1
|
Wang Q, Chen X, Li Y, Yang S, Fan S, Xia J, Wu H. Protein-inorganic hybrid flowers with a two-stage accelerated strategy for stimulated activation of CRISPR/Cas12a enhance polynucleotide kinase biosensing. Talanta 2025; 292:127981. [PMID: 40120517 DOI: 10.1016/j.talanta.2025.127981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/11/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Polynucleotide kinases (PNK) play a crucial role in DNA damage repair and are closely associated with specific diseases, making them promising targets for therapeutic intervention. In this study, we propose a two-stage accelerated strategy that utilizes protein-inorganic hybrid flowers (PHFs) to enhance the performance of the terminal deoxynucleotidyl transferase (TdT)-combined CRISPR/Cas12a system (TCS) for efficient detection of PNK activity. In TCS, the participation of PHFs confines the substrate probes (SPs) to a limited space, thereby significantly enhancing the local concentration of phosphorylated 3' termini of SPs and effectively promoting the enzymatic reaction kinetics as the first step in the accelerated strategy. Upon encountering the target PNK, the phosphorylated 3' termini were promptly recognized and dephosphorylated to 3'-OH termini. Subsequently, TdT catalyzed the assembly of deoxyadenosine triphosphates (dATPs) without a template, rapidly activating the CRISPR/Cas12a system by forming multiple polyadenine (poly-A) chains. PHF-fixed poly-A chains then substantially boosted the localized concentration of CRISPR/Cas12a systems and vastly enhanced their efficacy in cleaving reporter nucleic acids. Our findings indicated that the spatial confinement effect facilitated by PHFs promoted frequent molecular collisions and accelerated multiple enzymatic reactions. The developed sensing strategy allows for the detection of PNK activity within a linear range of 0.001-1 U/mL, with a detection limit of 1.82 × 10-4 U/mL. Additionally, this strategy has been successfully applied to detect PNK activity in cell extracts and to screen for PNK inhibitors. Owing to these advantages, PNK can be rapidly and accurately detected with a high sensitivity, specificity, and biostability.
Collapse
Affiliation(s)
- Qi Wang
- Anhui Provincial Key Laboratory of Green Carbon Chemistry, Anhui Province Key Laboratory of Pollution Damage and Biological Control for Huaihe River Basin, Anhui Engineering Research Center for Functional Fruit Drink and Ecological Fermentation, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui, 236037, PR China
| | - Xiumei Chen
- Anhui Provincial Key Laboratory of Green Carbon Chemistry, Anhui Province Key Laboratory of Pollution Damage and Biological Control for Huaihe River Basin, Anhui Engineering Research Center for Functional Fruit Drink and Ecological Fermentation, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui, 236037, PR China
| | - Yang Li
- Anhui Provincial Key Laboratory of Green Carbon Chemistry, Anhui Province Key Laboratory of Pollution Damage and Biological Control for Huaihe River Basin, Anhui Engineering Research Center for Functional Fruit Drink and Ecological Fermentation, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui, 236037, PR China
| | - Shuo Yang
- Anhui Provincial Key Laboratory of Green Carbon Chemistry, Anhui Province Key Laboratory of Pollution Damage and Biological Control for Huaihe River Basin, Anhui Engineering Research Center for Functional Fruit Drink and Ecological Fermentation, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui, 236037, PR China
| | - Suhua Fan
- Anhui Provincial Key Laboratory of Green Carbon Chemistry, Anhui Province Key Laboratory of Pollution Damage and Biological Control for Huaihe River Basin, Anhui Engineering Research Center for Functional Fruit Drink and Ecological Fermentation, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui, 236037, PR China
| | - Juan Xia
- Anhui Provincial Key Laboratory of Green Carbon Chemistry, Anhui Province Key Laboratory of Pollution Damage and Biological Control for Huaihe River Basin, Anhui Engineering Research Center for Functional Fruit Drink and Ecological Fermentation, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui, 236037, PR China.
| | - Hai Wu
- Anhui Provincial Key Laboratory of Green Carbon Chemistry, Anhui Province Key Laboratory of Pollution Damage and Biological Control for Huaihe River Basin, Anhui Engineering Research Center for Functional Fruit Drink and Ecological Fermentation, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, Anhui, 236037, PR China.
| |
Collapse
|
2
|
Deng MZ, Zhong MY, Li ML, Huang GQ, He H, Xiao X, Bai RB, Ukwatta RH, Mi L, Zhang TT, Hu YH, Shi HC, Wang YZ. Research progress on electrochemiluminescence nanomaterials and their applications in biosensors - A review. Anal Chim Acta 2025; 1361:344148. [PMID: 40414672 DOI: 10.1016/j.aca.2025.344148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 04/30/2025] [Accepted: 05/01/2025] [Indexed: 05/27/2025]
Abstract
BACKGROUND Electrochemiluminescence (ECL) is a promising analytical technique that combines electrochemistry with chemiluminescence. The performance of ECL systems depends on luminophores. Nonetheless, conventional luminophores present certain limitations. At first, their ECL efficiencies often fall short of the requirements for accurate detection. Moreover, in complex environments, traditional materials struggle to selectively identify target compounds and are prone to interference. Furthermore, these materials exhibit a deficiency in flexibility and tunability, attributed to their rigid structure and inherent characteristics. Advancing ECL technology necessitates the creation of novel materials that improve efficiency, selectivity, stability, and flexibility. RESULTS This review emphasizes the recent advances in ECL nanomaterials and their applications in biosensors. The discussion starts with a comprehensive examination of two main mechanisms of ECL emission: quenching ECL and co-reactant ECL. Various nanomaterials are then discussed, including semiconductor nanomaterials, metal nanoclusters, carbon nanomaterials, nanoscale aggregation-induced emission materials, organic nanomaterials, and composite nanomaterials, with emphasis on their unique ECL properties. Examples illustrate specific applications in disease diagnosis, environmental monitoring, and food safety testing. The review further examines the structural and luminescent characteristics of nanomaterials, which facilitate the advancement of novel ECL detection methodologies. Finally, we examine the existing challenges and propose possible avenues for the future advancement of innovative ECL nanomaterials. SIGNIFICANCE ECL nanomaterials possess unique quantum sizes and surface effects. Through the design and selection of appropriate nanomaterials, extremely sensitive, selective, and stable ECL biosensors may be developed for the detection of particular targets, applicable in disease diagnostics, food safety, and environmental monitoring.
Collapse
Affiliation(s)
- Ming-Zhu Deng
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211800, PR China; College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, PR China
| | - Ming-Yu Zhong
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211800, PR China
| | - Meng-Li Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211800, PR China
| | - Gui-Qun Huang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211800, PR China
| | - Hao He
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211800, PR China
| | - Xiao Xiao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211800, PR China
| | - Ruo-Bing Bai
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211800, PR China
| | | | - Li Mi
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211800, PR China
| | - Ting-Ting Zhang
- Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, 223300, PR China
| | - Yong-Hong Hu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211800, PR China
| | - Hui-Cheng Shi
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211800, PR China
| | - Yin-Zhu Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211800, PR China.
| |
Collapse
|
3
|
Öndeş B, Aktaş Uygun D. Development of Pt/Au/PPy-COOH multisegmental nanowires modified label-free impedimetric immunosensor to determine mucin 1 (MUC1). Anal Biochem 2025; 702:115857. [PMID: 40158834 DOI: 10.1016/j.ab.2025.115857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/14/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
In this study, a label-free nanowire-based impedimetric immunosensor was developed for the purpose of determining cancer biomarkers mucin 1 (MUC1). Nanowires were selected for sensor modification due to their high catalytic properties and high enzyme loading capacity. The synthesis, characterization, and application of Pt/Au/PPy-COOH nanowires to modify SPE electrodes were conducted. The nanowire-based immunosensors developed as a result of this research demonstrated a broad linear working range for MUC1 (20-3000 fg/mL), a low LOD value (0.244 fg/mL), and a low LOQ value (0.815 fg/mL). The nanowire-based immunosensor exhibited several notable characteristics. Firstly, it demonstrated excellent reproducibility, selectivity, and long-term stability. Furthermore, it demonstrated notable regenerative capabilities. It is noteworthy that the sensor exhibited the capability to detect MUC1 in commercial human serum samples, even in the presence of interfering agents. The affordability, simplicity, and expeditious analysis of nanowire-based immunosensors render them more appealing than alternative commercial kits. Consequently, these sensors hold considerable promise for clinical applications.
Collapse
Affiliation(s)
- Baha Öndeş
- Aydın Adnan Menderes University, Faculty of Science, Department of Chemistry, Aydın, Türkiye
| | - Deniz Aktaş Uygun
- Aydın Adnan Menderes University, Faculty of Science, Department of Chemistry, Aydın, Türkiye.
| |
Collapse
|
4
|
Shen Z, Xu R, Wang G, Wang H, Xu D, Liu J, Wang G, Guo Y, Sun X. Self-luminescent dual-ligand metal-organic framework based electrochemiluminescence probes for organophosphorus pesticides determination. Food Chem 2025; 478:143679. [PMID: 40054200 DOI: 10.1016/j.foodchem.2025.143679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/16/2025] [Accepted: 02/28/2025] [Indexed: 04/06/2025]
Abstract
In this study, a signal amplification strategy was developed, which tris (2, 2'-bipyridyl) ruthenium (II) (Ru(bpy)32+) was incorporated as a guest molecule into the preparation system of lanthanide-based metal-organic framework (MOF). This strategy relied on strong electrostatic interactions and coordination competition to influence the growth process of the MOF, resulting in the firm immobilization of Ru(bpy)32+ within the MOF structure. The spatial confinement effect of the MOF effectively improved the efficiency of electron transfer in the electrochemiluminescence (ECL) reaction. The constructed ECL aptasensor using this MOF exhibited excellent performance, with limits of detection (LODs) for four organophosphorus pesticides (OPs), phorate, profenofos, isocarbophos and omethoate, as low as 0.0482 ng/mL, 0.0093 ng/mL, 0.0085 ng/mL, and 0.0893 ng/mL, respectively. This work has paved the way for a clever strategy of immobilizing Ru(bpy)32+ molecules and amplifying signals, expanding the application of dual-ligand MOF, which provides valuable insights for future biosensor design.
Collapse
Affiliation(s)
- Zheng Shen
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Rui Xu
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Guangxian Wang
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China
| | - Haifang Wang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Deyan Xu
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - JingJing Liu
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Guanjie Wang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Yemin Guo
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China.
| | - Xia Sun
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China.
| |
Collapse
|
5
|
Zhang S, Zhang Y, Yuan M, Liang H, Zhang N, Zhou Z, Sun X, Guo Y, Tang F, You T, Zhang D. The rational design of europium complex based electrochemiluminescence sensor for highly efficient carbaryl detection. Talanta 2025; 287:127659. [PMID: 39889679 DOI: 10.1016/j.talanta.2025.127659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/21/2025] [Accepted: 01/26/2025] [Indexed: 02/03/2025]
Abstract
To address the issue that most of the reported electrochemiluminescence (ECL) sensors are usually subjected to various complicated chemical modifications, we proposed a sensitive ECL sensor by using a neutral mononuclear lanthanide metal europium complex Eu(L)3 (L = 2-pyrazol-1-yl-6-(1H-tetrazol-5-yl)-pyridine) as luminophore with simple chemical composition for the accurate detection of carbaryl pesticide residues. The three conjugated tridentate pyrazo-pyridine- tetrazol ligands could put significant effect on the physical and chemical behavior of the central Eu3+ ion, leading to the excellent luminescent performance of the Eu(L)3 complex enhanced by "antenna effect" of the auxiliary anionic organic ligands. The naphthol obtained from the hydrolysis reaction of carbaryl in an alkaline working solution could effectively and quantitatively quench the luminescence intensity of the Eu(L)3 complex, which has been theoretically confirmed by the detailed density functional theory (DFT) and time-dependent DFT (TDDFT) calculations, thus obviously strengthening the target detection capability on carbaryl. Based-on such the idea, the skillfully constructed ECL sensor showed superior carbaryl detection performance with good linearity in the range of 1 pg/mL to 1000 ng/mL, and a satisfied detection limit of 8.8 pg/mL (S/N = 3) under the optimized conditions. The current simple ECL carbaryl detection platform exhibited the conspicuous superiority to those existed commercial ones and thus, more importantly, provided a very promising practical value in the field of environmental detection (oil, soil, water, etc.) of organic phenol pollutants.
Collapse
Affiliation(s)
- Shan Zhang
- College of Chemical and Chemical Engineering, Shandong University of Technology, No.12 Zhangzhou Road, Zibo 255049, China
| | - Yuexing Zhang
- Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, Dezhou University, Dezhou 253023, China
| | - Meng Yuan
- College of Chemical and Chemical Engineering, Shandong University of Technology, No.12 Zhangzhou Road, Zibo 255049, China
| | - Han Liang
- College of Chemical and Chemical Engineering, Shandong University of Technology, No.12 Zhangzhou Road, Zibo 255049, China
| | - Nuo Zhang
- College of Chemical and Chemical Engineering, Shandong University of Technology, No.12 Zhangzhou Road, Zibo 255049, China
| | - Zhen Zhou
- College of Chemical and Chemical Engineering, Shandong University of Technology, No.12 Zhangzhou Road, Zibo 255049, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.12 Zhangzhou Road, Zibo 255049, China.
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.12 Zhangzhou Road, Zibo 255049, China
| | - Feng Tang
- College of Chemical and Chemical Engineering, Shandong University of Technology, No.12 Zhangzhou Road, Zibo 255049, China
| | - Tianyan You
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Daopeng Zhang
- College of Chemical and Chemical Engineering, Shandong University of Technology, No.12 Zhangzhou Road, Zibo 255049, China.
| |
Collapse
|
6
|
Wang X, Zang X, Hu C, Li J, Cui B, Fang Y. Cutting-Edge Exploration of a Molecularly Imprinted Polymer-Coupled Electrochemiluminescence Mechanism Based on Organic Cation Side-Chain Construction for the Identification and Detection of Escherichia coli O157: H7. ACS Sens 2025. [PMID: 40375657 DOI: 10.1021/acssensors.5c00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
In this paper, an organic semiconductor bacterial biosensor was developed for selective detection of facultative anaerobic Escherichia coli O157: H7, which combines electrochemiluminescence (ECL) and bacterial imprinted polymer technologies. Fe2+ and Mn2+ were used to prepare irregular nanocluster ECL emitters (Fe-Mn NCs) via Cu2O, which served as excellent catalysts in the cathodic coreactant (K2S2O8) reaction system, to enhance the ECL signal intensity. Through electropolymerization, the cationic side chains of functional monomers could bind to proteins (such as cytochrome proteins) on the cell membrane of E. coli O157: H7 under aerobic conditions, and transfer to the interior of E. coli O157: H7 and participate in the cyclic regeneration of nicotinamide adenine dinucleotide, which greatly amplifies the detected ECL signal and accelerates the consumption of oxygen by the respiratory chain. When oxygen was consumed, lactic acid was produced by bacteria during the low-oxygen process, in which E. coli O157: H7 can cause a change in the direction of electron flow, resulting in a reduction in the production of SO4•- and a significant decrease in the ECL signal. And when oxygen was readded to the system, the ECL signal recovers or becomes even stronger, where the mechanism of action of cationic semiconductors in this system had been well elucidated. This sensor has a good linear relationship in the range of 101-108 CFU/mL, with a detection limit of 2.29 CFU/mL (S/N = 3), which offers a new detection method for foodborne pathogens, as well as a rapid and accessible identification tool for different types of microorganisms.
Collapse
Affiliation(s)
- Xin Wang
- School of Food Science and Enginering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xufeng Zang
- Huzhou Key Laboratory of Materials for Energy Conversion and Storage, School of Science, Huzhou University, Zhejiang, Huzhou 313000, China
| | - Chunyi Hu
- School of Food Science and Enginering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Jiazhan Li
- School of Food Science and Enginering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Bo Cui
- School of Food Science and Enginering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Yishan Fang
- School of Food Science and Enginering, State Key Laboratory of Biobased Material and Green Papermaking, School of Materials Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| |
Collapse
|
7
|
Jin W, Chen R, Wu L, Peng C, Song Y, Miao L, Wang L. An "on-off" electrochemical immunosensor for the detection of the glycan antigen CA125 by amplification signals using electropositive COFs. Talanta 2025; 286:127593. [PMID: 39813914 DOI: 10.1016/j.talanta.2025.127593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/02/2025] [Accepted: 01/11/2025] [Indexed: 01/18/2025]
Abstract
Cancer Antigen 125 (CA125), is a high molecular weight mucinous glycoprotein found on the surface of ovarian cancer cells. Generally, 90 % of women may appear a high concentration of CA125 when they got the cancer; thus, CA125 can act as a marker for ovarian cancer diagnosis and therapeutic evaluation. COFs have been widely used for disease detection due to their structural stability, high loading capacity and biocompatibility. However, the limited variety of electroactive COFs used as signal probes, fewer enriched signaling molecules, weaker electrical signals generated, and higher oxidation or reduction potentials of electroactive substances, a series of side reactions are easily triggered causing serious interference. To solve the above problems, [Fe(CN)6]3/4- as a signal probe and COFs for signal amplification were selected to creating a highly sensitive electrochemical immunosensor for glycan antigen CA125. Firstly, two-dimensional (2D) EP-TD-COF with ultra-high specific surface area was modified on bare GCE, which could covalently bound numerous Ab1 molecules due to the epoxy-rich functional groups. Then, the electropositive AuNPs@2DCOFBTT-DGMH was prepared by the in situ growth of AuNPs, proved an effective platform for loading Ab2 molecules via Au-S bonds. Based on the positively charged AuNPs@COFBTT-DGMH/Ab2 and negatively charged [Fe(CN)6]3/4- of electrostatic interactions, which could significantly enchaned signal for quantitative and sensitive detection of CA125. The constructed immunosensor exhibits excellent stability performance and high sensitivity, enabling ultrasensitive detection of trace glycan antigens. This study provided a new idea for the use of non-electroactive substances for the construction of electrochemical immunosensors and provided an effective signal amplification strategy.
Collapse
Affiliation(s)
- Wenxiao Jin
- College of Chemistry and Materials, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Rongfang Chen
- College of Chemistry and Materials, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Likang Wu
- College of Chemistry and Materials, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Canwei Peng
- College of Chemistry and Materials, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Yonghai Song
- College of Chemistry and Materials, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China.
| | - Longfei Miao
- College of Chemistry and Materials, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China.
| | - Li Wang
- College of Chemistry and Materials, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| |
Collapse
|
8
|
Wang Z, Wang J, Ou J, Hu X, Wei M, Chen Z, Lin R, Yang J, Gao W. Ultrasensitive photoelectrochemical detection of cancer markers based on heterojunctions constructed from Bi 2O 3 star-like flower nanoclusters and CdS hollow nanorods. Talanta 2025; 286:127563. [PMID: 39805204 DOI: 10.1016/j.talanta.2025.127563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/05/2025] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
CYFRA21-1 is a tumor marker for lung cancer, and its rapid and accurate detection can provide evidence for the early diagnosis of lung cancer. In this work, Bi-Fe turnbull blue analogues (Bi-Fe-TBA) were synthesized by the self-templating method. Bi2O3-SFNs was prepared by simple oxidation in air using Bi-Fe-TBA as a template. Bi2O3 Star-like Flower Nanoclusters (Bi2O3-SFNs) and CdS Hollow Nanorods (CdS-HNRs) were used to form a unique type II heterojunction for the first time. The arrangement of energy levels between CdS-HNRs and Bi2O3-SFNs, along with their hollow structure and star shape, effectively suppressed the recombination of photogenerated electrons and holes while shortening carrier transport distance. An ultra-sensitive PEC biosensor was developed to detect the lung cancer marker CYFRA21-1, leveraging the superior photoelectric conversion capabilities of Bi2O3-SFNs/CdS-HNRs. The sensor demonstrates outstanding stability, specificity, reproducibility as well as a wide linear range (10-4 - 10 ng mL-1) and low detection limit (4.23 × 10-5 ng mL-1). This study is valuable for the preparation of other functional materials using TBA as a template.
Collapse
Affiliation(s)
- Zimeng Wang
- Department of Chemistry and Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong, 515063, P.R. China
| | - Jiawei Wang
- Department of Chemistry and Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong, 515063, P.R. China
| | - Jingchun Ou
- Department of Chemistry and Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong, 515063, P.R. China
| | - Xianbiao Hu
- Department of Chemistry and Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong, 515063, P.R. China
| | - Minglun Wei
- Department of Chemistry and Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong, 515063, P.R. China
| | - Zinan Chen
- Department of Chemistry and Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong, 515063, P.R. China
| | - Rongshan Lin
- Department of Chemistry and Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong, 515063, P.R. China
| | - Jianying Yang
- Guangdong Shantou Supervision Testing Institute of Quality & Measuring, Shantou, Guangdong, 515041, P.R. China.
| | - Wenhua Gao
- Department of Chemistry and Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong, 515063, P.R. China; Guangdong Engineering Technology Research Center of Offshore Environmental Pollution Control, Shantou, Guangdong, 515063, P.R. China; Analysis & Testing Center, Shantou University, Shantou, Guangdong, 515063, P.R. China.
| |
Collapse
|
9
|
Yang Y, Chen Z, Pan Y, Zhang Y, Le T. Interactions of metal-based nanozymes with aptamers, from the design of nanozyme to its application in aptasensor: Advances and perspectives. Talanta 2025; 286:127450. [PMID: 39724857 DOI: 10.1016/j.talanta.2024.127450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Nanozymes, characterized by enzyme-like activity, have been extensively used in quantitative analysis and rapid detection due to their small size, batch fabrication, and ease of modification. Researchers have combined aptamers, an emerging molecular probe, with nanozymes for biosensing to address the limited reaction specificity of nanozymes. Nanozyme aptasensors are currently experiencing significant growth, offering a promising solution to the lack of rapid detection methods across various fields. Unlike traditional nanozyme research, the development of nanozyme aptasensors is challenging as it requires the design of highly active nanozymes as well as the establishment of efficient and agile interactions between aptamers and nanozymes. Therefore, this review summarizes the active species and catalytic mechanisms of various nanozymes along with classical design options, discussing the future development of nanozyme aptasensors. It is anticipated that this review will inspire researchers in this domain, leading to the design of more enzymatically active nanozymes and advanced nanozyme aptasensors.
Collapse
Affiliation(s)
- Ying Yang
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, Chongqing Normal University, College of Life Sciences, Chongqing, 401331, China
| | - Zhuoer Chen
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, Chongqing Normal University, College of Life Sciences, Chongqing, 401331, China
| | - Yangwei Pan
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, Chongqing Normal University, College of Life Sciences, Chongqing, 401331, China
| | - Yongkang Zhang
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, Chongqing Normal University, College of Life Sciences, Chongqing, 401331, China
| | - Tao Le
- Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, Chongqing Normal University, College of Life Sciences, Chongqing, 401331, China.
| |
Collapse
|
10
|
Chen X, Li Y, Chen L, Tu J, Pan J, Zeng X, Fu Y, Sun D. Label-free electrochemiluminescence aptasensor for rapid and accurate detection of cardiac troponin I. Talanta 2025; 294:128160. [PMID: 40273715 DOI: 10.1016/j.talanta.2025.128160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/06/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025]
Abstract
Acute myocardial infarction (AMI) is the most common cause of death in individuals with cardiovascular disease. Cardiac troponin I (cTnI) is acknowledged as the most prominent biomarker for AMI. However, the key problem of practical applications is how to effectively improve the detection speed and sensitivity. In this study, we designed a novel electrochemiluminescence (ECL) aptasensor for the rapid and quantitative determination of cTnI. This sensor employs self-luminous europium-based metal-organic framework@CdS quantum dots (Eu-MOF@CdS QDs) as a signal probe. The Eu-MOF@CdS QDs can produce a robust cathodic ECL signal via a synergistic effect. Furthermore, a ferrocene-labeled aptamer was used as a quenching probe for quenching the ECL emission of the Eu-MOF@CdS QDs. In the presence of cTnI, the ECL intensity increased with increasing cTnI concentration after ferrocene-labeled aptamer specifically recognized cTnI and was detached from the electrode interface. Under optimal conditions, the aptasensor demonstrated precise analytical capabilities for cTnI ranging from 1.0 pg/mL to 1.0 ng/mL with a notably low detection limit of 0.08 pg/mL within 60 min. The results show that the developed ECL sensing device demonstrates the potential applications and perspectives for the detection of cTnI in serum samples as well as in the field of biomedical analyses.
Collapse
Affiliation(s)
- Xilin Chen
- Internal Medicine-Cardiovascular Department, Foshan Sanshui District People's Hospital, Foshan, 528100, Guangdong, China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Yanli Li
- Internal Medicine-Cardiovascular Department, Foshan Sanshui District People's Hospital, Foshan, 528100, Guangdong, China
| | - Ling Chen
- Internal Medicine-Cardiovascular Department, Foshan Sanshui District People's Hospital, Foshan, 528100, Guangdong, China
| | - Junrong Tu
- Internal Medicine-Cardiovascular Department, Foshan Sanshui District People's Hospital, Foshan, 528100, Guangdong, China
| | - Jianbin Pan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Xiaoru Zeng
- Internal Medicine-Cardiovascular Department, Foshan Sanshui District People's Hospital, Foshan, 528100, Guangdong, China.
| | - Yu Fu
- Department of Pharmacy, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China.
| | - Duanping Sun
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
11
|
Fang J, Dai L, Ren X, Wu D, Cao W, Wei Q, Ma H. Flower-like tailored carbon nitride oligomer as an excellent aggregation-induced electrochemiluminescence emitter for sensitive immunoassay of neuron-specific enolase via dual quenching by bimetallic phenolic networks. J Colloid Interface Sci 2025; 683:973-980. [PMID: 39756192 DOI: 10.1016/j.jcis.2024.12.238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/21/2024] [Accepted: 12/30/2024] [Indexed: 01/07/2025]
Abstract
The adjustment of the electrochemiluminescence (ECL) of polymeric carbon nitride (C3N4) is essential for its application in sensitive immunoassays. However, such modification through aggregation-induced emission (AIE) has not yet been reported. Herein, aggregation-induced ECL in C3N4 oligomer (CNO) was induced through the introduction of a rotatable imine moiety, with the resulting material exhibiting excellent performance in the targeted immunodetection of neuron-specific enolase. Phenyl-modified CNO was synthesized through one-step pyrolysis at a reduced temperature. The rotatable benzene ring and triazine group formed a dynamic structure, which exhibited strong aggregation in water-doped solvents. compared to unmodified graphitic C3N4, CNO demonstrated higher intrinsic ECL efficiency and more readily accessible ECL signals. AIE inducing polymerization was conducted via nanoprecipitation, and the resulting CNO micro-flowers were employed as a sensing platform. A CNO-based sensor was prepared by combining CNO micro-flowers with copper-based bimetallic phenolic network nanoparticles as a quencher. Sensitive signal quenching was achieved owing to the electron transfer of Cu2+ and antioxidation properties of polyphenolic structures. The prepared sandwich-type immunosensor for neuron-specific enolase showed a limit of detection of 0.12 pg/mL in the detection range of 0.001-100 ng/mL. This study presents an effective strategy for the ECL signal amplification of C3N4, which is conducive to fundamental research in ECL and the application of the proposed sensor in the early diagnosis of diseases.
Collapse
Affiliation(s)
- Jinglong Fang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Li Dai
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Wei Cao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China; Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hongmin Ma
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| |
Collapse
|
12
|
Li J, Hu S, Zheng L, Xu L, Wu Y, Deng B. Electrochemiluminescence immunosensor using a lanthanum-based metal-organic framework as signal probe and Cu 2MoS 4 as a co-reaction promoter for the sensitive detection of anti-Müllerian hormone. Talanta 2025; 285:127406. [PMID: 39693866 DOI: 10.1016/j.talanta.2024.127406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/05/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
In this study, we used meso-tetra (4-carboxyphenyl) porphyrin (TCPP) as an organic ligand to modify a lanthanide-based metal-organic framework as an electrochemiluminescence (ECL) platform to sensitively detect anti-Müllerian hormone (AMH). La-MOF amplified the ECL signal by suppressing the aggregation-caused quenching created by TCPP self-aggregation. Utilizing the reversible cycling of the mixed-valence transition metal ion (Cu+/Cu2+ and Mo4+/Mo6+) and the electrical conductivity of Cu2MoS4 and silver nanoparticle (AgNP), Cu2MoS4-AgNP as a dual co-reaction promoter constantly generated sulfate radical anions (SO4•-) and thus amplified the ECL signal. Based on this strategy, we built a sandwich-type ECL immunosensor for the sensitive detection of AMH with a linear range of 1 × 10-4 to 50 ng/mL and a limit of detection of 24 fg/mL. This study provides a novel approach for the sensitive and selective detection of AMH, demonstrating its high potential and practical value for the sensitive detection of AMH.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Shenglan Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Lingling Zheng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Lixin Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Yusheng Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Biyang Deng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|
13
|
Li S, Han Z, Wang Z, Feng Y, Lan Y, Zhao Y, Gao Y, Kang K, Du P, Lu X. Boron Ligands Boosting the Electrochemiluminescence Performance of Europium Metal-Organic Frameworks by Facilitating the Electronic Bridging. Anal Chem 2025; 97:6145-6154. [PMID: 40065674 DOI: 10.1021/acs.analchem.4c06857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
For optimal energy transfer in self-luminous lanthanide metal-organic frameworks (Ln-MOFs), the energy of the lowest triplet excited state must align with ideal energy levels. Failure to meet this condition can lead to reverse energy transfer, reducing luminous efficiency. In this study, we developed a mixed-ligand MOF, Eu-TCPP-BOP, which exists as an ECL self-enhancing luminophore. We used SPECM to study the role of boron ligands as a bridge for electron transport in improving the ECL performance of Eu-TCPP. The ligands H4TCPP and 5-BOP act as electron donor and shuttle, facilitating electron transport during the synthesis of Eu-TCPP-BOP and promoting energy transfer to the excited state of the acceptor Ln3+, thus enhancing overall energy transfer in Ln-MOF. The results indicate that the introduction of boron ligands enhances the ECL intensity of Eu-TCPP by a factor of 1.4 under voltage excitation. As an ECL sensing platform, it demonstrates high sensitivity and selectivity for the detection of catechol, with a concentration range of 1∼70 μM and a detection limit of 0.35 μM.
Collapse
Affiliation(s)
- Shuying Li
- Key Laboratory of Water Environment Protection in Plateau Intersection, Ministry of Education, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Zhengang Han
- Key Laboratory of Water Environment Protection in Plateau Intersection, Ministry of Education, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Zhilan Wang
- Key Laboratory of Water Environment Protection in Plateau Intersection, Ministry of Education, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Yanjun Feng
- Key Laboratory of Water Environment Protection in Plateau Intersection, Ministry of Education, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Yubao Lan
- Key Laboratory of Water Environment Protection in Plateau Intersection, Ministry of Education, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Yaqi Zhao
- Key Laboratory of Water Environment Protection in Plateau Intersection, Ministry of Education, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Yuling Gao
- Key Laboratory of Water Environment Protection in Plateau Intersection, Ministry of Education, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Kainan Kang
- Key Laboratory of Water Environment Protection in Plateau Intersection, Ministry of Education, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Peiyao Du
- Key Laboratory of Water Environment Protection in Plateau Intersection, Ministry of Education, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Xiaoquan Lu
- Key Laboratory of Water Environment Protection in Plateau Intersection, Ministry of Education, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| |
Collapse
|
14
|
Gong W, Wu X, Ren D, Feng X, Wang S, Zhang Y, Li Y, Tian M, Li Y, Liu Q. Porphyrin-Based Metal-Organic Frameworks for PD-L1 Detection via "Coordination Disaggregation-Induced Enhancement" Strategy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:6894-6902. [PMID: 40059345 DOI: 10.1021/acs.langmuir.4c05144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Porphyrins, known for their exceptional photoelectrochemical properties and high luminescence, are promising candidates for electrochemiluminescence (ECL) applications. However, their tendency to aggregate in aqueous solutions due to π-π stacking leads to luminescence quenching and reduced efficiency. To address this, we developed a "coordination disaggregation-induced enhancement" strategy, utilizing metal-organic frameworks (MOFs) as stable platforms for immobilizing porphyrin. These porphyrin-based MOFs not only increase the loading of luminescent groups and suppress the aggregation-caused quenching (ACQ) effect but also enhance electron transfer via uniform dispersion of pyrrole N in the porphyrin ligand, thereby improving ECL intensity. Additionally, they exhibit favorable biocompatibility and low toxicity, making them suitable for biomedical applications. By combining porphyrin-based MOFs as donors with PDA@MnO2 composites as quenchers, we constructed a quenching-type ECL immunosensor for detecting programmed death ligand 1 (PD-L1). This sensor achieves a detection range of 10 fg/mL to 100 ng/mL, with a limit of detection as low as 2.48 fg/mL, which demonstrates great potential for highly sensitive biomarker detection and promising applications in early cancer diagnosis and other medical diagnostics.
Collapse
Affiliation(s)
- Weiming Gong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Xiaoran Wu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Dan Ren
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Xinyi Feng
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Shujun Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Yue Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Yueyuan Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Maojin Tian
- Department of Critical Care Medicine, Zibo Central Hospital Affiliated to Binzhou Medical University, Zibo, Shandong 255036, China
| | - Yueyun Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| | - Qing Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, People's Republic of China
| |
Collapse
|
15
|
Melo LLS, Castro GP, Navarro M, Gonçalves SMC, Simas AM. Unmasking the UV Photobleaching of β-Diketonate [Eu(BTFA) 4] - Complexes as an Energy-Driven Photoreduction Process. Inorg Chem 2025; 64:3842-3856. [PMID: 39962985 PMCID: PMC11881040 DOI: 10.1021/acs.inorgchem.4c05014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 03/04/2025]
Abstract
We elucidate the nature of the gradual attenuation of luminescence under sustained ultraviolet (UV) radiation exposure in europium [Eu(BTFA)4]- complexes, revealing that it originates from a nonlinear energy-driven process, wherein Eu(III) is irreversibly reduced to Eu(II). This photoreduction was confirmed via the electrochemical techniques cyclic voltammetry and chronoamperometry, which, coupled with luminescence experiments, provided direct evidence of the Eu3+/Eu2+ reduction and the disappearance of Eu(III) after UV exposure. Indeed, extended UV exposure induces a gradual decrease in Eu(III) luminescence, paired with an increased intensity of Eu(II) luminescence, upon direct excitation of the metal ion. To provide an adequate description of this process, we advanced a photochemical law in the energy domain (rather than the time domain) and introduced the concept of photobleaching energy to facilitate comparisons of photostability among various complexes in different solvents. The nonlinearities detected in the energy domain suggest an underlying multiphoton process. As a consequence, we uncovered a trade-off between photostability and luminescence: enhancing one implies diminishing the other. Specifically, the proximity between the complex and cation in nonpolar solvents induces asymmetry in the complex, enhancing luminescence but reducing photostability. Conversely, distancing the cation leaves the complex within a more symmetrical solvent enclosure, decreasing luminescence and increasing photostability. Our findings also indicate that exposing Eu(III) complexes to UV light can function as a method for the photochemical synthesis of Eu(II) complexes, a process further substantiated by our electrochemical experiments.
Collapse
Affiliation(s)
- Lizandra
L. L. S. Melo
- Departamento de Química
Fundamental, CCEN, Universidade Federal
de Pernambuco, Recife, Pernambuco 50670-901, Brazil
| | - Gerson P. Castro
- Departamento de Química
Fundamental, CCEN, Universidade Federal
de Pernambuco, Recife, Pernambuco 50670-901, Brazil
| | - Marcelo Navarro
- Departamento de Química
Fundamental, CCEN, Universidade Federal
de Pernambuco, Recife, Pernambuco 50670-901, Brazil
| | - Simone M. C. Gonçalves
- Departamento de Química
Fundamental, CCEN, Universidade Federal
de Pernambuco, Recife, Pernambuco 50670-901, Brazil
| | - Alfredo M. Simas
- Departamento de Química
Fundamental, CCEN, Universidade Federal
de Pernambuco, Recife, Pernambuco 50670-901, Brazil
| |
Collapse
|
16
|
Xie Y, Wang X, Yan Z, Zhang F, Xia J, Wang Z. A mixed-organic ligands Ru(bpy) 32+@Zn mMOFs-NH 2 nanoreactors integrated co-reaction accelerator and morphologic regulator for the electrochemiluminescence detection of ATP. Talanta 2025; 284:127196. [PMID: 39549642 DOI: 10.1016/j.talanta.2024.127196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
The functionalized architecture within the nanoreactor could dramatically change the electron transport and reaction efficiency of ECL during electrochemical processes. Here, we've devised a novel mixed-ligand strategy that combines co-reaction accelerator and morphologic regulator onto the same metal node. This innovative approach effectively addressed the critical issue that some co-reactants cannot be covalently linked due to their special states, while enhancing the stability and electroactivity of MOFs nanoreactors. Ru(bpy)32+ was in-situ encapsulated within Zn mMOFs-NH2 nanocages in which the 2-aminoterephthalic acid (NH2-BDC) ligand functioned as an effective co-reaction accelerator. While S2O82- underwent electron exchange on the surface of GCE to form SO4•-, Zn mMOFs-NH2 was electrochemically oxidized to Zn mMOFs-NH•, which could significantly catalyze S2O82- to form SO4•-. This greatly increased the local concentration of SO4•- in the vicinity of Ru(bpy)32+, thus achieving self-enhancing ECL. At the same time, 1,4-benzenedicarboxylic acid (BDC) ligands were used as morphologic regulator, yielding ultra-thin MOFs nanosheets that significantly boosted the loading capacity for Ru(bpy)32+ and enhanced electrical conductivity. The luminous efficiency of Ru(bpy)32+ is further enhanced by this synergy. A highly sensitive ECL biosensor was crafted for the detection of ATP. Optimal conditions allowed a robust linear correlation between the ECL intensity and the logarithm of ATP concentration, enabling a sensitive detection limit down to 1.18 nM. Our findings underscore the exceptional self-enhanced ECL properties of the devised Ru(bpy)32+@Zn mMOFs-NH2 nanoreactors, presenting a novel and promising platform for biomolecular analysis.
Collapse
Affiliation(s)
- Yuehan Xie
- College of Chemistry and Chemical Engineering, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Xuemei Wang
- College of Chemistry and Chemical Engineering, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Zhiyong Yan
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing, 100089, China
| | - Feifei Zhang
- College of Chemistry and Chemical Engineering, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Jianfei Xia
- College of Chemistry and Chemical Engineering, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center of Qingdao University, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
17
|
Wang Y, Gao L, Cao Y, Yan D, Lukman R, Zhang J, Li Q, Liu J, Du F, Zhang L. Research progress on the synthesis, performance regulation, and applications of Prussian blue nanozymes. Int J Biol Macromol 2025; 295:139535. [PMID: 39761892 DOI: 10.1016/j.ijbiomac.2025.139535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/14/2025]
Abstract
Nanocatalytic medicine offers a novel solution to address the issues of low efficacy, potential side effects, and the development of drug resistance associated with traditional therapies. Therefore, developing highly efficient and durable nanozymes is of great significance for treating diseases related to oxidative stress. In recent years, prussian blue nanoparticles (PBNPs) have been demonstrated to possess multiple enzyme-like catalytic activities and are thus referred to as prussian blue nanozymes (PBNZs). Their excellent biocompatibility and biodegradability make PBNZs promising candidates as biomedical materials. Due to their remarkable catalytic activities, PBNZs have shown great potential in various biomedical applications, such as heavy metal detoxification, antioxidative damage, and anticancer therapies. This paper systematically summarizes the Synthetic strategies of PBNZs, analyzes the regulatory factors of their catalytic performance, and highlights the corresponding modulation methods. Furthermore, the biomedical applications of PBNZs are also reviewed. This study aims to provide researchers with insights and inspirations for the design and preparation of high-performance PBNZs.
Collapse
Affiliation(s)
- Yiyang Wang
- Jiangsu Key Laboratory of Laboratory Medicine, School of medicine, Jiangsu University, Zhenjiang 212013, PR China
| | - Lei Gao
- Jiangsu Key Laboratory of Laboratory Medicine, School of medicine, Jiangsu University, Zhenjiang 212013, PR China
| | - Yue Cao
- Jiangsu Key Laboratory of Laboratory Medicine, School of medicine, Jiangsu University, Zhenjiang 212013, PR China
| | - Duanfeng Yan
- Jiangsu Key Laboratory of Laboratory Medicine, School of medicine, Jiangsu University, Zhenjiang 212013, PR China
| | - Rilwanu Lukman
- Jiangsu Key Laboratory of Laboratory Medicine, School of medicine, Jiangsu University, Zhenjiang 212013, PR China
| | - Jingxi Zhang
- Jiangsu Key Laboratory of Laboratory Medicine, School of medicine, Jiangsu University, Zhenjiang 212013, PR China
| | - Quan Li
- Jiangsu Key Laboratory of Laboratory Medicine, School of medicine, Jiangsu University, Zhenjiang 212013, PR China
| | - Jiaying Liu
- Jiangsu Key Laboratory of Laboratory Medicine, School of medicine, Jiangsu University, Zhenjiang 212013, PR China
| | - Fengyi Du
- Jiangsu Key Laboratory of Laboratory Medicine, School of medicine, Jiangsu University, Zhenjiang 212013, PR China; Department of Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, PR China
| | - Li Zhang
- Department of Critical Care Medicine Unit, Shanghai Baoshan District Wusong Central Hospital (Zhongshan Hospital Wusong Branch, Fudan University), Shanghai 201900, PR China.
| |
Collapse
|
18
|
Xu H, Luo R, Lv H, Liu T, Liao Q, Wang Y, Zhong Z, Wu X, Lei J, Xi K. Deciphering a volcano-shaped relationship between radical stability and reticular electrochemiluminescence. Nat Commun 2025; 16:1924. [PMID: 39994227 PMCID: PMC11850594 DOI: 10.1038/s41467-025-56009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/07/2025] [Indexed: 02/26/2025] Open
Abstract
Electrochemiluminescence (ECL) is a light-emitting process in which the stability of electrochemically generated radicals has a crucial impact on the efficiency and durability of excited state generation. Therefore, deciphering a relationship between radical stability and ECL performance is highly appealing. In this work, three sp2 carbon-conjugated covalent organic framework (COF) reticular nanoemitters compositing of same pyrene luminophores but different acrylonitrile linkers are designed with progressive electron affinities, named as CN-COF-1, 2, and 3. By precisely modulating the electron affinity of CN-COFs, a volcano relationship between ECL and radical stability is discovered with 78 folds enhancement in ECL intensity. Density functional theoretical calculations indicate that CN-COF-2 exhibits moderate radical stabilization capacity as well as efficient electron transport between the pyrene cores, facilitating ECL generation. Significantly, the appropriate radical stability of CN-COF-2 not only achieves the self-enhanced cathodic ECL but also promotes durability of the ECL intensity. The rational regulation of radical stability paves the way for developing efficient reticular nanoemitters and decoding the ECL fundamentals.
Collapse
Affiliation(s)
- Haocheng Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- MOE Key Laboratory of High Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Rengan Luo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Haifeng Lv
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Material Sciences, CAS Key Laboratory of Materials for Energy Conversion, and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Hefei National Laboratory, University of Science and Technology of China, Hefei, 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui, 230088, China
| | - Tianrui Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Qiaobo Liao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- MOE Key Laboratory of High Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yandong Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- MOE Key Laboratory of High Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Ziyan Zhong
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- MOE Key Laboratory of High Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xiaojun Wu
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Material Sciences, CAS Key Laboratory of Materials for Energy Conversion, and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Hefei National Laboratory, University of Science and Technology of China, Hefei, 230026, China.
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui, 230088, China.
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Kai Xi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
- MOE Key Laboratory of High Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
19
|
Yao L, Zhi J, Wang W, Li Q, Jiang D, Chen X, Chen Z. A mini-review on the research progress and application of nanomaterials in electrochemiluminescent sensors in the detection of water environmental pollutants. Mikrochim Acta 2025; 192:130. [PMID: 39904773 DOI: 10.1007/s00604-025-06973-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/10/2025] [Indexed: 02/06/2025]
Abstract
With the increasingly serious problem of environmental pollution, the development of new and efficient detection technology has become an urgent need. Electrochemiluminescence (ECL) sensors have attracted wide attention in environmental pollution detection due to their advantages of low cost, fast analysis speed, high sensitivity, and good selectivity. At the same time, with the rapid development of nanotechnology, nanomaterials are widely used to construct ECL sensors. Based on the different roles of nanomaterials in the construction of ECL sensors, they can be summarized as (1) nanomaterials for signal amplification; (2) ECL nanoemitters; (3) Nanomaterials as receptors for ECL resonance energy transfer. In this paper, the construction and luminescence mechanism of ECL sensors are discussed from the above three aspects. Finally, the challenges and prospects of nanomaterials ECL sensors in the field of environmental pollution detection in the future are discussed.
Collapse
Affiliation(s)
- Longmei Yao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
- Electrolytic Copper Foil Engineering Technology Center of Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Jiajia Zhi
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
- Electrolytic Copper Foil Engineering Technology Center of Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Wenchang Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
- Analysis and Testing Center, NERC Biomass of Changzhou University, Changzhou, 213032, Jiangsu, China.
- Electrolytic Copper Foil Engineering Technology Center of Changzhou University, Changzhou, 213164, Jiangsu, China.
| | - Qingyi Li
- Changzhou High-Tech Industry Development Zone Sanwei Industrial Technology Research Instit Co., Ltd, Changzhou, 213164, China
| | - Ding Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Xiaohui Chen
- School of Chemistry and Material Engineering, Changzhou Institute of Technology, Changzhou, 213032, China
| | - Zhidong Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
- Electrolytic Copper Foil Engineering Technology Center of Changzhou University, Changzhou, 213164, Jiangsu, China.
| |
Collapse
|
20
|
Wang M, Sun HN, Liu XY, Liu M, Li SS. A sensitive electrochemical biosensor based on Pd@PdPtCo mesoporous nanopolyhedras as signal amplifiers for assay of cardiac troponin I. Bioelectrochemistry 2025; 161:108838. [PMID: 39442495 DOI: 10.1016/j.bioelechem.2024.108838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/25/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Cardiac troponin I (cTnI) has been widely used in clinical diagnosis of acute myocardial infarction (AMI). Herein, a sensitive electrochemical biosensor for cTnI analysis was designed, in which the simple synthesized Pd@PdPtCo mesoporous nanopolyhedras (MNPs) were utilized as signal amplifiers. The mesoporous polyhedral structure of Pd@PdPtCo MNPs endows them with more specific surface area and more active sites, as well as the synergistic effect between multiple metal elements, all of which increase the electrocatalytic performance of Pd@PdPtCo MNPs in efficiently oxidizing hydroquinone (HQ) to benzoquinone (BQ). Experimental results showed that Pd@PdPtCo MNPs had better performance in oxidation of HQ to BQ compared with their corresponding monometallic and bimetallic nanomaterials. With the aid of the interaction between antigens and antibodies, the peak current of HQ to BQ showed an upward trend with increasing concentration of cTnI, thus the quantitative detection of cTnI could be achieved. Under optimal conditions, the biosensor prepared in this work has a wider linear range (1.0 × 10-4-200 ng mL-1) and a lower detection limit (0.031 pg mL-1) than other sensors reported in literatures, coupled by good stability and high sensitivity. More importantly, it also performed well in complex serum environment, proving that the electrochemical sensor has a practical application potential in this field.
Collapse
Affiliation(s)
- Miao Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - He-Nan Sun
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Xing-Yu Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Mingjun Liu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao 266003, China
| | - Shan-Shan Li
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| |
Collapse
|
21
|
Wang Y, Tang S, Liu M, Wang W, Liang A, Luo A. Low-potential bionic electrochemiluminescence sensing platform based on SnS 2/CuNWs synergistic promotion for highly selective detection of glycocholic acid. Anal Chim Acta 2025; 1336:343537. [PMID: 39788644 DOI: 10.1016/j.aca.2024.343537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Glycholic acid (GCA) can dynamically reflect the process of liver injury, and can be used for early diagnosis and curative effect evaluation of early hepatitis and cirrhosis. The highly sensitive detection of liver injury markers is conducive to a more accurate and effective auxiliary diagnosis of liver diseases. In addition, the low trigger potential helps to avoid more chemical interference and improve the detection sensitivity. It is of great significance to develop a high sensitive and low potential ECL sensor for GCA detection. RESULTS In this work, a low trigger potential molecularly imprinted electrochemiluminescence sensor (MIECLS) combining SnS2 and CuNWs was proposed for highly selective and sensitive detection of GCA, a marker of liver injury. The stabilization and enhancement of ECL signal can be attributed to the synergistic promotion strategy of SnS2 and CuNWs. CuNWs not only has good ECL performance, but also serves as a substrate material for loading SnS2 to enhance the film forming performance. In addition, the Sn4+ active site can be regenerated by redox reaction, significantly improving the efficiency of the co-reactant and the stability of the sensor. By studying the ECL luminescence mechanism and specific recognition quenching mechanism of MIECLS in detail, a selective detection method for GCA was established. Under optimal conditions, in the range of 5 × 10-10 to 5 × 10-6 mol L-1, the quenching value of ECL intensity is proportional to LgCGCA, and the limit of detection is 1.30 × 10-10 mol L-1. SIGNIFICANCE AND NOVELTY In addition, satisfactory recovery rate was obtained in human serum samples, showing good practical application, providing a new way for clinical detection of GCA. At the same time, it not only broadens the development of CuNWs in the ECL field, but also provides a new way to reduce the triggering potential.
Collapse
Affiliation(s)
- Yuwei Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Shanshan Tang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Miao Liu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Wei Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Axin Liang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| | - Aiqin Luo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
22
|
Thakur R, Saini AK, Taliyan R, Chaturvedi N. Neurodegenerative diseases early detection and monitoring system for point-of-care applications. Microchem J 2025; 208:112280. [DOI: 10.1016/j.microc.2024.112280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
23
|
Rohilla R, Kaur A, Rani S, Prabhakar N. Ultrasensitive detection of holoTC for analysis of Vitamin B12 levels using Ag 2MoO 4 deposited PEDOT sensing platform. Biosens Bioelectron 2025; 267:116783. [PMID: 39316865 DOI: 10.1016/j.bios.2024.116783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024]
Abstract
Vitamin B12 is an essential micronutrient required for the proper functioning of the human body. Vitamin B12 deficiency is primarily causative of various neurolological disorders alongwith recurrence of oral ulcers and burning sensations which are early signs of condition such as pernicious anemia. Other complications associated with Vitamin B12 deficiency include risk of heart failure due to anemia, risk of developing autoimmune disorders and gastric cancer. Therefore, to obstruct these communal health issues, early detection of Vit B12 is highly needed. However, screening of vitamin B12 insufficiency is hindered by the low sensitivity of the conventional vitamin B12 test. Holotranscobalamin (holoTC) is an early indicator of the negative vitamin B12 balance as it is the first protein to decline in the serum. We report a novel impedimetric immunosensor based on flower-like poly (3,4-ethylenedioxythiophene) (PEDOT) nanostructural film impregnated with silver molybdate nanoparticles (Ag2MoO₄ NPs) deposited on fluorine-doped tin oxide electrode. The prepared electrodes were characterized by Field emission scanning electron microscopy (FE-SEM) with energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and electrochemical studies. The activated anti-holoTC antibody was immobilized and optimized to capture the target in a response time of 15 min. The electrochemical performance of the sensor was carried out by using the electrochemical impedance spectroscopy technique (EIS) and a good linear relationship between ΔRct and holoTC was obtained in the range from 0.1 pg mL-1 to 100 ng mL-1 with a detection limit of 0.093 pg mL-1. The proposed sensor was successfully applied in human serum samples for holoTC detection. The experimental results showed that the immunosensor is highly selective towards holoTC and presented an acceptable stability of 20 days with reproducibility RSD ≤4%. To the best of our knowledge, this is the first developed electrochemical immunosensor for holoTC detection.
Collapse
Affiliation(s)
- Rishika Rohilla
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Amandeep Kaur
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India; Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Sonia Rani
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Nirmal Prabhakar
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
24
|
Du Y, Feng R, Wu T, Jia H, Cai B, Ju H, Wei Q. Aggregation-Induced Electrochemiluminescence of Silica-Confined Tetraphenylethylene with Pd Nanocube-Loaded Co 3O 4 Nanosheets as a Coreaction Accelerator for Sensitive Bioanalysis. Anal Chem 2024; 96:20594-20601. [PMID: 39688358 DOI: 10.1021/acs.analchem.4c05219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Aggregation-induced electrochemiluminescence (AIECL) provides a new approach for the development of novel electrochemiluminescence (ECL) strategies. Herein, a biosensor was constructed by incorporating 1,1,2,2-tetra(4-carboxylphenyl)ethylene (H4TCPE) into a mesoporous silica nanosphere (MSN) to obtain a highly organized AIECL luminophore of (MSN-H4TCPE) for signal antibody (Ab2) labeling and using Pd nanocube (NC)-loaded Co3O4 nanosheets (NSs) (PdNCs/Co3O4NSs) as a novel coreaction accelerator. The confinement of H4TCPE molecules in the MSN restricted the intramolecular rotation and thus enhanced the radiation transition of H4TCPE. In addition, the PdNCs/Co3O4NSs exhibited efficient mutual conversion of the Co2+/Co3+ redox couple with the perfect catalytic performance of PdNCs and facilitated the decomposition of the coreactant, leading to a substantial enhancement in ECL signal. Subsequently, the localization and fixation strategy with HWRGWVC (HWR) heptapeptides as a specific antibody immobilization agent was introduced, which further maintained the biological activity of the antibody on the PdNCs/Co3O4NSs and MSN-H4TCPE surface and significantly improved the incubation performance. Benefiting from the perfect sensing strategy, the obtained ECL immunosensor revealed an admirable manifestation for the precise detection of neuron-specific enolase (NSE) with a broad concentration range of 1 fg/mL to 5 ng/mL and a detection limit of 0.33 fg/mL.
Collapse
Affiliation(s)
- Yu Du
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, Shandong, China
| | - Rui Feng
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, Shandong, China
| | - Tingting Wu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Hongying Jia
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Bin Cai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Huangxian Ju
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
25
|
Hang T, Zhang C, Pei F, Yang M, Wang F, Xia M, Hao Q, Lei W. Magnetism-Functionalized Lanthanide MOF-on-MOF with Plasmonic Differential Signal Amplification for Ultrasensitive Fluorescence Immunoassays. ACS Sens 2024; 9:6779-6788. [PMID: 39556460 DOI: 10.1021/acssensors.4c02505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
The successful application of fluorescence immunoassays for clinical diagnosis requires stable photoluminescent materials and highly efficient signal amplification strategies. In this work, the magnetism-functionalized lanthanide MOF-on-MOF (Fe3O4@SiO2@MOF-on-MOF) was synthesized through intermolecular (van der Waals) interaction-assisted growth and further homogeneous epitaxial growth, which significantly improved the fluorescence performances and uncovered the underlying mechanism. The quantum chemical theory calculation and experimental studies revealed that the introduced magnetic Fe3O4@SiO2 not only endowed magnetic separation capability but also promoted fluorescence performances, which increased the energy transfer of the intersystem crossing process and suppressed the luminescence of ligands and aggregation-induced quenching. Furthermore, the plasmonic Ag/Au nanocages were developed as highly efficient fluorescence quenchers to improve the sensitivity of the fluorescence immunoassay. On the basis of the proposed differential signal amplification (DSA) strategy, the immunoassay displayed superior detection ability, with a limit of detection of 0.13 pg·mL-1 for severe acute respiratory syndrome coronavirus 2 nucleocapsid protein. The designed magnetic lanthanide MOF-on-MOF and proposed DSA strategy give new insights into ultrasensitive fluorescence immunoassays.
Collapse
Affiliation(s)
- Tianxiang Hang
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Ciyang Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Fubin Pei
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Ming Yang
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Fengyun Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Mingzhu Xia
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Qingli Hao
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Wu Lei
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| |
Collapse
|
26
|
Fang J, Dai L, Ren X, Wu D, Cao W, Wei Q, Ma H. Protein-driven interaction enhanced electrochemiluminescence biosensor of hydrogen-bonded biohybrid organic frameworks for sensitive immunoassay of disease markers. Biosens Bioelectron 2024; 266:116726. [PMID: 39226752 DOI: 10.1016/j.bios.2024.116726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/31/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024]
Abstract
The oriented design of reticular materials as emitters can significantly enhance the sensitivity of electrochemiluminescence (ECL) sensing analysis for disease markers. However, due to the structural fragility of hydrogen bonds, relational research on hydrogen-bonded organic frameworks (HOFs) has not been thoroughly conducted. Additionally, the modulation of luminescence behavior through HOFs has been rarely reported. In view of this, hydrogen-bonded biohybrid organic frameworks (HBOFs) were synthesized and recruited for ECL immunoassay applications. HBOFs was easily prepared using 6,6',6″,6‴-(pyrene-1,3,6,8-tetrayl)tetrakis(2-naphthoic acid) as linkers via bovine serum albumin (BSA) activated hydrogen-bonded cross-linking. The material exhibited good fluorescence emission characteristics. And the highly ordered topological structure and molecular motion limitation mediated by BSA overcome aggregation-caused quenching and generate strong aggregation induced emission, expressing hydrogen-bond interaction enhanced ECL (HIE-ECL) activity with the participation of tri-n-propylamine. Furthermore, a sandwich immunosensor was constructed employing cobalt-based metal-phenolic network (CMPN) coated ferrocene nanoparticles (FNPs) as quenchers (CMPN@FNPs). Signal closure can be achieved by annihilating the excited state through electron transfer from both CMPN and FNPs. Using a universal disease marker, carcinoembryonic antigen, as the analysis model, the signal-off sensor obtained a detection limit of 0.47 pg/mL within the detection range of 1 pg/mL - 50 ng/mL. The synthesis and application of highly stable HBOFs triggered by proteins provide a reference for the development of new reticular ECL signal labels, and electron transfer model provides flexible solutions for more sensitive sensing analysis.
Collapse
Affiliation(s)
- Jinglong Fang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Li Dai
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Wei Cao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China; Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hongmin Ma
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| |
Collapse
|
27
|
Li T, Ding J, Wang Y, Su B. Regulating the work function and surface hydrophobicity of an indium tin oxide electrode for enhanced electrochemiluminescence analysis. Chem Commun (Camb) 2024; 60:15007-15010. [PMID: 39600298 DOI: 10.1039/d4cc05532b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The electrochemical properties of the indium tin oxide (ITO) electrode were improved significantly by surface modification with ethephon and an ultrathin polydimethylsiloxane (PDMS) layer to regulate the work function and surface hydrophobicity of ITO. Based on this strategy, the electrochemiluminescence (ECL) intensity of tris(2,2'-bipyridyl)ruthenium (Ru(bpy)32+) and tri-n-propylamine (TPrA) in solution and on a microbead surface can be enhanced by 110 and 2 times, respectively. When using the modified electrode to detect nicotinamide adenine dinucleotide (NADH), the linear range (5-1000 μM) was increased dramatically in comparison with a bare ITO electrode, with a limit of detection of 1.65 μM. The modified electrode with improved electrochemical properties holds great potential for applications in ECL bioassays and imaging analysis.
Collapse
Affiliation(s)
- Tengyu Li
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | - Jialian Ding
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
| | - Yafeng Wang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Bin Su
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China.
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| |
Collapse
|
28
|
Wang J, Hong R, Yang Z, Meng X, Wu R, Liu Z, Li C. Ultrasensitive Electrochemiluminescence Biosensor with ZIF-67@MXene as an Efficient Co-Reaction Accelerator and Plasmonic Nanozyme as a Smart Signal Amplification Probe. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404330. [PMID: 39291922 DOI: 10.1002/smll.202404330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Exploring novel electrochemiluminescence (ECL) co-reaction accelerators to construct ultrasensitive sensing systems is a prominent focus for developing advanced ECL sensors. However, challenges still remain in finding highly efficient accelerators and understanding their promoting mechanisms. In this paper, ZIF-67@MXene nanosheet composites, with highly conductive in-plane structure and confined-stable pore/channel, are designed to act as high-efficient co-reaction accelerators and achieve a significant enhancement in the luminol-H2O2 based ECL system. Mechanism investigation suggests that hydroxyl radicals (·OH) and singlet oxygen (1O2) can be selectively and preferentially generated on ZIF-67@MXene due to the stable and efficient absorption of ·OH and 1O2, leading to a remarkable enhancement in the ECL efficiency of luminol (830%). Finally, by designing a plasmonic NH2-MIL-88@Pd nanozyme, an "on-off" switch immunosensor is constructed for the detection of prostate-specific antigen (PSA). Based on the multiple signal amplification effect, the linear detection range for PSA is expanded by three orders of magnitude. The detection limit is also improved from 1.44 × 10-11 to 9.1 × 10-13 g mL-1. This work proposes an effective method for the preparation of highly efficient co-reaction accelerators and provides a new strategy for the sensitive detection of cancer markers.
Collapse
Affiliation(s)
- Jing Wang
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, P. R. China
| | - Ran Hong
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, P. R. China
- National Local Joint Engineering Laboratory to Functional Adsorption Material Technology for the Environmental Protection, Suzhou, 215123, P. R. China
| | - Zhen Yang
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, P. R. China
| | - Xingxing Meng
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, P. R. China
| | - Rui Wu
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, P. R. China
| | - Zhiguo Liu
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, P. R. China
| | - Chuanping Li
- Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, P. R. China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
29
|
Liu J, Geng L, Wang H, Huang J, Zhou S, Yan L, Tian L, Mou Y, Zhang P, Zhao J, Cai Z, Zhao M, Sun X, Vernick S, Guo Y, Darwish IA. Electroluminescence aptasensor based on tetrahedral DNA nanostructure with exonuclease-assisted target cycling for detection of acetamiprid. Food Res Int 2024; 198:115388. [PMID: 39643350 DOI: 10.1016/j.foodres.2024.115388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/23/2024] [Accepted: 11/14/2024] [Indexed: 12/09/2024]
Abstract
In this study, an electroluminescent (ECL) aptasensor that could efficiently and sensitively detect acetamiprid (ACE) in vegetables was constructed based on an exonuclease-assisted target cycling amplification strategy. Bimetallic RuZn-based metal-organic framework (RuZn-MOF), nucleic acid exonuclease VII (Exo VII) and tetrahedral DNA nanostructure (TDN) were used as constituent materials. First, RuZn-MOF was a substrate material with good luminescence performance and was synthesized by a hydrothermal method. Second, TDN was autonomously assembled by an adapted single-step annealing way. In this experiment, an aptamer labeled with ferrocene (Fc) at one end was firstly bound to the tip of TDN. In the presence of the target pesticide of ACE, the stronger affinity of ACE for the aptamer made the aptamer and ACE bind preferentially. At the same time, Exo VII was activated to cleave the single-stranded aptamer, resulting in ACE release and Fc detachment. As a result, Fc moved away from the electrode surface, allowing the ECL signal intensity to be restored. The limit of detection (LOD) (33.33 fg/mL) of this method was lower than those of many reported aptasensors. This strategy provides an uncomplicated and responsive technique for the detection of ACE and offers further development possibilities for detection and analysis of other biomolecules.
Collapse
Affiliation(s)
- Jingjing Liu
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Lingjun Geng
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Haifang Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Jingcheng Huang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Shuxian Zhou
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Luting Yan
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Lei Tian
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Yaoting Mou
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Pengwei Zhang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Junhao Zhao
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Ziping Cai
- Institute of Chinese Herbal Medicine, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu 730070, China
| | - Mingxin Zhao
- Institute of Fruit and Floriculture of Gansu Academy of Agricultural Sciences, Lanzhou, Gansu 730070, China
| | - Xia Sun
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Sefi Vernick
- Department of Sensing, Information and Mechanization Engineering, Institute of Agricultural Engineering, Volcani Institute (ARO), Rishon LeZion 5025001, Israel
| | - Yemin Guo
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China.
| | - Ibrahim A Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
30
|
Xia X, Duolihong B, Ma X, Liu R, Yue S. AuPt/NF prepared with the lattice induction of substrate was applied to construct the electrochemical immunosensor for PCT detection. Bioelectrochemistry 2024; 160:108758. [PMID: 38878459 DOI: 10.1016/j.bioelechem.2024.108758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 09/15/2024]
Abstract
For the electrodeposition, the conductivity and lattice structure of substrate is important to the morphology and lattice of the deposited material. In this study, gold-platinum (AuPt) nanopartical was deposited on nickel foam (NF) based on the lattice induced orientation of the Ni substrate, and the obtained AuPt/NF was applied to construct electrochemical impedimetric immunosensor for procalcitonin (PCT) detection. As a new immunosensor matrix, NF with higher electrical conductance, flexibility and specific surface area, which can improve the plasticity, sensitivity and universality of the immunoelectrode. Due to the lattice matching between Au and Ni, ultrathin AuPt nanolayer with good biocompatibility and large surface area can be modified on the NF surface, which can bind more biomolecules and amplifies the change of impedance signal. Based on the synergistic effect between AuPt and NF, PCT detection based on this electrochemical impedimetric immunosensor with a wide linear range (0.2 pg mL-1 to 20 ng mL-1) and low detection limit (0.11 pg mL-1). In addition, this impedimetric immunosensor exhibits high recovery in the PCT detection of serum samples. This work provides a new thought and method for the construction of electrochemical immunosensor.
Collapse
Affiliation(s)
- Xiaohong Xia
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China.
| | - Bawurejiang Duolihong
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, China
| | - Xiangdong Ma
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China
| | - Rui Liu
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China
| | - Shan Yue
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China
| |
Collapse
|
31
|
Hu J, Zheng Y, Yin C, Wang L, Huang H, Li Y. A novel and facile oxygen-activated time-temperature indicator with wide temperature monitoring range and good stability based on the laccase-like nanozyme. Anal Chim Acta 2024; 1330:343272. [PMID: 39489956 DOI: 10.1016/j.aca.2024.343272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Time-Temperature Indicator (TTI) is an indicator device for real-time monitoring of the thermal history of the product. Due to the enzymatic reactions are affected by both time and temperature, enzymatic TTIs have been extensively studied and developed in recent years. However, enzymatic TTIs contain biologically active molecules (enzymes), which require high storage and use conditions. Most of them are designed to mix the system species together and irreversible reaction is undertaken. Nanozymes are the synthetic nanomaterials with similar biocatalytic functions as natural enzymes, which have extensive applications in analytical chemistry, biosensing, and environmental protection due to their facile synthesis, low cost, high stability and durability. RESULTS This work proposed to replace the natural laccase to laccase-like nanozyme, designed a novel and facile O2-activated time-temperature indicator for the first time. Nanozyme had excellent thermal and storage stability, which could maintain fabulous catalytic activity in the wide temperature range of 10-80 °C and after a long-term storage. Based on the O2 was required to participate in the oxidation of laccase-catalyzed substrates, a squeeze-type O2-activated TTI was designed by controlling O2 in the TTI system. The TTI was activated through extruding the O2-coated airbag ruptured and producing an irreversible color reaction. Combined with a smartphone to extract the chromaticity for portable visual real-time monitoring. Five sets of TTIs were prepared based on the concentration of nanozyme, and the activation energies (Ea) ranging from 28.45 to 72.85 kJ mol-1, which were able to be fitted to products with Ea ranging from 3.45 to 97.8 kJ mol-1 and the monitoring-time of less than 7 days. SIGNIFICANCE Compared to the traditional enzymatic TTI, the TTIs designed based on nanozyme has the advantages of controlled activation, wider temperature monitor range and good stability. Providing a new approach to the development of real-time monitoring of smart devices.
Collapse
Affiliation(s)
- Jiakang Hu
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Yuchen Zheng
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Chenghui Yin
- College of Food Science and Engineering, Jilin University, Changchun, 130062, PR China
| | - Le Wang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Hui Huang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, PR China
| | - Yongxin Li
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China.
| |
Collapse
|
32
|
Yang S, Li N, Zhao E, Wang C, He J, Xiao X, Fang D, Ni Q, Han X, Xue X, Chen L, Li N, Li J, Guo T, Su Y, Jin H. Imaging dendrite growth in solid-state sodium batteries using fluorescence tomography technology. SCIENCE ADVANCES 2024; 10:eadr0676. [PMID: 39565862 PMCID: PMC11578186 DOI: 10.1126/sciadv.adr0676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
Dendrite growth in solid-state sodium batteries (SSBs) is one of the most concerned issues that critically affect the battery efficiency and cycling performance. Here, by designing a fluorescent Eu3+-doped Na3Zr2Si2PO12 solid electrolyte (SE) to facilitate three-dimensional (3D) optical imaging on a confocal laser scanning microscopy, a fluorescence tomography (FT) method is developed for observing the sodium dendrite growth during charge/discharge cycles of the SSBs in a 3D view. It is quantitatively revealed that small-size sodium islands appear after several cycles, and with the cycles increasing, large-size dendrites in tens of micrometers gradually form until a critical sodium dendrite volume arrives where a short circuit or severe performance deterioration occurs. Furthermore, by regulating the Eu3+ doping ratio, a record-high sodium plating/stripping cycling stability for more than 1 year (487.5 days) is achieved at 25°C. This work demonstrates an FT method observing sodium dendrite growth in SSBs and will promote the functional design of high-performance SEs.
Collapse
Affiliation(s)
- Shuaishuai Yang
- School of Materials Science and Engineering, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Key Laboratory of Environmental Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Na Li
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Enyue Zhao
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Chengzhi Wang
- School of Materials Science and Engineering, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Key Laboratory of Environmental Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
- Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401120, China
| | - Jingxin He
- School of Materials Science and Engineering, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Key Laboratory of Environmental Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiong Xiao
- School of Materials Science and Engineering, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Key Laboratory of Environmental Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Debao Fang
- School of Materials Science and Engineering, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Key Laboratory of Environmental Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
- Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401120, China
| | - Qing Ni
- School of Materials Science and Engineering, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Key Laboratory of Environmental Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xile Han
- Institute of Photonics Technology, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xiaobin Xue
- Institute of Photonics Technology, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Lai Chen
- School of Materials Science and Engineering, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Key Laboratory of Environmental Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
- Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401120, China
| | - Ning Li
- School of Materials Science and Engineering, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Key Laboratory of Environmental Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
- Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401120, China
- Beijing Institute of Technology (Zhuhai Campus), Zhuhai 519085, China
| | - Jingbo Li
- School of Materials Science and Engineering, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Key Laboratory of Environmental Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
- Beijing Institute of Technology (Zhuhai Campus), Zhuhai 519085, China
| | - Tuan Guo
- Institute of Photonics Technology, College of Physics and Optoelectronic Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yuefeng Su
- School of Materials Science and Engineering, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Key Laboratory of Environmental Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
- Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401120, China
- Beijing Institute of Technology (Zhuhai Campus), Zhuhai 519085, China
| | - Haibo Jin
- School of Materials Science and Engineering, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Key Laboratory of Environmental Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
- Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401120, China
- Beijing Institute of Technology (Zhuhai Campus), Zhuhai 519085, China
| |
Collapse
|
33
|
Fan X, Tan C, Mei X, Ma J, Wu K, Deng A, Feng X, Li J. Highly efficient electrochemiluminescent properties of porphyrin-based metal-organic framework Zn-TCPP and its immunoassay application to the detection of ochratoxin A. Anal Chim Acta 2024; 1330:343267. [PMID: 39489950 DOI: 10.1016/j.aca.2024.343267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Ochratoxin A (OTA) is a group of mycotoxins that are widely distributed in food and feed and are closely associated with human health, so it is particularly important to detect OTA in cereal-based foods. Porphyrins and their derivatives have been widely investigated for their excellent electrochemical luminescence properties. Tetrakis 4-carboxyphenyl) porphyrin (TCPP) has limited applications because of its tendency to aggregate in water. RESULTS To enhance the luminescence efficiency of TCPP, the porphyrin can be immobilized as an organic ligand in a metal-organic framework. This allows the preparation of a novel zinc-porphyrin-based MOF (Zn-TCPP nanorods), which in turn provides highly efficient and stable cathodic ECL signals. Herein, an ultra-sensitive electrochemiluminescence immunoassay was proposed using Zn-TCPP nanorods as high-efficiency luminophores and Bi2S3@Au nanoflowers as electrode substrate materials for the detection of ochratoxin A in foodstuffs. Zn-TCPP has a strong and stable signal, and has been used as an immunosensor probe material. The Bi2S3@Au nanoflowers was used to decorate the glass carbon electrode and support for antibody immobilization due to its good electrical conductivity and large specific surface area. Under the optimized conditions, the constructed immunosensor could realize the sensitive detection of ochratoxin A in the detection range of 0.0004 ng mL-1 to 500 ng mL-1 with the detection limit as low as 0.13 pg mL-1. In addition, the sensing platform has been used for the detection of OTA in wheat flour and feed. SIGNIFICANCE Hence, it is worth believing that this strategy can pave a bright research direction for the detection of ochratoxin A or other small molecule mycotoxins content in foods, as well as contributing to the further study of MOF in the field of ECL.
Collapse
Affiliation(s)
- Xiaolin Fan
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Cheng Tan
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Xiao Mei
- Center of Self-Propelled Nanotechnologies, Suzhou Industrial Park Institute of Services Outsourcing, Suzhou, 215123, PR China
| | - Jun Ma
- Suzhou Shanding Honey Product Co., Ltd, Suzhou, 215101, PR China
| | - Kang Wu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, PR China
| | - Anping Deng
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China.
| | - Xinjian Feng
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China.
| | - Jianguo Li
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China; Center of Self-Propelled Nanotechnologies, Suzhou Industrial Park Institute of Services Outsourcing, Suzhou, 215123, PR China.
| |
Collapse
|
34
|
Fu H, Xu Z, Yang Z, Lei J. Low-potential anodic electrochemiluminescence of terbium metal-organic frameworks for selective microRNA-155 detection. Biosens Bioelectron 2024; 264:116675. [PMID: 39151262 DOI: 10.1016/j.bios.2024.116675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
High excitation potential is recognized as a harmful factor for the biological activity of biomacromolecules, such as proteins and nucleic acids, in electrochemiluminescence (ECL) biosensing. Developing low-potential ECL luminophores is vital for improving ECL accuracy in actual sample sensing. In this work, based on porous metal-organic framework (MOF) structure with multiple active sites and energy transfer between the excited ligands and Ln nodes, we designed a series of Ln-MOFs and observed ECL emission at low potential, providing a novel method to realize low-potential ECL. The MOF nanoemitters were prepared using 1,3,5-tri (4-carboxyphenyl)benzene ligand and several lanthanide ions as nodes through mild hydrothermal reaction. Interestingly, strong ECL emission at +0.75 V of peak potential was observed in the ECL-potential curve of Tb-based MOF using 2,2',2″-nitrilotriethanol as coreactant, which was beneficial for reducing background interference in biosensing, and this ECL emission was attributed to the energy transfer between Tb and excited ligand. This low-potential ECL was then applied to construct an ECL biosensor with newly developed Cas12a-based method for selective detection of microRNA-155 without the help of strand displacement or reverse transcription. For this ECL system, the limit of detection was 0.78 nM, and the overall detection time was 2.5 h. The Ln-MOF nanoemitter provides a robust ECL platform to selectively detect various targets by integrating new bio-related techniques.
Collapse
Affiliation(s)
- Haomin Fu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhiyuan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhou Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
35
|
Meng C, Snizhko DV, Zholudov YT, Zhang W, Guan Y, Tian Y, Xu G. Wireless single-electrode electrochemiluminescence device based on wireless reverse charging or on-the-go USB transmission for multiplex analysis. Chem Commun (Camb) 2024; 60:13546-13549. [PMID: 39474777 DOI: 10.1039/d4cc04873c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
A wireless electrochemiluminescence (ECL) device employing the wireless reverse charging function or on-the-go (OTG) USB transmission function of smartphones is designed. It was coupled with a multi-channel single-electrode electrochemical system based on the resistance-induced potential difference for multiple ECL analyses using a smartphone as the detector.
Collapse
Affiliation(s)
- Chengda Meng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Dmytro Viktorovych Snizhko
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China.
- Laboratory of Analytical Optochemotronics, Kharkiv National University of Radio Electronics, Kharkiv 61166, Ukraine
| | - Yuriy Tymofiiovych Zholudov
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China.
- Laboratory of Analytical Optochemotronics, Kharkiv National University of Radio Electronics, Kharkiv 61166, Ukraine
| | - Wei Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yiran Guan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yu Tian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
36
|
Jia YL, Lin JB, Gao H, Chen HY, Xu JJ. Molecular Planar Rigidity Promoted Aggregation-Induced Delayed Electrochemiluminescence of Organic Dots for Nucleic Acid Assay. Anal Chem 2024; 96:18214-18220. [PMID: 39485992 DOI: 10.1021/acs.analchem.4c04413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Developing organic aggregation-induced delayed electrochemiluminescence (AIDECL) active emitters is attractive due to their full utilization of excited species. However, current molecular designs primarily focus on the electron-deficient core benzophenone, resulting in relatively low ECL efficiency due to its flexible skeleton. Herein, we design a rigid electron acceptor, i.e., xanthenone, by inserting an oxygen bridge into the benzophenone moiety, and an AIDECL-active organic dot (OD) composed of a xanthenone-dimethylacridine compound is constructed. High ECL efficiency is achieved for the resultant ODs, with a 3-fold enhancement compared to control ODs. Oxygen bridge-induced planar moiety rigidifies the molecular configuration, further inhibiting intramolecular motions and thus suppressing nonradiative decay, supported by the single-crystal data together with theoretical calculations. Significantly, an ECL biosensor is constructed employing these ODs as emitters for the sensitive analysis of miR-21 associated with pancreatic cancer, which demonstrates a low detection limit of 2.8 fM. Our investigation provides a promising way to design efficient ECL emitters and deepens the understanding of structure-property relationships.
Collapse
Affiliation(s)
- Yi-Lei Jia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jia-Bao Lin
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hang Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
37
|
Hota NP, Kulathu Iyer S. N-doped carbon quantum dots for the selective detection of OCl - ions, bioimaging, and the production of Fe 3O 4 nanoparticles utilized in the synthesis of substituted imidazole. RSC Adv 2024; 14:35448-35459. [PMID: 39507691 PMCID: PMC11538961 DOI: 10.1039/d4ra06474g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024] Open
Abstract
Nitrogen-doped quantum dots (NCQD) were synthesized by solvothermal means using o-phenylenediamine and l-tartaric acid. The resultant NCQD produced a high quantum yield (40.3%) and a vivid green fluorescence. They were about 6 nm in size. The NCQD is useful in HeLa cell bioimaging investigations and is used for the fluorescence detection of OCl- ions. The quantum dots' Limit of Detection (LoD) was discovered to be 40 nM. Additionally, cytotoxicity testing was conducted, and we found out that HeLa cells safely endured up to 6.5 mg ml-1 of NCQD. Furthermore, NCQDs were employed to synthesize Fe3O4 nanoparticles, with the quantum dots acting as a reducing and stabilizing agent. The nanoparticles exhibited remarkable catalytic activity towards organic processes due to their size of 11 nm and surface area of 67.360 m2 g-1. Excellent yields of tri-substituted imidazole derivatives were produced using Fe3O4 nanoparticles as nanocatalysts in a solvent-free method.
Collapse
Affiliation(s)
- Namrata Priyadarshini Hota
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore-632 014 India
| | | |
Collapse
|
38
|
Zhang Y, Gao D, Yang H, Gao W, Wu C. A simple and cost-effective strategy for electrochemiluminescence spectral determination. Anal Chim Acta 2024; 1324:343097. [PMID: 39218576 DOI: 10.1016/j.aca.2024.343097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/04/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Electrochemiluminescence (ECL), as a unique and powerful analytical technique, has been widely used in various fields. The determination of ECL spectra plays a crucial role in understanding ECL reaction mechanisms and conducting spectra-resolved ECL analysis. ECL intensity is typically detected using a photomultiplier tube, which offers high sensitivity for detecting extremely weak light signals but does not allow for spectral identification. Due to the time-dependent variation of ECL intensity caused by the applied potential and electrochemical reaction processes, it is challenging to perform ECL spectral detection using conventional wavelength-scanning spectrometers. RESULTS In this study, we present a straightforward and cost-effective ECL spectral detection strategy by incorporating an automatically controlled tunable optical filter device between a commonly used PMT detector and a specially designed ECL reaction cell. The effectiveness of this approach was confirmed through initial validation, where the spectrum of a green LED spotlight was measured and compared with a commercial spectrometer. In a dynamic system with stable ECL signals, the ECL spectrum of the typical Ru(bpy)32+/TPA system was rapidly acquired by adjusting the bandpass filters. To account for time-varying ECL signals in practical measurements, time-based correction algorithms were implemented to rectify variations in ECL intensity. By integrating time-based correction algorithms and an automatically controlled tunable optical filter device into a commonly utilized PMT detector, the rapid and sensitive ECL spectra determination was achieved. Experimental results demonstrated the reliability of the proposed strategy. SIGNIFICANCE This strategy is based on the widely used high-sensitivity PMT detection component, enabling the rapid and sensitive measurement of ECL spectra without altering the ECL detection hardware. It is simple, fast, efficient, and cost-effective, with the potential to be widely used for rapid ECL spectral detection and spectra-resolved ECL analysis.
Collapse
Affiliation(s)
- Yifei Zhang
- Shandong Provincial Center for In-Situ Marine Sensors, Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Dexin Gao
- Shandong Provincial Center for In-Situ Marine Sensors, Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Hongye Yang
- Shandong Provincial Center for In-Situ Marine Sensors, Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Wenyue Gao
- Shandong Provincial Center for In-Situ Marine Sensors, Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China.
| | - Chi Wu
- Shandong Provincial Center for In-Situ Marine Sensors, Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
39
|
Liu C, Wang D, Li Y, Li H, He L, Wu M, Wei D, Pan H, Zhao Y, Zhang H. A new strategy for the preparation of polylactic acid composites with UV resistance, light conversion, and antibacterial properties. Int J Biol Macromol 2024; 278:135013. [PMID: 39181361 DOI: 10.1016/j.ijbiomac.2024.135013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/23/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
A novel rare earth complex, Eu(IAA)2(phen)2 (EuIP), was synthesized by solution-based synthesis method. Then, EuIP and polylactic acid (PLA) were melt-blended at 190 °C to obtain a multifunctional PLA/EuIP composite. The incorporation of EuIP provided PLA/EuIP composites with good light conversion ability. Under UV irradiation, PLA/EuIP composites converted the absorbed UV light into red light. Moreover, the PLA/1.0EuIP composite exhibited excellent light transmittance of 88 % in the visible region and showed strong red emission under UV light. After UV irradiation for 96 h, the molecular weights and mechanical properties of neat PLA decreased dramatically. Interestingly, the molecular weights and mechanical properties of PLA/EuIP composites did not deteriorate after 96 h of UV irradiation. The reason was that EuIP could absorb UV light and utilize the absorbed energy to emit red fluorescence. Furthermore, PLA/EuIP composites showed good antibacterial activities against E. coli and S. aureus. In addition, in vitro cell experiments showed that PLA/EuIP composites was suitable for the growth of murine breast cancer (4 T1) cells. Besides, enzymatic degradation testing also proved that PLA/EuIP composites had good biodegradability. This work provides an ingenious design strategy for the preparation of PLA/EuIP composites possessing light conversion ability, UV resistance, and antibacterial properties.
Collapse
Affiliation(s)
- Chengkai Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510, China
| | - Dongmei Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266510, China; Hunan University, College of Chemistry and Chemical Engineering, Changsha 410082, China
| | - Yanbo Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Huimin Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Liting He
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Mi Wu
- Jihua Laboratory, Foshan 528200, China
| | - Deyu Wei
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Hongwei Pan
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yan Zhao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Huiliang Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
40
|
Qian X, Tan C, Zhang J, Wu K, Deng A, Li J. Antenna effect enhanced ECL immunoassay using microfloral europium porphyrin coordination polymers based on Eu 3+ and TCPP for the detection of chloramphenicol in foods. Analyst 2024; 149:4623-4632. [PMID: 39101528 DOI: 10.1039/d4an00760c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
The "antenna effect" is one of the most important energy transfer modes in lanthanide light-emitting polymers. In this study, novel luminescent nanostructured coordination polymers (Eu-PCP) were synthesized in one step using Eu3+ as the central metal ion and 5,10,15,20-tetrakis (4-carboxyphenyl) porphyrin (TCPP) as the organic ligand. The unique "antenna effect" observed between Eu3+ and TCPP leads to a substantial improvement in the electrochemiluminescence (ECL) emission efficiency. Eu-PCP exhibits good cathodic ECL characteristics. Additionally, Au@SnS2 nanosheets exhibit favorable electrical conductivity, biocompatibility, and a significant specific surface area. This makes them a suitable choice as substrate materials for the modification of electrode surfaces and capturing antigens. Being well known, the development of sensitive and rapid methods to detect chloramphenicol is essential for food safety. Based on this, we report a novel competitive electrochemiluminescence immunoassay to achieve ultra-sensitive and highly specific detection of chloramphenicol. The linear range was 0.0002-500 ng mL-1 and the detection limit was 0.09 pg mL-1. Apart from that, the experimental results proved that it provided a new analytical tool for the detection of antibiotic residues in food safety.
Collapse
Affiliation(s)
- Xinyue Qian
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Cheng Tan
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Jing Zhang
- Shanghai Animal Disease Control Center, Shanghai 201103, P.R. China
| | - Kang Wu
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, P.R. China.
| | - Anping Deng
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Jianguo Li
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, P.R. China.
| |
Collapse
|
41
|
Wu C, Mu W, Wu F, Gao H, Ren X, Feng J, Miao M, Zhang H, Chang D, Pan H. Electrochemical detection of myoglobin using an ultrasensitive label-free sensor derived from cubic-ZIF67@Au-rGOF-NH 2 composite of MOF and GOF. Anal Biochem 2024; 692:115571. [PMID: 38796119 DOI: 10.1016/j.ab.2024.115571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/04/2024] [Accepted: 05/15/2024] [Indexed: 05/28/2024]
Abstract
Markers of myocardial injury, such as myoglobin (Mb), are substances swiftly released into the peripheral bloodstream upon myocardial cell injury or altered cardiac activity. During the onset of acute myocardial infarction, patients experience a significant surge in serum Mb levels. Given this, precise detection of Mb is essential, necessitating the development of innovative assays to optimize detection capabilities. This study introduces the synthesis of a three-dimensional hierarchical nanocomposite, Cubic-ZIF67@Au-rGOF-NH2, utilizing aminated reduced graphene oxide and zeolite imidazolium ester framework-67 (ZIF67) as foundational structures. Notably, this novel material, applied in a label-free electrochemical immunosensor, presents a groundbreaking approach for detecting myocardial injury markers. Experimental outcomes revealed ZIF67 and AuNPs exhibit enhanced affinity and growth on the 3D-rGOF-NH2 matrix, thus amplifying electrical conductivity while preserving the inherent electrochemical attributes of ZIF67. As a result, the Cubic-ZIF67@Au-rGOF-NH2 label-free electrochemical immunosensor exhibited a broad detection range and high sensitivity for Mb. The derived standard curve was ΔIp = 16.67552lgC+275.245 (R = 0.993) with a detection threshold of 3.47 fg/ml. Moreover, recoveries of standards spiked into samples ranged between 96.3% and 108.7%. Importantly, the devised immunosensor retained notable selectivity against non-target proteins, proving its potential clinical utility based on exemplary sample analysis performance.
Collapse
Affiliation(s)
- Chunyan Wu
- School of Health Sciences and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China; Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Wendi Mu
- School of Health Sciences and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China; Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Fangfang Wu
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Hongmin Gao
- School of Health Sciences and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China; Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Xinshui Ren
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China; Shanghai University of Medicine and Health Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Jing Feng
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Men Miao
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Hehua Zhang
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Dong Chang
- Department of Laboratory Medicine, Shanghai Pudong Hospital, Shanghai, 201399, People's Republic of China.
| | - Hongzhi Pan
- School of Health Sciences and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China; Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China.
| |
Collapse
|
42
|
Guo W, Yu Y, Xin C, Jin G. Comparative study of optical fiber immunosensors based on traditional antibody or nanobody for detecting HER2. Talanta 2024; 277:126317. [PMID: 38810383 DOI: 10.1016/j.talanta.2024.126317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
In this study, we present a novel biomarker detection platform employing a modified S-tapered fiber coated with gold nanoparticle/graphene oxide (GNP/GO) for quantifying human epidermal growth factor receptor-2 (HER2) concentrations, using antibodies as sensing elements. The fabrication of this device involves implementing an in-situ layer-by-layer technique coupled with a chemical adsorption step to achieve the self-assembly of GNP, GO, and antibodies on the STF surface. The detection mechanism relies on monitoring the refractive index changes induced by the adsorption of HER2 onto the immobilized antibodies. For comparative analysis, both monoclonal antibody (mAb) and the novel nanobody (Nb) were employed in constructing the STF immunosensor, referred to as the mAb immunosensor and Nb immunosensor, respectively. Spectral analysis results highlight that the Nb immunosensor exhibits twice the sensitivity of the mAb immunosensor. This enhanced sensitivity is attributed to the small size, high antigen affinity, strong specificity, and structural stability of Nb. The Nb immunosensor demonstrated an impressive detection limit of 0.001 nM for HER2, surpassing the detection limit of the mAb immunosensor. These findings underscore the potential of the proposed Nb immunosensor as a promising and sensitive tool for HER2 detection, contributing to the diagnosis and prognosis of breast cancer. Furthermore, the simplicity of production and excellent optical performance position the Nb immunosensor as a prospective real-time biosensor with minimal cytotoxicity.
Collapse
Affiliation(s)
- Wanmei Guo
- Jilin Key Laboratory of Solid Laser Technology and Application, School of Science, Changchun University of Science and Technology, Changchun, 130022, China
| | - Yongsen Yu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Chao Xin
- Jilin Key Laboratory of Solid Laser Technology and Application, School of Science, Changchun University of Science and Technology, Changchun, 130022, China
| | - Guangyong Jin
- Jilin Key Laboratory of Solid Laser Technology and Application, School of Science, Changchun University of Science and Technology, Changchun, 130022, China.
| |
Collapse
|
43
|
Gong Q, Wang J, Guo Y, Zhang L, Liu D, Nie G. A sandwich-type photoelectrochemical biosensor based on anthocyanin-sensitized ZnO/P5FIn heterojunction for the sensitive detection of CYFRA21-1. Mikrochim Acta 2024; 191:557. [PMID: 39174816 DOI: 10.1007/s00604-024-06636-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
. A sandwich-type photoelectrochemical (PEC) immunosensor based on a ZnO/poly(5-formylindole) (P5FIn)/anthocyanin heterostructure was developed to achieve sensitive background-free detection of the tumor marker CYFRA21-1. ZnO with good photovoltaic properties is combined with narrow bandgap P5FIn to form a p-n type heterojunction. This structure reduces the electron-hole pair recombination, thereby enhancing the photocurrent response of the composite. Anthocyanidins are environmentally friendly natural compounds with excellent antioxidant, redox properties, and remarkable electrochemical activity. After sensitization by anthocyanins, the absorption and utilization of visible light in the composites are enhanced, further improving the PEC luminescence efficiency of the materials. Additionally, boron nitride quantum dots (BN QDs) are combined with Ab2 via polydopamine (PDA) as a secondary antibody marker, enhancing its sensitivity. The biosensor exhibited a linear detection range of 0.001-100 ng mL-1 with a limit of detection (LOD) of 0.00033 ng mL-1. Furthermore, this biosensor demonstrates excellent selectivity, reproducibility, and stability, as well as successful results in analyzing actual human serum samples. This approach provides a feasible method for tumor marker detection.
Collapse
Affiliation(s)
- Qinghua Gong
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Jingjing Wang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Yanting Guo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Lu Zhang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Dandan Liu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Guangming Nie
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
44
|
Zhang J, Chai F, Li J, Wang S, Zhang S, Li F, Liang A, Luo A, Wang D, Jiang X. Weakly ionized gold nanoparticles amplify immunoassays for ultrasensitive point-of-care sensors. SCIENCE ADVANCES 2024; 10:eadn5698. [PMID: 38985882 PMCID: PMC11235179 DOI: 10.1126/sciadv.adn5698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 06/04/2024] [Indexed: 07/12/2024]
Abstract
Gold nanoparticle-based lateral flow immunoassays (AuNP LFIAs) are widely used point-of-care (POC) sensors for in vitro diagnostics. However, the sensitivity limitation of conventional AuNP LFIAs impedes the detection of trace biomarkers. Several studies have explored the size and shape factors of AuNPs and derivative nanohybrids, showing limited improvements or enhanced sensitivity at the cost of convenience and affordability. Here, we investigated surface chemistry on the sensitivity of AuNP LFIAs. By modifying surface ligands, a surface chemistry strategy involving weakly ionized AuNPs enables ultrasensitive naked-eye LFIAs (~100-fold enhanced sensitivity). We demonstrated how this surface chemistry-amplified immunoassay approach modulates nanointerfacial bindings to promote antibody adsorption and higher activity of adsorbed antibodies. This surface chemistry design eliminates complex nanosynthesis, auxiliary devices, or additional reagents while efficiently improving sensitivity with advantages: simplified fabrication process, excellent reproducibility and reliability, and ultrasensitivity toward various biomarkers. The surface chemistry using weakly ionized AuNPs represents a versatile approach for sensitizing POC sensors.
Collapse
Affiliation(s)
- Jiangjiang Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
- Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Fengli Chai
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jia’an Li
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Saijie Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Shuailong Zhang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Fenggang Li
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Axin Liang
- Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Aiqin Luo
- Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Dou Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Xingyu Jiang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
45
|
Jia H, Zhang N, Kuang X, Ren X, Wu D, Ma H, Wei Q, Ju H. Highly Electroactive Co 2+-Based Metal-Organic Frameworks as an Efficient Coreaction Accelerator for Amplifying Near-Infrared Electrochemiluminescence of Gold Nanoclusters in Biomarkers Immunoassay. Anal Chem 2024; 96:11044-11051. [PMID: 38937378 DOI: 10.1021/acs.analchem.4c01894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Metal nanoclusters (NCs) as a new kind of luminophore have acquired sufficient interest, but their widespread application is restricted on account of their relatively low electrochemiluminescence (ECL) efficiency. Then, aqueous metal NCs with high ECL efficiency were strongly anticipated, especially for the ultrasensitive analysis of biomarkers. Herein, a near-infrared (NIR) ECL biosensing strategy for the test of neuron-specific enolase (NSE) was proposed by utilizing N-acetyl-l-cysteine (NAC)- and cysteamine (Cys)-stabilized gold NCs (NAC/Cys-AuNCs) as ECL emitters with the NIR ECL emission around 860 nm and a metal-organic framework/palladium nanocubes (ZIF-67/PdNCs) hybrid as the coreaction accelerator through their admirable electrocatalytic activity. The NIR emission would reduce photochemical injury to the samples and even realize nondestructive analysis with highly strong susceptibility and suitability. Furthermore, the utilization of ZIF-67/PdNCs could improve the ECL response of NAC/Cys-AuNCs by facilitating the oxidation of the coreactant triethylamine (TEA), leading to the production of a larger quantity of reducing intermediate radical TEA•+. Consequently, NAC/Cys-AuNCs with ZIF-67/PdNCs displayed 2.7 fold enhanced ECL emission compared with the single NAC/Cys-AuNCs using TEA as the coreactant. In addition, HWRGWVC (HWR), a heptapeptide, was introduced to immobilize antibodies for the specially binding Fc fragment of the antibodies, which improved the binding efficiency and sensitivity. As a result, a "signal-on" immunosensor for NSE analysis was obtained with an extensive linear range of 0.1 to 5 ng/mL and a low limit of detection (0.033 fg/mL) (S/N = 3). This study provides a wonderful method for the development of an efficient nondestructive immunoassay.
Collapse
Affiliation(s)
- Hongying Jia
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Nuo Zhang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Xuan Kuang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Xiang Ren
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Dan Wu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Hongmin Ma
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Huangxian Ju
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| |
Collapse
|
46
|
Zhang X, Li Z, Wang X, Hong L, Yin X, Zhang Y, Hu B, Zheng Q, Cao J. CRISPR/Cas12a integrated electrochemiluminescence biosensor for pufferfish authenticity detection based on NiCo 2O 4 NCs@Au as a coreaction accelerator. Food Chem 2024; 445:138781. [PMID: 38401312 DOI: 10.1016/j.foodchem.2024.138781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 02/26/2024]
Abstract
Meat adulteration has brought economic losses, health risks, and religious concerns, making it a pressing global issue. Herein, combining the high amplification efficiency of polymerase chain reaction (PCR) and the accurate recognition of CRISPR/Cas12, a sensitive and reliable electrochemiluminescence (ECL) biosensor was developed for the detection of pufferfish authenticity using NiCo2O4 NCs@Au-ABEI as nanoemitters. In the presence of target DNA, the trans-cleavage activity of CRISPR/Cas12a is activated upon specific recognition by crRNA, and then it cleaves dopamine-modified single stranded DNA (ssDNA-DA), triggering the ECL signal from the "off" to "on" state. However, without target DNA, the trans-cleavage activity of CRISPR/Cas12a is silenced. By rationally designing corresponding primers and crRNA, the biosensor was applied to specific identification of four species of pufferfish. Furthermore, as low as 0.1 % (w/w) adulterate pufferfish in mixture samples could be detected. Overall, this work provides a simple, low-cost and sensitive approach to trace pufferfish adulteration.
Collapse
Affiliation(s)
- Xiaobo Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Zhiru Li
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Xiuwen Wang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Lin Hong
- Dalian Inspection and Testing Certification Technical Service Center, Dalian 116021, China
| | - Xinying Yin
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, Sichuan, China
| | - Yan Zhang
- Standards and Quality Center of National Food and Strategic Reserves Administration, Beijing 100834, China
| | - Bing Hu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Qiuyue Zheng
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China
| | - Jijuan Cao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, School of Life Sciences, Dalian Minzu University, Dalian 116600, China.
| |
Collapse
|
47
|
Lu Z, Gong Y, Shen C, Chen H, Zhu W, Liu T, Wu C, Sun M, Su G, Wang X, Wang Y, Ye J, Liu X, Rao H. Portable, intelligent MIECL sensing platform for ciprofloxacin detection using a fast convolutional neural networks-assisted Tb@Lu 2O 3 nanoemitter. Food Chem 2024; 444:138656. [PMID: 38325090 DOI: 10.1016/j.foodchem.2024.138656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/18/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
Environmental pollution caused by ciprofloxacin is a major problem of global public health. A machine learning-assisted portable smartphone-based visualized molecularly imprinted electrochemiluminescence (MIECL) sensor was developed for the highly selective and sensitive detection of ciprofloxacin (CFX) in food. To boost the efficiency of electrochemiluminescence (ECL), oxygen vacancies (OVs) enrichment was introduced into the flower-like Tb@Lu2O3 nanoemitter. With the specific recognition reaction between MIP as capture probes and CFX as detection target, the ECL signal significantly decreased. According to, CFX analysis was determined by traditional ECL analyzer detector in the concentration range from 5 × 10-4 to 5 × 102 μmol L-1 with the detection limit (LOD) of 0.095 nmol L-1 (S/N = 3). Analysis of luminescence images using fast electrochemiluminescence judgment network (FEJ-Net) models, achieving portable and intelligent quick analysis of CFX. The proposed MIECL sensor was used for CFX analysis in real meat samples and satisfactory results, as well as efficient selectivity and good stability.
Collapse
Affiliation(s)
- Zhiwei Lu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Yonghui Gong
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Chengao Shen
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Haoran Chen
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Weiling Zhu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Tao Liu
- College of Information Engineering, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Chun Wu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Gehong Su
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Xianxing Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Yanying Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Jianshan Ye
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Xin Liu
- College of Food Science and Engineering, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China.
| | - Hanbing Rao
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China.
| |
Collapse
|
48
|
Pei X, Liu J, Zhang Y, Huang Y, Li Z, Niu X, Zhang W, Sun W. Tetrahedral DNA-linked aptamer-antibody-based sandwich-type electrochemical sensor with Ag@Au core-shell nanoparticles as a signal amplifier for highly sensitive detection of α-fetoprotein. Mikrochim Acta 2024; 191:414. [PMID: 38904836 DOI: 10.1007/s00604-024-06485-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024]
Abstract
The conventional electrochemical detection strategy for alpha-fetoprotein (AFP) is limited by the antigen-antibody (Ag-Ab) reactions and suffers from low sensitivity and poor reproducibility due to the inconsistency of Ab-modified electrodes. Herein, we designed and explored a sandwich-type electrochemical sensor for highly sensitive detection of AFP based on aptamer (Apt)-AFP-Ab interaction mode with silver@gold (Ag@Au) core-shell nanoparticles (NPs) as a signal amplifier. AuNPs were electrodeposited onto MXene (Ti3C2TX)-modified glassy carbon electrode (GCE) to get AuNPs/MXene/GCE and further used as the signal amplification substrate. The tetrahedral DNA-linked AFP aptamers were immobilized onto AuNPs/MXene/GCE surface via Au-S bonds and used as the sensing and recognition platform for AFP capturing. Ag@AuNPs with core-shell structures were synthesized, characterized, and bound with Ab as detection elements by catalyzing H2O2 reduction. In the presence of AFP, a stable Apt-AFP-Ab sandwich structure was formed owing to the high affinities of aptamer and Ab toward the target AFP. The catalytic current produced by H2O2 reduction increased linearly with the logarithm of AFP concentration from 5 × 10-4 ng/mL to 1 × 105 ng/mL, accompanied by a low detection limit (1.6 × 10-4 ng/mL). Moreover, the novel sandwich-type electrochemical sensor shows high sensitivity, outstanding selectivity, and promising performance in the analysis of actual samples, displaying a broad application prospect in bioanalysis.
Collapse
Affiliation(s)
- Xiaoying Pei
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, P. R. China
| | - Junhong Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, P. R. China
| | - Yulong Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, P. R. China
| | - Yan Huang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, P. R. China
| | - Zhongfang Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, P. R. China
| | - Xueliang Niu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, 255049, P. R. China.
| | - Weili Zhang
- College of Pharmacy, Key Laboratory of Biomedical Engineering and Technology in Universities of Shandong, Qilu Medical University, Zibo, 255300, P. R. China.
| | - Wei Sun
- Hainan Engineering Research Center of Tropical Ocean Advanced Optoelectronic Functional Materials, Hainan International Joint Research Center of Marine Advanced Photoelectric Functional Materials, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, P. R. China.
| |
Collapse
|
49
|
Zhao XY, Liu LL, Xu YQ, Xiang L, Yuan R, Chai YQ. Dual-Ligand Europium-Organic Gels as a Highly Efficient Anodic Annihilation Electrochemiluminescence Emitter for Ultrasensitive Detection of MicroRNA. Anal Chem 2024; 96:9961-9968. [PMID: 38838250 DOI: 10.1021/acs.analchem.4c01239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
In this study, a novel europium dual-ligand metal-organic gel (Eu-D-MOGs) with high-efficient anodic annihilation electrochemiluminescence (ECL) was synthesized as an ECL emitter to construct a biosensor for ultrasensitive detection of microRNA-221 (miR-221). Impressively, compared to the ECL signal of europium single-ligand metal-organic gels (Eu-S-MOGs), the ECL signal of Eu-D-MOGs was significantly improved since the two organic ligands could jointly replace the H2O and coordinate with Eu3+, which could remarkably reduce the nonradiative vibrational energy transfer caused by the coordination between H2O and Eu3+ with a high coordination demand. In addition, Eu-D-MOGs could be electrochemically oxidized to Eu-D-MOGs•+ at 1.45 V and reduced to Eu-D-MOGs•- at 0.65 V to achieve effective annihilation of ECL, which overcame the side reaction brought by the remaining emitters at negative potential. This benefited from the annihilation ECL performance of the central ion Eu3+ caused by its redox in the electrochemical process. Furthermore, the annihilation ECL signal of Eu3+ could be improved by sensitizing Eu3+ via the antenna effect. In addition, combined with the improved rolling circle amplification-assisted strand displacement amplification strategy (RCA-SDA), a sensitive biosensor was constructed for the sensitive detection of miR-221 with a low detection limit of 5.12 aM and could be successfully applied for the detection of miR-221 in the lysate of cancer cells. This strategy offered a unique approach to synthesizing metal-organic gels as ECL emitters without a coreactant for the construction of ECL biosensing platforms in biomarker detection and disease diagnosis.
Collapse
Affiliation(s)
- Xin-Yan Zhao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Lin-Lei Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Yuan-Qi Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Lian Xiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Ya-Qin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| |
Collapse
|
50
|
Sharma A, Kaur N, Singh N. An Encyclopedic Compendium on Chemosensing Supramolecular Metal-Organic Gels. Chem Asian J 2024; 19:e202400258. [PMID: 38629210 DOI: 10.1002/asia.202400258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/16/2024] [Indexed: 05/16/2024]
Abstract
Chemosensing, an interdisciplinary scientific domain, plays a pivotal role ranging from environmental monitoring to healthcare diagnostics and (inter)national security. Metal-organic gels (MOGs) are recognized for their stability, selectivity, and responsiveness, making them valuable for chemosensing applications. Researchers have explored the development of MOGs based on different metal ions and ligands, allowing for tailored properties and sensitivities, and have even demonstrated their applications as portable sensors such as paper-based test strips for practical use. Herein, several studies related to MOGs development and their applications in the chemosensing field via UV-visible or luminance along with electrochemical approach are presented. These papers explored MOGs as versatile materials with their use in sensing bio or environmental analytes. This review provides a foundational understanding of key concepts, methodologies, and recent advancements in this field, fostering the scientific community.
Collapse
Affiliation(s)
- Arun Sharma
- Department of Chemistry, Indian Institute of Technology Ropar, 140001, Rupnagar, Panjab, India
| | - Navneet Kaur
- Department of Chemistry, Panjab University, 160014, Chandigarh, India
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar, 140001, Rupnagar, Panjab, India
| |
Collapse
|