1
|
Lv R, Sun L, Luo Z, Song Y, Li S, Zhang Q. Host-Guest Synergy of Metal-Organic Frameworks for Enhanced Near-Infrared Ultrafast Laser Responsiveness. ACS CENTRAL SCIENCE 2025; 11:583-591. [PMID: 40290149 PMCID: PMC12022905 DOI: 10.1021/acscentsci.5c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/26/2025] [Accepted: 03/07/2025] [Indexed: 04/30/2025]
Abstract
Host-guest metal-organic frameworks (MOFs) offer significant potential and value in regulating and optimizing novel material properties and functionalities, owing to the synergistic effects between the host framework and the guest units. This study reported two silver-based host-guest MOFs, [Ag(ATRZ)(BrO3)]n (CMOF-1) and [Ag(ATRZ)1.5(ClO4)]n (CMOF-2), as promising candidates for laser-responsive materials. These materials feature 1D and 3D structures, respectively, comprising Ag-ATRZ cationic MOF frameworks integrated with two distinct oxidizing anionic guests, BrO3 - and ClO4 -. CMOF-1 and CMOF-2 are synthesized through straightforward, environmentally benign methods, enabling rapid fabrication. The exceptional near-infrared (NIR) laser responsiveness of CMOF-1 and CMOF-2 was achieved through the modulation of the cationic MOFs (CMOFs) architectures and synergistic interactions between the host and guest components. Moreover, both exhibit ultrafast deflagration-to-detonation transition (DDT) capabilities, alongside excellent thermal stability. This work expands the application scope of host-guest MOFs, and provides an effective strategy for developing high-performance laser-responsive materials.
Collapse
Affiliation(s)
- Ruibing Lv
- Institute
of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621900, P. R. China
| | - Lei Sun
- School
of Chemical Engineering, Chongqing University
of Technology, Chongqing, 400054, P. R.
China
| | - Zhenghang Luo
- Institute
of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621900, P. R. China
| | - Yujie Song
- Institute
of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621900, P. R. China
| | - Shuo Li
- School
of Chemical Engineering, Chongqing University
of Technology, Chongqing, 400054, P. R.
China
| | - Qi Zhang
- Institute
of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621900, P. R. China
| |
Collapse
|
2
|
Lu X, Zhang P, Pan H, Yin P, Zhang P, Yang L, Suo X, Cui X, Xing H. Ionic porous materials: from synthetic strategies to applications in gas separation and catalysis. Chem Soc Rev 2025; 54:3061-3139. [PMID: 39963797 DOI: 10.1039/d3cs01163a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
Ionic porous materials possess a unique combination of tunable pore sizes and task-specific interactions between guest molecules and the charged frameworks, which endow them with versatility across diverse domains in chemistry and materials science. Significant advancements in their applications for gas separation and catalysis have been achieved in recent years due to the incorporation of ionic functionalities and ultra-microporous structures that enable molecular-scale recognition of guest molecules. This review summarizes recent advancements in the synthetic strategies of ionic porous materials, establishing design guidelines for the incorporation of ionic moieties into the backbone to fine-tune pore sizes and chemistry. It highlights the synergistic interplay of task-specific interactions with custom-designed pore structures in key applications, including adsorption separation, membrane separation, and gas conversion. Additionally, it examines structure-property relationships, offering deeper insights into enhancing performance. The report also addresses the current challenges in the practical application of these materials. Finally, the review provides future perspectives on ionic porous materials from both scientific and industrial viewpoints. Overall, this review aims to provide insights into pore structure and chemistry, supporting the precise placement of ionic functionalities.
Collapse
Affiliation(s)
- Xiaofei Lu
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| | - Penghui Zhang
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| | - Hanqian Pan
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Pengyuan Yin
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| | - Peixin Zhang
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| | - Lifeng Yang
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xian Suo
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| | - Xili Cui
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| | - Huabin Xing
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| |
Collapse
|
3
|
Thompson WJ, Maldeni Kankanamalage BKP, Thaggard GC, Park KC, Martin CR, Niu J, Byers JA, Shustova NB. Catalytically Active Site Mapping Realized through Energy Transfer Modeling. Angew Chem Int Ed Engl 2025; 64:e202416695. [PMID: 39365638 DOI: 10.1002/anie.202416695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/05/2024]
Abstract
The demands of a sustainable chemical industry are a driving force for the development of heterogeneous catalytic platforms exhibiting facile catalyst recovery, recycling, and resilience to diverse reaction conditions. Homogeneous-to-heterogeneous catalyst transitions can be realized through the integration of efficient homogeneous catalysts within porous matrices. Herein, we offer a versatile approach to understanding how guest distribution and evolution impact the catalytic performance of heterogeneous host-guest catalytic platforms by implementing the resonance energy transfer (RET) concept using fluorescent model systems mimicking the steric constraints of targeted catalysts. Using the RET-based methodology, we mapped condition-dependent guest (re)distribution within a porous support on the example of modular matrices such as metal-organic frameworks (MOFs). Furthermore, we correlate RET results performed on the model systems with the catalytic performance of two MOF-encapsulated catalysts used to promote CO2 hydrogenation and ring-closing metathesis. Guests are incorporated using aperture-opening encapsulation, and catalyst redistribution is not observed under practical reaction conditions, showcasing a pathway to advance catalyst recyclability in the case of host-guest platforms. These studies represent the first generalizable approach for mapping the guest distribution in heterogeneous host-guest catalytic systems, providing a foundation for predicting and tailoring the performance of catalysts integrated into various porous supports.
Collapse
Affiliation(s)
| | | | - Grace C Thaggard
- Department of Chemistry and Biochemistry, University of South Carolina, 29208, Columbia, SC, USA
| | - Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, 29208, Columbia, SC, USA
| | - Corey R Martin
- Savannah River National Laboratory, 29808, Aiken, SC, USA
| | - Jia Niu
- Department of Chemistry, Boston College, 02467, Chestnut Hill, MA, USA
| | - Jeffery A Byers
- Department of Chemistry, Boston College, 02467, Chestnut Hill, MA, USA
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, 29208, Columbia, SC, USA
| |
Collapse
|
4
|
Jolly BJ, Pung MJ, Liu C. Integrated electrochemical CO 2 reduction and hydroformylation. Dalton Trans 2024; 53:18834-18838. [PMID: 38700437 DOI: 10.1039/d4dt00423j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
The development of integrated multi-catalyst processes has become of high interest to transform abundant feedstocks or environmental pollutants to commodity chemicals in a one pot, one pass fashion. Specifically, CO2 poses a large environmental burden and would thus be a desirable, relatively abundant C1 source in multi-step synthetic chemistry. Herein we disclose the synthesis of aldehydes from CO2via the integration of electrochemical CO2 reduction (CO2RR) and hydroformylation, taking advantage of the typically unwanted concomitant hydrogen evolution (HER) to generate the necessary CO and H2 needed for hydroformylation. Though typical hydroformylation catalysts based on Rh would be deactivated under CO2RR conditions, we circumvent this limitation by spatially segregating our CO2RR and hydroformylation systems in a vial-in-vial reactor, while allowing CO and H2 transport between catalyst sites. In this manner, 97% aldehyde yield from CO2RR and styrene was achieved selectively using a classic homogeneous hydroformylation catalyst in HRh(CO)(PPh3)3, and 43% aldehyde yield was obtained using a heterogenized version of this Rh catalyst onto mesoporous silica. This work not only repurposes undesired HER in CO2RR and prepares aldehydes from CO2 without added H2, but expands the scope of processes that transform feedstocks all the way to commodity chemicals in a one pass manner.
Collapse
Affiliation(s)
- Brandon J Jolly
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA.
| | - Michael J Pung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA.
| | - Chong Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA.
- California NanoSystems Institute (CNSI), University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
5
|
Jin HG, Zhao PC, Qian Y, Xiao JD, Chao ZS, Jiang HL. Metal-organic frameworks for organic transformations by photocatalysis and photothermal catalysis. Chem Soc Rev 2024; 53:9378-9418. [PMID: 39163028 DOI: 10.1039/d4cs00095a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Organic transformation by light-driven catalysis, especially, photocatalysis and photothermal catalysis, denoted as photo(thermal) catalysis, is an efficient, green, and economical route to produce value-added compounds. In recent years, owing to their diverse structure types, tunable pore sizes, and abundant active sites, metal-organic framework (MOF)-based photo(thermal) catalysis has attracted broad interest in organic transformations. In this review, we provide a comprehensive and systematic overview of MOF-based photo(thermal) catalysis for organic transformations. First, the general mechanisms, unique advantages, and strategies to improve the performance of MOFs in photo(thermal) catalysis are discussed. Then, outstanding examples of organic transformations over MOF-based photo(thermal) catalysis are introduced according to the reaction type. In addition, several representative advanced characterization techniques used for revealing the charge reaction kinetics and reaction intermediates of MOF-based organic transformations by photo(thermal) catalysis are presented. Finally, the prospects and challenges in this field are proposed. This review aims to inspire the rational design and development of MOF-based materials with improved performance in organic transformations by photocatalysis and photothermal catalysis.
Collapse
Affiliation(s)
- Hong-Guang Jin
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Peng-Cheng Zhao
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Yunyang Qian
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Juan-Ding Xiao
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China.
| | - Zi-Sheng Chao
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
6
|
Shi G, Liang Y, Nie L, Huang R, Yang Z, Liu X, Zhou J, Zhang Q, Ye G. One-Pot Preparation of Nitro-Functionalized Bimetallic UiO-66(Zr-Hf) with Hierarchical Porosity for Oxidative Desulfurization Performance. Inorg Chem 2024; 63:16554-16564. [PMID: 39163172 DOI: 10.1021/acs.inorgchem.4c02959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Preparation of multifunctional metal-organic frameworks (MOFs) offers new opportunities to obtain ultrahigh synergistic catalytic performance for heterogeneous reactions; however, the application of a one-pot method for preparing multifunctional MOFs remains challenging. Herein, we develop a one-pot green route for synthesizing bimetallic nitro-functionalized UiO-66(Zr-Hf)-NO2 with hierarchical porosity under solvent-free conditions. The optimal UiO-66(Zr-Hf0.6)-NO2 shows an ultrahigh enhancement of oxidative desulfurization (ODS) efficiency to oxidize sulfur compounds (1000 ppm sulfur) in a model fuel at 40 °C within 12 min due to the introduction of more active Hf sites in the nodes, the increased Lewis acidity of Zr/Hf-O nodes by the electron-withdrawing NO2 group, and the enhanced diffusion rates by the mesopores. The turnover frequency (TOF) over UiO-66(Zr-Hf0.6)-NO2 at 40 or 50 °C reaches 145.3 or 217.0 h-1 that surpasses the TOF of most reported MOF-based catalysts in the ODS reaction. Quenching and electron paramagnetic resonance experiments confirm that the formed Hf-OH on the Zr/Hf-O nodes can easily decompose the oxidant (H2O2) for generating a Hf-OOH-active intermediate and dominate the ODS efficiency. This contribution provides a one-pot solvent-free avenue to synthesize multifunctional MOFs for enhancing their catalytic activities for targeted applications.
Collapse
Affiliation(s)
- Guangming Shi
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yalong Liang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Long Nie
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ruodi Huang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhaohan Yang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xinying Liu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jun Zhou
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qiuli Zhang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Gan Ye
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
7
|
Ye G, Shi G, Wang H, Zeng X, Wu L, Zhou J, Zhang Q, Wei J, Li Z, Nie L, Wang J. In Situ Implanting ZrW 2O 7(OH) 2(H 2O) 2 Nanorods into Hierarchical Functionalized Metal-Organic Framework via Solvent-Free Approach for Upgrading Catalytic Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311249. [PMID: 38482932 DOI: 10.1002/smll.202311249] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/15/2024] [Indexed: 08/09/2024]
Abstract
Host-guest catalyst provides new opportunities for targeted applications and the development of new strategies for preparing host-guest catalysts is highly desired. Herein, an in situ solvent-free approach is developed for implanting ZrW2O7(OH)2(H2O)2 nanorods (ZrW-NR) in nitro-functionalized UiO-66(Zr) (UiO-66(Zr)-NO2) with hierarchical porosity, and the encapsulation of ZrW-NR enables the as-prepared host-guest catalyst remarkably enhanced catalytic performance for both for oxidative desulfurization (ODS) and acetalization reactions. ZrW-NR@UiO-66(Zr)-NO2 can eliminate 500 ppm sulfur within 9 min at 40 °C in ODS, and can transform 5.6 mmol benzaldehyde after 3 min at room temperature in acetalization reaction. Its turnover frequencies reach 72.3 h-1 at 40 °C for ODS which is 33.4 times higher than UiO-66(Zr)-NO2, and 28140 h-1 for acetalization which is the highest among previous reports. Density functional theory calculation result indicates that the W sites in ZrW-NR can decompose H2O2 to WVI-peroxo intermediates that contribute to catalytic activity for the ODS reaction. This work opens a new solvent-free approach for preparing MOFs-based host-guest catalysts to upgrade their redox and acid performance.
Collapse
Affiliation(s)
- Gan Ye
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Guangming Shi
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Hanlu Wang
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Xingye Zeng
- College of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Lei Wu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jun Zhou
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Qiuli Zhang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jinshan Wei
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhiming Li
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Long Nie
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jin Wang
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
8
|
Liu D, Ma H, Zhu C, Qiu F, Yu W, Ma LL, Wei XW, Han YF, Yuan G. Molecular Co-Catalyst Confined within a Metallacage for Enhanced Photocatalytic CO 2 Reduction. J Am Chem Soc 2024; 146:2275-2285. [PMID: 38215226 DOI: 10.1021/jacs.3c14254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
The construction of structurally well-defined supramolecular hosts to accommodate catalytically active species within a cavity is a promising way to address catalyst deactivation. The resulting supramolecular catalysts can significantly improve the utilization of catalytic sites, thereby achieving a highly efficient chemical conversion. In this study, the Co-metalated phthalocyanine (Pc-Co) was successfully confined within a tetragonal prismatic metallacage, leading to the formation of a distinctive type of supramolecular photocatalyst (Pc-Co@Cage). The host-guest architecture of Pc-Co@Cage was unambiguously elucidated by single-crystal X-ray diffraction (SCXRD), NMR, and ESI-TOF-MS, revealing that the single cobalt active site can be thoroughly isolated within the space-restricted microenvironment. In addition, we found that Pc-Co@Cage can serve as a homogeneous supramolecular photocatalyst that displays high CO2 to CO conversion in aqueous media under visible light irradiation. This supramolecular photocatalyst exhibits an obvious improvement in activity (TONCO = 4175) and selectivity (SelCO = 92%) relative to the nonconfined Pc-Co catalyst (TONCO = 500, SelCO = 54%). The present strategy provided a rare example for the construction of a highly active, selective, and stable photocatalyst for CO2 reduction through a cavity-confined molecular catalyst within a discrete metallacage.
Collapse
Affiliation(s)
- Dongdong Liu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, P. R. China
| | - Huirong Ma
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, P. R. China
| | - Chao Zhu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, P. R. China
| | - Fengyi Qiu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, P. R. China
| | - Weibin Yu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, P. R. China
| | - Li-Li Ma
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, P. R. China
| | - Xian-Wen Wei
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, P. R. China
| | - Ying-Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Guozan Yuan
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, P. R. China
| |
Collapse
|
9
|
Xu W, Wu Y, Gu W, Du D, Lin Y, Zhu C. Atomic-level design of metalloenzyme-like active pockets in metal-organic frameworks for bioinspired catalysis. Chem Soc Rev 2024; 53:137-162. [PMID: 38018371 DOI: 10.1039/d3cs00767g] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Natural metalloenzymes with astonishing reaction activity and specificity underpin essential life transformations. Nevertheless, enzymes only operate under mild conditions to keep sophisticated structures active, limiting their potential applications. Artificial metalloenzymes that recapitulate the catalytic activity of enzymes can not only circumvent the enzymatic fragility but also bring versatile functions into practice. Among them, metal-organic frameworks (MOFs) featuring diverse and site-isolated metal sites and supramolecular structures have emerged as promising candidates for metalloenzymes to move toward unparalleled properties and behaviour of enzymes. In this review, we systematically summarize the significant advances in MOF-based metalloenzyme mimics with a special emphasis on active pocket engineering at the atomic level, including primary catalytic sites and secondary coordination spheres. Then, the deep understanding of catalytic mechanisms and their advanced applications are discussed. Finally, a perspective on this emerging frontier research is provided to advance bioinspired catalysis.
Collapse
Affiliation(s)
- Weiqing Xu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Yu Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Wenling Gu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, 99164, Pullman, USA.
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, 99164, Pullman, USA.
| | - Chengzhou Zhu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| |
Collapse
|
10
|
Ding J, Wei Z, Li F, Zhang J, Zhang Q, Zhou J, Wang W, Liu Y, Zhang Z, Su X, Yang R, Liu W, Su C, Yang HB, Huang Y, Zhai Y, Liu B. Atomic high-spin cobalt(II) center for highly selective electrochemical CO reduction to CH 3OH. Nat Commun 2023; 14:6550. [PMID: 37848430 PMCID: PMC10582074 DOI: 10.1038/s41467-023-42307-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 10/06/2023] [Indexed: 10/19/2023] Open
Abstract
In this work, via engineering the conformation of cobalt active center in cobalt phthalocyanine molecular catalyst, the catalytic efficiency of electrochemical carbon monoxide reduction to methanol can be dramatically tuned. Based on a collection of experimental investigations and density functional theory calculations, it reveals that the electron rearrangement of the Co 3d orbitals of cobalt phthalocyanine from the low-spin state (S = 1/2) to the high-spin state (S = 3/2), induced by molecular conformation change, is responsible for the greatly enhanced CO reduction reaction performance. Operando attenuated total reflectance surface-enhanced infrared absorption spectroscopy measurements disclose accelerated hydrogenation of CORR intermediates, and kinetic isotope effect validates expedited proton-feeding rate over cobalt phthalocyanine with high-spin state. Further natural population analysis and density functional theory calculations demonstrate that the high spin Co2+ can enhance the electron backdonation via the dxz/dyz-2π* bond and weaken the C-O bonding in *CO, promoting hydrogenation of CORR intermediates.
Collapse
Affiliation(s)
- Jie Ding
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, SAR 999077, China
| | - Zhiming Wei
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Fuhua Li
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, SAR 999077, China
| | - Jincheng Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, SAR 999077, China
| | - Qiao Zhang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Jing Zhou
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.
| | - Weijue Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yuhang Liu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Zhen Zhang
- China Astronaut Research and Training Center, Beijing, 100094, China
| | - Xiaozhi Su
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Runze Yang
- China Astronaut Research and Training Center, Beijing, 100094, China
| | - Wei Liu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Chenliang Su
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoeletronics, Shenzhen University, Shenzhen, 518060, China.
| | - Hong Bin Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Yanqiang Huang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yueming Zhai
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China.
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, SAR 999077, China.
| |
Collapse
|
11
|
Ye G, Zheng M, Zhang Q, Zhou J, Wu L, Wang J. Defect-Mediated Synergistic Effect of POM/UiO-66(Zr) Host-Guest Catalysts for Robust Deep Desulfurization at Ambient Temperature. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301035. [PMID: 37226376 DOI: 10.1002/smll.202301035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/29/2023] [Indexed: 05/26/2023]
Abstract
Stable platforms of host-guest catalysts are indispensable in the field of heterogeneous catalysis, however, clarifying the specific effect of host remains challenging. Herein, polyoxometalate (POM) is encapsulated in three types of UiO-66(Zr) with different controlled densities of defects by the aperture opening and closing strategy at ambient-temperature. It is found that catalytic activity of POM for oxidative desulfurization (ODS) at room temperature is turned on when encapsulated in the defective UiO-66(Zr), and the sulfur oxidation efficiency shows an obvious increasing trend (from 0.34 to 10.43 mmol g-1 h-1 ) with the increased concentration of defects in UiO-66(Zr) host. The as-prepared catalyst with the most defective host displays ultrahigh performance which removed 1000 ppm sulfur with exceptionally diluted oxidant at room-temperature within 25 min. The turnover frequency can reach 620.0 h-1 at 30 °C, which surpassed all the reported MOFs based ODS catalysts. A substantial guest/host synergistic effect mediated by the defective sites in UiO-66(Zr) is responsible for the enhancement. Density functional theory calculations reveal that OH/OH2 capped on the open Zr sites of host UiO-66(Zr) can decompose H2 O2 to OOH group and enables the formation of WVI -peroxo intermediates that determine the ODS activity.
Collapse
Affiliation(s)
- Gan Ye
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Meng Zheng
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Qiuli Zhang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jun Zhou
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Lei Wu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jin Wang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
12
|
Chen F, Zheng L, Li C, Wang B, Wu Q, Dai Z, Wang S, Sun Q, Meng X, Xiao FS. Porous Supramolecular Assemblies for Efficient Suzuki Coupling of Aryl Chlorides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301875. [PMID: 37116082 DOI: 10.1002/smll.202301875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/29/2023] [Indexed: 06/19/2023]
Abstract
The development of catalytic systems that can activate aryl chlorides for palladium-catalyzed cross-coupling reactions is at the forefront of ongoing efforts to synthesize fine chemicals. In this study, a facile ligand-template approach is adopted to achieve active-site encapsulation by forming supramolecular assemblies; this bestowed the pristine inert counterparts with reactivity, which is further increased upon the construction of a porous framework. Experimental results indicated that the isolation of ligands by the surrounding template units is key to the formation of catalytically active monoligated palladium complexes. Additionally, the construction of porous frameworks using the resulting supramolecular assemblies prevented the decomposition of the Pd complexes into nanoparticles, which drastically increased the catalyst lifetime. These findings, along with the simplicity and generality of the synthesis scheme, suggest that the strategy can be leveraged to achieve unique reactivity and potentially enable fine-chemical synthesis.
Collapse
Affiliation(s)
- Fang Chen
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou, 310027, China
| | - Liping Zheng
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, College of Science, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, 310018, China
| | - Chen Li
- CenerTech Tianjin Chemical Research and Design Institute Co., Ltd., Tianjing, 300131, China
| | - Benlei Wang
- CenerTech Tianjin Chemical Research and Design Institute Co., Ltd., Tianjing, 300131, China
| | - Qing Wu
- CNOOC Institute of Chemicals & Advanced Materials, Beijing, 100028, China
| | - Zhifeng Dai
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, College of Science, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, 310018, China
| | - Sai Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou, 310027, China
| | - Qi Sun
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou, 310027, China
| | - Xiangju Meng
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou, 310027, China
| | - Feng-Shou Xiao
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
13
|
Hou SL, Dong J, Zhao XY, Li XS, Ren FY, Zhao J, Zhao B. Thermocatalytic Conversion of CO 2 to Valuable Products Activated by Noble-Metal-Free Metal-Organic Frameworks. Angew Chem Int Ed Engl 2023; 62:e202305213. [PMID: 37170958 DOI: 10.1002/anie.202305213] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/13/2023]
Abstract
Thermocatalysis of CO2 into high valuable products is an efficient and green method for mitigating global warming and other environmental problems, of which Noble-metal-free metal-organic frameworks (MOFs) are one of the most promising heterogeneous catalysts for CO2 thermocatalysis, and many excellent researches have been published. Hence, this review focuses on the valuable products obtained from various CO2 conversion reactions catalyzed by noble-metal-free MOFs, such as cyclic carbonates, oxazolidinones, carboxylic acids, N-phenylformamide, methanol, ethanol, and methane. We classified these published references according to the types of products, and analyzed the methods for improving the catalytic efficiency of MOFs in CO2 reaction. The advantages of using noble-metal-free MOF catalysts for CO2 conversion were also discussed along the text. This review concludes with future perspectives on the challenges to be addressed and potential research directions. We believe that this review will be helpful to readers and attract more scientists to join the topic of CO2 conversion.
Collapse
Affiliation(s)
- Sheng-Li Hou
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Jie Dong
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Xin-Yuan Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Xiang-Shuai Li
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Fang-Yu Ren
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Jian Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Bin Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| |
Collapse
|
14
|
Xu ZM, Hu Z, Huang Y, Bao SJ, Niu Z, Lang JP, Al-Enizi AM, Nafady A, Ma S. Introducing Frustrated Lewis Pairs to Metal-Organic Framework for Selective Hydrogenation of N-Heterocycles. J Am Chem Soc 2023. [PMID: 37384612 DOI: 10.1021/jacs.3c04929] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Hydrogenated nitrogen heterocyclic compounds play a critical role in the pharmaceutical, polymer, and agrochemical industries. Recent studies on partial hydrogenation of nitrogen heterocyclic compounds have focused on costly and toxic precious metal catalysts. As an important class of main-group catalysts, frustrated Lewis pairs (FLPs) have been widely applied in catalytic hydrogenation reactions. In principle, the combination of FLPs and metal-organic framework (MOF) is anticipated to efficiently enhance the recyclability performance of FLPs; however, the previously studied MOF-FLPs showed low reactivity in the hydrogenation of N-heterocycles compounds. Herein, we offer a novel P/B type MOF-FLP catalyst that was achieved via a solvent-assisted linker incorporation approach to boost catalytic hydrogenation reactions. Using hydrogen gas under moderate pressure, the proposed P/B type MOF-FLP can serve as a highly efficient heterogeneous catalyst for selective hydrogenation of quinoline and indole to tetrahydroquinoline and indoline-type drug compounds in high yield and excellent recyclability.
Collapse
Affiliation(s)
- Ze-Ming Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Zhuoyi Hu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yali Huang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Shu-Jin Bao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Zheng Niu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jian-Ping Lang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Abdullah M Al-Enizi
- Department of Chemistry, College of Science, King Saud University, Riyadh 1145, Saudi Arabia
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh 1145, Saudi Arabia
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, Denton, Texas 76201, United States
| |
Collapse
|
15
|
Rayder TM, Formalik F, Vornholt SM, Frank H, Lee S, Alzayer M, Chen Z, Sengupta D, Islamoglu T, Paesani F, Chapman KW, Snurr RQ, Farha OK. Unveiling Unexpected Modulator-CO 2 Dynamics within a Zirconium Metal-Organic Framework. J Am Chem Soc 2023; 145:11195-11205. [PMID: 37186787 DOI: 10.1021/jacs.3c01146] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Carbon capture, storage, and utilization (CCSU) represents an opportunity to mitigate carbon emissions that drive global anthropogenic climate change. Promising materials for CCSU through gas adsorption have been developed by leveraging the porosity, stability, and tunability of extended crystalline coordination polymers called metal-organic frameworks (MOFs). While the development of these frameworks has yielded highly effective CO2 sorbents, an in-depth understanding of the properties of MOF pores that lead to the most efficient uptake during sorption would benefit the rational design of more efficient CCSU materials. Though previous investigations of gas-pore interactions often assumed that the internal pore environment was static, discovery of more dynamic behavior represents an opportunity for precise sorbent engineering. Herein, we report a multifaceted in situ analysis following the adsorption of CO2 in MOF-808 variants with different capping agents (formate, acetate, and trifluoroacetate: FA, AA, and TFA, respectively). In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analysis paired with multivariate analysis tools and in situ powder X-ray diffraction revealed unexpected CO2 interactions at the node associated with dynamic behavior of node-capping modulators in the pores of MOF-808, which had previously been assumed to be static. MOF-808-TFA displays two binding modes, resulting in higher binding affinity for CO2. Computational analyses further support these dynamic observations. The beneficial role of these structural dynamics could play an essential role in building a deeper understanding of CO2 binding in MOFs.
Collapse
Affiliation(s)
- Thomas M Rayder
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Filip Formalik
- Department of Chemical & Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Micro, Nano, and Bioprocess Engineering, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Simon M Vornholt
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Hilliary Frank
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92037, United States
| | - Seryeong Lee
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Maytham Alzayer
- Department of Chemical & Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Zhihengyu Chen
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Debabrata Sengupta
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Timur Islamoglu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92037, United States
| | - Karena W Chapman
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Randall Q Snurr
- Department of Chemical & Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Omar K Farha
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
16
|
Suremann NF, McCarthy BD, Gschwind W, Kumar A, Johnson BA, Hammarström L, Ott S. Molecular Catalysis of Energy Relevance in Metal-Organic Frameworks: From Higher Coordination Sphere to System Effects. Chem Rev 2023; 123:6545-6611. [PMID: 37184577 DOI: 10.1021/acs.chemrev.2c00587] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The modularity and synthetic flexibility of metal-organic frameworks (MOFs) have provoked analogies with enzymes, and even the term MOFzymes has been coined. In this review, we focus on molecular catalysis of energy relevance in MOFs, more specifically water oxidation, oxygen and carbon dioxide reduction, as well as hydrogen evolution in context of the MOF-enzyme analogy. Similar to enzymes, catalyst encapsulation in MOFs leads to structural stabilization under turnover conditions, while catalyst motifs that are synthetically out of reach in a homogeneous solution phase may be attainable as secondary building units in MOFs. Exploring the unique synthetic possibilities in MOFs, specific groups in the second and third coordination sphere around the catalytic active site have been incorporated to facilitate catalysis. A key difference between enzymes and MOFs is the fact that active site concentrations in the latter are often considerably higher, leading to charge and mass transport limitations in MOFs that are more severe than those in enzymes. High catalyst concentrations also put a limit on the distance between catalysts, and thus the available space for higher coordination sphere engineering. As transport is important for MOF-borne catalysis, a system perspective is chosen to highlight concepts that address the issue. A detailed section on transport and light-driven reactivity sets the stage for a concise review of the currently available literature on utilizing principles from Nature and system design for the preparation of catalytic MOF-based materials.
Collapse
Affiliation(s)
- Nina F Suremann
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Brian D McCarthy
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Wanja Gschwind
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Amol Kumar
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Ben A Johnson
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
- Technical University Munich (TUM), Campus Straubing for Biotechnology and Sustainability, Uferstraße 53, 94315 Straubing, Germany
| | - Leif Hammarström
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Sascha Ott
- Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| |
Collapse
|
17
|
Wang KY, Zhang J, Hsu YC, Lin H, Han Z, Pang J, Yang Z, Liang RR, Shi W, Zhou HC. Bioinspired Framework Catalysts: From Enzyme Immobilization to Biomimetic Catalysis. Chem Rev 2023; 123:5347-5420. [PMID: 37043332 PMCID: PMC10853941 DOI: 10.1021/acs.chemrev.2c00879] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Indexed: 04/13/2023]
Abstract
Enzymatic catalysis has fueled considerable interest from chemists due to its high efficiency and selectivity. However, the structural complexity and vulnerability hamper the application potentials of enzymes. Driven by the practical demand for chemical conversion, there is a long-sought quest for bioinspired catalysts reproducing and even surpassing the functions of natural enzymes. As nanoporous materials with high surface areas and crystallinity, metal-organic frameworks (MOFs) represent an exquisite case of how natural enzymes and their active sites are integrated into porous solids, affording bioinspired heterogeneous catalysts with superior stability and customizable structures. In this review, we comprehensively summarize the advances of bioinspired MOFs for catalysis, discuss the design principle of various MOF-based catalysts, such as MOF-enzyme composites and MOFs embedded with active sites, and explore the utility of these catalysts in different reactions. The advantages of MOFs as enzyme mimetics are also highlighted, including confinement, templating effects, and functionality, in comparison with homogeneous supramolecular catalysts. A perspective is provided to discuss potential solutions addressing current challenges in MOF catalysis.
Collapse
Affiliation(s)
- Kun-Yu Wang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiaqi Zhang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu-Chuan Hsu
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Hengyu Lin
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Zongsu Han
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiandong Pang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- School
of Materials Science and Engineering, Tianjin Key Laboratory of Metal
and Molecule-Based Material Chemistry, Nankai
University, Tianjin 300350, China
| | - Zhentao Yang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Rong-Ran Liang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Wei Shi
- Department
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(MOE) and Renewable Energy Conversion and Storage Center (RECAST),
College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hong-Cai Zhou
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
18
|
Han M, Zhao Z, Zhang X, Wang P, Xing L, Jia D, Wang L, Chen X, Gao H, Wang G. Phosphorus-Doped directly interconnected networks of amorphous Metal-Organic framework nanowires for efficient methanol oxidation. J Colloid Interface Sci 2023; 641:675-684. [PMID: 36965339 DOI: 10.1016/j.jcis.2023.03.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 03/27/2023]
Abstract
Developing high-performance and low-cost electrocatalysts toward methanol oxidation reaction (MOR) is essential for fuel cell applications. Herein, we report a defect engineering strategy integrating amorphization and phosphorization to construct directly interconnected networks of amorphous NiCo-based metal-organic framework nanowires (a-NiCo-MOFNWs) with phosphorus (P) doping. The resulting P-doped a-NiCo-MOFNWs (a-NiCo-MOFNWs-P) network displays superior MOR efficiency and long-term durability over 1000 cyclic voltammetry (CV) measurements. The special structure of directly interconnected networks and the synergistic effect between the amorphous MOFs and dispersed phosphorus species give rise to abundant exposed active sites, accelerated electron transport, and increased porosity for mass transfer, thus boosting the reaction kinetics of MOR. This work provides additional insights into the network assembly and structural evolution of one-dimensional (1D) MOFs, and also opens up new avenues for the design of highly reactive and robust non-precious metal-based electrocatalysts.
Collapse
Affiliation(s)
- Mengyi Han
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China
| | - Zhiyong Zhao
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China
| | - Xiaowei Zhang
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China.
| | - Peng Wang
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China
| | - Liwen Xing
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Dandan Jia
- Research Institute of Petroleum Processing, Sinopec, 18 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Linmeng Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiao Chen
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China
| | - Hongyi Gao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Graduate School, University of Science and Technology Beijing, Shunde 528399, China
| | - Ge Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
19
|
Lu X, Song C, Qi X, Li D, Lin L. Confinement Effects in Well-Defined Metal-Organic Frameworks (MOFs) for Selective CO 2 Hydrogenation: A Review. Int J Mol Sci 2023; 24:ijms24044228. [PMID: 36835639 PMCID: PMC9959283 DOI: 10.3390/ijms24044228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/15/2023] [Accepted: 01/20/2023] [Indexed: 02/23/2023] Open
Abstract
Decarbonization has become an urgent affair to restrain global warming. CO2 hydrogenation coupled with H2 derived from water electrolysis is considered a promising route to mitigate the negative impact of carbon emission and also promote the application of hydrogen. It is of great significance to develop catalysts with excellent performance and large-scale implementation. In the past decades, metal-organic frameworks (MOFs) have been widely involved in the rational design of catalysts for CO2 hydrogenation due to their high surface areas, tunable porosities, well-ordered pore structures, and diversities in metals and functional groups. Confinement effects in MOFs or MOF-derived materials have been reported to promote the stability of CO2 hydrogenation catalysts, such as molecular complexes of immobilization effect, active sites in size effect, stabilization in the encapsulation effect, and electron transfer and interfacial catalysis in the synergistic effect. This review attempts to summarize the progress of MOF-based CO2 hydrogenation catalysts up to now, and demonstrate the synthetic strategies, unique features, and enhancement mechanisms compared with traditionally supported catalysts. Great emphasis will be placed on various confinement effects in CO2 hydrogenation. The challenges and opportunities in precise design, synthesis, and applications of MOF-confined catalysis for CO2 hydrogenation are also summarized.
Collapse
Affiliation(s)
- Xiaofei Lu
- Institute of Industrial Catalysis, State Key Laboratory of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Chuqiao Song
- Institute of Industrial Catalysis, State Key Laboratory of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xingyu Qi
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Duanxing Li
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Lili Lin
- Institute of Industrial Catalysis, State Key Laboratory of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Correspondence:
| |
Collapse
|
20
|
Metallocavitins as Advanced Enzyme Mimics and Promising Chemical Catalysts. Catalysts 2023. [DOI: 10.3390/catal13020415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
The supramolecular approach is becoming increasingly dominant in biomimetics and chemical catalysis due to the expansion of the enzyme active center idea, which now includes binding cavities (hydrophobic pockets), channels and canals for transporting substrates and products. For a long time, the mimetic strategy was mainly focused on the first coordination sphere of the metal ion. Understanding that a highly organized cavity-like enzymatic pocket plays a key role in the sophisticated functionality of enzymes and that the activity and selectivity of natural metalloenzymes are due to the effects of the second coordination sphere, created by the protein framework, opens up new perspectives in biomimetic chemistry and catalysis. There are two main goals of mimicking enzymatic catalysis: (1) scientific curiosity to gain insight into the mysterious nature of enzymes, and (2) practical tasks of mankind: to learn from nature and adopt from its many years of evolutionary experience. Understanding the chemistry within the enzyme nanocavity (confinement effect) requires the use of relatively simple model systems. The performance of the transition metal catalyst increases due to its retention in molecular nanocontainers (cavitins). Given the greater potential of chemical synthesis, it is hoped that these promising bioinspired catalysts will achieve catalytic efficiency and selectivity comparable to and even superior to the creations of nature. Now it is obvious that the cavity structure of molecular nanocontainers and the real possibility of modifying their cavities provide unlimited possibilities for simulating the active centers of metalloenzymes. This review will focus on how chemical reactivity is controlled in a well-defined cavitin nanospace. The author also intends to discuss advanced metal–cavitin catalysts related to the study of the main stages of artificial photosynthesis, including energy transfer and storage, water oxidation and proton reduction, as well as highlight the current challenges of activating small molecules, such as H2O, CO2, N2, O2, H2, and CH4.
Collapse
|
21
|
Liu X, Qian B, Zhang D, Yu M, Chang Z, Bu X. Recent progress in host–guest metal–organic frameworks: Construction and emergent properties. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Zhu HL, Huang JR, Liao PQ, Chen XM. Rational Design of Metal-Organic Frameworks for Electroreduction of CO 2 to Hydrocarbons and Carbon Oxygenates. ACS CENTRAL SCIENCE 2022; 8:1506-1517. [PMID: 36439306 PMCID: PMC9686201 DOI: 10.1021/acscentsci.2c01083] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Indexed: 05/25/2023]
Abstract
Since CO2 can be reutilized by using renewable electricity in form of product diversity, electrochemical CO2 reduction (ECR) is expected to be a burgeoning strategy to tackle environmental problems and the energy crisis. Nevertheless, owing to the limited selectivity and reaction efficiency for a single component product, ECR is still far from a large-scale application. Therefore, designing high performance electrocatalysts is the key objective in CO2 conversion and utilization. Unlike most other types of electrocatalysts, metal-organic frameworks (MOFs) have clear, designable, and tunable catalytic active sites and chemical microenvironments, which are highly conducive to establish a clear structure-performance relationship and guide the further design of high-performance electrocatalysts. This Outlook concisely and critically discusses the rational design strategies of MOF catalysts for ECR in terms of reaction selectivity, current density, and catalyst stability, and outlines the prospects for the development of MOF electrocatalysts and industrial applications. In the future, more efforts should be devoted to designing MOF structures with high stability and electronic conductivity besides high activity and selectivity, as well as to develop efficient electrolytic devices suitable for MOF catalysts.
Collapse
Affiliation(s)
- Hao-Lin Zhu
- MOE Key Laboratory of Bioinorganic
and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jia-Run Huang
- MOE Key Laboratory of Bioinorganic
and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Pei-Qin Liao
- MOE Key Laboratory of Bioinorganic
and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiao-Ming Chen
- MOE Key Laboratory of Bioinorganic
and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
23
|
Sen R, Goeppert A, Surya Prakash GK. Homogeneous Hydrogenation of CO 2 and CO to Methanol: The Renaissance of Low-Temperature Catalysis in the Context of the Methanol Economy. Angew Chem Int Ed Engl 2022; 61:e202207278. [PMID: 35921247 PMCID: PMC9825957 DOI: 10.1002/anie.202207278] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 01/11/2023]
Abstract
The traditional economy based on carbon-intensive fuels and materials has led to an exponential rise in anthropogenic CO2 emissions. Outpacing the natural carbon cycle, atmospheric CO2 levels increased by 50 % since the pre-industrial age and can be directly linked to global warming. Being at the core of the proposed methanol economy pioneered by the late George A. Olah, the chemical recycling of CO2 to produce methanol, a green fuel and feedstock, is a prime channel to achieve carbon neutrality. In this direction, homogeneous catalytic systems have lately been a major focus for methanol synthesis from CO2 , CO and their derivatives as potential low-temperature alternatives to the commercial processes. This Review provides an account of this rapidly growing field over the past decade, since its resurgence in 2011. Based on the critical assessment of the progress thus far, the present key challenges in this field have been highlighted and potential directions have been suggested for practically viable applications.
Collapse
Affiliation(s)
- Raktim Sen
- Loker Hydrocarbon Research Institute and Department of ChemistryUniversity of Southern CaliforniaUniversity ParkLos AngelesCA90089-1661USA
| | - Alain Goeppert
- Loker Hydrocarbon Research Institute and Department of ChemistryUniversity of Southern CaliforniaUniversity ParkLos AngelesCA90089-1661USA
| | - G. K. Surya Prakash
- Loker Hydrocarbon Research Institute and Department of ChemistryUniversity of Southern CaliforniaUniversity ParkLos AngelesCA90089-1661USA
| |
Collapse
|
24
|
Sánchez A. Biogas improvement as renewable energy through conversion into methanol: A perspective of new catalysts based on nanomaterials and metal organic frameworks. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.1012384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
In recent years, the high cost and availability of energy sources have boosted the implementation of strategies to obtain different types of renewable energy. Among them, methane contained in biogas from anaerobic digestion has gained special relevance, since it also permits the management of a big amount of organic waste and the capture and long-term storage of carbon. However, methane from biogas presents some problems as energy source: 1) it is a gas, so its storage is costly and complex, 2) it is not pure, being carbon dioxide the main by-product of anaerobic digestion (30%–50%), 3) it is explosive with oxygen under some conditions and 4) it has a high global warming potential (27–30 times that of carbon dioxide). Consequently, the conversion of biogas to methanol is as an attractive way to overcome these problems. This process implies the conversion of both methane and carbon dioxide into methanol in one oxidation and one reduction reaction, respectively. In this dual system, the use of effective and selective catalysts for both reactions is a critical issue. In this regard, nanomaterials embedded in metal organic frameworks have been recently tested for both reactions, with very satisfactory results when compared to traditional materials. In this review paper, the recent configurations of catalysts including nanoparticles as active catalysts and metal organic frameworks as support materials are reviewed and discussed. The main challenges for the future development of this technology are also highlighted, that is, its cost in environmental and economic terms for its development at commercial scale.
Collapse
|
25
|
Gibbons B, Cai M, Morris AJ. A Potential Roadmap to Integrated Metal Organic Framework Artificial Photosynthetic Arrays. J Am Chem Soc 2022; 144:17723-17736. [PMID: 36126182 PMCID: PMC9545145 DOI: 10.1021/jacs.2c04144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Indexed: 11/28/2022]
Abstract
Metal organic frameworks (MOFs), a class of coordination polymers, gained popularity in the late 1990s with the efforts of Omar Yaghi, Richard Robson, Susumu Kitagawa, and others. The intrinsic porosity of MOFs made them a clear platform for gas storage and separation. Indeed, these applications have dominated the vast literature in MOF synthesis, characterization, and applications. However, even in those early years, there were hints to more advanced applications in light-MOF interactions and catalysis. This perspective focuses on the combination of both light-MOF interactions and catalysis: MOF artificial photosynthetic assemblies. Light absorption, charge transport, H2O oxidation, and CO2 reduction have all been previously observed in MOFs; however, work toward a fully MOF-based approach to artificial photosynthesis remains out of reach. Discussed here are the current limitations with MOF-based approaches: diffusion through the framework, selectivity toward high value products, lack of integrated studies, and stability. These topics provide a roadmap for the future development of fully integrated MOF-based assemblies for artificial photosynthesis.
Collapse
Affiliation(s)
- Bradley Gibbons
- Department of Chemistry, Virginia
Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Meng Cai
- Department of Chemistry, Virginia
Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Amanda J. Morris
- Department of Chemistry, Virginia
Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| |
Collapse
|
26
|
Yuan L, Gan Z, Fan Y, Ding F, Xu X, Chen X, Zou X, Zhang W. Thermal-controlled active sensor module using enzyme-regulated UiO-66-NH 2/MnO 2 fluorescence probe for total organophosphorus pesticide determination. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129111. [PMID: 35643005 DOI: 10.1016/j.jhazmat.2022.129111] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/21/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
An enzyme-regulated UiO-66-NH2/MnO2 fluorescence sensor, fully functionalized with spectrometric capacities, is developed for budget-friendly total organophosphorus pesticides (OPs) determination. The fluorescence probe, UiO-66-NH2/MnO2, is hydrothermally synthesized and morphologically examined. A specialized enzyme-catalyzed reaction, which can be gradually inhibited by OPs, is designed with participations of alkaline phosphatase (ALP) and sodium L-ascorbyl-2-phosphate (AAP). The reaction product of ascorbic acid (AA) decomposes MnO2 and restores UiO-66-NH2 fluorescence, establishing a relationship between OPs level and fluorescence intensity. Interactions among UiO-66-NH2, MnO2, OPs, and AA are clarified. Stepwise optimizations are performed to the UiO-66-NH2/MnO2 probe, ensuring considerable advantages as OPs affinity and fluorescence quenching behavior over rival nanomaterials. Analytical advances are magnified by fabricating an active sensor module, with self-acting thermal regulation for optimal enzyme activity. Under 4 and 20 °C environment, regulation period is less than 40 and 100 s. In total OPs determination for laboratorial and real-vegetable samples, this method exhibits uniform and log-linear responses to common species of OPs in a range as 1.0 × 10-7~10 mg L-1, and limit of detection is established as 8.9 × 10-8 mg L-1. Proposed readouts are validated with certified HPLC and recovery test. Relative errors and recovery rates are found as 2.7-6.4% and 95.8-102.6%, respectively.
Collapse
Affiliation(s)
- Lei Yuan
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ziyu Gan
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yushan Fan
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fuyuan Ding
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xuechao Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xiaojing Chen
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xiaobo Zou
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wen Zhang
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
27
|
Prakash SG, Sen R, Goeppert A. Homogeneous Hydrogenation of CO2 and CO to Methanol: The Renaissance of Low Temperature Catalysis in the Context of the Methanol Economy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Surya G. Prakash
- University of Southern California Loker Hydrocarbon Research Institute 837 Bloom WalkUniversity Park 90089-1661 Los Angeles UNITED STATES
| | - Raktim Sen
- University of Southern California Loker Hydrocarbon Res. Inst., and Department box Chemistry UNITED STATES
| | - Alain Goeppert
- University of Southern California Loker Hydrocarbon Res. Inst., and Department of Chemistry UNITED STATES
| |
Collapse
|
28
|
Kundu S, Ghosh A, Paul I, Schmittel M. Multicomponent Pseudorotaxane Quadrilateral as Dual-Way Logic AND Gate with Two Catalytic Outputs. J Am Chem Soc 2022; 144:13039-13043. [PMID: 35834720 DOI: 10.1021/jacs.2c05065] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A multicomponent pseudorotaxane quadrilateral was reversibly toggled between three distinct switching states. Switching in the forward conversion was achieved by addition of H+ and K+ ions, and switching in the reverse direction was performed by addition of 18-crown-6 and 1-aza-18-crown-6. In both the forward and backward ways, the inputs operated an AND gate with distinct catalytic outputs. While in the forward direction the logic AND operation starting from a heteroleptic five-component assembly turned "ON" an imine hydrolysis as output (AND-1), in the inverse direction a Michael addition was ignited as the output starting from a seven-component aggregate following the AND gate logic (AND-2).
Collapse
Affiliation(s)
- Sohom Kundu
- Center of Micro- and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Amit Ghosh
- Center of Micro- and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Indrajit Paul
- Center of Micro- and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| |
Collapse
|
29
|
Zhou J, Liu L, Li Y, Wang L, Xie Z. Multivariate Strategy Preparation of Nanoscale Ru-Doped Metal-Organic Frameworks with Boosted Photoactivity for Bioimaging and Reactive Oxygen Species Generation. Inorg Chem 2022; 61:4647-4654. [PMID: 35266714 DOI: 10.1021/acs.inorgchem.1c03649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
How to incorporate chromophores into MOFs is a key for the development of multifunctional photoactive systems. The poor internalization by cancer cells and low efficiency of ROS generation hamper the potential clinic application of Ru-based molecular agents. In this work, a nanoscale Ru-doped metal-organic framework Hf-UiO-Ru (Hf-Ru) with framework-boosted photoactivities was prepared via a multivariate strategy for use in bioimaging and ROS generation. The as-synthesized Hf-Ru nanocrystals not only maintain the well regular morphology and crystal structure in comparison with that of the Hf-UiO-66 prototype but also give an oxygen-independent emission with a much longer lifetime, higher quantum yield, and stronger ROS generation than molecular Ru(dcbpy)3. Additionally, the enhanced cellular uptake and high brightness in fluorescence and CT imaging of Hf-Ru nanocrystals have also been well studied in vitro. This multivariate strategy may be utilized as a general paradigm to develop a photoactive nanosystem for bioimaging and cancer treatment.
Collapse
Affiliation(s)
- Junli Zhou
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.,University of Science and Technology of China, Hefei 230026, PR China
| | - Liqian Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.,University of Science and Technology of China, Hefei 230026, PR China
| | - Yite Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.,University of Science and Technology of China, Hefei 230026, PR China
| | - Lei Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.,University of Science and Technology of China, Hefei 230026, PR China
| |
Collapse
|
30
|
Shteinman AA. Metallocavitins as Promising Industrial Catalysts: Recent Advances. Front Chem 2022; 9:806800. [PMID: 35223777 PMCID: PMC8873522 DOI: 10.3389/fchem.2021.806800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/29/2021] [Indexed: 11/18/2022] Open
Abstract
The energy, material, and environmental problems of society require clean materials and impose an urgent need to develop effective chemical processes for obtaining and converting energy to ensure further sustainable development. To solve these challenges, it is necessary, first of all, to learn solar energy harvesting through the development of artificial photosynthesis. In our planet, water, carbon dioxide, and methane are such affordable and inexhaustible clean materials. Electro/photocatalytic water splitting, and also CO2 and CH4 transforming into valuable products, requires the search for relevant efficient and selective processes and catalysts. Of great interest is the emerging new generation of bioinspired catalysts—metallocavitins (MCs). MCs are attracting increasing attention of researchers as advanced models of metalloenzymes, whose efficiency and selectivity are well known. The primary field of MC application is fine organic synthesis and enantioselective catalysis. On the other hand, MCs demonstrate high activity for energy challenging reactions involving small gas molecules and high selectivity for converting them into valuable products. This mini-review will highlight some recent advances in the synthesis of organic substances using MCs, but its main focus will be on the rapid development of advanced catalysts for the activation of small molecules, such as H2O, CO2, and CH4, and the prospects for creating related technological processes in the future.
Collapse
|
31
|
Kumar A, Daw P, Milstein D. Homogeneous Catalysis for Sustainable Energy: Hydrogen and Methanol Economies, Fuels from Biomass, and Related Topics. Chem Rev 2022; 122:385-441. [PMID: 34727501 PMCID: PMC8759071 DOI: 10.1021/acs.chemrev.1c00412] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Indexed: 02/08/2023]
Abstract
As the world pledges to significantly cut carbon emissions, the demand for sustainable and clean energy has now become more important than ever. This includes both production and storage of energy carriers, a majority of which involve catalytic reactions. This article reviews recent developments of homogeneous catalysts in emerging applications of sustainable energy. The most important focus has been on hydrogen storage as several efficient homogeneous catalysts have been reported recently for (de)hydrogenative transformations promising to the hydrogen economy. Another direction that has been extensively covered in this review is that of the methanol economy. Homogeneous catalysts investigated for the production of methanol from CO2, CO, and HCOOH have been discussed in detail. Moreover, catalytic processes for the production of conventional fuels (higher alkanes such as diesel, wax) from biomass or lower alkanes have also been discussed. A section has also been dedicated to the production of ethylene glycol from CO and H2 using homogeneous catalysts. Well-defined transition metal complexes, in particular, pincer complexes, have been discussed in more detail due to their high activity and well-studied mechanisms.
Collapse
Affiliation(s)
- Amit Kumar
- School
of Chemistry, University of St. Andrews, North Haugh, Fife, U.K., KY16 9ST
| | - Prosenjit Daw
- Department
of Chemical Sciences, Indian Institute of
Science Education and Research Berhampur, Govt. ITI (transit Campus), Berhampur 760010, India
| | - David Milstein
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
32
|
Jolly BJ, Co NH, Davis AR, Diaconescu PL, Liu C. A generalized kinetic model for compartmentalization of organometallic catalysis. Chem Sci 2022; 13:1101-1110. [PMID: 35211276 PMCID: PMC8790775 DOI: 10.1039/d1sc04983f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/21/2021] [Indexed: 11/21/2022] Open
Abstract
Compartmentalization is an attractive approach to enhance catalytic activity by retaining reactive intermediates and mitigating deactivating pathways. Such a concept has been well explored in biochemical and more recently, organometallic catalysis to ensure high reaction turnovers with minimal side reactions. However, the scarcity of theoretical frameworks towards confined organometallic chemistry impedes broader utility for the implementation of compartmentalization. Herein, we report a general kinetic model and offer design guidance for a compartmentalized organometallic catalytic cycle. In comparison to a non-compartmentalized catalysis, compartmentalization is quantitatively shown to prevent the unwanted intermediate deactivation, boost the corresponding reaction efficiency (γ), and subsequently increase catalytic turnover frequency (TOF). The key parameter in the model is the volumetric diffusive conductance (FV) that describes catalysts' diffusion propensity across a compartment's boundary. Optimal values of FV for a specific organometallic chemistry are needed to achieve maximal values of γ and TOF. As illustrated in specific reaction examples, our model suggests that a tailored compartment design, including the use of nanomaterials, is needed to suit a specific organometallic catalytic cycle. This work provides justification and design principles for further exploration into compartmentalizing organometallics to enhance catalytic performance. The conclusions from this work are generally applicable to other catalytic systems that need proper design guidance in confinement and compartmentalization. Compartmentalization is an attractive approach to enhance catalytic activity by retaining reactive intermediates and mitigating deactivating pathways.![]()
Collapse
Affiliation(s)
- Brandon J. Jolly
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - Nathalie H. Co
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - Ashton R. Davis
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - Paula L. Diaconescu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - Chong Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
33
|
Williams BP, Lo WS, Morabito JV, Young AP, Tsung F, Kuo CH, Palomba JM, Rayder TM, Chou LY, Sneed BT, Liu XY, Lamontagne LK, Petroff CA, Brodsky CN, Yang J, Andoni I, Li Y, Zhang F, Li Z, Chen SY, Gallacher C, Li B, Tsung SY, Pu MH, Tsung CK. Tailoring Heterogeneous Catalysts at the Atomic Level: In Memoriam, Prof. Chia-Kuang (Frank) Tsung. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51809-51828. [PMID: 34310110 DOI: 10.1021/acsami.1c08916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Professor Chia-Kuang (Frank) Tsung made his scientific impact primarily through the atomic-level design of nanoscale materials for application in heterogeneous catalysis. He approached this challenge from two directions: above and below the material surface. Below the surface, Prof. Tsung synthesized finely controlled nanoparticles, primarily of noble metals and metal oxides, tailoring their composition and surface structure for efficient catalysis. Above the surface, he was among the first to leverage the tunability and stability of metal-organic frameworks (MOFs) to improve heterogeneous, molecular, and biocatalysts. This article, written by his former students, seeks first to commemorate Prof. Tsung's scientific accomplishments in three parts: (1) rationally designing nanocrystal surfaces to promote catalytic activity; (2) encapsulating nanocrystals in MOFs to improve catalyst selectivity; and (3) tuning the host-guest interaction between MOFs and guest molecules to inhibit catalyst degradation. The subsequent discussion focuses on building on the foundation laid by Prof. Tsung and on his considerable influence on his former group members and collaborators, both inside and outside of the lab.
Collapse
Affiliation(s)
- Benjamin P Williams
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Wei-Shang Lo
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Joseph V Morabito
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Allison P Young
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Frances Tsung
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Chun-Hong Kuo
- Institute of Chemistry, Academia Sinica, No. 128, Section 2, Academia Rd, Nangang District, Taipei City, Taiwan 115
| | - Joseph M Palomba
- U.S. Army DEVCOM Soldier Center, 10 General Greene Avenue, Natick, Massachusetts 01760, United States
| | - Thomas M Rayder
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Lien-Yang Chou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Brian T Sneed
- CMC Materials, 870 North Commons Drive, Aurora, Illinois 60504, United States
| | - Xiao-Yuan Liu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen 518055, P. R. China
| | - Leo K Lamontagne
- SecureSeniorConnections, 7114 East Stetson Drive, Scottsdale, Arizona 85251, United States
| | - Christopher A Petroff
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Casey N Brodsky
- University of Michigan Medical School, 7300 Medical Sciences Building I-A Wing, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Jane Yang
- Department of Chemistry and Biochemistry, University of California Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Ilektra Andoni
- Department of Chemistry, University of California Irvine, 1102 Natural Sciences 2, Irvine, California 92697-2025, United States
| | - Yang Li
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Furui Zhang
- Department of Chemistry and the Institute for Catalysis in Energy Processes, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zhehui Li
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Sheng-Yu Chen
- Institute of Chemistry, Academia Sinica, No. 128, Section 2, Academia Rd, Nangang District, Taipei City, Taiwan 115
| | - Connor Gallacher
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Banruo Li
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Sheng-Yuan Tsung
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Ming-Hwa Pu
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Chia-Kuang Tsung
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
34
|
Hurlock MJ, Hao L, Kriegsman KW, Guo X, O'Keeffe M, Zhang Q. Evolution of 14-Connected Zr 6 Secondary Building Units through Postsynthetic Linker Incorporation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51945-51953. [PMID: 34124879 DOI: 10.1021/acsami.1c07701] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two new zirconium MOFs, WSU-6 and WSU-7, were synthesized through postsynthetic modifications. In both cases, linker insertion was conducted on a MOF consisting of eight-connected (8-c) Zr6 cluster and four-connected (4-c) ETTC linker, WSU-5, which possesses the uncommon 4, 8-c scu-c topology. The insertion of 1, 4-benzenedicarboxylate into the MOF formed the new 4, 12-c mjh topology, WSU-6. Interestingly, when 2, 6-naphthalenedicarboxylate was inserted, WSU-7 can be formed, which possesses a new 4, 14-c jkz topology. WSU-7 contains very rare 14-c Zr6 secondary building units (SBUs) and is the first MOF to have a Zr6 SBUs with connectivity greater than 12. The three Zr-MOFs were structurally characterized, and the photoluminescence properties of the materials were also studied.
Collapse
Affiliation(s)
| | | | | | | | - Michael O'Keeffe
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | | |
Collapse
|
35
|
Alberico E, Leischner T, Junge H, Kammer A, Sang R, Seifert J, Baumann W, Spannenberg A, Junge K, Beller M. HCOOH disproportionation to MeOH promoted by molybdenum PNP complexes. Chem Sci 2021; 12:13101-13119. [PMID: 34745541 PMCID: PMC8513996 DOI: 10.1039/d1sc04181a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/31/2021] [Indexed: 12/15/2022] Open
Abstract
Molybdenum(0) complexes with aliphatic aminophosphine pincer ligands have been prepared which are competent for the disproportionation of formic acid, thus representing the first example so far reported of non-noble metal species to catalytically promote such transformation. In general, formic acid disproportionation allows for an alternative access to methyl formate and methanol from renewable resources. MeOH selectivity up to 30% with a TON of 57 could be achieved while operating at atmospheric pressure. Selectivity (37%) and catalyst performance (TON = 69) could be further enhanced when the reaction was performed under hydrogen pressure (60 bars). A plausible mechanism based on experimental evidence is proposed. Mo(0) complexes with aliphatic PNP-pincer ligands enable the first example of non-noble metal catalyzed formic acid disproportionation leading to methanol with a selectivity of up to 37% and a turnover number up to 69.![]()
Collapse
Affiliation(s)
- Elisabetta Alberico
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany .,Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche tr. La Crucca 3 07100 Sassari Italy
| | - Thomas Leischner
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Henrik Junge
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Anja Kammer
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Rui Sang
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Jenny Seifert
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Wolfgang Baumann
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Anke Spannenberg
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Kathrin Junge
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e. V. Albert-Einstein Straße 29a 18059 Rostock Germany
| |
Collapse
|
36
|
Shi W, Quan Y, Lan G, Ni K, Song Y, Jiang X, Wang C, Lin W. Bifunctional Metal-Organic Layers for Tandem Catalytic Transformations Using Molecular Oxygen and Carbon Dioxide. J Am Chem Soc 2021; 143:16718-16724. [PMID: 34592814 DOI: 10.1021/jacs.1c07963] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Tandem catalytic reactions improve atom- and step-economy over traditional synthesis but are limited by the incompatibility of the required catalysts. Herein, we report the design of bifunctional metal-organic layers (MOLs), HfOTf-Fe and HfOTf-Mn, consisting of triflate (OTf)-capped Hf6 secondary building units (SBUs) as strong Lewis acidic centers and metalated TPY ligands as metal active sites for tandem catalytic transformations using O2 and CO2 as coreactants. HfOTf-Fe effectively transforms hydrocarbons into cyanohydrins via tandem oxidation with O2 and silylcyanation whereas HfOTf-Mn converts styrenes into styrene carbonates via tandem epoxidation and CO2 insertion. Density functional theory calculations revealed the involvement of a high-spin FeIV (S = 2) center in the challenging oxidation of the sp3 C-H bond. This work highlights the potential of MOLs as a tunable platform to incorporate multiple catalysts for tandem transformations.
Collapse
Affiliation(s)
- Wenjie Shi
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States.,College of Chemistry and Chemical Engineering, iCHEM, State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yangjian Quan
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Guangxu Lan
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Kaiyuan Ni
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Yang Song
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Xiaomin Jiang
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Cheng Wang
- College of Chemistry and Chemical Engineering, iCHEM, State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361005, People's Republic of China
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
37
|
Fujita H, Takemoto S, Matsuzaka H. Tin–Ruthenium Cooperative Catalyst for Disproportionation of Formic Acid to Methanol. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Hiroaki Fujita
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Shin Takemoto
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Hiroyuki Matsuzaka
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| |
Collapse
|