1
|
Huang TY, Laysandra L, Chen NCR, Prasetyo F, Chiu YC, Yeh LH, Wu KCW. MOF composites for revolutionizing blue energy harvesting and next-gen soft electronics. Adv Colloid Interface Sci 2025; 340:103444. [PMID: 39999516 DOI: 10.1016/j.cis.2025.103444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/29/2024] [Accepted: 02/15/2025] [Indexed: 02/27/2025]
Abstract
Metal-organic frameworks (MOFs) are porous materials with highly ordered and crystalline structures, which have earned tremendous attention in the academic community in recent years owing to their high tunability in porosity and pore structure. By integrating MOFs with soft colloids or polymers to form MOF composites, the rigidity and brittle nature of MOFs can be compensated for, thus achieving synergistic effects for a wide variety of applications. In particular, the past decade has seen the advancement of MOF composites in the budding fields of blue energy harvesting and soft electronics, which have received growing interest in the past 5 years. This review focuses on the applications of MOF composites in these two fields, and starts by examining the nanoarchitectures of MOFs, followed by the fabrication of MOF composites. Furthermore, topical advances of MOF composites in blue energy harvesting and soft electronics are reviewed and summarized, and their challenges and future opportunities are discussed as the final touch. This article provides comprehensive review and valuable insights into the development of MOF composites, which may open up new avenues for blue energy harvesting and soft electronics to solve the imminent energy crisis and to advance the wearable technology in healthcare.
Collapse
Affiliation(s)
- Ting-Yi Huang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Livy Laysandra
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Norman C-R Chen
- Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 10617, Taiwan; International Graduate Program of Molecular Science and Technology (NTU-MST), National Taiwan University, Taipei 10617, Taiwan
| | - Fery Prasetyo
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Yu-Cheng Chiu
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; Sustainable Electrochemical Energy Development Center, National Taiwan University of Science and Technology, Taipei City 10607, Taiwan.
| | - Li-Hsien Yeh
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; Sustainable Electrochemical Energy Development Center, National Taiwan University of Science and Technology, Taipei City 10607, Taiwan; Advanced Manufacturing Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| | - Kevin C-W Wu
- Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 10617, Taiwan; International Graduate Program of Molecular Science and Technology (NTU-MST), National Taiwan University, Taipei 10617, Taiwan; Center of Atomic Initiative for New Materials (AI-MAT), National Taiwan University, Taipei 10617, Taiwan; Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Zhongli District, Taoyuan 32003, Taiwan; Department of Chemical Engineering, Chung Yuan Christian University, No. 200, Zhongbei Rd., Zhongli Dist, Taoyuan City 320, Taiwan.
| |
Collapse
|
2
|
Yan X, Lin Z, Shen H, Chen Y, Chen L. Photo-responsive antibacterial metal organic frameworks. J Mater Chem B 2025. [PMID: 40370037 DOI: 10.1039/d5tb00105f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
The misuse and overuse of antibiotics have caused the emergence of antibiotic-resistant bacteria, making bacterial infections more challenging. The increasing prevalence of multidrug-resistant pathogens has driven researchers to explore novel therapeutic strategies. Phototherapy strategies that utilize photo-responsive biomaterials for their antibacterial properties have gained widespread attention due to their capability of precisely controlling bacterial inactivation with minimal side effects. Despite their potential, photodynamic therapies suffer from phototoxicity and low efficiency of photosensitizers, while photothermal therapy risks overheating, which may harm healthy tissues, thus restricting its broader application. Metal organic frameworks (MOFs) have unique physicochemical properties, which provide a promising way to deal with these challenges. MOFs can function as reservoirs, loading and releasing antibacterial agents, such as antibiotics or metal ions, upon light illumination by virtue of their metastable coordination bonds. Their porous structures enable controlled drug release and encapsulation of photosensitizers. Furthermore, MOFs' tunable composition and pore structure allow for the light-triggered generation of heat and reactive oxygen species, enhancing their antibacterial effectiveness. By doping MOFs with functional materials, it is possible to achieve multi-mode antibacterial effects. In this review, we will outline recent advancements of photo-responsive antibacterial MOFs, categorize their underlying mechanisms of action and highlight their prospects in addressing bacterial resistance.
Collapse
Affiliation(s)
- Xiaojie Yan
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Zhengzheng Lin
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - He Shen
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Yu Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Liang Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, P. R. China
| |
Collapse
|
3
|
Wan X, Ge Y, Zhu W, Zhang J, Pan W, Li N, Tang B. GalNAc-functionalized metal-organic frameworks for targeted siRNA delivery: enhancing survivin silencing in hepatocellular carcinoma. Biomater Sci 2025; 13:2704-2712. [PMID: 40178804 DOI: 10.1039/d5bm00363f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Small interfering RNA (siRNA) is a potent method for silencing survivin mRNA within cells, offering a promising option for treating hepatocellular carcinoma (HCC) since survivin is specifically overexpressed in HCC cells. However, the clinical use of gene therapy with siRNA is limited by factors such as rapid enzyme degradation, low cell uptake, and non-specific distribution in the body. In this study, we investigate the use of a specially selected metal-organic framework (MOF) to encapsulate siRNA, with the aim of silencing survivin mRNA in HCC cells and reducing the survivin protein level. The MOF was functionalized with triantennary N-acetylgalactosamine (GalNAc), which has high affinity for asialoglycoprotein receptors that are overexpressed in HCC cells. Both in vitro and in vivo experiments showed that the GalNAc-decorated MOF specifically accumulated in HCC tumor tissue and was effectively endocytosed by HCC cells. The protective properties of the MOF increased the stability of siRNA and allowed for significant downregulation of survivin expression in HCC tumors, contributing to tumor inhibition through the suppression of cell proliferation and the induction of apoptosis. These findings highlight the potential of MOF-based siRNA delivery systems for targeted cancer therapy.
Collapse
Affiliation(s)
- Xiuyan Wan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Yingli Ge
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Wanqi Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Jie Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
- Laoshan Laboratory, Qingdao, 266237, P. R. China
| |
Collapse
|
4
|
Cedrún-Morales M, Migliavacca M, Ceballos M, Perez-Maseda M, Zampini G, Alameda Felgueiras MT, Ostolaza-Paraiso J, Juanes M, Rincón I, Fairen-Jimenez D, Montenegro J, Horcajada P, Polo E, Pelaz B, Del Pino P. Clickable Polymer-Based Coatings for Modulating the Interaction of Metal-Organic Framework Nanocrystals with Living Cells. ACS APPLIED MATERIALS & INTERFACES 2025; 17:24994-25010. [PMID: 40257304 DOI: 10.1021/acsami.5c01695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Nanosized microporous metal-organic-frameworks (NMOFs) serve as versatile drug delivery systems capable of navigating complex microenvironments and interacting with cells in specific tissues. The physicochemical properties of NMOFs, such as size, composition, porosity, colloidal stability, and external surface functionalization are essential for their success as efficient carriers. This study introduces a flexible, clickable coating using an amphiphilic polymer derivatized with dibenzo cyclooctyne groups as a universal, postsynthetic functionalization tool. To prove its universality, nanosized MOFs with different structure and composition (UiO-67, NU-1000, PCN-222, and ZIF-8) were produced with high monodispersity and were coated with a clickable, amphiphilic polymer. The resulting polymer-coated NMOFs display exceptional colloidal and structural stability in different biologically relevant media. For comparative purposes, we selected two size-equivalent NMOFs, ZIF-8 and UiO-67, which were functionalized with a library of biologically relevant azide-derivatized (macro)molecules, including poly(ethylene glycol), mannose, and a dynein-binding cell-penetrating peptide, using a bioorthogonal reaction. The choice of ZIF-8 and UiO-67, both 150 nm in size but with distinct coordination and surface chemistries, is pivotal due to their differing acid and base stability characteristics, which may potentially influence their performance in cellular environments. To track their performance in vitro, the NMOFs were loaded with cresyl violet, a common histological stain and lysosomal marker. Cellular internalization of the surface-functionalized NMOFs was markedly governed by their distinct (macro)molecule characteristics. This demonstrates that surface properties critically influence uptake efficiency, while also highlighting the versatility and effectiveness of the proposed coating strategy. In particular, the one functionalized with the dynein-binding peptide demonstrated a markedly higher rate of cellular internalization compared to other NMOFs. In contrast, derivatizations with mannose and poly(ethylene glycol) are associated with a substantial reduction in cellular uptake, suggesting stealth behavior. These results provide a bioorthogonal and versatile alternative for the external surface engineering of NMOFs, aiming to improve targeted drug delivery effectiveness.
Collapse
Affiliation(s)
- Manuela Cedrún-Morales
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Martina Migliavacca
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Inorgánica, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Manuel Ceballos
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Marta Perez-Maseda
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Giulia Zampini
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Inorgánica, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - María Teresa Alameda Felgueiras
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Inorgánica, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Jon Ostolaza-Paraiso
- The Adsorption and Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Marisa Juanes
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Irene Rincón
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, Av. Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain
| | - David Fairen-Jimenez
- The Adsorption and Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Patricia Horcajada
- Advanced Porous Materials Unit (APMU), IMDEA Energy Institute, Av. Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain
| | - Ester Polo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Bioquímica y Biología Molecular, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Beatriz Pelaz
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Inorgánica, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Pablo Del Pino
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| |
Collapse
|
5
|
Cornell H, Sose AT, Ilic S, Chinnabattigalla S, Lidman NE, Oldmixon CM, Yang X, Deshmukh SA, Morris AJ. Photoactivated Multivariate Metal-Organic Frameworks for On-Demand Drug Release: The Role of Host-Guest Interactions. J Am Chem Soc 2025; 147:7423-7432. [PMID: 39992360 PMCID: PMC11887053 DOI: 10.1021/jacs.4c15222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/25/2025]
Abstract
The development of smart drug delivery vehicles capable of controlled release upon application of an external stimulus is of paramount interest for the next generation of personalized medicine. Herein, we report a series of six multivariate (MTV) MOFs capable of visible light-activated drug delivery. The drug loading capacity and release rates were systematically tuned through variation of the linker ratio between 4,4'-azobenzene dicarboxylic acid (H2ABDA) and 4,4'-(diazene-1,2-diyl)bis(3,5-difluorobenzoic acid) (H2ABDA(3,5-F)). The drug loading capacity, dictated by host-guest interactions, was thoroughly explored via a combined experimental and computational approach using two model drug or drug-like molecules, 5-fluorouracil (5-FU) and Nile Red. Notably, the loading capacity for 5-FU follows a "Goldilocks" profile with a maximum loading at 33% H2ABDA(3,5-F) content. Computational results confirm the existence of a cooperative ligand environment that promotes strong, preferential binding at the tetrahedral/octahedral pore window formed between two H2ABDA and one H2ABDA(3,5-F). Thus, the MTV approach enhanced capacity over the native 100% H2ABDA(3,5-F) and 0% H2ABDA(3,5-F) MOFs. In addition to increased loading, the rate of cargo release upon green light excitation also increased as the percentage of H2ABDA(3,5-F) in the MOF was raised, reaching a maximum release rate of 0.9 ± 0.1% of total cargo per minute for the MOF containing 100% H2ABDA(3,5-F) MOF. The results highlight the promise of MTV MOF design for optimizing drug delivery vehicles with relevant payloads and patient-dictated dosing.
Collapse
Affiliation(s)
- Hannah
D. Cornell
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Abhishek T. Sose
- Department
of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Stefan Ilic
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | | | - Naomei E. Lidman
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Colleen M. Oldmixon
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Xiaozhou Yang
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Sanket A. Deshmukh
- Department
of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Amanda J. Morris
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
6
|
Wang Y, Foulkes RL, Panagiotou N, Markopoulou P, Bistrović Popov A, Eskandari A, Fruk L, Forgan RS. Photoclick surface modification of MOF-808 for galactose-mediated targeted chemotherapy. J Colloid Interface Sci 2025; 681:416-424. [PMID: 39637628 DOI: 10.1016/j.jcis.2024.11.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/01/2024] [Accepted: 11/17/2024] [Indexed: 12/07/2024]
Abstract
Controllable surface modification of nanoparticulate drug delivery vectors is key to enhancing specific desirable properties such as colloidal stability, targeting, and stimuli-responsive cargo release. Metal-organic frameworks (MOFs) have been proposed as potential delivery devices, with surface modification achieved by various bioconjugate "click" reactions, including copper-catalysed and strain-promoted azide-alkyne cycloaddition. Herein, we show that photo-induced nitrile imine-mediated tetrazole-ene cycloaddition (NITEC) can be used to surface-modify tetrazole-appended Zr MOFs with maleimides, and vice versa, with the extent of this traceless surface functionalisation controlled by the length of photoirradiation. This "photoclick" surface modification protocol is exemplified by the decorating of carboplatin-loaded MOF-808 with galactose units to target asialoglycoprotein receptors of specific cancer cell types. Targeting towards HepG2 cells, which overexpress these receptors, is indicated by enhanced endocytosis and cytotoxicity in both two- and three-dimensional cell cultures compared to other cell lines. The study shows both the power of the NITEC protocol for functionalisation of MOFs, and also the benefits of carbohydrate targeting in drug delivery vectors, with scope for significant additional work diversifying the surface targeting units available for nanoparticle functionalisation under these mild, biocompatible "photoclick" conditions.
Collapse
Affiliation(s)
- Yang Wang
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | | - Andrea Bistrović Popov
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - Arvin Eskandari
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
| | - Ljiljana Fruk
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - Ross S Forgan
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
7
|
Guo Z, Xiao Y, Wu W, Zhe M, Yu P, Shakya S, Li Z, Xing F. Metal-organic framework-based smart stimuli-responsive drug delivery systems for cancer therapy: advances, challenges, and future perspectives. J Nanobiotechnology 2025; 23:157. [PMID: 40022098 PMCID: PMC11871784 DOI: 10.1186/s12951-025-03252-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 02/18/2025] [Indexed: 03/03/2025] Open
Abstract
Cancer treatment is currently one of the most critical healthcare issues globally. A well-designed drug delivery system can precisely target tumor tissues, improve efficacy, and reduce damage to normal tissues. Stimuli-responsive drug delivery systems (SRDDSs) have shown promising application prospects. Intelligent nano drug delivery systems responsive to endogenous stimuli such as weak acidity, complex redox characteristics, hypoxia, active energy metabolism, as well as exogenous stimuli like high temperature, light, pressure, and magnetic fields are increasingly being applied in chemotherapy, radiotherapy, photothermal therapy, photodynamic therapy, and various other anticancer approaches. Metal-organic frameworks (MOFs) have become promising candidate materials for constructing SRDDSs due to their large surface area, tunable porosity and structure, ease of synthesis and modification, and good biocompatibility. This paper reviews the application of MOF-based SRDDSs in various modes of cancer therapy. It summarizes the key aspects, including the classification, synthesis, modifications, drug loading modes, stimuli-responsive mechanisms, and their roles in different cancer treatment modalities. Furthermore, we address the current challenges and summarize the potential applications of artificial intelligence in MOF synthesis. Finally, we propose strategies to enhance the efficacy and safety of MOF-based SRDDSs, ultimately aiming at facilitating their clinical translation.
Collapse
Affiliation(s)
- Ziliang Guo
- Division of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuzhen Xiao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100005, China
| | - Wenting Wu
- Department of Pediatric Surgery, Division of Orthopedic Surgery, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Man Zhe
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Peiyun Yu
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Carl-Troll-Str. 31, 53115, Bonn, Germany
| | - Sujan Shakya
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhihui Li
- Division of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Fei Xing
- Department of Pediatric Surgery, Division of Orthopedic Surgery, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Wang Z, Han M, Wang Y, Wang N, Yang Y, Shao B, Miao Q, Shi Z, Yan F, Feng S. UiO-66 MOFs-Based "Epi-Nano-Sonosensitizer" for Ultrasound-Driven Cascade Immunotherapy against B-Cell Lymphoma. ACS NANO 2025; 19:6282-6298. [PMID: 39920081 DOI: 10.1021/acsnano.4c15761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
B-cell lymphoma (BCL) is a hematological malignancy with high heterogeneity and represents an aggressive proliferation of mature B-cells. Despite the initial success of traditional treatments for BCL in clinical trials, a majority of patients eventually develop resistance to therapy and have poor clinical outcomes. Epigenetic dysregulation is a major contributor to the pathogenesis of BCL, and therapies targeting epigenetic pathways is a promising alternative strategy for treating BCL. Herein, we developed a metal-organic framework (MOF)-based nano-sonosensitizer for ultrasound-driven cascade immunotherapy against BCL. The nano-sonosensitizer was synthesized by encapsulating copper complex of the m6A-mRNA demethylase inhibitor into UiO-66-NH2, which possesses a Z-scheme heterostructure and allows efficient electron-hole pair separation for generating reactive oxygen species (ROS) under ultrasound activation. These CuR@UiO66 sonosensitizers were functionalized with mPEG-PO3 and anti-CD19 antibody, and the resulting CRUPPA19 particles could specifically accumulate in the BCL tissue and also target lymphoma cells that infiltrated into the bone marrow. Once internalized, CRUPPA19 could induce intracellular ROS production and apoptosis under ultrasound irradiation. Subsequently, ultrasonic stimulation triggered autophagy-mediated release of Cu and Rhein from CRUPPA19, thereby increasing protein lipoylation and global mRNA methylation, which led to cuproptosis and the transcriptional repression PDL1, respectively. These cascades synergistically induced immunogenic cell death in the tumors and promoted activation of CD8+ T cells, eventually leading to an antilymphoma immune response. CRUPPA19-mediated sono-immunotherapy not only eliminated the primary and metastatic lymphomas but also cleared lymphoma cells from the bone marrow. This study provided an insight into a MOF-based nanoepigenetic therapy platform with ultrasound-triggered cascade amplification for enhanced antihematological tumor immunity.
Collapse
Affiliation(s)
- Zhihua Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Mingda Han
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Yiqiao Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Ning Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Yilin Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Bingru Shao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Qiannan Miao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Fei Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
9
|
Melle F, Menon D, Conniot J, Ostolaza-Paraiso J, Mercado S, Oliveira J, Chen X, Mendes BB, Conde J, Fairen-Jimenez D. Rational Design of Metal-Organic Frameworks for Pancreatic Cancer Therapy: from Machine Learning Screening to In Vivo Efficacy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2412757. [PMID: 39895194 DOI: 10.1002/adma.202412757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/09/2024] [Indexed: 02/04/2025]
Abstract
Despite improvements in cancer survival rates, metastatic and surgery-resistant cancers, such as pancreatic cancer, remain challenging, with poor prognoses and limited treatment options. Enhancing drug bioavailability in tumors, while minimizing off-target effects, is crucial. Metal-organic frameworks (MOFs) have emerged as promising drug delivery vehicles owing to their high loading capacity, biocompatibility, and functional tunability. However, the vast chemical diversity of MOFs complicates the rational design of biocompatible materials. This study employed machine learning and molecular simulations to identify MOFs suitable for encapsulating gemcitabine, paclitaxel, and SN-38, and identified PCN-222 as an optimal candidate. Following drug loading, MOF formulations are improved for colloidal stability and biocompatibility. In vitro studies on pancreatic cancer cell lines have shown high biocompatibility, cellular internalization, and delayed drug release. Long-term stability tests demonstrated a consistent performance over 12 months. In vivo studies in pancreatic tumor-bearing mice revealed that paclitaxel-loaded PCN-222, particularly with a hydrogel for local administration, significantly reduced metastatic spread and tumor growth compared to the free drug. These findings underscore the potential of PCN-222 as an effective drug delivery system for the treatment of hard-to-treat cancers.
Collapse
Affiliation(s)
- Francesca Melle
- The Adsorption & Advanced Materials Laboratory (AAML), Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Dhruv Menon
- The Adsorption & Advanced Materials Laboratory (AAML), Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - João Conniot
- NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
- Comprehensive Health Research Centre (CHRC), NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Jon Ostolaza-Paraiso
- The Adsorption & Advanced Materials Laboratory (AAML), Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Sergio Mercado
- The Adsorption & Advanced Materials Laboratory (AAML), Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Jhenifer Oliveira
- NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
- Comprehensive Health Research Centre (CHRC), NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Xu Chen
- The Adsorption & Advanced Materials Laboratory (AAML), Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Bárbara B Mendes
- NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
- Comprehensive Health Research Centre (CHRC), NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - João Conde
- NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
- Comprehensive Health Research Centre (CHRC), NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - David Fairen-Jimenez
- The Adsorption & Advanced Materials Laboratory (AAML), Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| |
Collapse
|
10
|
Tong Y, Yang J, Xia F, Gu J. Construction of Compartmentalized Meso/Micro Spaces in Hierarchically Porous MOFs with Long-Chain Functional Ligands Inspired by Biological Signal Amplification. JACS AU 2025; 5:178-186. [PMID: 39886565 PMCID: PMC11775693 DOI: 10.1021/jacsau.4c00866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 02/01/2025]
Abstract
The creation of spatially coupled meso-/microenvironments with biomimetic compartmentalized functionalities is of great significance to achieve efficient signal transduction and amplification. Herein, using a soft-template strategy, UiO-67-type hierarchically mesoporous metal-organic frameworks (HMMOFs) were constructed to satisfy the requirements of such an artificial system. The key to the successful synthesis of HMUiO-67 is rooted in the utilization of the preformed cerium-oxo clusters as metal precursors, aligning the growth of MOF crystals with the mild conditions required for the self-assembly of the soft template. The adoption of long-chain functional 2,2'-bipyridine-5,5'-dicarboxylic acid ligands not only resulted in larger microporous sizes, facilitating the transport of various cascade reaction intermediates, but also provided anchorages for the introduction of enzyme-mimicking active sites. A cascade amplification system was designed based on the developed HMUiO-67, in which enzyme cascade reactions were initiated and relayed by a target analyte in the separate but coupled meso/micro spaces. As a proof of concept, natural acetylcholinesterase (AChE) and Cu-based laccase mimetics were integrated into HMMOFs, establishing a spatially coupled nanoreactor. The activity of AChE was triggered by the target analyte of carbaryl, while the amplified products of AChE catalysis mediated the activity of biomimetic enzyme in the closely proximate microporous spaces, producing further amplification of detectable signal. This enabled the entire cascade system to respond to minimal carbaryl with a limit of detection as low as approximately 2 nM. Such a model of cascade amplification is expected to set a conceptual guideline for the rational design of various bioreactors, serving as a sensitive response system for quantifying numerous target analytes.
Collapse
Affiliation(s)
- Yao Tong
- Key Lab for Ultrafine Materials
of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Yang
- Key Lab for Ultrafine Materials
of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fan Xia
- Key Lab for Ultrafine Materials
of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jinlou Gu
- Key Lab for Ultrafine Materials
of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
11
|
Han X, Chen J, Cheng Z, Zhou S. Design of an anti-PD-L1-mediated MOF nanodrug delivery system using terpyridine-metal coordination for tumor theranostics. Chem Commun (Camb) 2025; 61:1407-1410. [PMID: 39711326 DOI: 10.1039/d4cc05933f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
An anti-PD-L1 mediated nanodrug delivery system is developed by modifying the MOF surface and using Tpy-Gd3+-Tpy coordination chemistry, enabling the simultaneous delivery of chemotherapy and immunotherapy drugs. The platform enables regulated drug release and integrates multiple imaging modalities, promoting targeted delivery and facilitating tumor diagnosis through FL and MR imaging.
Collapse
Affiliation(s)
- Xu Han
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Jia Chen
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Zhihao Cheng
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Shengwang Zhou
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China.
| |
Collapse
|
12
|
Zhang P, Mukwaya V, Guan Q, Xiong S, Tian Z, Levi-Kalisman Y, Raviv U, Xu Y, Han J, Dou H. Dextran-based nanodrugs with mitochondrial targeting/glutathione depleting synergy for enhanced photodynamic therapy. Carbohydr Polym 2025; 348:122854. [PMID: 39562123 DOI: 10.1016/j.carbpol.2024.122854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/27/2024] [Accepted: 10/08/2024] [Indexed: 11/21/2024]
Abstract
The efficacy of photodynamic therapy (PDT) for malignant tumors is significantly impeded by the short diffusion distance of reactive oxygen species (ROS) and the ROS-consuming glutathione (GSH) overexpressed in tumor cells. Therefore, enhanced PDT can be achieved by the construction of biomacromolecule-based nanodrugs that can specifically target ROS-sensitive mitochondria and deplete intracellular GSH. Herein, we synthesized the dextran-based nano-assemblies by a Graft copolymerization Induced Self-Assembly (GISA) method, in which methyl acrylate and diallyl disulfide (DADS) were copolymerized from a mixed dextran/amino dextran backbone in an aqueous medium. Notably, the disulfide bond-containing DADS served as both GSH-depleting agent and GSH-responsive crosslinker. In order to develop a nanodrug with mitochondrial targeting/GSH depleting synergy, we further conjugated a mitochondria-targeting ligand onto the amino dextran corona, and developed a "loading-post-assembly" strategy to load a hydrophobic photosensitizer protoporphyrin IX or even multi-drugs into the hydrophobic core of the nano-assemblies. Cell and animal studies illustrated that the nanodrug could accumulate in the mitochondria of tumor cells to generate ROS in situ and thus eliminate tumors. Taken together, our work presents the dextran-based nanodrug as an efficient platform to achieve mitochondria-targeting PDT with an enhanced efficiency by simultaneously depleting intracellular GSH.
Collapse
Affiliation(s)
- Peipei Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Vincent Mukwaya
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qixiao Guan
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuhan Xiong
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhengtao Tian
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yael Levi-Kalisman
- Institute of Life Sciences and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Uri Raviv
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Yichun Xu
- Shanghai Biochip Co. Ltd., National Engineering Center for Biochip at Shanghai, 151 Libing Road, Shanghai 201203, China
| | - Junsong Han
- Shanghai Biochip Co. Ltd., National Engineering Center for Biochip at Shanghai, 151 Libing Road, Shanghai 201203, China
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
13
|
Chen X, Zhang X, Zhao Y. Metal-organic framework-based hybrids with photon upconversion. Chem Soc Rev 2025; 54:152-177. [PMID: 39540626 DOI: 10.1039/d4cs00571f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Upconversion materials (UCMs) featuring an anti-Stokes type emission establish them as an important category of photoluminescent materials. Metal-organic frameworks (MOFs) are rapidly gaining prominence as a class of versatile materials with favourable physical and chemical properties, including high porosity, controllable pore size, flexible design, and diverse functional sites. To endow MOFs with upconversion capability and improve the properties and performance of UCMs, the hybrids integrating UCMs and MOFs are proven to be successful. This review focuses on the research advancements of upconverting MOF-based hybrids, encompassing classifications, luminescence mechanisms, designs, properties, and applications in energy, catalysis, and biomedical fields. The analyses on the functions of upconversion and MOFs, as well as the advantages and disadvantages of various upconverting MOF-based hybrids, are included. Future research directions spanning from properties and performance to applications are explored. This review will be valuable in highlighting the research accomplishments, inspiring more ideas, facilitating deeper investigations in diverse avenues, and further advancing the research field.
Collapse
Affiliation(s)
- Xiaokai Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang link, Singapore, 637371, Singapore.
| | - Xiaodong Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang link, Singapore, 637371, Singapore.
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang link, Singapore, 637371, Singapore.
| |
Collapse
|
14
|
Li S, Gao H, Wang H, Zhao X, Pan D, Pacheco-Fernández I, Ma M, Liu J, Hirvonen J, Liu Z, Santos HA. Tailored polysaccharide entrapping metal-organic framework for RNAi therapeutics and diagnostics in atherosclerosis. Bioact Mater 2025; 43:376-391. [PMID: 39399834 PMCID: PMC11470791 DOI: 10.1016/j.bioactmat.2024.08.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 10/15/2024] Open
Abstract
Metal-organic frameworks (MOFs) hold promise as theranostic carriers for atherosclerosis. However, to further advance their therapeutic effects with higher complexity and functionality, integrating multiple components with complex synthesis procedures are usually involved. Here, we reported a facile and general strategy to prepare multifunctional anti-atherosclerosis theranostic platform in a single-step manner. A custom-designed multifunctional polymer, poly(butyl methacrylate-co-methacrylic acid) branched phosphorylated β-glucan (PBMMA-PG), can effectively entrap different MOFs via coordination, simultaneously endow the MOF with enhanced stability, lesional macrophages selectivity and enhanced endosome escape. Sequential ex situ characterization and computational studies elaborated the potential mechanism. This facile post-synthetic modification granted the administered nanoparticles atherosclerotic tropism by targeting Dectin-1+ macrophages, enhancing in situ MR signal intensity by 72 %. Delivery of siNLRP3 effectively mitigated NLRP3 inflammasomes activation, resulting a 43 % reduction of plaque area. Overall, the current study highlights a simple and general approach for fabricating a MOF-based theranostic platform towards atherosclerosis conditioning, which may also expand to other indications targeting the lesional macrophages.
Collapse
Affiliation(s)
- Sen Li
- Department of Vascular Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Han Gao
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, 9713 AV, Groningen, the Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Haoji Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, PR China
| | - Xiaolin Zhao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Da Pan
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, 210009, PR China
| | - Idaira Pacheco-Fernández
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Ming Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, PR China
| | - Jianjun Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Jouni Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Zehua Liu
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, 9713 AV, Groningen, the Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Hélder A. Santos
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, 9713 AV, Groningen, the Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| |
Collapse
|
15
|
Xiong X, Zhang Y, Huang X, Zhang S, Li Q. Generating Immunological Memory Against Cancer by Camouflaging Gold-Based Photothermal Nanoparticles in NIR-II Biowindow for Mimicking T-Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407038. [PMID: 39394989 DOI: 10.1002/smll.202407038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Indexed: 10/14/2024]
Abstract
Photothermal therapy (PTT) against cancer not only directly ablates tumors but also induces tumor immunogenic cell death (ICD). However, the antitumor immune response elicited by ICD is insufficient to prevent relapse and metastasis because of the immunosuppressive tumor microenvironment (TME). A biomimetic nanoplatform (bmNP) mimicking cytotoxic lymphocytes (CTLs) for combinational photothermal-immunotherapy to effectively regulate the immunosuppressive TME is reported here. The bmNP is constructed by wrapping the T-cell membrane onto a new type of photothermal agents, spherical Au-based PNCs (sAuPNCs). Similar to T-cells, the bmNP enhanced accumulation at the tumor site by targeting the tumor via adhesion proteins on T-cell membrane. The obtained sAuPNCs have a wide absorption band in the second near-infrared (NIR-II) region with a high photothermal conversion efficiency (PCE) up to about 75% and excellent photostability. The bmNP with a smaller size is more superior compete with T-cells to bond with tumor cells via PD-1/PD-L1 interaction to effectively block the PD-1 checkpoint of T-cells for preventing T-cell exhaustion. Furthermore, in vivo studies reveal the immunological memory effect is significantly elicited in mice received bmNPs therapy. Collectively, bmNPs show great potential in photothermal-enhanced immunotherapy.
Collapse
Affiliation(s)
- Xuefan Xiong
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. China
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi, 276005, P. R. China
| | - Ying Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. China
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi, 276005, P. R. China
| | - Xinqi Huang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. China
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi, 276005, P. R. China
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. China
| | - Qiong Li
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. China
| |
Collapse
|
16
|
Mena-Gutiérrez S, Maiza-Razkin E, Pascual-Colino J, Araúzo-Bravo MJ, Beobide G, Castillo O, Castellanos-Rubio A, Gerovska D, Luque A, Pérez-Yáñez S. Drug-delivery and biological activity in colorectal cancer of a supramolecular porous material assembled from heptameric chromium-copper-adenine entities. J Mater Chem B 2024; 12:11156-11164. [PMID: 39376154 DOI: 10.1039/d4tb01521e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
The therapeutic application of drugs often faces challenges due to non-specific distribution, inadequate dosification and degradation, which limits their efficacy. Two primary strategies are employed to overcome these issues: the use of derivatives of the active substances and incorporation of those into porous materials. The latter, involving materials such as zeolites, metal-organic frameworks (MOFs), and hydrogels, has shown promising results in protecting the active ingredients from degradation and enabling a controlled release. This study focuses on supramolecular metal-organic frameworks (SMOFs), which leverage supramolecular interactions for enhanced pore size control. [Cu6Cr(μ-adeninato-κN3:κN9)6(μ3-OH)6(μ-OH2)6](SO4)1.5·nH2O (Cu6Cr) was chosen for its flexible porous structure, water-stability, and paramagnetic properties. Magnetic sustentation studies showed that this compound was able to capture several drug molecules: 5-fluorouracil (5-FU), 5-aminosalicylic acid (5-ASA), 4-aminosalicylic acid (4-ASA) and theophylline (THEO). Their release follows a pseudo-first-order kinetics with desorption half-lives ranging from 2.2 to 4.7 hours. In this sense, a novel approach is proposed using bulkier raffinose and cholesterol as pore-blocking molecules. Cholesterol exhibited the best performance as a blocking molecule increasing the desorption half-life up to 8.2 hours. Cytotoxicity and RNA-seq transcriptomic assays carried out on human colorectal cancer cell cultures showed, on one hand, that the Cu6Cr porous material exhibits a proliferative effect, probably coming from the over-expression of MIR1248 and SUMO2 genes, and on the other hand, that there is a delay in the emergence of the cytotoxicity of 5-FU as expected for a slower release.
Collapse
Affiliation(s)
- Sandra Mena-Gutiérrez
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apartado 644, E-48080 Bilbao, Spain.
| | - Ekain Maiza-Razkin
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apartado 644, E-48080 Bilbao, Spain.
| | - Jon Pascual-Colino
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apartado 644, E-48080 Bilbao, Spain.
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, E-48940 Leioa, Spain
| | - Marcos J Araúzo-Bravo
- IKERBASQUE, Basque Foundation for Science, E-48011, Bilbao, Spain
- Computational Biology and Systems Biomedicine Research Group, Biogipuzkoa Health Research Institute, Donostia, Spain
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), Spain
| | - Garikoitz Beobide
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apartado 644, E-48080 Bilbao, Spain.
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, E-48940 Leioa, Spain
| | - Oscar Castillo
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apartado 644, E-48080 Bilbao, Spain.
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, E-48940 Leioa, Spain
| | - Ainara Castellanos-Rubio
- IKERBASQUE, Basque Foundation for Science, E-48011, Bilbao, Spain
- Biobizkaia Research Institute, E-480903 Barakaldo, Bizkaia, Spain
- Departamento de Genetica, Antropologia Fisica y Fisiologia Animal, UPV-EHU, E-48940 Leioa, Bizkaia, Spain
| | - Daniela Gerovska
- Computational Biology and Systems Biomedicine Research Group, Biogipuzkoa Health Research Institute, Donostia, Spain
| | - Antonio Luque
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apartado 644, E-48080 Bilbao, Spain.
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, E-48940 Leioa, Spain
| | - Sonia Pérez-Yáñez
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apartado 644, E-48080 Bilbao, Spain.
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, E-48940 Leioa, Spain
| |
Collapse
|
17
|
Wei Z, Zhu J, He Y, Lai J, Pan B, Feng K, Chen L, Cao L, Wang Y, Qian K. Improving the efficiency and environmental safety of emamectin benzoate through a pH-responsive metal-organic framework microencapsulation strategy. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134847. [PMID: 38885583 DOI: 10.1016/j.jhazmat.2024.134847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
Herein, we developed a technique for loading nanopesticides onto Metal-Organic Frameworks (MOFs) to control Spodoptera litura. The average short-axis length of the synthesized carrier emamectin benzoate@PCN-222 @hyaluronic acid (EB@PCN-222 @HA) was ∼40 nm, with an average long-axis length of ∼80 nm. This enabled the manipulation of its size, contact angle, and surface tension on the surface of leaves. Pesticide-loading capacity, determined via thermogravimetric analysis, was measured at ∼16 %. To ensure accurate pesticide release in the alkaline intestine of Spodoptera litura, EB@PCN-222 @HA was engineered to decompose under alkaline conditions. In addition, the carrier delayed the degradation rate of EB, enhancing EB's stability. Loading Nile red onto PCN-222 @HA revealed potential entry into the insect body through feeding, which was supported by bioassay experiments. Results demonstrated the sustained-release performance of EB@PCN-222 @HA, extending its effective duration. The impact of different carrier concentrations on root length, stem length, fresh weight, and germination rate of pakchoi and tomato were assessed. Promisingly, the carrier exhibited a growth-promoting effect on the fresh weight of both the crops. Furthermore, cytotoxicity experiments confirmed its safety for humans. In cytotoxicity assays, PCN-222 @HA showed minimal toxicity at concentrations up to 100 mg/L, with cell survival rates above 80 %. Notably, the EB@PCN-222 @HA complex demonstrated reduced cytotoxicity compared to EB alone, supporting its safety for human applications. This study presents a safe and effective approach for pest control using controlled-release pesticides with extended effective durations.
Collapse
Affiliation(s)
- Zheng Wei
- College of Plant Protection, Southwest University, Chongqing 400715, China; Institute of Environment and Sustainable Development in Agriculture, Chinese Academic of Agriculture Sciences, Beijing 100081, China
| | - Jingxuan Zhu
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Ying He
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Jie Lai
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Bingjie Pan
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Kaiyang Feng
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Lihan Chen
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Lidong Cao
- The Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Yan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academic of Agriculture Sciences, Beijing 100081, China.
| | - Kun Qian
- College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, China.
| |
Collapse
|
18
|
Yang P, Xie P, Lin F, Wang T, Zhang L, Yan F. Synthesis of two Fluorescent Complexes and Their use as Multifunctional Nanomedicine Carriers for Rhabdomyosarcoma Treatment. J Fluoresc 2024:10.1007/s10895-024-03832-4. [PMID: 38985396 DOI: 10.1007/s10895-024-03832-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024]
Abstract
This study focuses on the design and synthesis of two novel coordination polymers (CPs), named 1 and 2, with excellent fluorescent properties. Their structures were characterized by X-ray single-crystal diffraction, revealing that both materials exhibit promising fluorescence performance, indicating their potential as fluorescent detection tools. Additionally, 1 was chosen to be combined with chitosan (CS), resulting in the successful fabrication of a biodegradable and non-toxic efficient drug carrier, termed CS-1@Cisplatin. This carrier possesses a large surface area and good solubility, enabling sustained drug release to target cells. Given that CXC motif chemokine receptor type 4 (CXCR4) is a key marker gene highly expressed in Rhabdomyosarcoma (RMS) cells and tissues, RMS was chosen as the biological model for testing. The results demonstrated that CS-1@Cisplatin effectively inhibited the invasiveness of RMS cells by significantly suppressing CXCR4 expression. Therefore, the system shows great potential for applications in RMS treatment, biometrics, and drug delivery, particularly in its unique advantage of targeting RMS by inhibiting the key marker gene CXCR4.
Collapse
Affiliation(s)
- Ping Yang
- Department of Oncology, The Eighth People's Hospital of Shanghai, Shanghai, 200233, China
| | - Peng Xie
- Department of Orthopedics, The Third Affliated Hospital The Affliated Luohu Hospital of Shenzhen University, Shenzhen, 518000, China
| | - Feng Lin
- Department of Oncology, The Eighth People's Hospital of Shanghai, Shanghai, 200233, China
| | - Tian Wang
- Department of Oncology, The Eighth People's Hospital of Shanghai, Shanghai, 200233, China
| | - Lian Zhang
- Department of Oncology, The Eighth People's Hospital of Shanghai, Shanghai, 200233, China
| | - Fei Yan
- Department of Oncology, The Eighth People's Hospital of Shanghai, Shanghai, 200233, China.
| |
Collapse
|
19
|
Jin X, Xiao R, Cao Z, Du X. Smart controlled-release nanopesticides based on metal-organic frameworks. Chem Commun (Camb) 2024; 60:6082-6092. [PMID: 38813806 DOI: 10.1039/d4cc01390e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The practical utilization rates of conventional pesticide formulations by target organisms are very low, which results in the pollution of ecological environments and the formation of pesticide residues in agricultural products. Water-based nanopesticide formulations could become alternative and effective formulations to eventually resolve the main issues of conventional pesticide formulations. In this feature article, we describe the design concept of smart (stimuli-responsive) controlled-release nanopesticides, which are created toward hierarchical targets (pests, pathogens, and foliage) in response to multidimensional stimuli from physiological and environmental factors (such as sunlight) of target organisms and plants, for achieving enhanced insecticidal and fungicidal efficacies. The pore sizes and functionalities of metal-organic frameworks (MOFs) can be fine-tuned through the choice of metal-containing units and organic ligands. Tailor-made MOF nanoparticles with large microporous or mesoporous sizes, as well as good biocompatibility and high thermal, mechanical, and chemical durabilities, are used to load pesticides within these pores followed by coating of plant polyphenols and natural polymers for stimuli-responsive controlled pesticide release. This feature article highlights our works on smart controlled-release MOF-based nanopesticides and also includes related works from other laboratories. The future challenges and promising prospects of smart controlled-release MOF-based nanopesticides are also discussed.
Collapse
Affiliation(s)
- Xin Jin
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Ruixi Xiao
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Zejun Cao
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Xuezhong Du
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| |
Collapse
|
20
|
Liu X, Obacz J, Emanuelli G, Chambers JE, Abreu S, Chen X, Linnane E, Mehta JP, Wheatley AEH, Marciniak SJ, Fairen-Jimenez D. Enhancing Drug Delivery Efficacy Through Bilayer Coating of Zirconium-Based Metal-Organic Frameworks: Sustained Release and Improved Chemical Stability and Cellular Uptake for Cancer Therapy. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:3588-3603. [PMID: 38681089 PMCID: PMC11044268 DOI: 10.1021/acs.chemmater.3c02954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 05/01/2024]
Abstract
The development of nanoparticle (NP)-based drug carriers has presented an exciting opportunity to address challenges in oncology. Among the 100,000 available possibilities, zirconium-based metal-organic frameworks (MOFs) have emerged as promising candidates in biomedical applications. Zr-MOFs can be easily synthesized as small-size NPs compatible with intravenous injection, whereas the ease of decorating their external surfaces with functional groups allows for targeted treatment. Despite these benefits, Zr-MOFs suffer degradation and aggregation in real, in vivo conditions, whereas the loaded drugs will suffer the burst effect-i.e., the fast release of drugs in less than 48 h. To tackle these issues, we developed a simple but effective bilayer coating strategy in a generic, two-step process. In this work, bilayer-coated MOF NU-901 remained well dispersed in biologically relevant fluids such as buffers and cell growth media. Additionally, the coating enhances the long-term stability of drug-loaded MOFs in water by simultaneously preventing sustained leakage of the drug and aggregation of the MOF particles. We evaluated our materials for the encapsulation and transport of pemetrexed, the standard-of-care chemotherapy in mesothelioma. The bilayer coating allowed for a slowed release of pemetrexed over 7 days, superior to the typical 48 h release found in bare MOFs. This slow release and the related performance were studied in vitro using both A549 lung cancer and 3T mesothelioma cells. Using high-resolution microscopy, we found the successful uptake of bilayer-coated MOFs by the cells with an accumulation in the lysosomes. The pemetrex-loaded NU-901 was indeed cytotoxic to 3T and A549 cancer cells. Finally, we demonstrated the general approach by extending the coating strategy using two additional lipids and four surfactants. This research highlights how a simple yet effective bilayer coating provides new insights into the design of promising MOF-based drug delivery systems.
Collapse
Affiliation(s)
- Xiewen Liu
- The
Adsorption & Advanced Materials Laboratory (AML),
Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United
Kingdom
| | - Joanna Obacz
- Cambridge
Institute for Medical Research, Keith Peters Building, Cambridge Biomedical
Campus, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Giulia Emanuelli
- Cambridge
Institute for Medical Research, Keith Peters Building, Cambridge Biomedical
Campus, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Joseph E. Chambers
- Cambridge
Institute for Medical Research, Keith Peters Building, Cambridge Biomedical
Campus, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Susana Abreu
- Cambridge
Institute for Medical Research, Keith Peters Building, Cambridge Biomedical
Campus, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Xu Chen
- The
Adsorption & Advanced Materials Laboratory (AML),
Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United
Kingdom
| | - Emily Linnane
- The
Adsorption & Advanced Materials Laboratory (AML),
Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United
Kingdom
| | - Joshua P. Mehta
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Andrew E. H. Wheatley
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Stefan J. Marciniak
- Cambridge
Institute for Medical Research, Keith Peters Building, Cambridge Biomedical
Campus, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - David Fairen-Jimenez
- The
Adsorption & Advanced Materials Laboratory (AML),
Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United
Kingdom
| |
Collapse
|
21
|
Wijesundara YH, Howlett TS, Kumari S, Gassensmith JJ. The Promise and Potential of Metal-Organic Frameworks and Covalent Organic Frameworks in Vaccine Nanotechnology. Chem Rev 2024; 124:3013-3036. [PMID: 38408451 DOI: 10.1021/acs.chemrev.3c00409] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The immune system's complexity and ongoing evolutionary struggle against deleterious pathogens underscore the value of vaccination technologies, which have been bolstering human immunity for over two centuries. Despite noteworthy advancements over these 200 years, three areas remain recalcitrant to improvement owing to the environmental instability of the biomolecules used in vaccines─the challenges of formulating them into controlled release systems, their need for constant refrigeration to avoid loss of efficacy, and the requirement that they be delivered via needle owing to gastrointestinal incompatibility. Nanotechnology, particularly metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), has emerged as a promising avenue for confronting these challenges, presenting a new frontier in vaccine development. Although these materials have been widely explored in the context of drug delivery, imaging, and cancer immunotherapy, their role in immunology and vaccine-related applications is a recent yet rapidly developing field. This review seeks to elucidate the prospective use of MOFs and COFs for biomaterial stabilization, eliminating the necessity for cold chains, enhancing antigen potency as adjuvants, and potentializing needle-free delivery of vaccines. It provides an expansive and critical viewpoint on this rapidly evolving field of research and emphasizes the vital contribution of chemists in driving further advancements.
Collapse
Affiliation(s)
- Yalini H Wijesundara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Thomas S Howlett
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Sneha Kumari
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Jeremiah J Gassensmith
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
- Department of Biomedical Engineering, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| |
Collapse
|
22
|
Ge X, Mohapatra J, Silva E, He G, Gong L, Lyu T, Madhogaria RP, Zhao X, Cheng Y, Al-Enizi AM, Nafady A, Tian J, Liu JP, Phan MH, Taraballi F, Pettigrew RI, Ma S. Metal-Organic Framework as a New Type of Magnetothermally-Triggered On-Demand Release Carrier. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306940. [PMID: 38127968 DOI: 10.1002/smll.202306940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/03/2023] [Indexed: 12/23/2023]
Abstract
The development of external stimuli-controlled payload systems has been sought after with increasing interest toward magnetothermally-triggered drug release (MTDR) carriers due to their non-invasive features. However, current MTDR carriers present several limitations, such as poor heating efficiency caused by the aggregation of iron oxide nanoparticles (IONPs) or the presence of antiferromagnetic phases which affect their efficiency. Herein, a novel MTDR carrier is developed using a controlled encapsulation method that fully fixes and confines IONPs of various sizes within the metal-organic frameworks (MOFs). This novel carrier preserves the MOF's morphology, porosity, and IONP segregation, while enhances heating efficiency through the oxidation of antiferromagnetic phases in IONPs during encapsulation. It also features a magnetothermally-responsive nanobrush that is stimulated by an alternating magnetic field to enable on-demand drug release. The novel carrier shows improved heating, which has potential applications as contrast agents and for combined chemo and magnetic hyperthermia therapy. It holds a great promise for magneto-thermally modulated drug dosing at tumor sites, making it an exciting avenue for cancer treatment.
Collapse
Affiliation(s)
- Xueying Ge
- Department of Chemistry, University of North Texas, Denton, Texas, 76201, USA
- Engineering Medicine (EnMed), Texas A&M University and Houston Methodist Hospital, Houston, Texas, 77030, USA
| | - Jeotikanta Mohapatra
- Department of Physics, The University of Texas at Arlington, Arlington, Texas, 76019, USA
| | - Enya Silva
- Department of Physics, University of South Florida, Tampa, Florida, 33620, USA
| | - Guihua He
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, P. R. China
| | - Lingshan Gong
- Department of Chemistry, University of North Texas, Denton, Texas, 76201, USA
| | - Tengteng Lyu
- Department of Chemistry, University of North Texas, Denton, Texas, 76201, USA
| | - Richa P Madhogaria
- Department of Physics, University of South Florida, Tampa, Florida, 33620, USA
| | - Xin Zhao
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Yuchuan Cheng
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Abdullah M Al-Enizi
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Jian Tian
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, P. R. China
| | - J Ping Liu
- Department of Physics, The University of Texas at Arlington, Arlington, Texas, 76019, USA
| | - Manh-Huong Phan
- Department of Physics, University of South Florida, Tampa, Florida, 33620, USA
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston Methodist Academic Institute, Houston, Texas, 77030, USA
| | - Roderic I Pettigrew
- Engineering Medicine (EnMed), Texas A&M University and Houston Methodist Hospital, Houston, Texas, 77030, USA
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, Denton, Texas, 76201, USA
| |
Collapse
|
23
|
Koschnick C, Terban MW, Canossa S, Etter M, Dinnebier RE, Lotsch BV. Influence of Water Content on Speciation and Phase Formation in Zr-Porphyrin-Based MOFs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210613. [PMID: 36930851 DOI: 10.1002/adma.202210613] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Controlled synthesis of phase-pure metal-organic frameworks (MOFs) is essential for their application in technological areas such as catalysis or gas sorption. Yet, knowledge of their phase formation and growth remain rather limited, particularly with respect to species such as water whose vital role in MOF synthesis is often neglected. As a consequence, synthetic protocols often lack reproducibility when multiple MOFs can form from the same metal source and linker, and phase mixtures are obtained with little or no control over their composition. In this work, the role of water in the formation of the Zr-porphyrin MOF disordered PCN-224 (dPCN-224) is investigated. Through X-ray total scattering and scanning electron microscopy, it is observed that dPCN-224 forms via a metal-organic intermediate that consists of Zr6O4(OH)4 clusters linked by tetrakis(4-carboxy-phenyl)porphyrin molecules. Importantly, water is not only essential to the formation of Zr6O4(OH)4 clusters, but it also plays a primary role in dictating the formation kinetics of dPCN-224. This multidisciplinary approach to studying the speciation of dPCN-224 provides a blueprint for how Zr-MOF synthesis protocols can be assessed and their reproducibility increased, and highlights the importance of understanding the role of water as a decisive component in Zr-MOF formation.
Collapse
Affiliation(s)
- Charlotte Koschnick
- Nanochemistry Department, Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569, Stuttgart, Germany
- Department of Chemistry, University of Munich, Butenandtstraße 5-13, 81377, Munich, Germany
- Center for Nanoscience, Schellingstraße 4, 80799, Munich, Germany
| | - Maxwell W Terban
- Nanochemistry Department, Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569, Stuttgart, Germany
| | - Stefano Canossa
- Nanochemistry Department, Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569, Stuttgart, Germany
| | - Martin Etter
- German Electron Synchrotron (DESY), Notkestraße 85, D-22607, Hamburg, Germany
| | - Robert E Dinnebier
- Nanochemistry Department, Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569, Stuttgart, Germany
| | - Bettina V Lotsch
- Nanochemistry Department, Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569, Stuttgart, Germany
- Department of Chemistry, University of Munich, Butenandtstraße 5-13, 81377, Munich, Germany
- Center for Nanoscience, Schellingstraße 4, 80799, Munich, Germany
| |
Collapse
|
24
|
Carrillo-Carrión C, Farrando-Perez J, Daemen LL, Cheng YQ, Ramirez-Cuesta AJ, Silvestre-Albero J. Zr-Porphyrin Metal-Organic Framework as nanoreactor for boosting the formation of hydrogen clathrates. Angew Chem Int Ed Engl 2024; 63:e202315280. [PMID: 38088497 DOI: 10.1002/anie.202315280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Indexed: 01/03/2024]
Abstract
We report the first experimental evidence for rapid formation of hydrogen clathrates under mild pressure and temperature conditions within the cavities of a zirconium-metalloporphyrin framework, specifically PCN-222. PCN-222 has been selected for its 1D mesoporous channels, high water-stability, and proper hydrophilic behavior. Firstly, we optimize a microwave (MW)-assisted method for the synthesis of nanosized PCN-222 particles with precise structure control (exceptional homogeneity in morphology and crystalline phase purity), taking advantage of MW in terms of rapid/homogeneous heating, time and energy savings, as well as potential scalability of the synthetic method. Second, we explore the relevance of the large mesoporous 1D open channels within the PCN-222 to promote the nucleation and growth of confined hydrogen clathrates. Experimental results show that PCN-222 drives the nucleation process at a lower pressure than the bulk system (1.35 kbar vs 2 kbar), with fast kinetics (minutes), using pure water, and with a nearly complete water-to-hydrate conversion. Unfortunately, PCN-222 cannot withstand these high pressures, which lead to a significant alteration of the mesoporous structure while the microporous network remains mainly unchanged.
Collapse
Affiliation(s)
| | - Judit Farrando-Perez
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica-Instituto, Universitario de Materiales, Universidad de Alicante, 03690, San Vicente del Raspeig, Spain
| | - Luke L Daemen
- Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Yongqiang Q Cheng
- Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | | | - Joaquin Silvestre-Albero
- Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica-Instituto, Universitario de Materiales, Universidad de Alicante, 03690, San Vicente del Raspeig, Spain
| |
Collapse
|
25
|
Zhang M, Cheng J, Shen Z, He K, Zheng B. Red light-triggered release of ROS and carbon monoxide for combinational antibacterial application. J Mater Chem B 2024; 12:1077-1086. [PMID: 38168810 DOI: 10.1039/d3tb01829f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The abuse of antibiotics has led to the emergence of a wide range of drug-resistant bacteria. To address the challenge of drug-resistant bacterial infections and related infectious diseases, several effective antibacterial strategies have been developed. To achieve enhanced therapeutic effects, combinational treatment approaches should be employed. With this in mind, a metal-organic framework (MOF) based nanoreactor with integrated photodynamic therapy (PDT) and gas therapy which can release reactive oxygen species (ROS) and carbon monoxide (CO) under red light irradiation has been developed. The release of ROS and CO under red light irradiation exerts a preferential antibacterial effect on Gram-positive/Gram-negative bacteria. The bactericidal effects of ROS and CO on Staphylococcus aureus (S. aureus) and methicillin-resistant S. aureus (MRSA) are better than ROS only, showing a combinational antibacterial effect. Furthermore, the fluorescence emission properties of porphyrin moieties can be leveraged for real-time tracking and imaging of the nanoreactors. The simple preparation procedures of this material further enhance its potential as a versatile and effective antibacterial candidate, thereby presenting a new strategy for PDT and gas combinational treatment.
Collapse
Affiliation(s)
- Mengdan Zhang
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jian Cheng
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhiqiang Shen
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Kewu He
- Imaging Center of the Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, China.
| | - Bin Zheng
- School of Chemistry and Pharmaceutical Engineering, Hefei Normal University, Hefei, Anhui, 230061, China.
| |
Collapse
|
26
|
Chen X, Mendes B, Zhuang Y, Conniot J, Mercado Argandona S, Melle F, Sousa DP, Perl D, Chivu A, Patra HK, Shepard W, Conde J, Fairen-Jimenez D. A Fluorinated BODIPY-Based Zirconium Metal-Organic Framework for In Vivo Enhanced Photodynamic Therapy. J Am Chem Soc 2024; 146:1644-1656. [PMID: 38174960 PMCID: PMC10797627 DOI: 10.1021/jacs.3c12416] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024]
Abstract
Photodynamic therapy (PDT), an emergent noninvasive cancer treatment, is largely dependent on the presence of efficient photosensitizers (PSs) and a sufficient oxygen supply. However, the therapeutic efficacy of PSs is greatly compromised by poor solubility, aggregation tendency, and oxygen depletion within solid tumors during PDT in hypoxic microenvironments. Despite the potential of PS-based metal-organic frameworks (MOFs), addressing hypoxia remains challenging. Boron dipyrromethene (BODIPY) chromophores, with excellent photostability, have exhibited great potential in PDT and bioimaging. However, their practical application suffers from limited chemical stability under harsh MOF synthesis conditions. Herein, we report the synthesis of the first example of a Zr-based MOF, namely, 69-L2, exclusively constructed from the BODIPY-derived ligands via a single-crystal to single-crystal post-synthetic exchange, where a direct solvothermal method is not applicable. To increase the PDT performance in hypoxia, we modify 69-L2 with fluorinated phosphate-functionalized methoxy poly(ethylene glycol). The resulting 69-L2@F is an oxygen carrier, enabling tumor oxygenation and simultaneously acting as a PS for reactive oxygen species (ROS) generation under LED irradiation. We demonstrate that 69-L2@F has an enhanced PDT effect in triple-negative breast cancer MDA-MB-231 cells under both normoxia and hypoxia. Following positive results, we evaluated the in vivo activity of 69-L2@F with a hydrogel, enabling local therapy in a triple-negative breast cancer mice model and achieving exceptional antitumor efficacy in only 2 days. We envision BODIPY-based Zr-MOFs to provide a solution for hypoxia relief and maximize efficacy during in vivo PDT, offering new insights into the design of promising MOF-based PSs for hypoxic tumors.
Collapse
Affiliation(s)
- Xu Chen
- The
Adsorption & Advanced Materials Laboratory (AML),
Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Bárbara
B. Mendes
- ToxOmics,
NOVA Medical School, Faculdade de Ciências Médicas,
NMS|FCM, Universidade Nova de Lisboa, Lisboa 2775-405, Portugal
| | - Yunhui Zhuang
- The
Adsorption & Advanced Materials Laboratory (AML),
Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - João Conniot
- ToxOmics,
NOVA Medical School, Faculdade de Ciências Médicas,
NMS|FCM, Universidade Nova de Lisboa, Lisboa 2775-405, Portugal
| | - Sergio Mercado Argandona
- The
Adsorption & Advanced Materials Laboratory (AML),
Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Francesca Melle
- The
Adsorption & Advanced Materials Laboratory (AML),
Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Diana P. Sousa
- ToxOmics,
NOVA Medical School, Faculdade de Ciências Médicas,
NMS|FCM, Universidade Nova de Lisboa, Lisboa 2775-405, Portugal
| | - David Perl
- Synchrotron
SOLEIL-UR1, L’Orme des Merisiers, Départementale 128, 91190 Saint-Aubin, France
| | - Alexandru Chivu
- Department
of Surgical Biotechnology, University College
London, London NW3 2PF, U.K.
| | - Hirak K. Patra
- Department
of Surgical Biotechnology, University College
London, London NW3 2PF, U.K.
| | - William Shepard
- Synchrotron
SOLEIL-UR1, L’Orme des Merisiers, Départementale 128, 91190 Saint-Aubin, France
| | - João Conde
- ToxOmics,
NOVA Medical School, Faculdade de Ciências Médicas,
NMS|FCM, Universidade Nova de Lisboa, Lisboa 2775-405, Portugal
| | - David Fairen-Jimenez
- The
Adsorption & Advanced Materials Laboratory (AML),
Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| |
Collapse
|
27
|
Linares-Moreau M, Brandner LA, Velásquez-Hernández MDJ, Fonseca J, Benseghir Y, Chin JM, Maspoch D, Doonan C, Falcaro P. Fabrication of Oriented Polycrystalline MOF Superstructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309645. [PMID: 38018327 DOI: 10.1002/adma.202309645] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/19/2023] [Indexed: 11/30/2023]
Abstract
The field of metal-organic frameworks (MOFs) has progressed beyond the design and exploration of powdery and single-crystalline materials. A current challenge is the fabrication of organized superstructures that can harness the directional properties of the individual constituent MOF crystals. To date, the progress in the fabrication methods of polycrystalline MOF superstructures has led to close-packed structures with defined crystalline orientation. By controlling the crystalline orientation, the MOF pore channels of the constituent crystals can be aligned along specific directions: these systems possess anisotropic properties including enhanced diffusion along specific directions, preferential orientation of guest species, and protection of functional guests. In this perspective, we discuss the current status of MOF research in the fabrication of oriented polycrystalline superstructures focusing on the specific crystalline directions of orientation. Three methods are examined in detail: the assembly from colloidal MOF solutions, the use of external fields for the alignment of MOF particles, and the heteroepitaxial ceramic-to-MOF growth. This perspective aims at promoting the progress of this field of research and inspiring the development of new protocols for the preparation of MOF systems with oriented pore channels, to enable advanced MOF-based devices with anisotropic properties.
Collapse
Affiliation(s)
- Mercedes Linares-Moreau
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
| | - Lea A Brandner
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
| | | | - Javier Fonseca
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Youven Benseghir
- Faculty of Chemistry, Institute of Functional Materials and Catalysis, University of Vienna, Währingerstr. 42, Vienna, A-1090, Austria
| | - Jia Min Chin
- Faculty of Chemistry, Institute of Functional Materials and Catalysis, University of Vienna, Währingerstr. 42, Vienna, A-1090, Austria
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Barcelona, 08193, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Christian Doonan
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Graz, 8010, Austria
| |
Collapse
|
28
|
Miao G, He Y, Lai K, Zhao Y, He P, Tan G, Wang X. Accelerated blood clearance of PEGylated nanoparticles induced by PEG-based pharmaceutical excipients. J Control Release 2023; 363:12-26. [PMID: 37717659 DOI: 10.1016/j.jconrel.2023.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/19/2023]
Abstract
PEGylated nanomedicines have been extensively developed and applied to cancer therapy. However, the antitumor efficacy of these nanoparticles is hampered by the accelerated blood clearance (ABC) effect caused by anti-PEG antibodies in vivo. There is still limited understanding about the cause of pre-existing anti-PEG antibodies in the human body. Herein, we discovered that PEG-based pharmaceutical excipients, commonly used in clinical and daily settings, could induce anti-PEG antibodies in vivo and lead to considerable potential clinical impacts on pharmacokinetics and pharmacodynamics of PEGylated nanoparticles. Specifically, we investigated the ability of poloxamer 188 (F68) and poloxamer 407 (F127), the two most frequently used PEG-based pharmaceutical excipients, to elicit the production of anti-PEG antibodies and influence the pharmacokinetics of PEGylated nanoparticles, with PEGylated liposome nanoparticles (L-NPs) as a model. Anti-PEG IgG and IgM levels were significantly boosted 3.8- and 32.2-fold, respectively, after pre-injection with F68, leading to rapid clearance of subsequently injected L-NPs from circulation due to the capture by neutrophils and monocytes. However, pre-injection of F127 did not induce the production of anti-PEG IgG, although there was a 7.7-fold increase in IgM level, which resulted in minimal effect on circulation time of L-NPs. Furthermore, the potential clinical impacts of F68 and F127 were further inspected for PEGylated liposomal doxorubicin (PLD). It was found that administering F68 prior to treatment led to over a one-third decrease in the antitumor effectiveness of PLD, while F127 had a negligible impact. Our study elucidates the mechanism by which PEG-based pharmaceutical excipients influence the effectiveness of PEGylated nanomedicines. It also highlights the significance of considering the potential for an ABC effect induced by PEG-based pharmaceutical excipients in patients.
Collapse
Affiliation(s)
- Guifeng Miao
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, 510515 Guangzhou, Guangdong Province, China
| | - Yuejian He
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, 510515 Guangzhou, Guangdong Province, China
| | - Keren Lai
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, 510515 Guangzhou, Guangdong Province, China
| | - Yan Zhao
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, 510515 Guangzhou, Guangdong Province, China
| | - Peiyi He
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, 510515 Guangzhou, Guangdong Province, China
| | - Guozhu Tan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, 510515 Guangzhou, Guangdong Province, China
| | - Xiaorui Wang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, 510515 Guangzhou, Guangdong Province, China.
| |
Collapse
|
29
|
Ding H, Xia Q, Shen J, Zhu C, Zhang Y, Feng N. Advances and prospects of tumor immunotherapy mediated by immune cell-derived biomimetic metal-organic frameworks. Colloids Surf B Biointerfaces 2023; 232:113607. [PMID: 39491916 DOI: 10.1016/j.colsurfb.2023.113607] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 11/05/2024]
Abstract
The clinical translational success of nanomedicine and immunotherapy has already proved the immense potential in the field of nanotechnology and immunization. However, the development of nanomedicine is confronted with challenges such as potential toxicity and unclear nano-bio interactions. The efficacy of immunotherapy is limited to only a few groups. Combining immunotherapy with nanomedicine for multi-modal treatment effectively compensates for the limitations of the above single therapy. Immune cell membrane camouflaged metal-organic frameworks (ICM-MOFs) have emerged as a simple yet promising multimodal treatment strategy that possess multifunctional nanoscale properties and exhibit immune cell-like behaviors of stealth, targeting and immunomodulation. Here, we comprehensively discuss the latest advancements in ICM-MOFs, with a focus on the challenges of mono-immunotherapy, the superiority of biomimetic coating for MOF functionalization, preparation methods, related action mechanisms and biomedical applications. Finally, we address the challenges and prospects for clinical translation.
Collapse
Affiliation(s)
- Huining Ding
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qing Xia
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiaqi Shen
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chunyun Zhu
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yongtai Zhang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
30
|
Yu J, Li Q, Wei Z, Fan G, Wan F, Tian L. Ultra-stable MOF@MOF nanoplatform for photodynamic therapy sensitized by relieved hypoxia due to mitochondrial respiration inhibition. Acta Biomater 2023; 170:330-343. [PMID: 37607616 DOI: 10.1016/j.actbio.2023.08.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/20/2023] [Accepted: 08/14/2023] [Indexed: 08/24/2023]
Abstract
Metal-organic frameworks (MOFs) with periodically arranged porphyrinic linkers avoiding the self-quenching issue of porphyrins in photodynamic therapy (PDT) have been widely applied. However, the porphyrinic MOFs still face challenges of poor stability under physiological conditions and limited photodynamic efficiency by the hypoxia condition of tumors. Herein, we fabricate the MOF@MOF structure with a protective MOF shell to improve the stability and relieve the hypoxia condition of tumors for sensitized PDT. Under protection of the MOF shell, the MOF@MOF structure can keep intact for 96 h under physiological conditions. Consequently, the tumoral accumulation efficiency is two folds of the MOF core. Furthermore, the MOF shell decomposes under acidic environment, and the loaded inhibitor of mitochondria pyruvate carrier (7-amino carboxycoumarins-2, 7ACC2) will be released. 7ACC2 inhibits the mitochondrial pyruvate influx and simultaneously blocks glucose and lactate from fueling the mitochondrial respiration, thereupon relieving the hypoxia condition of tumors. Under a 5-min laser irradiation, the 7ACC2 carrying MOF@MOF nanoplatforms induced doubled cellular apoptosis and reduced 70% of the tumor growth compared with the cargo-free MOF@MOF. In summary, the design of this stable and hypoxia self-relievable MOF@MOF nanoplatform will enlighten the future development of MOF-based nanomedicines and PDT. STATEMENT OF SIGNIFICANCE: Though widely used for photodynamic therapy (PDT) in previous studies, porphyrinic metal-organic frameworks (MOFs) still face challenges in poor stability under physiological conditions and limited photodynamic efficiency due to the hypoxia condition of tumors. In order to solve these problems, (1) we develop the MOF@MOF strategy to improve the physiological stability; (2) an inhibitor of mitochondria pyruvate carrier, 7-amino carboxycoumarins-2 (7ACC2), is loaded to inhibit the mitochondrial pyruvate influx and simultaneously block glucose and lactate from fueling the mitochondrial respiration, thereupon relieving the hypoxia condition of tumors. In comparison with previous studies, our strategy simultaneously improves stability and overcomes the limited PDT efficiency in the hypoxia tumor tissue, which will enlighten the future development of MOF-based nanomedicines and PDT.
Collapse
Affiliation(s)
- Jiantao Yu
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong 518055, PR China
| | - Qing Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong 518055, PR China
| | - Zixiang Wei
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong 518055, PR China
| | - Guiling Fan
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong 518055, PR China
| | - Feiyan Wan
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong 518055, PR China
| | - Leilei Tian
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong 518055, PR China.
| |
Collapse
|
31
|
Lei W, Yang J, Wang J, Xiao Z, Zhou P, Zheng S, Zhu P. Synergetic EGCG and coenzyme Q10 DSPC liposome nanoparticles protect against myocardial infarction. Biomater Sci 2023; 11:6862-6870. [PMID: 37646313 DOI: 10.1039/d3bm00857f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
At the site of myocardial infarction (MI), various phenomena such as oxidative stress and myocardial apoptosis can be observed. Both epigallocatechin gallate (EGCG) and coenzyme Q10 (CoQ10) exhibit antioxidant and anti-inflammatory effects. Macrophages have demonstrated a higher internalization rate of cationic liposomes, thereby increasing their bioavailability. This study utilized EGCG in synergy with CoQ10 as an antioxidant agent and distearyl phosphatidylcholine (DSPC) as the carrier, to create liposome nanoparticles known as CE-LNPs. The CE-LNPs exhibited favorable biocompatibility and were effectively engulfed by macrophages in vitro. In addition, the CE-LNPs effectively eradicated reactive oxygen species (ROS) in hypoxic cardiomyocytes, mitigated myocardial cell apoptosis, and sustained the functionality and proliferation of myocardial cells. The anti-apoptotic effect of the CE-LNPs was further validated through TUNEL and Annexin V FITC/PI experiments. The therapeutic efficacy of CE-LNPs was evaluated in a murine model of MI. CE-LNPs demonstrated a significant reduction in scar area in vivo, facilitating cardiac repair and improving cardiac function. These findings provide evidence that EGCG synergistically combined with CoQ10 in DSPC liposome nanoparticles offers protection against MI.
Collapse
Affiliation(s)
- Wenrui Lei
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Jie Yang
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Junwei Wang
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Zezhou Xiao
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Pengyu Zhou
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Shaoyi Zheng
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Peng Zhu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
32
|
Li Y, Wang J, Li H, Guo M, Sun X, Liu C, Yu C. MnO 2 Decorated Metal-Organic Framework-Based Hydrogel Relieving Tumor Hypoxia for Enhanced Photodynamic Therapy. Macromol Rapid Commun 2023; 44:e2300268. [PMID: 37402482 DOI: 10.1002/marc.202300268] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 07/06/2023]
Abstract
Photodynamic therapy (PDT) has emerged as a promising cancer treatment modality; however, its therapeutic efficacy is greatly limited by tumor hypoxia. In this study, a metal-organic framework (MOF)-based hydrogel (MOF Gel) system that synergistically combines PDT with the supply of oxygen is designed. Porphyrin-based Zr-MOF nanoparticles are synthesized as the photosensitizer. MnO2 is decorated onto the surface of the MOF, which can effectively convert H₂O₂ into oxygen. Simultaneously, the incorporation of MnO2 -decorated MOF (MnP NPs) into a chitosan hydrogel (MnP Gel) serves to enhance its stability and retention at the tumor site. The results show that this integrated approach significantly improves tumor inhibition efficiency by relieving tumor hypoxia and enhancing PDT. Overall, the findings underscore the potential for employing nano-MOF-based hydrogel systems as promising agents for cancer therapy, thus advancing the application of multifunctional MOFs in cancer treatment.
Collapse
Affiliation(s)
- Yifan Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jian Wang
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hanrong Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Miantong Guo
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoyan Sun
- Department of Blood Transfusion, Anyang District Hospital of Puyang, Henan, 455000, China
| | - Chaoyong Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
33
|
Xia HL, Zhang J, Si J, Wang H, Zhou K, Wang L, Li J, Sun W, Qu L, Li J, Liu XY. Size- and Emission-Controlled Synthesis of Full-Color Luminescent Metal-Organic Frameworks for Tryptophan Detection. Angew Chem Int Ed Engl 2023; 62:e202308506. [PMID: 37416970 DOI: 10.1002/anie.202308506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/08/2023]
Abstract
The development of nanoscaled luminescent metal-organic frameworks (nano-LMOFs) with organic linker-based emission to explore their applications in sensing, bioimaging and photocatalysis is of great interest as material size and emission wavelength both have remarkable influence on their performances. However, there is lack of platforms that can systematically tune the emission and size of nano-LMOFs with customized linker design. Herein two series of fcu- and csq-type nano-LMOFs, with precise size control in a broad range and emission colors from blue to near-infrared, were prepared using 2,1,3-benzothiadiazole and its derivative based ditopic- and tetratopic carboxylic acids as the emission sources. The modification of tetratopic carboxylic acids using OH and NH2 as the substituent groups not only induces significant emission bathochromic shift of the resultant MOFs, but also endows interesting features for their potential applications. As one example, we show that the non-substituted and NH2 -substituted nano-LMOFs exhibit turn-off and turn-on responses for highly selective and sensitive detection of tryptophan over other nineteen natural amino acids. This work sheds light on the rational construction of nano-LMOFs with specific emission behaviours and sizes, which will undoubtedly facilitate their applications in related areas.
Collapse
Affiliation(s)
- Hai-Lun Xia
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, People's Republic of China
| | - Jian Zhang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, People's Republic of China
| | - Jincheng Si
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, People's Republic of China
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, People's Republic of China
| | - Hexiang Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Kang Zhou
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, People's Republic of China
| | - Lei Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, People's Republic of China
| | - Jingbai Li
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, People's Republic of China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Lulu Qu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, People's Republic of China
| | - Jing Li
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, People's Republic of China
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, NJ, 08854, USA
| | - Xiao-Yuan Liu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, People's Republic of China
| |
Collapse
|
34
|
Liang Y, Yang X, Wang X, Guan ZJ, Xing H, Fang Y. A cage-on-MOF strategy to coordinatively functionalize mesoporous MOFs for manipulating selectivity in adsorption and catalysis. Nat Commun 2023; 14:5223. [PMID: 37634039 PMCID: PMC10460432 DOI: 10.1038/s41467-023-40973-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 08/15/2023] [Indexed: 08/28/2023] Open
Abstract
Functionalizing porous materials with capping agents generates hybrid materials with enhanced properties, while the challenge is how to improve the selectivity and maintain the porosity of the parent framework. Herein, we developed a "Cage-on-MOF" strategy to tune the recognition and catalytic properties of MOFs without impairing their porosity. Two types of porous coordination cages (PCCs) of opposite charges containing secondary binding groups were developed to coordinatively functionalize two distinct porous MOFs, namely MOF@PCC nanocomposites. We demonstrated that the surface-capped PCCs can act as "modulators" to effectively tune the surface charge, stability, and adsorption behavior of different host MOF particles. More importantly, the MOF@PCCs can serve as selective heterogeneous catalysts for condensation reactions to achieve reversed product selectivity and excellent recyclability. This work sets the foundation for using molecular cages as porous surface-capping agents to functionalize and manipulate another porous material, without affecting the intrinsic properties of the parent framework.
Collapse
Affiliation(s)
- Yu Liang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, Hunan, China
- Innovation Institute of Industrial Design and Machine Intelligence Quanzhou-Hunan University, Quanzhou, 362801, Fujian, China
| | - Xiaoxin Yang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, Hunan, China
- Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, 410082, Hunan, China
| | - Xiaoyu Wang
- Kuang Yaming Honors School, Nanjing University, Nanjing, 210023, China
| | - Zong-Jie Guan
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, Hunan, China
- Innovation Institute of Industrial Design and Machine Intelligence Quanzhou-Hunan University, Quanzhou, 362801, Fujian, China
| | - Hang Xing
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, Hunan, China.
- Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, 410082, Hunan, China.
| | - Yu Fang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, Hunan, China.
- Innovation Institute of Industrial Design and Machine Intelligence Quanzhou-Hunan University, Quanzhou, 362801, Fujian, China.
| |
Collapse
|
35
|
Yang X, Zhang Q, Liu Y, Nian M, Xie M, Xie S, Yang Q, Wang S, Wei H, Duan J, Dong S, Xing H. Metal-Organic Framework Nanoparticles with Universal Dispersibility through Crown Ether Surface Coordination for Phase-Transfer Catalysis and Separation Membranes. Angew Chem Int Ed Engl 2023; 62:e202303280. [PMID: 37040089 DOI: 10.1002/anie.202303280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/12/2023]
Abstract
Dispersing metal-organic framework (MOF) solids in stable colloids is crucial for their availability and processibility. Herein, we report a crown ether surface coordination approach for functionalizing the surface-exposed metal sites of MOF particles with amphiphilic carboxylated crown ether (CEC ). The surface-bound crown ethers significantly improve MOF solvation without compromising the accessible voids. We demonstrate that CEC -coated MOFs exhibit exceptional colloidal dispersibility and stability in 11 distinct solvents and six polymer matrices with a wide range of polarities. The MOF-CEC can be instantaneously suspended in immiscible two-phase solvents as an effective phase-transfer catalyst and can form various uniform membranes with enhanced adsorption and separation performance, which highlights the effectiveness of crown ether coating.
Collapse
Affiliation(s)
- Xiaoxin Yang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Qiao Zhang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yufeng Liu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Mengjie Nian
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Min Xie
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Shasha Xie
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Qinglian Yang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Suna Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Hui Wei
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Jingui Duan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Shengyi Dong
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Hang Xing
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
36
|
Wang A, Barcus K, Cohen SM. Quantifying Ligand Binding to the Surface of Metal-Organic Frameworks. J Am Chem Soc 2023. [PMID: 37487227 PMCID: PMC10401703 DOI: 10.1021/jacs.3c04892] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The binding of molecules to the exterior surface of metal-organic frameworks (MOFs) is not a well-understood phenomenon. Herein, the surface chemistry of three MOFs, UiO-66, MIL-88B-NH2, and ZIF-8, is investigated using dye-displacement experiments. MOF particle surfaces were modified with ligand-appended BODIPY dyes. The ability of the coordinated dyes to be displaced by a variety of exogenous ligands was measured by ultraviolet-visible spectroscopy. This method allowed for measurement of apparent binding constants for different ligands to the MOF surface. As might be expected, ligand affinity was dependent on the nature of the underlying metal-ligand composition of the MOF. This work provides a quantitative evaluation of ligand binding to MOF surfaces and important insights for the modulation, modification, and manipulation of MOFs.
Collapse
Affiliation(s)
- Austin Wang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Kyle Barcus
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
37
|
Menon D, Chakraborty S. How safe are nanoscale metal-organic frameworks? FRONTIERS IN TOXICOLOGY 2023; 5:1233854. [PMID: 37424745 PMCID: PMC10326718 DOI: 10.3389/ftox.2023.1233854] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/16/2023] [Indexed: 07/11/2023] Open
Abstract
Owing to the size scales that can be accessed, the nanoscale has opened doors to new physical and chemical properties, not seen in the bulk. These properties are leveraged by nanomaterials (NMs) across a plethora of applications. More recently, nanoscale metal-organic frameworks (nMOFs) have witnessed explosive growth due to the modularity of their chemical constituents, the ability to modify their composition and structure, and exceptional properties such as permanent porosity and high surface areas. These properties have prompted the investigation of these materials for applications in biological and environmental contexts. However, one aspect that is often ignored in these discussions is their safety at a nanoscale. In this mini review, we aim to initiate a discussion on the safety and toxicity of nMOFs, drawing parallels with the existing guidelines and literature on the safety of inorganic NMs. We first describe why nMOFs are of considerable interest to the scientific community followed by a discussion on routes through which they can be exposed to the environment and living organisms, particularly shedding light on their transformation mechanisms. The review also discusses the factors affecting toxicity of nMOFs, such as their size, shape, morphology, and composition. We briefly highlight potential mechanisms of toxicity and conclude with describing the need to transition towards data-intensive computational approaches such as machine learning to establish nMOFs as credible materials for their envisioned applications.
Collapse
Affiliation(s)
- Dhruv Menon
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom
| | - Swaroop Chakraborty
- School of Geography, Earth and Environmental Sciences, The University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
38
|
Li J, Peng H, Ji W, Lu D, Wang N, Peng C, Zhang W, Li M, Li Y. Advances in surface-modified nanometal-organic frameworks for drug delivery. Int J Pharm 2023:123119. [PMID: 37302666 DOI: 10.1016/j.ijpharm.2023.123119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Nanometal-organic frameworks (NMOFs) are porous network structures composed of metal ions or metal clusters through self-assembly. NMOFs have been considered as a promising nano-drug delivery system due to their unique properties such as pore and flexible structures, large specific surface areas, surface modifiability, non-toxic and degradable properties. However, NMOFs face a series complex environment during in vivo delivery. Therefore, surface functionalization of NMOFs is vital to ensure that the structure of NMOFs remain stable during delivery, and can overcome physiological barriers to deliver drugs more accurately to specific sites, and achieve controllable release. In this review, the first part summarizes the physiological barriers that NMOFs faced during drug delivery after intravenous injection and oral administration. The second part summarizes the current main ways to load drugs into NMOFs, mainly including pore adsorption, surface attachment, formation of covalent/coordination bonds between drug molecules and NMOFs, and in situ encapsulation. The third part is the main review part of this paper, which summarizes the surface modification methods of NMOFs used in recent years to overcome the physiological barriers and achieve effective drug delivery and disease therapy, which are mainly divided into physical modifications and chemical modifications. Finally, the full text is summarized and prospected, with the hope to provide ideas for the future development of NMOFs as drug delivery.
Collapse
Affiliation(s)
- Jiaxin Li
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huan Peng
- Protein Science Key Laboratory of the Ministry of Education, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Weihong Ji
- Institute of Biomaterials and Tissue Engineering, Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, 361021, China
| | - Dengyang Lu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Nan Wang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chen Peng
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wen Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Muzi Li
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yan Li
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
39
|
Luan X, Xiang Z, Dong J, Wang C, Li X, Shi Q, Du X. Silane-Functionalized Metal-Organic Frameworks for Stimuli-Responsive Drug Delivery Systems: A New Universal Strategy. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37248196 DOI: 10.1021/acsami.3c02052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A new universal strategy for silane functionalization of metal-organic frameworks (MOFs) was developed. It was demonstrated that silanes were coupled both with terminal hydroxyl (OH) groups and with bridging OH groups of metal-oxo clusters of MOFs through condensation reactions between the silanols of hydrolyzed silanes and the terminal/bridging OH groups to form metal-O-Si bonds. A wide variety of functionalization of MOFs with conventional silanes can be realized by combining synthesis reactions in the solution phase and chemical modifications on the surface. Multivalent supramolecular nanovalves based on the host-guest chemistry of cyclodextrin polymer (CDP) and benzimidazole stalks silanized on the nanoscale MOF (NMOF) surface were successfully constructed. The CDP-valved NMOFs showed the excellent performance of low pH- and α-amylase-responsive controlled drug release. In vitro and in vivo results demonstrated that the CDP-valved NMOFs had a significant inhibitory effect on tumor growth and almost no damage/toxicity to normal tissues. The silanization strategy is universal and opens up a new way for the functionalization of MOFs, which are endowed with a wide variety of applications spanning gas storage, chemical sensing, adsorption and separation, heterogeneous catalysis, and drug delivery.
Collapse
Affiliation(s)
- Xingkun Luan
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), State Key Laboratory of Coordination Chemistry, and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Zehong Xiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Jiangtao Dong
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), State Key Laboratory of Coordination Chemistry, and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Chen Wang
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), State Key Laboratory of Coordination Chemistry, and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Xiaona Li
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), State Key Laboratory of Coordination Chemistry, and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Xuezhong Du
- Key Laboratory of Mesoscopic Chemistry (Ministry of Education), State Key Laboratory of Coordination Chemistry, and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| |
Collapse
|
40
|
Wu W, Liu J, Lin X, He Z, Zhang H, Ji L, Gong P, Zhou F, Liu W. Dual-functional MOFs-based hybrid microgel advances aqueous lubrication and anti-inflammation. J Colloid Interface Sci 2023; 644:200-210. [PMID: 37116318 DOI: 10.1016/j.jcis.2023.04.071] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/03/2023] [Accepted: 04/17/2023] [Indexed: 04/30/2023]
Abstract
This paper demonstrates the hybridization of copolymer microgel with drug-loaded metal-organic frameworks nanoparticles that can achieve excellent aqueous lubricating performance and anti-inflammatory effect for synergistic treatment of osteoarthritis (OA). Poly(ethylene glycol)-graft-poly(N-isopropylacrylamide) (PEG-g-PNIPAm) microgel layer is grown on the MIL-101(Cr) surface via one-pot soap-free emulsion polymerization method. The lower critical solution temperature of the MIL-101(Cr)@PEG-g-PNIPAm hybrid is raised significantly by incorporating PEG chains into the PNIPAm microgel matrix, which greatly enhances the high-temperature aqueous dispersion stability. The hybrid microgel demonstrated reversibly thermo-sensitive swelling-collapsing behavior to modulate the optical properties and hydrodynamic size. Using as aqueous lubricating additives, the hybrid reduces over 64% and 97% in friction coefficient and wear volume. Also, the hybrid supports desirable temperature-controlled lubrication modulation due to their reversible thermo-responsive behavior, which is benefit to joint lubrication of OA. After encapsulating anti-inflammatory diclofenac sodium (DS), the DS-MIL-101(Cr)@PEG-g-PNIPAm shows thermo-responsive drug release in aqueous media, which can improve the drug-delivery efficiency. By co-culturing the DS-loaded hybrid with human normal chondrocytes, we demonstrate good biocompatibility and anti-inflammatory effect on the chondrocytes with inflammation by regulating the expression of OA-related genes and proteins. Our work establishes multifunctional MOFs-based hybrid microgel systems for advanced colloids modulation and biomedical application.
Collapse
Affiliation(s)
- Wei Wu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Jianxi Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| | - Xiao Lin
- Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Zhengze He
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Hui Zhang
- Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Le Ji
- Department of Orthopedic Surgery, Shaanxi Provincial People's Hospital, Xi'an 710068, PR China
| | - Peiwei Gong
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Weimin Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| |
Collapse
|
41
|
Sánchez-Fernández JA. Structural Strategies for Supramolecular Hydrogels and Their Applications. Polymers (Basel) 2023; 15:1365. [PMID: 36987146 PMCID: PMC10052692 DOI: 10.3390/polym15061365] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/05/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023] Open
Abstract
Supramolecular structures are of great interest due to their applicability in various scientific and industrial fields. The sensible definition of supramolecular molecules is being set by investigators who, because of the different sensitivities of their methods and observational timescales, may have different views on as to what constitutes these supramolecular structures. Furthermore, diverse polymers have been found to offer unique avenues for multifunctional systems with properties in industrial medicine applications. Aspects of this review provide different conceptual strategies to address the molecular design, properties, and potential applications of self-assembly materials and the use of metal coordination as a feasible and useful strategy for constructing complex supramolecular structures. This review also addresses systems that are based on hydrogel chemistry and the enormous opportunities to design specific structures for applications that demand enormous specificity. According to the current research status on supramolecular hydrogels, the central ideas in the present review are classic topics that, however, are and will be of great importance, especially the hydrogels that have substantial potential applications in drug delivery systems, ophthalmic products, adhesive hydrogels, and electrically conductive hydrogels. The potential interest shown in the technology involving supramolecular hydrogels is clear from what we can retrieve from the Web of Science.
Collapse
Affiliation(s)
- José Antonio Sánchez-Fernández
- Procesos de Polimerización, Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna No. 140, Saltillo 25294, Mexico
| |
Collapse
|
42
|
Cedrún-Morales M, Ceballos M, Polo E, Del Pino P, Pelaz B. Nanosized metal-organic frameworks as unique platforms for bioapplications. Chem Commun (Camb) 2023; 59:2869-2887. [PMID: 36757184 PMCID: PMC9990148 DOI: 10.1039/d2cc05851k] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/16/2022] [Indexed: 02/10/2023]
Abstract
Metal-organic frameworks (MOFs) are extremely versatile materials, which serve to create platforms with exceptional porosity and specific reactivities. The production of MOFs at the nanoscale (NMOFs) offers the possibility of creating innovative materials for bioapplications as long as they maintain the properties of their larger counterparts. Due to their inherent chemical versatility, synthetic methods to produce them at the nanoscale can be combined with inorganic nanoparticles (NPs) to create nanocomposites (NCs) with one-of-a-kind features. These systems can be remotely controlled and can catalyze abiotic reactions in living cells, which have the potential to stimulate further research on these nanocomposites as tools for advanced therapies.
Collapse
Affiliation(s)
- Manuela Cedrún-Morales
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Manuel Ceballos
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Ester Polo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Bioquímica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Pablo Del Pino
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Beatriz Pelaz
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Inorgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
43
|
Du J, Chen G, Yuan X, Yuan J, Li L. Multi-stimuli responsive Cu-MOFs@Keratin drug delivery system for chemodynamic therapy. Front Bioeng Biotechnol 2023; 11:1125348. [PMID: 36815879 PMCID: PMC9936514 DOI: 10.3389/fbioe.2023.1125348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
Although the potential of metal-organic framework (MOF) nanoparticles as drug delivery systems (DDS) for cancer treatment has been established by numerous studies, their clinical applications are still limited due to relatively poor biocompatibility. We fabricated a multifunctional Cu-MOFs@Keratin DDS for loaded drug and chemodynamic therapy (CDT) against tumor cells. The Cu-MOFs core was prepared using a hydrothermal method, and then loaded with the anticancer drug DOX and wrapped in human hair keratin. The Cu-MOFs@Keratin was well characterized by transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), and X-ray photoelectron spectroscopy (XPS). Characterization and pharmacokinetic studies of Cu-MOFs@Keratin were performed in vitro and in vivo. The keratin shell reduced the cytotoxicity and potential leakage of Cu-MOFs to normal cells, and allowed the drug-loaded nanoparticles to accumulate in the tumor tissues through enhanced permeability and retention effect (EPR). The particles entered the tumor cells via endocytosis and disintegrated under the stimulation of intracellular environment, thereby releasing DOX in a controlled manner. In addition, the Cu-MOFs produced hydroxyl radicals (·OH) by consuming presence of high intracellular levels of glutathione (GSH) and H2O2, which decreased the viability of the tumor cells.
Collapse
Affiliation(s)
- Jinsong Du
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and the Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China,Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Guanping Chen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Xinyi Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and the Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Jiang Yuan
- Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China,*Correspondence: Jiang Yuan, ; Li Li,
| | - Li Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and the Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China,School of Clinical Medicine and The Affiliated Hospital, Hangzhou Normal University, Hangzhou, China,*Correspondence: Jiang Yuan, ; Li Li,
| |
Collapse
|
44
|
Wang Y, Wang X, Xie R, Burger JC, Tong Y, Gong S. Overcoming the Blood-Brain Barrier for Gene Therapy via Systemic Administration of GSH-Responsive Silica Nanocapsules. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208018. [PMID: 36445243 DOI: 10.1002/adma.202208018] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/21/2022] [Indexed: 06/16/2023]
Abstract
CRISPR genome editing can potentially treat the root causes of many genetic diseases, including central nervous system (CNS) disorders. However, the promise of brain-targeted therapeutic genome editing relies on the efficient delivery of biologics bypassing the blood-brain barrier (BBB), which represents a major challenge in the development of CRISPR therapeutics. We created and screened a library of glutathione (GSH)-responsive silica nanocapsules (SNCs) for brain targeted delivery of biologics via systemic administration. In vivo studies demonstrate that systemically delivered SNCs conjugated with glucose and rabies virus glycoprotein peptide under glycemic control can efficiently bypass the intact BBB, enabling brain-wide delivery of various biologics including CRISPR genome editors targeting different genes in both Ai14 reporter mice and wild-type mice. In particular, up to 28% neuron editing via systemic delivery of Cre mRNA in Ai14 mice, up to 6.1% amyloid precursor protein (App) gene editing (resulting in 19.1% reduction in the expression level of intact APP), and up to 3.9% tyrosine hydroxylase (Th) gene editing (resulting in 30.3% reduction in the expression level of TH) in wild-type mice are observed. This versatile SNC nanoplatform may offer a novel strategy for the treatment of CNS disorders including Alzheimer's, Parkinson's, and Huntington's disease.
Collapse
Affiliation(s)
- Yuyuan Wang
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Xiuxiu Wang
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Ruosen Xie
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Jacobus C Burger
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Yao Tong
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Shaoqin Gong
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, 53715, USA
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
45
|
Le BQG, Doan TLH. Trend in biodegradable porous nanomaterials for anticancer drug delivery. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023:e1874. [PMID: 36597015 DOI: 10.1002/wnan.1874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 01/05/2023]
Abstract
In recent years, biodegradable nanomaterials have exhibited remarkable promise for drug administration to tumors due to their high drug-loading capacity, biocompatibility, biodegradability, and clearance. This review will discuss and summarize the trends in utilizing biodegradable nanomaterials for anticancer drug delivery, including biodegradable periodic mesoporous organosilicas (BPMOs) and metal-organic frameworks (MOFs). The distinct structure and features of BPMOs and MOFs will be initially evaluated, as well as their use as delivery vehicles for anticancer drug delivery applications. Then, the themes for the development of each material will be utilized to illustrate their drug delivery performance. Finally, the current obstacles and potential for future development as efficient drug delivery systems will be thoroughly reviewed. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Bao Quang Gia Le
- Center for Innovative Materials and Architectures, Ho Chi Minh City, Vietnam.,Vietnam National University-Ho Chi Minh City, Ho Chi Minh City, Vietnam.,Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Tan Le Hoang Doan
- Center for Innovative Materials and Architectures, Ho Chi Minh City, Vietnam.,Vietnam National University-Ho Chi Minh City, Ho Chi Minh City, Vietnam
| |
Collapse
|
46
|
Zhao K, Li M, Zhang P, Cui J. Sticktight-inspired PEGylation for low-fouling coatings. Chem Commun (Camb) 2022; 58:13735-13738. [PMID: 36415979 DOI: 10.1039/d2cc04938d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Polyethylene glycol (PEG) has been widely used for modifying surfaces to reduce non-specific interactions with biomolecules, microorganisms, and cells. Herein, we report a sticktight-inspired PEGylation strategy to fabricate low-fouling coatings. The influence of PEG molecular architectures on the PEG density and biological adhesion were studied. Notably, an increase in the number of arms resulted in improved surface PEGylation and an improved antifouling ability against the adhesion of proteins, mammalian cells and bacteria. The molecular architecture-dependent PEGylation strategy is an attractive approach for developing advanced low-fouling coatings.
Collapse
Affiliation(s)
- Kaijie Zhao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China.
| | - Mengqi Li
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China.
| | - Peiyu Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China.
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China.
- Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
47
|
Xu Z, Luo T, Mao J, McCleary C, Yuan E, Lin W. Monte Carlo Simulation-Guided Design of a Thorium-Based Metal-Organic Framework for Efficient Radiotherapy-Radiodynamic Therapy. Angew Chem Int Ed Engl 2022; 61:e202208685. [PMID: 36149753 PMCID: PMC9647855 DOI: 10.1002/anie.202208685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 11/09/2022]
Abstract
High-Z metal-based nanoscale metal-organic frameworks (nMOFs) with photosensitizing ligands can enhance radiation damage to tumors via a unique radiotherapy-radiodynamic therapy (RT-RDT) process. Here we report Monte Carlo (MC) simulation-guided design of a Th-based nMOF built from Th6 -oxo secondary building units and 5,15-di(p-benzoato)porphyrin (DBP) ligands, Th-DBP, for enhanced RT-RDT. MC simulations revealed that the Th-lattice outperformed the Hf-lattice in radiation dose enhancement owing to its higher mass attenuation coefficient. Upon X-ray or γ-ray radiation, Th-DBP enhanced energy deposition, generated more reactive oxygen species, and induced significantly higher cytotoxicity to cancer cells over the previously reported Hf-DBP nMOF. With low-dose X-ray irradiation, Th-DBP suppressed tumor growth by 88 % in a colon cancer and 97 % in a pancreatic cancer mouse model.
Collapse
Affiliation(s)
- Ziwan Xu
- Department of Chemistry, The University of Chicago, Chicago, IL 60637 (USA)
| | - Taokun Luo
- Department of Chemistry, The University of Chicago, Chicago, IL 60637 (USA)
| | - Jianming Mao
- Department of Chemistry, The University of Chicago, Chicago, IL 60637 (USA)
| | - Caroline McCleary
- Department of Chemistry, The University of Chicago, Chicago, IL 60637 (USA)
| | - Eric Yuan
- Department of Chemistry, The University of Chicago, Chicago, IL 60637 (USA)
| | - Wenbin Lin
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL 60637 (USA)
- Department of Chemistry, The University of Chicago, Chicago, IL 60637 (USA)
| |
Collapse
|
48
|
Lelouche SNK, Biglione C, Horcajada P. Advances in plasmonic-based MOF composites, their bio-applications and perspectives in this field. Expert Opin Drug Deliv 2022; 19:1417-1434. [PMID: 36176048 DOI: 10.1080/17425247.2022.2130245] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Nanomaterials have been used for bio-applications since the late 20st century. In an attempt to tailor and optimize their properties, and by extension their efficiency, composites have attracted considerable attention. In this regard, recent studies on plasmonic nanoparticles and metal-organic framework (NP@MOF) composites suggested these materials show great promise in this field. AREAS COVERED This review focused on the more recent scientific advances in the synthetic strategies to optimize plasmonic MOF nanocomposites currently available, as well as their bio-application, particularly as biosensors and therapy. EXPERT OPINION Plasmonic MOF nanocomposites have shown great potential as they combine the properties of both materials with proven efficiency in bio-application. On the one hand, nanoMOFs have proven their potential particularly as drug nanocarriers, owing to their exceptional porosity and tunability. On the other hand, plasmonic nanoparticles have been an asset for imaging and phototherapy. Different strategies have been reported to develop these nanocomposites, mainly including core-shell, encapsulation, and in situ reduction. In addition, advanced composite structures should be considered, such as mixed metal nanoparticles, hollow structures or the combination of several approaches. Specifically, plasmonic MOF nanocomposites prove to be attractive stimuli responsive drug delivery systems, phototherapeutic agents as well as highly sensitive biosensors.
Collapse
Affiliation(s)
- Sorraya N K Lelouche
- Advanced Porous Materials Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain
| | - Catalina Biglione
- Advanced Porous Materials Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain
| | - Patricia Horcajada
- Advanced Porous Materials Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, 28935 Móstoles-Madrid, Spain
| |
Collapse
|
49
|
Tian Y, Gao Z, Wang N, Hu M, Ju Y, Li Q, Caruso F, Hao J, Cui J. Engineering Poly(ethylene glycol) Nanoparticles for Accelerated Blood Clearance Inhibition and Targeted Drug Delivery. J Am Chem Soc 2022; 144:18419-18428. [PMID: 36166420 DOI: 10.1021/jacs.2c06877] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Surface modification with poly(ethylene glycol) (PEGylation) is an effective strategy to improve the colloidal stability of nanoparticles (NPs) and is often used to minimize cellular uptake and clearance of NPs by the immune system. However, PEGylation can also trigger the accelerated blood clearance (ABC) phenomenon, which is known to reduce the circulation time of PEGylated NPs. Herein, we report the engineering of stealth PEG NPs that can avoid the ABC phenomenon and, when modified with hyaluronic acid (HA), show specific cancer cell targeting and drug delivery. PEG NPs cross-linked with disulfide bonds are prepared by using zeolitic imidazolate framework-8 NPs as templates. The reported templating strategy enables the simultaneous removal of the template and formation of PEG NPs under mild conditions (pH 5.5 buffer). Compared to PEGylated liposomes, PEG NPs avoid the secretion of anti-PEG antibodies and the presence of anti-PEG IgM and IgG did not significantly accelerate the blood clearance of PEG NPs, indicating the inhibition of the ABC effect for the PEG NPs. Functionalization of the PEG NPs with HA affords PEG NPs that retain their stealth properties against macrophages, target CD44-expressed cancer cells and, when loaded with the anticancer drug doxorubicin, effectively inhibit tumor growth. The innovation of this study lies in the engineering of PEG NPs that can circumvent the ABC phenomenon and that can be functionalized for the improved and targeted delivery of drugs.
Collapse
Affiliation(s)
- Yuan Tian
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Zhiliang Gao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Ning Wang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Ming Hu
- School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Yi Ju
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia.,Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Qiang Li
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.,State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
50
|
Zhao D, Wei Y, Jin Q, Yang N, Yang Y, Wang D. PEG‐Functionalized Hollow Multishelled Structures with On‐Off Switch and Rate‐Regulation for Controllable Antimicrobial Release. Angew Chem Int Ed Engl 2022; 61:e202206807. [DOI: 10.1002/anie.202206807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Decai Zhao
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering 1 North 2nd Street, Zhongguancun Beijing 100190 P. R. China
| | - Yanze Wei
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering 1 North 2nd Street, Zhongguancun Beijing 100190 P. R. China
| | - Quan Jin
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering 1 North 2nd Street, Zhongguancun Beijing 100190 P. R. China
| | - Nailiang Yang
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering 1 North 2nd Street, Zhongguancun Beijing 100190 P. R. China
- University of Chinese Academy of Sciences 19A Yuquan Road Beijing 10049 P.R. China
| | - Yang Yang
- Department of Thoracic Surgery Shanghai Pulmonary Hospital Institute for Advanced Study Tongji University Shanghai 200430 P. R. China
| | - Dan Wang
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering 1 North 2nd Street, Zhongguancun Beijing 100190 P. R. China
- University of Chinese Academy of Sciences 19A Yuquan Road Beijing 10049 P.R. China
| |
Collapse
|