-Ispra (VA), Italy
| | | |
Collapse
|
50
|
McConnell R, Islam T, Shankardass K, Jerrett M, Lurmann F, Gilliland F, Gauderman J, Avol E, Künzli N, Yao L, Peters J, Berhane K. Childhood incident asthma and traffic-related air pollution at home and school. ENVIRONMENTAL HEALTH PERSPECTIVES 2010; 118:1021-6. [PMID: 20371422 PMCID: PMC2920902 DOI: 10.1289/ehp.0901232] [Citation(s) in RCA: 340] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Accepted: 03/22/2010] [Indexed: 05/17/2023]
Abstract
BACKGROUND Traffic-related air pollution has been associated with adverse cardiorespiratory effects, including increased asthma prevalence. However, there has been little study of effects of traffic exposure at school on new-onset asthma. OBJECTIVES We evaluated the relationship of new-onset asthma with traffic-related pollution near homes and schools. METHODS Parent-reported physician diagnosis of new-onset asthma (n = 120) was identified during 3 years of follow-up of a cohort of 2,497 kindergarten and first-grade children who were asthma- and wheezing-free at study entry into the Southern California Children's Health Study. We assessed traffic-related pollution exposure based on a line source dispersion model of traffic volume, distance from home and school, and local meteorology. Regional ambient ozone, nitrogen dioxide (NO(2)), and particulate matter were measured continuously at one central site monitor in each of 13 study communities. Hazard ratios (HRs) for new-onset asthma were scaled to the range of ambient central site pollutants and to the residential interquartile range for each traffic exposure metric. RESULTS Asthma risk increased with modeled traffic-related pollution exposure from roadways near homes [HR 1.51; 95% confidence interval (CI), 1.25-1.82] and near schools (HR 1.45; 95% CI, 1.06-1.98). Ambient NO(2) measured at a central site in each community was also associated with increased risk (HR 2.18; 95% CI, 1.18-4.01). In models with both NO(2) and modeled traffic exposures, there were independent associations of asthma with traffic-related pollution at school and home, whereas the estimate for NO(2) was attenuated (HR 1.37; 95% CI, 0.69-2.71). CONCLUSIONS Traffic-related pollution exposure at school and homes may both contribute to the development of asthma.
Collapse
Affiliation(s)
- Rob McConnell
- University of Southern California, Los Angeles, California, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|