1
|
Oh J, Davis J, Tusseau-Nenez S, Plapp M, Baron A, Gacoin T, Kim J. Continuous Anisotropic Growth of Plasmonic Cs xWO 3-δ Nanocrystals into Rods and Platelets. ACS NANO 2025; 19:14445-14455. [PMID: 40184512 DOI: 10.1021/acsnano.5c02382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2025]
Abstract
Shape control during nanocrystal synthesis enables tunable physicochemical properties that emerge at the nanoscale. While extensive efforts have been devoted to controlling shapes in various systems such as plasmonic metal nanoparticles or semiconductor quantum dots, the shape control of plasmonic doped semiconductor nanocrystals remains less explored and limited. Here, we report the synthesis of CsxWO3-δ nanocrystals with exquisite shape control achieved through a continuous injection synthesis combined with precursor-mediated facet-selective growth. We demonstrate that the anisotropic growth of CsxWO3-δ nanocrystals is strongly dependent on the precursor injection rate, which we attribute to the material's intrinsic structural anisotropy and the contrasting reaction kinetics on different crystallographic facets. Furthermore, we reveal that the presence of halide ions in the reaction medium is critical for passivating and suppressing the growth of Cs-exposed basal planes. By systematically modulating the shape aspect ratio, we achieved an extended range of nanocrystal morphologies, leading to a broad tunability of LSPR spectra, spanning the entire near-infrared region and extending into the mid-infrared. Computational simulations effectively reproduce the observed shape-dependent optical properties and highlight the size-dependent damping behavior consistent with the free electron model. These findings provide a robust experimental methodology for shape control in structurally anisotropic nanocrystals and offer theoretical insights into the tunable LSPR properties of heavily doped plasmonic semiconductor systems.
Collapse
Affiliation(s)
- Jisoo Oh
- Laboratoire de Physique de la Matière Condensée, CNRS, Institut Polytechnique de Paris, École Polytechnique, 91128 Palaiseau, France
| | - Joshua Davis
- CNRS, CRPP, UMR 5031, Univ. Bordeaux, F-33600 Pessac, France
| | - Sandrine Tusseau-Nenez
- Laboratoire de Physique de la Matière Condensée, CNRS, Institut Polytechnique de Paris, École Polytechnique, 91128 Palaiseau, France
| | - Mathis Plapp
- Laboratoire de Physique de la Matière Condensée, CNRS, Institut Polytechnique de Paris, École Polytechnique, 91128 Palaiseau, France
| | - Alexandre Baron
- CNRS, CRPP, UMR 5031, Univ. Bordeaux, F-33600 Pessac, France
- Institut Universitaire de France, 1 rue Descartes, 75231 Cedex 05 Paris, France
| | - Thierry Gacoin
- Laboratoire de Physique de la Matière Condensée, CNRS, Institut Polytechnique de Paris, École Polytechnique, 91128 Palaiseau, France
| | - Jongwook Kim
- Laboratoire de Physique de la Matière Condensée, CNRS, Institut Polytechnique de Paris, École Polytechnique, 91128 Palaiseau, France
| |
Collapse
|
2
|
Tiberi M, Baletto F. Hierarchical self-assembly of Au-nanoparticles into filaments: evolution and break. RSC Adv 2024; 14:27343-27353. [PMID: 39205934 PMCID: PMC11350402 DOI: 10.1039/d4ra04100c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
We compare the assembly of individual Au nanoparticles in a vacuum and between two Au(111) surfaces via classical molecular dynamics on a timescale of 100 ns. In a vacuum, the assembly of three nanoparticles used as seeds, initially showing decahedral, truncated octahedral and icosahedral shapes with a diameter of 1.5-1.7 nm, evolves into a spherical object with about 10-12 layers and a gyration radius ∼2.5-2.8 nm. In a vacuum, 42% show just one 5-fold symmetry axis, 33% adopt a defected icosahedral arrangement, and 25% lose all 5-fold symmetry and display a face-centred-cubic shape with several parallel stacking faults. We model a constrained version of the same assembly that takes place between two Au(111) surfaces. During the dynamics, the two Au(111) surfaces are kept fixed at distances of 55 Å, 55.5 Å, 56 Å, and 56.5 Å. The latter distance accommodates 24 Au layers with no strain, while the others correspond to nominal strains of 1.5%, 2.4%, and 3.3%, respectively. In the constrained assembly, each individual seed tends to reorganize into a layered configuration, but the filament may break. The probability of breaking the assembled nanofilament depends on the individual morphology of the seeds. It is more likely to break at the decahedron/icosahedron interface, whilst it is more likely to layer with respect to the (111) orientation when a truncated octahedron sits between the decahedron and the icosahedron. We further observe that nanofilaments between surfaces at 56 Å have a >90% probability of breaking, which decreases to 8% when the surfaces are 55 Å apart. We attribute the dramatic change in probability of breaking to the peculiar decahedron/icosahedron interface and the higher average atomic strain in the nanofilaments. This in silico experiment can shed light on the understanding and control of the formation of metallic nanowires and nanoparticle-assembled networks, which find applications in next-generation electronic devices, such as resistive random access memories and neuromorphic devices.
Collapse
Affiliation(s)
- Matteo Tiberi
- Physics Department, King's College London Strand WC2R 2LS UK
- Cambridge Graphene Centre, University of Cambridge Cambridge UK
| | - Francesca Baletto
- Physics Department, King's College London Strand WC2R 2LS UK
- Physics Department, University of Milan 20133 Italy
| |
Collapse
|
3
|
Tukur F, Tukur P, Hunyadi Murph SE, Wei J. Advancements in mercury detection using surface-enhanced Raman spectroscopy (SERS) and ion-imprinted polymers (IIPs): a review. NANOSCALE 2024; 16:11384-11410. [PMID: 38868998 DOI: 10.1039/d4nr00886c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Mercury (Hg) contamination remains a major environmental concern primarily due to its presence at trace levels, making monitoring the concentration of Hg challenging. Sensitivity and selectivity are significant challenges in the development of mercury sensors. Surface-enhanced Raman spectroscopy (SERS) and ion-imprinted polymers (IIPs) are two distinct analytical methods developed and employed for mercury detection. In this review, we provide an overview of the key aspects of SERS and IIP methodologies, focusing on the recent advances in sensitivity and selectivity for mercury detection. By examining the critical parameters and challenges commonly encountered in this area of research, as reported in the literature, we present a set of recommendations. These recommendations cover solid and colloidal SERS substrates, appropriate Raman reporter/probe molecules, and customization of IIPs for mercury sensing and removal. Furthermore, we provide a perspective on the potential integration of SERS with IIPs to achieve enhanced sensitivity and selectivity in mercury detection. Our aim is to foster the establishment of a SERS-IIP hybrid method as a robust analytical tool for mercury detection across diverse fields.
Collapse
Affiliation(s)
- Frank Tukur
- The Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, UNC at Greensboro, 2907 E. Gate City Blvd, Greensboro, NC 27401, USA.
| | - Panesun Tukur
- The Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, UNC at Greensboro, 2907 E. Gate City Blvd, Greensboro, NC 27401, USA.
| | - Simona E Hunyadi Murph
- Savannah River National Laboratory (SRNL), Aiken, SC, 29808, USA.
- University of Georgia (UGA), Athens, GA, 30602, USA
| | - Jianjun Wei
- The Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, UNC at Greensboro, 2907 E. Gate City Blvd, Greensboro, NC 27401, USA.
| |
Collapse
|
4
|
Shah N, Huang TL, Nambiar HN, Zamborini FP. Seed-Mediated Electrodeposition of Silver Nanowires and Nanorods. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7835-7842. [PMID: 38574181 DOI: 10.1021/acs.langmuir.3c03222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Here, we compare the amount and morphology of silver (Ag) nanostructures electrodeposited at varied potentials and times in the presence of cetyltrimethylammonium bromide (CTAB) onto glass/indium tin oxide (glass/ITO) electrodes functionalized with mercaptopropyltrimethoxysilane (MPTMS) and coated or not coated with 4 nm average diameter Au nanoparticle (Au NP) seeds. There is a significantly larger amount of Ag deposited on the seeded electrode surface compared to that in the nonseeded electrode at potentials of -150 to -300 mV (vs Ag/AgCl) since the Au NP seeds act as catalysts for Ag deposition. At more negative overpotentials of -400 to -500 mV, the amount of Ag deposited on both electrodes is similar because the deposition kinetics are fast enough on glass/ITO that the Au seed catalyst does not make as big of a difference. Ag nanorods (NRs) and nanowires (NWs) form on the seeded surfaces, especially at more positive potentials, where deposition primarily occurs on the Au seed catalysts. Deposition of Ag onto the Au seeds appears as a separate peak in the voltammetry. This procedure mimics the seed-mediated growth of Ag NRs observed in solution in the presence of CTAB using ascorbic acid as a reducing agent. The yield, length, and aspect ratio of the Ag NRs/NWs depend on the deposition time and potential with the average length ranging from 300 nm to 3 μm for times of 30-120 min and potentials of -150 to -200 mV. The electrochemical seed-mediated growth of Ag NRs/NWs across electrode gaps could find use for resistive and surface-enhanced Raman-based sensing and molecular electronic applications.
Collapse
Affiliation(s)
- Nidhi Shah
- Department of Chemistry, Indiana University Southeast, New Albany, Indiana 47150, United States
| | - Tien-Lu Huang
- Department of Chemistry, Indiana University Southeast, New Albany, Indiana 47150, United States
| | - Harikrishnan N Nambiar
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Francis P Zamborini
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| |
Collapse
|
5
|
Yi T, Hongjiao C, Minling Z, Xin Y, Qingfu Q, Zhixin C, Jing Y, Zhikui C. Biodistribution and Targeted Antitumor Effects of Trastuzumab-Modified Gold Nanorods in Mice with Gastric Cancer. Curr Drug Deliv 2024; 21:421-430. [PMID: 36515037 DOI: 10.2174/1567201820666221212125325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/26/2022] [Accepted: 11/04/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND OBJECTIVES Targeted drug is often engulfed and cleared by the reticuloendothelial system in vivo, resulting in reduced treatment efficacy. This study aimed to explore the biodistribution and HER-2-targeted antitumor effects of trastuzumab-modified gold nanorods (Tra-AuNRs) in a gastric cancer animal model. METHODS Gold nanorods were synthesized using a seed-mediated growth method, and then subjected to trastuzumab-targeted modification. Elemental analysis, Fourier transform infrared spectroscopy, and Xray photoelectron spectroscopy were performed; UV-visible absorption peak, photothermal effects, morphology, and size distribution of Tra-AuNRs were characterized. The targeted killing effect of Tra- AuNRs on gastric cancer cells was assessed in vitro. Tra-AuNRs were injected intravenously and intratumorally into gastric cancer-bearing nude mice in vivo and their distribution was detected. Tumor growth inhibition rate and tumor apoptosis-related protein expression were compared between groups. RESULTS Tra-AuNRs presented a relatively uniform morphology with an average particle size of 59.9 nm and a longitudinal plasmon resonance absorption peak of 790 nm. The targeted killing rate of gastric cancer cells in vitro by Tra-AuNRs was 87.9%. After intravenous injection, Tra-AuNRs were mainly distributed in the liver, tumor, spleen, and lungs. Comparatively, Tra-AuNRs were mainly distributed in the tumor when intratumorally injected, with a tumor concentration of 6.42 μg/g after 24 h. The tumor growth inhibition rate reached 78.3% in the intratumoral injection group, with significantly higher BAX, BAD, and CASPASE-3 expression than that in the intravenous injection group. CONCLUSION The findings suggest that Tra-AuNRs can be used for HER-2-positive gastric cancer treatment. Intratumoral injection of Tra-AuNRs significantly increased the local tumor drug concentration and improved the molecular targeted antitumor growth effect in gastric cancer-bearing nude mice.
Collapse
Affiliation(s)
- Tang Yi
- Department of Ultrasound, Affiliated Union Hospital of Fujian Medical University, Fuzhou, China
| | - Cai Hongjiao
- Fisheries College of Jimei University, Xiamen, China
| | - Zhuo Minling
- Department of Ultrasound, Affiliated Union Hospital of Fujian Medical University, Fuzhou, China
| | - Yang Xin
- Department of Pharmacy, Affiliated Union Hospital of Fujian Medical University, Fuzhou, China
| | - Qian Qingfu
- Department of Ultrasound, Affiliated Union Hospital of Fujian Medical University, Fuzhou, China
| | - Chen Zhixin
- Fujian College Association Instrumental Analysis Center, Fuzhou University, Fuzhou, China
| | - Yang Jing
- Department of Pharmacy, Affiliated Union Hospital of Fujian Medical University, Fuzhou, China
| | - Chen Zhikui
- Department of Ultrasound, Affiliated Union Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
6
|
Luo B, Wang W, Zhao Y, Zhao Y. Hot-Electron Dynamics Mediated Medical Diagnosis and Therapy. Chem Rev 2023; 123:10808-10833. [PMID: 37603096 DOI: 10.1021/acs.chemrev.3c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Surface plasmon resonance excitation significantly enhances the absorption of light and increases the generation of "hot" electrons, i.e., conducting electrons that are raised from their steady states to excited states. These excited electrons rapidly decay and equilibrate via radiative and nonradiative damping over several hundred femtoseconds. During the hot-electron dynamics, from their generation to the ultimate nonradiative decay, the electromagnetic field enhancement, hot electron density increase, and local heating effect are sequentially induced. Over the past decade, these physical phenomena have attracted considerable attention in the biomedical field, e.g., the rapid and accurate identification of biomolecules, precise synthesis and release of drugs, and elimination of tumors. This review highlights the recent developments in the application of hot-electron dynamics in medical diagnosis and therapy, particularly fully integrated device techniques with good application prospects. In addition, we discuss the latest experimental and theoretical studies of underlying mechanisms. From a practical standpoint, the pioneering modeling analyses and quantitative measurements in the extreme near field are summarized to illustrate the quantification of hot-electron dynamics. Finally, the prospects and remaining challenges associated with biomedical engineering based on hot-electron dynamics are presented.
Collapse
Affiliation(s)
- Bing Luo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Wei Wang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Yuxin Zhao
- The State Key Laboratory of Service Behavior and Structural Safety of Petroleum Pipe and Equipment Materials, CNPC Tubular Goods Research Institute (TGRI), Xi'an 710077, People's Republic of China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
7
|
Rogers B, Lehr A, Velázquez‐Salazar JJ, Whetten R, Mendoza‐Cruz R, Bazan‐Diaz L, Bahena‐Uribe D, José Yacaman M. Decahedra and Icosahedra Everywhere: The Anomalous Crystallization of Au and Other Metals at the Nanoscale. CRYSTAL RESEARCH AND TECHNOLOGY 2023. [DOI: 10.1002/crat.202200259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- Blake Rogers
- Applied Physics and Materials Science Department Northern Arizona University Flagstaff AZ 86011 USA
| | - Alexander Lehr
- Applied Physics and Materials Science Department Northern Arizona University Flagstaff AZ 86011 USA
| | | | - Robert Whetten
- Applied Physics and Materials Science Department Northern Arizona University Flagstaff AZ 86011 USA
- Center for Materials Interfaces in Research and Applications (¡MIRA!) Northern Arizona University Flagstaff AZ 86011 USA
| | - Ruben Mendoza‐Cruz
- Instituto de Investigaciones en Materiales Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria México City 04510 México
| | - Lourdes Bazan‐Diaz
- Instituto de Investigaciones en Materiales Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria México City 04510 México
| | - Daniel Bahena‐Uribe
- Laboratorio de Microscopia Electrónica Cinvestav–IPN México City 07360 México
| | - Miguel José Yacaman
- Applied Physics and Materials Science Department Northern Arizona University Flagstaff AZ 86011 USA
- Center for Materials Interfaces in Research and Applications (¡MIRA!) Northern Arizona University Flagstaff AZ 86011 USA
| |
Collapse
|
8
|
Li M, Wei J, Song Y, Chen F. Gold nanocrystals: optical properties, fine-tuning of the shape, and biomedical applications. RSC Adv 2022; 12:23057-23073. [PMID: 36090439 PMCID: PMC9380198 DOI: 10.1039/d2ra04242h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 07/29/2022] [Indexed: 02/06/2023] Open
Abstract
Noble metal nanomaterials with special physical and chemical properties have attracted considerable attention in the past decades. In particular, Au nanocrystals (NCs), which possess high chemical inertness and unique surface plasmon resonance (SPR), have attracted extensive research interest. In this study, we review the properties and preparation of Au NCs with different morphologies as well as their important applications in biological detection. The preparation of Au NCs with different shapes by many methods such as seed-mediated growth method, seedless synthesis, polyol process, ultrasonic method, and hydrothermal treatment has already been introduced. In the seed-mediated growth method, the influence factors in determining the final shape of Au NCs are discussed. Au NCs, which show significant size-dependent color differences are proposed for preparing biological probes to detect biomacromolecules such as DNA and protein, while probe conjugate molecules serves as unique coupling agents with a target. Particularly, Au nanorods (NRs) have some unique advantages in the application of biological probes and photothermal cancer therapy compared to Au nanoparticles (NPs).
Collapse
Affiliation(s)
- Meng Li
- Resources and Environment Innovation Institute, Shandong Jianzhu University Jinan 250101 P. R. China
| | - Jianlu Wei
- Department of Orthopaedic Surgery, Qilu Hospital Shandong University 107 Wenhua Xi Road Jinan 250012 P. R. China
| | - Yang Song
- Resources and Environment Innovation Institute, Shandong Jianzhu University Jinan 250101 P. R. China
| | - Feiyong Chen
- Resources and Environment Innovation Institute, Shandong Jianzhu University Jinan 250101 P. R. China
| |
Collapse
|
9
|
Núñez RN, Veglia AV, Pacioni NL. MultiShapeC, an algorithm to assess concentration in multi-shape nanoparticle samples: nanosilver, a case study. RSC Adv 2022; 12:26550-26555. [PMID: 36275155 PMCID: PMC9486825 DOI: 10.1039/d2ra04078f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/09/2022] [Indexed: 11/23/2022] Open
Abstract
Shape, size, and dispersity play a crucial role in the calculation of colloidal nanoparticle concentrations, which results in remarkable differences in the determination of parameters like Stern–Volmer constants. In this work, we propose an algorithm named MultiShapeC to include the variability in shapes and polydispersity in the concentration calculation. This algorithm was validated using the quenching of carbazole fluorescence emission by silver nanoparticles. An algorithm to include multi-shape and polydispersity in the nanoparticle concentration calculation is presented.![]()
Collapse
Affiliation(s)
- Rodrigo Nicolás Núñez
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica, Haya de la Torre y Medina Allende s/n, Ciudad Universitaria, X5000HUA Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), INFIQC, Córdoba, Argentina
| | - Alicia Viviana Veglia
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica, Haya de la Torre y Medina Allende s/n, Ciudad Universitaria, X5000HUA Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), INFIQC, Córdoba, Argentina
| | - Natalia Lorena Pacioni
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica, Haya de la Torre y Medina Allende s/n, Ciudad Universitaria, X5000HUA Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), INFIQC, Córdoba, Argentina
| |
Collapse
|
10
|
Wang J, Harizaj A, Wu Y, Jiang X, Brans T, Fraire JC, Mejía Morales J, De Smedt SC, Tang Z, Xiong R, Braeckmans K. Black phosphorus mediated photoporation: a broad absorption nanoplatform for intracellular delivery of macromolecules. NANOSCALE 2021; 13:17049-17056. [PMID: 34622916 DOI: 10.1039/d1nr05461a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanoparticle-sensitized photoporation for intracellular delivery of external compounds usually relies on the use of spherical gold nanoparticles as sensitizing nanoparticles. As they need stimulation with visible laser light, they are less suited for transfection of cells in thick biological tissues. In this work, we have explored black phosphorus quantum dots (BPQDs) as alternative sensitizing nanoparticles for photoporation with a broad and uniform absorption spectrum from the visible to the near infra-red (NIR) range. We demonstrate that BPQD sensitized photoporation allows efficient intracellular delivery of both siRNA (>80%) and mRNA (>40%) in adherent cells as well as in suspension cells. Cell viability remained high (>80%) irrespective of whether irradiation was performed with visible (532 nm) or near infrared (800 nm) pulsed laser light. Finally, as a proof of concept, we used BPQD sensitized photoporation to deliver macromolecules in cells with thick phantom tissue in the optical path. NIR laser irradiation resulted in only 1.3× reduction in delivery efficiency as compared to photoporation without the phantom gel, while with visible laser light the delivery efficiency was reduced 2×.
Collapse
Affiliation(s)
- Jielin Wang
- School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, China
- Guangdong Research Center of Photoelectric Detection Instrument Engineering Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangzhou, 510006, China
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium.
| | - Aranit Harizaj
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium.
| | - Yongbo Wu
- School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, China
- Guangdong Research Center of Photoelectric Detection Instrument Engineering Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangzhou, 510006, China
| | - Xiaofang Jiang
- School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, China
- Guangdong Research Center of Photoelectric Detection Instrument Engineering Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangzhou, 510006, China
| | - Toon Brans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium.
| | - Juan C Fraire
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium.
| | - Julián Mejía Morales
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium.
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium.
| | - Zhilie Tang
- School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, 510006, China
- Guangdong Research Center of Photoelectric Detection Instrument Engineering Technology, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangzhou, 510006, China
| | - Ranhua Xiong
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium.
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), International Innovation for Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, P. R. China
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium.
- Centre for Advanced Light Microscopy, Ghent University, Belgium
| |
Collapse
|
11
|
Kukushkina EA, Hossain SI, Sportelli MC, Ditaranto N, Picca RA, Cioffi N. Ag-Based Synergistic Antimicrobial Composites. A Critical Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1687. [PMID: 34199123 PMCID: PMC8306300 DOI: 10.3390/nano11071687] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022]
Abstract
The emerging problem of the antibiotic resistance development and the consequences that the health, food and other sectors face stimulate researchers to find safe and effective alternative methods to fight antimicrobial resistance (AMR) and biofilm formation. One of the most promising and efficient groups of materials known for robust antimicrobial performance is noble metal nanoparticles. Notably, silver nanoparticles (AgNPs) have been already widely investigated and applied as antimicrobial agents. However, it has been proposed to create synergistic composites, because pathogens can find their way to develop resistance against metal nanophases; therefore, it could be important to strengthen and secure their antipathogen potency. These complex materials are comprised of individual components with intrinsic antimicrobial action against a wide range of pathogens. One part consists of inorganic AgNPs, and the other, of active organic molecules with pronounced germicidal effects: both phases complement each other, and the effect might just be the sum of the individual effects, or it can be reinforced by the simultaneous application. Many organic molecules have been proposed as potential candidates and successfully united with inorganic counterparts: polysaccharides, with chitosan being the most used component; phenols and organic acids; and peptides and other agents of animal and synthetic origin. In this review, we overview the available literature and critically discuss the findings, including the mechanisms of action, efficacy and application of the silver-based synergistic antimicrobial composites. Hence, we provide a structured summary of the current state of the research direction and give an opinion on perspectives on the development of hybrid Ag-based nanoantimicrobials (NAMs).
Collapse
Affiliation(s)
- Ekaterina A. Kukushkina
- Chemistry Department, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy; (E.A.K.); (S.I.H.); (M.C.S.); (N.D.); (R.A.P.)
- CSGI (Center for Colloid and Surface Science), Chemistry Department, University of Bari, via Orabona 4, 70126 Bari, Italy
| | - Syed Imdadul Hossain
- Chemistry Department, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy; (E.A.K.); (S.I.H.); (M.C.S.); (N.D.); (R.A.P.)
- CSGI (Center for Colloid and Surface Science), Chemistry Department, University of Bari, via Orabona 4, 70126 Bari, Italy
| | - Maria Chiara Sportelli
- Chemistry Department, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy; (E.A.K.); (S.I.H.); (M.C.S.); (N.D.); (R.A.P.)
- CSGI (Center for Colloid and Surface Science), Chemistry Department, University of Bari, via Orabona 4, 70126 Bari, Italy
| | - Nicoletta Ditaranto
- Chemistry Department, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy; (E.A.K.); (S.I.H.); (M.C.S.); (N.D.); (R.A.P.)
- CSGI (Center for Colloid and Surface Science), Chemistry Department, University of Bari, via Orabona 4, 70126 Bari, Italy
| | - Rosaria Anna Picca
- Chemistry Department, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy; (E.A.K.); (S.I.H.); (M.C.S.); (N.D.); (R.A.P.)
- CSGI (Center for Colloid and Surface Science), Chemistry Department, University of Bari, via Orabona 4, 70126 Bari, Italy
| | - Nicola Cioffi
- Chemistry Department, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy; (E.A.K.); (S.I.H.); (M.C.S.); (N.D.); (R.A.P.)
- CSGI (Center for Colloid and Surface Science), Chemistry Department, University of Bari, via Orabona 4, 70126 Bari, Italy
| |
Collapse
|
12
|
Gao F, Zhang Y, Wu Z, You H, Du Y. Universal strategies to multi-dimensional noble-metal-based catalysts for electrocatalysis. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213825] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Griffiths MZ, Shinoda W. Analyzing the Role of Surfactants in the Colloidal Stability of Nanoparticles in Oil through Coarse-Grained Molecular Dynamics Simulations. J Phys Chem B 2021; 125:6315-6321. [DOI: 10.1021/acs.jpcb.1c01148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Mark Z. Griffiths
- Department of Materials Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Wataru Shinoda
- Department of Materials Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
14
|
Zhao ZJ, Ahn J, Hwang SH, Ko J, Jeong Y, Bok M, Kang HJ, Choi J, Jeon S, Park I, Jeong JH. Large-Area Nanogap-Controlled 3D Nanoarchitectures Fabricated via Layer-by-Layer Nanoimprint. ACS NANO 2021; 15:503-514. [PMID: 33439612 DOI: 10.1021/acsnano.0c05290] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The fabrication of large-area and flexible nanostructures currently presents various challenges related to the special requirements for 3D multilayer nanostructures, ultrasmall nanogaps, and size-controlled nanomeshes. To overcome these rigorous challenges, a simple method for fabricating wafer-scale, ultrasmall nanogaps on a flexible substrate using a temperature above the glass transition temperature (Tg) of the substrate and by layer-by-layer nanoimprinting is proposed here. The size of the nanogaps can be easily controlled by adjusting the pressure, heating time, and heating temperature. In addition, 3D multilayer nanostructures and nanocomposites with 2, 3, 5, 7, and 20 layers were fabricated using this method. The fabricated nanogaps with sizes ranging from approximately 1 to 40 nm were observed via high-resolution transmission electron microscopy (HRTEM). The multilayered nanostructures were evaluated using focused ion beam (FIB) technology. Compared with conventional methods, our method could not only easily control the size of the nanogaps on the flexible large-area substrate but could also achieve fast, simple, and cost-effective fabrication of 3D multilayer nanostructures and nanocomposites without any post-treatment. Moreover, a transparent electrode and nanoheater were fabricated and evaluated. Finally, surface-enhanced Raman scattering substrates with different nanogaps were evaluated using rhodamine 6G. In conclusion, it is believed that the proposed method can solve the problems related to the high requirements of nanofabrication and can be applied in the detection of small molecules and for manufacturing flexible electronics and soft actuators.
Collapse
Affiliation(s)
- Zhi-Jun Zhao
- Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials, 156, Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, South Korea
| | - Junseong Ahn
- Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials, 156, Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, South Korea
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Soon Hyoung Hwang
- Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials, 156, Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, South Korea
| | - Jiwoo Ko
- Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials, 156, Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, South Korea
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Yongrok Jeong
- Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials, 156, Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, South Korea
| | - Moonjeong Bok
- Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials, 156, Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, South Korea
| | - Hyeok-Joong Kang
- Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials, 156, Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, South Korea
| | - Jungrak Choi
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Sohee Jeon
- Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials, 156, Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, South Korea
| | - Inkyu Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Jun-Ho Jeong
- Nano-Convergence Mechanical Systems Research Division, Korea Institute of Machinery and Materials, 156, Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, South Korea
- Department of Nano Mechatronics, University of Science and Technology, 217, Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, South Korea
| |
Collapse
|
15
|
Roy D, Xu Y, Rajendra R, Wu L, Bai P, Ballav N. Gold Nanoearbuds: Seed-Mediated Synthesis and the Emergence of Three Plasmonic Peaks. J Phys Chem Lett 2020; 11:3211-3217. [PMID: 32251590 DOI: 10.1021/acs.jpclett.0c00838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We demonstrate the first successful synthesis of reasonably monodisperse and single-crystalline gold nanoearbuds (Au NEBs) using a binary surfactant mixture of cetyltrimethylammonium chloride (CTAC) and benzyldimethylhexadecylammonium chloride (BDAC) in seed-mediated growth method. We have focused on the key chemical parameters behind the formation and growth of Au NEBs to result in tunable dimensions (length, 37-77 nm; width, 4-6 nm; aspect ratio, 7-19), as a consequence of which the longitudinal surface plasmon resonance (LSPR) peak could be tuned beyond 1200 nm. The achievement of LSPR beyond 1200 nm while maintaining the dimension well below 100 nm is a challenging accomplishment in the realm of one-dimensional (1D) Au nanostructures. This earbud-like morphology additionally exhibits three plasmonic peaks, rather uncommon for 1D nanostructures, which were analyzed theoretically based on the finite element method. The new resonance peak of the Au NEB was assigned as an additional longitudinal mode intensified by the bulbous ends as well as the high aspect ratio, thereby providing conclusive evidence that it is indeed a new morphology.
Collapse
Affiliation(s)
- Debashree Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411 008, India
| | - Yi Xu
- SUTD-MIT International Design Center & Science and Math Cluster, Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore 487372
- Institute of High Performance Computing, A*STAR (Agency for Science, Technology and Research), 1 Fusionopolis Way, no. 16-16 Connexis North, Singapore 138632
| | - Ranguwar Rajendra
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411 008, India
| | - Lin Wu
- Institute of High Performance Computing, A*STAR (Agency for Science, Technology and Research), 1 Fusionopolis Way, no. 16-16 Connexis North, Singapore 138632
| | - Ping Bai
- Institute of High Performance Computing, A*STAR (Agency for Science, Technology and Research), 1 Fusionopolis Way, no. 16-16 Connexis North, Singapore 138632
| | - Nirmalya Ballav
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411 008, India
| |
Collapse
|
16
|
Gherman AMM, Boca S, Vulpoi A, Cristea MV, Farcau C, Tosa V. Plasmonic photothermal heating of gold nanostars in a real-size container: multiscale modelling and experimental study. NANOTECHNOLOGY 2020; 31:125701. [PMID: 31783389 DOI: 10.1088/1361-6528/ab5d83] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The ability of noble metal nanoparticles (NPs) to convert light into heat has triggered a lot of scientific interest due to the numerous potential applications, including, e.g. photothermal therapy or laser-based nanopatterning. In order for such applications to be practically implemented, the heating behaviour of NPs embedded in their surrounding medium has to be thoroughly understood, and theoretical models capable of predicting this behaviour must be developed. Here we propose a multiscale approach for modelling the photothermal response of a large ensemble of nanoparticles contained within a cm-scale, real-size container. Electromagnetic field, ray tracing and heat transfer simulations are combined in order to model the response of nanostars and nanospheres suspensions contained within a common Eppendorf tube. To validate the model, gold nanostars are then synthesised and characterized by electron microscopy and optical spectroscopy. Laser-induced heating experiments are conducted by irradiating colloid-filled Eppendorf tubes with a 785 nm continuous wave laser and monitoring by a thermographic camera. The experimental results confirm that the proposed model has potential for predicting and analysing the heating efficiency and temperature dynamics upon laser irradiation of plasmonic nanoparticle suspensions in real-scale containers, at cm3 volumes.
Collapse
Affiliation(s)
- A M M Gherman
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293 Cluj-Napoca, Romania
| | | | | | | | | | | |
Collapse
|
17
|
Fukagawa T, Tanaka H, Morikawa K, Tanaka S, Hatakeyama Y, Hino K. Spatial Ordering of the Structure of Polymer-Capped Gold Nanorods under an External DC Electric Field. J Phys Chem Lett 2020; 11:2086-2091. [PMID: 32101434 DOI: 10.1021/acs.jpclett.0c00566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We studied the alignment changes of polymer-capped gold nanorods (GNRs@PS) under an applied electric field by visible-near-infrared absorption and small-angle X-ray scattering (SAXS) measurements. Monodispersed GNRs with an aspect ratio of 4.0 were produced by the seed-mediated growth method using cetyltrimethylammonium bromide and sodium oleate binary surfactants. We investigated the phase transition between the ordered structure of GNRs@PS induced by the external electric field. At appropriate field strengths (>3 V/μm), the SAXS profiles of GNRs@PS showed a smectic ordered structure. Increasing the electric field strength densified the ordered structure and greatly increased the Raman signals (the 298 and 445 cm-1 bands) of the carbon tetrachloride (solvent) between the GNRs@PS. The insights gained are potentially applicable to catalysts, future displays, optical filters, and data storage devices.
Collapse
Affiliation(s)
- Toshiaki Fukagawa
- Department of Chemistry, Faculty of Education, Aichi University of Education, 1 Hirosawa, Igaya, Kariya, Aichi 448-8542, Japan
| | - Hiroaki Tanaka
- Department of Chemistry, Faculty of Education, Aichi University of Education, 1 Hirosawa, Igaya, Kariya, Aichi 448-8542, Japan
| | - Kouki Morikawa
- Department of Chemistry, Faculty of Education, Aichi University of Education, 1 Hirosawa, Igaya, Kariya, Aichi 448-8542, Japan
| | - Shunsuke Tanaka
- Department of Chemistry, Faculty of Education, Aichi University of Education, 1 Hirosawa, Igaya, Kariya, Aichi 448-8542, Japan
| | - Yoshikiyo Hatakeyama
- Division of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Kazuyuki Hino
- Department of Chemistry, Faculty of Education, Aichi University of Education, 1 Hirosawa, Igaya, Kariya, Aichi 448-8542, Japan
| |
Collapse
|
18
|
Hongyu Wang, Luo J, Zhu H, Ge C, He L, Wang H, Wu M, Wang Y, Yang X. Efficient and Facile Synthesis of High-Quality Au Nanotwins. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s0036024420010094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Moustafa NE, Mahmoud KEKF. Simple, green approach for the synthesis of solid support-embedded PdNPs for ligand exchange. IET Nanobiotechnol 2019; 13:382-386. [PMID: 31171742 DOI: 10.1049/iet-nbt.2018.5179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Green approaches have the potential to significantly reduce the costs and environmental impact of chemical syntheses. Here, the authors used green tea (GT) leaf extract to synthesise and anchor palladium nanoparticles (PdNPs) to silica. The synthesised PdNPs in GT extract were characterised by ultraviolet-visible spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, and transmission electron microscopy. PdNPs primarily formed as capped NPs dispersed in GT extract before reduction completed after 24 h. This capped phytochemical solution was employed as a green precursor solution to synthesise PdNP-embedded solid supports. The morphology of PdNPs anchored to silica differed to that of PdNPs in solution. Silica-embedded PdNPs was employed as a new ligand exchanger to isolate trace polycyclic aromatic sulphur heterocycles from a hydrocarbon matrix. The isolation efficiency of the new, greener ligand exchanger was the same as an efficient chemical ligand exchanger and may, therefore, hold promise for future applications.
Collapse
Affiliation(s)
- Nagy Emam Moustafa
- Analysis and Evaluation Department, Egyptian Petroleum Research Institute, 11727 Nasr City, Cairo, Egypt.
| | - Kout El Kloub Fares Mahmoud
- Department of Chemistry, Women's College for Arts, Science and Education, Ain Shams University, Fahmy Street, Heliopolis, Cairo, Egypt
| |
Collapse
|
20
|
Kim MJ, Brown M, Wiley BJ. Electrochemical investigations of metal nanostructure growth with single crystals. NANOSCALE 2019; 11:21709-21723. [PMID: 31714552 DOI: 10.1039/c9nr05782j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Control over the nanoscopic structure of a material allows one to tune its properties for a wide variety of applications. Colloidal synthesis has become a convenient way to produce anisotropic metal nanostructures with a desired set of properties, but in most syntheses, the facet-selective surface chemistry causing anisotropic growth is not well-understood. This review highlights the recent use of electrochemical methods and single-crystal electrodes to investigate the roles of organic and inorganic additives in modulating the rate of atomic addition to different crystal facets. Differential capacitance and chronocoulometric techniques can be used to extract thermodynamic data on how additives selectively adsorb, while mixed potential theory can be used to observe the effect of additives on the rate of atomic addition to a specific facet. Results to date indicate that these experimental methods can provide new insights into the role capping agents and halides play in controlling anisotropic growth.
Collapse
Affiliation(s)
- Myung Jun Kim
- Department of Chemistry, Duke University, 124 Science Drive, Box 90354, Durham, North Carolina 27708, USA.
| | | | | |
Collapse
|
21
|
Mikhailov O. Synthesis of Ag nanoparticles under a contact of water solution with silver(I)chloride biopolymer matrix. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Mikhailov OV, Mikhailova EO. Elemental Silver Nanoparticles: Biosynthesis and Bio Applications. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3177. [PMID: 31569794 PMCID: PMC6803994 DOI: 10.3390/ma12193177] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 02/08/2023]
Abstract
The data on the specifics of synthesis of elemental silver nanoparticles (Ag-NP) having various geometric shapes (pseudo spherical, prismatic, cubic, trigonal-pyramidal, etc.), obtained by using various biological methods, and their use in biology and medicine have been systematized and generalized. The review covers mainly publications published in the current 21st century. Bibliography: 262 references.
Collapse
Affiliation(s)
- Oleg V Mikhailov
- Analytical Chemistry, Certification and Quality Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia.
| | - Ekaterina O Mikhailova
- Analytical Chemistry, Certification and Quality Management, Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia.
| |
Collapse
|
23
|
Gavamukulya Y, Maina EN, Meroka AM, Madivoli ES, El-Shemy HA, Wamunyokoli F, Magoma G. Green Synthesis and Characterization of Highly Stable Silver Nanoparticles from Ethanolic Extracts of Fruits of Annona muricata. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01262-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Niu W, Liu J, Huang J, Chen B, He Q, Wang AL, Lu Q, Chen Y, Yun Q, Wang J, Li C, Huang Y, Lai Z, Fan Z, Wu XJ, Zhang H. Unusual 4H-phase twinned noble metal nanokites. Nat Commun 2019; 10:2881. [PMID: 31253777 PMCID: PMC6598997 DOI: 10.1038/s41467-019-10764-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/24/2019] [Indexed: 12/03/2022] Open
Abstract
Twinning commonly exists in noble metals. In recent years, it has attracted increasing interest as it is powerful to tune the physicochemical properties of metallic nanomaterials. To the best of our knowledge, all the reported twinned noble metal structures exclusively possess the close-packed {111} twinning plane. Here, we report the discovery of non-close-packed twinning planes in our synthesized Au nanokites. By using the bent Au nanoribbons with unique 4H/face-centered cubic)/4H crystal-phase heterostructures as templates, Au nanokites with unusual twinned 4H-phase structures have been synthesized, which possess the non-close-packed {10\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\bar 1$$\end{document}1¯2} or {10\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\bar 1$$\end{document}1¯6} twinning plane. By using the Au nanokites as templates, twinned 4H-phase Au@Ag and Au@PdAg core-shell nanostructures have been synthesized. The discovery of 4H-phase twinned noble metal nanostructures may pave a way for the preparation of metal nanomaterials with unique twinned structures for various promising applications. Twinning is a powerful approach to engineering the physicochemical properties of metallic nanomaterials. Here, the authors discover unusual non-close-packed twinning planes in 4H-phase gold nanokites and show that they can be used as templates to grow 4H-phase twinned nanostructures of other noble metals.
Collapse
Affiliation(s)
- Wenxin Niu
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jiawei Liu
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jingtao Huang
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Bo Chen
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Qiyuan He
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - An-Liang Wang
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Qipeng Lu
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Ye Chen
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Qinbai Yun
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jie Wang
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Cuiling Li
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Ying Huang
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zhuangchai Lai
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zhanxi Fan
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Xue-Jun Wu
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Hua Zhang
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore. .,Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China.
| |
Collapse
|
25
|
Mikhailov OV. Elemental silver nano-sized crystals: various geometric forms and their specific growth parameters. CRYSTALLOGR REV 2018. [DOI: 10.1080/0889311x.2018.1553165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Oleg V. Mikhailov
- Analytical Chemistry, Certification and Quality Management Department, Kazan National Research Technological University, Kazan, Russia
| |
Collapse
|
26
|
Gurtu A, Bakshi MS. Ag Nanometallic Surfaces for Self-Assembled Ordered Morphologies of Zein. ACS OMEGA 2018; 3:10851-10857. [PMID: 31459197 PMCID: PMC6645513 DOI: 10.1021/acsomega.8b02086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 08/27/2018] [Indexed: 06/09/2023]
Abstract
Nanometallic surfaces of Ag nanoparticles (NPs) catalyzed the self-aggregation behavior of zein in different ordered morphologies such as cubes, rectangles, and bars. This was studied in a ternary in situ reaction (AgNO3 + zein + water), where zein performed the reduction as well as stabilization of Ag NPs. This reaction produced small Ag NPs of less than 10 nm predominantly bound with {111} crystal planes, which attracted the surface adsorption of zein. Surface-adsorbed zein initiated the protein seeding and converted the tertiary structure of protein into open β-pleated structure with aqueous exposed hydrophobic domains. A layered deposition of β-pleats on different crystal planes of Ag NPs derived them to nearly monodispersed cubic morphologies. The mechanistic aspects of self-aggregation of zein in the presence of nanometallic surfaces hold possible scenarios for simple and straightforward routes of protein crystallization.
Collapse
|
27
|
Oh JH, Lee JS. One-Pot Photochemical Synthesis of Gold Nanoplates Using Nonionic Diblock Copolymers and their Surface Functionalization. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ju-Hwan Oh
- Department of Materials Science and Engineering; Korea University; Seoul 02841 Republic of Korea
| | - Jae-Seung Lee
- Department of Materials Science and Engineering; Korea University; Seoul 02841 Republic of Korea
| |
Collapse
|
28
|
Desai MP, Sangaokar GM, Pawar KD. Kokum fruit mediated biogenic gold nanoparticles with photoluminescent, photocatalytic and antioxidant activities. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.03.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
29
|
Mikhailov OV. Progress in the synthesis of Ag nanoparticles having manifold geometric forms. REV INORG CHEM 2018. [DOI: 10.1515/revic-2017-0016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe data on the specific synthesis of elemental silver nanoparticles having the forms of various geometric bodies (pseudo spherical, prismatic, cubic, trigonal-pyramidal, etc.), obtained by various chemical, physicochemical, and biological methods, have been systematized and generalized. This review covers mainly publications published in the current 21st century.
Collapse
Affiliation(s)
- Oleg V. Mikhailov
- Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia
| |
Collapse
|
30
|
Tripathi RM, Shrivastav BR, Shrivastav A. Antibacterial and catalytic activity of biogenic gold nanoparticles synthesised by Trichoderma harzianum. IET Nanobiotechnol 2018; 12:509-513. [PMID: 29768239 PMCID: PMC8676314 DOI: 10.1049/iet-nbt.2017.0105] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 12/08/2017] [Accepted: 12/30/2017] [Indexed: 11/20/2022] Open
Abstract
This study reveals the antibacterial and catalytic activity of biogenic gold nanoparicles (AuNPs) synthesised by biomass of Trichoderma harzianum. The antibacterial activity of AuNPs was analysed by the means of growth curve, well diffusion and colony forming unit (CFU) count methods. The minimum inhibitory concentration of AuNPs was 20 µg/ml. AuNPs at 60 µg/ml show effective antibacterial activity as optical absorption was insignificant. The well diffusion and CFU methods were also applied to analyse the effect of various concentration of AuNPs. Further, the catalytic activity of AuNPs was analysed against methylene blue (MB) as a model pollutant in water. MB was degraded 39% in 30 min in the presence of AuNPs and sodium borohydrate and the rate constant (k) was found to be 0.2 × 10-3 s-1. This shows that the biogenic AuNP is an effective candidate for antibacterial and catalytic degradation of toxic pollutants.
Collapse
Affiliation(s)
- Ravi Mani Tripathi
- Amity Institute of Nanotechnology, Amity University, Sector 125, Noida 201303, India
| | - Braj Raj Shrivastav
- Department of Surgical Oncology, Cancer Hospital & Research Institute, Gwalior 474009, Madhya Pradesh, India
| | - Archana Shrivastav
- Department of Microbiology, College of Life Sciences, Gwalior 474009, Madhya Pradesh, India.
| |
Collapse
|
31
|
Liebig F, Sarhan RM, Prietzel C, Thünemann AF, Bargheer M, Koetz J. Undulated Gold Nanoplatelet Superstructures: In Situ Growth of Hemispherical Gold Nanoparticles onto the Surface of Gold Nanotriangles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:4584-4594. [PMID: 29617144 DOI: 10.1021/acs.langmuir.7b02898] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Negatively charged flat gold nanotriangles, formed in a vesicular template phase and separated by an AOT-micelle-based depletion flocculation, were reloaded by adding a cationic polyelectrolyte, that is, a hyperbranched polyethylenimine (PEI). Heating the system to 100 °C in the presence of a gold chloride solution, the reduction process leads to the formation of gold nanoparticles inside the polymer shell surrounding the nanoplatelets. The gold nanoparticle formation is investigated by UV-vis spectroscopy, small-angle X-ray scattering, and dynamic light scattering measurements in combination with transmission electron microscopy. Spontaneously formed gold clusters in the hyperbranched PEI shell with an absorption maximum at 350 nm grow on the surface of the nanotriangles as hemispherical particles with diameters of ∼6 nm. High-resolution micrographs show that the hemispherical gold particles are crystallized onto the {111} facets on the bottom and top of the platelet as well as on the edges without a grain boundary. Undulated gold nanoplatelet superstructures with special properties become available, which show a significantly modified performance in SERS-detected photocatalysis regarding both reactivity and enhancement factor.
Collapse
Affiliation(s)
| | - Radwan M Sarhan
- School of Analytical Sciences Adlershof (SALSA) , Humboldt-Universität zu Berlin , 10099 Berlin , Germany
| | | | - Andreas F Thünemann
- Bundesanstalt für Materialforschung und -prüfung (BAM) , Unter den Eichen 87 , 12205 Berlin , Germany
| | | | | |
Collapse
|
32
|
Metch JW, Burrows ND, Murphy CJ, Pruden A, Vikesland PJ. Metagenomic analysis of microbial communities yields insight into impacts of nanoparticle design. NATURE NANOTECHNOLOGY 2018; 13:253-259. [PMID: 29335567 DOI: 10.1038/s41565-017-0029-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 11/14/2017] [Indexed: 05/27/2023]
Abstract
Next-generation DNA sequencing and metagenomic analysis provide powerful tools for the environmentally friendly design of nanoparticles. Herein we demonstrate this approach using a model community of environmental microbes (that is, wastewater-activated sludge) dosed with gold nanoparticles of varying surface coatings and morphologies. Metagenomic analysis was highly sensitive in detecting the microbial community response to gold nanospheres and nanorods with either cetyltrimethylammonium bromide or polyacrylic acid surface coatings. We observed that the gold-nanoparticle morphology imposes a stronger force in shaping the microbial community structure than does the surface coating. Trends were consistent in terms of the compositions of both taxonomic and functional genes, which include antibiotic resistance genes, metal resistance genes and gene-transfer elements associated with cell stress that are relevant to public health. Given that nanoparticle morphology remained constant, the potential influence of gold dissolution was minimal. Surface coating governed the nanoparticle partitioning between the bioparticulate and aqueous phases.
Collapse
Affiliation(s)
- Jacob W Metch
- Via Department of Civil and Environmental Engineering and Institute for Critical Technology and Applied Science (ICTAS), Virginia Tech, Blacksburg, VA, USA
| | - Nathan D Burrows
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Catherine J Murphy
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Amy Pruden
- Via Department of Civil and Environmental Engineering and Institute for Critical Technology and Applied Science (ICTAS), Virginia Tech, Blacksburg, VA, USA.
| | - Peter J Vikesland
- Via Department of Civil and Environmental Engineering and Institute for Critical Technology and Applied Science (ICTAS), Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
33
|
Samsuri ND, Mukhtar WM, Abdul Rashid AR, Ahmad Dasuki K, Awangku Yussuf AARH. Synthesis methods of gold nanoparticles for Localized Surface Plasmon Resonance (LSPR) sensor applications. EPJ WEB OF CONFERENCES 2017. [DOI: 10.1051/epjconf/201716201002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
34
|
Lenartowicz M, Marek PH, Madura ID, Lipok J. Formation of Variously Shaped Gold Nanoparticles by Anabaena laxa. J CLUST SCI 2017. [DOI: 10.1007/s10876-017-1275-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
35
|
On/off-switchable LSPR nano-immunoassay for troponin-T. Sci Rep 2017; 7:44027. [PMID: 28382946 PMCID: PMC5382532 DOI: 10.1038/srep44027] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/31/2017] [Indexed: 12/25/2022] Open
Abstract
Regeneration of immunosensors is a longstanding challenge. We have developed a re-usable troponin-T (TnT) immunoassay based on localised surface plasmon resonance (LSPR) at gold nanorods (GNR). Thermosensitive poly(N-isopropylacrylamide) (PNIPAAM) was functionalised with anti-TnT to control the affinity interaction with TnT. The LSPR was extremely sensitive to the dielectric constant of the surrounding medium as modulated by antigen binding after 20 min incubation at 37 °C. Computational modelling incorporating molecular docking, molecular dynamics and free energy calculations was used to elucidate the interactions between the various subsystems namely, IgG-antibody (c.f., anti-TnT), PNIPAAM and/or TnT. This study demonstrates a remarkable temperature dependent immuno-interaction due to changes in the PNIPAAM secondary structures, i.e., globular and coil, at above or below the lower critical solution temperature (LCST). A series of concentrations of TnT were measured by correlating the λLSPR shift with relative changes in extinction intensity at the distinct plasmonic maximum (i.e., 832 nm). The magnitude of the red shift in λLSPR was nearly linear with increasing concentration of TnT, over the range 7.6 × 10−15 to 9.1 × 10−4 g/mL. The LSPR based nano-immunoassay could be simply regenerated by switching the polymer conformation and creating a gradient of microenvironments between the two states with a modest change in temperature.
Collapse
|
36
|
Chen M, He Y, Liu X, Zhu J, Liu R. Synthesis and optical properties of size-controlled gold nanoparticles. POWDER TECHNOL 2017. [DOI: 10.1016/j.powtec.2017.01.087] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Shan H, Liu L, He J, Zhang Q, Chen W, Feng R, Chang C, Zhang P, Tao P, Song C, Shang W, Deng T, Wu J. Controllable assembly of Pd nanosheets: a solution for 2D materials storage. CrystEngComm 2017. [DOI: 10.1039/c7ce00712d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
38
|
Xia Y, Gilroy KD, Peng H, Xia X. Keimvermitteltes Wachstum kolloidaler Metallnanokristalle. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201604731] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
- School of Chemistry and Biochemistry School of Chemical and Biomolecular Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| | - Kyle D. Gilroy
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
| | - Hsin‐Chieh Peng
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
| | - Xiaohu Xia
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
| |
Collapse
|
39
|
Xia Y, Gilroy KD, Peng HC, Xia X. Seed-Mediated Growth of Colloidal Metal Nanocrystals. Angew Chem Int Ed Engl 2016; 56:60-95. [PMID: 27966807 DOI: 10.1002/anie.201604731] [Citation(s) in RCA: 400] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 06/18/2016] [Indexed: 11/08/2022]
Abstract
Seed-mediated growth is a powerful and versatile approach for the synthesis of colloidal metal nanocrystals. The vast allure of this approach mainly stems from the staggering degree of control one can achieve over the size, shape, composition, and structure of nanocrystals. These parameters not only control the properties of nanocrystals but also determine their relevance to, and performance in, various applications. The ingenuity and artistry inherent to seed-mediated growth offer extensive promise, enhancing a number of existing applications and opening the door to new developments. This Review demonstrates how the diversity of metal nanocrystals can be expanded with endless opportunities by using seeds with well-defined and controllable internal structures in conjunction with a proper combination of capping agent and reduction kinetics. New capabilities and future directions are also highlighted.
Collapse
Affiliation(s)
- Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA.,School of Chemistry and Biochemistry, School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Kyle D Gilroy
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Hsin-Chieh Peng
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Xiaohu Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| |
Collapse
|
40
|
Mondal M, Begum T, Gogoi PK, Bora U. Gallic Acid Derived Palladium(0) Nanoparticles: AnIn SituFormed “Green and Recyclable” Catalyst for Suzuki-Miyaura Coupling in Water. ChemistrySelect 2016. [DOI: 10.1002/slct.201600385] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Manoj Mondal
- Department of Chemistry; Dibrugarh University; Dibrugarh 786004, Assam India
| | - Tahshina Begum
- Department of Chemistry; Dibrugarh University; Dibrugarh 786004, Assam India
| | - Pradip K. Gogoi
- Department of Chemistry; Dibrugarh University; Dibrugarh 786004, Assam India
| | - Utpal Bora
- Department of Chemical Sciences; Tezpur University; Tezpur 784028, Assam India
| |
Collapse
|
41
|
Shape/size controlling syntheses, properties and applications of two-dimensional noble metal nanocrystals. Front Chem Sci Eng 2016. [DOI: 10.1007/s11705-016-1576-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
42
|
Douglas-Gallardo OA, Gomez CG, Macchione MA, Cometto FP, Coronado EA, Macagno VA, Pérez MA. Morphological Evolution of Noble Metal Nanoparticles in Chloroform: Mechanism of Switching on/off by Protic Species. RSC Adv 2016; 5:100488-100497. [PMID: 26889378 DOI: 10.1039/c5ra17529a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The morphological stability/morphological reshaping of noble metal nanoparticles are studied experimentally in order to unravel the chemical mechanisms lying beneath. Gold and silver nanoparticles (AuNPs and AgNPs, respectively) formed in chloroformic environment are used, as model synthetic systems, to study phenomena of morphological change. The morphological evolution of NPs that follows their formation, is characterized by spectroscopy (UV-Visible, Raman and FTIR) and TEM (Transmission Electron Microscopy). The change of NP morphology involves the increase of the average NP size and the broadening of size distribution, in a close resemblance with the effect characteristically obtained from the Ostwald ripening. The effect of the poor solvating properties of chloroform in stabilizing small charged species (H+, Ag+, Au+) as well as the principle of electroneutrality of matter are analyzed in order to formulate a feasible reaction scheme consisting of a three-step processes: the generation of soluble intermediary species by corrosion of nanoparticles, the diffusion of intermediary species from one nanoparticle to another, and the re-deposition process involving the reduction of intermediary species. This basic reaction scheme is used as hypothesis to plan and perform experiments, which reveal that molecular oxygen dissolved in the dispersive medium can drive NP corrosion, however, protic species are also required as co-reactant. The polarity of the hydrogen bond and the ligand properties of the anions produced by deprotonation are feature of the protic species that enable/disable the corrosion and, in turn, the NP morphological evolution.
Collapse
Affiliation(s)
- O A Douglas-Gallardo
- INFIQC - Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria. Pabellón Argentina, Ala 1, 2 piso, Haya de la Torre. 5000 Córdoba, Argentina
| | - C G Gomez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria. Edificio de Ciencias II, Haya de la Torre y Medina Allende, 5000 Córdoba, Argentina
| | - M A Macchione
- INFIQC - Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria. Pabellón Argentina, Ala 1, 2 piso, Haya de la Torre. 5000 Córdoba, Argentina
| | - F P Cometto
- INFIQC - Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria. Pabellón Argentina, Ala 1, 2 piso, Haya de la Torre. 5000 Córdoba, Argentina
| | - E A Coronado
- INFIQC - Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria. Pabellón Argentina, Ala 1, 2 piso, Haya de la Torre. 5000 Córdoba, Argentina
| | - V A Macagno
- INFIQC - Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria. Pabellón Argentina, Ala 1, 2 piso, Haya de la Torre. 5000 Córdoba, Argentina
| | - M A Pérez
- INFIQC - Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria. Pabellón Argentina, Ala 1, 2 piso, Haya de la Torre. 5000 Córdoba, Argentina
| |
Collapse
|
43
|
Affiliation(s)
- Xu Han
- Department
of Chemistry, University of Miami, 1301 Memorial Drive, Cox Science
Center, Coral Gables, Florida 33146, United States
| | - Shanghao Li
- Department
of Chemistry, University of Miami, 1301 Memorial Drive, Cox Science
Center, Coral Gables, Florida 33146, United States
| | - Zhili Peng
- Department
of Chemistry, University of Miami, 1301 Memorial Drive, Cox Science
Center, Coral Gables, Florida 33146, United States
| | - Abdelhameed M. Othman
- Department
of Chemistry, Faculty of Science at Yanbu, Taibah University, P.O. Box 344, Medina, Kingdom of Saudi Arabia
| | - Roger Leblanc
- Department
of Chemistry, University of Miami, 1301 Memorial Drive, Cox Science
Center, Coral Gables, Florida 33146, United States
| |
Collapse
|
44
|
Bain D, Paramanik B, Sadhu S, Patra A. A study into the role of surface capping on energy transfer in metal cluster-semiconductor nanocomposites. NANOSCALE 2015; 7:20697-20708. [PMID: 26603192 DOI: 10.1039/c5nr06793f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Metal cluster-semiconductor nanocomposite materials remain a frontier area of research for the development of optoelectronic, photovoltaic and light harvesting devices because metal nanoclusters and semiconductor QDs are promising candidates for photon harvesting. Here, we have designed well defined metal cluster-semiconductor nanostructures using different surface capped negatively charged Au25 nanoclusters (Au NCs) and positively charged cysteamine capped CdTe quantum dots using electrostatic interactions. The main focus of this article is to address the impact of surface capping agents on the photophysical properties of Au cluster-CdTe QD hybrid nanocomposites. Steady state and time resolved spectroscopic studies reveal that photoluminescence quenching, radiative and nonradiative rate, and energy transfer between Au nanoclusters and CdTe QDs have been influenced by the nature of the capping agent. We have calculated the energy transfer related parameters such as the overlap integral, distance between donor and acceptor, Förster distance, efficiency of energy transfer and rate of energy transfer from CdTe QDs to three different Au NCs. Photoluminescence quenching varies from 73% to 43% when changing the capping agents from bovine serum albumin (BSA) to glutathione (GSH). The efficiency of the energy transfer from CdTe QDs to BSA-capped Au NCs is found to be 83%, for Cys-capped Au NCs it was 46% and for GSH-capped Au NCs it was 35%. The efficiency depends on the number of Au clusters attached per QD. This reveals that the nature of capping ligands plays a crucial role in the energy transfer phenomena from CdTe QDs to Au NCs. Interesting findings reveal that the efficient energy transfer in metal cluster-semiconductor nanocomposites may open up new possibilities in designing artificial light harvesting systems for future applications.
Collapse
Affiliation(s)
- Dipankar Bain
- Department of Materials Science, Indian Association for the Cultivation of Science, Kolkata 700 032, India.
| | | | | | | |
Collapse
|
45
|
Su PYS, Hsu SJ, Tseng JCW, Hsu HF, Wang WJ, Lin IJB. Polynuclear Silver(I) Triazole Complexes: Ion Conduction and Nanowire Formation in the Mesophase. Chemistry 2015; 22:323-30. [DOI: 10.1002/chem.201502823] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Indexed: 11/08/2022]
|
46
|
Li B, Jiang B, Tang H, Lin Z. Unconventional seed-mediated growth of ultrathin Au nanowires in aqueous solution. Chem Sci 2015; 6:6349-6354. [PMID: 30090252 PMCID: PMC6054065 DOI: 10.1039/c5sc02337h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 07/20/2015] [Indexed: 12/02/2022] Open
Abstract
Ultrathin Au nanowires have garnered increasing attention in recent years because of their potential use in a range of applications due to their unique optical properties, conductivity, chemical activity, and discrete plasticity. Herein, we report an unconventional seed-mediated growth of ultrathin Au nanowires induced by hydrophobic molecules. Quite intriguingly, by adding a trace amount of hydrophobic molecules (i.e., toluene or chloroform) to the Au growth solution conventionally used for the growth of Au nanorods with cylindrical CTAB micelles as templates, CTAB-capped ultrathin Au nanowires (i.e., water-soluble ultrathin Au nanowires) were crafted. Similarly to the growth of Au nanorods, silver ions and Au seeds were crucially required to yield the water-soluble ultrathin Au nanowires. The growth mechanism of these ultrathin nanowires was also explored.
Collapse
Affiliation(s)
- Bo Li
- School of Materials Science and Engineering , Georgia Institute of Technology , Atlanta , GA 30332 , USA .
| | - Beibei Jiang
- School of Materials Science and Engineering , Georgia Institute of Technology , Atlanta , GA 30332 , USA .
| | - Haillong Tang
- High Temperature Resistant Polymers and Composites Key Laboratory of Sichuan Province , School of Microelectronics and Solid-State Electronics , University of Electronic Science and Technology of China , Chengdu 610054 , P. R. China
| | - Zhiqun Lin
- School of Materials Science and Engineering , Georgia Institute of Technology , Atlanta , GA 30332 , USA .
| |
Collapse
|
47
|
Chen J, Sheng Y, Zhou X, Zhang H, Shi Z, Zou H. One‐Step Facile Synthesis and Luminescence Properties of Eu
3+
‐Doped Silica Nanowires. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jie Chen
- College of Chemistry, Jilin University, Changchun 130012, People's Republic of China http://www.jlu.edu.cn/
| | - Ye Sheng
- College of Chemistry, Jilin University, Changchun 130012, People's Republic of China http://www.jlu.edu.cn/
| | - Xiuqing Zhou
- College of Chemistry, Jilin University, Changchun 130012, People's Republic of China http://www.jlu.edu.cn/
| | - Hui Zhang
- College of Chemistry, Jilin University, Changchun 130012, People's Republic of China http://www.jlu.edu.cn/
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Haifeng Zou
- College of Chemistry, Jilin University, Changchun 130012, People's Republic of China http://www.jlu.edu.cn/
| |
Collapse
|
48
|
Chen M, Kang H, Gong Y, Guo J, Zhang H, Liu R. Bacterial Cellulose Supported Gold Nanoparticles with Excellent Catalytic Properties. ACS APPLIED MATERIALS & INTERFACES 2015; 7:21717-26. [PMID: 26357993 DOI: 10.1021/acsami.5b07150] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Amidoxime surface functionalized bacterial cellulose (AOBC) has been successfully prepared by a simple two-step method without obviously changing the morphology of bacterial cellulose. AOBC has been used as the reducing agent and carrier for the synthesis of gold nanoparticles (AuNPs) that distributed homogeneously on bacterial cellulose surface. Higher content in amidoxime groups in AOBC is beneficial for the synthesis of AuNPs with smaller and more uniform size. The AuNPs/AOBC nanohybrids have excellent catalytic activity for reduction of 4-nitrophenol (4-NP) by using NaBH4. It was found that catalytic activity of AuNPs/AOBC first increases with increasing NaBH4 concentration and temperature, and then leveled off at NaBH4 concentration above 238 mM and temperature above 50 °C. Moreover, AuNPs with smaller size have higher catalytic activity. The highest apparent turnover frequency of AuNPs/AOBC is 1190 h(-1). The high catalytic activity is due to the high affinity of 4-NP with AuNPs/AOBC and the reduced product 4-aminophenol has good solubility in water in the presence of AuNPs/AOBC. The catalytic stability of the AuNPs/AOBC was estimated by filling a fluid column contained AuNPs/AOBC and used for continuously catalysis of the reduction of 4-NP by using NaBH4. The column works well without detection of 4-NP in the eluent after running for more than two months, and it is still running. This work provides an excellent catalyst based on bacterial cellulose stabilized AuNPs and has promising applications in industry.
Collapse
Affiliation(s)
- Meiyan Chen
- School of Textile and Material Engineering, Dalian Polytechnic University , Dalian, 116034, China
- Sate Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory of Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Hongliang Kang
- Sate Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory of Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Yumei Gong
- School of Textile and Material Engineering, Dalian Polytechnic University , Dalian, 116034, China
| | - Jing Guo
- School of Textile and Material Engineering, Dalian Polytechnic University , Dalian, 116034, China
| | - Hong Zhang
- School of Textile and Material Engineering, Dalian Polytechnic University , Dalian, 116034, China
| | - Ruigang Liu
- Sate Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory of Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| |
Collapse
|
49
|
Toussi SM, Zanella M, Abdelrasoul GN, Athanassiou A, Pignatelli F. Twofold role of Hexadecyltrimethylammonium Bromide in photochemical synthesis of gold nanorods. J Photochem Photobiol A Chem 2015. [DOI: 10.1016/j.jphotochem.2015.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Exploring the Possibilities of Biological Fabrication of Gold Nanostructures Using Orange Peel Extract. METALS 2015. [DOI: 10.3390/met5031609] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|