1
|
Cimò S, Denti I, Rossi L, Cassinelli M, Rossi M, Castagna R, LeCroy G, Salleo A, Caironi M, Famulari A, Castiglioni C, Bertarelli C. A Conformationally Driven Mechanism in n-Type Doping of Naphthalene Diimide-Bithiophene Copolymer by 1H-Benzimidazoles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2402482. [PMID: 39980230 PMCID: PMC12005812 DOI: 10.1002/advs.202402482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 10/18/2024] [Indexed: 02/22/2025]
Abstract
N-doped polymer semiconductors are of great interest in the field of organic thermoelectrics, as high-conductive materials are still highly desired. In this framework, this paper aims to clarify whether the n-doping of naphthalene diimide-bithiophene copolymer, P(NDI2OD-T2), by 1H-benzimidazoles is a thermally activated process. The study interestingly demonstrates that a relevant change in conductivity, with an increase of more than three orders of magnitude with respect to pristine P(NDI2OD-T2), occurs before the annealing process takes place, thus revealing that benzimidazole-derived dopants are already active at room temperature. Moreover, despite the annealing time and temperature affecting the electrical conductivity of the system, their contribution is less relevant, with the increase of electrical conductivity limited to up to three times. The results from the electrical characterization of the samples are supported by infrared spectroscopy investigation and X-ray analysis, revealing the marker bands of polaron and a manifest structural change between the undoped and the just-doped P(NDI2OD-T2) films, accompanied by only minor modifications during the annealing process. Finally, based on the results of density functional theory simulations, the conformational modifications of the 1H-benzimidazole dopant molecules, induced by the interaction with the P(NDI2OD-T2), are proposed as a possible mechanism explaining the effective doping at room temperature.
Collapse
Affiliation(s)
- Simone Cimò
- Center for Nano Science and TechnologyIstituto Italiano di Tecnologiavia Rubattino 81Milano20134Italy
- Dipartimento di ChimicaMateriali e Ingegneria Chimica Giulio NattaPolitecnico di MilanoPiazza Leonardo da Vinci 32Milano20133Italy
| | - Ilaria Denti
- Dipartimento di ChimicaMateriali e Ingegneria Chimica Giulio NattaPolitecnico di MilanoPiazza Leonardo da Vinci 32Milano20133Italy
- Department of Materials Science and EngineeringStanford University476 Lomita MallStanfordCA94305USA
| | - Lorenzo Rossi
- Dipartimento di ChimicaMateriali e Ingegneria Chimica Giulio NattaPolitecnico di MilanoPiazza Leonardo da Vinci 32Milano20133Italy
| | - Marco Cassinelli
- Center for Nano Science and TechnologyIstituto Italiano di Tecnologiavia Rubattino 81Milano20134Italy
| | - Martina Rossi
- Center for Nano Science and TechnologyIstituto Italiano di Tecnologiavia Rubattino 81Milano20134Italy
- Dipartimento di ChimicaMateriali e Ingegneria Chimica Giulio NattaPolitecnico di MilanoPiazza Leonardo da Vinci 32Milano20133Italy
| | - Rossella Castagna
- Dipartimento di ChimicaMateriali e Ingegneria Chimica Giulio NattaPolitecnico di MilanoPiazza Leonardo da Vinci 32Milano20133Italy
| | - Garrett LeCroy
- Department of Materials Science and EngineeringStanford University476 Lomita MallStanfordCA94305USA
| | - Alberto Salleo
- Department of Materials Science and EngineeringStanford University476 Lomita MallStanfordCA94305USA
| | - Mario Caironi
- Center for Nano Science and TechnologyIstituto Italiano di Tecnologiavia Rubattino 81Milano20134Italy
| | - Antonino Famulari
- Dipartimento di ChimicaMateriali e Ingegneria Chimica Giulio NattaPolitecnico di MilanoPiazza Leonardo da Vinci 32Milano20133Italy
- INSTM Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materialivia Giuseppe Giusti 9Firenze50121Italy
| | - Chiara Castiglioni
- Dipartimento di ChimicaMateriali e Ingegneria Chimica Giulio NattaPolitecnico di MilanoPiazza Leonardo da Vinci 32Milano20133Italy
| | - Chiara Bertarelli
- Center for Nano Science and TechnologyIstituto Italiano di Tecnologiavia Rubattino 81Milano20134Italy
- Dipartimento di ChimicaMateriali e Ingegneria Chimica Giulio NattaPolitecnico di MilanoPiazza Leonardo da Vinci 32Milano20133Italy
- INSTM Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materialivia Giuseppe Giusti 9Firenze50121Italy
| |
Collapse
|
2
|
Qian BC, Zhu XQ, Shen GB. Thermodynamic Cards of Classic NADH Models and Their Related Photoexcited States Releasing Hydrides in Nine Elementary Steps and Their Applications. Molecules 2025; 30:1053. [PMID: 40076277 PMCID: PMC11902174 DOI: 10.3390/molecules30051053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Thermodynamic cards of three classic NADH models (XH), namely 1-benzyl-1,4-dihydronicotinamide (BNAH), Hantzsch ester (HEH), and 10-methyl-9,10-dihydroacridine (AcrH), as well as their photoexcited states (XH*: BNAH*, HEH*, AcrH*) releasing hydrides in nine elementary steps in acetonitrile are established. According to these thermodynamic cards, the thermodynamic reducing abilities of XH* are remarkably enhanced upon photoexcitation, rendering them thermodynamically highly potent electron, hydrogen atom, and hydride donors. The application of these thermodynamic cards to imine reduction is demonstrated in detail, revealing that photoexcitation enables XH* to act as better hydride donors, transforming the hydride transfer process from thermodynamically unfeasible to feasible. Most intriguingly, AcrH* is identified as the most thermodynamically favorable electron, hydride, and hydrogen atom donor among the three classic NADH models and their photoexcited states. The exceptional thermodynamic properties of XH* in hydride release inspire further investigation into the excited wavelengths, excited potentials, and excited state stabilities of more organic hydrides, as well as the discovery of novel and highly effective photoexcited organic hydride reductants.
Collapse
Affiliation(s)
- Bao-Chen Qian
- College of Medical Engineering, Jining Medical University, Jining 272000, China;
| | - Xiao-Qing Zhu
- Department of Chemistry, Nankai University, Tianjin 300071, China
| | - Guang-Bin Shen
- College of Medical Engineering, Jining Medical University, Jining 272000, China;
| |
Collapse
|
3
|
Chen BL, Zhang JY, Xu WJ, Yan SY, Zhu XQ. Thermodynamic and Kinetic Studies of Mononuclear Non-Heme High-Valent (FeO) 2+ Complexes. ACS OMEGA 2025; 10:3718-3728. [PMID: 39926511 PMCID: PMC11800002 DOI: 10.1021/acsomega.4c08847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/02/2025] [Accepted: 01/09/2025] [Indexed: 02/11/2025]
Abstract
Mononuclear nonheme high-valent (FeO)2+ complexes participate in many enzymatic oxidation-reduction cycles in a living body and play a key role in organic synthesis. The concept of molecular ID (molecular identities) was proposed and applied in our previous work; it covers all thermodynamic data for compounds containing an active carbon-hydrogen bond: oxidation potential, hydride anion affinity, proton affinity, and hydrogen atom affinity. To facilitate quantitative analysis of the physical organic chemistry and molecular biology properties of (FeO)2+ complexes, the molecular identities and reaction thermodynamic platform of representative complexes were established based on the thermodynamic data, such as (N4Py)(FeO)2+ and (Bn-TPEN)(FeO)2+, and their kinetic characteristics. Finally, the findings of this study are as follows: first, the reaction between (N4Py)(FeO)2+ and hydride donors 1/2 (Scheme 1) followed a one-step hydride anion transfer mechanism. The reactions between (N4Py)(FeO)2+ and hydride donors 3 (Scheme 1) and between (Bn-TPEN)(FeO)2+ and hydride donors 1 followed the hydrogen atom-electron transfer mechanism. Second, by comparison of high-valent (RuO)2+ complexes and organic hydride acceptors, the essential laws in selecting the reaction mechanism were obtained to determine the reaction mechanism of this study. Third, the reaction between (N4Py)(FeO)2+ and 1 followed the electron-proton-electron transfer mechanism under acidic conditions.
Collapse
Affiliation(s)
| | - Jin-Ye Zhang
- The State Key Laboratory
of Elemento-Organic Chemistry, Collaborative Innovation Center of
Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Wen-Jie Xu
- The State Key Laboratory
of Elemento-Organic Chemistry, Collaborative Innovation Center of
Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Sheng-Yi Yan
- The State Key Laboratory
of Elemento-Organic Chemistry, Collaborative Innovation Center of
Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xiao-Qing Zhu
- The State Key Laboratory
of Elemento-Organic Chemistry, Collaborative Innovation Center of
Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
4
|
Devi K, Shehzad A, Wiesenfeldt MP. Organophotocatalytic Reduction of Benzenes to Cyclohexenes. J Am Chem Soc 2024; 146:34304-34310. [PMID: 39629986 DOI: 10.1021/jacs.4c14669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The reduction of abundant benzene rings to scarce C(sp3)-rich motifs is invaluable for drug design, as C(sp3) content is known to correlate with clinical success. Cyclohexenes are attractive targets, as they can be rapidly elaborated into large product libraries and are stable against rearomatization. However, partial reduction reactions of benzenes to cyclohexenes are rare and have a very narrow scope. Herein we report a broadly applicable method that converts electron-poor benzenes to cyclohexenes and tolerates Lewis-basic functional groups such as triazoles and thioethers as well as reducible groups such as cyanides, alkynes, and sulfones. The reaction utilizes an organic donor that induces mild arene reduction by preassociation to a photoexcitable electron donor-acceptor (EDA) complex and mild isomerization of redox-inert 1,4-cyclohexadienes to reducible 1,3-cyclohexadienes without a strong base in its oxidized thioquinone methide form.
Collapse
Affiliation(s)
- Kirti Devi
- Faculty for Chemistry and Biochemistry, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Asad Shehzad
- Faculty for Chemistry and Biochemistry, Ruhr-Universität Bochum, 44801 Bochum, Germany
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany
| | - Mario P Wiesenfeldt
- Faculty for Chemistry and Biochemistry, Ruhr-Universität Bochum, 44801 Bochum, Germany
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
5
|
Dong W, Wang C, Zou Y, Wang W, Liu J. NAD(P)H-Inspired CO 2 Reduction Based on Organohydrides. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67073-67086. [PMID: 38551646 DOI: 10.1021/acsami.4c01101] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
The conversion of CO2 into value-added chemicals and fuels using stable, cost-effective, and eco-friendly metal-free catalysts is a promising technology to mitigate the global environmental crisis. In the Calvin cycle of natural photosynthesis, CO2 reduction (CO2R) is achieved using the cofactor NADPH as the reducing agent through 2e-/1H+ or H- transfer. Consequently, inspired by NAD(P)H, a series of organohydrides with adjustable reducibility show remarkable potential for efficient metal-free CO2R. In this review, we first summarize the photosensitizers for NAD(P)H regeneration and list the representative photoenzyme CO2R system. Then, we introduce the NAD(P)H-inspired organohydrides and their applications in redox reactions. Furthermore, we discuss recent progress and breakthroughs by utilizing organohydrides as metal-free CO2R catalysts. Moreover, we delve into the reaction mechanisms and applications of these organohydrides, shedding light on their potential as sustainable alternatives to metal-based CO2R catalysts. Finally, we offer insights into the prospects and potential directions for advancing this intriguing avenue of organohydride-based catalysts for CO2R.
Collapse
Affiliation(s)
- Wenjin Dong
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Chuanjun Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Yutai Zou
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wenshuo Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Jian Liu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
6
|
Yuan H, Ming M, Yang S, Guo K, Chen B, Jiang L, Han Z. Molecular Copper-Anthraquinone Photocatalysts for Robust Hydrogen Production. J Am Chem Soc 2024; 146:31901-31910. [PMID: 39508387 DOI: 10.1021/jacs.4c11223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The development of robust and inexpensive photocatalysts for H2 production under visible light irradiation remains a significant challenge. This study presents a series of square planar copper anthraquinone complexes (R4N)CuL2 (R = ethyl, L = alizarin dianion (CuAA); R = n-butyl, L = purpurin dianion (CuPP), (2-hydroxyanthraquinone)formamide dianion (CuAHA)) as molecular photocatalysts to achieve high long-term stability in visible-light-driven H2 production. These complexes are self-sensitized by the anthraquinone ligands and serve as proton reduction photocatalysts without additional photosensitizers or catalysts. Under irradiation of blue light, complex CuAA produces H2 in a mixture of H2O/DMF with undiminished activity over 42 days, giving a turnover number exceeding 6800. Electrochemical and UV-vis studies are consistent with an EECC mechanism (E: electron transfer and C: protonation) in the catalytic cycle. The initial photochemical steps involve conversion of both anthraquinone ligands to hydroquinones. Further light-driven reductions of the hydroquinones followed by two protonation steps results in formation of H2. Dependence of the catalytic rate on the concentration of H2O suggests that either the generation of a CuII-H intermediate by protonation or heterocoupling between CuII-H and H+ to produce H2 is the turnover-limiting step in catalysis.
Collapse
Affiliation(s)
- Huiqing Yuan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510275, China
| | - Mei Ming
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510275, China
| | - Shuang Yang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510275, China
| | - Kai Guo
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510275, China
| | - Bixian Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510275, China
| | - Long Jiang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhiji Han
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
7
|
Xiao Y, Zhang HT, Zhang MT. Heterobimetallic NiFe Complex for Photocatalytic CO 2 Reduction: United Efforts of NiFe Dual Sites. J Am Chem Soc 2024; 146:28832-28844. [PMID: 39378398 DOI: 10.1021/jacs.4c08510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Catalytic CO2 reduction poses a significant challenge for the conversion of CO2 into chemicals and fuels. Ni-Fe carbon monoxide dehydrogenase ([NiFe]-CODH) effectively mediates the reversible conversion of CO2 and CO at a nearly thermodynamic equilibrium potential, highlighting the heterobimetallic cooperation for the design of CO2 reduction catalysts. However, numerous NiFe biomimetic model complexes have realized little success in CO2 reduction catalysis, which underscores the crucial role of precise bimetallic configuration and functionality. Herein, we presented a heterobimetallic NiFe complex for the photocatalytic reduction of CO2 to CO, demonstrating significantly enhanced catalytic performance compared to the homonuclear NiNi catalyst. Photocatalytic and mechanistic investigations revealed that with the assistance of a redox-active phenanthroline ligand, NiFe achieves dual-site activation of CO2 through a pivotal intermediate, NiII(μ-CO22--κC:κO)FeII, where the Lewis acidity of the FeII site plays an important role, as corroborated in the homonuclear FeFe system. This study introduces the first heteronuclear NiFe molecular catalyst capable of efficiently catalyzing the reduction of CO2 to CO, deepening insights into heterobimetallic cooperation and offering a novel strategy for designing highly active and selective CO2 reduction catalysts.
Collapse
Affiliation(s)
- Yao Xiao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hong-Tao Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ming-Tian Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Ma F, Lin HW, Li Z, Li WJ, Wang JW, Ouyang G. Electronic Effects in Cobalt Phthalocyanine Catalysts Towards Noble-Metal-Free, Photocatalytic CO 2-to-CO Reduction. Molecules 2024; 29:4994. [PMID: 39519635 PMCID: PMC11547791 DOI: 10.3390/molecules29214994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Noble-metal-free CO2 reduction systems based on cobalt phthalocyanine (CoPc) and its derivatives have demonstrated remarkable photocatalytic performances; however, their structure-activity relationship with electronic tuning remains unexplored. Herein, we now provide a systematic study to investigate the electron effects of substituents on the CoPc family in photocatalytic CO2 reduction, where a Cu(I) heteroleptic photosensitizer is utilized. The highest performance can be achieved using cobalt tetracarboxylphthalocyanine in light-driven CO2-to-CO reduction, with a maximum turnover number of 2950 at 450 nm and an outstanding apparent quantum yield of 63.5% at 425 nm, over ten times the activity with the tetra-dimethylamino-substituted CoPc derivative. The favorable electron-withdrawing effects have been further verified by DFT calculations and cyclic voltammetry, which reduces the overpotential required for CO2 reduction and decreases the Gibbs free energy of the catalyst active intermediates, particularly the CO-desorption energetics.
Collapse
Affiliation(s)
- Fan Ma
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China; (F.M.); (H.-W.L.); (Z.L.); (W.-J.L.); (G.O.)
| | - Hong-Wei Lin
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China; (F.M.); (H.-W.L.); (Z.L.); (W.-J.L.); (G.O.)
| | - Zizi Li
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China; (F.M.); (H.-W.L.); (Z.L.); (W.-J.L.); (G.O.)
| | - Wen-Jing Li
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China; (F.M.); (H.-W.L.); (Z.L.); (W.-J.L.); (G.O.)
| | - Jia-Wei Wang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China; (F.M.); (H.-W.L.); (Z.L.); (W.-J.L.); (G.O.)
| | - Gangfeng Ouyang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China; (F.M.); (H.-W.L.); (Z.L.); (W.-J.L.); (G.O.)
- Chemistry College, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou 450001, China
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangzhou 510070, China
| |
Collapse
|
9
|
Gámez-Valenzuela S, Li J, Ma S, Jeong SY, Woo HY, Feng K, Guo X. High-Performance n-Type Organic Thermoelectrics with Exceptional Conductivity by Polymer-Dopant Matching. Angew Chem Int Ed Engl 2024; 63:e202408537. [PMID: 38973771 DOI: 10.1002/anie.202408537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/20/2024] [Accepted: 07/07/2024] [Indexed: 07/09/2024]
Abstract
Achieving high electrical conductivity (σ) and power factor (PF) simultaneously remains a significant challenge for n-type organic themoelectrics (OTEs). Herein, we demonstrate the state-of-the-art OTEs performance through blending a fused bithiophene imide dimer-based polymer f-BTI2g-SVSCN and its selenophene-substituted analogue f-BSeI2g-SVSCN with a julolidine-functionalized benzimidazoline n-dopant JLBI, vis-à-vis when blended with commercially available n-dopants TAM and N-DMBI. The advantages of introducing a more lipophilic julolidine group into the dopant structure of JLBI are evidenced by the enhanced OTEs performance that JLBI-doped films show when compared to those doped with N-DMBI or TAM. In fact, thanks to the enhanced intermolecular interactions and the lower-lying LUMO level enabled by the increase of selenophene content in polymer backbone, JLBI-doped films of f-BSeI2g-SVSCN exhibit a unprecedent σ of 206 S cm-1 and a PF of 114 μW m-1 K-2. Interestingly, σ can be further enhanced up to 326 S cm-1 by using TAM dopant as a consequence of its favorable diffusion behavior into densely packed crystalline domains. These values are the highest to date for solution-processed molecularly n-doped polymers, demonstrating the effectiveness of the polymer-dopant matching approach carried out in this work.
Collapse
Affiliation(s)
- Sergio Gámez-Valenzuela
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Jianfeng Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Suxiang Ma
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Sang Young Jeong
- Department of Chemistry, Korea University, Anamro 145, Seoul, 02841, Republic of Korea
| | - Han Young Woo
- Department of Chemistry, Korea University, Anamro 145, Seoul, 02841, Republic of Korea
| | - Kui Feng
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
10
|
Debnath S, Laxmi S, McCubbin Stepanic O, Quek SY, van Gastel M, DeBeer S, Krämer T, England J. A Four-Coordinate End-On Superoxocopper(II) Complex: Probing the Link between Coordination Number and Reactivity. J Am Chem Soc 2024; 146:23704-23716. [PMID: 39192778 PMCID: PMC11363018 DOI: 10.1021/jacs.3c12268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024]
Abstract
Although the reactivity of five-coordinate end-on superoxocopper(II) complexes, CuII(η1-O2•-), is dominated by hydrogen atom transfer, the majority of four-coordinate CuII(η1-O2•-) complexes published thus far display nucleophilic reactivity. To investigate the origin of this difference, we have developed a four-coordinate end-on superoxocopper(II) complex supported by a sterically encumbered bis(2-pyridylmethyl)amine ligand, dpb2-MeBPA (1), and compared its substrate reactivity with that of a five-coordinate end-on superoxocopper(II) complex ligated by a similarly substituted tris(2-pyridylmethyl)amine, dpb3-TMPA (2). Kinetic isotope effect (KIE) measurements and correlation of second-order rate constants (k2's) versus oxidation potentials (Eox) for a range of phenols indicates that the complex [CuII(η1-O2•-)(1)]+ reacts with phenols via a similar hydrogen atom transfer (HAT) mechanism to [CuII(η1-O2•-)(2)]+. However, [CuII(η1-O2•-)(1)]+ performs HAT much more quickly, with its k2 for reaction with 2,6-di-tert-butyl-4-methoxyphenol (MeO-ArOH) being >100 times greater. Furthermore, [CuII(η1-O2•-)(1)]+ can oxidize C-H bond substrates possessing stronger bonds than [CuII(η1-O2•-)(2)]+ is able to, and it reacts with N-methyl-9,10-dihydroacridine (MeAcrH2) approximately 200 times faster. The much greater facility for substrate oxidation displayed by [CuII(η1-O2•-)(1)]+ is attributed to it possessing higher inherent electrophilicity than [CuII(η1-O2•-)(2)]+, which is a direct consequence of its lower coordination number. These observations are of relevance to enzymes in which four-coordinate end-on superoxocopper(II) intermediates, rather than their five-coordinate congeners, are routinely invoked as the active oxidants responsible for substrate oxidation.
Collapse
Affiliation(s)
- Suman Debnath
- Division
of Chemistry and Biological Chemistry, School of Chemistry, Chemical
Engineering and Biotechnology, Nanyang Technological
University, 21 Nanyang Link, 637371 Singapore
| | - Shoba Laxmi
- Division
of Chemistry and Biological Chemistry, School of Chemistry, Chemical
Engineering and Biotechnology, Nanyang Technological
University, 21 Nanyang Link, 637371 Singapore
| | - Olivia McCubbin Stepanic
- Max
Planck Institute for Chemical Energy Conversion, Stiftstr. 34–36, Mülheim an der Ruhr D-45470, Germany
| | - Sebastian Y. Quek
- Division
of Chemistry and Biological Chemistry, School of Chemistry, Chemical
Engineering and Biotechnology, Nanyang Technological
University, 21 Nanyang Link, 637371 Singapore
| | - Maurice van Gastel
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz, Mülheim
an der Ruhr D-45470, Germany
| | - Serena DeBeer
- Max
Planck Institute for Chemical Energy Conversion, Stiftstr. 34–36, Mülheim an der Ruhr D-45470, Germany
| | - Tobias Krämer
- Department
of Chemistry, Maynooth University, Maynooth W23 F2H6, Co. Kildare, Ireland
- Hamilton
Institute, Maynooth University, Maynooth W23 F2H6, Co. Kildare, Ireland
| | - Jason England
- Division
of Chemistry and Biological Chemistry, School of Chemistry, Chemical
Engineering and Biotechnology, Nanyang Technological
University, 21 Nanyang Link, 637371 Singapore
- School
of
Chemistry, University of Lincoln, Lincoln LN6 7TW, U.K.
| |
Collapse
|
11
|
Ishizuka T, Kojima T. Oxidative and Reductive Manipulation of C1 Resources by Bio-Inspired Molecular Catalysts to Produce Value-Added Chemicals. Acc Chem Res 2024; 57:2437-2447. [PMID: 39116211 DOI: 10.1021/acs.accounts.4c00390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
ConspectusTo tackle the energy and environmental concerns the world faces, much attention is given to catalytic reactions converting methane (CH4) and carbon dioxide (CO2) as abundant C1 resources into value-added chemicals with high efficiency and selectivity. In the oxidative conversion of CH4 to methanol, it is necessary to solve the requirement of strong oxidants due to the large bond-dissociation energy (BDE) of the C-H bonds in methane and achieve suppression of overoxidation due to the smaller BDE of the C-H bond in methanol as the product. On the other hand, to efficiently perform CO2 reduction, proton-coupled electron transfer (PCET) processes are required since the reduction potential of CO2 becomes positive by using proton-coupled processes; however, under the acidic conditions required for PCET, hydrogen evolution by the reduction of protons becomes competitive with CO2 reduction. Thus, it is indispensable to develop efficient catalysts for selective CO2 reduction. Recently, we have developed efficient catalytic reactions toward the alleviation of the concerns mentioned above. Concerning CH4 oxidation, inspired by metalloenzymes that oxidize hydrophobic organic substrates, a hydrophobic second coordination sphere (SCS) was introduced to an FeII complex bearing a pentadentate N-heterocyclic carbene ligand, and the FeII complex was used as a catalyst for CH4 oxidation in aqueous media. Consequently, CH4 was efficiently and selectively oxidized to methanol with 83% selectivity and a turnover number of 500. In contrast, when methanol was used as a substrate for catalytic oxidation by the FeII complex, oxidation products were obtained in a negligible yield, which was comparable to that of the control experiment without the catalyst. Therefore, the hydrophobic SCS of the FeII complex can capture only hydrophobic substrates such as CH4 and release hydrophilic products such as methanol to the aqueous medium for suppressing overoxidation ("catch-and-release" mechanism). On the other hand, for photocatalytic CO2 reduction, we have developed NiII complexes with N2S2-chelating ligands as catalysts, which have been inspired by carbon monoxide dehydrogenase, and have also introduced a binding site of Lewis-acidic metal ions to the SCS of the Ni complex. When Mg2+ was applied as a moderate Lewis acid, a Mg2+-bound Ni catalyst allowed us to achieve remarkable enhancement of the photocatalytic CO2 reduction to afford CO as the product with over 99% selectivity and a quantum yield of 11.4%. Divalent metal ions besides Mg2+ also showed similar positive impacts on photocatalytic CO2 reduction, whereas monovalent metal ions exhibited almost no effects and trivalent metal ions exclusively promoted hydrogen evolution. In this Account, we highlight our recent progress in the catalytic manipulations of CH4 and CO2 as C1 resources.
Collapse
Affiliation(s)
- Tomoya Ishizuka
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Takahiko Kojima
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
12
|
Zhang WW, Feng Z, You SL, Zheng C. Electrophile-Arene Affinity: An Energy Scale for Evaluating the Thermodynamics of Electrophilic Dearomatization Reactions. J Org Chem 2024; 89:11487-11501. [PMID: 39077910 DOI: 10.1021/acs.joc.4c01168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Rational design and development of organic reactions are lofty goals in synthetic chemistry. Quantitative description of the properties of molecules and reactions by physical organic parameters plays an important role in this regard. In this Article, we report an energy scale, namely, electrophile-arene affinity (EAA), for evaluating the thermodynamics of electrophilic dearomatization reactions, a class of important transformations that can rapidly build up molecular complexity and structural diversity by converting planar aromatic compounds into three-dimensional cyclic molecules. The acquisition of EAA data can be readily achieved by theoretically calculating the enthalpy changes (ΔH) of the hypothetical reactions of various (cationic) electrophiles with aromatic systems (taking the 1-methylnaphthalen-2-olate ion as an example in this study). Linear correlations are found between the calculated ΔH values and established physical organic parameters such as the percentage of buried volume %VBur (steric effect), Hammett's σ or Brown's σ+ (electronic effect), and Mayr's E (reaction kinetics). Careful analysis of the ΔH values leads to the rational design of a dearomative alkynylation reaction using alkynyl hypervalent iodonium reagents as the electrophiles.
Collapse
Affiliation(s)
- Wen-Wen Zhang
- Chang-Kung Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Zuolijun Feng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shu-Li You
- Chang-Kung Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
- Shanghai-Hong Kong Joint Laboratory of Chemical Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
13
|
Watanabe T, Lorwongkamol P, Saga Y, Kosugi K, Kambe T, Kondo M, Masaoka S. Photocatalytic Three-Component Acylcarboxylation of Alkenes with CO 2. Org Lett 2024; 26:6491-6496. [PMID: 39023907 DOI: 10.1021/acs.orglett.4c02295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
γ-Keto acid is a valuable chemical motif in a wide range of fields including organic, biological, and medicinal chemistry. However, its single-step synthesis is challenging because of the mismatch of the carbonyl polarity and low tolerance of carboxylic acids. Herein, we report the single-step syntheses of γ-keto acids using alkenes and CO2. Our photocatalytic system enabled the transformation of alkenes under mild conditions in high yields (up to 95%) with broad substrate generality (35 examples).
Collapse
Affiliation(s)
- Taito Watanabe
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Phurinat Lorwongkamol
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yutaka Saga
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Kento Kosugi
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Tetsuya Kambe
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center For Future Innovation (CFi), Department of Applied Chemistry, Faculty of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mio Kondo
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Shigeyuki Masaoka
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
14
|
Lee D, Molani F, Choe MS, Lee HS, Wee KR, Hwang S, Kim CH, Cho AE, Son HJ. Photocatalytic Conversion of CO 2 to Formate/CO by an (η 6- para-Cymene)Ru(II) Half-Metallocene Catalyst: Influence of Additives and TiO 2 Immobilization on the Catalytic Mechanism and Product Selectivity. Inorg Chem 2024; 63:11506-11522. [PMID: 38856726 DOI: 10.1021/acs.inorgchem.3c03879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The catalytic efficacy of the monobipyridyl (η6-para-Cymene)Ru(II) half-metallocene, [(p-Cym)Ru(bpy)Cl]+ was evaluated in both mixed homogeneous (dye + catalyst) and heterogeneous hybrid systems (dye/TiO2/Catalyst) for photochemical CO2 reduction. A series of homogeneous photolysis experiments revealed that the (p-Cym)Ru(II) catalyst engages in two competitive routes for CO2 reduction (CO2 to formate conversion via RuII-hydride vs CO2 to CO conversion through a RuII-COOH intermediate). The conversion activity and product selectivity were notably impacted by the pKa value and the concentration of the proton source added. When a more acidic TEOA additive was introduced, the half-metallocene Ru(II) catalyst leaned toward producing formate through the RuII-H mechanism, with a formate selectivity of 86%. On the other hand, in homogeneous catalysis with TFE additive, the CO2-to-formate conversion through RuII-H was less effective, yielding a more efficient CO2-to-CO conversion with a selectivity of >80% (TONformate of 140 and TONCO of 626 over 48 h). The preference between the two pathways was elucidated through an electrochemical mechanistic study, monitoring the fate of the metal-hydride intermediate. Compared to the homogeneous system, the TiO2-heterogenized (p-Cym)Ru(II) catalyst demonstrated enhanced and enduring performance, attaining TONs of 1000 for CO2-to-CO and 665 for CO2-to-formate.
Collapse
Affiliation(s)
- Daehan Lee
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Farzad Molani
- Department of Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Min Su Choe
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Hyun Seok Lee
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Kyung-Ryang Wee
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Seongpil Hwang
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Chul Hoon Kim
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Art E Cho
- Department of Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Ho-Jin Son
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
15
|
Zhang J, She P, Xu Q, Tian F, Rao H, Qin JS, Bonin J, Robert M. Efficient Visible-Light-Driven Carbon Dioxide Reduction using a Bioinspired Nickel Molecular Catalyst. CHEMSUSCHEM 2024; 17:e202301892. [PMID: 38324459 DOI: 10.1002/cssc.202301892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 02/09/2024]
Abstract
Inspired by natural enzymes, this study presents a nickel-based molecular catalyst, [Ni‖(N2S2)]Cl2 (NiN2S2, N2S2=2,11-dithia[3,3](2,6)pyridinophane), for the photochemical catalytic reduction of CO2 under visible light. The catalyst was synthesized and characterized using various techniques, including liquid chromatography-high resolution mass spectrometry (LC-HRMS), UV-Visible spectroscopy, and X-ray crystallography. The crystallographic analysis revealed a slightly distorted octahedral coordination geometry with a mononuclear Ni2+ cation, two nitrogen atoms and two sulfur atoms. Photocatalytic CO2 reduction experiments were performed in homogeneous conditions using the catalyst in combination with [Ru(bpy)3]Cl2 (bpy=2,2'-bipyridine) as a photosensitizer and 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole (BIH) as a sacrificial electron donor. The catalyst achieved a high selectivity of 89 % towards CO and a remarkable turnover number (TON) of 7991 during 8 h of visible light irradiation under CO2 in the presence of phenol as a co-substrate. The turnover frequency (TOF) in the initial 6 h was 1079 h-1, with an apparent quantum yield (AQY) of 1.08 %. Controlled experiments confirmed the dependency on the catalyst, light, and sacrificial electron donor for the CO2 reduction process. These findings demonstrate this bioinspired nickel molecular catalyst could be effective for fast and efficient photochemical catalytic reduction of CO2 to CO.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Ping She
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Qiang Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Fengkun Tian
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Heng Rao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Jun-Sheng Qin
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Julien Bonin
- Université Paris Cité, CNRS, Laboratoire d'Electrochimie Moléculaire (LEM), F-75013, Paris, France
| | - Marc Robert
- Université Paris Cité, CNRS, Laboratoire d'Electrochimie Moléculaire (LEM), F-75013, Paris, France
- Institut Universitaire de France (IUF), F-75005, Paris, France
| |
Collapse
|
16
|
Kamada K, Jung J, Yamada C, Wakabayashi T, Sekizawa K, Sato S, Morikawa T, Fukuzumi S, Saito S. Photocatalytic CO 2 Reduction Using an Osmium Complex as a Panchromatic Self-Photosensitized Catalyst: Utilization of Blue, Green, and Red Light. Angew Chem Int Ed Engl 2024; 63:e202403886. [PMID: 38545689 DOI: 10.1002/anie.202403886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Indexed: 04/24/2024]
Abstract
The photocatalytic reduction of carbon dioxide (CO2) represents an attractive approach for solar-energy storage and leads to the production of renewable fuels and valuable chemicals. Although some osmium (Os) photosensitizers absorb long wavelengths in the visible-light region, a self-photosensitized, mononuclear Os catalyst for red-light-driven CO2 reduction has not yet been exploited. Here, we discovered that the introduction of an Os metal to a PNNP-type tetradentate ligand resulted in the absorption of light with longer-wavelength (350-700 nm) and that can be applied to a panchromatic self-photosensitized catalyst for CO2 reduction to give mainly carbon monoxide (CO) with a total turnover number (TON) of 625 under photoirradiation (λ≥400 nm). CO2 photoreduction also proceeded under irradiation with blue (λ0=405 nm), green (λ0=525 nm), or red (λ0=630 nm) light to give CO with >90 % selectivity. The quantum efficiency using red light was determined to be 12 % for the generation of CO. A catalytic mechanism is proposed based on the detection of intermediates using various spectroscopic techniques, including transient absorption, electron paramagnetic resonance, and UV/Vis spectroscopy.
Collapse
Affiliation(s)
- Kenji Kamada
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, 464-8602, Nagoya, Japan
| | - Jieun Jung
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, 464-8602, Nagoya, Japan
| | - Chihiro Yamada
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, 464-8602, Nagoya, Japan
| | - Taku Wakabayashi
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, 464-8602, Nagoya, Japan
| | - Keita Sekizawa
- Toyota Central Research and Development Laboratories, Inc., 480-1192, Nagakute, Japan
| | - Shunsuke Sato
- Toyota Central Research and Development Laboratories, Inc., 480-1192, Nagakute, Japan
| | - Takeshi Morikawa
- Toyota Central Research and Development Laboratories, Inc., 480-1192, Nagakute, Japan
| | - Shunichi Fukuzumi
- Department of Chemistry, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1 Tennoudai, 305-8571, Tsukuba, Ibaraki, Japan
| | - Susumu Saito
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo, Chikusa, 464-8602, Nagoya, Japan
- Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, 464-8602, Nagoya, Japan
| |
Collapse
|
17
|
Shen GB, Luo GZ, Qian BC, Zhu XQ. Evaluation of Organic Hydride/Acid Pairs as a Type of Thermodynamic-Potential-Regulated Multisite Proton-Coupled Electron Transfer Reagents. J Org Chem 2024; 89:6205-6221. [PMID: 38632842 DOI: 10.1021/acs.joc.4c00208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Organic hydride/acid pairs have been reported as multisite proton-coupled electron transfer (MS-PCET) reagents in reductive MS-PCET reactions recently. Since the key step for an organic hydride/acid pair acting as an MS-PCET reagent is a chemical process of the organic hydride/acid pair releasing a formal hydrogen atom, the bond dissociation free energy of the organic hydride/acid pair releasing a formal hydrogen atom is a valuable thermodynamic parameter for objectively evaluating the thermodynamic potential for an organic hydride/acid pair to act as an MS-PCET reagent. Now, organic hydride/acid pairs of 216 organic hydrides have been demonstrated to be a potential type of thermodynamically potential-regulated MS-PCET reagent. Without a doubt, organic hydride/acid pairs reflect the change of N-substituted organic hydrides from simple hydride reductants to thermodynamically-regulated MS-PCET reagents, which could significantly expand the availability of novel MS-PCET reagents.
Collapse
Affiliation(s)
- Guang-Bin Shen
- College of Medical Engineering, Jining Medical University, Jining, Shandong 272000, P. R. China
| | - Guang-Ze Luo
- College of Medical Engineering, Jining Medical University, Jining, Shandong 272000, P. R. China
| | - Bao-Chen Qian
- College of Medical Engineering, Jining Medical University, Jining, Shandong 272000, P. R. China
| | - Xiao-Qing Zhu
- The State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
18
|
Müller AV, Ahmad S, Sirlin JT, Ertem MZ, Polyansky DE, Grills DC, Meyer GJ, Sampaio RN, Concepcion JJ. Reduction of CO to Methanol with Recyclable Organic Hydrides. J Am Chem Soc 2024; 146:10524-10536. [PMID: 38507247 DOI: 10.1021/jacs.3c14605] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The reaction steps for the selective conversion of a transition metal carbonyl complex to a hydroxymethyl complex that releases methanol upon irradiation with visible light have been successfully quantified in acetonitrile solution with dihydrobenzimidazole organic hydride reductants. Dihydrobenzimidazole reductants have been shown to be inactive toward H2 generation in the presence of a wide range of proton sources and have been regenerated electrochemically or photochemically. Specifically, the reaction of cis-[Ru(bpy)2(CO)2]2+ (bpy = 2,2'-bipyridine) with one equivalent of a dihydrobenzimidazole quantitatively yields a formyl complex, cis-[Ru(bpy)2(CO)(CHO)]+, and the corresponding benzimidazolium on a seconds time scale. Kinetic experiments revealed a first-order dependence on the benzimidazole hydride concentration and an unusually large kinetic isotope effect, inconsistent with direct hydride transfer and more likely to occur by an electron transfer-proton-coupled electron transfer (EΤ-PCET) or related mechanism. Further reduction/protonation of cis-[Ru(bpy)2(CO)(CHO)]+ with two equivalents of the organic hydride yields the hydroxymethyl complex cis-[Ru(bpy)2(CO)(CH2OH)]+. Visible light excitation of cis-[Ru(bpy)2(CO)(CH2OH)]+ in the presence of excess organic hydride was shown to yield free methanol. Identification and quantification of methanol as the sole CO reduction product was confirmed by 1H NMR spectroscopy and gas chromatography. The high selectivity and mild reaction conditions suggest a viable approach for methanol production from CO, and from CO2 through cascade catalysis, with renewable organic hydrides that bear similarities to Nature's NADPH/NADP+.
Collapse
Affiliation(s)
- Andressa V Müller
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Shahbaz Ahmad
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Jake T Sirlin
- Department of Chemistry, University of North Carolina Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Mehmed Z Ertem
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Dmitry E Polyansky
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - David C Grills
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Gerald J Meyer
- Department of Chemistry, University of North Carolina Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Renato N Sampaio
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
- Department of Chemistry, University of North Carolina Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Javier J Concepcion
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| |
Collapse
|
19
|
Luo Z, Li L, Nguyen VT, Kanbur U, Li Y, Zhang J, Nie R, Biswas A, Bud'ko SL, Oh J, Zhou L, Huang W, Sadow AD, Wang B, Scott SL, Qi L. Catalytic Hydrogenolysis by Atomically Dispersed Iron Sites Embedded in Chemically and Redox Non-innocent N-Doped Carbon. J Am Chem Soc 2024; 146:8618-8629. [PMID: 38471106 DOI: 10.1021/jacs.4c00741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Atomically dispersed first-row transition metals embedded in nitrogen-doped carbon materials (M-N-C) show promising performance in catalytic hydrogenation but are less well-studied for reactions with more complex mechanisms, such as hydrogenolysis. Their ability to catalyze selective C-O bond cleavage of oxygenated hydrocarbons such as aryl alcohols and ethers is enhanced with the participation of ligands directly bound to the metal ion as well as longer-range contributions from the support. In this article, we describe how Fe-N-C catalysts with well-defined local structures for the Fe sites catalyze C-O bond hydrogenolysis. The reaction is facilitated by the N-C support. According to spectroscopic analyses, the as-synthesized catalysts contain mostly pentacoordinated FeIII sites, with four in-plane nitrogen donor ligands and one axial hydroxyl ligand. In the presence of 20 bar of H2 at 170-230 °C, the hydroxyl ligand is lost when N4FeIIIOH is reduced to N4FeII, assisted by the H2 chemisorbed on the support. When an alcohol binds to the tetracoordinated FeII sites, homolytic cleavage of the O-H bond is accompanied by reoxidation to FeIII and H atom transfer to the support. The role of the N-C support in catalytic hydrogenolysis is analogous to the behavior of chemically and redox-non-innocent ligands in molecular catalysts based on first-row transition metal ions and enhances the ability of M-N-Cs to achieve the types of multistep activations of strong bonds needed to upgrade renewable and recycled feedstocks.
Collapse
Affiliation(s)
- Zhicheng Luo
- U.S. DOE Ames National Laboratory, Iowa State University, Ames, Iowa 50011, United States
| | - Li Li
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Vy T Nguyen
- School of Sustainable Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Uddhav Kanbur
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Yuting Li
- U.S. DOE Ames National Laboratory, Iowa State University, Ames, Iowa 50011, United States
| | - Jie Zhang
- U.S. DOE Ames National Laboratory, Iowa State University, Ames, Iowa 50011, United States
| | - Renfeng Nie
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Abhranil Biswas
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Sergey L Bud'ko
- U.S. DOE Ames National Laboratory, Iowa State University, Ames, Iowa 50011, United States
| | - Jinsu Oh
- U.S. DOE Ames National Laboratory, Iowa State University, Ames, Iowa 50011, United States
| | - Lin Zhou
- U.S. DOE Ames National Laboratory, Iowa State University, Ames, Iowa 50011, United States
| | - Wenyu Huang
- U.S. DOE Ames National Laboratory, Iowa State University, Ames, Iowa 50011, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Aaron D Sadow
- U.S. DOE Ames National Laboratory, Iowa State University, Ames, Iowa 50011, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Bin Wang
- School of Sustainable Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Susannah L Scott
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Long Qi
- U.S. DOE Ames National Laboratory, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
20
|
Shaikh A, Sahoo S, Marder SR, Barlow S, Mohapatra SK. Reductive dimerization of benzothiazolium salts. Org Biomol Chem 2024; 22:2115-2123. [PMID: 38376182 DOI: 10.1039/d3ob01871g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Three different types of reaction products were obtained from the reduction of 2-substituted 3-methylbenzothiazolium salts using Na : Hg (1 wt%). Depending on the 2-substituents, two types of dimeric compounds were obtained: the 2-cyclohexyl-, 2-phenyl-, and 2-(p-tolyl)-substituted species are reduced to the corresponding 2,2'-bibenzo[d]thiazoles, while their 2-((p-OMe)C6H4)- and 2-((p-NMe2)C6H4)-substituted derivatives afford cis-[1,4]benzothiazino[3,2-b][1,4]benzothiazines. Furthermore, in the presence of molecular O2, new disulfide derivatives were obtained from the bibenzo[d]thiazoles. The products were obtained in a moderate to good yield, and the structures were confirmed using single-crystal X-ray diffraction. The electrochemistry and further reactivity towards different oxidants of the dimeric compounds were studied; the 2,2'-bibenzo[d]thiazoles show oxidation potentials similar to that of ferrocene and are converted back to the corresponding benzothiazolium cations by mild oxidants such as TCNQ. In contrast, the benzothiazino-benzothiazines show no oxidations in the solvent window of THF.
Collapse
Affiliation(s)
- Aijaz Shaikh
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology-Indian Oil Odisha Campus, IIT Kharagpur Extension Center, Bhubaneswar, Odisha 751013, India.
| | - Satyajit Sahoo
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology-Indian Oil Odisha Campus, IIT Kharagpur Extension Center, Bhubaneswar, Odisha 751013, India.
| | - Seth R Marder
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, Colorado 80309, USA
- Department of Chemistry and of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Stephen Barlow
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Swagat K Mohapatra
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology-Indian Oil Odisha Campus, IIT Kharagpur Extension Center, Bhubaneswar, Odisha 751013, India.
| |
Collapse
|
21
|
Beach A, Adhikari P, Singh G, Song M, DeGroot N, Lu Y. Structural Effects on the Temperature Dependence of Hydride Kinetic Isotope Effects of the NADH/NAD + Model Reactions in Acetonitrile: Charge-Transfer Complex Tightness Is a Key. J Org Chem 2024; 89:3184-3193. [PMID: 38364859 PMCID: PMC10913049 DOI: 10.1021/acs.joc.3c02562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/18/2024]
Abstract
It has recently frequently been found that the kinetic isotope effect (KIE) is independent of temperature (T) in H-tunneling reactions in enzymes but becomes dependent on T in their mutants. Many enzymologists found that the trend is related to different donor-acceptor distances (DADs) at tunneling-ready states (TRSs), which could be sampled by protein dynamics. That is, a more rigid system of densely populated short DADs gives rise to a weaker T dependence of KIEs. Theoreticians have attempted to develop H-tunneling theories to explain the observations, but none have been universally accepted. It is reasonable to assume that the DAD sampling concept, if it exists, applies to the H-transfer reactions in solution, as well. In this work, we designed NADH/NAD+ model reactions to investigate their structural effects on the T dependence of hydride KIEs in acetonitrile. Hammett correlations together with N-CH3/CD3 secondary KIEs were used to provide the electronic structure of the TRSs and thus the rigidity of their charge-transfer complexation vibrations. In all three pairs of reactions, a weaker T dependence of KIEs always corresponds to a steeper Hammett slope on the substituted hydride acceptors. It was found that a tighter/rigid charge-transfer complexation system corresponds with a weaker T dependence of KIEs, consistent with the observations in enzymes.
Collapse
Affiliation(s)
- Amanda Beach
- Department of Chemistry, Southern
Illinois University Edwardsville, Edwardsville, Illinois 62026, United States
| | - Pratichhya Adhikari
- Department of Chemistry, Southern
Illinois University Edwardsville, Edwardsville, Illinois 62026, United States
| | - Grishma Singh
- Department of Chemistry, Southern
Illinois University Edwardsville, Edwardsville, Illinois 62026, United States
| | - Meimei Song
- Department of Chemistry, Southern
Illinois University Edwardsville, Edwardsville, Illinois 62026, United States
| | - Nicholas DeGroot
- Department of Chemistry, Southern
Illinois University Edwardsville, Edwardsville, Illinois 62026, United States
| | - Yun Lu
- Department of Chemistry, Southern
Illinois University Edwardsville, Edwardsville, Illinois 62026, United States
| |
Collapse
|
22
|
Chen B, Hu X, Zhu X. Essential Rule Derived from Thermodynamics and Kinetics Studies of Benzopyran Compounds. Molecules 2023; 28:8039. [PMID: 38138528 PMCID: PMC10745646 DOI: 10.3390/molecules28248039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Compounds with benzopyran as the core structure play an important role in the total synthesis of antioxidants, drugs, and natural products. Herein, the thermodynamic data of benzopyran compounds and their intermediates were measured and calculated by combining thermodynamics with kinetics. The mechanism of reactions between four benzopyran compounds and organic hydride acceptors was proven to be a one-step hydride transfer. The thermodynamic properties of these compounds and their corresponding intermediates were elucidated. The rationality and accuracy of the electrochemical measurement method were proved. Furthermore, the essential rule of unique structures being present between the C-H bond and para-substituent constants on the benzene ring, as shown in previous studies, was investigated. A simultaneous correlation between thermodynamics and kinetics was found for the hydride transfer reaction, in which the reaction site is connected with the substituent through the benzene ring, a double bond, or a N atom. The likely reason for the correlation between thermodynamic and kinetic is that the benzene ring, double bond, or N atom have the role of transferring the electronic effect. This finding can be applied to the calculation of the activation energy of hydride self-exchange reactions, the prediction of kinetic isotope effects, and explorations of selective reduction processes of hydride transfer in such organic hydride compounds.
Collapse
Affiliation(s)
- Baolong Chen
- The State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xin Hu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China;
| | - Xiaoqing Zhu
- The State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
23
|
Mohapatra SK, Al Kurdi K, Jhulki S, Bogdanov G, Bacsa J, Conte M, Timofeeva TV, Marder SR, Barlow S. Benzoimidazolium-derived dimeric and hydride n-dopants for organic electron-transport materials: impact of substitution on structures, electrochemistry, and reactivity. Beilstein J Org Chem 2023; 19:1651-1663. [PMID: 37942021 PMCID: PMC10630679 DOI: 10.3762/bjoc.19.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023] Open
Abstract
1,3-Dimethyl-2,3-dihydrobenzo[d]imidazoles, 1H, and 1,1',3,3'-tetramethyl-2,2',3,3'-tetrahydro-2,2'-bibenzo[d]imidazoles, 12, are of interest as n-dopants for organic electron-transport materials. Salts of 2-(4-(dimethylamino)phenyl)-4,7-dimethoxy-, 2-cyclohexyl-4,7-dimethoxy-, and 2-(5-(dimethylamino)thiophen-2-yl)benzo[d]imidazolium (1g-i+, respectively) have been synthesized and reduced with NaBH4 to 1gH, 1hH, and 1iH, and with Na:Hg to 1g2 and 1h2. Their electrochemistry and reactivity were compared to those derived from 2-(4-(dimethylamino)phenyl)- (1b+) and 2-cyclohexylbenzo[d]imidazolium (1e+) salts. E(1+/1•) values for 2-aryl species are less reducing than for 2-alkyl analogues, i.e., the radicals are stabilized more by aryl groups than the cations, while 4,7-dimethoxy substitution leads to more reducing E(1+/1•) values, as well as cathodic shifts in E(12•+/12) and E(1H•+/1H) values. Both the use of 3,4-dimethoxy and 2-aryl substituents accelerates the reaction of the 1H species with PC61BM. Because 2-aryl groups stabilize radicals, 1b2 and 1g2 exhibit weaker bonds than 1e2 and 1h2 and thus react with 6,13-bis(triisopropylsilylethynyl)pentacene (VII) via a "cleavage-first" pathway, while 1e2 and 1h2 react only via "electron-transfer-first". 1h2 exhibits the most cathodic E(12•+/12) value of the dimers considered here and, therefore, reacts more rapidly than any of the other dimers with VII via "electron-transfer-first". Crystal structures show rather long central C-C bonds for 1b2 (1.5899(11) and 1.6194(8) Å) and 1h2 (1.6299(13) Å).
Collapse
Affiliation(s)
- Swagat K Mohapatra
- Center for Organic Photonics and Electronics and School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 80007, United States
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology—Indian Oil Campus, ITT Kharagpur Extension Center, Bhubaneswar 751013 Odisha, India
| | - Khaled Al Kurdi
- Center for Organic Photonics and Electronics and School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 80007, United States
| | - Samik Jhulki
- Center for Organic Photonics and Electronics and School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 80007, United States
| | - Georgii Bogdanov
- Department of Chemistry, New Mexico Highlands University, Las Vegas, New Mexico 87701, United States
| | - John Bacsa
- Crystallography Lab, Emory University, Atlanta, Georgia 30322, United States
| | - Maxwell Conte
- Center for Organic Photonics and Electronics and School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 80007, United States
| | - Tatiana V Timofeeva
- Department of Chemistry, New Mexico Highlands University, Las Vegas, New Mexico 87701, United States
| | - Seth R Marder
- Center for Organic Photonics and Electronics and School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 80007, United States
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, Colorado 80309, United States
- Department of Chemical and Biological Engineering and Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
- National Renewable Energy Laboratory, Chemistry and Nanoscience Center, Golden, Colorado, 80401, United States
| | - Stephen Barlow
- Center for Organic Photonics and Electronics and School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 80007, United States
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, Colorado 80309, United States
- National Renewable Energy Laboratory, Chemistry and Nanoscience Center, Golden, Colorado, 80401, United States
| |
Collapse
|
24
|
Ishizuka T, Hosokawa A, Kawanishi T, Kotani H, Zhi Y, Kojima T. Self-Photosensitizing Dinuclear Ruthenium Catalyst for CO 2 Reduction to CO. J Am Chem Soc 2023; 145:23196-23204. [PMID: 37831634 DOI: 10.1021/jacs.3c07685] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
The promise of artificial photosynthesis to solve environmental and energy issues such as global warming and the depletion of fossil fuels has inspired intensive research into photocatalytic systems for CO2 reduction to produce value-added chemicals such as CO and CH3OH. Among the photocatalytic systems for CO2 reduction, self-photosensitizing catalysts, bearing the functions of both photosensitization and catalysis, have attracted considerable attention recently, as such catalysts do not depend on the efficiency of electron transfer from the photosensitizer to the catalyst. Here, we have synthesized and characterized a dinuclear RuII complex bearing two molecules of a tripodal hexadentate ligand as chelating and linking ligands by X-ray crystallography to establish the structure explicitly and have used various spectroscopic and electrochemical methods to elucidate the photoredox characteristics. The dinuclear complex has been revealed to act as a self-photosensitizing catalyst, which acts not only as a photosensitizer but also as a catalyst for CO2 reduction. The dinuclear RuII complex is highly durable and performs efficient and selective CO2 reduction to produce CO with a turnover number of 2400 for 26 h. The quantum yield of the CO formation is also very high─19.7%─and the catalysis is efficient, even at a low concentration (∼1.5%) of CO2.
Collapse
Affiliation(s)
- Tomoya Ishizuka
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Atsushi Hosokawa
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Takuya Kawanishi
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Hiroaki Kotani
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Yipeng Zhi
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| | - Takahiko Kojima
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
25
|
Xie ZL, Gupta N, Niklas J, Poluektov OG, Lynch VM, Glusac KD, Mulfort KL. Photochemical charge accumulation in a heteroleptic copper(i)-anthraquinone molecular dyad via proton-coupled electron transfer. Chem Sci 2023; 14:10219-10235. [PMID: 37772110 PMCID: PMC10529959 DOI: 10.1039/d3sc03428c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/30/2023] [Indexed: 09/30/2023] Open
Abstract
Developing efficient photocatalysts that perform multi electron redox reactions is critical to achieving solar energy conversion. One can reach this goal by developing systems which mimic natural photosynthesis and exploit strategies such as proton-coupled electron transfer (PCET) to achieve photochemical charge accumulation. We report herein a heteroleptic Cu(i)bis(phenanthroline) complex, Cu-AnQ, featuring a fused phenazine-anthraquinone moiety that photochemically accumulates two electrons in the anthraquinone unit via PCET. Full spectroscopic and electrochemical analyses allowed us to identify the reduced species and revealed that up to three electrons can be accumulated in the phenazine-anthraquinone ring system under electrochemical conditions. Continuous photolysis of Cu-AnQ in the presence of sacrificial electron donor produced doubly reduced monoprotonated photoproduct confirmed unambiguously by X-ray crystallography. Formation of this photoproduct indicates that a PCET process occurred during illumination and two electrons were accumulated in the system. The role of the heteroleptic Cu(i)bis(phenanthroline) moiety participating in the photochemical charge accumulation as a light absorber was evidenced by comparing the photolysis of Cu-AnQ and the free AnQ ligand with less reductive triethylamine as a sacrificial electron donor, in which photogenerated doubly reduced species was observed with Cu-AnQ, but not with the free ligand. The thermodynamic properties of Cu-AnQ were examined by DFT which mapped the probable reaction pathway for photochemical charge accumulation and the capacity for solar energy stored in the process. This study presents a unique system built on earth-abundant transition metal complex to store electrons, and tune the storage of solar energy by the degree of protonation of the electron acceptor.
Collapse
Affiliation(s)
- Zhu-Lin Xie
- Division of Chemical Sciences and Engineering, Argonne National Laboratory USA
| | - Nikita Gupta
- Division of Chemical Sciences and Engineering, Argonne National Laboratory USA
- Department of Chemistry, University of Illinois at Chicago USA
| | - Jens Niklas
- Division of Chemical Sciences and Engineering, Argonne National Laboratory USA
| | - Oleg G Poluektov
- Division of Chemical Sciences and Engineering, Argonne National Laboratory USA
| | | | - Ksenija D Glusac
- Division of Chemical Sciences and Engineering, Argonne National Laboratory USA
- Department of Chemistry, University of Illinois at Chicago USA
| | - Karen L Mulfort
- Division of Chemical Sciences and Engineering, Argonne National Laboratory USA
| |
Collapse
|
26
|
Dang VQ, Teets TS. Reductive photoredox transformations of carbonyl derivatives enabled by strongly reducing photosensitizers. Chem Sci 2023; 14:9526-9532. [PMID: 37712019 PMCID: PMC10498680 DOI: 10.1039/d3sc03000h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/18/2023] [Indexed: 09/16/2023] Open
Abstract
Visible-light photoredox catalysis is well-established as a powerful and versatile organic synthesis strategy. However, some substrate classes, despite being attractive precursors, are recalcitrant to single-electron redox chemistry and thus not very amenable to photoredox approaches. Among these are carbonyl derivatives, e.g. ketones, aldehydes, and imines, which in most cases require Lewis or Brønsted acidic additives to activate via photoinduced electron transfer. In this work, we unveil a range of photoredox transformations on ketones and imines, enabled by strongly reducing photosensitizers and operating under simple, general conditions with a single sacrificial reductant and no additives. Specific reactions described here are umpolung C-C bond forming reactions between aromatic ketones or imines and electron-poor alkenes, imino-pinacol homocoupling reactions of challenging alkyl-aryl imine substrates, and γ-lactonization reactions of aromatic ketones with methyl acrylate. The reactions are all initiated by photoinduced electron transfer to form a ketyl or iminyl that is subsequently trapped.
Collapse
Affiliation(s)
- Vinh Q Dang
- University of Houston, Department of Chemistry 3585 Cullen Blvd. Room 112 Houston TX 77204-5003 USA
| | - Thomas S Teets
- University of Houston, Department of Chemistry 3585 Cullen Blvd. Room 112 Houston TX 77204-5003 USA
| |
Collapse
|
27
|
Shen GB, Qian BC, Luo GZ, Fu YH, Zhu XQ. Thermodynamic Evaluations of Amines as Hydrides or Two Hydrogen Ions Reductants and Imines as Protons or Two Hydrogen Ions Acceptors, as Well as Their Application in Hydrogenation Reactions. ACS OMEGA 2023; 8:31984-31997. [PMID: 37692224 PMCID: PMC10483529 DOI: 10.1021/acsomega.3c03804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023]
Abstract
Since the hydrogenation of imines (X) and the dehydrogenation of amines (XH2) generally involve the two hydrogen ions (H- + H+) transfer, the thermodynamic abilities of various amines releasing hydrides or two hydrogen ions as well as various imines accepting protons or two hydrogen ions are important and characteristic physical parameters. In this work, the pKa values of 84 protonated imines (XH+) in acetonitrile were predicted. Combining Gibbs free energy changes of amines releasing hydrides in acetonitrile from our previous work with the pKa(XH+) values, the Gibbs free energy changes of amines releasing two hydrogen ions and imines accepting two hydrogen ions were derived using Hess's law by constructing thermochemical cycles, and the thermodynamic evaluations of amines as hydrides or two hydrogen ions reductants and imines as protons or two hydrogen ions acceptors are well compared and discussed. Eventually, the practical application of thermodynamic data for amines and imines on hydrogenation feasibility, mechanism, and possible elementary steps was shown and discussed in this paper from the point of thermodynamics.
Collapse
Affiliation(s)
- Guang-Bin Shen
- School
of Medical Engineering, Jining Medical University, Jining, Shandong 272000, P. R. China
| | - Bao-Chen Qian
- School
of Medical Engineering, Jining Medical University, Jining, Shandong 272000, P. R. China
| | - Guang-Ze Luo
- School
of Medical Engineering, Jining Medical University, Jining, Shandong 272000, P. R. China
| | - Yan-Hua Fu
- College
of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Xiao-Qing Zhu
- The
State Key Laboratory of Elemento-Organic Chemistry, Department of
Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
28
|
Chen BL, Yan SY, Zhu XQ. A Mechanism Study of Redox Reactions of the Ruthenium-oxo-polypyridyl Complex. Molecules 2023; 28:molecules28114401. [PMID: 37298875 DOI: 10.3390/molecules28114401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Over the years, RuIV(bpy)2(py)(O)2+([RuIVO]2+) has garnered considerable interest owing to its extensive use as a polypyridine mono-oxygen complex. However, as the active-site Ru=O bond changes during the oxidation process, [RuIVO]2+ can be used to simulate the reactions of various high-priced metallic oxides. In order to elucidate the hydrogen element transfer process between the Ruthenium-oxo-polypyridyl complex and organic hydride donor, the current study reports on the synthesis of [RuIVO]2+, a polypyridine mono-oxygen complex, in addition to 1H and 3H (organic hydride compounds) and 1H derivative: 2. Through 1H-NMR analysis and thermodynamics- and kinetics-based assessments, we collected data on [RuIVO]2+ and two organic hydride donors and their corresponding intermediates and established a thermodynamic platform. It was confirmed that a one-step hydride transfer reaction between [RuIVO]2+ and these organic hydride donors occurs, and here, the advantages and nature of the new mechanism approach are revealed. Accordingly, these findings can considerably contribute to the better application of the compound in theoretical research and organic synthesis.
Collapse
Affiliation(s)
- Bao-Long Chen
- The State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Sheng-Yi Yan
- The State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiao-Qing Zhu
- The State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
29
|
Lee D, Choe MS, Lee HJ, Shin JY, Kim CH, Son HJ, Kang SO. Accumulative Charge Separation in a Modular Quaterpyridine Bridging Ligand Platform and Multielectron Transfer Photocatalysis of π-Linked Dinuclear Ir(III)-Re(I) Complex for CO 2 Reduction. Inorg Chem 2023. [PMID: 37220663 DOI: 10.1021/acs.inorgchem.3c00496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Four sterically distorted quaterpyridyl (qpy) ligand-bridged Ir(III)-Re(I) heterometallic complexes (Ir-qpymm-Re, Ir-qpymp-Re, Ir-qpypm-Re, and Ir-qpypp-Re), in which the position of the coupling pyridine unit of the two 2,2'-bipyridine ligands was varied (meta (m)- or para (p)-position), pypyx-pyxpy (x = m and m, qpymm; x = m and p, qpymp; x = p and m, qpypm; x = p and p, qpypp), were prepared, along with the fully π-conjugated Ir(III)-[π linker]-Re(I) complexes (π linker = 2,2'-bipyrimidine (bpm), Ir-bpm-Re; π linker = 2,5-di(pyridin-2-yl)pyrazine (dpp), Ir-dpp-Re) to elucidate the electron mediating and accumulative charge separation properties of the bridging π-linker in a bimetallic system (photosensitizer-π linker-catalytic center). From the photophysical and electrochemical studies, it was found that the quaterpyridyl (qpy) bridging ligand (BL), in which the two planar Ir/Re metalated bipyridine (bpy) ligands were connected but slightly canted relative to each other, linking the heteroleptic Ir(III) photosensitizer, [(piqC^N)2IrIII(bpy)]+, and catalytic Re(I) complex, (bpy)ReI(CO)3Cl, minimized the energy lowering of the qpy BL, which hampers the forward photoinduced electron transfer (PET) process from [(piqC^N)2IrIII(N^N)]+ to (N^N)ReI(CO)3Cl (Ered1 = -(0.85-0.93) V and Ered2 = -(1.15-1.30) V vs SCE). This result contrasts with the fully π-delocalized bimetallic systems (Ir-bpm-Re and Ir-dpp-Re) that show a significant energy reduction due to the considerable π-extension and deshielding effect caused by the neighboring Lewis acidic metals (Ir and Re) on the electrochemical scale (Ered1 = -0.37 V and Ered2 = -1.02 and -0.99 V vs SCE). Based on a series of anion absorption studies and spectroelectrochemical (SEC) analyses, all Ir(III)-BL-Re(I) bimetallic complexes were found to exist as dianionic form (Ir(III)-[BL]2--Re(I)) after a fast reductive-quenching process in the presence of excess electron donor. In the photolysis experiment, the four Ir-qpy-Re complexes displayed the reasonable photochemical CO2-to-CO conversion activities (TON of 366-588 for 19 h) owing to the moderated electronic coupling between two functional Ir(III) and Re(I) centers through the slightly distorted qpy ligand, whereas Ir-bpm-Re and Ir-dpp-Re displayed negligible performances as a result of the strong electronic coupling via π-conjugation between the two functional components resulting in the energetic constraints for PET and an unwanted side reactions competing with the forward processes. These results confirm that the qpy unit can be utilized as an efficient BL platform in π-linked bimetallic systems.
Collapse
Affiliation(s)
- Daehan Lee
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Min Su Choe
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Hyung Joo Lee
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Jae Yoon Shin
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Chul Hoon Kim
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Ho-Jin Son
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Sang Ook Kang
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
30
|
Miyajima R, Ooe Y, Miura T, Ikoma T, Iwamoto H, Takizawa SY, Hasegawa E. Triarylamine-Substituted Benzimidazoliums as Electron Donor-Acceptor Dyad-Type Photocatalysts for Reductive Organic Transformations. J Am Chem Soc 2023; 145:10236-10248. [PMID: 37127911 DOI: 10.1021/jacs.3c01264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Triarylamine-substituted benzimidazoliums (BI+-PhNAr2), new electron donor-acceptor dyad molecules, were synthesized. Their photocatalytic properties for reductive organic transformations were explored using absorption and fluorescence spectroscopy, redox potential determinations, density functional theory calculations, transient absorption spectroscopy, and reduction reactions of selected substrates. The results show that irradiation of BI+-PhNAr2 promotes photoinduced intramolecular electron transfer to form a long-lived (∼300 μs) charge shifted state (BI•-PhN•+Ar2). In the pathway for photocatalysis of reduction reactions of substrates, BI•-PhN•+Ar2 is subsequently transformed to the neutral benzimidazolyl radical (BI•-PhNAr2) by single-electron transfer from the donor 1,3-dimethyl-2-phenylbenzimidazoline (BIH-Ph) serving as a cooperative agent. Among the benzimidazoliums explored, the bromo-substituted analogue BI+-PhN(C6H4Br-p)2 in conjunction with BIH-Ph demonstrates the most consistent catalytic performance.
Collapse
Affiliation(s)
- Ryo Miyajima
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Yuuki Ooe
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Tomoaki Miura
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Tadaaki Ikoma
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Hajime Iwamoto
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Shin-Ya Takizawa
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Eietsu Hasegawa
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| |
Collapse
|
31
|
Wang JW, Li Z, Luo ZM, Huang Y, Ma F, Kupfer S, Ouyang G. Boosting CO 2 photoreduction by π-π-induced preassembly between a Cu(I) sensitizer and a pyrene-appended Co(II) catalyst. Proc Natl Acad Sci U S A 2023; 120:e2221219120. [PMID: 36943881 PMCID: PMC10068849 DOI: 10.1073/pnas.2221219120] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/26/2023] [Indexed: 03/23/2023] Open
Abstract
The design of a highly efficient system for CO2 photoreduction fully based on earth-abundant elements presents a challenge, which may be overcome by installing suitable interactions between photosensitizer and catalyst to expedite the intermolecular electron transfer. Herein, we have designed a pyrene-decorated Cu(I) complex with a rare dual emission behavior, aiming at additional π-interaction with a pyrene-appended Co(II) catalyst for visible light-driven CO2-to-CO conversion. The results of 1H NMR titration, time-resolved fluorescence/absorption spectroscopies, quantum chemical simulations, and photocatalytic experiments clearly demonstrate that the dynamic π-π interaction between sensitizer and catalyst is highly advantageous in photocatalysis by accelerating the intermolecular electron transfer rate up to 6.9 × 105 s-1, thus achieving a notable apparent quantum yield of 19% at 425 nm with near-unity selectivity. While comparable to most earth-abundant molecular systems, this value is over three times of the pyrene-free system (6.0%) and far surpassing the benchmarking Ru(II) tris(bipyridine) (0.3%) and Ir(III) tris(2-phenylpyridine) (1.4%) photosensitizers under parallel conditions.
Collapse
Affiliation(s)
- Jia-Wei Wang
- School of Chemistry, Sun Yat-sen University, Guangzhou510275, China
- Institute of Chemical Research of Catalonia, Barcelona Institute of Science and Technology, Tarragona43007, Spain
| | - Zizi Li
- School of Chemistry, Sun Yat-sen University, Guangzhou510275, China
| | - Zhi-Mei Luo
- Institute of Chemical Research of Catalonia, Barcelona Institute of Science and Technology, Tarragona43007, Spain
| | - Yanjun Huang
- School of Chemistry, Sun Yat-sen University, Guangzhou510275, China
| | - Fan Ma
- School of Chemistry, Sun Yat-sen University, Guangzhou510275, China
| | - Stephan Kupfer
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Jena07743, Germany
| | - Gangfeng Ouyang
- School of Chemistry, Sun Yat-sen University, Guangzhou510275, China
- Chemistry College, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou450001, China
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangzhou510070, China
| |
Collapse
|
32
|
Chen BL, Jing S, Zhu XQ. Thermodynamics Evaluation of Selective Hydride Reduction for α,β-Unsaturated Carbonyl Compounds. Molecules 2023; 28:molecules28062862. [PMID: 36985834 PMCID: PMC10051270 DOI: 10.3390/molecules28062862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The selective reduction of α,β-unsaturated carbonyl compounds is one of the core reactions and also a difficult task for organic synthesis. We have been attempting to study the thermodynamic data of these compounds to create a theoretical basis for organic synthesis and computational chemistry. By electrochemical measurement method and titration calorimetry, in acetonitrile at 298 K, the hydride affinity of two types of unsaturated bonds in α,β-unsaturated carbonyl compounds, their single-electron reduction potential, and the single-electron reduction potential of the corresponding radical intermediate are determined. Their hydrogen atom affinity, along with the hydrogen atom affinity and proton affinity of the corresponding radical anion, is also derived separately based on thermodynamic cycles. The above data are used to establish the corresponding "Molecule ID Card" (Molecule identity card) and analyze the reduction mechanism of unsaturated carbonyl compounds. Primarily, the mixture of any carbonyl hydride ions and Ac-tempo+ will stimulate hydride transfer process and create corresponding α,β-unsaturated carbonyl compounds and Ac-tempoH from a thermodynamic point of view.
Collapse
Affiliation(s)
- Bao-Long Chen
- The State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Sha Jing
- The State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiao-Qing Zhu
- The State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
33
|
Kinoshita Y, Deromachi N, Kajiwara T, Koizumi TA, Kitagawa S, Tamiaki H, Tanaka K. Photoinduced Catalytic Organic-Hydride Transfer to CO 2 Mediated with Ruthenium Complexes as NAD + /NADH Redox Couple Models. CHEMSUSCHEM 2023; 16:e202300032. [PMID: 36639358 DOI: 10.1002/cssc.202300032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/13/2023] [Indexed: 06/17/2023]
Abstract
The catalytic organic-hydride transfer to CO2 was first achieved through the photoinduced two-electron reduction of the [Ru(bpy)2 (pbn)]2+ /[Ru(bpy)2 (pbnHH)]2+ (bpy=2,2'-bipyridine, pbn=2-(pyridin-2-yl)benzo[b]-1,5-naphthyridine, and pbnHH=2-(pyridin-2-yl)-5,10-dihydrobenzo[b]-1,5-naphthyridine) redox couple in the presence of 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole (BIH). The active species for the catalytic hydride transfer to carbon dioxide giving formate is [Ru(bpy)(bpy⋅- )(pbnHH)]+ formed by one-electron reduction of [Ru(bpy)2 (pbnHH)]2+ with BI⋅.
Collapse
Affiliation(s)
- Yusuke Kinoshita
- Graduate School of Life Sciences, Ritsumeikan University, 525-8577, Kusatsu, Shiga, Japan
| | - Nagisa Deromachi
- Graduate School of Life Sciences, Ritsumeikan University, 525-8577, Kusatsu, Shiga, Japan
| | - Takashi Kajiwara
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Sakyo-ku, 606-8501, Kyoto, Japan
| | - Take-Aki Koizumi
- Advanced Instrumental Analysis Center, Shizuoka Institute of Science and Technology, 437-8555, Fukuroi, Shizuoka, Japan
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Sakyo-ku, 606-8501, Kyoto, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, 525-8577, Kusatsu, Shiga, Japan
| | - Koji Tanaka
- Graduate School of Life Sciences, Ritsumeikan University, 525-8577, Kusatsu, Shiga, Japan
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Sakyo-ku, 606-8501, Kyoto, Japan
| |
Collapse
|
34
|
Photocatalytic CO 2 reduction with aminoanthraquinone organic dyes. Nat Commun 2023; 14:1087. [PMID: 36841825 PMCID: PMC9968311 DOI: 10.1038/s41467-023-36784-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 02/14/2023] [Indexed: 02/27/2023] Open
Abstract
The direct utilization of solar energy to convert CO2 into renewable chemicals remains a challenge. One essential difficulty is the development of efficient and inexpensive light-absorbers. Here we show a series of aminoanthraquinone organic dyes to promote the efficiency for visible light-driven CO2 reduction to CO when coupled with an Fe porphyrin catalyst. Importantly, high turnover numbers can be obtained for both the photosensitizer and the catalyst, which has not been achieved in current light-driven systems. Structure-function study performed with substituents having distinct electronic effects reveals that the built-in donor-acceptor property of the photosensitizer significantly promotes the photocatalytic activity. We anticipate this study gives insight into the continued development of advanced photocatalysts for solar energy conversion.
Collapse
|
35
|
Dolai R, Kumar R, Elvers BJ, Pal PK, Joseph B, Sikari R, Nayak MK, Maiti A, Singh T, Chrysochos N, Jayaraman A, Krummenacher I, Mondal J, Priyakumar UD, Braunschweig H, Yildiz CB, Schulzke C, Jana A. Carbodicarbenes and Striking Redox Transitions of their Conjugate Acids: Influence of NHC versus CAAC as Donor Substituents. Chemistry 2023; 29:e202202888. [PMID: 36129127 PMCID: PMC10100033 DOI: 10.1002/chem.202202888] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 01/11/2023]
Abstract
Herein, a new type of carbodicarbene (CDC) comprising two different classes of carbenes is reported; NHC and CAAC as donor substituents and compare the molecular structure and coordination to Au(I)Cl to those of NHC-only and CAAC-only analogues. The conjugate acids of these three CDCs exhibit notable redox properties. Their reactions with [NO][SbF6 ] were investigated. The reduction of the conjugate acid of CAAC-only based CDC with KC8 results in the formation of hydrogen abstracted/eliminated products, which proceed through a neutral radical intermediate, detected by EPR spectroscopy. In contrast, the reduction of conjugate acids of NHC-only and NHC/CAAC based CDCs led to intermolecular reductive (reversible) carbon-carbon sigma bond formation. The resulting relatively elongated carbon-carbon sigma bonds were found to be readily oxidized. They were, thus, demonstrated to be potent reducing agents, underlining their potential utility as organic electron donors and n-dopants in organic semiconductor molecules.
Collapse
Affiliation(s)
- Ramapada Dolai
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| | - Rahul Kumar
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| | - Benedict J. Elvers
- Institut für BiochemieUniversität GreifswaldFelix-Hausdorff-Strasse 417489GreifswaldGermany
| | - Pradeep Kumar Pal
- International Institute of Information Technology GachibowliHyderabad500032India
| | - Benson Joseph
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| | - Rina Sikari
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| | - Mithilesh Kumar Nayak
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| | - Avijit Maiti
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| | - Tejender Singh
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| | - Nicolas Chrysochos
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| | - Arumugam Jayaraman
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Ivo Krummenacher
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Jagannath Mondal
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| | - U. Deva Priyakumar
- International Institute of Information Technology GachibowliHyderabad500032India
| | - Holger Braunschweig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Cem B. Yildiz
- Department of Aromatic and Medicinal PlantsAksaray UniversityAksaray68100Turkey
| | - Carola Schulzke
- Institut für BiochemieUniversität GreifswaldFelix-Hausdorff-Strasse 417489GreifswaldGermany
| | - Anukul Jana
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| |
Collapse
|
36
|
Stanley PM, Sixt F, Warnan J. Decoupled Solar Energy Storage and Dark Photocatalysis in a 3D Metal-Organic Framework. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207280. [PMID: 36217842 DOI: 10.1002/adma.202207280] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Materials enabling solar energy conversion and long-term storage for readily available electrical and chemical energy are key for off-grid energy distribution. Herein, the specific confinement of a rhenium coordination complex in a metal-organic framework (MOF) unlocks a unique electron accumulating property under visible-light irradiation. About 15 C gMOF -1 of electric charges can be concentrated and stored for over four weeks without loss. Decoupled, on-demand discharge for electrochemical reactions and H2 evolution catalysis is shown and light-driven recharging can be conducted for >10 cycles with ≈90% of the initial charging capacity retained. Experimental investigations and theoretical calculations link electron trapping to MOF-induced geometry constraints as well as the coordination environment of the Re-center, highlighting the key role of MOF confinement on molecular guests. This study serves as the seminal report on 3D porous colloids achieving photoaccumulation of long-lived electrons, unlocking dark photocatalysis, and a path toward solar capacitor and solar battery systems.
Collapse
Affiliation(s)
- Philip M Stanley
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, and Catalysis, Research Center (CRC), TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Florian Sixt
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, and Catalysis, Research Center (CRC), TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Julien Warnan
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry, and Catalysis, Research Center (CRC), TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| |
Collapse
|
37
|
Bruch QJ, Tanushi A, Müller P, Radosevich AT. Metal-Ligand Role Reversal: Hydride-Transfer Catalysis by a Functional Phosphorus Ligand with a Spectator Metal. J Am Chem Soc 2022; 144:21443-21447. [PMID: 36378626 PMCID: PMC9712262 DOI: 10.1021/jacs.2c10200] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hydride transfer catalysis is shown to be enabled by the nonspectator reactivity of a transition metal-bound low-symmetry tricoordinate phosphorus ligand. Complex 1·[Ru]+, comprising a nontrigonal phosphorus chelate (1, P(N(o-N(2-pyridyl)C6H4)2) and an inert metal fragment ([Ru] = (Me5C5)Ru), reacts with NaBH4 to give a metallohydridophosphorane (1H·[Ru]) by P-H bond formation. Complex 1H·[Ru] is revealed to be a potent hydride donor (ΔG°H-,exp < 41 kcal/mol, ΔG°H-,calc = 38 ± 2 kcal/mol in MeCN). Taken together, the reactivity of the 1·[Ru]+/1H·[Ru] pair comprises a catalytic couple, enabling catalytic hydrodechlorination in which phosphorus is the sole reactive site of hydride transfer.
Collapse
Affiliation(s)
- Quinton J. Bruch
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Akira Tanushi
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Peter Müller
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Alexander T. Radosevich
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
38
|
Fu Y, Yang L, Zhou Z, Jia T, Shen G, Zhu X. Comparison of Thermodynamic Energies for Elementary Steps of Anionic Hydrides to Release Hydride Ions in Acetonitrile. ChemistrySelect 2022. [DOI: 10.1002/slct.202203626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Yan‐Hua Fu
- College of Chemistry and Environmental Engineering Anyang Institute of Technology Anyang Henan 455000 China
| | - Li‐Guo Yang
- College of Chemistry and Environmental Engineering Anyang Institute of Technology Anyang Henan 455000 China
| | - Zhong‐Yuan Zhou
- College of Chemistry and Environmental Engineering Anyang Institute of Technology Anyang Henan 455000 China
| | - Taixuan Jia
- College of Chemistry and Environmental Engineering Anyang Institute of Technology Anyang Henan 455000 China
| | - Guang‐Bin Shen
- School of Medical Engineering Jining Medical University Jining Shandong 272000 P. R. China
| | - Xiao‐Qing Zhu
- Department of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
39
|
Lan G, Fan Y, Shi W, You E, Veroneau SS, Lin W. Biomimetic active sites on monolayered metal–organic frameworks for artificial photosynthesis. Nat Catal 2022. [DOI: 10.1038/s41929-022-00865-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
40
|
Wang X, Li J, Dong C, Zhang L, Hu J, Liu J, Liu Y. n-Type thermoelectric properties of a doped organoboron polymer. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Comparison between 1,2-Dihydropyridine and 1,4-Dihydropyridine on Hydride-Donating Ability and Activity. Molecules 2022; 27:molecules27175382. [PMID: 36080150 PMCID: PMC9457676 DOI: 10.3390/molecules27175382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
In this paper, detailed comparisons of the driving force in thermodynamics and intrinsic force in the kinetics of 1,2-dihydropyridine and 1,4-dihydropyridine isomers of PNAH, HEH, and PYH in hydride transfer reactions are made. For 1,2-PNAH and 1,4-PNAH, the values of the thermodynamic driving forces, kinetic intrinsic barriers, and thermo-kinetic parameters are 60.50 and 61.90 kcal/mol, 27.92 and 26.34 kcal/mol, and 44.21 and 44.12 kcal/mol, respectively. For 1,2-HEH and 1,4-HEH, the values of the thermodynamic driving forces, kinetic intrinsic barriers, and thermo-kinetic parameters are 63.40 and 65.00 kcal/mol, 31.68 and 34.96 kcal/mol, and 47.54 and 49.98 kcal/mol, respectively. For 1,2-PYH and 1,4-PYH, the order of thermodynamic driving forces, kinetic intrinsic barriers, and thermo-kinetic parameters are 69.90 and 72.60 kcal/mol, 33.06 and 25.74 kcal/mol, and 51.48 and 49.17 kcal/mol, respectively. It is not difficult to find that thermodynamically favorable structures are not necessarily kinetically favorable. In addition, according to the analysis of thermo-kinetic parameters, 1,4-PNAH, 1,2-HEH, and 1,4-PYH have a strong hydride-donating ability in actual chemical reactions.
Collapse
|
42
|
Chen Y, Yuan H, Lei Q, Ming M, Du J, Tao Y, Cheng B, Han Z. Improving Photocatalytic Hydrogen Production through Incorporating Copper to Organic Photosensitizers. Inorg Chem 2022; 61:12545-12551. [PMID: 35926191 DOI: 10.1021/acs.inorgchem.2c01153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Organic dyes have been investigated extensively as promising photosensitizers in noble-metal-free photocatalytic systems for hydrogen production. However, other than functional group optimization, there are very few methods reported to be effective in improving their photocatalytic activity. Herein, we report the incorporation of Cu2+ into purpurin and gallein dyes for visible-light-driven hydrogen production. These Cu-dye chromophores significantly promote the photocatalytic activity of homogeneous systems when paired with a series of molecular Ni or Fe catalysts. Under optimal conditions, the Cu-purpurin and Cu-gallein photosensitizers exhibit more than 20-fold increases in turnover frequencies for hydrogen evolution when compared with purpurin and gallein. Catalytic systems with the Cu-purpurin chromophore show no decrease in activity over 120 h. Based on electrochemical and fluorescence quenching experiments, the enhancement of photocatalytic activity is likely due to the fact that Cu2+ can facilitate the transfer of electrons from the photosensitizers to the catalysts through creating highly reducing centers.
Collapse
Affiliation(s)
- Ya Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Huiqing Yuan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Qinqin Lei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Mei Ming
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiehao Du
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuan Tao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Banggui Cheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhiji Han
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
43
|
Saeedifard F, Lungwitz D, Yu ZD, Schneider S, Mansour AE, Opitz A, Barlow S, Toney MF, Pei J, Koch N, Marder SR. Use of a Multiple Hydride Donor To Achieve an n-Doped Polymer with High Solvent Resistance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33598-33605. [PMID: 35822714 DOI: 10.1021/acsami.2c05724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The ability to insolubilize doped semiconducting polymer layers can help enable the fabrication of efficient multilayer solution-processed electronic and optoelectronic devices. Here, we present a promising approach to simultaneously n-dope and largely insolubilize conjugated polymer films using tetrakis[{4-(1,3-dimethyl-2,3-dihydro-1H-benzo[d]imidazol-2-yl)phenoxy}methyl]methane (tetrakis-O-DMBI-H), which consists of four 2,3-dihydro-1H-benzoimidazole (DMBI-H) n-dopant moieties covalently linked to one another. Doping a thiophene-fused benzodifurandione-based oligo(p-phenylenevinylene)-co-thiophene polymer (TBDOPV-T) with tetrakis-O-DMBI-H results in a highly n-doped film with bulk conductivity of 15 S cm-1. Optical absorption spectra provide evidence for film retention of ∼93% after immersion in o-dichlorobenzene for 5 min. The optical absorption signature of the charge carriers in the n-doped polymer decreases only slightly more than that of the neutral polymer under these conditions, indicating that the exposure to solvent also results in negligible dedoping of the film. Moreover, thermal treatment studies on a tetrakis-O-DMBI-H-doped TBDOPV-T film in contact with another undoped polymer film indicate immobilization of the molecular dopant in TBDOPV-T. This is attributed to the multiple electrostatic interactions between each dopant tetracation and up to four nearby anionic doped polymer segments.
Collapse
Affiliation(s)
- Farzaneh Saeedifard
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Dominique Lungwitz
- Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Zi-Di Yu
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, Peking University, Beijing 100871, China
| | - Sebastian Schneider
- SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Light Source, Menlo Park, California 94025, United States
- School of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Ahmed E Mansour
- Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Andreas Opitz
- Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Stephen Barlow
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Michael F Toney
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Jian Pei
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, Peking University, Beijing 100871, China
| | - Norbert Koch
- Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Seth R Marder
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80303, United States
| |
Collapse
|
44
|
Shen GB, Qian BC, Fu YH, Zhu XQ. Discovering and Evaluating the Reducing Abilities of Polar Alkanes and Related Family Members as Organic Reductants Using Thermodynamics. J Org Chem 2022; 87:9357-9374. [PMID: 35786938 DOI: 10.1021/acs.joc.2c01149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this work, the pKa values of 69 polar alkanes (YH2) in acetonitrile were computed using the method developed by Luo and Zhang in 2020, and representative 69 thermodynamic network cards on 22 elementary steps of YH2 and related polar alkenes (Y) releasing or accepting H2 were naturally established. Potential electron reductants (YH-), hydride reductants (YH-), antioxidants (YH2 and YH-), and hydrogen molecule reductants (YH2) are unexpectedly discovered according to thermodynamic network cards. It is also found that there are great differences between YH2 and common hydrogen molecule reductants (XH2), such as Hantzsch ester (HEH2), benzothiazoline (BTH2), and dihydro-phenanthridine (PH2), releasing two hydrogen ions to unsaturated compounds. During the hydrogenation process, XH2 release hydrides first, then the oxidation state XH+ release protons. However, in the case of YH2, YH2 release protons first, then YH- release hydrides. It is the differences on acidic properties of YH2 and XH2 that result in the behavioral and thermodynamic differences on YH2 and XH2 releasing two hydrogen ions (H--H+). The redox mechanisms and behaviors of Y, YH-, and YH2 as electron, hydrogen atom, hydride, and hydrogen molecule donors or acceptors in the chemical reaction are reasonably investigated and discussed in this paper using thermodynamics.
Collapse
Affiliation(s)
- Guang-Bin Shen
- School of Medical Engineering, Jining Medical University, Jining, Shandong 272000, P. R. China
| | - Bao-Chen Qian
- School of Medical Engineering, Jining Medical University, Jining, Shandong 272000, P. R. China
| | - Yan-Hua Fu
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Xiao-Qing Zhu
- The State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| |
Collapse
|
45
|
Wang YF, Zhang MT. Proton-Coupled Electron-Transfer Reduction of Dioxygen: The Importance of Precursor Complex Formation between Electron Donor and Proton Donor. J Am Chem Soc 2022; 144:12459-12468. [PMID: 35776107 DOI: 10.1021/jacs.2c04467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The proton-coupled electron transfer (PCET) reaction has drawn extensive attention for its widespread occurrence in chemistry, biology, and materials science. The mechanistic studies via model systems such as tyrosine and phenol oxidation have gradually deepened the understanding of PCET reactions, which was widely accepted and applied to bond activation and transformation. However, direct PCET activation of nonpolar bonds such as the C-H bond, O2, and N2 has yet to be explored. Herein, we report that the interaction between electron donor and proton donor could overcome the barrier of direct O2 activation via a concerted electron-proton transfer mechanism. This work provides a new strategy for developing direct PCET activation of nonpolar bonds.
Collapse
Affiliation(s)
- Yu-Fan Wang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ming-Tian Zhang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
46
|
Wang JW, Huang HH, Wang P, Yang G, Kupfer S, Huang Y, Li Z, Ke Z, Ouyang G. Co-facial π-π Interaction Expedites Sensitizer-to-Catalyst Electron Transfer for High-Performance CO 2 Photoreduction. JACS AU 2022; 2:1359-1374. [PMID: 35783182 PMCID: PMC9241016 DOI: 10.1021/jacsau.2c00073] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 05/29/2023]
Abstract
The sunlight-driven reduction of CO2 into carbonaceous fuels can lower the atmospheric CO2 concentration and provide renewable energy simultaneously, attracting scientists to design photocatalytic systems for facilitating this process. Significant progress has been made in designing high-performance photosensitizers and catalysts in this regard, and further improvement can be realized by installing additional interactions between the abovementioned two components, however, the design strategies and mechanistic investigations on such interactions remain challenging. Here, we present the construction of molecular models for intermolecular π-π interactions between the photosensitizer and the catalyst, via the introduction of pyrene groups into both molecular components. The presence, types, and strengths of diverse π-π interactions, as well as their roles in the photocatalytic mechanism, have been examined by 1H NMR titration, fluorescence quenching measurements, transient absorption spectroscopy, and quantum chemical simulations. We have also explored the rare dual emission behavior of the pyrene-appended iridium photosensitizer, of which the excited state can deliver the photo-excited electron to the pyrene-decorated cobalt catalyst at a fast rate of 2.60 × 106 s-1 via co-facial π-π interaction, enabling a remarkable apparent quantum efficiency of 14.3 ± 0.8% at 425 nm and a high selectivity of 98% for the photocatalytic CO2-to-CO conversion. This research demonstrates non-covalent interaction construction as an effective strategy to achieve rapid CO2 photoreduction besides a conventional photosensitizer/catalyst design.
Collapse
Affiliation(s)
- Jia-Wei Wang
- KLGHEI
of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Hai-Hua Huang
- School
of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Ping Wang
- Institute
of New Energy Materials and Low Carbon Technology, School of Material
Science and Engineering, Tianjin University
of Technology, Tianjin 300384, China
| | - Guangjun Yang
- Friedrich
Schiller University Jena, Institute of Physical
Chemistry, Helmholtzweg
4, Jena 07743, Germany
| | - Stephan Kupfer
- Friedrich
Schiller University Jena, Institute of Physical
Chemistry, Helmholtzweg
4, Jena 07743, Germany
| | - Yanjun Huang
- KLGHEI
of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Zizi Li
- KLGHEI
of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhuofeng Ke
- School
of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou 510275, China
| | - Gangfeng Ouyang
- KLGHEI
of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
- Friedrich
Schiller University Jena, Institute of Physical
Chemistry, Helmholtzweg
4, Jena 07743, Germany
- Instrumental
Analysis and Research Center, Sun Yat-sen
University, Guangzhou 510275, China
- Chemistry
College, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou 450001, China
- Guangdong
Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical
Center Guangzhou), Guangzhou 510070, China
| |
Collapse
|
47
|
Tun SL, Mariappan SVS, Pigge FC. Imidazolidine Hydride Donors in Palladium-Catalyzed Alkyne Hydroarylation. J Org Chem 2022; 87:8059-8070. [PMID: 35649131 PMCID: PMC9490851 DOI: 10.1021/acs.joc.2c00725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Aldehyde-derived
imidazolidines participate as hydride donors in
intramolecular reductive Heck-type reactions. N,N′-Diphenylimidazolidines prepared from ortho-alkynyl benzaldehydes underwent regio- and stereoselective palladium-catalyzed
hydroarylation followed by formal 1,5-hydride transfer and reductive
elimination to afford substituted alkenes and imidazolium moieties,
the latter conveniently converted in situ to ring-opened benzanilides
to simplify product isolation. Internal alkynes were converted to
trisubstituted alkenes via a syn hydroarylation process,
while a terminal alkyne was converted to a cis alkene
via a formal trans hydroarylation reaction. Benzanilide
products could be converted to carboxylic acid derivatives under basic
conditions, resulting in the net conversion of alkynyl aldehydes to
alkenyl carboxylic acids. A styrene derivative with an attached N,N′-dimethylbenzimidazoline hydride
donor was also found to undergo an analogous hydroarylation/benzimidazoline
oxidation to give a diarylethane product.
Collapse
Affiliation(s)
- Soe L Tun
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - S V Santhana Mariappan
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States.,Central NMR Facility, University of Iowa, Iowa City, Iowa 52242, United States
| | - F Christopher Pigge
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
48
|
Zhou D, Zhang H, Zheng H, Xu Z, Xu H, Guo H, Li P, Tong Y, Hu B, Chen L. Recent Advances and Prospects of Small Molecular Organic Thermoelectric Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200679. [PMID: 35285160 DOI: 10.1002/smll.202200679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Thermoelectric (TE) materials possess unique energy conversion capabilities between heat and electrical energy. Small organic semiconductors have aroused widespread attention for the fabrication of TE devices due to their advantages of low toxicity, large area, light weight, and easy fabrication. However, the low TE properties hinder their large-scale commercial application. Herein, the basic knowledge about TE materials, including parameters affecting the TE performance and the remaining challenges of the organic thermoelectric (OTE) materials, are initially summarized in detail. Second, the optimization strategies of power factor, including the selection and design of dopants and structural modification of the dope-host are introduced. Third, some achievements of p- and n-type small molecular OTE materials are highlighted to briefly provide their future developing trend; finally, insights on the future development of OTE materials are also provided in this study.
Collapse
Affiliation(s)
- Dan Zhou
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Hehui Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Haolan Zheng
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Zhentian Xu
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Haitao Xu
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Huilong Guo
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Peining Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Yongfen Tong
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Bin Hu
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Lie Chen
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| |
Collapse
|
49
|
Buday P, Kasahara C, Hofmeister E, Kowalczyk D, Farh MK, Riediger S, Schulz M, Wächtler M, Furukawa S, Saito M, Ziegenbalg D, Gräfe S, Bäuerle P, Kupfer S, Dietzek‐Ivanšić B, Weigand W. Activating a [FeFe] Hydrogenase Mimic for Hydrogen Evolution under Visible Light**. Angew Chem Int Ed Engl 2022; 61:e202202079. [PMID: 35178850 PMCID: PMC9313588 DOI: 10.1002/anie.202202079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Indexed: 11/25/2022]
Abstract
Inspired by the active center of the natural [FeFe] hydrogenases, we designed a compact and precious metal‐free photosensitizer‐catalyst dyad (PS‐CAT) for photocatalytic hydrogen evolution under visible light irradiation. PS‐CAT represents a prototype dyad comprising π‐conjugated oligothiophenes as light absorbers. PS‐CAT and its interaction with the sacrificial donor 1,3‐dimethyl‐2‐phenylbenzimidazoline were studied by steady‐state and time‐resolved spectroscopy coupled with electrochemical techniques and visible light‐driven photocatalytic investigations. Operando EPR spectroscopy revealed the formation of an active [FeIFe0] species—in accordance with theoretical calculations—presumably driving photocatalysis effectively (TON≈210).
Collapse
Affiliation(s)
- Philipp Buday
- Institute of Inorganic and Analytical Chemistry Friedrich Schiller University Jena Humboldtstraße 8 07743 Jena Germany
| | - Chizuru Kasahara
- Institute of Inorganic and Analytical Chemistry Friedrich Schiller University Jena Humboldtstraße 8 07743 Jena Germany
- Department of Chemistry Graduate School of Science and Engineering Saitama University Shimo-okubo, Sakura-ku, Saitama City, Saitama 338-8570 Japan
| | - Elisabeth Hofmeister
- Department Functional Interfaces Leibniz Institute of Photonic Technology Jena (Leibniz-IPHT) Albert-Einstein-Straße 9 07745 Jena Germany
| | - Daniel Kowalczyk
- Institute of Chemical Engineering Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Micheal K. Farh
- Institute of Inorganic and Analytical Chemistry Friedrich Schiller University Jena Humboldtstraße 8 07743 Jena Germany
| | - Saskia Riediger
- Institute of Organic Chemistry II and Advanced Materials Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Martin Schulz
- Department Functional Interfaces Leibniz Institute of Photonic Technology Jena (Leibniz-IPHT) Albert-Einstein-Straße 9 07745 Jena Germany
- Institute of Physical Chemistry Friedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany
| | - Maria Wächtler
- Department Functional Interfaces Leibniz Institute of Photonic Technology Jena (Leibniz-IPHT) Albert-Einstein-Straße 9 07745 Jena Germany
- Institute of Physical Chemistry Friedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany
- Abbe Center of Photonics (ACP) Friedrich Schiller University Jena Albert-Einstein-Straße 6 07745 Jena Germany
| | - Shunsuke Furukawa
- Department of Chemistry Graduate School of Science and Engineering Saitama University Shimo-okubo, Sakura-ku, Saitama City, Saitama 338-8570 Japan
| | - Masaichi Saito
- Department of Chemistry Graduate School of Science and Engineering Saitama University Shimo-okubo, Sakura-ku, Saitama City, Saitama 338-8570 Japan
| | - Dirk Ziegenbalg
- Institute of Chemical Engineering Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Stefanie Gräfe
- Institute of Physical Chemistry Friedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany
- Abbe Center of Photonics (ACP) Friedrich Schiller University Jena Albert-Einstein-Straße 6 07745 Jena Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena) Friedrich Schiller University Jena Philosophenweg 8 07743 Jena Germany
- Fraunhofer Institute for Applied Optics and Precision Engineering Albert-Einstein-Straße 7 07745 Jena Germany
| | - Peter Bäuerle
- Institute of Organic Chemistry II and Advanced Materials Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Stephan Kupfer
- Institute of Physical Chemistry Friedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany
| | - Benjamin Dietzek‐Ivanšić
- Department Functional Interfaces Leibniz Institute of Photonic Technology Jena (Leibniz-IPHT) Albert-Einstein-Straße 9 07745 Jena Germany
- Institute of Physical Chemistry Friedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany
- Abbe Center of Photonics (ACP) Friedrich Schiller University Jena Albert-Einstein-Straße 6 07745 Jena Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena) Friedrich Schiller University Jena Philosophenweg 8 07743 Jena Germany
| | - Wolfgang Weigand
- Institute of Inorganic and Analytical Chemistry Friedrich Schiller University Jena Humboldtstraße 8 07743 Jena Germany
| |
Collapse
|
50
|
Fu Y, Wang K, Shen G, Zhu X. Quantitative Comparison of the Actual Antioxidant Activity of Vitamin C, Vitamin E and NADH. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yan‐Hua Fu
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology Anyang Henan China
| | - Kai Wang
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology Anyang Henan China
| | - Guang‐Bin Shen
- School of Medical Engineering Jining Medical University Jining Shandong P.R.China
| | - Xiao‐Qing Zhu
- The State Key Laboratory of Elemento‐Organic Chemistry, College ofChemistry Nankai University Tianjin China
| |
Collapse
|