1
|
Lu XY, Zhu LY, Zhu H, Huang SJ, Yang YS, Jiang CR, Ye RR. Cyclometalated iridium(III)-lonidamine conjugates: Mitochondrial targeting and pyroptosis induction. J Inorg Biochem 2025; 266:112852. [PMID: 39938148 DOI: 10.1016/j.jinorgbio.2025.112852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/27/2025] [Accepted: 02/05/2025] [Indexed: 02/14/2025]
Abstract
A series of cyclometalated Ir(III)-lonidamine (LND) complexes (Ir-LND-1-6) with the formula [Ir(C^N)2bpy(4-CH3-4'-CH2OLND)](PF6) (Ir-LND-1-3) and [Ir(C^N)2bpy(4-CH2OLND-4'-CH2OLND)](PF6) (Ir-LND-4-6) (C^N = 2-phenylpyridine (ppy, in Ir-LND-1 and Ir-LND-4), 2-(2-thienyl) pyridine (thpy, in Ir-LND-2 and Ir-LND-5) and 2-(2,4-difluorophenyl) pyridine (dfppy, in Ir-LND-3 and Ir-LND-6)), were designed and synthesized. 3-(4,5-dimethylthiazol-2-yl)-2,5-biphenyltetrazolium bromide (MTT) assay data showed that the cytotoxicity of Ir-LND-1-3 carry one LND moiety was superior to that of Ir-LND-4-6 with two LND moieties. Therefore, we selected Ir-LND-1-3 as model compounds to investigate the anti-tumor mechanism of the Ir(III)-LND system. The results showed that Ir-LND-1-3 could inhibit cancer cell migration and colony formation. In addition, Ir-LND-1-3 could penetrate into HeLa cells and localized to mitochondria, further disrupting mitochondrial membrane potential (MMP), increasing intracellular reactive oxygen species (ROS), and reducing intracellular adenosine triphosphate (ATP). Further exploration of anti-tumor mechanisms showed that pyroptosis was the main mode of Ir-LND-1-3 induced cell death, manifested as membrane perforation and swelling, activation of caspase-3 and cleavage of Gasdermin E (GSDME), as well as release of lactic dehydrogenase (LDH) and ATP. The pyroptosis induced by Ir-LND-1-3 also initiated immunogenic cell death (ICD) by triggering the release of calreticulin (CRT) and high mobility group protein b1 (HMGB1) on the cell surface.
Collapse
Affiliation(s)
- Xing-Yun Lu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Lin-Yuan Zhu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Hou Zhu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Shao-Jun Huang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China.
| | - Yong-Sheng Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Chun-Rong Jiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Rui-Rong Ye
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China.
| |
Collapse
|
2
|
Zou JX, Chang MR, Kuznetsov NA, Kee JX, Babak MV, Ang WH. Metal-based immunogenic cell death inducers for cancer immunotherapy. Chem Sci 2025; 16:6160-6187. [PMID: 40160356 PMCID: PMC11949249 DOI: 10.1039/d4sc08495k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Immunogenic cell death (ICD) has attracted enormous attention over the past decade due to its unique characteristics in cancer cell death and its role in activating innate and adaptive immune responses against tumours. Many efforts have been dedicated to screening, identifying and discovering ICD inducers, resulting in the validation of several based on metal complexes. In this review, we provide a comprehensive summary of current metal-based ICD inducers, their molecular mechanisms for triggering ICD initiation and subsequent protective antitumour immune responses, along with considerations for validating ICD both in vitro and in vivo. We also aim to offer insights into the future development of metal complexes with enhanced ICD-inducing properties and their applications in potentiating antitumour immunity.
Collapse
Affiliation(s)
- Jiao Xia Zou
- Department of Chemistry, National University of Singapore 4 Science Drive 2 Singapore 117544 Singapore
| | - Meng Rui Chang
- Department of Chemistry, National University of Singapore 4 Science Drive 2 Singapore 117544 Singapore
| | - Nikita A Kuznetsov
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong 83 Tat Chee Avenue Hong Kong SAR 999077 People's Republic of China
| | - Jia Xuan Kee
- Department of Chemistry, National University of Singapore 4 Science Drive 2 Singapore 117544 Singapore
| | - Maria V Babak
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong 83 Tat Chee Avenue Hong Kong SAR 999077 People's Republic of China
| | - Wee Han Ang
- Department of Chemistry, National University of Singapore 4 Science Drive 2 Singapore 117544 Singapore
- NUS Graduate School - Integrative Science and Engineering Programme (ISEP), National University of Singapore 21 Lower Kent Ridge Rd Singapore 119077 Singapore
| |
Collapse
|
3
|
Scattolin T, Cavarzerani E, Alessi D, Mauceri M, Botter E, Tonon G, Caligiuri I, Repetto O, Kamensek U, Brezar SK, Dalla Pozza M, Palazzolo S, Cemazar M, Canzonieri V, Demitri N, Nolan SP, Gasser G, Visentin F, Rizzolio F. Unlocking the potential of organopalladium complexes for high-grade serous ovarian cancer therapy. Dalton Trans 2025; 54:4685-4696. [PMID: 39967474 DOI: 10.1039/d5dt00194c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
High-Grade Serous Ovarian Cancer (HGSOC) is the most common and lethal subtype of ovarian cancer, known for its high aggressiveness and extensive genomic alterations. Typically diagnosed at an advanced stage, HGSOC presents formidable challenges in drug therapy. The limited efficacy of standard treatments, development of chemoresistance, scarcity of targeted therapies, and significant tumor heterogeneity render this disease incurable with current treatment options, highlighting the urgent need for novel therapeutic approaches to improve patient outcomes. In this study we report a straightforward and stereoselective synthetic route to novel Pd(II)-vinyl and -butadienyl complexes bearing a wide range of monodentate and bidentate ligands. Most of the synthesized complexes exhibited good to excellent in vitro anticancer activity against ovarian cancer cells. Particularly promising is the water-soluble complex bearing two PTA (1,3,5-triaza-7-phosphaadamantane) ligands and the Pd(II)-butadienyl fragment. This compound combines excellent cytotoxicity towards cancer cells with substantial inactivity towards non-cancerous ones. This derivative was selected for further studies on ex vivo tumor organoids and in vivo mouse models, which demonstrate its remarkable efficacy with surprisingly low collateral toxicity even at high dosages. Moreover, this class of compounds appears to operate through a ferroptotic mechanism, thus representing the first such example for an organopalladium compound.
Collapse
Affiliation(s)
- Thomas Scattolin
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.
| | - Enrico Cavarzerani
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy.
| | - Dario Alessi
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.
| | - Matteo Mauceri
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.
| | - Eleonora Botter
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy.
| | - Giovanni Tonon
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy.
| | - Isabella Caligiuri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, via Franco Gallini 2, 33081, Aviano, Italy
| | - Ombretta Repetto
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, via Franco Gallini 2, 33081, Aviano, Italy
| | - Urska Kamensek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, 1000, Slovenia
| | - Simona Kranjc Brezar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, 1000, Slovenia
| | - Maria Dalla Pozza
- ChimieParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| | - Stefano Palazzolo
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, via Franco Gallini 2, 33081, Aviano, Italy
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, 1000, Slovenia
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, via Franco Gallini 2, 33081, Aviano, Italy
- Department of Medical, Surgical and Health Sciences, Università degli Studi di Trieste, Strada di Fiume 447, Trieste, Italy
| | - Nicola Demitri
- Area Science Park, Elettra-Sincrotrone Trieste, S.S. 14 Km 163.5, Basovizza, 34149, Trieste, Italy
| | - Steven P Nolan
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University Krijgslaan 281, S-3, 9000 Ghent, Belgium
| | - Gilles Gasser
- ChimieParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005, Paris, France
| | - Fabiano Visentin
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy.
| | - Flavio Rizzolio
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174 Venezia-Mestre, Italy.
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, via Franco Gallini 2, 33081, Aviano, Italy
| |
Collapse
|
4
|
Wang W, Xu Y, Tang Y, Li Q. Self-Assembled Metal Complexes in Biomedical Research. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416122. [PMID: 39713915 DOI: 10.1002/adma.202416122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/29/2024] [Indexed: 12/24/2024]
Abstract
Cisplatin is widely used in clinical cancer treatment; however, its application is often hindered by severe side effects, particularly inherent or acquired resistance of target cells. To address these challenges, an effective strategy is to modify the metal core of the complex and introduce alternative coordination modes or valence states, leading to the development of a series of metal complexes, such as platinum (IV) prodrugs and cyclometalated complexes. Recent advances in nanotechnology have facilitated the development of multifunctional nanomaterials that can selectively deliver drugs to tumor cells, thereby overcoming the pharmacological limitations of metal-based drugs. This review first explores the self-assembly of metal complexes into spherical, linear, and irregular nanoparticles in the context of biomedical applications. The mechanisms underlying the self-assembly of metal complexes into nanoparticles are subsequently analyzed, followed by a discussion of their applications in biomedical fields, including detection, imaging, and antitumor research.
Collapse
Affiliation(s)
- Wenting Wang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yang Xu
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yuqi Tang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
- Materials Science Graduate Program, Kent State University, Kent, OH, 44242, USA
| |
Collapse
|
5
|
Liu Z, Lai K, Li P, Gong Y, Fu H, Dong H, Yang Z, Qin R, Guo L. Enhanced Anticancer Selectivity of Cyclometalated Imidazole/Pyrazole-Imine Iridium III Complexes Through the Switch from Cationic to Zwitterionic Forms. Inorg Chem 2025; 64:2837-2856. [PMID: 39895267 DOI: 10.1021/acs.inorgchem.4c04937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Cyclometalated iridiumIII complexes have shown promising anticancer properties, with variations in charge and ligand substitution significantly influencing their biological activity. However, zwitterionic iridiumIII complexes remain scarcely explored. Herein, we report a series of zwitterionic cyclometalated imidazole/pyrazole-imine iridiumIII complexes and compare their biological activity to analogous cationic complexes with sulfonate counteranions. X-ray crystallography confirmed the structural differences between the cationic and zwitterionic forms. These complexes exhibited cytotoxicity against A549, HeLa, and HepG2 cancer cells, with IC50 values ranging from 14.35 to 69.12 μM. While cationic complexes showed higher cytotoxicity, zwitterionic complexes demonstrated enhanced selectivity for A549 cancer cells over BEAS-2B normal cells (selectivity index: 3.72-5.90 for zwitterionic forms vs 1.16-1.44 for cationic forms). This selectivity is attributed to distinct cellular uptake mechanisms: zwitterionic complexes use an energy-dependent pathway in cancer cells and an energy-independent pathway in normal cells, leading to differences in cellular accumulation and redox activity. Mechanistic studies revealed that both complex types induce ROS generation and mitochondrial membrane depolarization (MMP), with apoptosis as the primary cell death pathway.
Collapse
Affiliation(s)
- Zhe Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Kangning Lai
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Pengwei Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yuwen Gong
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Hanxiu Fu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Heqian Dong
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Zhihao Yang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Ruixin Qin
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Lihua Guo
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| |
Collapse
|
6
|
Kostova I. Cytotoxic Organometallic Iridium(III) Complexes. Molecules 2025; 30:801. [PMID: 40005112 PMCID: PMC11858622 DOI: 10.3390/molecules30040801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Iridium complexes attract a lot of attention as highly promising antitumor agents due to their various structures, which offer the modification of their physicochemical and biological effects. Compared to conventional platinum-based drugs, iridium complexes are commonly thought to be more active in tumors, resistant to platinum agents and more stable in air and moisture conditions. Chloridoiridium complexes offer a range of advantages facilitating their rational design, reactivity and photochemical activity, leading to different cytotoxic profiles, diverse mechanisms of action and specific intracellular organelles as targets. They are also known as good light-mediated chemotherapeutics, serving as bioimaging and biosensing agents. The potential biological and photophysical properties of chloridoiridium(III) complexes can be readily controlled by suitable ligand modifications and substitution patterns, providing a wide range of versatile structures. Over the years, numerous different structural types of chloridoiridium complexes have been developed and studied for their antineoplastic activity. In this review, the recent advances in the cytotoxicity studies of chloridoiridium(III) compounds have been summarized. The studied complexes have been categorized in this review according to the number of coordinated ligands, the type of donor atoms, nuclearity of the complexes, etc., allowing for a thorough discussion of the structure-activity relationship.
Collapse
Affiliation(s)
- Irena Kostova
- Department of Chemistry, Faculty of Pharmacy, Medical University-Sofia, 1000 Sofia, Bulgaria
| |
Collapse
|
7
|
Fu H, Wang S, Gong Y, Dong H, Lai K, Yang Z, Fan C, Liu Z, Guo L. Triphenylphosphine-modified cyclometalated iridium III complexes as mitochondria-targeting anticancer agents with enhanced selectivity. Bioorg Chem 2025; 155:108148. [PMID: 39799728 DOI: 10.1016/j.bioorg.2025.108148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/29/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
This study presents the development and evaluation of triphenylphosphine-modified cyclometalated iridiumIII complexes as selective anticancer agents targeting mitochondria. By leveraging the mitochondrial localization capability of the triphenylphosphine group, these complexes displayed promising cytotoxicity in the micromolar range (3.12-7.24 μM) against A549 and HeLa cancer cells, these complexes exhibit significantly higher activity compared to their unmodified counterparts lacking the triphenylphosphine moiety. Moreover, they demonstrate improved specificity for cancer cells over normal cells, achieving selectivity index in the range of 5.46-14.83. Mechanistic studies confirmed that these complexes selectively target mitochondria rather than DNA, as shown by confocal microscopy and flow cytometry, where they accumulate to induce mitochondrial dysfunction. This disruption leads to mitochondrial membrane depolarization (MMP), elevated reactive oxygen species (ROS) levels, and activation of intrinsic apoptosis pathways. Furthermore, the complexes induce cell cycle arrest at the G2/M phase and suppress the migration of A549 cells.
Collapse
Affiliation(s)
- Hanxiu Fu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165 PR China
| | - Shuli Wang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165 PR China
| | - Yuwen Gong
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165 PR China
| | - Heqian Dong
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165 PR China
| | - Kangning Lai
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165 PR China
| | - Zhihao Yang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165 PR China
| | - Chunyan Fan
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165 PR China
| | - Zhe Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165 PR China.
| | - Lihua Guo
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165 PR China.
| |
Collapse
|
8
|
Cao J, Guo F, Jiang H, Liu C, Guo J, Cai F, Lin H, Ma L, Chen T. Selenium-containing metallodrug overcomes cervical cancer radioresistance through physical-chemical dual sensitization. Dalton Trans 2025; 54:631-640. [PMID: 39560213 DOI: 10.1039/d4dt02643h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Radiotherapy is an important treatment for cervical cancer, but the efficacy of radiotherapy is often reduced in clinical practice owing to high frequency and high dose radiation leading to radiotherapy resistance. The development of efficient and low-toxicity radiotherapy sensitizers to reduce radiation dose is an effective strategy. Therefore, based on the existing radiotherapy sensitizers responding to radiophysical sensitization radiotherapy, we propose to design radiotherapy sensitizers with enzyme-mimicking and dual physical-chemical sensitization properties. In this work, we constructed Ru-Se complexes with cytochrome P450 enzyme-mimicking properties. On the one hand, the high concentration of ROS in tumor cells, along with the complexes, catalyzed the oxidation of intracellular active substances, breaking the redox balance of the cells and chemically sensitizing radiotherapy; on the other hand, the high atomic numbers of ruthenium and selenium responded to X-rays and physically sensitized radiotherapy. Experimental results demonstrated that the Ru-Se complexes can efficiently mimic cytochrome P450 enzyme activity and simultaneously respond to radiation dual sensitization radiotherapy, causing the expression of intracellular DNA damage response proteins. Thus, inhibition of repair protein expression overcomes radiotherapy resistance. This work provides a new idea for the development of efficient radiation sensitizers in the future.
Collapse
Affiliation(s)
- Jianrong Cao
- Department of Pharmacy of Puning People's Hospital, Department of Chemistry of Jinan University, State Key Laboratory of Bioactive Molecules and Druggalibility Assessment, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangdong, China510632, China.
| | - Fang Guo
- Department of Pharmacy of Puning People's Hospital, Department of Chemistry of Jinan University, State Key Laboratory of Bioactive Molecules and Druggalibility Assessment, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangdong, China510632, China.
| | - Haiyan Jiang
- Guangdong Province Research Center for Geoanalysis, Guangzhou 510080, China
| | - Chang Liu
- Department of Pharmacy of Puning People's Hospital, Department of Chemistry of Jinan University, State Key Laboratory of Bioactive Molecules and Druggalibility Assessment, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangdong, China510632, China.
| | - Junxian Guo
- Department of Pharmacy of Puning People's Hospital, Department of Chemistry of Jinan University, State Key Laboratory of Bioactive Molecules and Druggalibility Assessment, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangdong, China510632, China.
| | - Fei Cai
- Department of Pharmacy of Puning People's Hospital, Department of Chemistry of Jinan University, State Key Laboratory of Bioactive Molecules and Druggalibility Assessment, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangdong, China510632, China.
| | - Hao Lin
- Department of Pharmacy of Puning People's Hospital, Department of Chemistry of Jinan University, State Key Laboratory of Bioactive Molecules and Druggalibility Assessment, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangdong, China510632, China.
| | - Li Ma
- Department of Pharmacy of Puning People's Hospital, Department of Chemistry of Jinan University, State Key Laboratory of Bioactive Molecules and Druggalibility Assessment, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangdong, China510632, China.
| | - Tianfeng Chen
- Department of Pharmacy of Puning People's Hospital, Department of Chemistry of Jinan University, State Key Laboratory of Bioactive Molecules and Druggalibility Assessment, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangdong, China510632, China.
| |
Collapse
|
9
|
Štarha P. Anticancer iridium( iii) cyclopentadienyl complexes. Inorg Chem Front 2025. [DOI: 10.1039/d4qi02472a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
A comprehensive review of anticancer iridium(iii) cyclopentadienyl complexes, including a critical discussion of structure–activity relationships and mechanisms of action, is provided.
Collapse
Affiliation(s)
- Pavel Štarha
- Department of Inorganic Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic
| |
Collapse
|
10
|
Liu Z, Fu H, Dong H, Lai K, Yang Z, Fan C, Luo Y, Qin W, Guo L. Triphenylphosphine-Modified Iridium III, Rhodium III, and Ruthenium II Complexes to Achieve Enhanced Anticancer Selectivity by Targeting Mitochondria. Inorg Chem 2024; 63:24736-24753. [PMID: 39681494 DOI: 10.1021/acs.inorgchem.4c03975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The incorporation of an organelle-targeting moiety into compounds has proven to be an effective strategy in the development of targeted anticancer drugs. We herein report the synthesis, characterization, and biological evaluation of novel triphenylphosphine-modified half-sandwich iridiumIII, rhodiumIII, and rutheniumII complexes. The primary goal was to enhance anticancer selectivity through mitochondrial targeting. All these triphenylphosphine-modified complexes exhibited promising cytotoxicity in the micromolar range (5.13-23.22) against A549 and HeLa cancer cell lines, surpassing the activity of comparative complexes that lack the triphenylphosphine moiety. Noteworthy is their good selectivity toward cancer cells compared to normal BEAS-2B cells, underscored by selectivity index ranging from 7.3 to >19.5. Mechanistically, these complexes primarily target mitochondria rather than interacting with DNA. The targeting of mitochondria and triggering mitochondrial dysfunction were confirmed using both confocal microscopy and flow cytometry. Their ability to depolarize mitochondrial membrane potential (MMP) and enhance reactive oxygen species (ROS) was observed, thereby leading to intrinsic apoptotic pathways. Moreover, these complexes lead to cell cycle arrest in the G2/M phase and demonstrated antimigration effects, significantly inhibiting the migration of A549 cells in wound-healing assays.
Collapse
Affiliation(s)
- Zhe Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Hanxiu Fu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Heqian Dong
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Kangning Lai
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Zhihao Yang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Chunyan Fan
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yuting Luo
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Wenting Qin
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Lihua Guo
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| |
Collapse
|
11
|
Pattanayak PD, Banerjee A, Sahu G, Das S, Lima S, Akintola O, Buchholz A, Görls H, Plass W, Reuter H, Dinda R. Insights into the Theranostic Activity of Nonoxido V IV: Lysosome-Targeted Anticancer Metallodrugs. Inorg Chem 2024; 63:19418-19438. [PMID: 39340532 DOI: 10.1021/acs.inorgchem.4c03389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Developing new anticancer agents can be useful, with the ability to diagnose and treat cancer worldwide. Previously, we focused on examining the effects of nonoxidovanadium(IV) complexes on insulin mimetic and cytotoxicity activity. In this study, in addition to the cytotoxic activity, we evaluated their bioimaging properties. This study investigates the synthesis of four stable nonoxido VIV complexes [VIV(L1-4)2] (1-4) using aroylhydrazone ligands (H2L1-4) and their full characterization in solid state and the solution phase stability using various physicochemical techniques. The biomolecular (DNA/HSA) interaction of the complexes was evaluated by using conventional methods. The in vitro cytotoxicity of 1-4 was studied against A549 and LN-229 cancer cell lines and found that drug 2 displayed the highest activity among the four. Since 1-4 are fluorescently active, live cell imaging was used to evaluate their cellular localization activity. Complexes specifically target the lysosome and damage lysosome integrity by producing an excessive amount (9.7-fold) of reactive oxygen species (ROS) compared to the control, which may cause cell apoptosis. Overall, this study indicates that 2 has the greatest potential for the development of multifunctional theranostic agents that combine imaging capabilities and anticancer properties of nonoxidovanadium(IV)-based metallodrugs.
Collapse
Affiliation(s)
| | - Atanu Banerjee
- Department of Chemistry, National Institute of Technology, 769008 Rourkela, Odisha, India
| | - Gurunath Sahu
- Department of Chemistry, National Institute of Technology, 769008 Rourkela, Odisha, India
| | - Sanchita Das
- Department of Chemistry, National Institute of Technology, 769008 Rourkela, Odisha, India
| | - Sudhir Lima
- Department of Chemistry, National Institute of Technology, 769008 Rourkela, Odisha, India
| | - Oluseun Akintola
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Axel Buchholz
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Hans Reuter
- Institute of Chemistry of New Materials, University of Osnabrück, Barbarastrasse 7, 49067 Osnabrück, Germany
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, 769008 Rourkela, Odisha, India
| |
Collapse
|
12
|
Rafikova K, Meriç N, Binbay NE, Okumuş V, Erdem K, Belyankova Y, Tursynbek S, Dauletbakov A, Bayazit S, Zolotareva D, Yerassyl K, Güzel R, Ocak YS, Aydemir M. Well designed iridium-phosphinite complexes: Biological assays, electrochemical behavior and density functional theory calculations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 318:124448. [PMID: 38763019 DOI: 10.1016/j.saa.2024.124448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024]
Abstract
Mononuclear phosphinite Iridium complexes based on ferrocene group have been prepared and characterized by various spectroscopic techniques. The complexes were subjected to cyclic voltammetry studies in order to determine the energies of HOMO and LUMO levels and to estimate their electrochemical and some electronic properties. Organic complex-based memory substrates were immobilized using TiO2-modified ITO electrodes, and the memory functions of phosphinite-based organic complexes were verified by chronoamperometry (CA) and open-circuit potential amperometry (OCPA). Extensive theoretical and experimental investigations were directed to gain a more profound understanding of the chemical descriptors and the diverse electronic transitions taking place within the iridium complexes, as well as their electrochemical characteristics. The quantum chemical calculations were carried out for the iridium complexes at the DFT/CAM-B3LYP level of theory in the gas phase. Furthermore, the antioxidant, antimicrobial, DNA binding, and DNA cleavage activities of the complexes were tested. Complex 2 exhibited the highest radical scavenging activity (67.5 ± 2.24 %) at 200.0 mg/L concentration. It was observed that the complexes formed an inhibition zone in the range of 8-15 mm against Gram + bacteria and in the range of 0-13 mm against Gram - bacteria. The agarose gel electrophoresis method was used to determine the DNA binding and DNA cleavage activities of the complexes. All of the tested complexes had DNA binding activity; however, complexes 1, 2, and 8 showed better binding activity than the others.
Collapse
Affiliation(s)
- Khadichakhan Rafikova
- Satbayev University, Institute of Chemical and Biological Technologies, Almaty, Kazakhstan; Kazakh-British Technical University, School of Chemical Engineering, Almaty, Kazakhstan
| | - Nermin Meriç
- Dicle University, Faculty of Science, Department of Chemistry, 21280 Diyarbakir, Turkey; Dicle University, Technical Vocational School, Department of Hair Care and Beauty Services, 21280 Diyarbakir, Turkey.
| | - Nil Ertekin Binbay
- Dicle University, Technical Vocational School, Department of Electronics, 21280 Diyarbakir, Turkey
| | - Veysi Okumuş
- Siirt University, Faculty of Medicine, Department of Medical Biology, 56100 Siirt, Turkey
| | - Kemal Erdem
- Siirt University, Instution of Science, Department of Biology, Siirt 56100, Turkey
| | - Yelizaveta Belyankova
- Kazakh-British Technical University, School of Chemical Engineering, Almaty, Kazakhstan
| | - Saniya Tursynbek
- Kazakh-British Technical University, School of Chemical Engineering, Almaty, Kazakhstan
| | - Anuar Dauletbakov
- Kazakh-British Technical University, School of Chemical Engineering, Almaty, Kazakhstan
| | - Sarah Bayazit
- Kazakh-British Technical University, School of Chemical Engineering, Almaty, Kazakhstan
| | - Darya Zolotareva
- Kazakh-British Technical University, School of Chemical Engineering, Almaty, Kazakhstan
| | - Kamshyger Yerassyl
- Kazakh-British Technical University, School of Chemical Engineering, Almaty, Kazakhstan
| | - Remziye Güzel
- Dicle University, Faculty of Education, Department of Science, Diyarbakir 21280, Turkey
| | - Yusuf Selim Ocak
- Institute of Nanotechnology, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Murat Aydemir
- Dicle University, Faculty of Science, Department of Chemistry, 21280 Diyarbakir, Turkey.
| |
Collapse
|
13
|
Guo L, Li P, Jing Z, Gong Y, Lai K, Fu H, Dong H, Yang Z, Liu Z. Iminoamido chelated iridium(III) and ruthenium(II) anticancer complexes with mitochondria-targeting ability and potential to overcome cisplatin resistance. J Inorg Biochem 2024; 258:112631. [PMID: 38843774 DOI: 10.1016/j.jinorgbio.2024.112631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 07/01/2024]
Abstract
A diverse set of neutral half-sandwich iminoamido iridium and ruthenium organometallic complexes is synthesized through the utilization of Schiff base pro-ligands with N˄N donors. Notably, these metal complexes with varying leaving groups (Cl- or OAc-) are formed by employing different quantities of the deprotonating agent NaOAc, and exhibit promising cytotoxicity against various cancer cell lines such as A549 and cisplatin-resistant A549/DDP lung cancer cells, as well as HeLa cells, with IC50 values spanning from 9.26 to 15.98 μM. Cytotoxicity and anticancer selectivity (SI: 1.9-2.4) of these metal complexes remain unaffected by variations in the metal center, leaving group, and ligand substitution. Further investigations reveal that these metal complexes specifically target mitochondria, leading to the depolarization of the mitochondrial membrane and instigating the production of intracellular reactive oxygen species. Furthermore, the metal complexes are found to induce late apoptosis and disrupt the cell cycle, leading to G2/M cell cycle arrest specifically in A549 cancer cells. In light of these findings, it is evident that the primary mechanism contributing to the anticancer effectiveness of these metal complexes is the redox pathway.
Collapse
Affiliation(s)
- Lihua Guo
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China.
| | - Pengwei Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Zhihong Jing
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Yuwen Gong
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Kangning Lai
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Hanxiu Fu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Heqian Dong
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Zhihao Yang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Zhe Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, Institute of Anticancer Agents Development and Theranostic Application, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China.
| |
Collapse
|
14
|
Masternak J, Okła K, Kubas A, Voller J, Kozlanská K, Zienkiewicz-Machnik M, Gilewska A, Sitkowski J, Kamecka A, Kazimierczuk K, Barszcz B. Synthesis, photophysical characterisation, quantum-chemical study and in vitro antiproliferative activity of cyclometalated Ir(III) complexes based on 3,5-dimethyl-1-phenyl-1 H-pyrazole and N,N-donor ligands. Dalton Trans 2024; 53:14438-14450. [PMID: 39143927 DOI: 10.1039/d4dt01796j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
In this paper, we present the synthesis of four new complexes: the dimeric precursor [Ir(dmppz)2(μ-Cl)]2 (1) (Hdmppz - 3,5-dimethyl-1-phenyl-1H-pyrazole) and heteroleptic bis-cyclometalated complexes: [Ir(dmppz)2(Py2CO)]PF6·½CH2Cl2 (2), [Ir(dmppz)2(H2biim)]PF6·H2O (3), and [Ir(dmppz)2(PyBIm)]PF6 (4), with auxiliary N,N-donor ligands: 2-di(pyridyl)ketone (Py2CO), 2,2'-biimidazole (H2biim) and 2-(2'-pyridyl)benzimidazole (PyBIm). In the obtained complexes, SC-X-ray analysis revealed that Ir(III) has an octahedral coordination sphere with chromophores of the type {IrN2C2Cl2} (1) or {IrN4C2} (2-4). The complexes obtained, which have been fully characterised by physicochemical methods (CHN, TG, FTIR, UV-Vis, PL and 1H, 13C, 15N NMR), were used to continue our studies on the factors influencing the cytotoxic properties of potential chemotherapeutic agents (in vitro). To this end, the following studies are presented: (i) comparative analysis of the effects on the biological properties of N,N-donor ligands and C,N-donor ligands in the studied complexes, (ii) studies of the interactions of the compounds with the selected molecular target: DNA and BSA (UV-Vis, CD and PL methods), (iii) and the reactivity towards redox molecules: GSH, NADH (UV-Vis and/or ESI-MS methods), (iv) cytotoxic activity (IC50) of potential chemotherapeutics against MCF-7, K-562 and CCRF-CEM cell lines.
Collapse
Affiliation(s)
- Joanna Masternak
- Institute of Chemistry, Jan Kochanowski University in Kielce, Uniwersytecka 7, 25-406 Kielce, Poland.
| | - Karol Okła
- Institute of Chemistry, Jan Kochanowski University in Kielce, Uniwersytecka 7, 25-406 Kielce, Poland.
| | - Adam Kubas
- Institute of Physical Chemistry, Polish Academy of Sciences, Marcina Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Jiří Voller
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Karolína Kozlanská
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | | | - Agnieszka Gilewska
- Institute of Chemistry, Jan Kochanowski University in Kielce, Uniwersytecka 7, 25-406 Kielce, Poland.
| | - Jerzy Sitkowski
- Institute of Organic Chemistry, Polish Academy of Sciences, Marcina Kasprzaka 44/52, 01-224 Warsaw, Poland
- National Medicines Institute, Chełmska 30/34, 00-725 Warsaw, Poland
| | - Anna Kamecka
- Faculty of Sciences, University of Siedlce, 3-Maja 54, 08-110 Siedlce, Poland
| | - Katarzyna Kazimierczuk
- Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Barbara Barszcz
- Institute of Chemistry, Jan Kochanowski University in Kielce, Uniwersytecka 7, 25-406 Kielce, Poland.
| |
Collapse
|
15
|
Zhang LL, Huang X, Azam M, Yuan HX, Ma FJ, Cheng YZ, Zhang LP, Sun D. Silver(I) Complexes with Mefenamic Acid and Nitrogen Heterocyclic Ligands: Synthesis, Characterization, and Biological Evaluation. Inorg Chem 2024; 63:12624-12634. [PMID: 38910548 DOI: 10.1021/acs.inorgchem.4c01766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Four Ag(I) complexes with mefenamato and nitrogen heterocyclic ligands, [Ag(2-apy)(mef)]2 (1), [Ag(3-apy)(mef)] (2), [Ag2(tmpyz)(mef)2] (3), and {[Ag(4,4'-bipy)(mef)]2(CH3CN)1.5(H2O)2}n (4), (mef = mefenamato, 2-apy = 2-aminopyridine, 3-apy = 3-aminopyridine, tmpyz = 2,3,5,6-tetramethylpyrazine, 4,4'-bipy = 4,4'-bipyridine), were synthesized and characterized. The interactions of these complexes with BSA were investigated by fluorescence spectroscopy, which indicated that these complexes quench the fluorescence of BSA by a static mechanism. The fluorescence data also indicated that the complexes showed good affinity for BSA, and one binding site on BSA was suitable for the complexes. The in vitro cytotoxicity of the four complexes against human cancer cell lines (MCF-7, HepG-2, A549, and MDA-MB-468) and one normal cell line (HTR-8) was evaluated by the MTT assay. Complex 1 displayed high cytotoxic activity against A549 cells. Further studies revealed that complex 1 could enhance the intracellular levels of ROS (reactive oxygen species) in A549 cells, cause cell cycle arrest in the G0/G1 phase, and induce apoptosis in A549 cells in a dose-dependent manner.
Collapse
Affiliation(s)
- Lu-Lin Zhang
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, P. R. China
| | - Xiang Huang
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, P. R. China
| | - Mohammad Azam
- Department of Chemistry, College of Science, King Saud University, P.O. BOX 2455, Riyadh 11451, Saudi Arabia
| | - Hua-Xin Yuan
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, P. R. China
| | - Feng-Jie Ma
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, P. R. China
| | - Yuan-Zheng Cheng
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, P. R. China
| | - Li-Ping Zhang
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, P. R. China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, P. R. China
| |
Collapse
|
16
|
Vechalapu SK, Kumar R, Chatterjee N, Gupta S, Khanna S, Thimmappa PY, Senthil S, Eerlapally R, Joshi MB, Misra SK, Draksharapu A, Allimuthu D. Redox modulator iron complexes trigger intrinsic apoptosis pathway in cancer cells. iScience 2024; 27:109899. [PMID: 38799569 PMCID: PMC11126827 DOI: 10.1016/j.isci.2024.109899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/21/2024] [Accepted: 05/01/2024] [Indexed: 05/29/2024] Open
Abstract
The emergence of multidrug resistance in cancer cells necessitates the development of new therapeutic modalities. One way cancer cells orchestrate energy metabolism and redox homeostasis is through overloaded iron pools directed by iron regulatory proteins, including transferrin. Here, we demonstrate that targeting redox homeostasis using nitrogen-based heterocyclic iron chelators and their iron complexes efficiently prevents the proliferation of liver cancer cells (EC50: 340 nM for IITK4003) and liver cancer 3D spheroids. These iron complexes generate highly reactive Fe(IV)=O species and accumulate lipid peroxides to promote oxidative stress in cells that impair mitochondrial function. Subsequent leakage of mitochondrial cytochrome c activates the caspase cascade to trigger the intrinsic apoptosis pathway in cancer cells. This strategy could be applied to leverage the inherent iron overload in cancer cells to selectively promote intrinsic cellular apoptosis for the development of unique iron-complex-based anticancer therapeutics.
Collapse
Affiliation(s)
- Sai Kumari Vechalapu
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Rakesh Kumar
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Niranjan Chatterjee
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Sikha Gupta
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Shweta Khanna
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Pooja Yedehalli Thimmappa
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Sathyapriya Senthil
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Raju Eerlapally
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Manjunath B. Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Santosh K. Misra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Apparao Draksharapu
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Dharmaraja Allimuthu
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
17
|
Boonyuen S, Shanmugam P, Ramachandran R, Phromsatit T, Teerawatananond T, Tantayanon S, Arpornmaeklong P, Shirosaki Y. Exploring copper (II) porphyrin complexes and their derivatives for electrochemical analysis and biological assessment in the study of breast cancer (MCF-7) cell lines. ENVIRONMENTAL RESEARCH 2024; 250:118489. [PMID: 38373552 DOI: 10.1016/j.envres.2024.118489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/22/2024] [Accepted: 02/13/2024] [Indexed: 02/21/2024]
Abstract
In this study, several derivatives of tetraphenylporphyrin were synthesized, each with unique meso-substituent groups including phenyl, methoxyphenyl, butyloxyphenyl, octyloxyphenyl, and dectyloxyphenyl. Additionally, their corresponding copper complexes were prepared and thoroughly characterized. The structural confirmation of all compounds was established through CHN elemental analysis, mass spectrometry, and FT-IR spectroscopy. As the number of carbon atoms in the alkyl long-chain increased, a slight red shift in the electronic absorption band was observed, which was attributed to the electronic influence of the alkyl group. DFT analysis indicated that electron density predominantly localized on the porphyrin ring of both the metal free porphyrins and copper (II) porphyrin complexes, with relatively low electron density in the p orbital of the meso-aryl long-chain substituent group. EPR spectroscopy of the Copper (II) ion complexes revealed signals, indicating their paramagnetic properties. Additionally, the Copper (II) tetraphenylporphyrin (CuTPP) complexes displayed two reversible oxidation peaks at +0.97 V and +1.35 V, whereas other derivatives exhibited lower oxidation potentials. The cytotoxicity of these compounds against MCF-7 cell lines was assessed using MTT assay, revealing cytotoxic effects in all cases. Among them, Copper (II) tetrakis (4-methyloxyphenyl)porphyrin (CuTOMPP) demonstrated the highest potential, with an IC50 value of 32.07 μg/mL.
Collapse
Affiliation(s)
- Supakorn Boonyuen
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathumthani, 12120, Thailand.
| | - Paramasivam Shanmugam
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathumthani, 12120, Thailand
| | - Rajan Ramachandran
- Center of Translational Medicine, Zibo Central Hospital, Zibo, 255036, Shandong, China
| | - Tossapon Phromsatit
- Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathumthani, 12120, Thailand
| | - Thapong Teerawatananond
- Department of Chemistry, Faculty of Science and Technology, Valaya Alongkorn Rajabhat University, Pathumthani, 12120, Thailand
| | - Supawan Tantayanon
- Department of Chemistry, Green Chemistry Research Laboratory, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Yuki Shirosaki
- Department of Materials Science, Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| |
Collapse
|
18
|
Tolbatov I, Umari P, Marrone A. Diruthenium Paddlewheel Complexes Attacking Proteins: Axial versus Equatorial Coordination. Biomolecules 2024; 14:530. [PMID: 38785937 PMCID: PMC11117738 DOI: 10.3390/biom14050530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
Metallodrugs are an important group of medicinal agents used for the treatment of various diseases ranging from cancers to viral, bacterial, and parasitic diseases. Their distinctive features include the availability of a metal centre, redox activity, as well as the ability to multitarget. Diruthenium paddlewheel complexes are an intensely developing group of metal scaffolds, which can securely coordinate bidentate xenobiotics and transport them to target tissues, releasing them by means of substitution reactions with biomolecular nucleophiles. It is of the utmost importance to gain a complete comprehension of which chemical reactions happen with them in physiological milieu to design novel drugs based on these bimetallic scaffolds. This review presents the data obtained in experiments and calculations, which clarify the chemistry these complexes undergo once administered in the proteic environment. This study demonstrates how diruthenium paddlewheel complexes may indeed embody a new paradigm in the design of metal-based drugs of dual-action by presenting and discussing the protein metalation by these complexes.
Collapse
Affiliation(s)
- Iogann Tolbatov
- Department of Physics and Astronomy, University of Padova, Via F. Marzolo 8, 35131 Padova, Italy;
| | - Paolo Umari
- Department of Physics and Astronomy, University of Padova, Via F. Marzolo 8, 35131 Padova, Italy;
| | - Alessandro Marrone
- Dipartimento di Farmacia, Università “G d’Annunzio” di Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy;
| |
Collapse
|
19
|
Deka B, Sarkar T, Bhattacharyya A, Butcher RJ, Banerjee S, Deka S, Saikia KK, Hussain A. Synthesis, characterization, and cancer cell-selective cytotoxicity of mixed-ligand cobalt(III) complexes of 8-hydroxyquinolines and phenanthroline bases. Dalton Trans 2024; 53:4952-4961. [PMID: 38275106 DOI: 10.1039/d3dt04045c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Transition metal complexes exhibiting selective toxicity towards a broad range of cancer types are highly desirable as potential anticancer agents. Herein, we report the synthesis, characterization, and cytotoxicity studies of six new mixed-ligand cobalt(III) complexes of general formula [Co(B)2(L)](ClO4)2 (1-6), where B is a N,N-donor phenanthroline base, namely, 1,10-phenanthroline (phen in 1, 2), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq in 3, 4), and dipyrido[3,2-a:2',3'-c]phenazine (dppz in 5, 6), and L is the monoanion of 8-hydroxyquinoline (HQ in 1, 3, 5) and 5-chloro-7-iodo-8-hydroxyquinoline (CQ in 2, 4, 6). The X-ray single crystal structures of complexes 1 and 2 as PF6- salts revealed a distorted octahedral CoN5O coordination environment. Complexes demonstrated good stability in an aqueous buffer medium and in the presence of ascorbic acid as a reductant. Cytotoxicity studies using a panel of nine cancer cell lines showed that complex 6, with the dppz and CQ ligands, was significantly toxic against most cancer cell types, yielding IC50 values in the range of 2 to 14 μM. Complexes 1, 3, and 5, containing the HQ ligand, displayed lower toxicity compared to their CQ counterparts. The phenanthroline complexes demonstrated marginal toxicity towards the tested cell lines, while the dpq complexes exhibited moderate toxicity. Interestingly, all complexes demonstrated negligible toxicity towards normal HEK-293 kidney cells (IC50 > 100 μM). The observed cytotoxicity of the complexes correlated well with their lipophilicities (dppz > dpq > phen). The cytotoxicity of complex 6 was comparable to that of the clinical drug cisplatin under similar conditions. Notably, neither the HQ nor the CQ ligands alone demonstrated noticeable toxicity against any of the tested cell lines. The Annexin-V-FITC and DCFDA assays revealed that the cell death mechanism induced by the complexes involved apoptosis, which could be attributed to the metal-assisted generation of reactive oxygen species. Overall, the dppz complex 6, with its remarkable cytotoxicity against a broad range of cancer cells and negligible toxicity toward normal cells, holds significant potential for cancer chemotherapeutic applications.
Collapse
Affiliation(s)
- Banashree Deka
- Department of Chemistry, Handique Girls' College, Guwahati 781001, Assam, India.
| | - Tukki Sarkar
- Department of Chemistry, Handique Girls' College, Guwahati 781001, Assam, India.
| | - Arnab Bhattacharyya
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, Karnataka, India.
| | - Ray J Butcher
- Department of Chemistry, Howard University, 525 College Street, NW 20059, USA.
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, UP 221005, India.
| | - Sasanka Deka
- Department of Chemistry, University of Delhi, New Delhi 110024, India.
| | - Kandarpa K Saikia
- Department of Bioengineering and Technology, GUIST, Gauhati University, Guwahati 781014, Assam, India.
| | - Akhtar Hussain
- Department of Chemistry, Handique Girls' College, Guwahati 781001, Assam, India.
| |
Collapse
|
20
|
Richa, Kumar V, Kataria R. Phenanthroline and Schiff Base associated Cu(II)-coordinated compounds containing N, O as donor atoms for potent anticancer activity. J Inorg Biochem 2024; 251:112440. [PMID: 38065049 DOI: 10.1016/j.jinorgbio.2023.112440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/25/2023]
Abstract
As an inherent metal ion, copper has been the subject of investigation for developing a novel antitumoral compound that exhibits fewer adverse effects. Copper serves as a cofactor in multiple enzymes, generates reactive oxygen species (ROS), facilitates tumour evolution, metastasis and angiogenesis and has been detected at elevated concentrations in the serum and tissues of various human cancer types. In the given setting, utilising two methodologies in developing novel Copper-based pharmaceuticals for anti-cancer applications is standard practice. These approaches involve either the sequestration of unbound Copper ions or the synthesis of Copper complexes that induce cellular apoptosis. In the past four decades, the latter system has been used, leading to numerous reviews that have examined the anticancer characteristics of a wide range of Copper complexes. These analyses have consistently demonstrated that multiple factors frequently influence the efficacy of these compounds. This review examines the possible anticancer properties of copper and Cu(II) complexes that incorporate Schiff base ligands containing 1,10-phenanthroline. The present study will comprehensively analyse the examined cell lines and mechanistic research associated with each complex.
Collapse
Affiliation(s)
- Richa
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Vinod Kumar
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh 123031, Haryana, India
| | - Ramesh Kataria
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
21
|
Guo L, Li P, Li J, Gong Y, Li X, Wen T, Wu X, Yang X, Liu Z. Potent Half-Sandwich 16-/18-Electron Iridium(III) and Ruthenium(II) Anticancer Complexes with Readily Available Amine-Imine Ligands. Inorg Chem 2023; 62:21379-21395. [PMID: 38096360 DOI: 10.1021/acs.inorgchem.3c03471] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
The synthesis and biological evaluation of stable 16-electron half-sandwich complexes have remained scarce. We herein present the different coordination modes (16-electron or 18-electron) between half-sandwich iridium(III) complexes and ruthenium(II) complexes derived from the same amine-imine ligands chelating hybrid sp3-N/sp2-N donors. The 16-electron iridium(III) and 18-electron ruthenium(II) complexes with different counteranions were obtained and identified by various techniques. The promising cytotoxicity of these complexes against A549 lung cancer cells, cisplatin-resistant A549/DPP cells, cervical carcinoma HeLa cells, and human hepatocellular liver carcinoma HepG2 cells was observed with IC50 values ranging from 5.4 to 16.3 μM. Moreover, these complexes showed a certain selectivity (selectivity index: 2.1-3.7) toward A549 cells and BEAS-2B normal cells. The variation of metal center, counteranion, 16/18-electron coordination mode, and ligand substituents showed little influence on the cytotoxicity and selectivity of these complexes. The mechanism of action study showed that these complexes could target mitochondria, induce the depolarization of the mitochondrial membrane, and promote the generation of intracellular reactive oxygen species (ROS). Further, the induction of cell apoptosis and the perturbation of the cell cycle in the G0/G1 phase were also observed for these complexes. Overall, it seems that the redox mechanism dominated the anticancer efficacy of these complexes.
Collapse
Affiliation(s)
- Lihua Guo
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Pengwei Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Jiaxing Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yuwen Gong
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Xiaoyuan Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Tingjun Wen
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Xinxin Wu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Xinyi Yang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Zhe Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| |
Collapse
|
22
|
D’Amato A, Mariconda A, Iacopetta D, Ceramella J, Catalano A, Sinicropi MS, Longo P. Complexes of Ruthenium(II) as Promising Dual-Active Agents against Cancer and Viral Infections. Pharmaceuticals (Basel) 2023; 16:1729. [PMID: 38139855 PMCID: PMC10747139 DOI: 10.3390/ph16121729] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Poor responses to medical care and the failure of pharmacological treatment for many high-frequency diseases, such as cancer and viral infections, have been widely documented. In this context, numerous metal-based substances, including cisplatin, auranofin, various gold metallodrugs, and ruthenium complexes, are under study as possible anticancer and antiviral agents. The two Ru(III) and Ru(II) complexes, namely, BOLD-100 and RAPTA-C, are presently being studied in a clinical trial and preclinical studies evaluation, respectively, as anticancer agents. Interestingly, BOLD-100 has also recently demonstrated antiviral activity against SARS-CoV-2, which is the virus responsible for the COVID-19 pandemic. Over the last years, much effort has been dedicated to discovering new dual anticancer-antiviral agents. Ru-based complexes could be very suitable in this respect. Thus, this review focuses on the most recent studies regarding newly synthesized Ru(II) complexes for use as anticancer and/or antiviral agents.
Collapse
Affiliation(s)
- Assunta D’Amato
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (A.D.); (P.L.)
| | | | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.S.S.)
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.S.S.)
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.S.S.)
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (A.D.); (P.L.)
| |
Collapse
|
23
|
Das R, Paira P. GSH resistant, luminescent 2-(pyren-1-yl)-1 H-imidazo[4,5- f][1,10]phenanthroline-based Ru(II)/Ir(III)/Re(I) complexes for phototoxicity in triple-negative breast cancer cells. Dalton Trans 2023; 52:15365-15376. [PMID: 37493615 DOI: 10.1039/d3dt01667f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Selective chemotherapeutic strategies necessitate the emergence of a photosensitive scaffold to abate the nuisance of cancer. In the current context, photo-activated chemotherapy (PACT) has, therefore, appeared to be very effective to vanquish the vehemence of triple-negative breast cancer (TNBC). Metal complexes have been identified to act well against cancer cell microenvironment (high GSH content, low pH, and hypoxia), and thus they have been employed in the treatment of various types of cancer. As TNBC is very challenging to treat owing to its poor prognosis, lack of a specific target, high chance of relapse, and strong metastatic ability, herein we have aspired to design GSH-resistant phototoxic Ru(II)/Ir(III)/Re(I) based pyrene imidazophenathroline complexes to selectively avert the triple-negative breast cancer. The application of complexes, [RuL], [IrL], and [ReL] in the absence and in the presence of GSH against MDA-MB-231TNBC cells, has revealed that they are very active upon irradiation of visible light compared to dark due to the creation of copious singlet oxygen (1O2) as reactive oxygen species (ROS). Among three synthesized complexes, [IrL] has shown outstanding potency (IC50 = 3.70 in the absence of GSH and IC50 = 3.90 in the presence of GSH). Also, the complex, [IrL] is capable of interacting with DNA with the highest binding constant (Kb = 0.023 × 106 M-1) along with higher protein binding affinity (KBSA = 0.0321 × 106 M-1). Here, it has been unveiled that all the complexes have been entitled to involve DNA covalent interaction through the available sites of both adenine and guanine bases.
Collapse
Affiliation(s)
- Rishav Das
- Department of Chemistry, School of advanced sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| | - Priyankar Paira
- Department of Chemistry, School of advanced sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| |
Collapse
|
24
|
Guo L, Li P, Li J, Gong Y, Li X, Liu Y, Yu K, Liu Z. Half-Sandwich Iridium(III), Rhodium(III), and Ruthenium(II) Complexes Chelating Hybrid sp 2-N/sp 3-N Donor Ligands to Achieve Improved Anticancer Selectivity. Inorg Chem 2023; 62:15118-15137. [PMID: 37671819 DOI: 10.1021/acs.inorgchem.3c02118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
The biological efficacy of half-sandwich platinum group organometallic complexes of the formula [(η5-Cpx)/(η6-arene)M(XY)Cl]0/+ (XY = bidentate ligands; Cpx = functionalized cyclopentadienyl; M = Ir, Rh, Ru, Os) has received considerable attention due to the significance of the metal center, chelating ligand, and Cpx/arene moieties in defining their anticancer potency and selectivity. With a facile access to the BIAN-derived imine-amine ligands using alkylaluminum as the reductant, we herein described the preparation and characterization of 16 half-sandwich Ir(III), Rh(III), and Ru(II) complexes chelating the hybrid sp2-N/sp3-N donor ligand. A nonplanar five-member metallacycle was confirmed by X-ray single-crystal structures of Ir1-Ir3, Ir7, Rh1, Ru1, and Ru4. The attempt to prepare imine-amido complexes using a base as the deprotonating agent led to the mixture of imine-amine complexes, within which the leaving group Cl- was displaced, and 16-electron imine-amido complexes without Cl-. The half-sandwich imine-amine complexes in this system underwent rapid hydrolysis in aqueous solution, exhibited weak photoluminescence, and showed the ability of binding to CT-DNA and BSA. The cytotoxicity of all imine-amine complexes against A549 lung cancer cell lines, HeLa cervical cancer cell lines, and 4T1 mouse breast cancer cells was determined by an MTT assay. The IC50 values of these complexes were in a range of 5.71-67.28 μM. Notably, most of these complexes displayed improved selectivity toward A549 cancer cells versus noncancerous BEAS-2B cells in comparison with the corresponding α-diimine complexes chelating the sp2-N/sp2-N donor ligand, which have been shown no selectivity in our previous report. The anticancer selectivity of these complexes appeared to be related to the redox-based mechanism including the catalytic oxidation of NADH to NAD+, reactive oxygen species (ROS) generation, and depolarization of the mitochondrial membrane. Further, inducing apoptosis of these complexes in A549 cancer cells and BEAS-2B normal cells also correlated with their anticancer selectivity, indicating the apoptosis mode of cell death in this system. In addition, these complexes could enter A549 cells via energy-dependent pathway and were able to impede the in vitro migration of A549 cells.
Collapse
Affiliation(s)
- Lihua Guo
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Pengwei Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Jiaxing Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yuwen Gong
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Xiaoyuan Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yiming Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Kaijian Yu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Zhe Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| |
Collapse
|
25
|
Jin S, Yin E, Feng C, Sun Y, Yang T, Yuan H, Guo Z, Wang X. Regulating tumor glycometabolism and the immune microenvironment by inhibiting lactate dehydrogenase with platinum(iv) complexes. Chem Sci 2023; 14:8327-8337. [PMID: 37564403 PMCID: PMC10411615 DOI: 10.1039/d3sc01874a] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
Lactate dehydrogenase (LDH) is a key enzyme involved in the process of glycolysis, assisting cancer cells to take in glucose and generate lactate, as well as to suppress and evade the immune system by altering the tumor microenvironment (TME). Platinum(iv) complexes MDP and DDP were prepared by modifying cisplatin with diclofenac at the axial position(s). These complexes exhibited potent antiproliferative activity against a panel of human cancer cell lines. In particular, DDP downregulated the expression of LDHA, LDHB, and MCTs to inhibit the production and influx/efflux of lactate in cancer cells, impeding both glycolysis and glucose oxidation. MDP and DDP also reduced the expression of HIF-1α, ARG1 and VEGF, thereby disrupting the formation of tumor vasculature. Furthermore, they promoted the repolarization of macrophages from the tumor-supportive M2 phenotype to the tumor-suppressive M1 phenotype in the TME, thus enhancing the antitumor immune response. The antitumor mechanism involves reprogramming the energy metabolism of tumor cells and relieving the immunosuppressive TME.
Collapse
Affiliation(s)
- Suxing Jin
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University Nanjing 210023 P. R. China +86 25 89684549 +86 25 89684549
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University Nanjing 210023 P. R. China
| | - Enmao Yin
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University Nanjing 210023 P. R. China +86 25 89684549 +86 25 89684549
| | - Chenyao Feng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University Nanjing 210023 P. R. China +86 25 89684549 +86 25 89684549
| | - Yuewen Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University Nanjing 210023 P. R. China +86 25 89684549 +86 25 89684549
| | - Tao Yang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
- Chemistry and Biomedicine Innovation Center, Nanjing University Nanjing 210023 P. R. China
| | - Hao Yuan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
- Chemistry and Biomedicine Innovation Center, Nanjing University Nanjing 210023 P. R. China
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University Nanjing 210023 P. R. China +86 25 89684549 +86 25 89684549
| |
Collapse
|
26
|
Bashir M, Mantoo IA, Arjmand F, Tabassum S, Yousuf I. An overview of advancement of organoruthenium(II) complexes as prospective anticancer agents. Coord Chem Rev 2023; 487:215169. [DOI: 10.1016/j.ccr.2023.215169] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
|
27
|
Hashmi K, Gupta S, Siddique A, Khan T, Joshi S. Medicinal applications of vanadium complexes with Schiff bases. J Trace Elem Med Biol 2023; 79:127245. [PMID: 37406475 DOI: 10.1016/j.jtemb.2023.127245] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/31/2023] [Accepted: 06/15/2023] [Indexed: 07/07/2023]
Abstract
Many transition metal complexes have been explored for their therapeutic properties after the discovery of cisplatin. Schiff bases have an efficient complexation tendency with the transition metals and several medicinal properties have been reported. However, fewer studies have reported the medicinal utility of vanadium and its Schiff base complexes. This paper provides a comprehensive overview of vanadium complexes with Schiff bases along with their mechanistic insight. Vanadium complexes in + 4 and + 5 oxidation states have exhibited well-defined geometry and found to be thermodynamically stable. The studies have reported the G0/G1 phase cell cycle arrest and decreased delta psi m, inducing mitochondrial membrane depolarization in cancer cell lines along with the alterations in the metabolism of the cancer cells upon dosing with the vanadium complexes. Cancer cell invasion and growth are also found to be markedly reduced by peroxo complexes of vanadium. The studies included in the review paper have been taken from leading indexing databases and focus was laid on recent reports in literature. The biological potential of vanadium complexes of Schiff bases opens new horizons for future interdisciplinary studies and investigation focussed on understanding the biochemistry of these complexes, along with designing new complexes which have better bioavailability, solubility and low or non-toxicity.
Collapse
Affiliation(s)
- Kulsum Hashmi
- Department of Chemistry, Isabella Thoburn College, Lucknow, UP 226007, India
| | - Sakshi Gupta
- Department of Chemistry, Isabella Thoburn College, Lucknow, UP 226007, India
| | - Armeen Siddique
- Department of Chemistry, Isabella Thoburn College, Lucknow, UP 226007, India
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Lucknow, UP 226026, India
| | - Seema Joshi
- Department of Chemistry, Isabella Thoburn College, Lucknow, UP 226007, India.
| |
Collapse
|
28
|
Mahmood K, Akhter Z, Perveen F, Aisha, Bibi M, Ismail H, Tabassum N, Yousuf S, Ashraf AR, Qayyum MA. Synthesis, DNA binding and biological evaluation of benzimidazole Schiff base ligands and their metal(ii) complexes. RSC Adv 2023; 13:11982-11999. [PMID: 37077261 PMCID: PMC10107730 DOI: 10.1039/d3ra00982c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/27/2023] [Indexed: 04/21/2023] Open
Abstract
Two novel benzimidazole ligands (E)-2-((4-(1H-benzo[d]imidazole-2-yl)phenylimino)methyl)-6-bromo-4-chlorophenol (L1) and (E)-1-((4-(1H-benzo[d]imidazole-2-yl)phenylimino)methyl)naphthalene-2-ol (L2) with their corresponding Cu(ii), Ni(ii), Pd(ii) and Zn(ii) complexes were designed and synthesized. The compounds were characterized by elemental, IR, and NMR (1H & 13C) spectral analyses. Molecular masses were determined by ESI-mass spectrometry, and the structure of ligand L1 was confirmed by single crystal X-ray diffraction analysis. Molecular docking was carried out for the theoretical investigation of DNA binding interactions. The results obtained were verified experimentally by UV/Visible absorption spectroscopy in conjunction with DNA thermal denaturation studies. It was observed that ligands (L1 and L2) and complexes (1-8) were moderate to strong DNA binders, as evident from the binding constants (K b). The value was found to be highest for complex 2 (3.27 × 105 M-1) and lowest for 5 (6.40 × 103 M-1). A cell line study revealed that breast cancer cells were less viable to the synthesized compounds compared to that of standard drugs, cisplatin and doxorubicin, at the same concentration. The compounds were also screened for in vitro antibacterial activity for which complex 2 showed a promising broad-spectrum effect against all tested strains of bacteria, almost in the proximity of the reference drug kanamycin, while the rest of the compounds displayed activity against selected strains.
Collapse
Affiliation(s)
- Khalid Mahmood
- Department of Chemistry, Quaid-i-Azam University Islamabad Pakistan
| | - Zareen Akhter
- Department of Chemistry, Quaid-i-Azam University Islamabad Pakistan
| | - Fouzia Perveen
- Research Centre for Modeling and Simulations, National University of Sciences and Technology (NUST) Islamabad Pakistan
| | - Aisha
- Research Centre for Modeling and Simulations, National University of Sciences and Technology (NUST) Islamabad Pakistan
| | - Muneeba Bibi
- Department of Biochemistry, Quaid-i-Azam University Islamabad Pakistan
| | - Hammad Ismail
- Department of Biochemistry and Biotechnology, University of Gujrat Gujrat Pakistan
| | - Nida Tabassum
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi Karachi Pakistan
| | - Sammer Yousuf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi Karachi Pakistan
| | - Ahmad Raza Ashraf
- Department of Chemistry, Division of Science and Technology, University of Education Lahore Pakistan
| | - Muhammad Abdul Qayyum
- Department of Chemistry, Division of Science and Technology, University of Education Lahore Pakistan
| |
Collapse
|
29
|
Mészáros JP, Kovács H, Spengler G, Kovács F, Frank É, Enyedy ÉA. A comparative study on the metal complexes of an anticancer estradiol-hydroxamate conjugate and salicylhydroxamic acid. J Inorg Biochem 2023; 244:112223. [PMID: 37084580 DOI: 10.1016/j.jinorgbio.2023.112223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 04/23/2023]
Abstract
Hydroxamic acids bearing an (O,O) donor set are well-known metal-chelating compounds with diverse biological activities including anticancer activity. Since steroid conjugation with a pharmacophoric moiety may have the potential to improve this effect, a salicylhydroxamic acid-estradiol hybrid molecule (E2HA) was synthesized. Only minimal effect of the conjugation on the proton dissociation constants was observed in comparison to salicylhydroxamic acid (SHA). The complexation with essential metal ions (iron, copper) was characterized, since E2HA may exert its cytotoxicity through the binding of these ions in cells. UV-visible spectrophotometric and pH-potentiometric titrations revealed the formation of high-stability complexes, while the Fe(III) preference over Fe(II) was proved by cyclic voltammetry and spectroelectrochemical measurements. Complex formation with half-sandwich Rh(III)(η5-Cp*) and Ru(II)(η6-p-cymene) organometallic cations was also studied as it may improve the anticancer effect and the pharmacokinetic profile of the ligand. At equimolar concentration the speciation is complicated because of the presence of mononuclear and binuclear complexes. The complexes readily react with small molecules e.g. glutathione, 1-methylimidazole and nucleosides, having major effect on solution speciation, namely mixed-ligand complex formation and ligand displacement occur. These processes serve as models for the interactions with biomolecules in the body. E2HA exerted moderate anticancer activity (IC50 = 25-59 μM) in the tested three human cancer cell lines (Colo205, Colo320 and MCF-7), while being non-toxic on non-cancerous MRC-5 cells. Meanwhile, SHA was inactive in the same cells. Complexation with half-sandwich Rh(III) and Ru(II) cations had only a minor improvement on the cytotoxic effect of E2HA.
Collapse
Affiliation(s)
- János P Mészáros
- MTA-SZTE Lendület Functional Metal Complexes Research Group, Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Hilda Kovács
- MTA-SZTE Lendület Functional Metal Complexes Research Group, Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Gabriella Spengler
- MTA-SZTE Lendület Functional Metal Complexes Research Group, Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary; Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Ferenc Kovács
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Éva Frank
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Éva A Enyedy
- MTA-SZTE Lendület Functional Metal Complexes Research Group, Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary.
| |
Collapse
|
30
|
Chrzanowska M, Katafias A, van Eldik R. Reactivity of non-organometallic ruthenium(II) polypyridyl complexes and their application as catalysts for hydride transfer reactions. Front Chem 2023; 11:1150164. [PMID: 37007058 PMCID: PMC10050333 DOI: 10.3389/fchem.2023.1150164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/21/2023] [Indexed: 03/17/2023] Open
Abstract
Recently, we investigated the substitution behavior of a series of ruthenium(II) complexes of the general formula [RuII(terpy)(N∧N)Cl]Cl, where terpy = 2,2′:6′,2″-terpyridine, N∧N = bidentate ligand, in aqueous solutions. We have shown that the most and least reactive complexes of the series are [RuII(terpy)(en)Cl]Cl (en = ethylenediamine) and [RuII(terpy)(phen)Cl]Cl (phen = 1, 10-phenantroline), respectively, as a result of different electronic effects provided by the bidentate spectator chelates. Polypyridyl amine Ru(II) complex, viz. [Ru(terpy)(en)Cl]Cl and [Ru(terpy)(ampy)Cl]Cl (where ampy = 2-(aminomethyl)pyridine), in which the terpy chelate labilizes the metal center, are able to catalyze the conversion of NAD+ to 1,4-NADH using sodium formate as a source of hydride. We showed that this complex can control the [NAD+]/[NADH] ratio and potentially induce reductive stress in living cells, which is accepted as an effective method to kill cancer cells. Polypyridyl Ru(II) complexes, characterized in terms of the behavior in aqueous solutions, can be used as model systems to monitor heterogeneous multiphase ligand substitution reactions at the solid-liquid interface. Colloidal coordination compounds in the submicron range were synthesized from Ru(II)-aqua derivatives of starting chlorido complexes via the anti-solvent procedure and stabilized by a surfactant shell layer.
Collapse
Affiliation(s)
- Marta Chrzanowska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Anna Katafias
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Rudi van Eldik
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Erlangen, Germany
- *Correspondence: Rudi van Eldik,
| |
Collapse
|
31
|
Kljun J, Rebernik M, Balsa LM, Kladnik J, Rapuš U, Trobec T, Sepčić K, Frangež R, León IE, Turel I. Exploring pta Alternatives in the Development of Ruthenium-Arene Anticancer Compounds. Molecules 2023; 28:molecules28062499. [PMID: 36985471 PMCID: PMC10058425 DOI: 10.3390/molecules28062499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Organoruthenium pyrithione (1-hydroxypyridine-2-thione) complexes have been shown in our recent studies to be a promising family of compounds for development of new anticancer drugs. The complex [(η6-p-cymene)Ru(pyrithionato)(pta)]PF6 contains phosphine ligand pta (1,3,5-triaza-7-phosphaadamantane) as a functionality that improves the stability of the complex and its aqueous solubility. Here, we report our efforts to find pta alternatives and discover new structural elements to improve the biological properties of ruthenium anticancer drugs. The pta ligand was replaced by a selection of phosphine, phosphite, and arsine ligands to identify new functionalities, leading to improvement in inhibitory potency towards enzyme glutathione S-transferase. In addition, cytotoxicity in breast, bone, and colon cancers was investigated.
Collapse
Affiliation(s)
- Jakob Kljun
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Mihaela Rebernik
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Lucía M Balsa
- CEQUINOR (UNLP, CCT-CONICET La Plata, Asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N°1465, La Plata 1900, Argentina
| | - Jerneja Kladnik
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Uroš Rapuš
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Tomaž Trobec
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, SI-1000 Ljubljana, Slovenia
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of LjubljanaJamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Robert Frangež
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, SI-1000 Ljubljana, Slovenia
| | - Ignacio E León
- CEQUINOR (UNLP, CCT-CONICET La Plata, Asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N°1465, La Plata 1900, Argentina
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
32
|
Alp M, Yurdakul S. Experimental and Theoretical Vibrational Spectroscopic, Quantum Chemical Analysis, and Electronic Properties Investigations of Novel Ruthenium Complexes (RuLCl2.2H2O; L: 4,4´-Dimethoxy-2,2´-Bipyridine, 4,4´-Dimethyl-2,2´-Bipyridine). Polyhedron 2023. [DOI: 10.1016/j.poly.2023.116322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
33
|
Diz M, Durán-Carril ML, Castro J, Alvo S, Bada L, Viña D, García-Vázquez JA. Antitumor activity of copper(II) complexes with Schiff bases derived from N'-tosylbenzene-1,2-diamine. J Inorg Biochem 2022; 236:111975. [PMID: 36055108 DOI: 10.1016/j.jinorgbio.2022.111975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 12/24/2022]
Abstract
The electrochemical oxidation of anodic metal copper in a solution of the ligands N-[(5-tert-butyl-2-hydroxyphenyl)methylidine]-N'-tosylbenzene-1,2-diamine [H2L1] and N-[(3,5-di-tert-butyl-2-hydroxyphenyl)methylidine]-N'-tosylbenzene-1,2-diamine, [H2L2] afforded homoleptic [CuL] compounds or solvate [CuLS] complexes. The addition to the electrochemical cell of coligands (L') such as 2,2'-bipyridine (2-bpy), 4,4'-bipyridine(4-bpy) or 1,10-phenanthroline (phen) allowed the synthesis, in one step, of heteroleptic [CuLL'] compounds, namely [CuL1(H2O)] (1), [CuL1(2,2'-bpy)]⋅CH3CN (2), [CuL1(phen)]·H2O (3), [Cu2L12(4,4'-bpy)] (4), [CuL2(CH3OH)] (5), [CuL2(2,2'-bpy)] (6), [CuL2(phen)] (7) and [Cu2L22(4,4'-bpy)] (8). The crystal structures of both ligands, H2L1, H2L2, and those of the complexes (2), (4), (5), (6) and (7) have been determined by X-ray diffraction techniques. Coordination polyhedron around metal atom is square planar for [CuL2(CH3OH)] (5) and [Cu2L12(4,4'-bpy)] (4) and square pyramid for the other complexes with additional chelating ligands. The cytotoxic activity of this new series of copper(II) complexes against the SH-SY5Y neuroblastoma cell line and U87-MG and U373-MG glioblastoma cell lines has been investigated. Most of the test compounds showed higher activity than cisplatin in the three cell lines. Among this series, compound [CuL1(phen)] (3) displayed the highest activity with IC50 equal to 1.77 μM on SH-SY5Y whereas compound [Cu2L12(4.4'-bpy)] (4) resulted the most potent compounds on U87 MG and U373 MG glioblastoma cell lines. Studies on the cytotoxic activity of these derivatives suggest that these compounds induce cell death by a mechanism other than apoptosis.
Collapse
Affiliation(s)
- María Diz
- Departamento de Química Inorgánica, Campus Vida, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - María L Durán-Carril
- Departamento de Química Inorgánica, Campus Vida, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Jesús Castro
- Departamento de Química Inorgánica, Facultade de Química, Edificio de Ciencias Experimentais, Universidade de Vigo, 36310 Vigo (Galicia), Spain.
| | - Samuel Alvo
- CIMUS, Campus Vida, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Lucía Bada
- CIMUS, Campus Vida, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Dolores Viña
- CIMUS, Campus Vida, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - José A García-Vázquez
- Departamento de Química Inorgánica, Campus Vida, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
34
|
Zhang C, Kang T, Wang X, Song J, Zhang J, Li G. Stimuli-responsive platinum and ruthenium complexes for lung cancer therapy. Front Pharmacol 2022; 13:1035217. [PMID: 36324675 PMCID: PMC9618881 DOI: 10.3389/fphar.2022.1035217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
Lung cancer is the most common cause of cancer-related deaths worldwide. More efficient treatments are desperately needed. For decades, the success of platinum-based anticancer drugs has promoted the exploration of metal-based agents. Four ruthenium-based complexes have also entered clinical trials as candidates of anticancer metallodrugs. However, systemic toxicity, severe side effects and drug-resistance impeded their applications and efficacy. Stimuli-responsiveness of Pt- and Ru-based complexes provide a great chance to weaken the side effects and strengthen the clinical efficacy in drug design. This review provides an overview on the stimuli-responsive Pt- and Ru-based metallic anticancer drugs for lung cancer. They are categorized as endo-stimuli-responsive, exo-stimuli-responsive, and dual-stimuli-responsive prodrugs based on the nature of stimuli. We describe various representative examples of structure, response mechanism, and potential medical applications in lung cancer. In the end, we discuss the future opportunities and challenges in this field.
Collapse
Affiliation(s)
- Cheng Zhang
- The Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Tong Kang
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xinyi Wang
- The Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jiaqi Song
- Department of Biophysics, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jia Zhang
- The Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- *Correspondence: Jia Zhang, ; Guanying Li,
| | - Guanying Li
- Department of Biophysics, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- *Correspondence: Jia Zhang, ; Guanying Li,
| |
Collapse
|
35
|
Sajjan VP, Anigol LB, Gurubasavaraj PM, Kotresha D, Pradhan S, Venkatesh S, Patil D. Synthesis, characterization and molecular docking studies of phenoxyimine based ligands: Cytotoxicity, hemolytic activity and antioxidant assessment. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Cai F, Ye K, Chen M, Tian Y, Chen P, Lin H, Chen T, Ma L. High-dimensional zinc porphyrin nanoframeworks as efficient radiosensitizers for cervical cancer. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
37
|
Nguyen VT, Huynh TKC, Ho GTT, Nguyen THA, Le Anh Nguyen T, Dao DQ, Mai TVT, Huynh LK, Hoang TKD. Metal complexes of benzimidazole-derived as potential anti-cancer agents: synthesis, characterization, combined experimental and computational studies. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220659. [PMID: 36147940 PMCID: PMC9490329 DOI: 10.1098/rsos.220659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 08/26/2022] [Indexed: 05/10/2023]
Abstract
In this study, a series of 14 Cu (II), Zn (II), Ni (II) and Ag (I) complexes containing bis-benzimidazole derivatives were successfully designed and synthesized from 2-(1H-benzimidazole-2-yl)-phenol derivatives and corresponding metal salt solutions. The compound structures were identified by FT-IR, 1H-NMR, powder X-ray diffraction and ESI-MS analyses, and the presence of the metal in the complexes was confirmed by ultraviolet-visible spectroscopy and ICP optical emission spectrometry. Electronic structure calculations were also carried out to describe the detailed structures in addition to the electronic absorption spectra of the ligands. The cytotoxic activity of the complexes was evaluated against three human cancer cell lines: lung (A549), breast (MDA-MB-231) and prostate (PC3) cancer cells. All complexes inhibited anti-proliferative cancer cells better than free ligands, especially Zn (II) and Ag (I) complexes, which are most sensitive to MDA-MB-231 cells. In addition, showing the growth inhibition of three cancer cell lines with IC50 < 10.4 µM, complexes C1 , C3 and C14 could be considered potential multi-targeted anti-cancer agents.
Collapse
Affiliation(s)
- Van-Thanh Nguyen
- Institute of Chemical Technology – VAST, 1A Thanh Loc 29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City 700000, Vietnam
| | - Thi-Kim-Chi Huynh
- Institute of Chemical Technology – VAST, 1A Thanh Loc 29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Graduate University of Science and Technology – VAST, 18 Hoang Quoc Viet Street, Nghia Do Ward, Cau Giay District, Hanoi 100000, Vietnam
| | - Gia-Thien-Thanh Ho
- Institute of Chemical Technology – VAST, 1A Thanh Loc 29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Ton Duc Thang University, 19 Nguyen Huu Tho Street, Tan Phong Ward, District 7, Ho Chi Minh City 700000, Vietnam
| | - Thi-Hong-An Nguyen
- Institute of Chemical Technology – VAST, 1A Thanh Loc 29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City 700000, Vietnam
| | - Thi Le Anh Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 50000, Vietnam
| | - Duy Quang Dao
- Institute of Research and Development, Duy Tan University, Da Nang 50000, Vietnam
| | - Tam V. T. Mai
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 700000, Vietnam
- University of Science, Ho Chi Minh City, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Lam K. Huynh
- University of Science, Ho Chi Minh City, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City 700000, Vietnam
- International University, Block 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Thi-Kim-Dung Hoang
- Institute of Chemical Technology – VAST, 1A Thanh Loc 29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Graduate University of Science and Technology – VAST, 18 Hoang Quoc Viet Street, Nghia Do Ward, Cau Giay District, Hanoi 100000, Vietnam
| |
Collapse
|
38
|
Nguyen VT, Huynh TKC, Ho GTT, Nguyen THA, Le Anh Nguyen T, Dao DQ, Mai TVT, Huynh LK, Hoang TKD. Metal complexes of benzimidazole-derived as potential anti-cancer agents: synthesis, characterization, combined experimental and computational studies. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220659. [PMID: 36147940 DOI: 10.6084/m9.figshare.c.6197452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 08/26/2022] [Indexed: 05/25/2023]
Abstract
In this study, a series of 14 Cu (II), Zn (II), Ni (II) and Ag (I) complexes containing bis-benzimidazole derivatives were successfully designed and synthesized from 2-(1H-benzimidazole-2-yl)-phenol derivatives and corresponding metal salt solutions. The compound structures were identified by FT-IR, 1H-NMR, powder X-ray diffraction and ESI-MS analyses, and the presence of the metal in the complexes was confirmed by ultraviolet-visible spectroscopy and ICP optical emission spectrometry. Electronic structure calculations were also carried out to describe the detailed structures in addition to the electronic absorption spectra of the ligands. The cytotoxic activity of the complexes was evaluated against three human cancer cell lines: lung (A549), breast (MDA-MB-231) and prostate (PC3) cancer cells. All complexes inhibited anti-proliferative cancer cells better than free ligands, especially Zn (II) and Ag (I) complexes, which are most sensitive to MDA-MB-231 cells. In addition, showing the growth inhibition of three cancer cell lines with IC50 < 10.4 µM, complexes C1 , C3 and C14 could be considered potential multi-targeted anti-cancer agents.
Collapse
Affiliation(s)
- Van-Thanh Nguyen
- Institute of Chemical Technology - VAST, 1A Thanh Loc 29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City 700000, Vietnam
| | - Thi-Kim-Chi Huynh
- Institute of Chemical Technology - VAST, 1A Thanh Loc 29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Graduate University of Science and Technology - VAST, 18 Hoang Quoc Viet Street, Nghia Do Ward, Cau Giay District, Hanoi 100000, Vietnam
| | - Gia-Thien-Thanh Ho
- Institute of Chemical Technology - VAST, 1A Thanh Loc 29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Ton Duc Thang University, 19 Nguyen Huu Tho Street, Tan Phong Ward, District 7, Ho Chi Minh City 700000, Vietnam
| | - Thi-Hong-An Nguyen
- Institute of Chemical Technology - VAST, 1A Thanh Loc 29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City 700000, Vietnam
| | - Thi Le Anh Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 50000, Vietnam
| | - Duy Quang Dao
- Institute of Research and Development, Duy Tan University, Da Nang 50000, Vietnam
| | - Tam V T Mai
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 700000, Vietnam
- University of Science, Ho Chi Minh City, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Lam K Huynh
- University of Science, Ho Chi Minh City, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City 700000, Vietnam
- International University, Block 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Thi-Kim-Dung Hoang
- Institute of Chemical Technology - VAST, 1A Thanh Loc 29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Graduate University of Science and Technology - VAST, 18 Hoang Quoc Viet Street, Nghia Do Ward, Cau Giay District, Hanoi 100000, Vietnam
| |
Collapse
|
39
|
Balogová M, Sharma S, Cherek P, Ólafsson SN, Jónsdóttir S, Ögmundsdóttir HM, Damodaran KK. Cytotoxic effects of halogenated tin phosphinoyldithioformate complexes against several cancer cell lines. Dalton Trans 2022; 51:13119-13128. [PMID: 35975724 DOI: 10.1039/d2dt01127a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Organotin complexes are studied as promising alternatives to the anticancer drug cisplatin. We report two monoorganotin(IV) complexes based on a dibenzyl phosphinoyldithioformate (H-DBPTF) ligand, containing either bromide (Sn-DBPTF-1) or chloride (Sn-DBPTF-2) anions. The complexes were characterized by standard analytical techniques and the structural details of these complexes were elucidated by single crystal X-ray diffraction. Sn-DBPTF-1 was cytotoxic at IC50 <10 μg mL-1 against cancer cell lines A549 (lung cancer), Aspc-1 (pancreatic cancer), OVCAR-3 (ovarian cancer), T-47D (breast cancer) and HCT116 (colon cancer), and breast epithelial stem cell line D492. The non-tumorigenic breast epithelial cell line MCF-10 was less sensitive at IC50 = 22 μg mL-1. Sn-DBPTF-2 had limited cytotoxic effect at IC50 13-37 μg mL-1. Sn-DBPTF-1 induced apoptosis and double-strand DNA breaks. Cell cycle arrest in G2 occurred in HCT116 and accumulation in G1 in Aspc-1. The results indicate that the basic effect of Sn-DBPTF-1 is to induce DNA damage, leading to apoptosis and cell cycle arrest depending on the cell line.
Collapse
Affiliation(s)
- Michaela Balogová
- Cancer Research Laboratory, Biomedical Center, Faculty of Medicine, University of Iceland, Sturlugata 8, 101, Reykjavik, Iceland.
| | - Shubham Sharma
- Department of Chemistry, Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavík, Iceland.
| | - Paulina Cherek
- Cancer Research Laboratory, Biomedical Center, Faculty of Medicine, University of Iceland, Sturlugata 8, 101, Reykjavik, Iceland.
| | - Sigurjón N Ólafsson
- Department of Chemistry, Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavík, Iceland.
| | - Sigrídur Jónsdóttir
- Department of Chemistry, Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavík, Iceland.
| | - Helga M Ögmundsdóttir
- Cancer Research Laboratory, Biomedical Center, Faculty of Medicine, University of Iceland, Sturlugata 8, 101, Reykjavik, Iceland.
| | - Krishna K Damodaran
- Department of Chemistry, Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavík, Iceland.
| |
Collapse
|
40
|
Murillo MI, Gaiddon C, Le Lagadec R. Targeting of the intracellular redox balance by metal complexes towards anticancer therapy. Front Chem 2022; 10:967337. [PMID: 36034648 PMCID: PMC9405673 DOI: 10.3389/fchem.2022.967337] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
The development of cancers is often linked to the alteration of essential redox processes, and therefore, oxidoreductases involved in such mechanisms can be considered as attractive molecular targets for the development of new therapeutic strategies. On the other hand, for more than two decades, transition metals derivatives have been leading the research on drugs as alternatives to platinum-based treatments. The success of such compounds is particularly due to their attractive redox kinetics properties, favorable oxidation states, as well as routes of action different to interactions with DNA, in which redox interactions are crucial. For instance, the activity of oxidoreductases such as PHD2 (prolyl hydroxylase domain-containing protein) which can regulate angiogenesis in tumors, LDH (lactate dehydrogenase) related to glycolysis, and enzymes, such as catalases, SOD (superoxide dismutase), TRX (thioredoxin) or GSH (glutathione) involved in controlling oxidative stress, can be altered by metal effectors. In this review, we wish to discuss recent results on how transition metal complexes have been rationally designed to impact on redox processes, in search for effective and more specific cancer treatments.
Collapse
Affiliation(s)
- María Isabel Murillo
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - Christian Gaiddon
- Strasbourg Université, Inserm UMR_S U1113, IRFAC, Strasbourg, France
| | - Ronan Le Lagadec
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
- *Correspondence: Ronan Le Lagadec,
| |
Collapse
|
41
|
Seidi F, Zhong Y, Xiao H, Jin Y, Crespy D. Degradable polyprodrugs: design and therapeutic efficiency. Chem Soc Rev 2022; 51:6652-6703. [PMID: 35796314 DOI: 10.1039/d2cs00099g] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Prodrugs are developed to increase the therapeutic properties of drugs and reduce their side effects. Polyprodrugs emerged as highly efficient prodrugs produced by the polymerization of one or several drug monomers. Polyprodrugs can be gradually degraded to release therapeutic agents. The complete degradation of polyprodrugs is an important factor to guarantee the successful disposal of the drug delivery system from the body. The degradation of polyprodrugs and release rate of the drugs can be controlled by the type of covalent bonds linking the monomer drug units in the polymer structure. Therefore, various types of polyprodrugs have been developed based on polyesters, polyanhydrides, polycarbonates, polyurethanes, polyamides, polyketals, polymetallodrugs, polyphosphazenes, and polyimines. Furthermore, the presence of stimuli-responsive groups, such as redox-responsive linkages (disulfide, boronate ester, metal-complex, and oxalate), pH-responsive linkages (ester, imine, hydrazone, acetal, orthoester, P-O and P-N), light-responsive (metal-complex, o-nitrophenyl groups) and enzyme-responsive linkages (ester, peptides) allow for a selective degradation of the polymer backbone in targeted tumors. We envision that new strategies providing a more efficient synergistic therapy will be developed by combining polyprodrugs with gene delivery segments and targeting moieties.
Collapse
Affiliation(s)
- Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China. .,Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| | - Yajie Zhong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| |
Collapse
|
42
|
Karaca EÖ, Çiftçi O, Özdemir İ, Karabıyık H, Karabıyık H, Gürbüz N, Özdemir İ, Mansour L, Youssef A, Hamdi N. Crystal structure, optical properties, spectroscopic characterization and density functional theory studies of a new rhodium(i)-imidazolidin-2-ylidene complexes: Synthesis, characterization and cytotoxic properties. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
|
44
|
Hu X, Guo L, Liu M, Sun M, Zhang Q, Peng H, Zhang F, Liu Z. Formation of Iridium(III) and Rhodium(III) Amine, Imine, and Amido Complexes Based on Pyridine-Amine Ligands: Structural Diversity Arising from Reaction Conditions, Substituent Variation, and Metal Centers. Inorg Chem 2022; 61:10051-10065. [PMID: 35735792 DOI: 10.1021/acs.inorgchem.2c00984] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein, we present the different coordination modes of half-sandwich iridium(III) and rhodium(III) complexes based on pyridine-amine ligands. The pyridyl-amine iridium(III) and rhodium(III) complexes, the corresponding oxidation pyridyl-imine products, and 16-electron pyridyl-amido complexes can be obtained through the change in reaction conditions (nitrogen/adventitious oxygen atmosphere, reaction time, and solvents) and structural variations in the metal and ligand. Overall, the reaction of pyridine-amine ligands with [(η5-C5(CH3)5)MCl2]2 (M = Ir or Rh) in the presence of adventitious oxygen afforded the oxidized pyridyl-imine complexes. The possible mechanism for the oxidation of iridium(III) and rhodium(III) amine complexes was confirmed by the detection of the byproduct hydrogen peroxide. Moreover, the formation of pyridyl-amine complexes was favored when nonpolar solvent CH2Cl2 was used instead of CH3OH. The rarely reported complex with [(η5-Cp*)IrCl3] anions can also be obtained without the addition of NH4PF6. The introduction of the sterically bulky i-Bu group on the bridge carbon of the ligand led to the formation of stable 16-electron pyridyl-amido complexes. The pyridyl-amine iridium(III) and rhodium(III) complexes were also synthesized under a N2 atmosphere, and no H2O2 was detected in the whole process. In particular, the aqueous solution stability and in vitro cytotoxicity toward A549 and HeLa human cancer cells of these complexes were also evaluated. No obvious selectivity was observed for cancer cells versus normal cells with these complexes. Notably, the represented complex 5a can promote an increase in the reactive oxygen species level and induce cell death via apoptosis.
Collapse
Affiliation(s)
- Xueyan Hu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Lihua Guo
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Mengqi Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Mengru Sun
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Qiuya Zhang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Hongwei Peng
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Fanjun Zhang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Zhe Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| |
Collapse
|
45
|
Novel Nickel(II), Palladium(II), and Platinum(II) Complexes with O, S Bidendate Cinnamic Acid Ester Derivatives: An In Vitro Cytotoxic Comparison to Ruthenium(II) and Osmium(II) Analogues. Int J Mol Sci 2022; 23:ijms23126669. [PMID: 35743112 PMCID: PMC9224311 DOI: 10.3390/ijms23126669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 02/04/2023] Open
Abstract
(1) Background: Since the discovery of cisplatin’s cytotoxic properties, platinum(II) compounds have attracted much interest in the field of anticancer drug development. Over the last few years, classical structure−activity relationships (SAR) have been broken by some promising new compounds based on platinum or other metals. We focus on the synthesis and characterization of 17 different complexes with β-hydroxydithiocinnamic acid esters as O,S bidendate ligands for nickel(II), palladium(II), and platinum(II) complexes. (2) Methods: The bidendate compounds were synthesized and characterized using classical methods including NMR spectroscopy, MS spectrometry, elemental analysis, and X-ray crystallography, and their cytotoxic potential was assessed using in vitro cell culture assays. Data were compared with other recently reported platinum(II), ruthenium(II), and osmium(II) complexes based on the same main ligand system. (3) Results: SAR analyses regarding the metal ion (M), and the alkyl-chain position (P) and length (L), revealed the following order of the effect strength for in vitro activity: M > P > L. The highest activities have Pd complexes and ortho-substituted compounds. Specific palladium(II) complexes show lower IC50 values compared to cisplatin, are able to elude cisplatin resistance mechanisms, and show a higher cancer cell specificity. (4) Conclusion: A promising new palladium(II) candidate (Pd3) should be evaluated in further studies using in vivo model systems, and the identified SARs may help to target platinum-resistant tumors.
Collapse
|
46
|
Tialiou A, Chin J, Keppler BK, Reithofer MR. Current Developments of N-Heterocyclic Carbene Au(I)/Au(III) Complexes toward Cancer Treatment. Biomedicines 2022; 10:biomedicines10061417. [PMID: 35740438 PMCID: PMC9219884 DOI: 10.3390/biomedicines10061417] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022] Open
Abstract
Since their first discovery, N-heterocyclic carbenes have had a significant impact on organometallic chemistry. Due to their nature as strong σ-donor and π-acceptor ligands, they are exceptionally well suited to stabilize Au(I) and Au(III) complexes in biological environments. Over the last decade, the development of rationally designed NHCAu(I/III) complexes to specifically target DNA has led to a new “gold rush” in bioinorganic chemistry. This review aims to summarize the latest advances of NHCAu(I/III) complexes that are able to interact with DNA. Furthermore, the latest advancements on acyclic diamino carbene gold complexes with anticancer activity are presented as these typically overlooked NHC alternatives offer great additional design possibilities in the toolbox of carbene-stabilized gold complexes for targeted therapy.
Collapse
Affiliation(s)
- Alexia Tialiou
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria; (A.T.); (B.K.K.)
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Jiamin Chin
- Institute of Inorganic Chemistry—Functional Materials, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
- Correspondence: (J.C.); (M.R.R.)
| | - Bernhard K. Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria; (A.T.); (B.K.K.)
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Michael R. Reithofer
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria; (A.T.); (B.K.K.)
- Correspondence: (J.C.); (M.R.R.)
| |
Collapse
|
47
|
Chiappetta G, Gamberi T, Faienza F, Limaj X, Rizza S, Messori L, Filomeni G, Modesti A, Vinh J. Redox proteome analysis of auranofin exposed ovarian cancer cells (A2780). Redox Biol 2022; 52:102294. [PMID: 35358852 PMCID: PMC8966199 DOI: 10.1016/j.redox.2022.102294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/16/2022] [Indexed: 01/03/2023] Open
Abstract
The effects of Auranofin (AF) on protein expression and protein oxidation in A2780 cancer cells were investigated through a strategy based on simultaneous expression proteomics and redox proteomics determinations. Bioinformatics analysis of the proteomics data supports the view that the most critical cellular changes elicited by AF treatment consist of thioredoxin reductase inhibition, alteration of the cell redox state, impairment of the mitochondrial functions, metabolic changes associated with conversion to a glycolytic phenotype, induction of ER stress. The occurrence of the above cellular changes was extensively validated by performing direct biochemical assays. Our data are consistent with the concept that AF produces its effects through a multitarget mechanism that mainly affects the redox metabolism and the mitochondrial functions and results into severe ER stress. Results are discussed in the context of the current mechanistic knowledge existing on AF. Redox proteomics allows to underline cell adaptation mechanisms in response to Auranofin treatment in ovarian cancer cells. BRCA1 is one of the major candidates of the ovarian cancer cell adaptation to Auranofin treatment. Auranofin alters the oxidative phosphorylation and mitochondrial protein import machinery. TRAP1 C501 modulates Auranofin toxicity. Auranofin induces severe stress of the endoplasmic reticulum.
Collapse
Affiliation(s)
- Giovanni Chiappetta
- Biological Mass Spectrometry and Proteomics Group, SMBP, PDC CNRS UMR, 8249, ESPCI Paris, Université PSL, 10 rue Vauquelin, 75005, Paris, France.
| | - Tania Gamberi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B. Morgagni 50, 50134, Florence, Italy.
| | - Fiorella Faienza
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Xhesika Limaj
- Biological Mass Spectrometry and Proteomics Group, SMBP, PDC CNRS UMR, 8249, ESPCI Paris, Université PSL, 10 rue Vauquelin, 75005, Paris, France
| | - Salvatore Rizza
- Redox Signaling and Oxidative Stress Group, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Luigi Messori
- Metmed Lab, Department of Chemistry, University of Florence, via della lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Giuseppe Filomeni
- Department of Biology, University of Rome Tor Vergata, Rome, Italy; Redox Signaling and Oxidative Stress Group, Danish Cancer Society Research Center, Copenhagen, Denmark; Center for Healthy Aging, University of Copenhagen, Denmark
| | - Alessandra Modesti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale G.B. Morgagni 50, 50134, Florence, Italy
| | - Joelle Vinh
- Biological Mass Spectrometry and Proteomics Group, SMBP, PDC CNRS UMR, 8249, ESPCI Paris, Université PSL, 10 rue Vauquelin, 75005, Paris, France
| |
Collapse
|
48
|
Swaminathan S, Haribabu J, Balakrishnan N, Vasanthakumar P, Karvembu R. Piano stool Ru(II)-arene complexes having three monodentate legs: A comprehensive review on their development as anticancer therapeutics over the past decade. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214403] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
49
|
Hildebrandt J, Häfner N, Kritsch D, Görls H, Dürst M, Runnebaum IB, Weigand W. Highly Cytotoxic Osmium(II) Compounds and Their Ruthenium(II) Analogues Targeting Ovarian Carcinoma Cell Lines and Evading Cisplatin Resistance Mechanisms. Int J Mol Sci 2022; 23:ijms23094976. [PMID: 35563367 PMCID: PMC9102668 DOI: 10.3390/ijms23094976] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 12/14/2022] Open
Abstract
(1) Background: Ruthenium and osmium complexes attract increasing interest as next generation anticancer drugs. Focusing on structure-activity-relationships of this class of compounds, we report on 17 different ruthenium(II) complexes and four promising osmium(II) analogues with cinnamic acid derivatives as O,S bidentate ligands. The aim of this study was to determine the anticancer activity and the ability to evade platin resistance mechanisms for these compounds. (2) Methods: Structural characterizations and stability determinations have been carried out with standard techniques, including NMR spectroscopy and X-ray crystallography. All complexes and single ligands have been tested for cytotoxic activity on two ovarian cancer cell lines (A2780, SKOV3) and their cisplatin-resistant isogenic cell cultures, a lung carcinoma cell line (A549) as well as selected compounds on three non-cancerous cell cultures in vitro. FACS analyses and histone γH2AX staining were carried out for cell cycle distribution and cell death or DNA damage analyses, respectively. (3) Results: IC50 values show promising results, specifically a high cancer selective cytotoxicity and evasion of resistance mechanisms for Ru(II) and Os(II) compounds. Histone γH2AX foci and FACS experiments validated the high cytotoxicity but revealed diminished DNA damage-inducing activity and an absence of cell cycle disturbance thus pointing to another mode of action. (4) Conclusion: Ru(II) and Os(II) compounds with O,S-bidentate ligands show high cytotoxicity without strong effects on DNA damage and cell cycle, and this seems to be the basis to circumvent resistance mechanisms and for the high cancer cell specificity.
Collapse
Affiliation(s)
- Jana Hildebrandt
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller Universität Jena, Humboldtstraße 8, 07743 Jena, Germany; (J.H.); (H.G.)
- Department of Gynecology, Jena University Hospital—Friedrich-Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (N.H.); (D.K.); (M.D.)
| | - Norman Häfner
- Department of Gynecology, Jena University Hospital—Friedrich-Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (N.H.); (D.K.); (M.D.)
| | - Daniel Kritsch
- Department of Gynecology, Jena University Hospital—Friedrich-Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (N.H.); (D.K.); (M.D.)
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller Universität Jena, Humboldtstraße 8, 07743 Jena, Germany; (J.H.); (H.G.)
| | - Matthias Dürst
- Department of Gynecology, Jena University Hospital—Friedrich-Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (N.H.); (D.K.); (M.D.)
| | - Ingo B. Runnebaum
- Department of Gynecology, Jena University Hospital—Friedrich-Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (N.H.); (D.K.); (M.D.)
- Correspondence: (I.B.R.); (W.W.); Tel.: +49-3641-9329101 (I.B.R.); +49-3641-948160 (W.W.)
| | - Wolfgang Weigand
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller Universität Jena, Humboldtstraße 8, 07743 Jena, Germany; (J.H.); (H.G.)
- Correspondence: (I.B.R.); (W.W.); Tel.: +49-3641-9329101 (I.B.R.); +49-3641-948160 (W.W.)
| |
Collapse
|
50
|
Masternak J, Gilewska A, Kowalik M, Kazimierczuk K, Sitkowski J, Okła K, Wietrzyk J, Barszcz B. Synthesis, crystal structure and spectroscopic characterization of new anionic iridium(III) complexes and their interaction with biological targets. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|