1
|
Lu R, Ni X, Diao S, Wu Y, Zhang L. Recent advances in degraders engaging lysosomal pathways and related nanomedicine. Eur J Med Chem 2025; 292:117701. [PMID: 40328032 DOI: 10.1016/j.ejmech.2025.117701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/23/2025] [Accepted: 04/27/2025] [Indexed: 05/08/2025]
Abstract
The advent of targeted protein degradation (TPD) strategies presents unparalleled opportunities for innovating and expediting the development of new drugs. As the most mature TPD technology to date, proteolysis targeting chimeras (PROTACs) reliant on the ubiquitin proteasome system (UPS) have successfully transitioned from the laboratory to phase III clinical trials after nearly two decades of development. In recent years, the gradually emerging degraders engaging lysosomal pathways have further broadened the range of degradation mechanisms and substantially increased the diversity of potential targets and indications, ushering in a new era for the TPD field. Despite their significant advantages, the limited permeability, adverse pharmacokinetic properties, and off-target side effects caused by non-specific distribution still pose significant challenges to the clinical translation of these degraders. Currently, researchers are exploring the use of nanotechnology to surmount these obstacles and have achieved notable progress. This paper systematically summarizes the fundamental design principles, research status, challenges and future prospects of degraders engaging lysosomal pathways, and highlights the efforts and latest advances in related nanomedicine to optimize these degraders. The aim of this review is to deepen our comprehension of this emerging field and offer guidance for future exploration, development, and further utilization of new TPD techniques.
Collapse
Affiliation(s)
- Runxin Lu
- Department of Pharmacy/Evidence-Based Pharmacy Center, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Children's Medicine Key Laboratory of Sichuan Province, NMPA Key Laboratory for Technical Research on Drug Products in Vitro and in Vivo Correlation, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaofeng Ni
- Department of Pharmacy/Evidence-Based Pharmacy Center, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Children's Medicine Key Laboratory of Sichuan Province, NMPA Key Laboratory for Technical Research on Drug Products in Vitro and in Vivo Correlation, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Sha Diao
- Department of Pharmacy/Evidence-Based Pharmacy Center, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Children's Medicine Key Laboratory of Sichuan Province, NMPA Key Laboratory for Technical Research on Drug Products in Vitro and in Vivo Correlation, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Lingli Zhang
- Department of Pharmacy/Evidence-Based Pharmacy Center, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Children's Medicine Key Laboratory of Sichuan Province, NMPA Key Laboratory for Technical Research on Drug Products in Vitro and in Vivo Correlation, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China; Chinese Evidence-based Medicine Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Tai Y, Kong L, Wang Y, Zhao D, Chen X, Wu Q, Hao J, Wang X, Liu X, Chen D, Li J, Hu Y, Zhang W, Yun CH, Zhan Q. Identification and characterization of Bufalin as a novel EGFR degrader. Cancer Lett 2025; 623:217715. [PMID: 40220852 DOI: 10.1016/j.canlet.2025.217715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/17/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
Esophageal squamous cell carcinoma (ESCC) stands out as a common cancer type worldwide, characterized by its notably high rates of occurrence and mortality. The epidermal growth factor receptor (EGFR) is one of the main targets for cancer treatment as it is one of the genes whose expression is often altered by overexpression, amplification, and mutation in a variety of solid tumors. Substantial efforts have been made to develop EGFR-targeted therapeutic agents, including monoclonal antibodies and tyrosine kinase inhibitors (TKIs). However, these agents exhibited limited efficacy due to the emergence of acquired resistance. Therefore, novel treatment strategies targeting EGFR are urgently needed. Recent studies have identified a few natural compounds that can efficiently inhibit EGFR, indicating that natural products may be potential sources for the development of new EGFR inhibitors. Here, using the Drug Affinity Responsive Target Stability (DARTS) assay combined with liquid chromatography/tandem mass spectrometry analysis, co-crystal method, we discovered that Bufalin directly interacts with EGFR and causes EGFR endocytosis and degradation in the lysosome. Moreover, Bufalin exhibits superior anti-tumor activity compared with another EGFR TKIs. Our study identified Bufalin as the first natural small-molecule EGFR degrader, which suppresses EGFR signaling by inducing the degradation of EGFR via the endosome-lysosome pathway.
Collapse
Affiliation(s)
- Yidi Tai
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Lulu Kong
- Department of Biophysics, Department of Integration of Chinese and Western Medicine, and Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yan Wang
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Dongyu Zhao
- Soochow University Cancer Institute, Suzhou, 215000, China
| | - Xu Chen
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Qingnan Wu
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Jia Hao
- Department of Biophysics, Department of Integration of Chinese and Western Medicine, and Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Xi Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xingyang Liu
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Dongshao Chen
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Jinting Li
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Yuying Hu
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Weimin Zhang
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China; Department of Oncology, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, China.
| | - Cai-Hong Yun
- Department of Biophysics, Department of Integration of Chinese and Western Medicine, and Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| | - Qimin Zhan
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China; Department of Oncology, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, China; Soochow University Cancer Institute, Suzhou, 215000, China.
| |
Collapse
|
3
|
Mo M, Wang F, Zhang H, Zhang Y, Yang C, Shang J, Zhu Z. Membrane-Bounded Intracellular E3 Ubiquitin Ligase-Targeting Chimeras (MembTACs) for Targeted Membrane Protein Degradation. Angew Chem Int Ed Engl 2025; 64:e202501857. [PMID: 40148237 DOI: 10.1002/anie.202501857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/18/2025] [Accepted: 03/26/2025] [Indexed: 03/29/2025]
Abstract
Targeted protein degradation (TPD) represents a potent therapeutic strategy aimed at dismantling disease-associated target proteins. PROTAC is the most widely developed technique for intracellular protein degradation, while its degradation ability on membrane proteins has been hindered by the need for complex synthetic processes and limited permeability. In this study, we developed the membrane-bounded intracellular E3 ubiquitin ligase-targeting chimeras (MembTACs) that simultaneously recruit intracellular E3 ubiquitin ligase and bind to the desired membrane proteins for targeted degradation of membrane proteins. We demonstrate that the MembTACs can effectively utilize intracellular E3 ubiquitin ligase to degrade the therapeutically relevant membrane proteins of EpCAM and Met via the proteasome pathway. We anticipate that the new platform will expand the range of PROTAC applications and provide a new dimension for targeted membrane protein degradation.
Collapse
Affiliation(s)
- Mengwu Mo
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Feiyu Wang
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Huiming Zhang
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Xiamen, China
| | - Ying Zhang
- Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou, China
| | - Chaoyong Yang
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Xiamen, China
| | - Jinbiao Shang
- Department of Head and Neck Surgery, Zhejiang Cancer Hospital, Hangzhou, China
| | - Zhi Zhu
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| |
Collapse
|
4
|
Wu J, Gao Q, Xia Q, Wang Y, Zheng Z, He A, Liu Y, Yang Y, Miao Y, Han D. Highly Specific Cytokine Receptor-Targeting Chimeras for Targeted Membrane Protein Degradation and Sensitization of Osimertinib in EGFR-Mutated Non-Small-Cell Lung Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2504050. [PMID: 40401615 DOI: 10.1002/adma.202504050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 05/01/2025] [Indexed: 05/23/2025]
Abstract
The ability of cytokine receptors to mediate the internalization of targets in lysosomes positions them as specific and effective effectors for protein degradation strategies. However, challenges remain, including the potential unintended activation of cell-proliferation-related cytokine receptors, as well as limitations in programmability and structural flexibility of protein degradators. In this work, a CXCR7-targeting chimera (AP-CRTAC) that functions as a CXCR7 inducer by covalently linking a membrane protein-targeting aptamer with a mutant-CXCL12 mimic peptide is developed. This peptide selectively binds to CXCR7 without activating CXCR4. The AP-CRTAC, which incorporates various aptamer forms from DNA, RNA, or even bispecific aptamers, has shown significant efficacy in degrading one or more proteins or protein mutants on the cell surface. Moreover, the AP-CRTAC constructed with a 2' F-pyrimidine-modified RNA aptamer targeting EGFR effectively degrades various EGFR activating mutations. Notably, AP-CRTAC enhances the sensitivity of the L858R/T790M/C797S triple mutant lung cancer cells, which are resistant to current EGFR-targeted therapies, to the third-generation EGFR inhibitor osimertinib in both in vitro and in vivo settings. This research introduces an engineered CXCR7 inducer with high specificity and programmability for the targeted degradation of cell surface proteins, while minimizing unwanted side effects.
Collapse
Affiliation(s)
- Jiawei Wu
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, P. R. China
| | - Qianqian Gao
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Qing Xia
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, P. R. China
| | - Yaru Wang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zixuan Zheng
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, P. R. China
| | - Axin He
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Yu Liu
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, P. R. China
| | - Yanyan Miao
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Da Han
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| |
Collapse
|
5
|
Lin JY, Wu Y, Liang XH, Tang M, Sun X, Lu SX, Jin JM, Guo X, Wang B, Chen HZ, Zhang WD, Luan X. A Self-Assembling LYTAC Mediates CTGF Degradation and Remodels Inflammatory Tumor Microenvironment for Triple-Negative Breast Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2500311. [PMID: 40349150 DOI: 10.1002/advs.202500311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/23/2025] [Indexed: 05/14/2025]
Abstract
As a multifunctional extracellular protein, connective tissue growth factor (CTGF/CCN2) is significantly associated with the progression and prognosis of triple-negative breast cancer (TNBC). However, current blockade therapies targeting CTGF's multiple domains are limited, creating substantial challenges in treatment. Lysosome-targeting chimeras (LYTACs) have emerged as a promising approach for achieving complete protein degradation and inhibiting CTGF's various bioactivities. In this study, a self-assembling LYTAC nanoplatform, NanoCLY, designed to tumor microenvironment (TME)-responsively degrade CTGF is presented. The complete degradation of CTGF downregulates the TGF-β signaling pathway and disrupts the CTGF-IL-6 cell crosstalk within the TME, which further inhibits the activation of inflammatory cancer-associated fibroblasts (CAFs) and alleviates the inflammatory TME. Notably, the anti-TNBC effect of LYTAC-based CTGF degradation therapy surpasses that of antibody-based blockade therapy in both in vitro and in vivo models. The findings provide a proof of concept for CTGF degradation in TNBC and introduce the first CTGF-LYTAC nanoplatform aimed at TME-directed therapy.
Collapse
Affiliation(s)
- Jia-Yi Lin
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ye Wu
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiao-Hui Liang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Min Tang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xin Sun
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Sheng-Xin Lu
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jin-Mei Jin
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xin Guo
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bei Wang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hong-Zhuan Chen
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wei-Dong Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100700, China
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Xin Luan
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
6
|
Hou J, Du K, Li J, Li Z, Cao S, Zhang S, Huang W, Liu H, Yang X, Sun S, Mo S, Qin T, Zhang X, Yin S, Nie X, Lu X. Research trends in the use of nanobodies for cancer therapy. J Control Release 2025; 381:113454. [PMID: 39922288 DOI: 10.1016/j.jconrel.2025.01.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 02/10/2025]
Abstract
Although there are many challenges in using nanobodies for treating various complex tumor diseases, including rapid renal clearance and the complex blood-brain barrier environment, nanobodies have shown great potential due to their high antigen affinity, excellent tumor penetration ability, and favorable safety profile. Since the discovery of the variable domain (VHH) of camelid heavy-chain antibodies in 1993, nanobodies have been progressively applied to various cancer therapy platforms, such as antagonistic drugs and targeting agents for effector domains. In recent years, several nanobody-based drugs, including Caplacizumab, KN-035, and Ozoralizumab, have been approved for clinical use. Among them, KN-035 is used for treating advanced solid tumors, and these advancements have propelled nanobody development to new heights. Currently, nanobodies are being rapidly applied to the treatment of a wide range of diseases, from viral infections to cancer, demonstrating strong advantages in areas such as targeted protein degradation, bioimaging, nanobody-drug conjugation, bispecific T-cell engagers, and vaccine applications. Bibliometric tools, including CiteSpace, HisCite Pro, and Alluvial Generator, were employed to trace the historical development of nanobodies in cancer research. The contributions of authors, countries, and institutions in this field were analyzed, and research hotspots and emerging trends were identified through keyword analysis and influential articles. Future trends were also predicted. This study provides a unique, comprehensive, and objective perspective on the use of nanobodies in tumor research, laying a foundation for future research directions and offering valuable insights for researchers in the field.
Collapse
Affiliation(s)
- Jun Hou
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Kejiang Du
- Department of Otorhinolaryngology-Head and Neck Surgery, Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, China; Liuzhou People's Hospital affiliated to Guangxi Medical University, Liuzhou 545006, China
| | - Jinling Li
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Zhenghui Li
- Department of Neurosurgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China
| | - Shaorui Cao
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Shilin Zhang
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Wenxing Huang
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Heng Liu
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Xiaomei Yang
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Shuyang Sun
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Shanzhao Mo
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Tianyu Qin
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Xilei Zhang
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China
| | - Shihua Yin
- Department of Otorhinolaryngology-Head and Neck Surgery, Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, China.
| | - Xinyu Nie
- Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230002, China.
| | - Xiaoling Lu
- College of Stomatology/Hospital of Stomatology/Guangxi Key Laboratory of Nanobody Research/Guangxi Nanobody Engineering Research Center/School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
7
|
Jones LH. Advances in sulfonyl exchange chemical biology: expanding druggable target space. Chem Sci 2025:d5sc02647d. [PMID: 40443986 PMCID: PMC12117709 DOI: 10.1039/d5sc02647d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Accepted: 05/05/2025] [Indexed: 06/02/2025] Open
Abstract
Targeted covalent inhibitors possess advantages over reversible binding drugs, that include higher potency, enhanced selectivity and prolonged pharmacodynamic duration. The standard paradigm for covalent inhibitor discovery relies on the use of α,β-unsaturated carbonyl electrophiles to engage the nucleophilic cysteine thiol, but due to its rarity in binding sites, the amino acid is often not available for targeting. 10 years ago we highlighted the emerging potential of sulfonyl fluoride chemical probes that were initially found to serendipitously modify residues beyond cysteine, including tyrosine, lysine, histidine, serine and threonine. Since then, the rational application of sulfonyl fluorides and related sulfonyl exchange warheads to site-specifically target diverse amino acid residues in proteins using small molecules, oligonucleotides, peptides and proteins, has made considerable progress, which has significantly advanced covalent therapeutic discovery. Additionally, sulfonyl exchange chemistry has recently shown utility in the labeling of RNA and carbohydrates, further expanding the biomolecular diversity of addressable targets. This Perspective provides not only a timely update regarding this exciting area of research, thus serving as a useful resource to scientists working in the field, but areas of challenge and opportunity are highlighted that may stimulate new research at the chemistry-biology interface.
Collapse
Affiliation(s)
- Lyn H Jones
- Dana-Farber Cancer Institute Boston MA USA
- Harvard Medical School Boston MA USA
| |
Collapse
|
8
|
Zhang D, Wang Z, Inuzuka H, Wei W. Proximity-induced membrane protein degradation for cancer therapies. RSC Med Chem 2025:d5md00141b. [PMID: 40365034 PMCID: PMC12066958 DOI: 10.1039/d5md00141b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
The selective modulation of membrane proteins presents a significant challenge in drug development, particularly in cancer therapies. However, conventional small molecules and biologics often face significant hurdles in effectively targeting membrane-bound proteins, largely due to the structural complexity of these proteins and their involvement in intricate cellular processes. In light of these limitations, proximity-induced protein modulation has recently emerged as a transformative approach. It leverages molecule-induced proximity strategies to commandeer endogenous cellular machinery for precise protein manipulation. One of these modulatory strategies is protein degradation, wherein membrane-targeting degraders derived from proximity-induction approaches offer a unique therapeutic avenue by inducing the irreversible removal of key oncogenic and immune-regulatory proteins to combat cancer. This review explores the fundamental principles underlying proximity-driven membrane protein degradation, highlighting key strategies such as LYTACs, PROTABs, TransTACs, and IFLD that are reshaping targeted cancer therapy. We discuss recent technological advancements in the application of proximity-induced degraders across breast cancer, lung cancer, immunotherapy, and other malignancies, underscoring how these innovative approaches have demonstrated significant therapeutic potential. Lastly, while these emerging technologies offer significant promise, they still face substantial limitations, including drug delivery, selectivity, and resistance mechanisms that need to be addressed to achieve successful clinical translation.
Collapse
Affiliation(s)
- Dingpeng Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School Boston MA 02215 USA
| | - Zhen Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School Boston MA 02215 USA
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School Boston MA 02215 USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School Boston MA 02215 USA
| |
Collapse
|
9
|
Cui J, Zheng Q, Weng Y, Zhai X, Su Z, Du Y, Wei X, Yu Y, Qu Q, Pan M. Structure-Guided Development of Chemically Tailored Peptide Binders of RNF43/ZNRF3 to Enable Versatile Design of Membrane Protein-Targeting PROTACs. Angew Chem Int Ed Engl 2025; 64:e202501488. [PMID: 40000409 DOI: 10.1002/anie.202501488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 02/27/2025]
Abstract
Targeted membrane protein degradation using cell surface E3 ligases RNF43/ZNRF3 via proteolysis targeting chimeras (PROTACs) represents an effective strategy for treating membrane drug targets that cannot be fully inhibited using traditional inhibitors. Several ingenious chimeras have been developed to tether RNF43/ZNRF3 to target membrane proteins, resulting in the degradation of targets at sub-nanomolar concentrations both in vitro and in vivo. However, currently available RNF43/ZNRF3 binders are genetically encoded and have poor plasticity, which limits the design and promotion of such PROTACs. Here, we exploited the AlphaFold-predicted complex structures of ligand-bound RNF43/ZNRF3 and developed a class of chemically tailored peptide binders for ZNRF3/RNF43. With these peptide binders that can be conveniently prepared by de novo peptide synthesis, we established a new membrane protein degradation platform that allows versatile modular design and targeted degradation of clinically relevant membrane proteins, i.e., PD-L1 and EGFR. This study presents a new subtype within the PROTAC field to develop therapeutic peptides targeting membrane proteins.
Collapse
Affiliation(s)
- Jibin Cui
- Institute of Translational Medicine, School of Pharmacy, School of Biomedical Engineering, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qingyun Zheng
- Institute of Translational Medicine, School of Pharmacy, School of Biomedical Engineering, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yicheng Weng
- Institute of Translational Medicine, School of Pharmacy, School of Biomedical Engineering, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoguo Zhai
- Institute of Translational Medicine, School of Pharmacy, School of Biomedical Engineering, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhen Su
- Institute of Translational Medicine, School of Pharmacy, School of Biomedical Engineering, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yunxiang Du
- Institute of Translational Medicine, School of Pharmacy, School of Biomedical Engineering, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoxiong Wei
- Institute of Translational Medicine, School of Pharmacy, School of Biomedical Engineering, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuanyuan Yu
- Institute of Translational Medicine, School of Pharmacy, School of Biomedical Engineering, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qian Qu
- Institute of Translational Medicine, School of Pharmacy, School of Biomedical Engineering, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Man Pan
- Institute of Translational Medicine, School of Pharmacy, School of Biomedical Engineering, Shanghai Key Laboratory for Antibody-Drug Conjugates with Innovative Target, Shanghai Jiao Tong University, Shanghai, 200240, China
- Center for Future Foods, Muyuan Laboratory, 110 Shangding, Road, Zhengzhou, Henan Province, 450016, China
| |
Collapse
|
10
|
Mamun MAA, Bakunts AG, Chernorudskiy AL. Targeted degradation of extracellular proteins: state of the art and diversity of degrader designs. J Hematol Oncol 2025; 18:52. [PMID: 40307925 PMCID: PMC12044797 DOI: 10.1186/s13045-025-01703-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/13/2025] [Indexed: 05/02/2025] Open
Abstract
Selective elimination of proteins associated with the pathogenesis of diseases is an emerging therapeutic modality with distinct advantages over traditional inhibitor-based approaches. This strategy, called targeted protein degradation (TPD), is based on hijacking the cellular proteolytic machinery using chimeric degrader molecules that physically link the target protein of interest with the degradation effectors. The TPD era began with the development of PROteolysis TAtrgeting Chimeras (PROTACs) in 2001, with various methods and applications currently available. Classical PROTAC molecules are heterobifunctional chimeras linking target proteins with E3 ubiquitin ligases. This induced interaction leads to the ubiquitylation of the target protein, which is needed for its recognition and subsequent degradation by the cellular proteasomes. However, this technology is limited to intracellular proteins since the effectors involved (E3 ubiquitin ligases and proteasomes) are located in the cytosol. The related methods for selective destruction of proteins present in the extracellular space have only emerged recently and are collectively termed extracellular TPD (eTPD). The prototypic eTPD technology utilizes LYsosomal TArgeting Chimeras (LYTACs) that link extracellular target proteins (secreted or membrane-associated) to lysosome-targeting receptors (LTRs) on the cell surface. The resulting complex is then internalized by endocytosis and trafficked to lysosomes, where the target protein is degraded. The successful elimination of various extracellular proteins via LYTACs and related approaches has been reported, including several important targets in oncology that drive tumor growth and dissemination. This review summarizes current progress in the eTPD field and focuses primarily on the respective technological developments. It discusses the design principles and diversity of degrader molecules and the landscape of available targets and effectors that can be employed for eTPD. Finally, it emphasizes current open questions, challenges, and perspectives of this technological platform to promote the expansion of the eTPD toolkit and further development of its therapeutic applications.
Collapse
Affiliation(s)
- M A A Mamun
- School of Medicine, Taizhou University, Taizhou, Zhejiang, 318000, People's Republic of China
| | - Anush G Bakunts
- Division of Genetics and Cell Biology, Vita-Salute San Raffaele University, Milan, 20132, Italy
| | - Alexander L Chernorudskiy
- School of Medicine, Taizhou University, Taizhou, Zhejiang, 318000, People's Republic of China.
- Department of Biochemistry and Molecular Pharmacology, Mario Negri Institute for Pharmacological Research, Milan, 20156, Italy.
| |
Collapse
|
11
|
He W, Chen C, Cai R, Zheng J, Yao M, Shim JS, Kwok HF, Yao X, Fang L, Chen L. Bifunctional compounds for targeted degradation of carbonic anhydrase IX through integrin-facilitated lysosome degradation. J Biol Chem 2025; 301:108482. [PMID: 40204090 DOI: 10.1016/j.jbc.2025.108482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 03/18/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025] Open
Abstract
As an important therapeutic target, carbonic anhydrase IX (CAIX) is crucial in the pH regulation of hypoxic solid tumors, thus keeping the survival of them in acidic microenvironment and promoting their proliferation, invasion, and metastasis. To degrade endogenous CAIX, three bifunctional compounds were designed according to the integrin-facilitated lysosomal degradation strategy. These compounds are composed of a CAIX-binding ligand, an integrin-recognizing ligand, connected via a linker, which could induce CAIX degradation in an integrin- and lysosome-dependent manner. Among them, Sul-L1-RGD showed the highest degradation efficacy and could inhibit the proliferation of tumor cells under hypoxic conditions, thus it has great potential to be applied in cancer drug discovery.
Collapse
Affiliation(s)
- Wanyi He
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Congli Chen
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China; School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, China
| | - Runjie Cai
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Jiwei Zheng
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Mengyu Yao
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Joong Sup Shim
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR
| | - Xiaojun Yao
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao
| | - Lijing Fang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Liang Chen
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
12
|
Chang X, Qiu X, Tong X, Gan S, Yi W, Xie S, Liu X, Zuo C, Tan W. Sortilin-Mediated Rapid, Precise and Sustained Degradation of Membrane Proteins via mRNA-Encoded Lysosome-Targeting Chimera. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2501222. [PMID: 40305781 DOI: 10.1002/advs.202501222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/24/2025] [Indexed: 05/02/2025]
Abstract
Recent advances in lysosome-targeting degradation technologies have introduced strategies to regulate therapeutic membrane proteins (MPs), potentially transforming treatment paradigms. However, challenges persist, including limited degradation precision due to the broad distribution of lysosome-targeting receptors (LTRs), as well as the high cost and complexity of recombinant protein production or chemical synthesis. Herein, it identifies sortilin as a promising LTR, highly expressed in malignancies but minimally present in healthy tissues outside the nervous system. Using AlphaFold-Multimer, it screened for a specific non-endogenous protein binder to sortilin and developed a modular, mRNA-encoded lysosomal targeting chimera (MedTAC) strategy, enabling rapid design and precise degradation of oncogenic MPs. In a breast cancer-bearing mouse model, a single low dose of MedTACPTK7 (0.5 mg kg-1) reduced protein tyrosine kinase-7 (PTK7) levels by up to 80% within 24 h, with sustained degradation of 44% at 72 h, demonstrating excellent pharmacokinetics. MedTACPTK7 significantly extended survival to over 50 days without systemic toxicity, compared to 20-30 days in controls. This MedTAC strategy establishes sortilin as a selective and efficient shuttle for targeted protein degradation, offering a scalable, rapidly producible platform for biochemical research and precise therapeutic applications.
Collapse
Affiliation(s)
- Xin Chang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, Hunan, 410082, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Xinyu Qiu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| | - Xiaoning Tong
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Shaoju Gan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Weicheng Yi
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Sitao Xie
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Xiangsheng Liu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Chao Zuo
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha, Hunan, 410082, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| |
Collapse
|
13
|
Hinterndorfer M, Spiteri VA, Ciulli A, Winter GE. Targeted protein degradation for cancer therapy. Nat Rev Cancer 2025:10.1038/s41568-025-00817-8. [PMID: 40281114 DOI: 10.1038/s41568-025-00817-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/21/2025] [Indexed: 04/29/2025]
Abstract
Targeted protein degradation (TPD) aims at reprogramming the target specificity of the ubiquitin-proteasome system, the major cellular protein disposal machinery, to induce selective ubiquitination and degradation of therapeutically relevant proteins. Since its conception over 20 years ago, TPD has gained a lot of attention mainly due to improvements in the design of bifunctional proteolysis targeting chimeras (PROTACs) and understanding the mechanisms underlying molecular glue degraders. Today, PROTACs are on the verge of a first clinical approval and recent structural and mechanistic insights combined with technological leaps promise to unlock the rational design of protein degraders, following the lead of lenalidomide and related clinically approved analogues. At the same time, the TPD universe is expanding at a record speed with the discovery of novel modalities beyond molecular glue degraders and PROTACs. Here we review the recent progress in the field, focusing on newly discovered degrader modalities, the current state of clinical degrader candidates for cancer therapy and upcoming design approaches.
Collapse
Affiliation(s)
- Matthias Hinterndorfer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Valentina A Spiteri
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, UK
| | - Alessio Ciulli
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, UK.
| | - Georg E Winter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
14
|
Zhou H, Hou B, Shan Y, Huang L, Chen F, Ren S, Zhang S, Pan J, Dang Y, Yu H, Xu Z. De Novo Design of Structure-Tunable Multivalent Targeting Chimeras for Tumor-Targeted PD-L1 Degradation and Potentiated Cancer Immunotherapy. Angew Chem Int Ed Engl 2025:e202504233. [PMID: 40285333 DOI: 10.1002/anie.202504233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/23/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Targeted protein degradation (TPD) technology holds significant potential for modulating protein homeostasis and treating diseases. However, current methods for degrading membrane proteins highly depend on the lysosome-targeting ligands or membrane receptors. In this study, we present a set of multivalent targeting chimeras (multi-TACs) for tumor-specific degradation of programmed death ligand 1 (PD-L1) on the surface of the tumor cell membrane. The multi-TACs are synthesized by copolymerization of small-molecule PD-L1 inhibitor BMS-1 with acid-responsive monomers. The chemical structures of the multi-TACs are optimized by investigating the correlation between PD-L1 degradation efficacy and the key parameters, including acid-sensitive moieties, BMS-1 valency, and spacer length. Mechanistic study reveals that the multi-TACs highly efficiently degrade PD-L1 on the surface of tumor cells via the adsorption-mediated endocytosis and lysosomal degradation pathways, which differ from the reported strategies for membrane protein degradation. The outperformed multi-TAC GG56 with tumor extracellular acidity and enzyme-sensitivity dramatically reduces PD-L1 levels and suppresses tumor growth in mouse models of B16-F10 melanoma and 4T1 breast tumors. Furthermore, GG56 serves as a versatile nanoplatform for combinatory chemo-immunotherapy and radio-immunotherapy of 4T1 breast tumor by co-delivery of chemotherapeutic and radio-sensitizer, respectively.
Collapse
Affiliation(s)
- Huiling Zhou
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Bo Hou
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong, 264000, China
| | - Yiming Shan
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lujia Huang
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fangmin Chen
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siyuan Ren
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shunan Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jiaxing Pan
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yijing Dang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Haijun Yu
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong, 264000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
15
|
Shi Y, Yun Y, Wang R, Liu Z, Wu Z, Xiang Y, Zhang J. Engineering Covalent Aptamer Chimeras for Enhanced Autophagic Degradation of Membrane Proteins. Angew Chem Int Ed Engl 2025; 64:e202425123. [PMID: 39822078 DOI: 10.1002/anie.202425123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 01/16/2025] [Indexed: 01/19/2025]
Abstract
Targeted degradation of membrane proteins represents an attractive strategy for eliminating pathogenesis-related proteins. Aptamer-based chimeras hold great promise as membrane protein degraders, however, their degradation efficacy is often hindered by the limited structural stability and the risk of off-target effects due to the non-covalent interaction with target proteins. We here report the first design of a covalent aptamer-based autophagosome-tethering chimera (CApTEC) for the enhanced autophagic degradation of cell-surface proteins, including transferrin receptor 1 (TfR1) and nucleolin (NCL). This strategy relies on the site-specific incorporation of sulfonyl fluoride groups onto aptamers to enable the cross-linking with target proteins, coupled with the conjugation of an LC3 ligand to hijack the autophagy-lysosomal pathway for targeted protein degradation. The chemically engineered CApTECs exhibit enhanced on-target retention and improved structural stability. Our results also demonstrate that CApTECs achieve remarkably enhanced and prolonged degradation of membrane proteins compared to the non-covalent designs. Furthermore, the CApTEC targeting TfR1 is combined with 5-fluorouracil (5-FU) for synergistic tumor therapy in a mouse model, leading to substantial suppression of tumor growth. Our strategy may provide deep insights into the LC3-mdiated autophagic degradation, affording a modular and effective strategy for membrane protein degradation and precise therapeutic applications.
Collapse
Affiliation(s)
- Yang Shi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yangfang Yun
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Rong Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zheng Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhenkun Wu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yu Xiang
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of BioorganicPhosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Jingjing Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
16
|
Hu Q, Shi Y, Wang H, Bing L, Xu Z. Post-translational modifications of immune checkpoints: unlocking new potentials in cancer immunotherapy. Exp Hematol Oncol 2025; 14:37. [PMID: 40087690 PMCID: PMC11907956 DOI: 10.1186/s40164-025-00627-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/27/2025] [Indexed: 03/17/2025] Open
Abstract
Immunotherapy targeting immune checkpoints has gained traction across various cancer types in clinical settings due to its notable advantages. Despite this, the overall response rates among patients remain modest, alongside issues of drug resistance and adverse effects. Hence, there is a pressing need to enhance immune checkpoint blockade (ICB) therapies. Post-translational modifications (PTMs) are crucial for protein functionality. Recent research emphasizes their pivotal role in immune checkpoint regulation, directly impacting the expression and function of these key proteins. This review delves into the influence of significant PTMs-ubiquitination, phosphorylation, and glycosylation-on immune checkpoint signaling. By targeting these modifications, novel immunotherapeutic strategies have emerged, paving the way for advancements in optimizing immune checkpoint blockade therapies in the future.
Collapse
Affiliation(s)
- Qiongjie Hu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang Province, China
- The Third Affiliated Hospital of Zhejiang, Chinese Meical University, Hangzhou, 310013, China
| | - Yueli Shi
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang Province, China
- Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China
| | - Huang Wang
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liuwen Bing
- The Third Affiliated Hospital of Zhejiang, Chinese Meical University, Hangzhou, 310013, China.
| | - Zhiyong Xu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang Province, China.
- Zhejiang Key Laboratory of Precision Diagnosis and Treatment for Lung Cancer, Yiwu, 322000, China.
| |
Collapse
|
17
|
Song Y, Cui L, Liu Z, Tang Z, Chen X. Multivalent RGD Peptide-Mediated Nanochimera for Lysosomal Degradation of PDL1 Protein. NANO LETTERS 2025; 25:4078-4086. [PMID: 40012503 DOI: 10.1021/acs.nanolett.5c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
The development of immune checkpoint inhibitors, especially PDL1 antibodies, has revolutionized cancer therapy, but the posttherapy recycling of PDL1 proteins poses a significant challenge by inducing resistance and reducing treatment efficacy. To address this, we introduce an integrin-driven, lysosome-targeted nanochimera, composed of poly(glutamic acid), RGD peptides, and PDL1 antibodies, is designed to engage the target PDL1 protein, with the αvβ3 integrin binding to the multivalent RGD peptides to direct the complex through the endocytosomal pathway to the lysosome, ensuring PDL1 degradation and blocking its recycling. Our in vitro and in vivo experiments demonstrate that these nanochimeras potently activate T-cell antitumor immunity by downregulating PDL1 expression within tumor cells and tissues, significantly enhancing the efficacy of PDL1 antibodies. A key discovery of our study is the pivotal role of multivalent RGD peptides in facilitating target protein degradation, providing valuable insights for the development of more efficacious and sophisticated immunotherapies.
Collapse
Affiliation(s)
- Yanfei Song
- State Key Laboratory of Polymer Science and Technology, Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Linjie Cui
- State Key Laboratory of Polymer Science and Technology, Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhilin Liu
- State Key Laboratory of Polymer Science and Technology, Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhaohui Tang
- State Key Laboratory of Polymer Science and Technology, Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xuesi Chen
- State Key Laboratory of Polymer Science and Technology, Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
18
|
Ge Z, Fan Z, He W, Zhou G, Zhou Y, Zheng M, Zhang S. Recent advances in targeted degradation in the RAS pathway. Future Med Chem 2025; 17:693-708. [PMID: 40065567 PMCID: PMC11938967 DOI: 10.1080/17568919.2025.2476387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/12/2025] [Indexed: 03/26/2025] Open
Abstract
RAS (rat sarcoma) is one of the most frequently mutated gene families in cancer, encoding proteins classified as small GTPases. Mutations in RAS proteins result in abnormal activation of the RAS signaling pathway, a key driver in the initiation and progression of various malignancies. Consequently, targeting RAS proteins and the RAS signaling pathway has become a critical strategy in anticancer therapy. While RAS was historically considered an "undruggable" target, recent breakthroughs have yielded inhibitors specifically targeting KRASG12C and KRASG12D mutations, which have shown clinical efficacy in patients. However, these inhibitors face limitations due to rapid acquired resistance and the toxic effects of combination therapies in clinical settings. Targeted protein degradation (TPD) strategies, such as PROTACs and molecular glues, provide a novel approach by selectively degrading RAS proteins, or their upstream and downstream regulatory factors, to block aberrant signaling pathways. These degraders offer a promising alternative to traditional inhibitors by potentially circumventing resistance and enhancing therapeutic precision. This review discusses recent advancements in RAS pathway degraders, with an emphasis on targeting RAS mutations as well as their upstream regulators and downstream effectors for potential cancer treatments.
Collapse
Affiliation(s)
- Zhiming Ge
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zisheng Fan
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Shanghai Institute for Advanced Immunochemical Studies, and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Lingang Laboratory, Shanghai, China
| | - Wei He
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, Nanchang University, Nanchang, China
| | - Guizhen Zhou
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Shanghai Institute for Advanced Immunochemical Studies, and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Lingang Laboratory, Shanghai, China
| | - Yidi Zhou
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Mingyue Zheng
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Shanghai Institute for Advanced Immunochemical Studies, and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- School of Pharmacy, Nanchang University, Nanchang, China
| | - Sulin Zhang
- University of Chinese Academy of Sciences, Beijing, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
19
|
Pan Y, Xiang Q, Deng K, Anwar MI, Wang L, Wang Y, Liang Q, Shen L, Yang J, Hou Z, Shen W. Engineering IGF2 for Lysosome-targeting chimeras development to target drug-resistant membrane proteins in tumor therapy. Protein Sci 2025; 34:e70051. [PMID: 39969096 PMCID: PMC11837023 DOI: 10.1002/pro.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 01/14/2025] [Accepted: 01/19/2025] [Indexed: 02/20/2025]
Abstract
Lysosome-targeting chimeras (LYTACs) represent a promising approach for the targeted degradation of membrane proteins. Currently, two primary methods for LYTAC development involve chemically modified antibodies and wild-type insulin-like growth factor 2 (IGF2) fusion proteins (iLYTACs). However, LYTACs necessitate intricate chemical modification processes, while wild-type IGF2 in iLYTAC technology binds to IGF1R, potentially triggering carcinogenesis. To tackle this challenge, we introduce specific IGF2R-binding lysosomal targeting chimeras (sLYTACs), a novel technology utilizing engineered IGF2 mutant fusion antibodies for the degradation of endogenous membrane proteins. Diverging from iLYTACs, sLYTACs exhibit selective binding to IGF2R with increased affinity, significantly bolstering the anti-proliferative impact on drug-resistant tumor cells both in vitro and in vivo. By effectively degrading third-generation tyrosine kinase inhibitor-resistant EGFR mutants, masking binding epitope HER2, and concurrently targeting compensatory receptors interacting with these proteins, sLYTACs show great promise in drug development to overcome bypass signaling and combat drug resistance in tumors.
Collapse
Affiliation(s)
- Yanchao Pan
- Translational Research CenterShenzhen Bay LaboratoryShenzhenChina
| | - Qing Xiang
- Translational Research CenterShenzhen Bay LaboratoryShenzhenChina
| | - Kai Deng
- Translational Research CenterShenzhen Bay LaboratoryShenzhenChina
| | | | - Leiming Wang
- Translational Research CenterShenzhen Bay LaboratoryShenzhenChina
| | - Yuan Wang
- Translational Research CenterShenzhen Bay LaboratoryShenzhenChina
| | - Qiulian Liang
- Translational Research CenterShenzhen Bay LaboratoryShenzhenChina
| | - Lirou Shen
- Translational Research CenterShenzhen Bay LaboratoryShenzhenChina
| | - Jing Yang
- Translational Research CenterShenzhen Bay LaboratoryShenzhenChina
| | - Zhongyu Hou
- Translational Research CenterShenzhen Bay LaboratoryShenzhenChina
| | - Weijun Shen
- Translational Research CenterShenzhen Bay LaboratoryShenzhenChina
| |
Collapse
|
20
|
Gao W, Yang X, Li Q, Liu Y, Huang W, Xia X, Yan D. Covalent Affibody-Molecular Glue Drug Conjugate Nanoagent for Proximity-Enabled Reactive Therapeutics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412273. [PMID: 39821590 PMCID: PMC11905048 DOI: 10.1002/advs.202412273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/18/2024] [Indexed: 01/19/2025]
Abstract
Sulfur-fluoride exchange (SuFEx) reaction is an emerging class of click chemistry reaction. Owing to its efficient reactivity under physiological conditions, SuFEx reaction is used to construct covalent protein drugs. Herein, a covalent affibody-molecular glue drug conjugate nanoagent is reported, which can irreversibly bind with its target protein through proximity-enabled SuFEx reaction. As a proof of concept, a latent bioreactive unnatural amino acid fluorosulfate-L-tyrosine (FSY) is first introduced at site 36 of the affibody with cysteine mutation (ZHER2:342-Cys) to produce ZHER2:342-36FSY-Cys. Subsequently, ZHER2:342-36FSY-Cys is coupled with a molecular glue drug (CR8) to yield an amphiphilic conjugate of ZHER2:342-36FSY-CR8, which can self-assemble into affibody-drug conjugate nanoagent (ZHER2:342-36FSY-CR8 ADCN) in PBS. When ZHER2:342-36FSY-CR8 ADCN specific binds to human epidermal growth factor receptor 2 (HER2) on cancer cells, the FSY36 of ZHER2:342 approaches to the His490 of HER2 and ultimately reacts with each other to form a covalent bond via SuFEx reaction. Such a covalent binding mode endows ZHER2:342-36FSY-CR8 ADCN with permanent binding ability to effectively increase the concentration of drugs in tumor. Eventually, the covalent ZHER2:342-36FSY-CR8 ADCN exhibits an outstanding tumor inhibition ratio of 90.03 ± 4.29% in HER2-positive ovary tumor models, strikingly higher than that of the noncovalent one (64.25 ± 7.71%).
Collapse
Affiliation(s)
- Wenhui Gao
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesShanghai Jiao Tong UniversityShanghai200240China
| | - Xiaoyuan Yang
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesShanghai Jiao Tong UniversityShanghai200240China
| | - Qingrong Li
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesShanghai Jiao Tong UniversityShanghai200240China
| | - Yingchun Liu
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesShanghai Jiao Tong UniversityShanghai200240China
| | - Wei Huang
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesShanghai Jiao Tong UniversityShanghai200240China
- XIANGFU Laboratory, JiaxingZhejiang314102China
| | - Xuelin Xia
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesShanghai Jiao Tong UniversityShanghai200240China
| | - Deyue Yan
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesShanghai Jiao Tong UniversityShanghai200240China
- XIANGFU Laboratory, JiaxingZhejiang314102China
| |
Collapse
|
21
|
Ou L, Setegne MT, Elliot J, Shen F, Dassama LMK. Protein-Based Degraders: From Chemical Biology Tools to Neo-Therapeutics. Chem Rev 2025; 125:2120-2183. [PMID: 39818743 PMCID: PMC11870016 DOI: 10.1021/acs.chemrev.4c00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/19/2025]
Abstract
The nascent field of targeted protein degradation (TPD) could revolutionize biomedicine due to the ability of degrader molecules to selectively modulate disease-relevant proteins. A key limitation to the broad application of TPD is its dependence on small-molecule ligands to target proteins of interest. This leaves unstructured proteins or those lacking defined cavities for small-molecule binding out of the scope of many TPD technologies. The use of proteins, peptides, and nucleic acids (otherwise known as "biologics") as the protein-targeting moieties in degraders addresses this limitation. In the following sections, we provide a comprehensive and critical review of studies that have used proteins and peptides to mediate the degradation and hence the functional control of otherwise challenging disease-relevant protein targets. We describe existing platforms for protein/peptide-based ligand identification and the drug delivery systems that might be exploited for the delivery of biologic-based degraders. Throughout the Review, we underscore the successes, challenges, and opportunities of using protein-based degraders as chemical biology tools to spur discoveries, elucidate mechanisms, and act as a new therapeutic modality.
Collapse
Affiliation(s)
- Lisha Ou
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Sarafan
ChEM-H Institute, Stanford University, Stanford, California 94305, United States
| | - Mekedlawit T. Setegne
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Sarafan
ChEM-H Institute, Stanford University, Stanford, California 94305, United States
| | - Jeandele Elliot
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Fangfang Shen
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Laura M. K. Dassama
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Sarafan
ChEM-H Institute, Stanford University, Stanford, California 94305, United States
- Department
of Microbiology & Immunology, Stanford
School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
22
|
Xiao Y, He Z, Li W, Chen D, Niu X, Yang X, Zeng W, Wang M, Qian Y, Su Y, Luo F, Chen G, Liu J, Sui X, Zhou X, Gao Y. A covalent peptide-based lysosome-targeting protein degradation platform for cancer immunotherapy. Nat Commun 2025; 16:1388. [PMID: 39910101 PMCID: PMC11799215 DOI: 10.1038/s41467-025-56648-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 01/27/2025] [Indexed: 02/07/2025] Open
Abstract
The lysosome-targeting chimera (LYTAC) strategy provided a very powerful tool for the degradation of membrane proteins. However, the synthesis of LYTACs, antibody-small molecule conjugates, is challenging. The ability of antibody-based LYTACs to penetrate solid tumor is limited as well, especially to cross the blood-brain barrier (BBB). Here, we propose a covalent chimeric peptide-based targeted degradation platform (Pep-TACs) by introducing a long flexible aryl sulfonyl fluoride group, which allows proximity-enabled cross-linking upon binding with the protein of interest. The Pep-TACs platform facilitates the degradation of target proteins through the mechanism of recycling transferrin receptor (TFRC)-mediated lysosomal targeted endocytosis. Biological experiments demonstrate that covalent Pep-TACs can significantly degrade the expression of PD-L1 on tumor cells, dendritic cells and macrophages, especially under acidic conditions, and markedly enhance the function of T cells and tumor phagocytosis by macrophages. Furthermore, both in anti-PD-1-responsive and -resistant tumor models, the Pep-TACs exert significant anti-tumor immune response. It is noteworthy that Pep-TACs can cross the BBB and prolong the survival of mice with in situ brain tumor. As a proof-of-concept, this study introduces a modular TFRC-based covalent peptide degradation platform for the degradation of membrane protein, and especially for the immunotherapy of brain tumors.
Collapse
Affiliation(s)
- Youmei Xiao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, Guangdong Province, China
| | - Zhuoying He
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, Guangdong Province, China
| | - Wanqiong Li
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong Province, China
| | - Danhong Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, Guangdong Province, China
| | - Xiaoshuang Niu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, Guangdong Province, China
| | - Xin Yang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, Guangdong Province, China
| | - Wenxuan Zeng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, Guangdong Province, China
| | - Mengfan Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, Guangdong Province, China
| | - Yuzhen Qian
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan Province, China
| | - Ye Su
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, Guangdong Province, China
| | - Feiyu Luo
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, Guangdong Province, China
| | - Guanyu Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, Guangdong Province, China
| | - Juan Liu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, Guangdong Province, China
| | - Xinghua Sui
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, Guangdong Province, China
| | - Xiuman Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, Guangdong Province, China.
| | - Yanfeng Gao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, Guangdong Province, China.
| |
Collapse
|
23
|
Huang B, Abedi M, Ahn G, Coventry B, Sappington I, Tang C, Wang R, Schlichthaerle T, Zhang JZ, Wang Y, Goreshnik I, Chiu CW, Chazin-Gray A, Chan S, Gerben S, Murray A, Wang S, O'Neill J, Yi L, Yeh R, Misquith A, Wolf A, Tomasovic LM, Piraner DI, Duran Gonzalez MJ, Bennett NR, Venkatesh P, Ahlrichs M, Dobbins C, Yang W, Wang X, Sahtoe DD, Vafeados D, Mout R, Shivaei S, Cao L, Carter L, Stewart L, Spangler JB, Roybal KT, Greisen PJ, Li X, Bernardes GJL, Bertozzi CR, Baker D. Designed endocytosis-inducing proteins degrade targets and amplify signals. Nature 2025; 638:796-804. [PMID: 39322662 PMCID: PMC11839401 DOI: 10.1038/s41586-024-07948-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/13/2024] [Indexed: 09/27/2024]
Abstract
Endocytosis and lysosomal trafficking of cell surface receptors can be triggered by endogenous ligands. Therapeutic approaches such as lysosome-targeting chimaeras1,2 (LYTACs) and cytokine receptor-targeting chimeras3 (KineTACs) have used this to target specific proteins for degradation by fusing modified native ligands to target binding proteins. Although powerful, these approaches can be limited by competition with native ligands and requirements for chemical modification that limit genetic encodability and can complicate manufacturing, and, more generally, there may be no native ligands that stimulate endocytosis through a given receptor. Here we describe computational design approaches for endocytosis-triggering binding proteins (EndoTags) that overcome these challenges. We present EndoTags for insulin-like growth factor 2 receptor (IGF2R) and asialoglycoprotein receptor (ASGPR), sortilin and transferrin receptors, and show that fusing these tags to soluble or transmembrane target protein binders leads to lysosomal trafficking and target degradation. As these receptors have different tissue distributions, the different EndoTags could enable targeting of degradation to different tissues. EndoTag fusion to a PD-L1 antibody considerably increases efficacy in a mouse tumour model compared to antibody alone. The modularity and genetic encodability of EndoTags enables AND gate control for higher-specificity targeted degradation, and the localized secretion of degraders from engineered cells. By promoting endocytosis, EndoTag fusion increases signalling through an engineered ligand-receptor system by nearly 100-fold. EndoTags have considerable therapeutic potential as targeted degradation inducers, signalling activators for endocytosis-dependent pathways, and cellular uptake inducers for targeted antibody-drug and antibody-RNA conjugates.
Collapse
Affiliation(s)
- Buwei Huang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Mohamad Abedi
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Green Ahn
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Brian Coventry
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Isaac Sappington
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Cong Tang
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Rong Wang
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thomas Schlichthaerle
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Jason Z Zhang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Yujia Wang
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Inna Goreshnik
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Ching Wen Chiu
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Adam Chazin-Gray
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Sidney Chan
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Stacey Gerben
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Analisa Murray
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Shunzhi Wang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | | | - Li Yi
- Novo Nordisk, Måløv, Denmark
| | | | | | | | - Luke M Tomasovic
- Departments of Biomedical Engineering and Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dan I Piraner
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Maria J Duran Gonzalez
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Nathaniel R Bennett
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Preetham Venkatesh
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Maggie Ahlrichs
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Craig Dobbins
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Wei Yang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Xinru Wang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | | | - Dionne Vafeados
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Rubul Mout
- Harvard Medical School, Harvard University, Boston, MA, USA
| | - Shirin Shivaei
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Longxing Cao
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Lauren Carter
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Lance Stewart
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | | | - Kole T Roybal
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | | | - Xiaochun Li
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gonçalo J L Bernardes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
24
|
Deng C, Ma J, Liu Y, Tong X, Wang L, Dong J, Shi P, Wang M, Zheng W, Ma X. Targeting intracellular cancer proteins with tumor-microenvironment-responsive bispecific nanobody-PROTACs for enhanced therapeutic efficacy. MedComm (Beijing) 2025; 6:e70068. [PMID: 39830023 PMCID: PMC11742431 DOI: 10.1002/mco2.70068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/29/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025] Open
Abstract
Proteolysis targeting chimeras (PROTACs) are pivotal in cancer therapy for their ability to degrade specific proteins. However, their non-specificity can lead to systemic toxicity due to protein degradation in normal cells. To address this, we have integrated a nanobody into the PROTACs framework and leveraged the tumor microenvironment to enhance drug specificity. In this study, we engineered BumPeD, a novel bispecific nanobody-targeted PROTACs-like platform, by fusing two nanobodies with a Furin protease cleavage site (RVRR) and a degron sequence (ALAPYIP or KIGLGRQKPPKATK), enabling the tumor microenvironment to direct the degradation of intracellular proteins. We utilized KN035 and Nb4A to target PD-L1 (programmed death ligand 1) on the cell surface and intracellular Survivin, respectively. In vitro experiments showed that BumPeD triggers Survivin degradation via the ubiquitin-proteasome pathway, inducing tumor apoptosis and suppressing bladder tumor cell proliferation and migration. In vivo experiments further confirmed BumPeD's robust anti-tumor efficacy, underscoring its potential as a precise protein degradation strategy for cancer therapy. Our platform provides a systematic approach to developing effective and practical protein degraders, offering a targeted theoretical basis and experimental support for the development of novel degradative drugs, as well as new directions for cancer therapy.
Collapse
Affiliation(s)
- Changping Deng
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiP. R. China
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Jiacheng Ma
- Department of Information EngineeringThe Chinese University of Hong KongHong KongP. R. China
| | - Yuping Liu
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghaiP. R. China
| | - Xikui Tong
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiP. R. China
| | - Lei Wang
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiP. R. China
| | - Jiayi Dong
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiP. R. China
| | - Ping Shi
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiP. R. China
| | - Meiyan Wang
- School of MedicineShanghai UniversityShanghaiP. R. China
| | - Wenyun Zheng
- Shanghai Key Laboratory of New Drug DesignSchool of PharmacyEast China University of Science and TechnologyShanghaiP. R. China
| | - Xingyuan Ma
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiP. R. China
| |
Collapse
|
25
|
Bao Y, Xu Z, Cheng K, Li X, Chen F, Yuan D, Zhang F, Che ARY, Zeng X, Zhao YD, Xia J. Staudinger Reaction-Responsive Coacervates for Cytosolic Antibody Delivery and TRIM21-Mediated Protein Degradation. J Am Chem Soc 2025; 147:3830-3839. [PMID: 39805770 PMCID: PMC11783599 DOI: 10.1021/jacs.4c17054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
A low-molecular-weight compound whose structure strikes a fine balance between hydrophobicity and hydrophilicity may form coacervates via liquid-liquid phase separation in an aqueous solution. These coacervates may encapsulate and convoy proteins across the plasma membrane into the cell. However, releasing the cargo from the vehicle to the cytosol is challenging. Here, we address this issue by designing phase-separating coacervates, which are disassembled by the bioorthogonal Staudinger reaction. We constructed and selected triphenylphosphine-based compounds that formed phase-separated coacervates in an aqueous solution. Reacting the coacervates with azides resulted in microdroplet dissolution, so they received the name Staudinger Reaction-Responsive Coacervates, SR-Coa. SR-Coa could encapsulate proteins, including antibodies, and translocate them across the plasma membrane into the cell. Further treatment of the cell with ethyl azidoacetate induced the cargo dispersion from the puncta to the cytosolic distribution. We showcased an application of the SR-Coa/ethyl azidoacetate system in facilitating the translocation of the EGFR/antibody complex into the cell, which induced EGFR degradation via the TRIM21-dependent pathway both in vitro and in vivo. Besides the membrane protein EGFR, this system could also degrade endogenous protein EZH2. Taken together, here we report a strategy of controlling molecular coacervates by a bioorthogonal reaction in the cell for cytosolic protein delivery and demonstrate its use in promoting targeted protein degradation via the proteasome-dependent pathway.
Collapse
Affiliation(s)
- Yishu Bao
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin, Hong Kong SAR 99999, China
| | - Zhiyi Xu
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin, Hong Kong SAR 99999, China
| | - Kai Cheng
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin, Hong Kong SAR 99999, China
| | - Xiaojing Li
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin, Hong Kong SAR 99999, China
| | - Fangke Chen
- Department
of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR 99999, China
| | - Dingdong Yuan
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin, Hong Kong SAR 99999, China
| | - Fang Zhang
- Britton
Chance Center for Biomedical Photonics at Wuhan National Laboratory
for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key
Laboratory, Department of Biomedical Engineering, College of Life
Science and Technology, Huazhong University
of Science and Technology, Wuhan 430074, Hubei, China
| | - Audrey Run-Yu Che
- Department
of Natural Sciences, Pitzer and Scripps
Colleges, 925 N. Mills
Ave, Claremont, California 91711, United States
| | - Xiangze Zeng
- Department
of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR 99999, China
| | - Yuan-Di Zhao
- Britton
Chance Center for Biomedical Photonics at Wuhan National Laboratory
for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key
Laboratory, Department of Biomedical Engineering, College of Life
Science and Technology, Huazhong University
of Science and Technology, Wuhan 430074, Hubei, China
| | - Jiang Xia
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin, Hong Kong SAR 99999, China
| |
Collapse
|
26
|
Tang D, He S, Yang Y, Zeng Y, Xiong M, Ding D, Wei W, Lyu Y, Zhang XB, Tan W. Microenvironment-confined kinetic elucidation and implementation of a DNA nano-phage with a shielded internal computing layer. Nat Commun 2025; 16:923. [PMID: 39843440 PMCID: PMC11754784 DOI: 10.1038/s41467-025-56219-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025] Open
Abstract
Multiple receptor analysis-based DNA molecular computation has been developed to mitigate the off-target effect caused by nonspecific expression of cell membrane receptors. However, it is quite difficult to involve nanobodies into molecular computation with programmed recognition order because of the "always-on" response mode and the inconvenient molecular programming. Here we propose a spatial segregation-based molecular computing strategy with a shielded internal computing layer termed DNA nano-phage (DNP) to program nanobody into DNA molecular computation and build a series of kinetic models to elucidate the mechanism of microenvironment-confinement. We explain the contradiction between fast molecular diffusion and effective DNA computation using a "diffusion trap" theory and comprehensively overcome the kinetic bottleneck of DNP by determining the rate-limiting step. We predict and verify that identifying trace amount of target cells in complex cell mixtures is an intrinsic merit of microenvironment-confined DNA computation. Finally, we show that DNP can efficiently work in complex human blood samples by shielding the interference of erythrocytes and enhance phagocytosis of macrophages toward target cells by blocking CD47-SIRPα pathway.
Collapse
Affiliation(s)
- Decui Tang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, China
| | - Shuoyao He
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, China
| | - Yani Yang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, China
| | - Yuqi Zeng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, China
| | - Mengyi Xiong
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, China
| | - Ding Ding
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yifan Lyu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, China.
- Furong Laboratory, Changsha, Hunan, China.
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, China.
| | - Weihong Tan
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| |
Collapse
|
27
|
Du JJ, Zhang RY, Jiang S, Xiao S, Liu Y, Niu Y, Zhao WX, Wang D, Ma X. Applications of cell penetrating peptide-based drug delivery system in immunotherapy. Front Immunol 2025; 16:1540192. [PMID: 39911386 PMCID: PMC11794548 DOI: 10.3389/fimmu.2025.1540192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/06/2025] [Indexed: 02/07/2025] Open
Abstract
Cell penetrating peptides (CPPs) are usually positive charged peptides and have good cell membrane permeability. Meanwhile, CPPs are facile to synthesize, and can be functionalized to satisfy different demands, such as cyclization, incorporating unnatural amino acids, and lipid conjugation. These properties have made them as efficient drug-delivery tools to deliver therapeutic molecules to cells and tissues in a nontoxic manner, including small molecules, DNA, siRNA, therapeutic proteins and other various nanoparticles. However, the poor serum stability and low tumor targeting ability also hindered their broad application. Besides, inappropriate chemical modification can lead to membrane disruption and nonspecific toxicity. In this paper, we first reviewed recent advances in the CPP applications for cancer therapy via covalent or non-covalent manners. We carefully analyzed the advantages and disadvantages of each CPP modifications for drug delivery. Then, we concluded the recent progress of their clinical trials for different diseases. Finally, we discussed the challenges and opportunities CPPs met to translate into clinical applications. This review presented a new insight into CPPs for drug delivery, which could provide advice on the design of clinically effective systemic delivery systems using CPPs.
Collapse
Affiliation(s)
- Jing-Jing Du
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, College of Medicine, Hubei Polytechnic University, Huangshi, China
| | - Ru-Yan Zhang
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, College of Medicine, Hubei Polytechnic University, Huangshi, China
| | - Shangchi Jiang
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, College of Medicine, Hubei Polytechnic University, Huangshi, China
| | - Shanshan Xiao
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, College of Medicine, Hubei Polytechnic University, Huangshi, China
| | - Yiting Liu
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, College of Medicine, Hubei Polytechnic University, Huangshi, China
| | - Yongheng Niu
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, College of Medicine, Hubei Polytechnic University, Huangshi, China
| | - Wen-Xiang Zhao
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, College of Medicine, Hubei Polytechnic University, Huangshi, China
| | - Dongyuan Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - XianShi Ma
- Department of Hepatobiliary Surgery, Yangxin County People’s Hospital, Huangshi, China
| |
Collapse
|
28
|
Fu MJ, Jin H, Wang SP, Shen L, Liu HM, Liu Y, Zheng YC, Dai XJ. Unleashing the Power of Covalent Drugs for Protein Degradation. Med Res Rev 2025. [PMID: 39834319 DOI: 10.1002/med.22101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/28/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Targeted protein degradation (TPD) has emerged as a significant therapeutic approach for a variety of diseases, including cancer. Advances in TPD techniques, such as molecular glue (MG) and lysosome-dependent strategies, have shown substantial progress since the inception of the first PROTAC in 2001. The PROTAC methodology represents the forefront of TPD technology, with ongoing evaluation in more than 20 clinical trials for the treatment of diverse medical conditions. Two prominent PROTACs, ARV-471 and ARV-110, are currently undergoing phase III and II clinical trials, respectively. Traditional PROTACs are encountering obstacles such as limited binding affinity and a restricted range of E3 ligase ligands for facilitating the protein of interest (POI) degradation. Covalent medicines offer the potential to enhance PROTAC efficacy by enabling the targeting of previously considered "undruggable" shallow binding sites. Strategic alterations allow PROTAC to establish covalent connections with particular target proteins, including Kirsten rat sarcoma viral oncogene homolog (KRAS), Bruton's tyrosine kinase (BTK), epidermal growth factor receptor (EGFR), as well as E3 ligases such as DDB1 and CUL4 associated factor 16 (DCAF16) and Kelch-like ECH-associated protein 1 (Keap1). The concept of covalent degradation has also been utilized in various new forms of degraders, including covalent molecule glue (MG), in-cell click-formed proteolysis targeting chimera (CLIPTAC), HaloPROTAC, lysosome-targeting chimera (LYTAC) and GlueTAC. This review focuses on recent advancements in covalent degraders beyond covalent PROTACs and examines obstacles and future directions pertinent to this field.
Collapse
Affiliation(s)
- Meng-Jie Fu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Hang Jin
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Shao-Peng Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Liang Shen
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Hong-Min Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ying Liu
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi-Chao Zheng
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xing-Jie Dai
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Drug Discovery and Development; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardio-Cerebrovascular Drug, China Meheco Topfond Pharmaceutical Company, Zhumadian, Henan, China
| |
Collapse
|
29
|
Louage B, Defreyne D, Lauwers H, De Baere J, Uvyn A, Peng H, Chen Y, De Geest BG. Lysosomal Trafficking and Degradation of Extracellular Proteins via Multivalent Small Molecule Ligand Display on Dextran Scaffolds. Biomacromolecules 2025; 26:738-750. [PMID: 39668457 DOI: 10.1021/acs.biomac.4c01603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Targeted protein degradation (TPD) marks a shift in drug development from conventional inhibition to the complete removal of pathological proteins. Traditional TPD technologies target intracellular proteins of interest (POIs) for degradation but are ineffective against extracellular cell surface and soluble proteins, a significant portion of the human proteome. Recent advances involve the formation of ternary complexes between a POI and a cell surface lysosomal trafficking receptor, directing POIs to lysosomes for degradation. We report on DEXtran TRAfficking Chimeras (DEXTRACs) comprising multiple copies of synthetic small molecule ligands for a model POI and the cation-independent mannose-6-phosphate receptor (CI-M6PR) lysosomal trafficking receptor. These ligands are arranged along the dextran backbones. We demonstrate that DEXTRACs leverage multivalency with their efficacy dependent on the dextran chain length and ligand density to form high-avidity ternary complexes. Our in vitro studies confirmed that DEXTRACs traffic the target POI to lysosomes and facilitate its degradation.
Collapse
Affiliation(s)
- Benoit Louage
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium
| | - Demi Defreyne
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium
| | - Heleen Lauwers
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium
| | - Jamie De Baere
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium
| | - Annemiek Uvyn
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium
| | - Haixia Peng
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium
| | - Yong Chen
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium
| | - Bruno G De Geest
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium
| |
Collapse
|
30
|
Cheng B, Li M, Zheng J, Liang J, Li Y, Liang R, Tian H, Zhou Z, Ding L, Ren J, Shi W, Zhou W, Hu H, Meng L, Liu K, Cai L, Shao X, Fang L, Li H. Chemically engineered antibodies for autophagy-based receptor degradation. Nat Chem Biol 2025:10.1038/s41589-024-01803-1. [PMID: 39789191 DOI: 10.1038/s41589-024-01803-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/19/2024] [Indexed: 01/12/2025]
Abstract
Cell surface receptor-targeted protein degraders hold promise for drug discovery. However, their application is restricted because of the complexity of creating bifunctional degraders and the reliance on specific lysosome-shuttling receptors or E3 ubiquitin ligases. To address these limitations, we developed an autophagy-based plasma membrane protein degradation platform, which we term AUTABs (autophagy-inducing antibodies). Through covalent conjugation with polyethylenimine (PEI), the engineered antibodies acquire the capacity to degrade target receptors through autophagy. The degradation activities of AUTABs are self-sufficient, without necessitating the participation of lysosome-shuttling receptors or E3 ubiquitin ligases. The broad applicability of this platform was then illustrated by targeting various clinically important receptors. Notably, combining specific primary antibodies with a PEI-tagged secondary nanobody also demonstrated effective degradation of target receptors. Thus, our study outlines a strategy for directing plasma membrane proteins for autophagic degradation, which possesses desirable attributes such as ease of generation, independence from cell type and broad applicability.
Collapse
Affiliation(s)
- Binghua Cheng
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Meiqing Li
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Sino-Euro Center of Biomedicine and Health, Shenzhen, China
| | - Jiwei Zheng
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Jiaming Liang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Yanyan Li
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Ruijing Liang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
- Sino-Euro Center of Biomedicine and Health, Shenzhen, China
| | - Hui Tian
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zeyu Zhou
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Li Ding
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jian Ren
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenli Shi
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wenjie Zhou
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Hailiang Hu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Long Meng
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Ke Liu
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Sino-Euro Center of Biomedicine and Health, Shenzhen, China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China.
- Sino-Euro Center of Biomedicine and Health, Shenzhen, China.
| | - Ximing Shao
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Sino-Euro Center of Biomedicine and Health, Shenzhen, China.
| | - Lijing Fang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China.
- Sino-Euro Center of Biomedicine and Health, Shenzhen, China.
| | - Hongchang Li
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China.
- Sino-Euro Center of Biomedicine and Health, Shenzhen, China.
| |
Collapse
|
31
|
Jiang S, Lv X, Ouyang Z, Chi H, Zeng Y, Wang Y, He J, Chen J, Chen J, An K, Cheng M, Wen Y, Li J, Zhang P. Programmable Circular Multivalent Nanobody-Targeting Chimeras (mNbTACs) for Multireceptor-Mediated Protein Degradation and Targeted Drug Delivery. Angew Chem Int Ed Engl 2024; 63:e202407986. [PMID: 39402961 DOI: 10.1002/anie.202407986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/14/2024] [Indexed: 11/12/2024]
Abstract
Multispecific therapeutics hold significant promise in drug delivery, protein degradation, and cell recruitment to address clinical issues of tumor heterogeneity, resistance, and immune evasion. However, their modular engineering remains challenging. We developed a targeted degradation platform, termed multivalent nanobody-targeting chimeras (mNbTACs), by encoding diverse nanobody codons on a circular template using DNA printing technology. The homo- or hetero- mNbTACs specifically recognized membrane targets in a multivalent manner and simultaneously recruited scavenger receptors to favor clathrin-/caveolae-dependent endocytosis and lysosomal degradation of multiple proteins with high efficiency and selectivity. We demonstrated that a bispecific doxorubicin-loaded mNbTAC, named Doxo-mvNbsPPH, passively accumulated at tumor sites, specifically interacted with PD-L1 and HER2 targets, and was rapidly transported into lysosome, inducing potent immunogenic cell death and alleviating immune checkpoint evasion. The synergistic boosting of innate and adaptive immunity promoted the infiltration and proliferation of CD8+ T cells in tumor microenvironment (an 11-fold increase) with high toxicity and low exhaustion, eventually enhancing antitumor efficacy. Our mNbTAC platform provides multispecific therapeutics with variable valences and programmed species, whereas it induces targeted protein degradation through multireceptor-mediated endocytosis and lysosomal degradation without the need for lysosome-targeting receptors, representing a general and modular tool to harness extracellular proteome for disease treatment.
Collapse
Affiliation(s)
- Shiqi Jiang
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Xinru Lv
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310022, China
| | - Zhenlin Ouyang
- Center for Microbiome Research of Med-X Institute, Department of Critical Care Medicine, Shanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hongli Chi
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Yuchen Zeng
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Yani Wang
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Jiaxuan He
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Jinling Chen
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Jingyi Chen
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Keli An
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Ming Cheng
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Yurong Wen
- Center for Microbiome Research of Med-X Institute, Department of Critical Care Medicine, Shanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Juan Li
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Penghui Zhang
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| |
Collapse
|
32
|
Al Mazid M, Shkel O, Ryu E, Kim J, Shin KH, Kim YK, Lim HS, Lee JS. Aptamer and N-Degron Ensemble (AptaGron) as a Target Protein Degradation Strategy. ACS Chem Biol 2024; 19:2462-2468. [PMID: 39630150 PMCID: PMC11668241 DOI: 10.1021/acschembio.4c00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/13/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024]
Abstract
Target protein degradation (TPD) is a promising strategy for catalytic downregulation of target proteins through various cellular proteolytic pathways. Despite numerous reports on novel TPD mechanisms, the discovery of target-specific ligands remains a major challenge. Unlike small-molecule ligands, aptamers offer significant advantages, owing to their SELEX-based systematic screening method. To fully utilize aptamers for TPD, we designed an aptamer and N-degron ensemble system (AptaGron) that circumvents the need for synthetic conjugations between aptamers and proteolysis-recruiting units. In our AptaGron system, a peptide nucleic acid containing an N-degron peptide and a sequence complementary to the aptamer was designed. Using this system, we successfully degraded three target proteins, tau, nucleolin, and eukaryotic initiation factor 4E (eIF4E), which lack specific small-molecule ligands. Our results highlight the potential of the AptaGron approach as a robust platform for targeted protein degradation.
Collapse
Affiliation(s)
- Mohammad
Faysal Al Mazid
- Division
of Bio-Medical Science and Technology, Korea
Institute of Science and Technology (KIST) & Department of Biological
Chemistry, KIST School UST, Seoul 02792, South Korea
- Department
of Pharmacology, College of Medicine, Korea
University, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Olha Shkel
- Brain
Science Institute, Korea Institute of Science
and Technology (KIST) & Department of Biological Chemistry, KIST
School UST, Seoul 02792, South Korea
- Department
of Pharmacology, College of Medicine, Korea
University, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Eunteg Ryu
- Department
of Pharmacology, College of Medicine, Korea
University, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Jiwon Kim
- Department
of Pharmacology, College of Medicine, Korea
University, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Kyung Ho Shin
- Department
of Pharmacology, College of Medicine, Korea
University, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Yun Kyung Kim
- Brain
Science Institute, Korea Institute of Science
and Technology (KIST) & Department of Biological Chemistry, KIST
School UST, Seoul 02792, South Korea
| | - Hyun Suk Lim
- Department
of Chemistry, Pohang University of Science
and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang 37673, South Korea
| | - Jun-Seok Lee
- Department
of Pharmacology, College of Medicine, Korea
University, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02841, South Korea
| |
Collapse
|
33
|
Ning Y, Li B, Liu Y, Lu Y, Huang X, Liu B. Nanomotor-Driven Targeting Chimeras as Accelerators for the Degradation of Extracellular Proteins. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405209. [PMID: 39268797 DOI: 10.1002/smll.202405209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/26/2024] [Indexed: 09/15/2024]
Abstract
Targeted protein degradation (TPD) is emerging as a therapeutic paradigm and a serviceable research tool in chemical biology and disease treatment. However, without driving sources, most targeting chimeras (TACs) lack the capability of self-diffusion and active searching in biological environments, which significantly impedes degradation efficiency. Herein, nanomotor-driven targeting chimeras (MotorTACs) are ingeniously designed to achieve effective internalization and degradation of extracellular platelet-derived growth factor (PDGF), a driver to cancer invasion and metastasis. Catalyzed by endogenous H2O2, MotorTACs diffused rapidly and searched actively in living cells, as visualized at the single-particle level under the dark-field mode. Hydrolysis efficiency is significantly enhanced as target protein degradation is complete in only 4 h. Furthermore, MotorTACs-mediated degradation of PDGF is found to be via the lysosome and ubiquitin-proteasome dual-degradation pathways. Taking advantage of the properties, it is anticipated that MotorTACs provide a unique strategy against extracellular undruggable proteins, thus advancing the development of therapeutic interventions in chemical biology and disease treatment.
Collapse
Affiliation(s)
- Yujun Ning
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Bin Li
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Yixin Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Yanwei Lu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Xuedong Huang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
34
|
Korona B, Itzhaki LS. How to target membrane proteins for degradation: Bringing GPCRs into the TPD fold. J Biol Chem 2024; 300:107926. [PMID: 39454955 PMCID: PMC11626814 DOI: 10.1016/j.jbc.2024.107926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
We are now in the middle of a so-called "fourth wave" of drug innovation: multispecific medicines aimed at diseases and targets previously thought to be "undruggable"; by inducing proximity between two or more proteins, for example, a target and an effector that do not naturally interact, such modalities have potential far beyond the scope of conventional drugs. In particular, targeted protein degradation (TPD) strategies to destroy disease-associated proteins have emerged as an exciting pipeline in drug discovery. Most efforts are focused on intracellular proteins, whereas membrane proteins have been less thoroughly explored despite the fact that they comprise roughly a quarter of the human proteome with G-protein coupled receptors (GPCRs) notably dysregulated in many diseases. Here, we discuss the opportunities and challenges of developing degraders for membrane proteins with a focus on GPCRs. We provide an overview of different TPD platforms in the context of membrane-tethered targets, and we present recent degradation technologies highlighting their potential application to GPCRs.
Collapse
Affiliation(s)
- Boguslawa Korona
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom.
| | - Laura S Itzhaki
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
35
|
Wang X, Shuai W, Yang P, Liu Y, Zhang Y, Wang G. Targeted protein degradation: expanding the technology to facilitate the clearance of neurotoxic proteins in neurodegenerative diseases. Ageing Res Rev 2024; 102:102584. [PMID: 39551160 DOI: 10.1016/j.arr.2024.102584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/30/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
In neurodegenerative diseases (NDDs), disruptions in protein homeostasis hinder the clearance of misfolded proteins, causing the formation of misfolded protein oligomers and multimers. The accumulation of these abnormal proteins results in the onset and progression of NDDs. Removal of non-native protein is essential for cell to maintain proteostasis. In recent years, targeted protein degradation (TPD) technologies have become a novel means of treating NDDs by removing misfolded proteins through the intracellular protein quality control system. The TPD strategy includes the participation of two primary pathways, namely the ubiquitin-proteasome pathway (for instance, PROTAC, molecular glue and hydrophobic tag), and the autophagy-lysosome pathway (such as LYTAC, AUTAC and ATTEC). In this review, we systematically present the mechanisms of various TPD strategies employed for neurotoxic protein degradation in NDDs. The article provides an overview of the design, in vitro and in vivo anti-NDD activities and pharmacokinetic properties of these small-molecular degraders. Finally, the advantages, challenges and perspectives of these TPD technologies in NDDs therapy are discussed, providing ideas for further development of small molecule degraders in the realm of NDDs.
Collapse
Affiliation(s)
- Xin Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Wen Shuai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Panpan Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Yinyang Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Yiwen Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China.
| | - Guan Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
36
|
Liu H, Fu Z, Han Y, Fang Y, Shen W, Chen Z, Zhu R, Zhang H, Chen PR. Conditionally Activatable Chimeras for Tumor-Specific Membrane Protein Degradation. J Am Chem Soc 2024. [PMID: 39561381 DOI: 10.1021/jacs.4c06160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The recent advancements on membrane protein degraders (MPDs) have broadened the applicability of proteolysis-targeting chimeras (PROTACs) beyond intracellular proteins to include the previously "undruggable" cell-surface targets. However, the potential toxicity of MPDs caused by undesired off-target degradation poses a significant challenge to clinical deployment, mirroring concerns associated with PROTACs. Here, we introduce a conditionally activatable membrane protein degrader (Pro-MPD), which leverages the specificity and high affinity of biparatopic nanobodies combined with a tumor microenvironment-activated cell-penetrating peptide (Pro-CPP) to achieve on-target activated internalization and degradation of PD-L1 within tumor sites. This modularly designed Pro-MPD demonstrated a high target degradation efficiency and T cell reactivation, as well as sustained inhibition of tumor growth in xenograft models, highlighting its potential as a safer and highly efficient MPD for in vivo applications. Our work provides a general strategy for the development of conditionally activatable MPDs, which offers a new avenue for reducing the undesired systemic toxicity of MPDs due to the off-tumor degradation.
Collapse
Affiliation(s)
- Hongxiang Liu
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Zhijiang Fu
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Yu Han
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yike Fang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Weijun Shen
- Center for Translational Research, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Zhicheng Chen
- Center for Translational Research, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Rongfeng Zhu
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Heng Zhang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Peng R Chen
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
37
|
Pliatsika D, Blatter C, Riedl R. Targeted protein degradation: current molecular targets, localization, and strategies. Drug Discov Today 2024; 29:104178. [PMID: 39276920 DOI: 10.1016/j.drudis.2024.104178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/23/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Targeted protein degradation (TPD) has revolutionized drug discovery by selectively eliminating specific proteins within and outside the cellular context. Over the past two decades, TPD has expanded its focus beyond well-established targets, exploring diverse proteins beyond cancer-related ones. This evolution extends the potential of TPD to various diseases. Notably, TPD can target proteins at demanding locations, such as the extracellular matrix (ECM) and cellular membranes, presenting both opportunities and challenges for future research. In this review, we comprehensively examine the exciting opportunities in the burgeoning field of TPD, highlighting different targets, their cellular environment, and innovative strategies for modern drug discovery.
Collapse
Affiliation(s)
- Dimanthi Pliatsika
- Institute of Chemistry and Biotechnology, Competence Center for Drug Discovery, Zurich University of Applied Sciences, CH-8820 Wädenswil, Switzerland
| | - Cindy Blatter
- Institute of Chemistry and Biotechnology, Competence Center for Drug Discovery, Zurich University of Applied Sciences, CH-8820 Wädenswil, Switzerland
| | - Rainer Riedl
- Institute of Chemistry and Biotechnology, Competence Center for Drug Discovery, Zurich University of Applied Sciences, CH-8820 Wädenswil, Switzerland.
| |
Collapse
|
38
|
Zhao W, Jiang Y, Li X, Wang H. Nanotechnology-Enabled Targeted Protein Degradation for Cancer Therapeutics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e2020. [PMID: 39663650 DOI: 10.1002/wnan.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/11/2024] [Accepted: 11/15/2024] [Indexed: 12/13/2024]
Abstract
Targeted protein degradation (TPD) represents an innovative therapeutic strategy that has garnered considerable attention from both academic and industrial sectors due to its promising developmental prospects. Approximately 85% of human proteins are implicated in disease pathogenesis, and the FDA has approved around 400 drugs targeting these disease-related proteins, predominantly enzymes, transcription factors, and non-enzymatic proteins. However, existing therapeutic modalities fail to address certain "high-value" targets, such as c-Myc and Ras. The emergence of proteolysis-targeting chimeras (PROTAC) technology has introduced TPD into a new realm. The capability to target non-druggable sites has expanded the therapeutic horizon of protein-based drugs, although challenges related to bioavailability, safety, and adverse side effects have constrained their clinical progression. Nano-delivery systems and emerging TPD modalities, such as molecular glues, lysosome-targeted chimeras (LYTACs), autophagy system compounds (ATTEC), and antibody PROTAC (AbTACs), have mitigated some of these limitations. This paper reviews the latest advancements in TPD, highlighting their applications and benefits in cancer therapy, and concludes with a forward-looking perspective on the future development of this field.
Collapse
Affiliation(s)
- Wutong Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology, Beijing, China
| | | | - Xiufen Li
- The Second Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Hai Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology, Beijing, China
| |
Collapse
|
39
|
Zhang SH, Zeng N, Xu JZ, Liu CQ, Xu MY, Sun JX, An Y, Zhong XY, Miao LT, Wang SG, Xia QD. Recent breakthroughs in innovative elements, multidimensional enhancements, derived technologies, and novel applications of PROTACs. Biomed Pharmacother 2024; 180:117584. [PMID: 39427546 DOI: 10.1016/j.biopha.2024.117584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024] Open
Abstract
Proteolysis Targeting Chimera (PROTAC) is an emerging and evolving technology based on targeted protein degradation (TPD). Small molecule PROTACs have shown great efficacy in degrading disease-specific proteins in preclinical and clinical studies, but also showed various limitations. In recent years, new technologies and advances in TPD have provided additional optimized strategies based on conventional PROTACs that can overcome the shortcomings of conventional PROTACs in terms of undruggable targets, bioavailability, tissue-specificity, spatiotemporal control, and degradation scope. In addition, some designs of special targeting chimeras and applications based on multidisciplinary science have shed light on novel therapeutic modalities and drug design. However, each improvement has its own advantages, disadvantages and application conditions. In this review, we summarize the exploration of PROTAC elements, depict a landscape of improvements and derived concepts of PROTACs, and expect to provide perspectives for technological innovations, combinations and applications in future targeting chimera design.
Collapse
Affiliation(s)
- Si-Han Zhang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Na Zeng
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Jin-Zhou Xu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Chen-Qian Liu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Meng-Yao Xu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Jian-Xuan Sun
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Ye An
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Xing-Yu Zhong
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Lin-Tao Miao
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China
| | - Shao-Gang Wang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Qi-Dong Xia
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| |
Collapse
|
40
|
Cui M, Zhang D, Zheng X, Zhai H, Xie M, Fan Q, Wang L, Fan C, Chao J. Intelligent Modular DNA Lysosome-Targeting Chimera Nanodevice for Precision Tumor Therapy. J Am Chem Soc 2024; 146:29609-29620. [PMID: 39428706 DOI: 10.1021/jacs.4c10010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Lysosome targeting chimeras (LYTACs) have emerged as a powerful modality that can eliminate traditionally undruggable extracellular tumor-related pathogenic proteins, but their low bioavailability and nonspecific distribution significantly restrict their efficacy in precision tumor therapy. Developing a LYTAC system that can selectively target tumor tissues and enable a modular design is crucial but challenging. We here report a programmable nanoplatform for tumor-specific degradation of multipathogenic proteins using an intelligent modular DNA LYTAC (IMTAC) nanodevice. We employ circular DNA origami to integrate predesigned modular multitarget protein binding sites and pH-responsive protein degradation promoters that specifically recognize cell-surface lysosome-shuttling receptors in tumor tissues. By precisely manipulating the stoichiometry and modularity of promoters and ligands targeting diverse proteins, the IMTAC nanodevice enables accurate localization and delivery into tumor tissues, where the acidic tumor microenvironment triggers degradation switch activation, multivalent binding, and efficient degradation of various prespecified proteins. The tissue-specificity and multiple ligands in IMTACs significantly improve the drug utilization rate while reducing off-target effects. Importantly, this system demonstrates the capability of collabo-rative degradation of EGFR and PDL1 in tumor tissue for combined targeting and immunity therapy of hepatocellular carcinoma (HCC), resulting in obvious tumor necrosis and inhibition of tumor growth in vivo even at low concentrations. This study presents a unique strategy for building a general, intelligent, modular, and simple encoded nanoplatform for designing precision medicine degraders and developing proprietary antitumor drugs.
Collapse
Affiliation(s)
- Meirong Cui
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Dan Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Xian Zheng
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Huan Zhai
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Mo Xie
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Qin Fan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jie Chao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
41
|
Yun C, Li N, Zhang Y, Fang T, Ma J, Zheng Z, Zhou S, Cai X. Glucose Transporter-Targeting Chimeras Enabling Tumor-Selective Degradation of Secreted and Membrane Proteins. ACS Chem Biol 2024; 19:2254-2263. [PMID: 39374326 DOI: 10.1021/acschembio.4c00584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Tumor-selective degradation of target proteins has the potential to offer superior therapeutic benefits with maximized therapeutic windows and minimized off-target effects. However, the development of effective lysosome-targeted degradation platforms for achieving selective protein degradation in tumors remains a substantial challenge. Cancer cells depend on certain solute carrier (SLC) transporters to acquire extracellular nutrients to sustain their metabolism and growth. This current study exploits facilitative glucose transporters (GLUTs), a group of SLC transporters widely overexpressed in numerous types of cancer, to drive the endocytosis and lysosomal degradation of target proteins in tumor cells. GLUT-targeting chimeras (GTACs) were generated by conjugating multiple glucose ligands to an antibody specific for the target protein. We demonstrate that the constructed GTACs can induce the internalization and lysosomal degradation of the extracellular and membrane proteins streptavidin, tumor necrosis factor-alpha (TNF-α), and human epidermal growth factor receptor 2 (HER2). Compared with the parent antibody, the GTAC exhibited higher potency in inhibiting the growth of tumor cells in vitro and enhanced tumor-targeting capacity in a tumor-bearing mouse model. Thus, the GTAC platform represents a novel degradation strategy that harnesses an SLC transporter for tumor-selective depletion of secreted and membrane proteins of interest.
Collapse
Affiliation(s)
- Chengyu Yun
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 East Outer Ring Road, Guangzhou 510006, China
| | - Na Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 East Outer Ring Road, Guangzhou 510006, China
| | - Yishu Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 East Outer Ring Road, Guangzhou 510006, China
| | - Tong Fang
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 East Outer Ring Road, Guangzhou 510006, China
| | - Jing Ma
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 East Outer Ring Road, Guangzhou 510006, China
| | - Zhenting Zheng
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 East Outer Ring Road, Guangzhou 510006, China
| | - Subing Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 East Outer Ring Road, Guangzhou 510006, China
| | - Xiaoqing Cai
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 East Outer Ring Road, Guangzhou 510006, China
| |
Collapse
|
42
|
Wu Y, Wang A, Feng G, Pan X, Shuai W, Yang P, Zhang J, Ouyang L, Luo Y, Wang G. Autophagy modulation in cancer therapy: Challenges coexist with opportunities. Eur J Med Chem 2024; 276:116688. [PMID: 39033611 DOI: 10.1016/j.ejmech.2024.116688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Autophagy, a crucial intracellular degradation process facilitated by lysosomes, plays a pivotal role in maintaining cellular homeostasis. The elucidation of autophagy key genes and signaling pathways has significantly advanced our understanding of this process and has led to the exploration of autophagy as a promising therapeutic approach. This review comprehensively assesses the latest developments in small molecule modulators targeting autophagy. Moreover, the review delves into the most recent strategies for drug discovery, specifically focusing on selective agents that exploit autophagosomes and lysosomes for targeted protein degradation. Additionally, this article highlights the prevailing challenges and outlines potential future advancements in the field. By amalgamating the cutting-edge knowledge in the field, we aim to offer valuable insights and references for the anti-cancer drug development of autophagy-targeted therapies, thus contributing to the advancement of novel therapeutic interventions.
Collapse
Affiliation(s)
- Yongya Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Aoxue Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Guotai Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Xiaoli Pan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Wen Shuai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Panpan Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Jing Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Liang Ouyang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yi Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| | - Guan Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
43
|
Fang T, Zheng Z, Li N, Zhang Y, Ma J, Yun C, Cai X. Lysosome-targeting chimeras containing an endocytic signaling motif trigger endocytosis and lysosomal degradation of cell-surface proteins. Chem Sci 2024:d4sc05093b. [PMID: 39391383 PMCID: PMC11459673 DOI: 10.1039/d4sc05093b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Lysosome-targeting degradation technologies have emerged as a promising therapeutic strategy for the selective depletion of target extracellular and cell-surface proteins by harnessing a cell-surface effector protein such as lysosome-targeting receptors (LTRs) or transmembrane E3 ligases that direct lysosomal degradation. We recently developed a lysosome-targeting degradation platform termed signal-mediated lysosome-targeting chimeras (SignalTACs) that functions independently of an LTR or E3 ligase; these are engineered fusion proteins comprising a target binder, a cell-penetrating peptide (CPP), and a lysosomal sorting signal motif (P1). Herein, we present the next-generation SignalTACs containing a single endocytic signal that bypasses the need for a CPP. We demonstrate that the fusion with a 10-amino acid endocytic signaling peptide (P3) derived from the cation-independent mannose-6-phosphate receptor (CI-M6PR) induces robust internalization and lysosomal degradation of the target protein. The P3-based SignalTAC exhibited enhanced antitumor efficacy compared to the parent antibody. We envision that the fusion of the endocytic signaling peptide P3 to a target binder may allow the construction of an effective degrader for membrane-associated targets. Furthermore, mechanistic studies identified different drivers for the activities of the P3- and P1-based SignalTACs, which is expected to provide crucial insights toward the harnessing of the intrinsic signaling pathways to direct protein trafficking and degradation.
Collapse
Affiliation(s)
- Tong Fang
- School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou China
| | - Zhenting Zheng
- School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou China
| | - Na Li
- School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou China
| | - Yishu Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou China
| | - Jing Ma
- School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou China
| | - Chengyu Yun
- School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou China
| | - Xiaoqing Cai
- School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou China
| |
Collapse
|
44
|
Schnider ST, Vigano MA, Affolter M, Aguilar G. Functionalized Protein Binders in Developmental Biology. Annu Rev Cell Dev Biol 2024; 40:119-142. [PMID: 39038471 DOI: 10.1146/annurev-cellbio-112122-025214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Developmental biology has greatly profited from genetic and reverse genetic approaches to indirectly studying protein function. More recently, nanobodies and other protein binders derived from different synthetic scaffolds have been used to directly dissect protein function. Protein binders have been fused to functional domains, such as to lead to protein degradation, relocalization, visualization, or posttranslational modification of the target protein upon binding. The use of such functionalized protein binders has allowed the study of the proteome during development in an unprecedented manner. In the coming years, the advent of the computational design of protein binders, together with further advances in scaffold engineering and synthetic biology, will fuel the development of novel protein binder-based technologies. Studying the proteome with increased precision will contribute to a better understanding of the immense molecular complexities hidden in each step along the way to generate form and function during development.
Collapse
Affiliation(s)
| | | | | | - Gustavo Aguilar
- Current affiliation: Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
- Biozentrum, Universität Basel, Basel, Switzerland;
| |
Collapse
|
45
|
Castagna D, Gourdet B, Hjerpe R, MacFaul P, Novak A, Revol G, Rochette E, Jordan A. To homeostasis and beyond! Recent advances in the medicinal chemistry of heterobifunctional derivatives. PROGRESS IN MEDICINAL CHEMISTRY 2024; 63:61-160. [PMID: 39370242 DOI: 10.1016/bs.pmch.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The field of induced proximity therapeutics has expanded dramatically over the past 3 years, and heterobifunctional derivatives continue to form a significant component of the activities in this field. Here, we review recent advances in the field from the perspective of the medicinal chemist, with a particular focus upon informative case studies, alongside a review of emerging topics such as Direct-To-Biology (D2B) methodology and utilities for heterobifunctional compounds beyond E3 ligase mediated degradation. We also include a critical evaluation of the latest thinking around the optimisation of physicochemical and pharmacokinetic attributes of these beyond Role of Five molecules, to deliver appropriate therapeutic exposure in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Allan Jordan
- Sygnature Discovery, Nottingham, United Kingdom; Sygnature Discovery, Macclesfield, United Kingdom.
| |
Collapse
|
46
|
Chen S, Wang W, Chen Z, Li R, Wu Z, Dong G, Sheng C. Peptide-Mediated Small Molecule Lysosome-Targeting Chimeras for Targeted Degradation of Membrane and Intracellular Proteins. J Med Chem 2024; 67:15807-15815. [PMID: 39146536 DOI: 10.1021/acs.jmedchem.4c01449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Targeted protein degradation through the lysosomal pathway has attracted increasing attention and expanded the scope of degradable proteins. However, the endogenous lysosomal degradation strategies are mainly based on antibodies or nanobodies. Effective small molecule lysosomal degraders are still rather rare. Herein, a new lysosomal degradation approach, termed peptide-mediated small molecule lysosome-targeting chimeras (PSMLTACs), was developed by the incorporation of small molecule ligands with a lysosome-sorting NPGY motif containing the cell-penetrating peptide. PSMLTACs were successfully applied to degrade both membrane and intracellular targets. In particular, the PSMLTAC strategy demonstrated higher degradation efficiency on membrane target PD-L1 and intracellular target PDEδ than corresponding PROTAC degraders. Taken together, this proof-of-concept provides a convenient and effective strategy for targeted protein degradation.
Collapse
Affiliation(s)
- Shuqiang Chen
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai 200433, P.R. China
| | - Wei Wang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai 200433, P.R. China
| | - Zhipeng Chen
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai 200433, P.R. China
| | - Ruyan Li
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai 200433, P.R. China
| | - Zhe Wu
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai 200433, P.R. China
| | - Guoqiang Dong
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai 200433, P.R. China
| | - Chunquan Sheng
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai 200433, P.R. China
| |
Collapse
|
47
|
Koch NG, Budisa N. Evolution of Pyrrolysyl-tRNA Synthetase: From Methanogenesis to Genetic Code Expansion. Chem Rev 2024; 124:9580-9608. [PMID: 38953775 PMCID: PMC11363022 DOI: 10.1021/acs.chemrev.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Over 20 years ago, the pyrrolysine encoding translation system was discovered in specific archaea. Our Review provides an overview of how the once obscure pyrrolysyl-tRNA synthetase (PylRS) tRNA pair, originally responsible for accurately translating enzymes crucial in methanogenic metabolic pathways, laid the foundation for the burgeoning field of genetic code expansion. Our primary focus is the discussion of how to successfully engineer the PylRS to recognize new substrates and exhibit higher in vivo activity. We have compiled a comprehensive list of ncAAs incorporable with the PylRS system. Additionally, we also summarize recent successful applications of the PylRS system in creating innovative therapeutic solutions, such as new antibody-drug conjugates, advancements in vaccine modalities, and the potential production of new antimicrobials.
Collapse
Affiliation(s)
- Nikolaj G. Koch
- Department
of Chemistry, Institute of Physical Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Nediljko Budisa
- Biocatalysis
Group, Institute of Chemistry, Technische
Universität Berlin, 10623 Berlin, Germany
- Chemical
Synthetic Biology Chair, Department of Chemistry, University of Manitoba, Winnipeg MB R3T 2N2, Canada
| |
Collapse
|
48
|
Zhang GR, Zhang C, Fu T, Tan W, Wang XQ. An Aptamer Glue Enables Hyperefficient Targeted Membrane Protein Degradation. JACS AU 2024; 4:2907-2914. [PMID: 39211579 PMCID: PMC11350568 DOI: 10.1021/jacsau.4c00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 09/04/2024]
Abstract
Targeted membrane protein degradation (TMPD) offers significant therapeutic potential by enabling the removal of harmful membrane-anchored proteins and facilitating detailed studies of complex biological pathways. However, existing TMPD methodologies face challenges such as complex molecular architectures, scarce availability, and cumbersome construction requirements. To address these issues, this study presents a highly efficient TMPD system (TMPDS) that integrates an optimized bivalent aptamer glue with a potent protein transport shuttle. Utilizing this approach, we successfully degraded both the highly expressed protein tyrosine kinase 7 in CCRF-CEM cells and the poorly expressed PTK7 in MV-411 cells. This system represents significant advancement in the field of molecular medicine, offering a new avenue for targeted therapeutic interventions and the exploration of cellular mechanisms.
Collapse
Affiliation(s)
- Guo-Rong Zhang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Chi Zhang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Ting Fu
- The
Key Laboratory of Zhejiang Province for Aptamers and Theranostics,
Zhejiang Cancer Hospital, Hangzhou Institute
of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Weihong Tan
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- The
Key Laboratory of Zhejiang Province for Aptamers and Theranostics,
Zhejiang Cancer Hospital, Hangzhou Institute
of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute
of Molecular Medicine (IMM), Renji Hospital, School of Medicine, College
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, Shanghai 200127, China
| | - Xue-Qiang Wang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- The
Key Laboratory of Zhejiang Province for Aptamers and Theranostics,
Zhejiang Cancer Hospital, Hangzhou Institute
of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
49
|
Feng Y, Hu X, Wang X. Targeted protein degradation in hematologic malignancies: clinical progression towards novel therapeutics. Biomark Res 2024; 12:85. [PMID: 39169396 PMCID: PMC11340087 DOI: 10.1186/s40364-024-00638-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024] Open
Abstract
Targeted therapies, such as small molecule kinase inhibitors, have made significant progress in the treatment of hematologic malignancies by directly modulating protein activity. However, issues such as drug toxicity, drug resistance due to target mutations, and the absence of key active sites limit the therapeutic efficacy of these drugs. Targeted protein degradation (TPD) presents an emergent and rapidly evolving therapeutic approach that selectively targets proteins of interest (POI) based on endogenous degradation processes. With an event-driven pharmacology of action, TPD achieves efficacy with catalytic amounts, avoiding drug-related toxicity. Furthermore, TPD has the unique mode of degrading the entire POI, such that resistance derived from mutations in the targeted protein has less impact on its degradation function. Proteolysis-targeting chimeras (PROTACs) and molecular glue degraders (MGDs) are the most maturely developed TPD techniques. In this review, we focus on both preclinical experiments and clinical trials to provide a comprehensive summary of the safety and clinical effectiveness of PROTACs and MGDs in hematologic malignancies over the past two decades. In addition, we also delineate the challenges and opportunities associated with these burgeoning degradation techniques. TPD, as an approach to the precise degradation of specific proteins, provides an important impetus for its future application in the treatment of patients with hematologic malignancies.
Collapse
Affiliation(s)
- Yupiao Feng
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, China
| | - Xinting Hu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, Shandong, 250021, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, Shandong, 250021, China.
- Taishan Scholars Program of Shandong Province, Jinan, Shandong, 250021, China.
| |
Collapse
|
50
|
Fan L, Tong W, Wei A, Mu X. Progress of proteolysis-targeting chimeras (PROTACs) delivery system in tumor treatment. Int J Biol Macromol 2024; 275:133680. [PMID: 38971291 DOI: 10.1016/j.ijbiomac.2024.133680] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Proteolysis targeting chimeras (PROTACs) can use the intrinsic protein degradation system in cells to degrade pathogenic target proteins, and are currently a revolutionary frontier of development strategy for tumor treatment with small molecules. However, the poor water solubility, low cellular permeability, and off-target side effects of most PROTACs have prevented them from passing the preclinical research stage of drug development. This requires the use of appropriate delivery systems to overcome these challenging hurdles and ensure precise delivery of PROTACs towards the tumor site. Therefore, the combination of PROTACs and multifunctional delivery systems will open up new research directions for targeted degradation of tumor proteins. In this review, we systematically reviewed the design principles and the most recent advances of various PROTACs delivery systems. Moreover, the constructive strategies for developing multifunctional PROTACs delivery systems were proposed comprehensively. This review aims to deepen the understanding of PROTACs drugs and promote the further development of PROTACs delivery system.
Collapse
Affiliation(s)
- Lianlian Fan
- Department of Pharmacy, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Weifang Tong
- Department of Otolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130021, China
| | - Anhui Wei
- Jilin University School of Pharmaceutical Sciences, Changchun 130021, China
| | - Xupeng Mu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| |
Collapse
|