1
|
Li Z, Shen M, Meng F, Zhang Y, Duan W, Hou C, Zhang M. Engineering Oxidase-Based Cascade Nanoreactors Design, Catalytic Efficiency, and Applications in Disease Monitoring. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501976. [PMID: 40351055 DOI: 10.1002/smll.202501976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/14/2025] [Indexed: 05/14/2025]
Abstract
Inspired by the advantages of biological cascade catalytic systems, it has been devoted to the discovery of novel oxidase-based cascade catalytic systems for disease monitoring. However, the low stability, easy inactivation, and poor reproducibility of oxidase significantly limit their practical applications. Immobilization of the oxidase can be enabled to protect them from external mediators and improve catalytic efficiency and reproducibility. Notably, the substrate channels and spatial confinement play an essential role in the construction of immobilized cascade nanoreactors to enhance the overall activity. Moreover, nanozymes, a class of enzyme mimics, have not only enzyme-like activity but also high stability and tunable catalytic properties, which bolster the development of cascade nanoreactors. Herein, recent advances in the assembly of cascade reactors involving enzymes/nanozymes are described. The importance of substrate channeling and spatial distribution in regulating the catalytic efficiency of the nanoreactor is highlighted. Then, along with an in-depth discussion of the cascade biosensors for disease monitoring, the design and application of innovative devices based on these sensing principles are also summarized, including microfluidic systems, hydrogel-based platforms, and test paper technologies. Finally, challenges and prospects for cascade nanoreactors are briefly discussed and prospected.
Collapse
Affiliation(s)
- Zongda Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830046, P. R. China
- College of Life Science & Technology, Xinjiang University, Urumqi, 830046, P. R. China
| | - Mingping Shen
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830046, P. R. China
- College of Life Science & Technology, Xinjiang University, Urumqi, 830046, P. R. China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Fanxing Meng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830046, P. R. China
- College of Life Science & Technology, Xinjiang University, Urumqi, 830046, P. R. China
| | - Youning Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830046, P. R. China
- School of Intelligent Agriculture and Technology, Xinjiang University, Urumqi, 830046, P. R. China
| | - Weiwei Duan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830046, P. R. China
- College of Life Science & Technology, Xinjiang University, Urumqi, 830046, P. R. China
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Minwei Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830046, P. R. China
- School of Intelligent Agriculture and Technology, Xinjiang University, Urumqi, 830046, P. R. China
| |
Collapse
|
2
|
Lv Z, Liu M, Yang Y, Chen T, Yang W, Wang Y, Zhao Z, Lan K, Zhao T, Li Q, Li X, Zhao D. Hierarchical Engineering of Single-Crystalline Mesoporous Metal-Organic Frameworks with Hollow Structures. J Am Chem Soc 2025; 147:14585-14594. [PMID: 40257329 DOI: 10.1021/jacs.5c01415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Although the superiority of hierarchical structure has driven extensive demand for applications, establishing hierarchy in a long-range-ordered single crystal remains a formidable challenge due to the inherent competition and contradiction between single crystallinity and controllable hierarchical structure. Herein, we demonstrate a growth and dissociation kinetics cooperative strategy for synthesizing a family of hollow single-crystalline mesoporous metal-organic frameworks (meso-MOFs) with hierarchical structures. The approach employs a dual-template method, integrating both hard and soft templates. By adjusting the HCl/CH3COOH ratio, the reaction system's pH can be tuned to regulate the dissociation kinetics of the acid-sensitive seeds serving as hard templates for the formation of hollow structure, while simultaneously modifying the concentration of the dual acids to control the growth kinetics of meso-MOF shells. The competition between maintaining a single crystallinity and achieving a well-defined hierarchical structure can be effectively balanced. Driven by the two interfacial kinetics, we successfully obtained the octahedral meso-MOF nanoparticles that not only exhibit a well-defined hollow structure with precisely controllable hollow size (∼81-1120 nm) and tunable wall thickness (∼28.6-61.3 nm) but also retain their single-crystal integrity. Specifically, the dissociation kinetics of seeds governed the formation of hollow structures, while the growth kinetics of single-crystalline meso-MOF shells ensured uniform coverage and structural integrity. Based on this strategy, we further developed a series of novel hollow meso-MOFs with hierarchical nanostructures, including hollow open-capsule meso-MOFs, 2D hollow meso-MOFs, hollow interlayer-structured meso-MOFs, macro-meso-micro trimodal porous MOFs, and so on.
Collapse
Affiliation(s)
- Zirui Lv
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Minchao Liu
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Yi Yang
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Tianhao Chen
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Wenyu Yang
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Yijin Wang
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Zaiwang Zhao
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010070, P. R. China
| | - Kun Lan
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010070, P. R. China
| | - Tiancong Zhao
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Qiaowei Li
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Xiaomin Li
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
- Shanghai Wusong Laboratory of Materials Science, Shanghai, 201999, P. R. China
| | - Dongyuan Zhao
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
- Shanghai Wusong Laboratory of Materials Science, Shanghai, 201999, P. R. China
| |
Collapse
|
3
|
Asgari M, Albacete P, Menon D, Lyu Y, Chen X, Fairen-Jimenez D. The structuring of porous reticular materials for energy applications at industrial scales. Chem Soc Rev 2025. [PMID: 40195939 PMCID: PMC11976391 DOI: 10.1039/d5cs00166h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Indexed: 04/09/2025]
Abstract
Reticular synthesis constructs crystalline architectures by linking molecular building blocks with robust bonds. This process gave rise to reticular chemistry and permanently porous solids. Such precise control over pore shape, size and surface chemistry makes reticular materials versatile for gas storage, separation, catalysis, sensing, and healthcare applications. Despite their potential, the transition from laboratory to industrial applications remains largely limited. Among various factors contributing to this translational gap, the challenges associated with their formulation through structuring and densification for industrial compatibility are significant yet underexplored areas. Here, we focus on the shaping strategies for porous reticular materials, particularly metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), to facilitate their industrial application. We explore techniques that preserve functionality and ensure durability under rigorous industrial conditions. The discussion highlights various configurations - granules, monoliths, pellets, thin films, gels, foams, and glasses - structured to maintain the materials' intrinsic microscopic properties at a macroscopic level. We examine the foundational theory and principles behind these shapes and structures, employing both in situ and post-synthetic methods. Through case studies, we demonstrate the performance of these materials in real-world settings, offering a structuring blueprint to inform the selection of techniques and shapes for diverse applications. Ultimately, we argue that advancing structuring strategies for porous reticular materials is key to closing the gap between laboratory research and industrial utilization.
Collapse
Affiliation(s)
- Mehrdad Asgari
- The Adsorption and Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK.
| | - Pablo Albacete
- The Adsorption and Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK.
- Departamento de Química Inorgánica, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Dhruv Menon
- The Adsorption and Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK.
| | - Yuexi Lyu
- The Adsorption and Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK.
| | - Xu Chen
- The Adsorption and Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK.
| | - David Fairen-Jimenez
- The Adsorption and Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK.
| |
Collapse
|
4
|
Passornraprasit N, Hinestroza JP, Rodthongkum N, Potiyaraj P. Cellulose nanofibers/polyacrylic acid hydrogels integrated with a 3D printed strip: A platform for screening prostate cancer via sarcosine detection. Carbohydr Polym 2025; 352:123134. [PMID: 39843047 DOI: 10.1016/j.carbpol.2024.123134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 01/24/2025]
Abstract
Cellulose nanofiber/polyacrylic acid (CNF/PAA) hydrogel-based colorimetric sensor was fabricated for non-invasive screening of prostate cancer (PCa) via selective detection of sarcosine. The hydrogel was synthesized by photo-crosslinking of acrylic acid in the presence of CNF which acted as mechanical reinforcement and as color enhancer. The hydrogel exhibited a high aqueous absorption and high mechanical strength. A homogeneous distribution of CNF in the hydrogel was confirmed by TEM. A significant improvement in the compressive modulus and stress in the hydrogel were obtained after the incorporation of 0.25%wt CNF. The hydrogel sensor was integrated within a 3D printing strip on a diaper, and it offered a vivid color change from light yellow to blue for detecting sarcosine for PCa indication with a detection limit starting from 10 μM. The colorimetric results were semi-quantitatively evaluated by a spectrophotometer offering a linear range of 0-100 μM with R2 of 0.9901. Furthermore, the increase in CNF content significantly enhanced the sensor's sensitivity toward sarcosine. This sensor could open new avenues for non-invasive screening of prostate cancer in the future.
Collapse
Affiliation(s)
- Nichaphat Passornraprasit
- Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Juan P Hinestroza
- Department of Human Centered Design, Cornell University, Ithaca, NY 14850, United States
| | - Nadnudda Rodthongkum
- Center of Excellence in Responsive Wearable Materials, Chulalongkorn University, Soi Chula 12, Phayathai Road, Pathumwan, Bangkok 10330, Thailand; Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Pranut Potiyaraj
- Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
5
|
Lam W, Yao Y, Tang C, Wang Y, Yuan Q, Peng L. Bifunctional mesoporous HMUiO-66-NH 2 nanoparticles for bone remodeling and ROS scavenging in periodontitis therapy. Biomaterials 2025; 314:122872. [PMID: 39383779 DOI: 10.1016/j.biomaterials.2024.122872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/17/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
Periodontal bone defects represent an irreversible consequence of periodontitis associated with reactive oxygen species (ROS). However, indiscriminate removal of ROS proves to be counterproductive for tissue repair and insufficient for addressing existing bone defects. In the treatment of periodontitis, it is crucial to rationally alleviate local ROS while simultaneously promoting bone regeneration. In this study, Zr-based large-pore hierarchical mesoporous metal-organic framework (MOF) nanoparticles (NPs) HMUiO-66-NH2 were successfully proposed as bifunctional nanomaterials for bone regeneration and ROS scavenging in periodontitis therapy. HMUiO-66-NH2 NPs demonstrated outstanding biocompatibility both in vitro and in vivo. Significantly, these NPs enhanced the osteogenic differentiation of bone mesenchymal stem cells (BMSCs) under normal and high ROS conditions, upregulating osteogenic gene expression and mitigating oxidative stress. Furthermore, in vivo imaging revealed a gradual degradation of HMUiO-66-NH2 NPs in periodontal tissues. Local injection of HMUiO-66-NH2 effectively reduced bone defects and ROS levels in periodontitis-induced C57BL/6 mice. RNA sequencing highlighted that differentially expressed genes (DEGs) are predominantly involved in bone tissue development, with notable upregulation in Wnt and TGF-β signaling pathways. In conclusion, HMUiO-66-NH2 exhibits dual functionality in alleviating oxidative stress and promoting bone repair, positioning it as an effective strategy against bone resorption in oxidative stress-related periodontitis.
Collapse
Affiliation(s)
- Waishan Lam
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yufei Yao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, 610041, China
| | - Chenxi Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yue Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Surgery, West China Hospital of Stomatology, Sichuan University, Sichuan, 610041, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lin Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
6
|
Xia F, Liu F, Yang Y, Liu X, Zhao Y, Yang J, Huang W, Gu J. Intra-Mesopore Immunoassay Based on Core-Shell Structured Magnetic Hierarchically Porous ZIFs. ACS Sens 2025; 10:1346-1355. [PMID: 39847658 DOI: 10.1021/acssensors.4c03261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
It is crucial yet challenging to sensitively quantify low-abundance biomarkers in blood for early screening and diagnosis of various diseases. Herein, an analytical model of intra-mesopore immunoassay (IMIA) was proposed, which was competent to examine various biomarkers at the femtomolar level. The success is rooted in the design of an innovative superparamagnetic core-shell structure with Fe3O4 nanoparticles (NPs) at the core and hierarchically porous zeolitic imidazolate frameworks as a shell (Fe3O4@HPZIF-8), achieved through a soft-template directed self-assembly coupled with confinement growth mechanism. Such a unique configuration conceptualized IMIA where the HPZIF-8 shell served as a solid carrier to cover capture antibodies while the Fe3O4 core assisted its rapid separation. The large pore channels not only provided a stable microenvironment to maintain the recognition ability of captured antibodies but also enhanced their coating density, thus promoting the probability of capturing and binding target antigens, significantly improving immunoassay (IA) sensitivity. The practical clinic IA for cTnI (Cardiac Troponin I, biomarker of acute myocardial infarction (AMI)) in human serums was exemplified. The developed IMIA could accurately quantify slight fluctuations in cTnI concentrations in the serums of AMI patients at different stages after symptom onset with more than 100-fold enhancement of limit of detection (LOD) in comparison to conventional plate-based enzyme-linked immunosorbent assay (ELISA). Such high sensitivity of IMIA makes it a powerful tool for the accurate diagnosis of different diseases by altering the type of primary capture antibody.
Collapse
Affiliation(s)
- Fan Xia
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fuzhong Liu
- Department of Cardiology, The First People's Hospital of Jiashan, Jiaxing 314100, Zhejiang, China
| | - Yingjun Yang
- Department of Cardiology, The First People's Hospital of Jiashan, Jiaxing 314100, Zhejiang, China
| | - Ximeng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuqing Zhao
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weiqiang Huang
- Thyroid and Breast Surgery, The First People's Hospital of Jiashan, Jiaxing 314100, Zhejiang, China
| | - Jinlou Gu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
7
|
Lv Z, Lin R, Yang Y, Lan K, Hung CT, Zhang P, Wang J, Zhou W, Zhao Z, Wang Z, Zou J, Wang T, Zhao T, Xu Y, Chao D, Tan W, Yan B, Li Q, Zhao D, Li X. Uniform single-crystal mesoporous metal-organic frameworks. Nat Chem 2025; 17:177-185. [PMID: 39762625 DOI: 10.1038/s41557-024-01693-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 11/07/2024] [Indexed: 01/18/2025]
Abstract
The synthesis of mesoporous metal-organic frameworks (meso-MOFs) is desirable as these materials can be used in various applications. However, owing to the imbalance in structural tension at the micro-scale (MOF crystallization) and the meso-scales (assembly of micelles with MOF subunits), the formation of single-crystal meso-MOFs is challenging. Here we report the preparation of uniform single-crystal meso-MOF nanoparticles with ordered mesopore channels in microporous frameworks with definite arrangements, through a cooperative assembly method co-mediated by strong and weak acids. These nanoparticles feature a truncated octahedron shape with variable size and well-defined two-dimensional hexagonally structured (p6mm) columnar mesopores. Notably, the match between the crystallization kinetics of MOFs and the assembly kinetics of micelles is critical for forming the single-crystal meso-MOFs. On the basis of this strategy, we have constructed a library of meso-MOFs with tunable large pore sizes, controllable mesophases, various morphologies and multivariate components.
Collapse
Affiliation(s)
- Zirui Lv
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, P. R. China
| | - Runfeng Lin
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, P. R. China
| | - Yi Yang
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, P. R. China
| | - Kun Lan
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
| | - Chin-Te Hung
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, P. R. China
| | - Pengfei Zhang
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
| | - Jinxiu Wang
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, P. R. China
| | - Wanhai Zhou
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, P. R. China
| | - Zaiwang Zhao
- College of Energy Materials and Chemistry, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
| | - Zhongyao Wang
- School of Computer Science, Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai, P. R. China
| | - Jiawen Zou
- School of Computer Science, Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai, P. R. China
| | - Taoyang Wang
- School of Computer Science, Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai, P. R. China
| | - Tiancong Zhao
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, P. R. China
| | - Yifei Xu
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, P. R. China
| | - Dongliang Chao
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, P. R. China
| | - Weimin Tan
- School of Computer Science, Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai, P. R. China
| | - Bo Yan
- School of Computer Science, Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai, P. R. China
| | - Qiaowei Li
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, P. R. China
| | - Dongyuan Zhao
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, P. R. China
| | - Xiaomin Li
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), College of Chemistry and Materials, Fudan University, Shanghai, P. R. China.
| |
Collapse
|
8
|
Akhtar M, Majeed H, Iftikhar T, Ahmad K. Climate friendly MOFs synthesis for drug delivery systems by integrating AI, intelligent manufacturing, and quantum solutions in industry 6.0 sustainable approach. Toxicol Res (Camb) 2025; 14:tfaf011. [PMID: 39850662 PMCID: PMC11751582 DOI: 10.1093/toxres/tfaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/19/2024] [Accepted: 01/16/2025] [Indexed: 01/25/2025] Open
Abstract
Since the Industrial Revolution, ecological damage, ecosystem disruption, and climate change acceleration have frequently resulted from human advancement at the price of the environment. Due to the rise in illnesses, Industry 6.0 calls for a renewed dedication to sustainability with latest technologies. Focused research and creative solutions are needed to achieve the UN Sustainable Development Goals (SDGs), especially 3, 9, 13, 14, 15, 17. A promising sustainable technology for enhancing healthcare while reducing environmental effect is Metal Organic Frameworks (MOFs). MOFs are perfect for drug administration because of their high surface areas, adjustable pore sizes, and remarkable drug-loading capacities. They are created by combining advanced artificial intelligence, intelligent manufacturing, and quantum computing. Researchers can create MOFs with functional groups or ligands that bind selectively to target cells or tissues, minimizing off-target effects, thanks to the distinct benefits that families like MIL, HKUST, UiO, and ZIF etc. offer for targeted drug delivery. Combining MOFs with other nanomaterials results in multipurpose systems that can handle challenging biomedical issues. Despite its promise, there are still issues with MOFs' possible toxicity and long-term stability in physiological settings. To advance their medicinal applications, these problems must be resolved. Researchers can increase the usefulness of MOFs in medicine by critically analysing these limitations and putting up creative alternatives. The creation of MOFs especially with advanced technologies (additive manufacturing etc.) for drug delivery is a prime example of how scientific advancement and environmental stewardship may coexist to provide healthcare solutions that are advantageous to both people and the environment.
Collapse
Affiliation(s)
- Maryam Akhtar
- Department of Chemistry, University of Management and Technology (UMT), Lahore, Sialkot Campus, Sialkot 51310, Pakistan
| | - Hammad Majeed
- Department of Chemistry, University of Management and Technology (UMT), Lahore, Sialkot Campus, Sialkot 51310, Pakistan
| | - Tehreema Iftikhar
- Applied Botany Lab, Department of Botany, Government College University Lahore, Lahore 54000, Pakistan
| | - Khalil Ahmad
- Department of chemistry, Emerson University Multan, Multan 60000, Pakistan
| |
Collapse
|
9
|
Tong Y, Yang J, Xia F, Gu J. Construction of Compartmentalized Meso/Micro Spaces in Hierarchically Porous MOFs with Long-Chain Functional Ligands Inspired by Biological Signal Amplification. JACS AU 2025; 5:178-186. [PMID: 39886565 PMCID: PMC11775693 DOI: 10.1021/jacsau.4c00866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 02/01/2025]
Abstract
The creation of spatially coupled meso-/microenvironments with biomimetic compartmentalized functionalities is of great significance to achieve efficient signal transduction and amplification. Herein, using a soft-template strategy, UiO-67-type hierarchically mesoporous metal-organic frameworks (HMMOFs) were constructed to satisfy the requirements of such an artificial system. The key to the successful synthesis of HMUiO-67 is rooted in the utilization of the preformed cerium-oxo clusters as metal precursors, aligning the growth of MOF crystals with the mild conditions required for the self-assembly of the soft template. The adoption of long-chain functional 2,2'-bipyridine-5,5'-dicarboxylic acid ligands not only resulted in larger microporous sizes, facilitating the transport of various cascade reaction intermediates, but also provided anchorages for the introduction of enzyme-mimicking active sites. A cascade amplification system was designed based on the developed HMUiO-67, in which enzyme cascade reactions were initiated and relayed by a target analyte in the separate but coupled meso/micro spaces. As a proof of concept, natural acetylcholinesterase (AChE) and Cu-based laccase mimetics were integrated into HMMOFs, establishing a spatially coupled nanoreactor. The activity of AChE was triggered by the target analyte of carbaryl, while the amplified products of AChE catalysis mediated the activity of biomimetic enzyme in the closely proximate microporous spaces, producing further amplification of detectable signal. This enabled the entire cascade system to respond to minimal carbaryl with a limit of detection as low as approximately 2 nM. Such a model of cascade amplification is expected to set a conceptual guideline for the rational design of various bioreactors, serving as a sensitive response system for quantifying numerous target analytes.
Collapse
Affiliation(s)
- Yao Tong
- Key Lab for Ultrafine Materials
of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Yang
- Key Lab for Ultrafine Materials
of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fan Xia
- Key Lab for Ultrafine Materials
of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jinlou Gu
- Key Lab for Ultrafine Materials
of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
10
|
Teng R, Li M, Chen Z, Lin J, Zhang Y, Li H, Yan Z, Zhang D, Ding C, Huang Y. Intelligent Screening of Prostate Cancer Individuals Using an Enzyme-Assisted Multicolor Visualization Platform. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408825. [PMID: 39513381 PMCID: PMC11714164 DOI: 10.1002/advs.202408825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/25/2024] [Indexed: 11/15/2024]
Abstract
Rapid and intelligent identification of prostate cancer (PCa) is critical for early diagnosis. Herein, a convenient, reliable, and intelligent strategy is proposed to screen PCa individuals through indirectly quantifying sarcosine (Sar), an early indicator of PCa, in clinical urine samples. Success is achieved by integrating sarcosine oxidase (SOX) as a specific recognition unit; nanozyme-assisted multicolor intelligent visualization platform as a signal reporter. With the Fe-MOFs and peroxidase, the synergetic action of SOX and response gold nanorods (Au NRs) is controlled etched to exhibit a multicolored signal. The sensor exhibits excellent linearity with Sar within 1-60 × 10-6 m, boasting a remarkable detection limit of 0.12 × 10-6 m. The RGB value of the display color can be directly extracted using a mobile phone camera. PCa diagnosis can be swiftly made (within 15 min) and directly by identifying two RGB colors (R < 175 or B > 135). The enzyme-assisted multicolor intelligent visualization platform is adept at detecting minute differences in Sar concentration in urine samples between PCa patients and healthy individuals. The concept of enzyme-assisted multicolor sensing can be further expanded by modifying the type of immobilized enzymes, providing a valuable guideline for the rational design of multiple probes to measure specific biomarkers in biological samples.
Collapse
Affiliation(s)
- Ruomei Teng
- College of MaterialChemistry and Chemical EngineeringKey Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationDepartment of OrthopedicsHangzhou Normal University Affiliated HospitalHangzhou Normal UniversityHangzhouZhejiang311121China
| | - Ming Li
- College of MaterialChemistry and Chemical EngineeringKey Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationDepartment of OrthopedicsHangzhou Normal University Affiliated HospitalHangzhou Normal UniversityHangzhouZhejiang311121China
- Department of Urology & NephrologyThe First Affiliated Hospital of Ningbo University59, Liuting StreetNingboZhejiang315010China
| | - Zikang Chen
- College of MaterialChemistry and Chemical EngineeringKey Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationDepartment of OrthopedicsHangzhou Normal University Affiliated HospitalHangzhou Normal UniversityHangzhouZhejiang311121China
| | - Jianli Lin
- College of MaterialChemistry and Chemical EngineeringKey Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationDepartment of OrthopedicsHangzhou Normal University Affiliated HospitalHangzhou Normal UniversityHangzhouZhejiang311121China
| | - Yuhan Zhang
- College of MaterialChemistry and Chemical EngineeringKey Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationDepartment of OrthopedicsHangzhou Normal University Affiliated HospitalHangzhou Normal UniversityHangzhouZhejiang311121China
| | - Hang Li
- College of MaterialChemistry and Chemical EngineeringKey Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationDepartment of OrthopedicsHangzhou Normal University Affiliated HospitalHangzhou Normal UniversityHangzhouZhejiang311121China
| | - Zejun Yan
- Department of Urology & NephrologyThe First Affiliated Hospital of Ningbo University59, Liuting StreetNingboZhejiang315010China
| | - Dingyuan Zhang
- College of MaterialChemistry and Chemical EngineeringKey Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationDepartment of OrthopedicsHangzhou Normal University Affiliated HospitalHangzhou Normal UniversityHangzhouZhejiang311121China
| | - Caiping Ding
- College of MaterialChemistry and Chemical EngineeringKey Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationDepartment of OrthopedicsHangzhou Normal University Affiliated HospitalHangzhou Normal UniversityHangzhouZhejiang311121China
| | - Youju Huang
- College of MaterialChemistry and Chemical EngineeringKey Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationDepartment of OrthopedicsHangzhou Normal University Affiliated HospitalHangzhou Normal UniversityHangzhouZhejiang311121China
| |
Collapse
|
11
|
Feng M, Xing C, Jin Y, Feng X, Zhang Y, Wang B. Reticular Chemistry for Enhancing Bioentity Stability and Functional Performance. J Am Chem Soc 2024. [PMID: 39561393 DOI: 10.1021/jacs.4c09259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Addressing the fragility of bioentities that results in instability and compromised performance during storage and applications, reticular chemistry, specifically through metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), offers versatile platforms for stabilization and enhancement of bioentities. These highly porous frameworks facilitate efficient loading and mass transfer, offer confined environments and selective permeability for stabilization and protection, and enable finely tunable biointerfacial interactions and microenvironments for function optimization, significantly broadening the applications of various bioentities, including enzymes, nucleic acids, cells, etc. This Perspective outlines strategies for integrating bioentities with reticular frameworks, highlighting new design ideas for existing issues within these strategies. It emphasizes the crucial roles of these frameworks for bioentities in enhancing stability, boosting activity, imparting non-native functions, and synergizing bioentity systems. Concluding with a discussion of the challenges and prospects in the design, characterization, and practical applications of these biocomposites, this Perspective aims to inspire further development of high-performance biocomposites in this promising field.
Collapse
Affiliation(s)
- Mengchu Feng
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Chunyan Xing
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yehao Jin
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xiao Feng
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yuanyuan Zhang
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Bo Wang
- Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), Key Laboratory of Cluster Science (Ministry of Education), Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
12
|
Liu X, Chen J, Xia F, Yang J, Feng C, Gu J. Biphasic interface templated synthesis of wrinkled MOFs for the construction of cascade sensing platform based on the encapsulated gold nanoclusters and enzymes. J Colloid Interface Sci 2024; 680:528-536. [PMID: 39522247 DOI: 10.1016/j.jcis.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/27/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
The design and construction of MOFs with flower-like structure could afford sufficient space for the immobilization of guests with large size and interconnected transport channels for their mass diffusion although it remains a challenge. Herein, wrinkled Ce-based hierarchically porous UiO-66 (Ce-WUiO-66) with good crystallinity was successfully synthesized for the first time using bicontinuous emulsion composed of 1-heptanol, water and F127 (PEO106PPO70PEO106) surfactant as a template. F127 played a key role in the formation of emulsions as a stabilizer, and meanwhile its PEO segments interacted with MOF precursors to guide the evolvement of crystallized pore walls. Through controlling the ratios of heptanol to water and the salinity, the distances of the pleat openings and the morphology of the resultant Ce-WUiO-66 were facilely regulated. In virtue of its highly open radial structure, Ce-WUiO-66 could serve as an ideal platform for loading multiple substances to build a cascade sensing system. As a proof of concept, we designed an amino acid (AA) cascade probe by co-immobilizing gold nanoclusters (AuNCs) and LAA oxidase into Ce-WUiO-66. The aggregation-induced-emission enhancement resulted from the encapsulation of AuNCs into Ce-WUiO-66 significantly improved the detection sensitivity and the detection limit of corresponding substrates reached as low as 10-8 M. The proposed biphasic interface assembly strategy is hopefully to provide a new route for the rational design of MOFs with various open pore structure and broaden their potential applications with multiple large-size substances involved besides the currently exemplified cascade sensing platform.
Collapse
Affiliation(s)
- Ximeng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jingwen Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fan Xia
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chun Feng
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jinlou Gu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
13
|
Ge K, Chen G, Zhang D, Hao JN, Li Y. Leap-Type Response of Redox/Photo-Active Lanthanide-Based Metal-Organic Frameworks for Early and Accurate Screening of Prostate Cancer. Angew Chem Int Ed Engl 2024; 63:e202411956. [PMID: 39031278 DOI: 10.1002/anie.202411956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/22/2024]
Abstract
The development of high-accuracy technologies to distinguish the quite tiny concentration change of tumor markers between negative and positive is of vital significance for early screening and diagnosis of cancers, but is still a great challenge for the conventional biosensors because of their "gradual" detection mode. Herein, a unique "leap-type" responsive lanthanide MOF-based biosensor (designated as Tb-CeMOF-X) with defect-mediated redox-/photo-activities is developed for precisely identifying acid phosphatase (ACP), an early pathological marker of prostate cancer (PCa) in serum. The engineered Tb-CeMOF-X probe achieves a bursting switch-on luminescence at the critical concentration of ACP (9 U ⋅ L-1), while keeping silent below this threshold, undergoing a qualitative signal change from "zero" to "one" between negative and positive indicators and thus significantly improving the identification precision. Significantly, such "leap-type" response performance can be further edited and amplified by rational defect engineering in the crystal structure to improve the accessibility of active centers, consequently maximizing the detection sensitivity toward ACP in the complex biological media. This study proposes the first paradigm for the development of "leap-type" biosensors with ultra-sensitive differentiation capability between negative and positive, and provides a potentially valuable tool for early and accurate screening of PCa.
Collapse
Affiliation(s)
- Kaiming Ge
- Lab of Low Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Guoli Chen
- Lab of Low Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Dapeng Zhang
- Lab of Low Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ji-Na Hao
- Lab of Low Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yongsheng Li
- Lab of Low Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
- School of Chemistry and Chemical Engineering, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China
| |
Collapse
|
14
|
Liu W, Wang X, Dong B, Liu Y, Wei D. Enzymatic cascade reactors on carbon nanotube transistor detecting trace prostate cancer biomarker. Biosens Bioelectron 2024; 263:116603. [PMID: 39067414 DOI: 10.1016/j.bios.2024.116603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/03/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Biosensors based on carbon nanotube field-effect transistors (CNT-FETs) have shown great potential in biomarker detection due to their high sensitivity because of appreciable semiconducting electrical properties. However, background signal interferences in complex mediums may results in low signal-to-noise ratio, which may impose challenges for precise biomarker detection in physiological fluids. In this work, we develop an enzymatic CNT-FET, with scalable production at wafer scale, for detection of trace sarcosine that is a biopsy-correlated biomarker of prostate cancer. Enzymatic cascade rectors are constructed on the CNT to improve the reaction efficiency, thereby, enhancing the signal transduction. As such, a limit of detection as low as 105 zM is achieved in buffer solution. Owing to the enhanced reaction efficiency, the testing of clinical serum samples yields significant signal difference to discriminate the prostate cancer (PCa) samples from the benign prostatic hyperplasia (BPH) samples (P = 1.07 × 10-5), demonstrating immense potential in practical applications.
Collapse
Affiliation(s)
- Wentao Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, PR China; Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, PR China
| | - Xuejun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, PR China; Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, PR China
| | - Baijun Dong
- Institute of Molecular Medicine, Department of Urology, Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, PR China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, PR China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, PR China; Laboratory of Molecular Materials and Devices, Fudan University, Shanghai, 200433, PR China.
| |
Collapse
|
15
|
Yan M, Wang D, Liao H, Gong Y, Ji B, Liu Y, Tao X, Xia Z, Fu Q. High-Efficiency Enzyme Assay and Screening of Enzyme-Inhibiting Nanomaterials Using Capillary Electrophoresis with Hierarchically Porous Metal-Organic Framework-Based Immobilized Enzyme Microreactor. Anal Chem 2024; 96:17300-17309. [PMID: 39411854 DOI: 10.1021/acs.analchem.4c03627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Enzyme-inhibiting nanomaterials have significant potential for regulating enzyme activity. However, a universal and efficient method for systematically screening and evaluating the inhibitory effects of various nanomaterials on drug target enzymes has not been established. While the integrated technique of immobilized enzyme microreactor (IMER) with capillary electrophoresis (CE) serves as an effective tool for enzyme analysis, it still faces challenges such as low enzyme loadability, unsatisfactory stability, and limited applicability. Herein, hierarchical porous metal-organic frameworks (HP-MOFs) were explored as high-performance enzyme immobilization carriers and stationary phases to develop a novel HP-MOFs-based IMER-CE microanalysis system for efficient online enzyme assay and systematic screening of enzyme-inhibiting nanomaterials. As a proof-of-concept demonstration, the model enzyme xanthine oxidase (XOD) was immobilized on a HP-UiO-66-NH2 coated capillary, serving as an efficient and durable IMER for screening potential XOD-inhibiting nanomaterials. The hierarchically micro- and mesoporous structure and superior enzyme loadability of as-prepared HP-UiO-66-NH2-IMER was intensively characterized, followed by systematic evaluation of the separation performance of HP-UiO-66-NH2 coated column and the enzyme kinetics of the immobilized XOD. Compared to the microporous UiO-66-NH2-IMER, the HP-UiO-66-NH2-IMER-CE system showed significant improvements in enzyme loading, maximum reaction rate, repeatability, and long-term stability. Furthermore, the established method was effectively employed to screen the XOD inhibitory activity of various nanomaterials, revealing that graphene oxide, single wall carbon nanotube and three other nanomaterials exhibited inhibitory potentials. The HP-MOFs-based microanalysis system can be easily expanded by modifying the types of immobilized enzymes and holds the potential to accelerate the identification and rational design of effective enzyme-inhibiting nanomaterials.
Collapse
Affiliation(s)
- Meiting Yan
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Dan Wang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Hongyan Liao
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Yuanmin Gong
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Baian Ji
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yueqin Liu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xueping Tao
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Zhining Xia
- School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Qifeng Fu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
16
|
Zhao Y, Zhu L, Kang Y, Shen CH, Liu X, Jiang D, Fu L, Guselnikova O, Huang L, Song X, Asahi T, Yamauchi Y. Nanoengineering Multilength-Scale Porous Hierarchy in Mesoporous Metal-Organic Framework Single Crystals. ACS NANO 2024; 18:22404-22414. [PMID: 39108023 DOI: 10.1021/acsnano.4c07119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Developing a reliable method for constructing mesoporous metal-organic frameworks (MOFs) with single-crystalline forms remains a challenging task despite numerous efforts. This study presents a solvent-mediated assembly method for fabricating zeolitic imidazolate framework (ZIF) single-crystal nanoparticles with a well-defined micro-mesoporous structure using polystyrene-block-poly(ethylene oxide) diblock copolymer micelles as a soft-template. The precise control of particle sizes, ranging from 85 to 1200 nm, is achieved by regulating nucleation and crystal growth rates while maintaining consistent pore diameters in mesoporous nanoparticles and a rhombohedral dodecahedron morphology. Furthermore, this study presents a robust platform for nanoarchitecturing to prepare hierarchically porous materials (e.g., core-shell and hollow structures), including microporous ZIF@mesoporous ZIF, hollow mesoporous ZIF, and mesoporous ZIF@mesoporous ZIF. Such a multimodal pore design, ranging from microporous to microporous/mesoporous and further micro-/meso-/macroporous, provides significant evidence for the future possibility of the structural design of MOFs.
Collapse
Affiliation(s)
- Yingji Zhao
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Liyang Zhu
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Yunqing Kang
- International Center for Materials Nanoarchitechtonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan 451163, China
| | - Cheng-Hui Shen
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Xiangyang Liu
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Dong Jiang
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Lei Fu
- International Center for Materials Nanoarchitechtonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Olga Guselnikova
- International Center for Materials Nanoarchitechtonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Centre of Electrochemical and Surface Technology, Viktor Kaplan Straße 2, 2700 Wiener Neustadt, Austria
| | - Lijin Huang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388, Lumo Road, Hongshan District, Wuhan 430074, P. R. China
| | - Xiaokai Song
- International Center for Materials Nanoarchitechtonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Toru Asahi
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
17
|
Feng HJ, Zeng L, Li JY, Lin WY, Qi F, Jiang LH, Zhang MY, Zhao Y, Huang L, Pang DW. Natural Protein Photon Upconversion Supramolecular Assemblies for Background-Free Biosensing. J Am Chem Soc 2024; 146:21791-21805. [PMID: 39069661 DOI: 10.1021/jacs.4c06012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The diagnosis of disease biomarkers is crucial for the identification, monitoring, and prognostic assessment of malignant disease. However, biological samples with autofluorescence, complex components, and heterogeneity pose major challenges to reliable biosensing. Here, we report the self-assembly of natural proteins and the triplet-triplet annihilation upconversion (TTA-UC) pair to form upconverted protein clusters (∼8.2 ± 1.1 nm), which were further assembled into photon upconversion supramolecular assemblies (PUSA). This PUSA exhibited unique features, including a small size (∼44.1 ± 4.1 nm), oxygen tolerance, superior biocompatibility, and easy storage via lyophilization, all of which are long sought after for photon upconversion materials. Further, we have revealed that the steric hindrance of the annihilator suppresses the stacking of the annihilator in PUSA, which is vital for maintaining the water dispersibility and enhancing the upconversion performance of PUSA. In conjunction with sarcosine oxidase, this near infrared (NIR)-excitable PUSA nanoprobe could perform background-free biosensing of urinary sarcosine, which is a common biomarker for prostatic carcinoma (PCa). More importantly, this nanoprobe not only allows for qualitative identification of urinary samples from PCa patients by the unaided eye under NIR-light-emitting diode (LED) illumination but also quantifies the concentration of urinary sarcosine. These remarkable findings have propelled photon upconversion materials to a new evolutionary stage and expedited the progress of upconversion biosensing in clinical diagnostics.
Collapse
Affiliation(s)
- Hong-Juan Feng
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Le Zeng
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Jia-Yao Li
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Wen-Yue Lin
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Fang Qi
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Lin-Han Jiang
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Ming-Yu Zhang
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yang Zhao
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P. R. China
| | - Ling Huang
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Dai-Wen Pang
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
18
|
Liu F, Ye P, Cheng Q, Zhang D, Nie Y, Shen X, Zhu M, Xu H, Li S. By Introducing Multiple Hydrogen Bonds Endows MOF Electrodes with an Enhanced Structural Stability. Inorg Chem 2024; 63:14630-14640. [PMID: 39033405 DOI: 10.1021/acs.inorgchem.4c02159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Recently, metal-organic frameworks (MOFs) have attracted great interest in energy storage areas. However, the poor structural stability of MOFs derived from weak coordination bonds limits their applications. Here, quadruple hydrogen bonds (H-bonds) were introduced onto the MOFs to enhance their structural stability. Cross-linked networks could be formed between molecules owing to multiple H-bonds, strengthening the framework stability. Moreover, the dynamic reversibility of H-bonds could endow MOFs with self-healing ability. Furthermore, due to lower binding energy compared to coordination bonds, H-bonds break preferentially when subjected to internal stress, thus protecting the MOFs. Consequently, the as-prepared self-healing hybrid (SHH-Cu-MOF@Ti3C2TX) exhibited high capacitance retention (89.4%) after 5000 cycles at 1 A g-1, while that hybrid without dynamic H-bonds (H-Cu-MOF@Ti3C2TX) presented a 79.9% retention, delivering an enhancement in cycling stability. Moreover, an asymmetric supercapacitor (ASC) was fabricated by employing SHH-Cu-MOF@Ti3C2TX and activated carbon (AC) as the electrodes. The ASC delivered a specific capacitance (47.4 F g-1 at 1 A g-1), an energy density (16.9 Wh kg-1), and a power density (800 W kg-1) as well as good rate ability (retains 81% of its initial capacitance from 0.2 A g-1 to 5 A g-1).
Collapse
Affiliation(s)
- Feng Liu
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Pingwei Ye
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Qiang Cheng
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Daohong Zhang
- School of Chemistry and Materials science, South-Central Minzu University, Wuhan 430074, China
| | - Yijing Nie
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaojuan Shen
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Maiyong Zhu
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hui Xu
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sumin Li
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
19
|
Mao H, Yu L, Tu M, Wang S, Zhao J, Zhang H, Cao Y. Recent Advances on the Metal-Organic Frameworks-Based Biosensing Methods for Cancer Biomarkers Detection. Crit Rev Anal Chem 2024; 54:1273-1289. [PMID: 35980613 DOI: 10.1080/10408347.2022.2111197] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sensitive and selective detection of cancer biomarkers is crucial for early diagnosis and treatment of cancer, one of the most dangerous diseases in the world. Metal-organic frameworks (MOFs), a class of hybrid porous materials fabricated through the assembly of metal ions/clusters and organic ligands, have attracted increasing attention in the sensing of cancer biomarkers, due to the advantages of adjustable size, high porosity, large surface area and ease of modification. MOFs have been utilized to not only fabricate active sensing interfaces but also arouse a variety of measurable signals. Several representative analytical technologies have been applied in MOF-based biosensing strategies to ensure high detection sensitivity toward cancer biomarkers, such as fluorescence, electrochemistry, electrochemiluminescence, photochemistry and colorimetric methods. In this review, we summarized recent advances on MOFs-based biosensing strategies for the detection of cancer biomarkers in recent three years based on the categories of metal nodes, and aimed to provide valuable references for the development of innovative biosensing platform for the purpose of clinical diagnosis.
Collapse
Affiliation(s)
- Huiru Mao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, China
| | - Longmei Yu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
| | - Ming Tu
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuning Wang
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jing Zhao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, China
| | - Haiyun Zhang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
| | - Ya Cao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, China
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
20
|
Xia F, Yang J, Chen J, Liu X, Ma Z, Gu J. Coordination-Driven Templated Synthesis of Hierarchically Porous Zeolitic Imidazolate Frameworks for Cascade Enzyme Cycle Amplification Coupled Immunoassay. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39042822 DOI: 10.1021/acsami.4c06788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Although hierarchically porous zeolitic imidazolate frameworks (HPZIFs) not only inherit the intrinsic architectural and chemical stabilities of their microporous counterparts but also afford open space for the efficient mass diffusion of the macromolecules involved, their rational design and construction are still challenging. Herein, HPZIFs with tailorable pore sizes ranging from 18 to 54 nm were successfully fabricated by using a newly developed soft-template-directed strategy. Our success rooted in the fact that the screened PS81-PVP44-PEO113 triblock copolymer could effectively coordinate with the metal precursor for the directed crystallization of ZIFs along surfactant assemblies. The advantages of continuous large pores and open structures in such HPZIFs were fully taken into account to serve as a bioreactor for the efficient immunoassay. The expanded large pores provided not only a significantly vast surface area to enhance the density of capture antibodies but also enough space for accommodating multiple conjugated biomolecules in one pore channel. In combination with a cascade enzyme cycle amplification strategy, a model biomarker of prostate-specific antigen (PSA) at the femtomolar level was checked with a limit of detection of 92 fM using the developed immunosensor. Specific screening on patients with prostate cancer or even benign prostatic hyperplasia was exemplified through accurately quantifying small changes of PSA concentration in clinical serum samples, prefiguring the great potential of the developed HPZIF-8 immunosensor platform for the early monitoring and diagnostics of diseases.
Collapse
Affiliation(s)
- Fan Xia
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jingwen Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ximeng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhefan Ma
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jinlou Gu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
21
|
Li F, Mao Z, Du Y, Cui Y, Yang S, Huang K, Yang J, Li Z, Liu Y, Gu J, Wang D, Wang C. Mesoporous MOFs with ROS scavenging capacity for the alleviation of inflammation through inhibiting stimulator of interferon genes to promote diabetic wound healing. J Nanobiotechnology 2024; 22:246. [PMID: 38735970 PMCID: PMC11089722 DOI: 10.1186/s12951-024-02423-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/18/2024] [Indexed: 05/14/2024] Open
Abstract
Excessive production of reactive oxygen species (ROS) and inflammation are the key problems that impede diabetic wound healing. In particular, dressings with ROS scavenging capacity play a crucial role in the process of chronic wound healing. Herein, Zr-based large-pore mesoporous metal-organic frameworks (mesoMOFs) were successfully developed for the construction of spatially organized cascade bioreactors. Natural superoxide dismutase (SOD) and an artificial enzyme were spatially organized in these hierarchical mesoMOFs, forming a cascade antioxidant defense system, and presenting efficient intracellular and extracellular ROS scavenging performance. In vivo experiments demonstrated that the SOD@HMUiO-MnTCPP nanoparticles (S@M@H NPs) significantly accelerated diabetic wound healing. Transcriptomic and western blot results further indicated that the nanocomposite could inhibit fibroblast senescence and ferroptosis as well as the stimulator of interferon genes (STING) signaling pathway activation in macrophages mediated by mitochondrial oxidative stress through ROS elimination. Thus, the biomimetic multi-enzyme cascade catalytic system with spatial ordering demonstrated a high potential for diabetic wound healing, where senescence, ferroptosis, and STING signaling pathways may be potential targets.
Collapse
Affiliation(s)
- Fupeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Zhiyuan Mao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Yun Du
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Yuehan Cui
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Shengbing Yang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Kai Huang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Jian Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Zhuoyuan Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Yihao Liu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Jinlou Gu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Danru Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China.
| | - Chen Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
22
|
He N, Zou Y, Chen C, Tan M, Zhang Y, Li X, Jia Z, Zhang J, Long H, Peng H, Yu K, Jiang B, Han Z, Liu N, Li Y, Ma L. Constructing ordered and tunable extrinsic porosity in covalent organic frameworks via water-mediated soft-template strategy. Nat Commun 2024; 15:3896. [PMID: 38719899 PMCID: PMC11079003 DOI: 10.1038/s41467-024-48160-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
As one of the most attractive methods for the synthesis of ordered hierarchically porous crystalline materials, the soft-template method has not appeared in covalent organic frameworks (COFs) due to the incompatibility of surfactant self-assembly and guided crystallization process of COF precursors in the organic phase. Herein, we connect the soft templates to the COF backbone through ionic bonds, avoiding their crystallization incompatibilities, thus introducing an additional ordered arrangement of soft templates into the anionic microporous COFs. The ion exchange method is used to remove the templates while maintaining the high crystallinity of COFs, resulting in the construction of COFs with ordered hierarchically micropores/mesopores, herein named OHMMCOFs (OHMMCOF-1 and OHMMCOF-2). OHMMCOFs exhibit significantly enhanced functional group accessibility and faster mass transfer rate. The extrinsic porosity can be adjusted by changing the template length, concentration, and ratio. Cationic guanidine-based COFs (OHMMCOF-3) are also constructed using the same method, which verifies the scalability of the soft-template strategy. This work provides a path for constructing ordered and tunable extrinsic porosity in COFs with greatly improved mass transfer efficiency and functional group accessibility.
Collapse
Affiliation(s)
- Ningning He
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, PR China
| | - Yingdi Zou
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, PR China
| | - Cheng Chen
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, PR China
| | - Minghao Tan
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, PR China
| | - Yingdan Zhang
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, PR China
| | - Xiaofeng Li
- Institute of Materials, China Academy of Engineering Physics, Mianyang, 621907, PR China
| | - Zhimin Jia
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, PR China
| | - Jie Zhang
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, PR China
| | - Honghan Long
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, PR China
| | - Haiyue Peng
- Institute of Nuclear Science and Technology, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Sichuan University, Chengdu, 610064, PR China
| | - Kaifu Yu
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, PR China
| | - Bo Jiang
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, PR China
| | - Ziqian Han
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, PR China
| | - Ning Liu
- Institute of Nuclear Science and Technology, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Sichuan University, Chengdu, 610064, PR China
| | - Yang Li
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, PR China.
| | - Lijian Ma
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu, 610064, PR China.
| |
Collapse
|
23
|
Hou J, Wang J, Han J, Wang J, Chao D, Dong Q, Fan D, Dong S. An intelligent ratiometric fluorescent assay based on MOF nanozyme-mediated tandem catalysis that guided by contrary logic circuit for highly sensitive sarcosine detection and smartphone-based portable sensing application. Biosens Bioelectron 2024; 249:116035. [PMID: 38244294 DOI: 10.1016/j.bios.2024.116035] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/31/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
As the well-known test-indicator for early prostate cancer (PCa), sarcosine (SA) is closely related to the differential pathological process, which makes its accurate determination increasingly significant. Herein, we for the first time expanded the peroxidase (POD)-like property of facile-synthesized Zn-TCPP(Fe) MOF to fluorescent substrates and exploited it to ratiometric fluorescent (RF) sensing. By harnessing the effective catalytic oxidation of MOF nanozyme toward two fluorescent substrates (Scopoletin, SC; Amplex Red, AR) with contrary changes, and target-responsive (SA + SOx)/MOF/(SC + AR) tandem catalytic reaction, we constructed the first MOF nanozyme-based RF sensor for the quantitative determination of SA. Superior to previous works, the operation of this RF sensor is under the guidance of AND-(AND^NAND) contrary logic circuit. The dual-channel binary output changes (from 1/0 to 0/1) not only enable the intelligent logical recognition of SA, bringing strengthened reliability and accuracy, but also manifest the proof-of-concept discrimination of PCa individuals and healthy ones. Through recording the fluorescence alterations of SC (F465) and AR (F585), two segments of linear relationships between ratiometric values (F585/F465) and varied contents of SA are realized successfully. The LOD for SA could reach to as low as 39.98 nM, which outperforms all nanozyme-originated SA sensors reported till now. Moreover, this sensor also demonstrates high selectivity and satisfactory performance in human serum samples. Furthermore, the portable sensing of SA is realized under the assistance of smartphone-based RGB analysis, demonstrating the potential of point-of-care diagnostics of PCa in the future.
Collapse
Affiliation(s)
- Jingyu Hou
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Jun Wang
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Jiawen Han
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Juan Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China; Intelligent Wearable Engineering Research Center of Qingdao, Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Daiyong Chao
- Shandong Second Medical University, Weifang, 261053, China
| | - Qing Dong
- Shandong Second Medical University, Weifang, 261053, China
| | - Daoqing Fan
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China; State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
24
|
Wu Y, Ke C, Song Z, Zhu H, Guo H, Sun H, Liu M. Fluorescence and colorimetric dual-mode multienzyme cascade nanoplatform based on CuNCs/FeMn-ZIF-8/PCN for detection of sarcosine. Analyst 2024; 149:935-946. [PMID: 38193145 DOI: 10.1039/d3an01984e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
It is critical to develop a highly efficient and sensitive method for detecting the biomarker sarcosine (SA) of prostate cancer due to its importance for men's health. In our work, a fluorescence (FL) and colorimetric dual-mode multienzyme cascade nanoplatform for SA detection was designed and constructed. CuNCs/FeMn-ZIF-8/PCN nanocomposites with high FL properties and peroxidase-like activity were successfully prepared by encapsulating copper nanoclusters (CuNCs) into FeMn-ZIF-8 and then loaded onto P-doped graphitic carbon nitride (PCN). Furthermore, the nanocomposites served as carriers for the immobilization of sarcosine oxidase (SOX) to construct a high-efficiency dual-mode multienzyme cascade nanoplatform CuNCs/SOX@FeMn-ZIF-8/PCN for the detection of SA. The intermediate H2O2 generated in the cascade caused the FL quenching of nanocomposites and the discoloration of 3,3',5,5'-tetramethylbenzidin. The linear ranges for SA detection in the dual-mode system were 1-100 μM (FL) and 1-200 μM (colorimetric), with detection limits of 0.34 and 0.59 μM, respectively. This nanoplatform exhibited notable repeatability, specificity, and stability, making it suitable for detecting sarcosine in real human urine samples. Therefore, this dual-mode multienzyme cascade nanoplatform would have a potential applicative prospect for detecting SA and other biomarkers in real clinical samples.
Collapse
Affiliation(s)
- Yu Wu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, People's Republic of China
- Hubei Key Laboratory of Industrial Microbiology, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, 430068, People's Republic of China
| | - Chenxi Ke
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, People's Republic of China
- Hubei Key Laboratory of Industrial Microbiology, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, 430068, People's Republic of China
| | - Zichen Song
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, People's Republic of China
- Hubei Key Laboratory of Industrial Microbiology, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, 430068, People's Republic of China
| | - Hongda Zhu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, People's Republic of China
- Hubei Key Laboratory of Industrial Microbiology, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, 430068, People's Republic of China
| | - Huiling Guo
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, People's Republic of China
- Hubei Key Laboratory of Industrial Microbiology, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, 430068, People's Republic of China
| | - Hongmei Sun
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, People's Republic of China
- Hubei Key Laboratory of Industrial Microbiology, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, 430068, People's Republic of China
| | - Mingxing Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, 430068, People's Republic of China
- Hubei Key Laboratory of Industrial Microbiology, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, 430068, People's Republic of China
| |
Collapse
|
25
|
Yang J, Gong M, Xia F, Tong Y, Gu J. Hofmeister Effect Promoted the Introduction of Tunable Large Mesopores in MOFs at Low Temperature for Femtomolar ALP Detection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305786. [PMID: 38037308 PMCID: PMC10811466 DOI: 10.1002/advs.202305786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/12/2023] [Indexed: 12/02/2023]
Abstract
In addressing the demand for hierarchically mesoporous metal-organic frameworks (HMMOFs) with adjustable large mesopores, a method based on the synergistic effects of low-temperature microemulsions and Hofmeister ions is developed. Low temperature dramatically enhanced the solubility of hydrophobic solvent in the microemulsion core, enlarging the mesopores in HMMOFs replica. Meanwhile, Hofmeister salt-in ions continuously controlled mesopore expansion by modulating the permeability of swelling agent into the microemulsion core. The large mesopores up to 33 nm provided sufficient space for the alkaline phosphatase (ALP) enrichment, and retained the remaining channel to facilitate the free mass diffusion. Leveraging these advantages, a colorimetric sensor is successfully developed using large-mesopore HMMOFs for femtomolar ALP detection based on the enrichment and cycling amplification principles. The sensor exhibited a linear detection range of 100 to 7500 fm and a limit of detection of 42 fm, presenting over 4000 times higher sensitivity than classic para-nitrophenyl phosphate colorimetric methods. Such high sensitivity highlights the importance of adjustable mesoporous structures of HMMOFs in advanced sensing applications, and prefigures their potential for detecting large biomolecules in diagnostics and biomedical research.
Collapse
Affiliation(s)
- Jian Yang
- Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Ming Gong
- Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Fan Xia
- Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Yao Tong
- Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Jinlou Gu
- Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghai200237China
| |
Collapse
|
26
|
Zhou T, Deng Y, Qu X, Wang L, Xie H, Xu Y, Sun L, Yang J, Li G. Preparation of Well-Constructed and Metal-Modified Covalent Organic Framework Nanoparticles for Biosensing Design with Cascade Catalytic Capability. Anal Chem 2023; 95:18814-18820. [PMID: 38079491 DOI: 10.1021/acs.analchem.3c03954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Uniform covalent organic framework nanoparticles (COF NPs) with a well-defined pore structure may provide a robust platform for scaffolding enzymes. Herein, bipyridine-based spherical COF NPs have been successfully prepared in this work through the Schiff base condensation reaction. Moreover, they are functionalized by metal modification and are further used for biosensor fabrication. Experimental results reveal that the metal-modified COF NPs also display impressive peroxidase-like catalytic activities, while they can load enzymes, such as glucose oxidase (GOx) and sarcosine oxidase (SOx), to develop a cascade catalysis system for design of various kinds of biosensors with very well performance. For example, the optimized GOx@Fe-COFs can achieve a sensitive detection of glucose with a low limit of detection (LOD) of 12.8 μM. Meanwhile, the enzymes also exhibit a commendable preservation of 80% enzymatic activity over a span of 14 days under ambient conditions. This work may pave the way for advancing cascade catalysis and the analysis of different kinds of biological molecules based on COF NPs.
Collapse
Affiliation(s)
- Tianci Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Ying Deng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Xinyu Qu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Lin Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Haojie Xie
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Yetao Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Lizhou Sun
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Jie Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Genxi Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
27
|
Wang X, Xia B, Hao Z, Kang H, Liu W, Chen Y, Jiang Q, Liu J, Gou J, Dong B, Wee ATS, Liu Y, Wei D. A closed-loop catalytic nanoreactor system on a transistor. SCIENCE ADVANCES 2023; 9:eadj0839. [PMID: 37729411 PMCID: PMC10511191 DOI: 10.1126/sciadv.adj0839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/17/2023] [Indexed: 09/22/2023]
Abstract
Precision chemistry demands miniaturized catalytic systems for sophisticated reactions with well-defined pathways. An ideal solution is to construct a nanoreactor system functioning as a chemistry laboratory to execute a full chemical process with molecular precision. However, existing nanoscale catalytic systems fail to in situ control reaction kinetics in a closed-loop manner, lacking the precision toward ultimate reaction efficiency. We find an inter-electrochemical gating effect when operating DNA framework-constructed enzyme cascade nanoreactors on a transistor, enabling in situ closed-loop reaction monitoring and modulation electrically. Therefore, a comprehensive system is developed, encapsulating nanoreactors, analyzers, and modulators, where the gate potential modulates enzyme activity and switches cascade reaction "ON" or "OFF." Such electric field-effect property enhances catalytic efficiency of enzyme by 343.4-fold and enables sensitive sarcosine assay for prostate cancer diagnoses, with a limit of detection five orders of magnitude lower than methodologies in clinical laboratory. By coupling with solid-state electronics, this work provides a perspective to construct intelligent nano-systems for precision chemistry.
Collapse
Affiliation(s)
- Xuejun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Binbin Xia
- Institute of Molecular Medicine, Department of Urology, Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhuang Hao
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Hua Kang
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Wentao Liu
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Yiheng Chen
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Qunfeng Jiang
- Department of Physics, Fudan University, Shanghai 200433, China
| | - Jingyuan Liu
- Global Clinical Operation, Johnson & Johnson, Shanghai 200233, China
| | - Jian Gou
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Baijun Dong
- Institute of Molecular Medicine, Department of Urology, Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Andrew Thye Shen Wee
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Laboratory of Molecular Materials and Devices, Fudan University, Shanghai 200433, China
| |
Collapse
|
28
|
Wei W. Hofmeister Effects Shine in Nanoscience. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302057. [PMID: 37211703 PMCID: PMC10401134 DOI: 10.1002/advs.202302057] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/11/2023] [Indexed: 05/23/2023]
Abstract
Hofmeister effects play a crucial role in nanoscience by affecting the physicochemical and biochemical processes. Thus far, numerous wonderful applications from various aspects of nanoscience have been developed based on the mechanism of Hofmeister effects, such as hydrogel/aerogel engineering, battery design, nanosynthesis, nanomotors, ion sensors, supramolecular chemistry, colloid and interface science, nanomedicine, and transport behaviors, etc. In this review, for the first time, the progress of applying Hofmeister effects is systematically introduced and summarized in nanoscience. It is aimed to provide a comprehensive guideline for future researchers to design more useful Hofmeister effects-based nanosystems.
Collapse
Affiliation(s)
- Weichen Wei
- Department of NanoengineeringUniversity of California San DiegoLa JollaSan DiegoCA92093USA
| |
Collapse
|
29
|
Yu Z, Tang J, Gong H, Gao Y, Zeng Y, Tang D, Liu X. Enzyme‐Encapsulated Protein Trap Engineered Metal–Organic Framework‐Derived Biomineral Probes for Non‐Invasive Prostate Cancer Surveillance. ADVANCED FUNCTIONAL MATERIALS 2023; 33. [DOI: 10.1002/adfm.202301457] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Indexed: 01/23/2025]
Abstract
AbstractA paper‐based naked‐eye recognition assay with enzyme‐encapsulated protein engineered metal–organic framework‐derived biominerals is developed for direct quantification of sarcosine in urine samples for screening of prostate cancer individuals. The detection strategy stems from the successful construction of a cascade response model, which involves the introduction of a cascade enzymatic catalytic reaction on Pt nanoparticles (NPs)‐loaded porous CeO2 by integrating a sarcosine oxidase as a special recognition unit and a chromogenic substrate as a signal molecule reporter. Pt NPs‐loaded CeO2 is subjected to a one‐step thermal treatment based on multilayered mesoporous Ce‐based metal–organic framework, and the calcined CeO2 exhibits the same distinct porous graded structure. Importantly, introduction of Pt NPs sharply enhances the peroxidase‐like activity of CeO2, which is considered to be caused by the difference in the adsorption behavior of hydrogen peroxide on the CeO2 surface and Pt/CeO2 obtained by density functional theory calculations. On the basis of this, the probe is used on a mass‐producible paper‐based working platform and 3D‐printed device to specifically screen for minor differences in sarcosine between urine samples from cancer patients and normal individuals. Enzyme‐assisted cascade catalytic reaction can be extended by replacing different recognition units for multiple analytes.
Collapse
Affiliation(s)
- Zhichao Yu
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province) Department of Chemistry Fuzhou University Fuzhou 350108 China
| | - Juan Tang
- Key Laboratory for Green Chemistry of Jiangxi Province Department of Chemistry and Chemical Engineering Jiangxi Normal University Nanchang 330022 China
| | - Hexiang Gong
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province) Department of Chemistry Fuzhou University Fuzhou 350108 China
| | - Yuan Gao
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province) Department of Chemistry Fuzhou University Fuzhou 350108 China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province Mengchao Hepatobiliary Hospital of Fujian Medical University Fuzhou 350025 China
| | - Dianping Tang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province) Department of Chemistry Fuzhou University Fuzhou 350108 China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province Mengchao Hepatobiliary Hospital of Fujian Medical University Fuzhou 350025 China
| |
Collapse
|
30
|
Vodyashkin AA, Sergorodceva AV, Kezimana P, Stanishevskiy YM. Metal-Organic Framework (MOF)-A Universal Material for Biomedicine. Int J Mol Sci 2023; 24:7819. [PMID: 37175523 PMCID: PMC10178275 DOI: 10.3390/ijms24097819] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
Metal-organic frameworks (MOFs) are a very promising platform for applications in various industries. In recent years, a variety of methods have been developed for the preparation and modification of MOFs, providing a wide range of materials for different applications in life science. Despite the wide range of different MOFs in terms of properties/sizes/chemical nature, they have not found wide application in biomedical practices at present. In this review, we look at the main methods for the preparation of MOFs that can ensure biomedical applications. In addition, we also review the available options for tuning the key parameters, such as size, morphology, and porosity, which are crucial for the use of MOFs in biomedical systems. This review also analyses possible applications for MOFs of different natures. Their high porosity allows the use of MOFs as universal carriers for different therapeutic molecules in the human body. The wide range of chemical species involved in the synthesis of MOFs makes it possible to enhance targeting and prolongation, as well as to create delivery systems that are sensitive to various factors. In addition, we also highlight how injectable, oral, and even ocular delivery systems based on MOFs can be used. The possibility of using MOFs as therapeutic agents and sensitizers in photodynamic, photothermal, and sonodynamic therapy was also reviewed. MOFs have demonstrated high selectivity in various diagnostic systems, making them promising for future applications. The present review aims to systematize the main ways of modifying MOFs, as well as the biomedical applications of various systems based on MOFs.
Collapse
Affiliation(s)
- Andrey A. Vodyashkin
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (A.V.S.); (P.K.); (Y.M.S.)
| | - Antonina V. Sergorodceva
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (A.V.S.); (P.K.); (Y.M.S.)
| | - Parfait Kezimana
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (A.V.S.); (P.K.); (Y.M.S.)
- Department of Agrobiotechnology, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia
| | - Yaroslav M. Stanishevskiy
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (A.V.S.); (P.K.); (Y.M.S.)
| |
Collapse
|
31
|
Chen X, Tang Q, Wang J, Zhou Y, Li F, Xie Y, Wang X, Du L, Li J, Pu J, Hu Q, Gu Z, Liu P. A DNA/DMXAA/Metal-Organic Framework Activator of Innate Immunity for Boosting Anticancer Immunity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210440. [PMID: 36656162 DOI: 10.1002/adma.202210440] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Immunotherapy has achieved revolutionary success in clinics, but it remains challenging for treating hepatocellular carcinoma (HCC) characterized by high vascularization. Here, it is reported that metal-organic framework-801 (MOF-801) can be employed as a stimulator of interferon genes (STING) through Toll-like receptor 4 (TLR4) not just as a drug delivery carrier. Notably, cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs) and 5, 6-dimethylxanthenone-4-acetic acid (DMXAA) STING agonist with vascular disrupting function coordinates with MOF-801 to self-assemble into a nanoparticle (MOF-CpG-DMXAA) that effectively delivers CpG ODNs and DMXAA to cells for synergistically improving the tumor microenvironment by reprogramming tumor-associated macrophages (TAMs), promoting dendritic cells (DCs) maturation, as well as destroying tumor blood vessels. In HCC-bearing mouse models, it is demonstrated that MOF-CpG-DMXAA triggers systemic immune activation and stimulates robust tumoricidal immunity, resulting in a superior immunotherapeutic efficiency in orthotopic and recurrent HCC.
Collapse
Affiliation(s)
- Xiaojing Chen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
- Central Laboratory, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Qianyun Tang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
| | - Jinqiang Wang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yan Zhou
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
- Central Laboratory, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Fengqin Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
| | - Yuexia Xie
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
- Central Laboratory, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Xingang Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
| | - Ling Du
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
| | - Junru Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
| | - Jun Pu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Zhen Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Peifeng Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, P. R. China
- Central Laboratory, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| |
Collapse
|
32
|
Shen B, Li L, Liu C, Li X, Li X, Cheng X, Wu H, Yang T, Cheng W, Ding S. Mesoporous Nanozyme-Enhanced DNA Tetrahedron Electrochemiluminescent Biosensor with Three-Dimensional Walking Nanomotor-Mediated CRISPR/Cas12a for Ultrasensitive Detection of Exosomal microRNA. Anal Chem 2023; 95:4486-4495. [PMID: 36802524 DOI: 10.1021/acs.analchem.2c05217] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Exosomal microRNAs (exomiRNAs) have emerged as ideal biomarkers for early clinical diagnostics. The accurate detection of exomiRNAs plays a crucial role in facilitating clinical applications. Herein, an ultrasensitive electrochemiluminescent (ECL) biosensor was constructed using three-dimensional (3D) walking nanomotor-mediated CRISPR/Cas12a and tetrahedral DNA nanostructures (TDNs)-modified nanoemitters (TCPP-Fe@HMUiO@Au-ABEI) for exomiR-155 detection. Initially, the 3D walking nanomotor-mediated CRISPR/Cas12a strategy could effectively convert the target exomiR-155 into amplified biological signals for improving the sensitivity and specificity. Then, TCPP-Fe@HMUiO@Au nanozymes with excellent catalytic performance were used to amplify ECL signals because of the enhanced mass transfer and increased catalytic active sites, originating from its high surface areas (601.83 m2/g), average pore size (3.46 nm), and large pore volumes (0.52 cm3/g). Meanwhile, the TDNs as the scaffold to fabricate "bottom-up" anchor bioprobes could improve the trans-cleavage efficiency of Cas12a. Consequently, this biosensor achieved the limit of detection down to 273.20 aM ranging from 1.0 fM to 1.0 nM. Furthermore, the biosensor could discriminate breast cancer patients evidently by analyzing exomiR-155, and these results conformed to that of qRT-PCR. Thus, this work provides a promising tool for early clinical diagnostics.
Collapse
Affiliation(s)
- Bo Shen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China.,Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, P. R. China
| | - Li Li
- Department of Laboratory Medicine, Chongqing General Hospital, Chongqing 401147, P. R. China
| | - Changjin Liu
- Department of Laboratory Medicine, The Fifth People's Hospital of Chongqing, Chongqing 400062, P. R. China
| | - Xinmin Li
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, P. R. China
| | - Xinyu Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Xiaoxue Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
| | - Haiping Wu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Tiantian Yang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China
| |
Collapse
|
33
|
Zou S, Wang D, Xiao J, Feng X. Mathematical Model for a Three-Phase Enzymatic Reaction System. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Siyu Zou
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, P. R. China
| | - Dandan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, P. R. China
| | - Jie Xiao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, P. R. China
- School of Chemical and Environmental Engineering, Soochow University, Suzhou, Jiangsu Province 215123, P.R. China
| | - Xinjian Feng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, P. R. China
| |
Collapse
|
34
|
Krishnan S, Kanthaje S, Punchappady DR, Mujeeburahiman M, Ratnacaram CK. Circulating metabolite biomarkers: a game changer in the human prostate cancer diagnosis. J Cancer Res Clin Oncol 2023; 149:951-967. [PMID: 35764700 DOI: 10.1007/s00432-022-04113-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE Prostate cancer (PCa) is the second most commonly diagnosed cancer in men in Western and Asian countries. Serum prostate-specific antigen (PSA) test has been the routine diagnostic method despite the tremendous research in diagnostic markers for early detection of PCa. A shift towards a promising and potential biomarker for PCa detection is through metabolomic profiling of biofluids, particularly the blood and urine samples. Finding reliable, routinely usable circulating metabolite biomarkers may not be a distant reality. METHODS We performed a PubMed-based literature search of metabolite biomarkers in blood and urine for the early detection of prostate cancer. The timeline of these searches was limited between 2007 and 2022 and the following keywords were used: 'metabolomics', 'liquid biopsy', 'circulating metabolites', 'serum metabolite', 'plasma metabolite', and 'urine metabolite' with respect to 'prostate cancer'. We focussed only on diagnosis-based studies with only the subject-relevant articles published in the English language and excluded all of the other irrelevant publications that included prostate tissue biomarkers and cell line biomarkers. RESULTS We have consolidated all the blood and urine-based potential metabolite candidates in individual as well as panels, including lipid classes, fatty acids, amino acids, and volatile organic compounds which may become useful for PCa diagnosis. CONCLUSION All these metabolome findings unveil the impact of different dimensions of PCa development, giving a promising strategy to diagnose the disease since suspected individuals can be subjected to repeated and largescale blood and urine testing.
Collapse
Affiliation(s)
- Sabareeswaran Krishnan
- Yenepoya Research Centre, Yenepoya (Deemed to Be University), University Road, Deralakatte, Mangaluru, 575018, Karnataka, India
- Department of Urology, Yenepoya Medical College Hospital, Deralakatte, Mangaluru, 575018, Karnataka, India
| | - Shruthi Kanthaje
- Yenepoya Research Centre, Yenepoya (Deemed to Be University), University Road, Deralakatte, Mangaluru, 575018, Karnataka, India
| | - Devasya Rekha Punchappady
- Yenepoya Research Centre, Yenepoya (Deemed to Be University), University Road, Deralakatte, Mangaluru, 575018, Karnataka, India
| | - M Mujeeburahiman
- Department of Urology, Yenepoya Medical College Hospital, Deralakatte, Mangaluru, 575018, Karnataka, India.
| | - Chandrahas Koumar Ratnacaram
- Yenepoya Research Centre, Yenepoya (Deemed to Be University), University Road, Deralakatte, Mangaluru, 575018, Karnataka, India.
| |
Collapse
|
35
|
Jiang L, Chen HY, He CH, Xu HB, Zhou ZR, Wu MS, Fodjo EK, He Y, Hafez ME, Qian RC, Li DW. Dual-Modal Apoptosis Assay Enabling Dynamic Visualization of ATP and Reactive Oxygen Species in Living Cells. Anal Chem 2023; 95:3507-3515. [PMID: 36724388 DOI: 10.1021/acs.analchem.2c05671] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
ATP and reactive oxygen species (ROS) are considered significant indicators of cell apoptosis. However, visualizing the interplay between apoptosis-related ATP and ROS is challenging. Herein, we developed a metal-organic framework (MOF)-based nanoprobe for an apoptosis assay using duplex imaging of cellular ATP and ROS. The nanoprobe was fabricated through controlled encapsulation of gold nanorods with a thin zirconium-based MOF layer, followed by modification of the ROS-responsive molecules 2-mercaptohydroquinone and 6-carboxyfluorescein-labeled ATP aptamer. The nanoprobe enables ATP and ROS visualization via fluorescence and surface-enhanced Raman spectroscopy, respectively, avoiding the mutual interference that often occurs in single-mode methods. Moreover, the dual-modal assay effectively showed dynamic imaging of ATP and ROS in cancer cells treated with various drugs, revealing their apoptosis-related pathways and interactions that differ from those under normal conditions. This study provides a method for studying the relationship between energy metabolism and redox homeostasis in cell apoptosis processes.
Collapse
Affiliation(s)
- Lei Jiang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.,College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P. R. China
| | - Hua-Ying Chen
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Cai-Hong He
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Han-Bin Xu
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ze-Rui Zhou
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Man-Sha Wu
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Essy Kouadio Fodjo
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.,Laboratory of Physical Chemistry, Felix Houphouet Boigny University, Abidjan 225, Cote d'Ivoire
| | - Yue He
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Mahmoud Elsayed Hafez
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.,Department of Chemistry, Faculty of Science Beni-Suef University, Beni-Suef 62511, Egypt
| | - Ruo-Can Qian
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Da-Wei Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
36
|
Yang XG, Zhang JR, Tian XK, Qin JH, Zhang XY, Ma LF. Enhanced Activity of Enzyme Immobilized on Hydrophobic ZIF-8 Modified by Ni 2+ Ions. Angew Chem Int Ed Engl 2023; 62:e202216699. [PMID: 36536412 DOI: 10.1002/anie.202216699] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
The development of efficient enzyme immobilization to promote their recyclability and activity is highly desirable. Zeolitic imidazolate framework-8 (ZIF-8) has been proved to be an effective platform for enzyme immobilization due to its easy preparation and biocompatibility. However, the intrinsic hydrophobic characteristic hinders its further development in this filed. Herein, a facile synthesis approach was developed to immobilize pepsin (PEP) on the ZIF-8 carrier by using Ni2+ ions as anchor (ZIF-8@PEP-Ni). By contrast, the direct coating of PEP on the surface of ZIF-8 (ZIF-8@PEP) generated significant conformational changes. Electrochemical oxygen evolution reaction (OER) was employed to study the catalytic activity of immobilized PEP. The ZIF-8@PEP-Ni composite attains remarkable OER performance with an ultralow overpotential of only 127 mV at 10 mA cm-2 , which is much lower than the 690 and 919 mV overpotential values of ZIF-8@PEP and PEP, respectively.
Collapse
Affiliation(s)
- Xiao-Gang Yang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang, 471934, P. R. China
| | - Ji-Rui Zhang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang, 471934, P. R. China
| | - Xu-Ke Tian
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang, 471934, P. R. China
| | - Jian-Hua Qin
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang, 471934, P. R. China
| | - Xin-Ya Zhang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang, 471934, P. R. China
| | - Lu-Fang Ma
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang, 471934, P. R. China
| |
Collapse
|
37
|
Lv M, Sun M, Wu M, Zhang F, Yin H, Sun Y, Liu R, Fan Z, Du J. Tryptophan-Modulated Nanoscale Metal-Organic Framework for Coordinated Loading of Biomolecules for Cascade Production of Reactive Oxygen and Nitrogen Species. NANO LETTERS 2022; 22:9621-9629. [PMID: 36459186 DOI: 10.1021/acs.nanolett.2c03778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Owing to the high surface area and porosity, metal-organic frameworks (MOFs) could be utilized as both nanocarriers of biopharmaceuticals and nanoreactors to organize cascade biological reactions with great potential in cancer treatment. However, nanoscale MOFs suitable for biomedical applications rely on harsh preparation conditions. Here, we utilized tryptophan to modulate the morphology and optical properties of zeolitic imidazolate framework-8 (ZIF-8) as nanocarrier to efficiently encapsulate the enzyme and mRNA. Under room temperature in an aqueous solution, tryptophan would coordinate with zinc ions to form ZIF-8:Trp with a decreased size from the μm range to sub-200 nm. In addition, cargo release could be monitored in real time via fluorescence red-shift effects. Besides being used as nanocarriers of biomolecules, ZIF-8:Trp could also be utilized as nanoreactors to induce cascade reactions to produce reactive oxygen and nitrogen species. Overall, this nanosized ZIF-8:Trp could provide a new strategy for preparation of cascade bioreactions and provide new insight for gas therapy.
Collapse
Affiliation(s)
- Mingchen Lv
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Min Sun
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
- Department of Gynaecology and Obstetrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Mengchen Wu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Fan Zhang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School and Hospital of Stomatology, Tongji University, Shanghai, 200072, China
| | - Haiyang Yin
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Yao Sun
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School and Hospital of Stomatology, Tongji University, Shanghai, 200072, China
| | - Rui Liu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Zhen Fan
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
- Department of Gynaecology and Obstetrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| |
Collapse
|
38
|
Evaluation of polycrystalline cerium oxide electrodes for electrochemiluminescent detection of sarcosine. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
39
|
Liu M, Zu L, Hudson ZM. Mechanistic Principles for Engineering Hierarchical Porous Metal-Organic Frameworks. ACS NANO 2022; 16:13573-13594. [PMID: 36048428 DOI: 10.1021/acsnano.2c06587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metal-organic frameworks (MOFs) have generated tremendous research interest in the past two decades, due to their high surface areas, tailorable active sites, and tunable structures. Hierarchical porous MOFs (HP-MOFs) with two or more pore systems are particularly attractive, benefiting from improved active site accessibility and enhanced mass diffusivity in applications involving bulk molecules. This review outlines the mechanistic principles used for the rational design of HP-MOFs, current techniques used to measure their hierarchical porosities, as well as their emerging applications. We then critically summarize the current challenges in this field and provide a contemporary perspective on the technological innovations that would address current synthetic challenges in the field of HP-MOFs. The aim of this review is to provide an in-depth understanding of the formation mechanisms, materials chemistry, and structural and chemical properties of HP-MOFs while exploring ways to enhance the performance of current MOF materials in a range of fields.
Collapse
Affiliation(s)
- Min Liu
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, Canada
| | - Lianhai Zu
- Department of Chemical Engineering, The University of Melbourne, Parkville 3010, Australia
| | - Zachary M Hudson
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, Canada
| |
Collapse
|
40
|
Wang Y, Yang M, Ge S, Wang X, Yu J. Piezotronic Effect-Assisted Photoelectrochemical Exosomal MicroRNA Monitoring Based on an Electron Donor Self-Supplying Strategy. Anal Chem 2022; 94:13522-13532. [PMID: 36125354 DOI: 10.1021/acs.analchem.2c02821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Exosomal microRNAs (miRNAs) as newly emerging reliable and noninvasive biomarkers have demonstrated a significant function in early cancer diagnosis. Photoelectrochemical (PEC) biosensing has attracted unprecedented attention in exosomal miRNA monitoring due to its inherent advantages of both electrochemical and optical techniques; however, the severe charge carrier recombination greatly restricts the PEC assay performance. Herein, a high-sensitive PEC strategy assisted by the piezoelectric effect is designed based on Bi2WO6/Cu2S heterojunctions and implemented for the monitoring of exosomal miRNAs. The introduction of the piezoelectric effect enables promoted electron-hole transfer and separation, thereby improving the analytical sensitivity. In addition, a target reprogramming metal-organic framework-capped CaO2 (MOF@CaO2) hybrids is prepared, in which MOF@CaO2 being responsive to exosomal miRNAs induces exposure of the capped CaO2 to H2O and then triggers self-supplying of H2O2, which effectively suppresses the electron-hole recombination, giving rise to an amplified photocurrent and a decrease in the cost of the reaction. Benefiting from the coupled sensitization strategy, the as-fabricated PEC strategy exhibits high sensitivity, specificity, low cost, and ease of use for real-time analysis of exosomal miRNAs within the effectiveness linear range of 0.1 fM-1 μM. The present work demonstrates promising external field coupling-enhanced PEC bioassay and offers innovative thoughts for applying this strategy in other fields.
Collapse
Affiliation(s)
- Yanhu Wang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China.,School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Mengchun Yang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China
| | - Shenguang Ge
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P. R. China
| | - Xiao Wang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
41
|
He M, Li K, Yang J, Wang Q, Gu J. Photodynamic and Its Concomitant Ion-Interference Synergistic Therapies Based on Functional Hierarchically Mesoporous MOFs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204295. [PMID: 36031397 DOI: 10.1002/smll.202204295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Although ion-interference therapy (IIT) has become an intriguing option for cancer treatment, the generation of interference ions on-demand remains a challenge. Herein, a nanoplatform based on hierarchically mesoporous metal-organic frameworks (HMMOFs) is adopted to integrate black phosphorus quantum dots (BPQDs) and meso-tetra(4-carboxyphenyl) porphine (TCPP) to realize controllable phosphate anions (PAs) production in a specific cancerous region for IIT. The uniform large mesopores of HMMOFs could guarantee the selective screening and immobilization of ultra-small and monodispersed BPQDs. The TCPP in microporous domains of HMMOFs could effectively produce 1 O2 , which not only serves as photosensitizer for photodynamic therapy (PDT), but also switches on the release of PAs from BPQDs in the adjacent mesoporous domains to trigger the concomitant synergetic IIT. The elaborated nanoplatform (BP@HMUiO-66-TCPP) presents good biocompatibility, biodegradability as well as enhanced synergetic therapeutic effects. In murine models treated with BP@HMUiO-66-TCPP, the tumor inhibition rate is as high as ≈98.24% as compared to that of the control group after 14 days treatment. Moreover, the tumor volumes in the synergetic group are only 19.6% of those in the PDT alone treated group. Such a concept of exogenous photo-controlled synergistic therapeutics might be extended to a broad range of IIT for an improved antitumor efficacy.
Collapse
Affiliation(s)
- Miao He
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ke Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jian Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Qinghua Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jinlou Gu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
42
|
Zhang C, Nan Z. 2D/3D-Shaped Fe 0.8Ni 0.2S 2/ZIF-67 as a Nanozyme for Rapid Measurement of H 2O 2 and Ascorbic Acid with a Low Limit of Detection. Inorg Chem 2022; 61:13933-13943. [PMID: 36006060 DOI: 10.1021/acs.inorgchem.2c01925] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metal-organic frameworks (MOFs) can be used as ideal artificial nanozymes for an open structure to transfer substances and products. The nanozymic mechanism of MOFs needs further investigation for wide application. In this manuscript, no peroxidase-like activity was found for ZIF-67 (a kind of MOF), however, it enhanced the peroxidase-like activity of the Fe0.8Ni0.2S2/ZIF-67 composite, in which Fe0.8Ni0.2S2 was the active composition. The catalytic constant (Kcat) is higher at 1.98 (for TMB) and 2.08 (for H2O2) times and the catalytic efficiency (Kcat/Km) is higher at 3.13 (for TMB) and 2.67 (for H2O2) times, than those of Fe0.8Ni0.2S2. The Km value decreased about 85 times (for H2O2) for Fe0.8Ni0.2S2/ZIF-67 than that of horseradish peroxidase (natural enzyme). The mechanism was proposed. The limit of detection of H2O2 for Fe0.8Ni0.2S2/ZIF-67 is 0.039 μM, which is lower by about 18.2 times than that of Fe0.8Ni0.2S2. Simultaneously, Fe0.8Ni0.2S2/ZIF-67 was used to rapidly detect ascorbic acid for only 1.0 min in food monitoring. This study may be important to design a new kind of nanozyme.
Collapse
Affiliation(s)
- Chengyu Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Zhaodong Nan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
43
|
Chen J, Li K, Yang J, Gu J. Hierarchical large-pore MOFs templated from poly(ethylene oxide)- b-polystyrene diblock copolymer with tuneable pore sizes. Chem Commun (Camb) 2022; 58:10028-10031. [PMID: 35983798 DOI: 10.1039/d2cc01914k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diblock copolymer poly(ethylene oxide)-b-poly(styrene) (PEO-b-PS) was adopted to template the synthesis of hierarchically porous Ce-based metal-organic frameworks (MOFs) for the first time. By extending the synergistic effect of Hofmeister ions and soft templates into the water-rich system, UiO-66 type Ce-MOFs with a mesopore size of about 15 nm were achieved. Mesopore size could be further tuned up to approximately 23 nm upon introducing 1,3,5-trimethylbenzene to the micelle core of PEO-b-PS.
Collapse
Affiliation(s)
- Jingwen Chen
- Key Lab for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Ke Li
- Key Lab for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Jian Yang
- Key Lab for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Jinlou Gu
- Key Lab for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
44
|
Abstract
The past few decades have been witnessing the rapid research boom of metal-organic frameworks (MOFs), which are assembled from metal nodes and multitopic organic linkers. In virtue of their modular assembly mode, they can be tailored according to desired functions to satisfy numerous potential applications. However, most initially reported MOFs were restricted to the microporous regime, limiting their practical applications with bulk molecules involved. Therefore, the research attention was immediately directed toward enlarging the intrinsic pore size of frameworks by extending the secondary building units or organic ligands. Unfortunately, the synthesis of more extended ligands is frequently tedious, and the most resultant MOFs are not sufficiently stable, restricting their popularization. The soft-template strategy is recognized as a promising avenue to produce hierarchically porous MOFs (HPMOFs), although early attempts generally failed due to the incompatibility between the surfactant self-assembly and guided crystallization process of MOF precursors in the organic phase. Therefore, developing a rational soft-template strategy to achieve the precise control of morphology and porosity of HPMOFs is of great significance.In this Account, we present our recent progress on the development and applications of HPMOFs prepared by soft-template strategies. We highlight the key issues upon using the soft-template strategy to synthesize HPMOFs. To enhance the interaction between the template and MOF precursor, a long-chain monocarboxylic acid strategy is introduced to synthesize HPMOFs with irregular mesopores in the organic phase. Then, to improve the order of mesopores, an aqueous-phase synthesis method using amphoteric surfactants as templates is developed to prepare ordered HPMOFs. To further enlarge the pore size and make the synthesis conditions of MOFs compatible with the self-assembly of surfactants, a salting-in species-induced self-assembly strategy is proposed and coupled with the structure-directing properties of copolymer templates to synthesize a series of HPMOFs with large mesopores and even macropores. This salting-in ion-mediated self-assembly (SIMS) strategy paves the way to modify the pore size, pore structure, morphology, and chemical composition of HPMOFs. The separated but intimately interconnected hierarchical pores in the resultant HPMOFs can not only realize rapid mass transport but also isolate different-size guest molecules so that they are competent for a broad range of applications including protein digestion, cascade catalysis, enzyme-assisted substrate sensing, and DNA cleavage. Finally, the limitations, challenges, and future developments of this rapidly evolving field are described. This Account with a highlight to the soft-template strategies not only provides interesting insights to understand the assembly process between templates and MOFs but also inspires an optimization of the properties of HPMOFs from diverse aspects for desired applications.
Collapse
Affiliation(s)
- Ke Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jinlou Gu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
45
|
Liu Q, Cao S, Sun Q, Xing C, Gao W, Lu X, Li X, Yang G, Yu S, Chen Y. A perylenediimide modified SiO 2@TiO 2 yolk-shell light-responsive nanozyme: Improved peroxidase-like activity for H 2O 2 and sarcosine sensing. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129321. [PMID: 35739809 DOI: 10.1016/j.jhazmat.2022.129321] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Although light-responsive nanozyme have been widely used in colorimetric sensing, some limitations such as poor catalytic activity, low detection efficiency, and unclear structure-activity relationships remain unresolved. Herein, we prepared an excellent light-responsive peroxidase (POD) mimic, perylenediimide (PDI-OH) modified SiO2 @TiO2 yolk-shell spheres (SiO2 @TiO2/PDI-OH), based on DFT-assisted design. The experiment and DFT calculation revealed that the enhanced POD-like activity was mainly attributed to a suitable built-in electric field among adjacent PDI-OH molecules on the surface of the SiO2 @TiO2 and the unique yolk-shell structure with more reaction sites of SiO2 @TiO2. Consequently, the highly selective and ultrasensitive detection of H2O2 is achieved with a detection limit (LOD) of 7.6 × 10-8M. Further, the selective detection of sarcosine with LOD of 1.2 × 10-7 M was also achieved by introducing sarcosine oxidase (SOx). This colorimetric assay is successfully applied to selectively detect H2O2 and sarcosine levels in real samples. Controlled response time, anti-interference, and the robustness of the developed colorimetric sensor are the key advantages. And the present work firstly clarifies the effect of PDIs substituents on the POD-like activity of light-responsive nanozymes and provided new guidelines to develop high-performance nanozymes for hazardous substances detection.
Collapse
Affiliation(s)
- Qi Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Shoufu Cao
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Qiqi Sun
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Chuanwang Xing
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Wen Gao
- Department of Oncology, the Affiliated Hospital of Qingdao University, Qingdao, 266580, Shandong, China
| | - Xiaoqing Lu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Xiyou Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Guangwu Yang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China.
| | - Sirong Yu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China.
| | - Yanli Chen
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China.
| |
Collapse
|
46
|
Deng J, Zhao S, Li J, Cheng Y, Liu C, Liu Z, Li L, Tian F, Dai B, Sun J. One-Step Thermophoretic AND Gate Operation on Extracellular Vesicles Improves Diagnosis of Prostate Cancer. Angew Chem Int Ed Engl 2022; 61:e202207037. [PMID: 35749531 DOI: 10.1002/anie.202207037] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 01/19/2023]
Abstract
Circulating extracellular vesicles (EVs) have emerged as a valuable source of cancer biomarkers. However, the high degree of EV heterogeneity and the complexity of clinical samples pose a challenge in the sensitive identification of tumor-derived EVs. Here we introduce a one-step thermophoretic AND gate operation (Tango) assay that integrates polyethylene glycol (PEG)-enhanced thermophoretic accumulation of EVs and simultaneous AND gate operation on EV membranes by dual-aptamers recognition. By using the Tango assay to detect tumor-derived EVs with co-presence of EpCAM and PSMA directly from serum in a homogeneous, separation-free format, we can discriminate prostate cancer (PCa) patients from benign prostatic hyperplasia (BPH) patients in the diagnostic gray zone with an accuracy of 91 % in 15 min. Our approach streamlines EV enrichment and AND gate operation on EVs in a single assay, providing a rapid, straightforward, and powerful method for precise and non-invasive diagnosis of cancer.
Collapse
Affiliation(s)
- Jinqi Deng
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuai Zhao
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junhong Li
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yangchang Cheng
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Liu
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zheng Liu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Lele Li
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Tian
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Dai
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jiashu Sun
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
47
|
Deng J, Zhao S, Li J, Cheng Y, Liu C, Liu Z, Li L, Tian F, Dai B, Sun J. One‐Step Thermophoretic AND Gate Operation on Extracellular Vesicles Improves Diagnosis of Prostate Cancer. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jinqi Deng
- National Center for Nanoscience and Technology CAS Key Laboratory of Standardization and Measurement for Nanotechnology CHINA
| | - Shuai Zhao
- National Center for Nanoscience and Technology CAS Key Laboratory of Standardization and Measurement for Nanotechnology CHINA
| | - Junhong Li
- Fudan University Shanghai Cancer Center Department of Urology CHINA
| | - Yangchang Cheng
- National Center for Nanoscience and Technology CAS Key Laboratory of Standardization and Measurement for Nanotechnology CHINA
| | - Chao Liu
- National Center for Nanoscience and Technology CAS Key Laboratory of Standardization and Measurement for Nanotechnology CHINA
| | - Zheng Liu
- Fudan University Shanghai Cancer Center Department of Urology CHINA
| | - Lele Li
- National Center for Nanoscience and Technology CAS Key Laboratory of Standardization and Measurement for Nanotechnology CHINA
| | - Fei Tian
- National Center for Nanoscience and Technology CAS Key Laboratory of Standardization and Measurement for Nanotechnology CHINA
| | - Bo Dai
- Fudan University Shanghai Cancer Center Department of Urology CHINA
| | - Jiashu Sun
- National Center for Nanoscience and Technology No.11 Beiyitiao, Zhongguancun Beijing CHINA
| |
Collapse
|
48
|
Shen H, Shi H, Feng B, Ding C, Yu S. A versatile biomimetic multienzyme cascade nanoplatform based on boronic acid-modified metal-organic framework for colorimetric biosensing. J Mater Chem B 2022; 10:3444-3451. [PMID: 35394481 DOI: 10.1039/d2tb00158f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The combination of bio- and chemo-catalysts for sequential cascades has received considerable attention in analytical fields because of the regulable catalytic efficiency and selectivity under various physiological conditions. In this paper, a versatile multienzyme cascade nanoplatform with excellent activity for biosensing is demonstrated by combining metal-organic framework (MOF)-based nanozyme with natural enzymes. A boronic acid-modified MOF, MIL-100(Fe)-BA, was obtained via a microwave-assisted metal-ligand-fragment co-assembly strategy. On the one hand, MIL-100(Fe)-BA could serve as a nanozyme with dual oxidase/peroxidase bioactivity to detect glutathione and ascorbic acid with a detection limit of 0.12 μM and 0.09 μM, respectively. On the other hand, the hierarchically porous MIL-100(Fe)-BA possesses adequate recognition sites for immobilizing enzymes with acceptable protein leakage, enabling it to act like a scaffold for the fixation of a single enzyme (sarcosine oxidase) or bi-enzymes (acetylcholinesterase/choline oxidase) and guide a multienzyme cascade reaction system with high efficiency. The cascade nanoplatform has merits of both artificial nanozymes and natural enzymes, providing satisfactory sarcosine/acetylcholine sensing ability with detection limits of 0.26 μM and 1.18 μM. The developed catalytic system not only expands the application of nanozymes in tandem enzymatic bio-catalysis, but provides a facile and efficient multienzyme cascade nanoplatform for biosensing and other applications.
Collapse
Affiliation(s)
- Hao Shen
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Haimei Shi
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Bin Feng
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Chuanfan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Shaoning Yu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
49
|
Nanoemulsion-directed growth of MOFs with versatile architectures for the heterogeneous regeneration of coenzymes. Nat Commun 2022; 13:1879. [PMID: 35388007 PMCID: PMC8986779 DOI: 10.1038/s41467-022-29535-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/08/2022] [Indexed: 11/08/2022] Open
Abstract
As one of the most appealing strategies for the synthesis of nanomaterials with various architectures, emulsion-directed methods have been rarely used to control the structure of metal-organic frameworks (MOFs). Herein, we report a versatile salt-assisted nanoemulsion-guided assembly to achieve continuous architecture transition of hierarchical Zr-based MOFs. The morphology of nanoemulsion can be facilely regulated by tuning the feed ratio of a dual-surfactant and the introduced amount of compatible hydrophobic compounds, which directs the assembly of MOFs with various architectures such as bowl-like mesoporous particle, dendritic nanospheres, walnut-shaped particles, crumpled nanosheets and nanodisks. The developed dendritic nanospheres with highly open and large mesochannels is successfully used as matrix for the co-immobilization of coenzymes and corresponding enzymes to realize the in situ heterogeneous regeneration of NAD+. This strategy is expected to pave a way for exploring sophisticated hierarchical MOFs which can be competent for practical applications with bulk molecules involved. Controlling the structure of hierarchical metal-organic frameworks via soft template remains a challenge. Here, the authors report a salt-assisted nanoemulsion-guided strategy to achieve continuous structure transition of hierarchical Zr-based MOFs.
Collapse
|
50
|
Zhu N, Liu C, Liu R, Niu X, Xiong D, Wang K, Yin D, Zhang Z. Biomimic Nanozymes with Tunable Peroxidase-like Activity Based on the Confinement Effect of Metal-Organic Frameworks (MOFs) for Biosensing. Anal Chem 2022; 94:4821-4830. [PMID: 35262349 DOI: 10.1021/acs.analchem.2c00058] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Biomimic nanozymes coassembled by peptides or proteins and small active molecules provide an effective strategy to design attractive nanozymes. Although some promising nanozymes have been reported, rational regulation for higher catalytic activity of biomimic nanozymes remains challenging. Hence, we proposed a novel biomimic nanozyme by encapsulating the coassembly of hemin/bovine serum albumin (BSA) in zeolite imidazolate frameworks (ZIF-8) to achieve controllable tailoring of peroxidase-like activity via the confinement effect. The assembly of Hemin@BSA was inspired by the structure of horseradish peroxidase (HRP), in which hemin served as the active cofactor surrounded by BSA as a blocking pocket to construct a favorable hydrophobic space for substrate enrichment. Benefiting from the confinement effect, ZIF-8 with a porous intracavity was identified as the ideal outer layer for Hemin@BSA to accelerate substrate transport and achieve internal circulation of peroxidase-like catalysis, significantly enhancing its peroxidase-like activity. Especially, the precise encapsulation of Hemin@BSA in ZIF-8 could also prevent it from decomposition in harsh environments by rapid crystallization around Hemin@BSA to form a protective shell. Based on the improved peroxidase-like activity of Hemin@BSA@ZIF-8, several applications were successfully performed for the sensitive detection of small molecules including H2O2, glucose, and bisphenol A (BPA). Satisfactory results highlight that using a ZIF-8 outer layer to encapsulate Hemin@BSA offers a very effective and successful strategy to improve the peroxidase-like activity and the stability of biomimic nanozymes, broadening the potential application of biocatalytic metal-organic frameworks (MOFs).
Collapse
Affiliation(s)
- Nuanfei Zhu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chengbin Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Rui Liu
- College of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Xiangheng Niu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Dinghui Xiong
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Daqiang Yin
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhen Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|