1
|
Mietzner R, Barbey C, Lehr H, Ziegler CE, Peterhoff D, Wagner R, Goepferich A, Breunig M. Prolonged delivery of HIV-1 vaccine nanoparticles from hydrogels. Int J Pharm 2024; 657:124131. [PMID: 38643811 DOI: 10.1016/j.ijpharm.2024.124131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
Immunization is a straightforward concept but remains for some pathogens like HIV-1 a challenge. Thus, new approaches towards increasing the efficacy of vaccines are required to turn the tide. There is increasing evidence that antigen exposure over several days to weeks induces a much stronger and more sustained immune response compared to traditional bolus injection, which usually leads to antigen elimination from the body within a couple of days. Therefore, we developed a poly(ethylene) glycol (PEG) hydrogel platform to investigate the principal feasibility of a sustained release of antigens to mimic natural infection kinetics. Eight-and four-armed PEG macromonomers of different MWs (10, 20, and 40 kDa) were end-group functionalized to allow for hydrogel formation via covalent cross-linking. An HIV-1 envelope (Env) antigen in its trimeric (Envtri) or monomeric (Envmono) form was applied. The soluble Env antigen was compared to a formulation of Env attached to silica nanoparticles (Env-SiNPs). The latter are known to have a higher immunogenicity compared to their soluble counterparts. Hydrogels were tunable regarding the rheological behavior allowing for different degradation times and release timeframes of Env-SiNPs over two to up to 50 days. Affinity measurements of the VCR01 antibody which specifically recognizes the CD4 binding site of Env, revealed that neither the integrity nor the functionality of Envmono-SiNPs (Kd = 2.1 ± 0.9 nM) and Envtri-SiNPs (Kd = 1.5 ± 1.3 nM), respectively, were impaired after release from the hydrogel (Kd before release: 2.1 ± 0.1 and 7.8 ± 5.3 nM, respectively). Finally, soluble Env and Env-SiNPs which are two physico-chemically distinct compounds, were co-delivered and shown to be sequentially released from one hydrogel which could be beneficial in terms of heterologous immunization or single dose vaccination. In summary, this study presents a tunable, versatile applicable, and effective delivery platform that could improve vaccination effectiveness also for other infectious diseases than HIV-1.
Collapse
Affiliation(s)
- Raphael Mietzner
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93040 Regensburg, Germany
| | - Clara Barbey
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93040 Regensburg, Germany
| | - Heike Lehr
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93040 Regensburg, Germany
| | - Christian E Ziegler
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93040 Regensburg, Germany
| | - David Peterhoff
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Universitaetsstrasse 31, 93040 Regensburg, Germany; Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Universitaetsstrasse 31, 93040 Regensburg, Germany; Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93040 Regensburg, Germany
| | - Miriam Breunig
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93040 Regensburg, Germany.
| |
Collapse
|
2
|
Blackman SA, Miles D, Suresh J, Calve S, Bryant SJ. Cell- and Serum-Derived Proteins Act as DAMPs to Activate RAW 264.7 Macrophage-like Cells on Silicone Implants. ACS Biomater Sci Eng 2024; 10:1418-1434. [PMID: 38319825 PMCID: PMC11316276 DOI: 10.1021/acsbiomaterials.3c01393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Protein adsorption after biomaterial implantation is the first stage of the foreign body response (FBR). However, the source(s) of the adsorbed proteins that lead to damaged associated molecular patterns (DAMPs) and induce inflammation have not been fully elucidated. This study examined the effects of different protein sources, cell-derived (from a NIH/3T3 fibroblast cell lysate) and serum-derived (from fetal bovine serum), which were compared to implant-derived proteins (after a 30 min subcutaneous implantation in mice) on activation of RAW 264.7 cells cultured in minimal (serum-free) medium. Both cell-derived and serum-derived protein sources when preadsorbed to either tissue culture polystyrene or medical-grade silicone induced RAW 264.7 cell activation. The combination led to an even higher expression of pro-inflammatory cytokine genes and proteins. Implant-derived proteins on silicone explants induced a rapid inflammatory response that then subsided more quickly and to a greater extent than the studies with in vitro cell-derived or serum-derived protein sources. Proteomic analysis of the implant-derived proteins identified proteins that included cell-derived and serum-derived, but also other proteinaceous sources (e.g., extracellular matrix), suggesting that the latter or nonproteinaceous sources may help to temper the inflammatory response in vivo. These findings indicate that both serum-derived and cell-derived proteins adsorbed to implants can act as DAMPs to drive inflammation in the FBR, but other protein sources may play an important role in controlling inflammation.
Collapse
Affiliation(s)
- Samuel A. Blackman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80309-0596, USA
| | - Dalton Miles
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80309-0596, USA
| | - Joshita Suresh
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80309-0596, USA
| | - Sarah Calve
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Dr, Boulder, CO 80309-0427, USA
- BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80309-0596, USA
| | - Stephanie J. Bryant
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80309-0596, USA
- BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO 80309-0596, USA
- Materials Science and Engineering Program, University of Colorado Boulder, 4001 Discovery Dr, Boulder, CO 80300-0613, USA
| |
Collapse
|
3
|
Lehká K, Starigazdová J, Mrázek J, Nešporová K, Šimek M, Pavlík V, Chmelař J, Čepa M, Barrios-Llerena ME, Kocurková A, Kriváková E, Koukalová L, Kubala L, Velebný V. An in vitro model that mimics the foreign body response in the peritoneum: Study of the bioadhesive properties of HA-based materials. Carbohydr Polym 2023; 310:120701. [PMID: 36925239 DOI: 10.1016/j.carbpol.2023.120701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/03/2023] [Accepted: 02/12/2023] [Indexed: 02/19/2023]
Abstract
A cascade of reactions known as the foreign body response (FBR) follows the implantation of biomaterials leading to the formation of a fibrotic capsule around the implant and subsequent health complications. The severity of the FBR is driven mostly by the physicochemical characteristics of implanted material, the method and place of implantation, and the degree of immune system activation. Here we present an in vitro model for assessing new materials with respect to their potential to induce a FBR in the peritoneum. The model is based on evaluating protein sorption and cell adhesion on the implanted material. We tested our model on the free-standing films prepared from hyaluronan derivatives with different hydrophobicity, swelling ratio, and rate of solubilization. The proteomic analysis of films incubated in the mouse peritoneum showed that the presence of fibrinogen was driving the cell adhesion. Neither the film surface hydrophobicity/hydrophilicity nor the quantity of adsorbed proteins were decisive for the induction of the long-term cell adhesion leading to the FBR, while the dissolution rate of the material proved to be a crucial factor. Our model thus helps determine the probability of a FBR to materials implanted in the peritoneum while limiting the need for in vivo animal testing.
Collapse
Affiliation(s)
- Kateřina Lehká
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | - Jana Starigazdová
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | - Jiří Mrázek
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic; Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Matěj Šimek
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | - Vojtěch Pavlík
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | - Josef Chmelař
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | - Martin Čepa
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | | | - Anna Kocurková
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech Republic; Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekařská 53, 656 91 Brno, Czech Republic
| | - Eva Kriváková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Ludmila Koukalová
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | - Lukáš Kubala
- Institute of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech Republic; Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekařská 53, 656 91 Brno, Czech Republic
| | - Vladimír Velebný
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| |
Collapse
|
4
|
Fairlamb MS, Spies M, Washington MT, Freudenthal BD. Visualizing the coordination of apurinic/apyrimidinic endonuclease (APE1) and DNA polymerase β during base excision repair. J Biol Chem 2023; 299:104636. [PMID: 36963489 PMCID: PMC10148159 DOI: 10.1016/j.jbc.2023.104636] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/05/2023] [Accepted: 03/10/2023] [Indexed: 03/26/2023] Open
Abstract
Base excision repair (BER) is carried out by a series of proteins that function in a step-by-step process to identify, remove, and replace DNA damage. During BER, the DNA transitions through various intermediate states as it is processed by each DNA repair enzyme. Left unrepaired, these BER intermediates can transition into double-stranded DNA breaks and promote genome instability. Previous studies have proposed a short-lived complex consisting of the BER intermediate, the incoming enzyme, and the outgoing enzyme at each step of the BER pathway to protect the BER intermediate. The transfer of BER intermediates between enzymes, known as BER coordination or substrate channeling, remains poorly understood. Here, we utilize single-molecule total internal reflection fluorescence microscopy to investigate the mechanism of BER coordination between apurinic/apyrimidinic endonuclease 1 (APE1) and DNA polymerase β (Pol β). When preformed complexes of APE1 and the incised abasic site product (APE1 product and Pol β substrate) were subsequently bound by Pol β, the Pol β enzyme dissociated shortly after binding in most of the observations. In the events where Pol β binding was followed by APE1 dissociation during substrate channeling, Pol β remained bound for a longer period of time to allow disassociation of APE1. Our results indicate that transfer of the BER intermediate from APE1 to Pol β during BER is dependent on the dissociation kinetics of APE1 and the duration of the ternary complex on the incised abasic site.
Collapse
Affiliation(s)
- Max S Fairlamb
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Maria Spies
- Department of Biochemistry and Molecular Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - M Todd Washington
- Department of Biochemistry and Molecular Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA; Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas, USA; University of Kansas Cancer Center, Kansas City, Kansas, USA.
| |
Collapse
|
5
|
Schaich MA, Schnable BL, Kumar N, Roginskaya V, Jakielski R, Urban R, Zhong Z, Kad NM, Van Houten B. Single-molecule analysis of DNA-binding proteins from nuclear extracts (SMADNE). Nucleic Acids Res 2023; 51:e39. [PMID: 36861323 PMCID: PMC10123111 DOI: 10.1093/nar/gkad095] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 01/19/2023] [Accepted: 02/08/2023] [Indexed: 03/03/2023] Open
Abstract
Single-molecule characterization of protein-DNA dynamics provides unprecedented mechanistic details about numerous nuclear processes. Here, we describe a new method that rapidly generates single-molecule information with fluorescently tagged proteins isolated from nuclear extracts of human cells. We demonstrated the wide applicability of this novel technique on undamaged DNA and three forms of DNA damage using seven native DNA repair proteins and two structural variants, including: poly(ADP-ribose) polymerase (PARP1), heterodimeric ultraviolet-damaged DNA-binding protein (UV-DDB), and 8-oxoguanine glycosylase 1 (OGG1). We found that PARP1 binding to DNA nicks is altered by tension, and that UV-DDB did not act as an obligate heterodimer of DDB1 and DDB2 on UV-irradiated DNA. UV-DDB bound to UV photoproducts with an average lifetime of 39 seconds (corrected for photobleaching, τc), whereas binding lifetimes to 8-oxoG adducts were < 1 second. Catalytically inactive OGG1 variant K249Q bound oxidative damage 23-fold longer than WT OGG1, at 47 and 2.0 s, respectively. By measuring three fluorescent colors simultaneously, we also characterized the assembly and disassembly kinetics of UV-DDB and OGG1 complexes on DNA. Hence, the SMADNE technique represents a novel, scalable, and universal method to obtain single-molecule mechanistic insights into key protein-DNA interactions in an environment containing physiologically-relevant nuclear proteins.
Collapse
Affiliation(s)
- Matthew A Schaich
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC-Hillman Cancer Center, Pittsburgh, PA, 15232, USA
| | - Brittani L Schnable
- UPMC-Hillman Cancer Center, Pittsburgh, PA, 15232, USA
- Molecular Biophysics and Structural Biology Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Namrata Kumar
- UPMC-Hillman Cancer Center, Pittsburgh, PA, 15232, USA
- Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Rachel C Jakielski
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC-Hillman Cancer Center, Pittsburgh, PA, 15232, USA
| | - Roman Urban
- School of Biosciences, University of Kent, Kent, UK
| | - Zhou Zhong
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC-Hillman Cancer Center, Pittsburgh, PA, 15232, USA
- LUMICKS, Waltham, MA, USA
| | - Neil M Kad
- School of Biosciences, University of Kent, Kent, UK
| | - Bennett Van Houten
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC-Hillman Cancer Center, Pittsburgh, PA, 15232, USA
- Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Molecular Biophysics and Structural Biology Program, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Lyu K, Chen H, Gao J, Jin J, Shi H, Schwartz DK, Wang D. Protein Desorption Kinetics Depends on the Timescale of Observation. Biomacromolecules 2022; 23:4709-4717. [PMID: 36205402 DOI: 10.1021/acs.biomac.2c00917] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The presence of so-called reversible and irreversible protein adsorption on solid surfaces is well documented in the literature and represents the basis for the development of nanoparticles and implant materials to control interactions in physiological environments. Here, using a series of complementary single-molecule tracking approaches appropriate for different timescales, we show that protein desorption kinetics is much more complex than the traditional reversible-irreversible binary picture. Instead, we find that the surface residence time distribution of adsorbed proteins transitions from power law to exponential behavior when measured over a large range of timescales (10-2-106 s). A comparison with macroscopic results obtained using a quartz crystal microbalance suggested that macroscopic measurements have generally failed to observe such nonequilibrium phenomena because they are obscured by ensemble-averaging effects. These findings provide new insights into the complex phenomena associated with protein adsorption and desorption.
Collapse
Affiliation(s)
- Kaixuan Lyu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hongbo Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jing Gao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jing Jin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Hengchong Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Daniel K Schwartz
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Dapeng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
7
|
Han M, Li Y, Lu S, Yuan B, Cheng S, Cao C. Amyloid Protein-Biofunctionalized Polydopamine Nanoparticles Demonstrate Minimal Plasma Protein Fouling and Efficient Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13743-13757. [PMID: 35263991 DOI: 10.1021/acsami.2c00716] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polydopamine (PDA) shows great application potential in photothermal therapy (PTT) of tumors due to its excellent photothermal performance. However, PDA rich in a large number of catechin structures, with strong adhesion, can readily attach to plasma proteins in blood to form protein corona, which greatly hinders the transfer efficiency to tumors and reduces the bioavailability. In this paper, a simple, rapid phase-transitioned albumin biomimetic nanocorona (TBSA) is used for the surface camouflage of PDA nanoparticles for minimal plasma protein fouling and efficient PTT. TBSA coating is formed by the BSA-derived amyloid through the hydrophobic aggregation near the isoelectric point and the rupture of disulfide bonds by tris(2-carboxyethyl) phosphine. The stable PDA@TBSA complexes are formed by camouflaging TBSA onto the surface of PDA through hydrophobic, electrostatic, and covalent binding between TBSA and PDA, which showed excellent anti-plasma protein adsorption properties profited from the surface charge of PDA@TBSA approaching equilibrium and the surface passivation of BSA. The plasma protein thickness of the PDA@TBSA surface is 6 times lower than that of PDA at adsorption saturation. In vitro and in vivo experiments have revealed that PDA@TBSA has an excellent photothermal antitumor effect compared to PDA. Both PDA and PDA@TBSA treatment plus 808 nm laser irradiation result in more than 70% inhibition on tumor cell proliferation. In addition, PDA@TBSA does not cause a significant inflammatory response and tissue damage. Taken together, the TBSA coating endows PDA with low-fouling functions in blood and improves the residence time of PDA in blood and enrichment in the tumor tissue. This work offers a novel and efficient strategy for the design of functional nanosystems exploiting the speciality of the biomolecular corona formation around nanomaterials.
Collapse
Affiliation(s)
- Miaomiao Han
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yan Li
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Shun Lu
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Biao Yuan
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Shujie Cheng
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Chongjiang Cao
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
8
|
Sarker P, Sajib MSJ, Tao X, Wei T. Multiscale Simulation of Protein Corona Formation on Silver Nanoparticles: Study of Ovispirin-1 Peptide Adsorption. J Phys Chem B 2022; 126:601-608. [PMID: 35026946 DOI: 10.1021/acs.jpcb.1c08267] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The exposure of nanoparticles (NPs) to biofluids leads to the rapid coverage of proteins, named protein corona, which alters the NPs' chemicophysical and biological properties. Fundamental studies of the protein corona are thus critical to the increasing applications of NPs in nanotechnology and nanomedicines. The present work utilizes multiscale simulations of a model biological system, small ovispirin-1 peptides, and bare silver nanoparticles (AgNPs) to examine the NPs' size and surface hydrophilicity effects on formation dynamics and the structure of the peptide corona. Our simulations revealed the different adsorption dynamics of ovispirin-1 peptides on the NPs, including the direct adsorption of a single peptide and peptide aggregates and multistep adsorption, as well as an intermediate cycle of desorption and readsorption. Notably, the whole process of peptide adsorption on hydrophilic AgNP surfaces can be generalized as three stages: diffusion to the surface, initial landing via hydrophilic residues, and the final attachment. The decrease in AgNP's size leads to faster adsorption with more heterogeneous peptide interfacial dynamics, a denser and inhomogeneous peptide packing structure, and a wider distribution of adsorption orientations. Subsequent atomistic molecular dynamics simulations demonstrated that on the hydrophilic AgNP surfaces, adsorbed peptides display moderate changes in their secondary structure, resulting in further changes of corona composition, i.e., amino acid residue distribution on the surface.
Collapse
Affiliation(s)
- Pranab Sarker
- Department of Chemical Engineering, Howard University, Washington, D.C. 20059, United States
| | - Md Symon Jahan Sajib
- Department of Chemical Engineering, Howard University, Washington, D.C. 20059, United States
| | - Xiuping Tao
- Department of Chemistry, Winston-Salem State University, Winston-Salem, North Carolina 27110, United States
| | - Tao Wei
- Department of Chemical Engineering, Howard University, Washington, D.C. 20059, United States
| |
Collapse
|
9
|
Taylor AMK, Okoniewski SR, Uyetake L, Perkins TT. Force-Activated DNA Substrates for In Situ Generation of ssDNA and Designed ssDNA/dsDNA Structures in an Optical-Trapping Assay. Methods Mol Biol 2022; 2478:273-312. [PMID: 36063324 DOI: 10.1007/978-1-0716-2229-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Single-molecule force spectroscopy can precisely probe the biomechanical interactions of proteins that unwind duplex DNA and bind to and wrap around single-stranded (ss)DNA. Yet assembly of the required substrates, which often contain a ssDNA segment embedded within a larger double-stranded (ds)DNA construct, can be time-consuming and inefficient, particularly when using a standard three-way hybridization protocol. In this chapter, we detail how to construct a variety of force-activated DNA substrates more efficiently. To do so, we engineered a dsDNA molecule with a designed sequence of specified GC content positioned between two enzymatically induced, site-specific nicks. Partially pulling this substrate into the overstretching transition of DNA (~65 pN) using an optical trap led to controlled dissociation of the ssDNA segment delineated by the two nicks. Here, we describe protocols for generating ssDNA of up to 1000 nucleotides as well as more complex structures, such as a 120-base-pair DNA hairpin positioned next to a 33-nucleotide ssDNA segment. The utility of the hairpin substrate was demonstrated by measuring the motion of E. coli. RecQ, a 3'-to-5' DNA helicase.
Collapse
Affiliation(s)
- Arnulf M K Taylor
- JILA, National Institute of Standards and Technology, and University of Colorado, Boulder, CO, USA
- Department of Physics, University of Colorado, Boulder, CO, USA
| | - Stephen R Okoniewski
- JILA, National Institute of Standards and Technology, and University of Colorado, Boulder, CO, USA
- Department of Physics, University of Colorado, Boulder, CO, USA
| | - Lyle Uyetake
- JILA, National Institute of Standards and Technology, and University of Colorado, Boulder, CO, USA
| | - Thomas T Perkins
- JILA, National Institute of Standards and Technology, and University of Colorado, Boulder, CO, USA.
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
10
|
Kusova AM, Sitnitsky AE, Zuev YF. The Role of pH and Ionic Strength in the Attraction-Repulsion Balance of Fibrinogen Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10394-10401. [PMID: 34403253 DOI: 10.1021/acs.langmuir.1c01803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fibrinogen (Fg) self-assembly is sensitive to the physicochemical properties of an environment like pH and ionic strength. These parameters tune the direction and strength of noncovalent physical driving forces determining protein intermolecular interactions. The attraction-repulsion balance in intermolecular interactions of the multidomain protein Fg at pH values 3.5, 7.4, and 9.5 and varying ionic strengths of the water medium has been analyzed by the complex diffusive approach, proposed by us previously. The concentration dependence of protein collective diffusion was analyzed within the phenomenological approach, based on the frictional formalism of nonequilibrium thermodynamics proposed by H. Vink. The analysis of protein diffusion data has shown the fundamental difference in the physical nature and direction of interaction forces between protein molecules at different conditions. The paired interaction potential of protein molecules was characterized in terms of second virial coefficients and Hamaker constants within the Deryaguin-Landau-Verwey-Overbeek theory and the "porous" colloid particle model. Our results indicated the maximum Hamaker constant and dominance of the van der Waals attraction between Fg molecules at pH 7.4. The increase in pH up to 9.5 results in the zero values of the second virial coefficient and Hamaker constant, corresponding to the full reciprocal compensation for electrostatic repulsion and van der Waals attraction. In the acidic medium (pH 3.5), the strong electrostatic repulsion substantially exceeds the van der Waals attraction. A high ionic strength is characterized by a significant decrease of all intermolecular interactions, which is expressed in almost zero values of virial coefficients and the Hamaker constant. Thus, it is experimentally shown that the physiological conditions of the Fg environment (pH 7.4 and slight ionic strength) provide a high probability for peak physical attraction between fibrinogen molecules, which is used in nature to facilitate blood clotting.
Collapse
Affiliation(s)
- Aleksandra M Kusova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Lobachevsky Str., 2/31, Kazan 420111, Russian Federation
| | - Aleksandr E Sitnitsky
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Lobachevsky Str., 2/31, Kazan 420111, Russian Federation
| | - Yuriy F Zuev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Lobachevsky Str., 2/31, Kazan 420111, Russian Federation
| |
Collapse
|
11
|
Hedayati M, Krapf D, Kipper MJ. Dynamics of long-term protein aggregation on low-fouling surfaces. J Colloid Interface Sci 2021; 589:356-366. [PMID: 33482534 DOI: 10.1016/j.jcis.2021.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/13/2020] [Accepted: 01/01/2021] [Indexed: 01/12/2023]
Abstract
Understanding the mechanisms of protein interactions with solid surfaces is critical to predict how proteins affect the performance of materials in biological environments. Low-fouling and ultra-low fouling surfaces are often evaluated in short-term protein adsorption experiments, where 'short-term' is defined as the time required to reach an initial apparent or pseudo-equilibrium, which is usually less than 600 s. However, it has long been recognized that these short-term observations fail to predict protein adsorption behavior in the long-term, characterized by irreversible accumulation of protein on the surface. This important long-term behavior is frequently ignored or attributed to slow changes in surface chemistry over time-such as oxidation-often with little or no experimental evidence. Here, we report experiments measuring protein adsorption on "low-fouling" and "ultralow-fouling" surfaces using single-molecule localization microscopy to directly probe protein adsorption and desorption. The experiments detect protein adsorption for thousands of seconds, enabling direct observation of both short-term (reversible adsorption) and long-term (irreversible adsorption leading to accumulation) protein-surface interactions. By bridging the gap between these two time scales in a single experiment, this work enables us to develop a single mathematical model that predicts behavior in both temporal regimes. The experimental data in combination with the resulting model provide several important insights: (1) short-term measurements of protein adsorption using ensemble-averaging methods may not be sufficient for designing antifouling materials; (2) all investigated surfaces eventually foul when in long-term contact with protein solutions; (3) fouling can occur through surface-induced oligomerization of proteins which may be a distinct step from irreversible adsorption; and (4) surfaces can be designed to reduce oligomerization or the adsorption of oligomers, to prevent or delay fouling.
Collapse
Affiliation(s)
- Mohammadhasan Hedayati
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Diego Krapf
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA; School of Advanced Materials Discovery, Colorado State University, Fort Collins, CO 80523, USA; Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523, USA.
| | - Matt J Kipper
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA; School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA; School of Advanced Materials Discovery, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
12
|
Armstrong MJ, Rodriguez JB, Dahl P, Salamon P, Hess H, Katira P. Power Law Behavior in Protein Desorption Kinetics Originating from Sequential Binding and Unbinding. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13527-13534. [PMID: 33152250 DOI: 10.1021/acs.langmuir.0c02260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The study of protein adsorption at the single molecule level has recently revealed that the adsorption is reversible, but with a long-tailed residence time distribution which can be approximated with a sum of exponential functions putatively related to distinct adsorption sites. Here it is proposed that the shape of the residence time distribution results from an adsorption process with sequential and reversible steps that contribute to overall binding strength resembling "zippering". In this model, the survival function of the residence time distribution of single proteins varies from an exponential distribution for a single adsorption step to a power law distribution with exponent -1/2 for a large number of adsorption steps. The adsorption of fluorescently labeled fibrinogen to glass surfaces is experimentally studied with single molecule imaging. The experimental residence time distribution can be readily fit by the proposed model. This demonstrates that the observed long residence times can arise from stepwise adsorption rather than rare but strong binding sites and provides guidance for the control of protein adsorption to biomaterials.
Collapse
Affiliation(s)
- Megan J Armstrong
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Juan B Rodriguez
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Peter Dahl
- Department of Mechanical Engineering, San Diego State University, San Diego, California 98182, United States
| | - Peter Salamon
- Department of Mathematics and Statistics and Viral Information Institute, San Diego State University, San Diego, California 98182, United States
| | - Henry Hess
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Parag Katira
- Department of Mechanical Engineering, San Diego State University, San Diego, California 98182, United States
| |
Collapse
|
13
|
Bolivar JM, Nidetzky B. On the relationship between structure and catalytic effectiveness in solid surface-immobilized enzymes: Advances in methodology and the quest for a single-molecule perspective. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1868:140333. [PMID: 31778816 DOI: 10.1016/j.bbapap.2019.140333] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/05/2019] [Accepted: 11/22/2019] [Indexed: 12/31/2022]
Abstract
The integration of enzymes with solid materials is important in many biotechnological applications, including the use of immobilized enzymes for biocatalytic synthesis. The development of functional enzyme-material composites is restrained by the lack of molecular-level insight into the behavior of enzymes in confined, surface-near environments. Here, we review recent advances in surface-sensitive spectroscopic techniques that push boundaries for the determination of enzyme structure and orientation at the solid-liquid interface. We discuss recent evidence from single-molecule studies showing that analyses sensitive to the temporal and spatial heterogeneities in immobilized enzymes can succeed in disentangling the effects of conformational stability and active-site accessibility on activity. Different immobilization methods involve distinct trade-off between these effects, thus emphasizing the need for a holistic (systems) view of immobilized enzymes for the rational development of practical biocatalysts.
Collapse
Affiliation(s)
- Juan M Bolivar
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria; Austrian Centre of Industrial Biotechnology, Petersgasse 12, A-8010 Graz, Austria; Chemical and Materials Engineering Department, Complutense University of Madrid, 28040 Madrid, Spain
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria; Austrian Centre of Industrial Biotechnology, Petersgasse 12, A-8010 Graz, Austria.
| |
Collapse
|
14
|
Li J, Zhang R, Ding M, Shi T. Inconsistency of Diffusion and Relaxation of Ring Polymers Adsorbed on Rough Surfaces. J Phys Chem B 2019; 123:9712-9718. [PMID: 31622102 DOI: 10.1021/acs.jpcb.9b07473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We explore the diffusion and relaxation dynamics of a single ring polymer strongly adsorbed on rough surfaces with different roughnesses by means of molecular dynamics simulations. Our simulations demonstrate that on rough surfaces the intrachain topological constraint deriving from the closed architecture induces the inconsistency of diffusion and relaxation of ring polymers. When the lateral chain size is larger than the obstacle distance (2Rg∥,r > d), the ring closure induces the polymers to anchor on a single obstacle and dramatically reduces their diffusivity, where Rg∥,r and d are the lateral components of the mean-square radius of gyration and the obstacle distance, respectively. However, the single obstacle anchoring has no effect on the relaxation of ring polymers, which implies a deviation between the diffusion and the relaxation. With the lateral chain size beyond twice of the obstacle distance (Rg∥,r > d), the ring polymers are totally confined in the array of obstacles and can only diffuse through hopping over the obstacles, resulting in an exponential reduction of their diffusion coefficient. However, the relaxation of ring polymers mainly depends on their rotating reptation and satisfies the reptation-like dynamics, which means that the diffusion and the relaxation are nearly irrelevant. This inconsistency between the diffusion and relaxation is a unique property of adsorbed ring polymers, which would be meaningful to understand the physical nature of polymers with ring closure and significant to develop the corresponding applications.
Collapse
Affiliation(s)
- Jiaxiang Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China.,School of Applied Chemistry and Engineering , University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Ran Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
| | - Mingming Ding
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
| | - Tongfei Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China.,School of Applied Chemistry and Engineering , University of Science and Technology of China , Hefei 230026 , P. R. China
| |
Collapse
|
15
|
Viela F, Speziale P, Pietrocola G, Dufrêne YF. Mechanostability of the Fibrinogen Bridge between Staphylococcal Surface Protein ClfA and Endothelial Cell Integrin α Vβ 3. NANO LETTERS 2019; 19:7400-7410. [PMID: 31532212 DOI: 10.1021/acs.nanolett.9b03080] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Binding of the Staphylococcus aureus surface protein clumping factor A (ClfA) to endothelial cell integrin αVβ3 plays a crucial role during sepsis, by causing endothelial cell apoptosis and loss of barrier integrity. ClfA uses the blood plasma protein fibrinogen (Fg) to bind to αVβ3 but how this is achieved at the molecular level is not known. Here we investigate the mechanical strength of the three-component ClfA-Fg-αVβ3 interaction on living bacteria, by means of single-molecule experiments. We find that the ClfA-Fg-αVβ3 ternary complex is extremely stable, being able to sustain forces (∼800 pN) that are much stronger than those of classical bonds between integrins and the Arg-Gly-Asp (RGD) tripeptide sequence (∼100 pN). Adhesion forces between single bacteria and αVβ3 are strongly inhibited by an anti-αVβ3 antibody, the RGD peptide, and the cyclic RGD peptide cilengitide, showing that formation of the complex involves RGD-dependent binding sites and can be efficiently inhibited by αVβ3 blockers. Collectively, our experiments favor a binding mechanism involving the extraordinary elasticity of Fg. In the absence of mechanical stress, RGD572-574 sequences in the Aα chains mediate weak binding to αVβ3, whereas under high mechanical stress exposure of cryptic Aα chain RGD95-97 sequences leads to extremely strong binding to the integrin. Our results identify an unexpected and previously undescribed force-dependent binding mechanism between ClfA and αVβ3 on endothelial cells, which could represent a potential target to fight staphylococcal bloodstream infections.
Collapse
Affiliation(s)
- Felipe Viela
- Louvain Institute of Biomolecular Science and Technology, UCLouvain , Croix du Sud, 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve , Belgium
| | - Pietro Speziale
- Department of Molecular Medicine, Unit of Biochemistry , University of Pavia , Viale Taramelli 3/b , 27100 Pavia , Italy
- Department of Industrial and Information Engineering , University of Pavia , 27100 Pavia , Italy
| | - Giampiero Pietrocola
- Department of Molecular Medicine, Unit of Biochemistry , University of Pavia , Viale Taramelli 3/b , 27100 Pavia , Italy
| | - Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain , Croix du Sud, 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve , Belgium
- Walloon Excellence in Life sciences and Biotechnology (WELBIO) , 1300 Wavre , Belgium
| |
Collapse
|
16
|
Zhang X, Firkowska-Boden I, Arras MML, Kastantin MJ, Helbing C, Özogul A, Gnecco E, Schwartz DK, Jandt KD. Nanoconfinement and Sansetsukon-like Nanocrawling Govern Fibrinogen Dynamics and Self-Assembly on Nanostructured Polymeric Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14309-14316. [PMID: 30354162 DOI: 10.1021/acs.langmuir.8b02917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Surface nanostructures are increasingly more employed for controlled protein assembly on functional nanodevices, in nanobiotechnology, and in nanobiomaterials. However, the mechanism and dynamics of how nanostructures induce order in the adsorbed protein assemblies are still enigmatic. Here, we use single-molecule mapping by accumulated probe trajectories and complementary atomic force microscopy to shed light on the dynamic of in situ assembly of human plasma fibrinogen (HPF) adsorbed on nanostructured polybutene-1 (PB-1) and nanostructured polyethylene (PE) surfaces. We found a distinct lateral heterogeneity of HPF-polymer nanostructure interface (surface occupancy, residence time, and diffusion coefficient) that allow identifying the interplay between protein topographical nanoconfinement, protein diffusion mechanism, and ordered protein self-assembly. The protein diffusion analysis revealed high-diffusion polarization without correlation to the anisotropic friction characteristic of the polymer surfaces. This suggests that HPF molecules confined on the nanosized PB-1 needle crystals and PE shish-kebab crystals, respectively, undergo partial detachment and diffuse via a Sansetsukon-like nanocrawling mechanism. This mechanism is based on the intrinsic flexibility of HPF in the coiled-coil regions. We conclude that nanostructured surfaces that encourage this characteristic surface mobility are more likely to lead to the formation of ordered protein assemblies and may be useful for advanced nanobiomaterials.
Collapse
Affiliation(s)
| | | | - Matthias M L Arras
- Large Scale Structures Group, Neutron Scattering Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Mark J Kastantin
- Department of Chemical and Biological Engineering , University of Colorado Boulder , Boulder , Colorado 80309 , United States
| | | | | | | | - Daniel K Schwartz
- Department of Chemical and Biological Engineering , University of Colorado Boulder , Boulder , Colorado 80309 , United States
| | - Klaus D Jandt
- Jena Center for Soft Matter (JCSM) , Friedrich Schiller University Jena , Philosophenweg 7 , 07743 Jena , Germany
| |
Collapse
|
17
|
Semple SL, Mulder IM, Rodriguez-Ramos T, Power M, Dixon B. Long-term implantation of acoustic transmitters induces chronic inflammatory cytokine expression in adult rainbow trout (Oncorhynchus mykiss). Vet Immunol Immunopathol 2018; 205:1-9. [PMID: 30458996 DOI: 10.1016/j.vetimm.2018.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/08/2018] [Accepted: 10/14/2018] [Indexed: 12/31/2022]
Abstract
Telemetry transmitters are frequently used in studies of wild fish migration and behavior. Although the effects of surgically implanted transmitters on survival, tag retention, healing and growth have been studied, there has been little research regarding the potential immune response induced by these transmitters. In the current study, mature rainbow trout received either surgical implantation of an acoustic transmitter or a sham surgical procedure. These fish were then sampled over a 10-week period so that pro-inflammatory cytokine expression in the spleen, peritoneal cavity lymphocytes and muscle at the surgical site could be analyzed. There were no significant differences in transcript expression for the spleen and muscle tissue between fish that had a transmitter and those that received the surgical procedure alone. However, transmitter presence significantly increased the expression of IL-6, IL-1β and TNFα in the peritoneal cells at 10 weeks indicating that tagged fish may be coping with chronic inflammation. Furthermore, tagged male fish had a higher inflammatory response in 10-week peritoneal lavage samples when compared to their tagged mature female counterparts, providing some evidence that mature female rainbow trout may have suppressed immune function when sexually mature. Externally, fish appeared to heal at similar rates regardless of the presence or absence of the transmitter, but the tag itself was prone to encapsulation and adhesion to the body wall and/or surgical site. This suggests that fish tagged with large intraperitoneal implants may not behave similarly to their wild counterparts. This research could aid in the development of improved telemetry tags that are more biocompatible, economical and better able to track fish behavior/movement.
Collapse
Affiliation(s)
- Shawna L Semple
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, N2L 3G1 Canada
| | - Ingeborg M Mulder
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, N2L 3G1 Canada
| | - Tania Rodriguez-Ramos
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, N2L 3G1 Canada
| | - Michael Power
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, N2L 3G1 Canada
| | - Brian Dixon
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, N2L 3G1 Canada.
| |
Collapse
|
18
|
Park JH, Jackman JA, Ferhan AR, Ma GJ, Yoon BK, Cho NJ. Temperature-Induced Denaturation of BSA Protein Molecules for Improved Surface Passivation Coatings. ACS APPLIED MATERIALS & INTERFACES 2018; 10:32047-32057. [PMID: 30178663 DOI: 10.1021/acsami.8b13749] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Bovine serum albumin (BSA) is the most widely used protein for surface passivation applications, although it has relatively weak, nonsticky interactions with hydrophilic surfaces such as silica-based materials. Herein, we report a simple and versatile method to increase the stickiness of BSA protein molecules adsorbing onto silica surfaces, resulting in up to a 10-fold improvement in blocking efficiency against serum biofouling. Circular dichroism spectroscopy, dynamic light scattering, and nanoparticle tracking analysis showed that temperature-induced denaturation of BSA proteins in bulk solution resulted in irreversible unfolding and protein oligomerization, thereby converting weakly adhesive protein monomers into a more adhesive oligomeric form. The heat-treated, denatured BSA oligomers remained stable after cooling. Room-temperature quartz crystal microbalance-dissipation and localized surface plasmon resonance experiments revealed that denatured BSA oligomers adsorbed more quickly and in larger mass quantities onto silica surfaces than native BSA monomers. We also determined that the larger surface contact area of denatured BSA oligomers is an important factor contributing to their more adhesive character. Importantly, denatured BSA oligomers were a superior passivating agent to inhibit biofouling on silica surfaces and also improved Western blot application performance. Taken together, the findings demonstrate how temperature-induced denaturation of BSA protein molecules can lead to improved protein-based coatings for surface passivation applications.
Collapse
Affiliation(s)
- Jae Hyeon Park
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Drive , 637553 Singapore
| | - Joshua A Jackman
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Drive , 637553 Singapore
| | - Abdul Rahim Ferhan
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Drive , 637553 Singapore
| | - Gamaliel Junren Ma
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Drive , 637553 Singapore
| | - Bo Kyeong Yoon
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Drive , 637553 Singapore
| | - Nam-Joon Cho
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Drive , 637553 Singapore
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive , 637459 Singapore
| |
Collapse
|
19
|
Chaparro Sosa AF, Kienle DF, Falatach RM, Flanagan J, Kaar JL, Schwartz DK. Stabilization of Immobilized Enzymes via the Chaperone-Like Activity of Mixed Lipid Bilayers. ACS APPLIED MATERIALS & INTERFACES 2018; 10:19504-19513. [PMID: 29767959 DOI: 10.1021/acsami.8b05523] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Biomimetic lipid bilayers represent intriguing materials for enzyme immobilization, which is critical for many biotechnological applications. Here, through the creation of mixed lipid bilayers, the retention of immobilized enzyme structures and catalytic activity are dramatically enhanced. The enhancement in the retention of enzyme structures, which correlated with an increase in enzyme activity, is observed using dynamic single-molecule (SM) fluorescence methods. The results of SM analysis specifically show that lipid bilayers composed of mixtures of 1,2-dioleoyl- sn-glycero-3-phosphocholine (DOPC) and 1,2-dioleoyl- sn-glycero-3-phospho-(1'- rac-glycerol) (DOPG) stabilize the folded state of nitroreductase (NfsB), increasing the rate of refolding relative to unfolding of enzyme molecules on the bilayer surface. Remarkably, for optimal compositions with 15-50% DOPG, over 95% of NfsB remains folded while the activity of the enzyme is increased as much as 2 times over that in solution. Within this range of DOPG, the strength of the interaction of folded and unfolded NfsB with the bilayer surface was also significantly altered, which was evident by the change in the diffusion of folded and unfolded NfsB in the bilayer. Ultimately, these findings provide direct evidence for the chaperone-like activity of mixed DOPG/DOPC lipid bilayers, which can be controlled by tuning the fraction of DOPG in the bilayer.
Collapse
Affiliation(s)
- Andres F Chaparro Sosa
- Department of Chemical and Biological Engineering , University of Colorado , Boulder , Colorado 80309 , United States
| | - Daniel F Kienle
- Department of Chemical and Biological Engineering , University of Colorado , Boulder , Colorado 80309 , United States
| | - Rebecca M Falatach
- Department of Chemical and Biological Engineering , University of Colorado , Boulder , Colorado 80309 , United States
| | - Jessica Flanagan
- Department of Chemical and Biological Engineering , University of Colorado , Boulder , Colorado 80309 , United States
| | - Joel L Kaar
- Department of Chemical and Biological Engineering , University of Colorado , Boulder , Colorado 80309 , United States
| | - Daniel K Schwartz
- Department of Chemical and Biological Engineering , University of Colorado , Boulder , Colorado 80309 , United States
| |
Collapse
|
20
|
Moringo NA, Shen H, Bishop LDC, Wang W, Landes CF. Enhancing Analytical Separations Using Super-Resolution Microscopy. Annu Rev Phys Chem 2018; 69:353-375. [PMID: 29490205 DOI: 10.1146/annurev-physchem-052516-045018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Super-resolution microscopy is becoming an invaluable tool to investigate structure and dynamics driving protein interactions at interfaces. In this review, we highlight the applications of super-resolution microscopy for quantifying the physics and chemistry that occur between target proteins and stationary-phase supports during chromatographic separations. Our discussion concentrates on the newfound ability of super-resolved single-protein spectroscopy to inform theoretical parameters via quantification of adsorption-desorption dynamics, protein unfolding, and nanoconfined transport.
Collapse
Affiliation(s)
| | - Hao Shen
- Department of Chemistry, Rice University, Houston, Texas 77251, USA;
| | - Logan D C Bishop
- Department of Chemistry, Rice University, Houston, Texas 77251, USA;
| | - Wenxiao Wang
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77251, USA
| | - Christy F Landes
- Department of Chemistry, Rice University, Houston, Texas 77251, USA; .,Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77251, USA.,Smalley-Curl Institute, Rice University, Houston, Texas 77251, USA
| |
Collapse
|
21
|
Mathematical modeling approaches to describe the dynamics of protein adsorption at solid interfaces. Colloids Surf B Biointerfaces 2018; 162:370-379. [DOI: 10.1016/j.colsurfb.2017.12.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/21/2017] [Accepted: 12/06/2017] [Indexed: 11/22/2022]
|
22
|
Kastantin M, Faulón Marruecos D, Grover N, Yu McLoughlin S, Schwartz DK, Kaar JL. Connecting Protein Conformation and Dynamics with Ligand-Receptor Binding Using Three-Color Förster Resonance Energy Transfer Tracking. J Am Chem Soc 2017; 139:9937-9948. [PMID: 28658579 DOI: 10.1021/jacs.7b03978] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Specific binding between biomolecules, i.e., molecular recognition, controls virtually all biological processes including the interactions between cells and biointerfaces, both natural and synthetic. Such binding often relies on the conformation of biomacromolecules, which can be highly heterogeneous and sensitive to environmental perturbations, and therefore difficult to characterize and control. An approach is demonstrated here that directly connects the binding kinetics and stability of the protein receptor integrin αvβ3 to the conformation of the ligand fibronectin (FN), which are believed to control cellular mechanosensing. Specifically, we investigated the influence of surface-adsorbed FN structure and dynamics on αvβ3 binding using high-throughput single-molecule three-color Förster resonance energy transfer (FRET) tracking methods. By controlling FN structure and dynamics through tuning surface chemistry, we found that as the conformational and translational dynamics of FN increased, the rate of binding, particularly to folded FN, and stability of the bound FN-αvβ3 complex decreased significantly. These findings highlight the importance of the conformational plasticity and accessibility of the arginine-glycine-aspartic acid (RGD) binding site in FN, which, in turn, mediates cell signaling in physiological and synthetic environments.
Collapse
Affiliation(s)
- Mark Kastantin
- Department of Chemical and Biological Engineering, University of Colorado , Boulder, Colorado 80309, United States
| | - David Faulón Marruecos
- Department of Chemical and Biological Engineering, University of Colorado , Boulder, Colorado 80309, United States
| | - Navdeep Grover
- Department of Chemical and Biological Engineering, University of Colorado , Boulder, Colorado 80309, United States
| | - Sean Yu McLoughlin
- Department of Chemical and Biological Engineering, University of Colorado , Boulder, Colorado 80309, United States
| | - Daniel K Schwartz
- Department of Chemical and Biological Engineering, University of Colorado , Boulder, Colorado 80309, United States
| | - Joel L Kaar
- Department of Chemical and Biological Engineering, University of Colorado , Boulder, Colorado 80309, United States
| |
Collapse
|
23
|
Ye Y, Du Z, Tian M, Zhang L, Mi J. Diffusive dynamics of polymer chains in an array of nanoposts. Phys Chem Chem Phys 2017; 19:380-387. [DOI: 10.1039/c6cp07217h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The diffusion of the head, side, and middle segments in confined polymer chains displays different dynamics in different directions.
Collapse
Affiliation(s)
- Yi Ye
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials
| | - Zhongjie Du
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials
- Beijing University of Chemical Technology
- Beijing
- China
| | - Ming Tian
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials
| | - Liqun Zhang
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials
| | - Jianguo Mi
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|
24
|
Shen H, Tauzin LJ, Wang W, Hoener B, Shuang B, Kisley L, Hoggard A, Landes CF. Single-Molecule Kinetics of Protein Adsorption on Thin Nylon-6,6 Films. Anal Chem 2016; 88:9926-9933. [DOI: 10.1021/acs.analchem.5b04081] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Hao Shen
- Department of Chemistry, ‡Department of Electrical
and Computer Engineering, and §Smalley-Curl Institute, Rice University, Houston, Texas 77251, United States
| | - Lawrence J. Tauzin
- Department of Chemistry, ‡Department of Electrical
and Computer Engineering, and §Smalley-Curl Institute, Rice University, Houston, Texas 77251, United States
| | - Wenxiao Wang
- Department of Chemistry, ‡Department of Electrical
and Computer Engineering, and §Smalley-Curl Institute, Rice University, Houston, Texas 77251, United States
| | - Benjamin Hoener
- Department of Chemistry, ‡Department of Electrical
and Computer Engineering, and §Smalley-Curl Institute, Rice University, Houston, Texas 77251, United States
| | - Bo Shuang
- Department of Chemistry, ‡Department of Electrical
and Computer Engineering, and §Smalley-Curl Institute, Rice University, Houston, Texas 77251, United States
| | - Lydia Kisley
- Department of Chemistry, ‡Department of Electrical
and Computer Engineering, and §Smalley-Curl Institute, Rice University, Houston, Texas 77251, United States
| | - Anneli Hoggard
- Department of Chemistry, ‡Department of Electrical
and Computer Engineering, and §Smalley-Curl Institute, Rice University, Houston, Texas 77251, United States
| | - Christy F. Landes
- Department of Chemistry, ‡Department of Electrical
and Computer Engineering, and §Smalley-Curl Institute, Rice University, Houston, Texas 77251, United States
| |
Collapse
|
25
|
Monserud JH, Schwartz DK. Interfacial Molecular Searching Using Forager Dynamics. PHYSICAL REVIEW LETTERS 2016; 116:098303. [PMID: 26991206 DOI: 10.1103/physrevlett.116.098303] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Indexed: 06/05/2023]
Abstract
Many biological and technological systems employ efficient non-Brownian intermittent search strategies where localized searches alternate with long flights. Coincidentally, molecular species exhibit intermittent behavior at the solid-liquid interface, where periods of slow motion are punctuated by fast flights through the liquid phase. Single-molecule tracking was used here to observe the interfacial search process of DNA for complementary DNA. Measured search times were qualitatively consistent with an intermittent-flight model, and ∼10 times faster than equivalent Brownian searches, suggesting that molecular searches for reactive sites benefit from similar efficiencies as biological organisms.
Collapse
Affiliation(s)
- Jon H Monserud
- Department of Chemical and Biological Engineering University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Daniel K Schwartz
- Department of Chemical and Biological Engineering University of Colorado Boulder, Boulder, Colorado 80309, USA
| |
Collapse
|
26
|
Dominguez-Medina S, Kisley L, Tauzin LJ, Hoggard A, Shuang B, D. S. Indrasekara AS, Chen S, Wang LY, Derry PJ, Liopo A, Zubarev ER, Landes CF, Link S. Adsorption and Unfolding of a Single Protein Triggers Nanoparticle Aggregation. ACS NANO 2016; 10:2103-12. [PMID: 26751094 PMCID: PMC4768289 DOI: 10.1021/acsnano.5b06439] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The response of living systems to nanoparticles is thought to depend on the protein corona, which forms shortly after exposure to physiological fluids and which is linked to a wide array of pathophysiologies. A mechanistic understanding of the dynamic interaction between proteins and nanoparticles and thus the biological fate of nanoparticles and associated proteins is, however, often missing mainly due to the inadequacies in current ensemble experimental approaches. Through the application of a variety of single molecule and single particle spectroscopic techniques in combination with ensemble level characterization tools, we identified different interaction pathways between gold nanorods and bovine serum albumin depending on the protein concentration. Overall, we found that local changes in protein concentration influence everything from cancer cell uptake to nanoparticle stability and even protein secondary structure. We envision that our findings and methods will lead to strategies to control the associated pathophysiology of nanoparticle exposure in vivo.
Collapse
Affiliation(s)
| | - Lydia Kisley
- Department
of Chemistry, Rice University, Houston, Texas 77251, United States
| | - Lawrence J. Tauzin
- Department
of Chemistry, Rice University, Houston, Texas 77251, United States
| | - Anneli Hoggard
- Department
of Chemistry, Rice University, Houston, Texas 77251, United States
| | - Bo Shuang
- Department
of Chemistry, Rice University, Houston, Texas 77251, United States
| | | | - Sishan Chen
- Department
of Chemistry, Rice University, Houston, Texas 77251, United States
| | - Lin-Yung Wang
- Department
of Chemistry, Rice University, Houston, Texas 77251, United States
| | - Paul J. Derry
- Department
of Chemistry, Rice University, Houston, Texas 77251, United States
| | - Anton Liopo
- Department
of Chemistry, Rice University, Houston, Texas 77251, United States
| | - Eugene R. Zubarev
- Department
of Chemistry, Rice University, Houston, Texas 77251, United States
- Department
of Materials Science and NanoEngineering, Rice University, Houston, Texas 77251, United States
| | - Christy F. Landes
- Department
of Chemistry, Rice University, Houston, Texas 77251, United States
- Department
of Electrical and Computer Engineering, Rice University, Houston, Texas 77251, United States
- E-mail:
| | - Stephan Link
- Department
of Chemistry, Rice University, Houston, Texas 77251, United States
- Department
of Electrical and Computer Engineering, Rice University, Houston, Texas 77251, United States
- E-mail:
| |
Collapse
|
27
|
Faulón Marruecos D, Kastantin M, Schwartz DK, Kaar JL. Dense Poly(ethylene glycol) Brushes Reduce Adsorption and Stabilize the Unfolded Conformation of Fibronectin. Biomacromolecules 2016; 17:1017-25. [PMID: 26866385 DOI: 10.1021/acs.biomac.5b01657] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Polymer brushes, in which polymers are end-tethered densely to a grafting surface, are commonly proposed for use as stealth coatings for various biomaterials. However, although their use has received considerable attention, a mechanistic understanding of the impact of brush properties on protein adsorption and unfolding remains elusive. We investigated the effect of the grafting density of poly(ethylene glycol) (PEG) brushes on the interactions of the brush with fibronectin (FN) using high-throughput single-molecule tracking methods, which directly measure protein adsorption and unfolding within the brush. We observed that, as grafting density increased, the rate of FN adsorption decreased; however, surface-adsorbed FN unfolded more readily, and unfolded molecules were retained on the surface for longer residence times relative to those of folded molecules. These results, which are critical for the rational design of PEG brushes, suggest that there is a critical balance between protein adsorption and conformation that underlies the utility of such brushes in physiological environments.
Collapse
Affiliation(s)
- David Faulón Marruecos
- Department of Chemical and Biological Engineering, University of Colorado , Boulder, Colorado 80309, United States
| | - Mark Kastantin
- Department of Chemical and Biological Engineering, University of Colorado , Boulder, Colorado 80309, United States
| | - Daniel K Schwartz
- Department of Chemical and Biological Engineering, University of Colorado , Boulder, Colorado 80309, United States
| | - Joel L Kaar
- Department of Chemical and Biological Engineering, University of Colorado , Boulder, Colorado 80309, United States
| |
Collapse
|
28
|
Shen L, Zhu J. Heterogeneous surfaces to repel proteins. Adv Colloid Interface Sci 2016; 228:40-54. [PMID: 26691416 DOI: 10.1016/j.cis.2015.11.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/06/2015] [Accepted: 11/09/2015] [Indexed: 11/17/2022]
Abstract
The nonspecific adsorption of proteins is usually undesirable on solid surfaces as it induces adverse responses, such as platelet adhesion on medical devices, negative signals of biosensors and contamination blockage of filtration membranes. Thus, an important scheme in material science is to design and fabricate protein-repulsive surfaces. Early approaches in this field focused on homogeneous surfaces comprised of single type functionality. Yet, recent researches have demonstrated that surfaces with heterogeneities (chemistry and topography) show promising performance against protein adsorption. In this review, we will summarize the recent achievements and discuss the new perspectives in the research of developing and characterizing heterogeneous surfaces to repel proteins. The protein repulsion mechanisms of different heterogeneous surfaces will also be discussed in details, followed by the perspective and challenge of this emerging field.
Collapse
Affiliation(s)
- Lei Shen
- Key Laboratory for Large-Format Battery Materials and System of the Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jintao Zhu
- Key Laboratory for Large-Format Battery Materials and System of the Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
29
|
Weltz JS, Schwartz DK, Kaar JL. Surface-Mediated Protein Unfolding as a Search Process for Denaturing Sites. ACS NANO 2016; 10:730-738. [PMID: 26580418 DOI: 10.1021/acsnano.5b05787] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Surface-induced protein denaturation has important implications for the development of materials that are resistant and/or innocuous to biomolecules. Here, we studied the mechanism of lysozyme (T4L) unfolding on fused silica (FS) using single-molecule methods that provided direct insight into the cause of denaturation. Unfolding of T4L was monitored by Förster resonance energy transfer while simultaneously tracking the adsorption, diffusion, and desorption of individual molecules at the solid-solution interface. Results of high-throughput single-molecule analysis suggested that the unfolding of T4L on FS was mediated by surface diffusion and occurred on isolated nanoscale sites, which were relatively rare and distinct from the majority of the surface. These observations suggest that surface-mediated protein unfolding is a search process that is based on the exploration for denaturing sites by the protein. Ultimately, these findings have important implications for the design of protein-compatible surfaces.
Collapse
Affiliation(s)
- James S Weltz
- Department of Chemical and Biological Engineering, University of Colorado , Boulder, Colorado 80309, United States
| | - Daniel K Schwartz
- Department of Chemical and Biological Engineering, University of Colorado , Boulder, Colorado 80309, United States
| | - Joel L Kaar
- Department of Chemical and Biological Engineering, University of Colorado , Boulder, Colorado 80309, United States
| |
Collapse
|
30
|
Langdon BB, Kastantin M, Schwartz DK. Surface Chemistry Influences Interfacial Fibrinogen Self-Association. Biomacromolecules 2015; 16:3201-8. [DOI: 10.1021/acs.biomac.5b00869] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Blake B. Langdon
- Department of Chemical and
Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Mark Kastantin
- Department of Chemical and
Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Daniel K. Schwartz
- Department of Chemical and
Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
31
|
Poongavanam MV, Kisley L, Kourentzi K, Landes CF, Willson RC. Ensemble and single-molecule biophysical characterization of D17.4 DNA aptamer-IgE interactions. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1864:154-64. [PMID: 26307469 DOI: 10.1016/j.bbapap.2015.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 08/09/2015] [Accepted: 08/18/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND The IgE-binding DNA aptamer 17.4 is known to inhibit the interaction of IgE with the high-affinity IgE Fc receptor FcεRI. While this and other aptamers have been widely used and studied, there has been relatively little investigation of the kinetics and energetics of their interactions with their targets, by either single-molecule or ensemble methods. METHODS The dissociation kinetics of the D17.4/IgE complex and the effects of temperature and ionic strength were studied using fluorescence anisotropy and single-molecule spectroscopy, and activation parameters calculated. RESULTS The dissociation of D17.4/IgE complex showed a strong dependence on temperature and salt concentration. The koff of D17.4/IgE complex was calculated to be (2.92±0.18)×10(-3) s(-1) at 50 mM NaCl, and (1.44±0.02)×10(-2) s(-1) at 300 mM NaCl, both in 1 mM MgCl2 and 25°C. The dissociation activation energy for the D17.4/IgE complex, Ea, was 16.0±1.9 kcal mol(-1) at 50 mM NaCl and 1 mM MgCl2. Interestingly, we found that the C19A mutant of D17.4 with stabilized stem structure showed slower dissociation kinetics compared to D17.4. Single-molecule observations of surface-immobilized D17.4/IgE showed much faster dissociation kinetics, and heterogeneity not observable by ensemble techniques. CONCLUSIONS The increasing koff value with increasing salt concentration is attributed to the electrostatic interactions between D17.4/IgE. We found that both the changes in activation enthalpy and activation entropy are insignificant with increasing NaCl concentration. The slower dissociation of the mutant C19A/IgE complex is likely due to the enhanced stability of the aptamer. GENERAL SIGNIFICANCE The activation parameters obtained by applying transition state analysis to kinetic data can provide details on mechanisms of molecular recognition and have applications in drug design. Single-molecule dissociation kinetics showed greater kinetic complexity than was observed in the ensemble in-solution systems, potentially reflecting conformational heterogeneity of the aptamer. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions.
Collapse
Affiliation(s)
| | - Lydia Kisley
- Department of Chemistry, Rice University, Houston, TX77005-1827, USA
| | - Katerina Kourentzi
- Department of Chemical and Biomolecular Engineering, University of Houston, TX 77204-4004, USA
| | - Christy F Landes
- Department of Chemistry, Rice University, Houston, TX77005-1827, USA; Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005-1827, USA.
| | - Richard C Willson
- Department of Biology and Biochemistry, University of Houston, TX 77204-5001, USA; Department of Chemical and Biomolecular Engineering, University of Houston, TX 77204-4004, USA; Houston Methodist Research Institute, Houston, TX 77030, USA; Centro de Biotecnología FEMSA, Departamento de Biotecnología e Ingeniería de Alimentos, Tecnológico de Monterrey, Monterrey 64849, Mexico.
| |
Collapse
|
32
|
Sanfeld A, Royer C, Steinchen A. Thermodynamic, kinetic and conformational analysis of proteins diffusion-sorption on a solid surface. Adv Colloid Interface Sci 2015; 222:639-60. [PMID: 25433959 DOI: 10.1016/j.cis.2014.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 10/23/2014] [Accepted: 10/23/2014] [Indexed: 11/19/2022]
Abstract
In this paper we examine particularly some of the more fundamental properties of protein conformational changes at a solid surface coupled with diffusion from the bulk of an aqueous solution and with the adsorption-desorption processes. We focus our attention on adsorbed protein monolayers upon a solid surface using a thermodynamic and kinetic analytical development. Account is also taken of the effects on the overall rate of the conformational change on a solid surface of deviation from ideality, of protein flexibility, of surface free energy and of interaction with reactive solid sites. Our theory applied to steady states is illustrated by examples such as folding-misfolding-unfolding of RNase and SNase on a solid surface after diffusion and adsorption from an aqueous solution. For this purpose, we put forward the determining steps which shall lead to the steady state. The existence of three situations is highlighted according to the values of the typical constants relevant for the protein considered: reaction rate determining step, diffusion and sorption determining steps, mixed adsorption diffusion and reaction rate. Finally, we have tried to link the developments of our theories to a large literature based on experimental results encountered during proteins diffusion-sorption-reaction processes, fundamental topics that has been since long investigated by Miller's team in MPKG.
Collapse
Affiliation(s)
- Albert Sanfeld
- MADIREL UMR 7246 Aix-Marseille University, Bd Escadrille Normandie Niemen, 13397, Marseille Cedex 20, France
| | - Catherine Royer
- Centre de Biochimie Structurale, INSERM U554, CNRS UMR 5048, 29, rue de Navacelles, 34090 Montpellier, France
| | - Annie Steinchen
- MADIREL UMR 7246 Aix-Marseille University, Bd Escadrille Normandie Niemen, 13397, Marseille Cedex 20, France
| |
Collapse
|
33
|
Mabry JN, Kastantin M, Schwartz DK. Capturing Conformation-Dependent Molecule-Surface Interactions When Surface Chemistry Is Heterogeneous. ACS NANO 2015; 9:7237-7247. [PMID: 26079177 DOI: 10.1021/acsnano.5b02071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Molecular building blocks, such as carbon nanotubes and DNA origami, can be fully integrated into electronic and optical devices if they can be assembled on solid surfaces using biomolecular interactions. However, the conformation and functionality of biomolecules depend strongly on the local chemical environment, which is highly heterogeneous near a surface. To help realize the potential of biomolecular self-assembly, we introduce here a technique to spatially map molecular conformations and adsorption, based on single-molecule fluorescence microscopy. On a deliberately patterned surface, with regions of varying hydrophobicity, we characterized the conformations of adsorbed helicogenic alanine-lysine copeptides using Förster resonance energy transfer. The peptides adopted helical conformations on hydrophilic regions of the surface more often than on hydrophobic regions, consistent with previous ensemble-averaged observations of α-helix surface stability. Interestingly, this dependence on surface chemistry was not due to surface-induced unfolding, as the apparent folding and unfolding dynamics were usually much slower than desorption. The most significant effect of surface chemistry was on the adsorption rate of molecules as a function of their initial conformational state. In particular, regions with higher adsorption rates attracted more molecules in compact, disordered coil states, and this difference in adsorption rates dominated the average conformation of the ensemble. The correlation between adsorption rate and average conformation was also observed on nominally uniform surfaces. Spatial variations in the functional state of adsorbed molecules would strongly affect the success rates of surface-based molecular assembly and can be fully understood using the approach developed in this work.
Collapse
Affiliation(s)
- Joshua N Mabry
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Mark Kastantin
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Daniel K Schwartz
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
34
|
McUmber AC, Randolph TW, Schwartz DK. Electrostatic Interactions Influence Protein Adsorption (but Not Desorption) at the Silica-Aqueous Interface. J Phys Chem Lett 2015; 6:2583-7. [PMID: 26266737 DOI: 10.1021/acs.jpclett.5b00933] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
High-throughput single-molecule total internal reflection fluorescence microscopy was used to investigate the effects of pH and ionic strength on bovine serum albumin (BSA) adsorption, desorption, and interfacial diffusion at the aqueous-fused silica interface. At high pH and low ionic strength, negatively charged BSA adsorbed slowly to the negatively charged fused silica surface. At low pH and low ionic strength, where BSA was positively charged, or in solutions at higher ionic strength, adsorption was approximately 1000 times faster. Interestingly, neither surface residence times nor the interfacial diffusion coefficients of BSA were influenced by pH or ionic strength. These findings suggested that adsorption kinetics were dominated by energy barriers associated with electrostatic interactions, but once adsorbed, protein-surface interactions were dominated by short-range nonelectrostatic interactions. These results highlight the ability of single-molecule techniques to isolate elementary processes (e.g., adsorption and desorption) under steady-state conditions, which would be impossible to measure using ensemble-averaging methods.
Collapse
Affiliation(s)
- Aaron C McUmber
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Theodore W Randolph
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Daniel K Schwartz
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
35
|
McUmber AC, Larson NR, Randolph TW, Schwartz DK. Molecular trajectories provide signatures of protein clustering and crowding at the oil/water interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:5882-5890. [PMID: 25950404 DOI: 10.1021/acs.langmuir.5b00984] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Using high throughput single-molecule total internal reflection fluorescence microscopy (TIRFM), we have acquired molecular trajectories of bovine serum albumin (BSA) and hen egg white lysozyme during protein layer formation at the silicone oil-water interface. These trajectories were analyzed to determine the distribution of molecular diffusion coefficients, and for signatures of molecular crowding/caging, including subdiffusive motion and temporal anticorrelation of the instantaneous velocity vector. The evolution of these properties with aging time of the interface was compared with dynamic interfacial tension measurements. For both lysozyme and BSA, we observed an overall slowing of protein objects, the onset of both subdiffusive and anticorrelated motion (associated with crowding), and a decrease in the interfacial tension with aging time. For lysozyme, all of these phenomena occurred virtually simultaneously, consistent with a homogeneous model of layer formation that involves gradual crowding of weakly interacting proteins. For BSA, however, the slowing occurred first, followed by the signatures of crowding/caging, followed by a decrease in interfacial tension, consistent with a heterogeneous model of layer formation involving the formation of protein clusters. The application of microrheological methods to single molecule trajectories described here provides an unprecedented level of mechanistic interpretation of interfacial events that occurred over a wide range of interfacial protein coverage.
Collapse
Affiliation(s)
- Aaron C McUmber
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Nicholas R Larson
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Theodore W Randolph
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Daniel K Schwartz
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
36
|
Wang D, He C, Stoykovich MP, Schwartz DK. Nanoscale topography influences polymer surface diffusion. ACS NANO 2015; 9:1656-1664. [PMID: 25621372 DOI: 10.1021/nn506376n] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Using high-throughput single-molecule tracking, we studied the diffusion of poly(ethylene glycol) chains at the interface between water and a hydrophobic surface patterned with an array of hexagonally arranged nanopillars. Polymer molecules displayed anomalous diffusion; in particular, they exhibited intermittent motion (i.e., immobilization and "hopping") suggestive of continuous-time random walk (CTRW) behavior associated with desorption-mediated surface diffusion. The statistics of the molecular trajectories changed systematically on surfaces with pillars of increasing height, exhibiting motion that was increasingly subdiffusive and with longer waiting times between diffusive steps. The trajectories were well-described by kinetic Monte Carlo simulations of CTRW motion in the presence of randomly distributed permeable obstacles, where the permeability (the main undetermined parameter) was conceptually related to the obstacle height. These findings provide new insights into the mechanisms of interfacial transport in the presence of obstacles and on nanotopographically patterned surfaces.
Collapse
Affiliation(s)
- Dapeng Wang
- Department of Chemical and Biological Engineering, University of Colorado Boulder , Boulder, Colorado 80309, United States
| | | | | | | |
Collapse
|
37
|
Langdon BB, Mirhossaini RB, Mabry JN, Sriram I, Lajmi A, Zhang Y, Rojas OJ, Schwartz DK. Single-molecule resolution of protein dynamics on polymeric membrane surfaces: the roles of spatial and population heterogeneity. ACS APPLIED MATERIALS & INTERFACES 2015; 7:3607-3617. [PMID: 25611782 DOI: 10.1021/am507730k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Although polymeric membranes are widely used in the purification of protein pharmaceuticals, interactions between biomolecules and membrane surfaces can lead to reduced membrane performance and damage to the product. In this study, single-molecule fluorescence microscopy provided direct observation of bovine serum albumin (BSA) and human monoclonal antibody (IgG) dynamics at the interface between aqueous buffer and polymeric membrane materials including regenerated cellulose and unmodified poly(ether sulfone) (PES) blended with either polyvinylpyrrolidone (PVP), polyvinyl acetate-co-polyvinylpyrrolidone (PVAc-PVP), or polyethylene glycol methacrylate (PEGM) before casting. These polymer surfaces were compared with model surfaces composed of hydrophilic bare fused silica and hydrophobic trimethylsilane-coated fused silica. At extremely dilute protein concentrations (10(-3)-10(-7) mg/mL), protein surface exchange was highly dynamic with protein monomers desorbing from the surface within ∼1 s after adsorption. Protein oligomers (e.g., nonspecific dimers, trimers, or larger aggregates), although less common, remained on the surface for 5 times longer than monomers. Using newly developed super-resolution methods, we could localize adsorption sites with ∼50 nm resolution and quantify the spatial heterogeneity of the various surfaces. On a small anomalous subset of the adsorption sites, proteins adsorbed preferentially and tended to reside for significantly longer times (i.e., on "strong" sites). Proteins resided for shorter times overall on surfaces that were more homogeneous and exhibited fewer strong sites (e.g., PVAc-PVP/PES). We propose that strong surface sites may nucleate protein aggregation, initiated preferentially by protein oligomers, and accelerate ultrafiltration membrane fouling. At high protein concentrations (0.3-1.0 mg/mL), fewer strong adsorption sites were observed, and surface residence times were reduced. This suggests that at high concentrations, adsorbed proteins block strong sites from further protein adsorption. Importantly, this demonstrates that strong binding sites can be modified by changing solution conditions. Membrane surfaces are intrinsically heterogeneous; by employing single-molecule techniques, we have provided a new framework for understanding protein interactions with such surfaces.
Collapse
Affiliation(s)
- Blake B Langdon
- Department of Chemical and Biological Engineering, University of Colorado Boulder , Boulder, Colorado 80309, United States
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Swartzlander MD, Barnes CA, Blakney AK, Kaar JL, Kyriakides TR, Bryant SJ. Linking the foreign body response and protein adsorption to PEG-based hydrogels using proteomics. Biomaterials 2015; 41:26-36. [PMID: 25522962 PMCID: PMC4629245 DOI: 10.1016/j.biomaterials.2014.11.026] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/27/2014] [Accepted: 11/08/2014] [Indexed: 12/31/2022]
Abstract
Poly(ethylene glycol) (PEG) hydrogels with their highly tunable properties are promising implantable materials, but as with all non-biological materials, they elicit a foreign body response (FBR). Recent studies, however, have shown that incorporating the oligopeptide RGD into PEG hydrogels reduces the FBR. To better understand the mechanisms involved and the role of RGD in mediating the FBR, PEG, PEG-RGD and PEG-RDG hydrogels were investigated. After a 28-day subcutaneous implantation in mice, a thinner and less dense fibrous capsule formed around PEG-RGD hydrogels, while PEG and PEG-RDG hydrogels exhibited stronger, but similar FBRs. Protein adsorption to the hydrogels, which is considered the first step in the FBR, was also characterized. In vitro experiments confirmed that serum proteins adsorbed to PEG-based hydrogels and were necessary to promote macrophage adhesion to PEG and PEG-RDG, but not PEG-RGD hydrogels. Proteins adsorbed to the hydrogels in vivo were identified using liquid chromatography-tandem mass spectrometry. The majority (245) of the total proteins (≥300) that were identified was present on all hydrogels with many proteins being associated with wounding and acute inflammation. These findings suggest that the FBR to PEG hydrogels may be mediated by the presence of inflammatory-related proteins adsorbed to the surface, but that macrophages appear to sense the underlying chemistry, which for RGD improves the FBR.
Collapse
Affiliation(s)
- Mark D Swartzlander
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA; Biofrontiers Institute, University of Colorado, Boulder, CO 80309, USA.
| | | | - Anna K Blakney
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA.
| | - Joel L Kaar
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA.
| | - Themis R Kyriakides
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Stephanie J Bryant
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA; Biofrontiers Institute, University of Colorado, Boulder, CO 80309, USA; Material Science and Engineering Program, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
39
|
Monserud JH, Schwartz DK. Mechanisms of surface-mediated DNA hybridization. ACS NANO 2014; 8:4488-4499. [PMID: 24708278 PMCID: PMC4046783 DOI: 10.1021/nn4064874] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/07/2014] [Indexed: 06/03/2023]
Abstract
Single-molecule total internal reflection fluorescence microscopy was employed in conjunction with resonance energy transfer (RET) to observe the dynamic behavior of donor-labeled ssDNA at the interface between aqueous solution and a solid surface decorated with complementary acceptor-labeled ssDNA. At least 100,000 molecular trajectories were determined for both complementary strands and negative control ssDNA. RET was used to identify trajectory segments corresponding to the hybridized state. The vast majority of molecules from solution adsorbed nonspecifically to the surface, where a brief two-dimensional search was performed with a 7% chance of hybridization. Successful hybridization events occurred with a characteristic search time of ∼0.1 s, and unsuccessful searches resulted in desorption from the surface, ultimately repeating the adsorption and search process. Hybridization was reversible, and two distinct modes of melting (i.e., dehybridization) were observed, corresponding to long-lived (∼15 s) and short-lived (∼1.4 s) hybridized time intervals. A strand that melted back onto the surface could rehybridize after a brief search or desorb from the interface. These mechanistic observations provide guidance for technologies that involve DNA interactions in the near-surface region, suggesting a need to design surfaces that both enhance the complex multidimensional search process and stabilize the hybridized state.
Collapse
|
40
|
Kastantin M, Langdon BB, Schwartz DK. A bottom-up approach to understanding protein layer formation at solid-liquid interfaces. Adv Colloid Interface Sci 2014; 207:240-52. [PMID: 24484895 PMCID: PMC4028386 DOI: 10.1016/j.cis.2013.12.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 12/05/2013] [Accepted: 12/17/2013] [Indexed: 11/25/2022]
Abstract
A common goal across different fields (e.g. separations, biosensors, biomaterials, pharmaceuticals) is to understand how protein behavior at solid-liquid interfaces is affected by environmental conditions. Temperature, pH, ionic strength, and the chemical and physical properties of the solid surface, among many factors, can control microscopic protein dynamics (e.g. adsorption, desorption, diffusion, aggregation) that contribute to macroscopic properties like time-dependent total protein surface coverage and protein structure. These relationships are typically studied through a top-down approach in which macroscopic observations are explained using analytical models that are based upon reasonable, but not universally true, simplifying assumptions about microscopic protein dynamics. Conclusions connecting microscopic dynamics to environmental factors can be heavily biased by potentially incorrect assumptions. In contrast, more complicated models avoid several of the common assumptions but require many parameters that have overlapping effects on predictions of macroscopic, average protein properties. Consequently, these models are poorly suited for the top-down approach. Because the sophistication incorporated into these models may ultimately prove essential to understanding interfacial protein behavior, this article proposes a bottom-up approach in which direct observations of microscopic protein dynamics specify parameters in complicated models, which then generate macroscopic predictions to compare with experiment. In this framework, single-molecule tracking has proven capable of making direct measurements of microscopic protein dynamics, but must be complemented by modeling to combine and extrapolate many independent microscopic observations to the macro-scale. The bottom-up approach is expected to better connect environmental factors to macroscopic protein behavior, thereby guiding rational choices that promote desirable protein behaviors.
Collapse
Affiliation(s)
- Mark Kastantin
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, United States
| | - Blake B Langdon
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, United States
| | - Daniel K Schwartz
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, United States.
| |
Collapse
|
41
|
Hydroxyl density affects the interaction of fibrinogen with silica nanoparticles at physiological concentration. J Colloid Interface Sci 2014; 419:86-94. [DOI: 10.1016/j.jcis.2013.12.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/10/2013] [Accepted: 12/11/2013] [Indexed: 11/21/2022]
|
42
|
Skaug MJ, Lacasta AM, Ramirez-Piscina L, Sancho JM, Lindenberg K, Schwartz DK. Single-molecule diffusion in a periodic potential at a solid-liquid interface. SOFT MATTER 2014; 10:753-759. [PMID: 24837682 DOI: 10.1039/c3sm52160e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We used single-molecule tracking experiments to observe the motion of small hydrophobic fluorescent molecules at the interface between water and a solid surface that exhibited periodic chemical patterns. The dynamics were characterized by non-ergodic, continuous time random walk statistics. The step-size distributions displayed enhanced probability of steps to periodic distances, consistent with theoretical predictions for diffusion in an atomic/molecular scale periodic potential. Surprisingly, this general behavior was observed here for surfaces exhibiting characteristic length scales three orders of magnitude larger than atomic/molecular dimensions, and may provide a new way to understand and control solid-liquid interfacial diffusion for molecular targeting applications.
Collapse
Affiliation(s)
- Michael J Skaug
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Langdon BB, Kastantin M, Walder R, Schwartz DK. Interfacial protein-protein associations. Biomacromolecules 2013; 15:66-74. [PMID: 24274729 DOI: 10.1021/bm401302v] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
While traditional models of protein adsorption focus primarily on direct protein-surface interactions, recent findings suggest that protein-protein interactions may play a central role. Using high-throughput intermolecular resonance energy transfer (RET) tracking, we directly observed dynamic, protein-protein associations of bovine serum albumin on polyethylene glycol modified surfaces. The associations were heterogeneous and reversible, and associating molecules resided on the surface for longer times. The appearance of three distinct RET states suggested a spatially heterogeneous surface - with areas of high protein density (i.e., strongly interacting clusters) coexisting with mobile monomers. Distinct association states exhibited characteristic behavior, i.e., partial-RET (monomer-monomer) associations were shorter-lived than complete-RET (protein-cluster) associations. While the fractional surface area covered by regions with high protein density (i.e., clusters) increased with increasing concentration, the distribution of contact times between monomers and clusters was independent of solution concentration, suggesting that associations were a local phenomenon, and independent of the global surface coverage.
Collapse
Affiliation(s)
- Blake B Langdon
- Department of Chemical and Biological Engineering, University of Colorado Boulder , Boulder, Colorado 80309, United States
| | | | | | | |
Collapse
|
44
|
Single-molecule resolution of protein structure and interfacial dynamics on biomaterial surfaces. Proc Natl Acad Sci U S A 2013; 110:19396-401. [PMID: 24235137 DOI: 10.1073/pnas.1311761110] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A method was developed to monitor dynamic changes in protein structure and interfacial behavior on surfaces by single-molecule Förster resonance energy transfer. This method entails the incorporation of unnatural amino acids to site-specifically label proteins with single-molecule Förster resonance energy transfer probes for high-throughput dynamic fluorescence tracking microscopy on surfaces. Structural changes in the enzyme organophosphorus hydrolase (OPH) were monitored upon adsorption to fused silica (FS) surfaces in the presence of BSA on a molecule-by-molecule basis. Analysis of >30,000 individual trajectories enabled the observation of heterogeneities in the kinetics of surface-induced OPH unfolding with unprecedented resolution. In particular, two distinct pathways were observed: a majority population (∼ 85%) unfolded with a characteristic time scale of 0.10 s, and the remainder unfolded more slowly with a time scale of 0.7 s. Importantly, even after unfolding, OPH readily desorbed from FS surfaces, challenging the common notion that surface-induced unfolding leads to irreversible protein binding. This suggests that protein fouling of surfaces is a highly dynamic process because of subtle differences in the adsorption/desorption rates of folded and unfolded species. Moreover, such observations imply that surfaces may act as a source of unfolded (i.e., aggregation-prone) protein back into solution. Continuing study of other proteins and surfaces will examine whether these conclusions are general or specific to OPH in contact with FS. Ultimately, this method, which is widely applicable to virtually any protein, provides the framework to develop surfaces and surface modifications with improved biocompatibility.
Collapse
|
45
|
Kastantin M, Schwartz DK. DNA hairpin stabilization on a hydrophobic surface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:933-41. [PMID: 23184340 PMCID: PMC3741999 DOI: 10.1002/smll.201202335] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Indexed: 05/07/2023]
Abstract
DNA hybridization in the vicinity of surfaces is a fundamental process for self-assembled nanoarrays, nanocrystal superlattices, and biosensors. It is widely recognized that solid surfaces alter molecular forces governing hybridization relative to a bulk solution, and these effects can either favor or disfavor the hybridized state depending on the specific sequence and surface. Results presented here provide new insights into the dynamics of DNA hairpin-coil conformational transitions in the vicinity of hydrophilic oligo(ethylene glycol) (OEG) and hydrophobic trimethylsilane (TMS) surfaces. Single-molecule methods are used to observe the forward and reverse hybridization hairpin-coil transition of adsorbed species while simultaneously measuring molecular surface diffusion in order to gain insight into surface interactions with individual DNA bases. At least 35 000 individual molecular trajectories are observed on each type of surface. It is found that unfolding slows and the folding rate increases on TMS relative to OEG, despite stronger attractions between TMS and unpaired nucleobases. These rate differences lead to near-complete hairpin formation on hydrophobic TMS and significant unfolding on hydrophilic OEG, resulting in the surprising conclusion that hydrophobic surface coatings are preferable for nanotechnology applications that rely on DNA hybridization near surfaces.
Collapse
Affiliation(s)
- Mark Kastantin
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309 (USA)
| | - Daniel K. Schwartz
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309 (USA)
| |
Collapse
|
46
|
|
47
|
Kastantin M, Schwartz DK. Identifying multiple populations from single-molecule lifetime distributions. Chemphyschem 2012; 14:374-80. [PMID: 23255328 DOI: 10.1002/cphc.201200838] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Indexed: 12/14/2022]
Abstract
A major advantage of single-molecule methods over ensemble-averaging techniques involves the ability to characterize heterogeneity through the identification of multiple molecular populations. It can be challenging, however, to determine absolute values of dynamic parameters (and to relate these values to those determined from a conventional method) because characteristic timescales of various populations may vary over many orders of magnitude, and under a given set of experimental conditions instrumental sensitivity to various populations may be unequal. Using data obtained from the single-molecule tracking microscopy of fibrinogen protein adsorption and desorption, it is shown that by performing a combined analysis of molecular trajectories obtained using a range of acquisition times, it is possible to extract quantitative absolute values of multiple population fractions and residence times (with well-defined uncertainties), even when these values span many orders of magnitude. In particular, as many as six distinct populations are rigorously identified, exhibiting characteristic timescales that vary over nearly three orders of magnitude with population fractions as small as one part in a thousand. This approach will lead to better comparability between single-molecule experiments and may be useful in connecting single-molecule to ensemble-averaged observations.
Collapse
Affiliation(s)
- Mark Kastantin
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, 80309, USA
| | | |
Collapse
|
48
|
Monserud JH, Schwartz DK. Effects of molecular size and surface hydrophobicity on oligonucleotide interfacial dynamics. Biomacromolecules 2012; 13:4002-11. [PMID: 23127250 DOI: 10.1021/bm301289n] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Single-molecule total internal reflection fluorescence microscopy was used to observe the dynamic behavior of polycytosine single-stranded DNA (ssDNA) (1-50 nucleotides long) at the interface between aqueous solution and hydrophilic (oligoethylene glycol-modified fused silica, OEG) and hydrophobic (octadecyltriethoxysilane-modified fused silica, OTES) solid surfaces. High throughput molecular tracking was used to determine >75,000 molecular trajectories for each molecular length, which were then used to calculate surface residence time and squared displacement (i.e., "step-size") distributions. On hydrophilic OEG surfaces, the surface residence time increased systematically with ssDNA chain length, as expected due to increasing molecule-surface interactions. Interestingly, the residence time decreased with increasing ssDNA length on the hydrophobic OTES surface, particularly for longer chains. Similarly, the interfacial mobility of polynucleotides slowed with increasing chain length on OEG, but became faster on OTES. On OTES surfaces, the rates associated with desorption and surface diffusion exhibited the distinctive anomalous temperature dependence that is characteristic of hydrophobic interactions for short-chain species but not for longer chains. These combined observations suggest that long oligonucleotides adopt conformations minimizing hydrophobic interactions, e.g., by internal sequestration of hydrophobic nucleobases.
Collapse
Affiliation(s)
- Jon H Monserud
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | | |
Collapse
|
49
|
Kastantin M, Walder R, Schwartz DK. Identifying mechanisms of interfacial dynamics using single-molecule tracking. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:12443-56. [PMID: 22716995 PMCID: PMC3429661 DOI: 10.1021/la3017134] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The "soft" (i.e., noncovalent) interactions between molecules and surfaces are complex and highly varied (e.g., hydrophobic, hydrogen bonding, and ionic), often leading to heterogeneous interfacial behavior. Heterogeneity can arise either from the spatial variation of the surface/interface itself or from molecular configurations (i.e., conformation, orientation, aggregation state, etc.). By observing the adsorption, diffusion, and desorption of individual fluorescent molecules, single-molecule tracking can characterize these types of heterogeneous interfacial behavior in ways that are inaccessible to traditional ensemble-averaged methods. Moreover, the fluorescence intensity or emission wavelength (in resonance energy transfer experiments) can be used to track the molecular configuration and simultaneously directly relate this to the resulting interfacial mobility or affinity. In this feature article, we review recent advances involving the use of single-molecule tracking to characterize heterogeneous molecule-surface interactions including multiple modes of diffusion and desorption associated with both internal and external molecular configuration, Arrhenius-activated interfacial transport, spatially dependent interactions, and many more.
Collapse
|
50
|
Bose RK, Nejati S, Stufflet DR, Lau KKS. Graft Polymerization of Anti-Fouling PEO Surfaces by Liquid-Free Initiated Chemical Vapor Deposition. Macromolecules 2012. [DOI: 10.1021/ma301234z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ranjita K. Bose
- Department
of Chemical and Biological Engineering, Drexel University, 3141 Chestnut Street, Philadelphia,
Pennsylvania 19104, United States
| | - Siamak Nejati
- Department
of Chemical and Biological Engineering, Drexel University, 3141 Chestnut Street, Philadelphia,
Pennsylvania 19104, United States
| | - David R. Stufflet
- Department
of Chemical and Biological Engineering, Drexel University, 3141 Chestnut Street, Philadelphia,
Pennsylvania 19104, United States
| | - Kenneth K. S. Lau
- Department
of Chemical and Biological Engineering, Drexel University, 3141 Chestnut Street, Philadelphia,
Pennsylvania 19104, United States
| |
Collapse
|