1
|
Kim SS, Park I, Kim J, Ka NL, Lim GY, Park MY, Hwang S, Kim JE, Park SY, Kim JS, Rhee HW, Lee MO. Secreted LGALS3BP facilitates distant metastasis of breast cancer. Breast Cancer Res 2025; 27:4. [PMID: 39789641 PMCID: PMC11715970 DOI: 10.1186/s13058-024-01958-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/30/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Patients with estrogen receptor (ER)-positive breast cancer (BC) can be treated with endocrine therapy targeting ER, however, metastatic recurrence occurs in 25% of the patients who have initially been treated. Secreted proteins from tumors play important roles in cancer metastasis but previous methods for isolating secretory proteins had limitations in identifying novel targets. METHODS We applied an in situ secretory protein labeling technique using TurboID to analyze secretome from tamoxifen-resistant (TAMR) BC. The increased expression of LGALS3BP was validated using western blotting, qPCR, ELISA, and IF. Chromatin immunoprecipitation was applied to analyze estrogen-dependent regulation of LGALS3BP transcription. The adhesive and angiogenic functions of LGALS3BP were evaluated by abrogating LGALS3BP expression using either shRNA-mediated knockdown or a neutralizing antibody. Xenograft mouse experiments were employed to assess the in vivo metastatic potential of TAMR cells and the LGALS3BP protein. Clinical evaluation of LGALS3BP risk was carried out with refractory clinical specimens from tamoxifen-treated ER-positive BC patients and publicly available databases. RESULTS TAMR secretome analysis revealed that 176 proteins were secreted at least 2-fold more from MCF7/TAMR cells than from sensitive cells, and biological processes such as cell adhesion and angiogenesis were associated with the TAMR secretome. Galectin-3 binding protein (LGALS3BP) was one of the top 10 most highly secreted proteins in the TAMR secretome. The expression level of LGALS3BP was suppressed by estrogen signaling, which involves direct ERα binding to its promoter region. Secreted LGALS3BP in the TAMR secretome helped BC cells adhere to the extracellular matrix and promoted the tube formation of human umbilical vein endothelial cells. Compared with sensitive cells, xenograft animal experiments with MCF7/TAMR cells showed increased pulmonary metastasis, which completely disappeared in LGALS3BP-knockdown TAMR cells. Finally, higher levels of LGALS3BP were associated with poor prognosis in ER-positive BC patients treated with adjuvant tamoxifen in the clinic. CONCLUSION TAMR secretome analysis identified secretory proteins, such as LGALS3BP, that are involved in biological processes closely related to metastasis. Secreted LGALS3BP from the TAMR cells promoted adhesion of the cells to the extracellular matrix and vasculature formation, which may support metastasis of TAMR cells.
Collapse
Affiliation(s)
- Seung-Su Kim
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Issac Park
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Jeesoo Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Na-Lee Ka
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Ga Young Lim
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Mi-Ye Park
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Sewon Hwang
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Ji-Eun Kim
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - So Yeon Park
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Gyeonggi, Republic of Korea
| | - Jong-Seo Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Mi-Ock Lee
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea.
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea.
- Bio-MAX institute, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
2
|
Ghanta P, Hessel E, Arias-Alvarado A, Aghayev M, Ilchenko S, Kasumov T, Oyewumi MO. Lung cancer exosomal Gal3BP promotes osteoclastogenesis with potential connotation in osteolytic metastasis. Sci Rep 2024; 14:27201. [PMID: 39516568 PMCID: PMC11549321 DOI: 10.1038/s41598-024-79006-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
New insights into cellular interactions and key biomolecules involved in lung cancer (LC) bone metastasis could offer remarkable therapeutic benefits. Using a panel of four LC cells, we investigated LC-bone interaction by exposing differentiating osteoclasts (OCs) to LC cells (LC-OC interaction) directly in a co-culture setting or indirectly via treatment with LC secretomes (conditioned media or exosomes). LC-OC interaction facilitated the production of large-sized OCs (nuclei > 10) coupled with extensive bone resorption pits. Proteomic analysis of LC exosomes identified galectin-3-binding protein (Gal3bp) as a potential biomarker which was released primarily by most of LC-derived exosomes. The facilitation of OC differentiation and function by LC-exosomal Gal3bp was supported by the application of recombinant Gal3bp and anti-Gal3bp in OC treatment. Further, our results exhibited a dysregulation of crucial OC markers (TRAF6, p-SAPK/JNK, p-44/42 MAPK, NFAT2 and CD9) during LC-OC interaction that possibly contributed to the facilitation of osteoclastogenesis. Simulation of bone metastasis via intratibial injection of LC cells revealed Gal3bp's possible roles in enhancing OC activation leading to osseous tissue resorption. Overall, this work implicated LC-exosomal Gal3bp in osteolytic metastasis of LC which warrants further studies to assess its potential prognostic and therapeutic relevance.
Collapse
Affiliation(s)
- Pratyusha Ghanta
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
- Department of Biomedical Sciences, Kent State University, Kent, OH, 44240, USA
| | - Evin Hessel
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Andrea Arias-Alvarado
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Mirjavid Aghayev
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Serguei Ilchenko
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Takhar Kasumov
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Moses O Oyewumi
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, 44272, USA.
- Department of Pharmaceutical Sciences, UH-NEOMED Faculty Scholar, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 2024, 44272, USA.
| |
Collapse
|
3
|
Sakarin S, Rungsipipat A, Roytrakul S, Jaresitthikunchai J, Phaonakrop N, Charoenlappanit S, Thaisakun S, Surachetpong SD. Proteomic analysis of pulmonary arteries and lung tissues from dogs affected with pulmonary hypertension secondary to degenerative mitral valve disease. PLoS One 2024; 19:e0296068. [PMID: 38181036 PMCID: PMC10769092 DOI: 10.1371/journal.pone.0296068] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024] Open
Abstract
In dogs with degenerative mitral valve disease (DMVD), pulmonary hypertension (PH) is a common complication characterized by abnormally elevated pulmonary arterial pressure (PAP). Pulmonary arterial remodeling is the histopathological changes of pulmonary artery that has been recognized in PH. The underlying mechanisms that cause this arterial remodeling are poorly understood. This study aimed to perform shotgun proteomics to investigate changes in protein expression in pulmonary arteries and lung tissues of DMVD dogs with PH compared to normal control dogs and DMVD dogs without PH. Tissue samples were collected from the carcasses of 22 small-sized breed dogs and divided into three groups: control (n = 7), DMVD (n = 7) and DMVD+PH groups (n = 8). Differentially expressed proteins were identified, and top three upregulated and downregulated proteins in the pulmonary arteries of DMVD dogs with PH including SIK family kinase 3 (SIK3), Collagen type I alpha 1 chain (COL1A1), Transforming growth factor alpha (TGF-α), Apoptosis associated tyrosine kinase (AATYK), Hepatocyte growth factor activator (HGFA) and Tyrosine-protein phosphatase non-receptor type 13 (PTPN13) were chosen. Results showed that some of the identified proteins may play a role in the pathogenesis of pulmonary arterial remodeling. This study concluded shotgun proteomics has potential as a tool for exploring candidate proteins associated with the pathogenesis of PH secondary to DMVD in dogs.
Collapse
Affiliation(s)
- Siriwan Sakarin
- Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Anudep Rungsipipat
- Center of Excellence for Companion Animal Cancer, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Janthima Jaresitthikunchai
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Narumon Phaonakrop
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sawanya Charoenlappanit
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Siriwan Thaisakun
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | | |
Collapse
|
4
|
Li M, Pan W, Tian D, Chen D, Zhang X, Zhang Y, Chen S, Zhou D, Ge J. Diagnostic Value of Serum Galectin-3 Binding Protein Level in Patients with Pulmonary Arterial Hypertension. Curr Vasc Pharmacol 2024; 22:67-77. [PMID: 38038005 DOI: 10.2174/0115701611268078231010072521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/24/2023] [Accepted: 10/02/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) still lacks effective biomarkers to assist in its diagnosis and prognosis. Galectin-3 binding protein (Gal-3BP) plays a role in immune and inflammatory diseases. OBJECTIVE This study aimed to evaluate Gal-3BP as a prognostic and predictive factor in patients with PAH. METHODS From January 2017 to December 2019, we enrolled 167 consecutive PAH patients and 58 healthy controls. Right heart catheterization (RHC) was used to diagnose PAH. Serum Gal-3BP levels were measured by high-sensitivity human enzyme-linked immunosorbent assay (ELISA). RESULTS Serum Gal-3BP levels in the PAH group were significantly higher compared with the control group (4.87±2.09 vs 2.22±0.86 μg/mL, p<0.001). Gal-3BP level was correlated with several hemodynamic parameters obtained from RHC (p<0.001). Multivariate linear regression analysis showed that Gal-3BP was a risk factor for PAH (odds ratio (OR)=2.947, 95% CI: 1.821-4.767, p<0.001). The optimal cut-off value of serum Gal-3BP level for predicting PAH was 2.89 μg/mL (area under the curve (AUC)=0.860, 95 % CI: 0.811-0.910, p<0.001). Kaplan-Meier analysis showed that Gal-3BP levels above the median (4.87 μg/mL) were associated with an increased risk of death in patients with PAH (hazard ratio (HR)=8.868, 95 % CI: 3.631-21.65, p<0.0001). Cox multivariate risk regression analysis showed that Gal-3BP was a risk factor for death in PAH patients (HR=2.779, 95 % CI: 1.823-4.237, p<0.001). CONCLUSION Serum Gal-3BP levels were increased in patients with PAH, and levels of Gal-3BP were associated with the severity of PAH. Gal-3BP might have predictive value for the diagnosis and prognosis of PAH.
Collapse
Affiliation(s)
- Mingfei Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Wenzhi Pan
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Dan Tian
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dandan Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Xiaochun Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Yuan Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Shasha Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Daxin Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China National Clinical Research Center for Interventional Medicine, Shanghai, China
| |
Collapse
|
5
|
Zhou M, Wu Y, Sun M, Qin Y, Zhao J, Qiu Z, Li C, Zhang Y, Xiong Y, Shen Y, Zou Z, Tu J, Shen W, Sun C. Spatiotemporally sequential delivery of biomimetic liposomes potentiates glioma chemotherapy. J Control Release 2024; 365:876-888. [PMID: 38030082 DOI: 10.1016/j.jconrel.2023.11.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
As one of the most challenging cancers, glioma still lacks efficient therapeutic treatment in clinics. The dilemmas of nanodrug-based therapies for glioma are due not only the limited permeability of the blood-brain barrier (BBB) but also the deficiency of targeting tumor lesions. Thus, spatiotemporally sequential delivery of therapeutics from BBB-crossing to glioma accumulation is considered a strategy to obtain better outcomes. Here, we developed a biomimetic chemotherapy nanodrug composed of the hybrid membrane envelope of U87 cell membranes and RAW264.7 cell membranes, and the core of paclitaxel (PTX)-loaded liposome (PTX@C-MMCL). In the research, PTX@C-MMCL showed superior ability to cross the BBB via RAW264.7 cell membranes and accurate targeting to the brain tumor lesions relying on the homotypic targeting capacity of U87 cell membranes. Furthermore, PTX@C-MMCL can maintain a prolonged circulation in vivo. Importantly, PTX@C-MMCL effectively inhibited the development of glioma. Conclusively, our biomimetic nanodrug holds great potential for brain tumor targeting therapy.
Collapse
Affiliation(s)
- Muye Zhou
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Yanping Wu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Mengjuan Sun
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Yun Qin
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Jianing Zhao
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Zijie Qiu
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Chunjiayu Li
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Yue Zhang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Yerong Xiong
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Yan Shen
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Zhirui Zou
- Nanjing Foreign Language School, 30 East Beijing Road, Nanjing 210018, China
| | - Jiasheng Tu
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| | - Weiyang Shen
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| | - Chunmeng Sun
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| |
Collapse
|
6
|
Wang W, Zheng Z, Lei J. CTC, ctDNA, and Exosome in Thyroid Cancers: A Review. Int J Mol Sci 2023; 24:13767. [PMID: 37762070 PMCID: PMC10530859 DOI: 10.3390/ijms241813767] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Thyroid cancer has become more common in recent years all around the world. Many issues still need to be urgently addressed in the diagnosis, treatment, and prognosis of thyroid cancer. Liquid biopsy (mainly circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), and circulating exosomes) may provide a novel and ideal approach to solve these issues, allows us to assess the features of diseases more comprehensively, and has a function in a variety of malignancies. Recently, liquid biopsy has been shown to be critical in thyroid cancer diagnosis, treatment, and prognosis in numerous previous studies. In this review, by testing CTCs, ctDNA, and exosomes, we focus on the possible clinical role of liquid biopsy in thyroid cancer, including diagnostic and prognostic biomarkers and response to therapy. We briefly review how liquid biopsy components have progressed in thyroid cancer by consulting the existing public information. We also discuss the clinical potential of liquid biopsy in thyroid cancer and provide a reference for liquid biopsy research. Liquid biopsy has the potential to be a useful tool in the early detection, monitoring, or prediction of response to therapies and prognosis in thyroid cancer, with promising clinical applications.
Collapse
Affiliation(s)
- Wenwen Wang
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiyao Zheng
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jianyong Lei
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Neagu AN, Whitham D, Seymour L, Haaker N, Pelkey I, Darie CC. Proteomics-Based Identification of Dysregulated Proteins and Biomarker Discovery in Invasive Ductal Carcinoma, the Most Common Breast Cancer Subtype. Proteomes 2023; 11:13. [PMID: 37092454 PMCID: PMC10123686 DOI: 10.3390/proteomes11020013] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Invasive ductal carcinoma (IDC) is the most common histological subtype of malignant breast cancer (BC), and accounts for 70-80% of all invasive BCs. IDC demonstrates great heterogeneity in clinical and histopathological characteristics, prognoses, treatment strategies, gene expressions, and proteomic profiles. Significant proteomic determinants of the progression from intraductal pre-invasive malignant lesions of the breast, which characterize a ductal carcinoma in situ (DCIS), to IDC, are still poorly identified, validated, and clinically applied. In the era of "6P" medicine, it remains a great challenge to determine which patients should be over-treated versus which need to be actively monitored without aggressive treatment. The major difficulties for designating DCIS to IDC progression may be solved by understanding the integrated genomic, transcriptomic, and proteomic bases of invasion. In this review, we showed that multiple proteomics-based techniques, such as LC-MS/MS, MALDI-ToF MS, SELDI-ToF-MS, MALDI-ToF/ToF MS, MALDI-MSI or MasSpec Pen, applied to in-tissue, off-tissue, BC cell lines and liquid biopsies, improve the diagnosis of IDC, as well as its prognosis and treatment monitoring. Classic proteomics strategies that allow the identification of dysregulated protein expressions, biological processes, and interrelated pathway analyses based on aberrant protein-protein interaction (PPI) networks have been improved to perform non-invasive/minimally invasive biomarker detection of early-stage IDC. Thus, in modern surgical oncology, highly sensitive, rapid, and accurate MS-based detection has been coupled with "proteome point sampling" methods that allow for proteomic profiling by in vivo "proteome point characterization", or by minimal tissue removal, for ex vivo accurate differentiation and delimitation of IDC. For the detection of low-molecular-weight proteins and protein fragments in bodily fluids, LC-MS/MS and MALDI-MS techniques may be coupled to enrich and capture methods which allow for the identification of early-stage IDC protein biomarkers that were previously invisible for MS-based techniques. Moreover, the detection and characterization of protein isoforms, including posttranslational modifications of proteins (PTMs), is also essential to emphasize specific molecular mechanisms, and to assure the early-stage detection of IDC of the breast.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I bvd. No. 20A, 700505 Iasi, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Logan Seymour
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Norman Haaker
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Isabella Pelkey
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| |
Collapse
|
8
|
Zheng D, Zhou J, Qian L, Liu X, Chang C, Tang S, Zhang H, Zhou S. Biomimetic nanoparticles drive the mechanism understanding of shear-wave elasticity stiffness in triple negative breast cancers to predict clinical treatment. Bioact Mater 2023; 22:567-587. [DOI: 10.1016/j.bioactmat.2022.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/20/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
|
9
|
Ma J, Wang Y, Xi X, Tang J, Wang L, Wang L, Wang D, Liang X, Zhang B. Contrast-enhanced ultrasound combined targeted microbubbles for diagnosis of highly aggressive papillary thyroid carcinoma. Front Endocrinol (Lausanne) 2023; 14:1052862. [PMID: 36936158 PMCID: PMC10020640 DOI: 10.3389/fendo.2023.1052862] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 02/08/2023] [Indexed: 03/06/2023] Open
Abstract
Background Accurate diagnosis of highly aggressive papillary thyroid cancer (PTC) may greatly help avoid overdiagnosis and overtreatment of PTC. However, there is still a lack of a convenient and accurate method. Targeted microbubbles, an emerging ultrasound contrast agent, have the potential to accurately diagnose highly aggressive PTC. Purpose To design and prepare a targeted microbubble for specific contrast-enhanced ultrasound (CEUS) imaging of highly invasive PTC. Methods Using β-galactoside-binding protein galectin-3 (Gal-3) overexpressed on the surface of highly invasive PTC cells as a target, C12 polypeptide (ANTPCGPYTHDCPVKR) with high affinity and specificity for Gal-3 was coupled to the surface of lipid microbubbles to prepare targeted microbubbles (Gal-3-C12@lipo MBs). The targeted microbubbles were prepared by thin-film hydration method and mechanical shaking method. The morphology, diameter, concentration and stability of microbubbles were investigated by fluorescence microscopy and an AccuSizer. The biosafety of microbubbles was studied using BCPAP cells through CCK8 assay. Confocal laser scanning microscope and flow cytometry were applied to research the cellular uptake of microbubbles to investigate the targeting ability to highly aggressive PTC. Finally, the specific contrast-enhanced ultrasound imaging of microbubbles in highly invasive PTC was validated on the mice bearing subcutaneous BCPAP tumor model via a clinically ultrasound imaging system. Results Gal-3-C12@lipo MBs were successfully prepared which showed a well-defined spherical morphology with an average diameter of 1.598 ± 0.848 μm. Gal-3-C12@lipo MBs showed good stability without rupture within 4 hours after preparation. At the cellular level, Gal-3-C12@lipo MBs exhibited favorable biosafety and superior targeting ability to BCPAP cells, with 2.8-fold higher cellular uptake than non-targeted lipid microbubbles (Lipo MBs). At the animal level, Gal-3-C12@lipo MBs significantly improved the quality of contrast-enhanced ultrasound imaging in highly invasive PTC, with an echo intensity of tumor significantly higher than that of Lipo MBs. Conclusion We designed and fabricated a novel targeted microbubble for the specific ultrasound imaging diagnosis of highly aggressive PTC. The targeted microbubbles have good stability, superior biosafety and high targeting specificity, which can significantly improve the tumor signal-to-noise ratio of highly invasive PTC, and have the potential to facilitate and accurately diagnose highly invasive PTC.
Collapse
Affiliation(s)
- Jiaojiao Ma
- Department of Ultrasound, China-Japan Friendship Hospital, Beijing, China
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine of Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing, China
| | - Xuehua Xi
- Department of Ultrasound, China-Japan Friendship Hospital, Beijing, China
| | - Jiajia Tang
- Department of Ultrasound, China-Japan Friendship Hospital, Beijing, China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Linping Wang
- Department of Ultrasound, China-Japan Friendship Hospital, Beijing, China
- Department of Ultrasound, First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Liangkai Wang
- Department of Ultrasound, China-Japan Friendship Hospital, Beijing, China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Di Wang
- Department of Ultrasound, China-Japan Friendship Hospital, Beijing, China
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing, China
| | - Bo Zhang
- Department of Ultrasound, China-Japan Friendship Hospital, Beijing, China
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine of Chinese Academy of Medical Sciences, Beijing, China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
10
|
Pedersen K, Nielsen MA, Juul-Madsen K, Hvid M, Deleuran B, Greisen SR. Galectin-3 interacts with PD-1 and counteracts the PD-1 pathway-driven regulation of T cell and osteoclast activity in Rheumatoid Arthritis. Scand J Immunol 2023; 97:e13245. [PMID: 36537046 PMCID: PMC10078345 DOI: 10.1111/sji.13245] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/08/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by joint inflammation and bone erosions. The glycosylated programmed death-1 (PD-1) receptor plays an important role in regulating immune responses and maintaining tolerance. In this study, we focus on two features observed in RA: impaired PD-1 signalling and Galectin-3 (Gal-3) upregulation. We hypothesize that Gal-3 binds PD-1 and PD-1 ligands, potentially contributing to impaired PD-1 signalling. PD-1 and Gal-3 levels in RA synovial fluid (SF) and plasma were evaluated by ELISA. PD-1 and Gal-3 interaction was examined by Surface Plasmon Resonance and ELISA. PD-1, PD-L1 and Gal-3 expression on mononuclear cells from SF and peripheral blood as well as fibroblast-like synoviocytes were examined by flow cytometry. Effects of Gal-3 and PD-L1 on osteoclast formation was evaluated by tartrate-resistant acid phosphatase assay. We show that Gal-3 binds PD-1 and PD-L1. Results demonstrated high expression of PD-1 and Gal-3 on mononuclear cells, especially from SF. Gal-3 inhibited PD-1 signalling when PD-L1 was present. Furthermore, a role of Gal-3 in osteoclast formation was observed in vitro, both directly but also through PD-1:PD-L1 inhibition. Effects of Gal-3 on the PD-1 signalling axis are proposed to be inhibitory, meaning high Gal-3 levels in the complex synovial microenvironment are not desirable in RA. Preventing Gal-3's inhibitory role on PD-1 signalling could, therefore, be a therapeutic target in RA by affecting inflammatory T cell responses and osteoclasts.
Collapse
Affiliation(s)
| | - Morten Aagaard Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| | - Kristian Juul-Madsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Malene Hvid
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Bent Deleuran
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| | - Stinne Ravn Greisen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
11
|
Li H, Yang F, Chang K, Yu X, Guan F, Li X. The synergistic function of long and short forms of β4GalT1 in p53-mediated drug resistance in bladder cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119409. [PMID: 36513218 DOI: 10.1016/j.bbamcr.2022.119409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
β1,4-galactosyltransferase-1 (β4GalT1) is a type II membrane protein that catalyzes the transfer of galactose (Gal) from UDP-Gal to N-acetylglucosamine (GlcNAc) and forms a LacNAc structure. β4GalT1 has a long form (termed β4GalT1-L) and a short form (termed β4GalT1-S) in mammalian cells. Although β4GalT1 has been proven to play an important role in many biological and pathological processes, such as differentiation, immune responses and cancer development, the different functions of the two β4GalT1 forms remain ambiguous. In this study, we demonstrated that total β4GalT1 was upregulated in bladder cancer. Overexpression of β4GalT1-S, but not β4GalT1-L, increased drug resistance in bladder epithelial cells by upregulating p53 expression. Glycoproteomic analysis revealed that the substrate specificities of the two β4GalT1 forms were different. Among the LacNAcylated proteins, the E3 ligase MDM2 could be preferentially modified by β4GalT1-L compared to β4GalT1-S, and this modification could increase the binding of MDM2 and p53 and further facilitate the degradation of p53. Our data proved that the two forms of β4GalT1 could synergistically regulate p53-mediated cell survival under chemotherapy treatment. These results provide insights into the role of β4GalT1-L and β4GalT1-S and suggest their differentially important implications in the development of bladder cancer.
Collapse
Affiliation(s)
- Hongjiao Li
- Key Laboratory of Resource Biology and Biotechnology Western China, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China
| | - Fenfang Yang
- Key Laboratory of Resource Biology and Biotechnology Western China, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China
| | - Kaijing Chang
- Key Laboratory of Resource Biology and Biotechnology Western China, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China
| | - Xinwen Yu
- Key Laboratory of Resource Biology and Biotechnology Western China, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology Western China, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China.
| | - Xiang Li
- Institute of Hematology, School of Medicine, Northwest University, Xi'an, China.
| |
Collapse
|
12
|
Xue Z, Zeng J, Yin X, Li Y, Meng B, Zhao Y, Fang X, Gong X, Dai X. Investigation on acquired palbociclib resistance by LC-MS based multi-omics analysis. Front Mol Biosci 2023; 10:1116398. [PMID: 36743215 PMCID: PMC9892630 DOI: 10.3389/fmolb.2023.1116398] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
Palbociclib is a specific CDK4/6 inhibitor that has been widely applied in multiple types of tumors. Different from cytotoxic drugs, the anticancer mechanism of palbociclib mainly depends on cell cycle inhibition. Therefore, the resistance mechanism is different. For clinical cancer patients, drug resistance is inevitable for almost all cancer therapies including palbociclib. We have trained palbociclib resistant cells in vitro to simulate the clinical situation and applied LC-MS multi-omics analysis methods including proteomic, metabolomic, and glycoproteomic techniques, to deeply understand the underly mechanism behind the resistance. As a result of proteomic analysis, the resistant cells were found to rely on altered metabolic pathways to keep proliferation. Metabolic processes related to carbohydrates, lipids, DNA, cellular proteins, glucose, and amino acids were observed to be upregulated. Most dramatically, the protein expressions of COX-1 and NDUFB8 have been detected to be significantly overexpressed by proteomic analysis. When a COX-1 inhibitor was hired to combine with palbociclib, a synergistic effect could be obtained, suggesting the altered COX-1 involved metabolic pathway is an important reason for the acquired palbociclib resistance. The KEGG pathway of N-glycan biosynthesis was identified through metabolomics analysis. N-glycoproteomic analysis was therefore included and the global glycosylation was found to be elevated in the palbociclib-resistant cells. Moreover, integration analysis of glycoproteomic data allowed us to detect a lot more proteins that have been glycosylated with low abundances, these proteins were considered to be overwhelmed by those highly abundant proteins during regular proteomic LC-MS detection. These low-abundant proteins are mainly involved in the cellular biology processes of cell migration, the regulation of chemotaxis, as well as the glycoprotein metabolic process which offered us great more details on the roles played by N-glycosylation in drug resistance. Our result also verified that N-glycosylation inhibitors could enhance the cell growth inhibition of palbociclib in resistant cells. The high efficiency of the integrated multi-omics analysis workflow in discovering drug resistance mechanisms paves a new way for drug development. With a clear understanding of the resistance mechanism, new drug targets and drug combinations could be designed to resensitize the resistant tumors.
Collapse
Affiliation(s)
- Zhichao Xue
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Jiaming Zeng
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang, China
| | - Xinchi Yin
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Yongshu Li
- Shenzhen Institute for Technology Innovation, National Institute of Metrology Shenzhen, Shenzhen, China
| | - Bo Meng
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Yang Zhao
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Xiang Fang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Xiaoyun Gong
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China,*Correspondence: Xiaoyun Gong, ; Xinhua Dai,
| | - Xinhua Dai
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China,*Correspondence: Xiaoyun Gong, ; Xinhua Dai,
| |
Collapse
|
13
|
Chen F, Li M, Fei X, Chen X, Zhang Z, Zhu W, Shen Y, Mao Y, Liu J, Xu J, Du J. Predictive plasma biomarker for gestational diabetes: A case-control study in China. J Proteomics 2023; 271:104769. [PMID: 36372392 DOI: 10.1016/j.jprot.2022.104769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 10/17/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVE This study aims to find new plasma biomarkers in early pregnancy. DESIGN The original study enrolled 1219 pregnant women. We investigated protein expression profiles of placental tissues from women with GDM (n = 89) and normal glucose tolerance (NGT) (n = 83). Maternal plasma samples between two groups in early and middle pregnancy were used for validation of candidate biomarkers. METHODS Differentially expressed proteins (DEPs) were identified by label-free quantitative proteomics from human placenta samples between two groups. Several DEPs were validated in plasma by Luminex assays. An automatic biochemical analyzer was used to detect blood lipid indexes. The associations of GAL-3BP with biochemical indicators were demonstrated by Pearson's correlation analysis. Binary logistic regression was used to model potential predictive indicators in early pregnancy of GDM. Receiver operating characteristic (ROC) curve was used to evaluate the diagnostic accuracy of the predictive model and the value of GAL-3BP. RESULTS 123 DEPs were found in placenta involved in ribosomal function, pancreatic secretion, oxidative phosphorylation, and inflammatory signaling pathway. Plasma GAL-3BP are significantly higher in women with GDM than NGT in the first (p = 0.008) and second (p = 0.026) trimester, but C9 and VWF have no difference. The predictive value of GAL-3BP in the first trimester of pregnancy (AUC 0.64) is better than that in the second trimester (AUC 0.61), and combined predictive model of TG and GAL-3BP at early pregnancy has greater predictive and diagnostic value for GDM (AUC 0.69) than individual GAL-3BP (AUC 0.64). CONCLUSIONS Plasma TG and GAL-3BP has good predictive and diagnostic value at early pregnancy, suggesting that these two indicators may be used as biomarkers for early prediction and diagnosis of GDM. SIGNIFICANCE The advantage of this study is that circulating TG and GAL-3BP might differentiate the progress of women with GDM and normal glucose tolerance (NGT) at the early stage of pregnancy. It is the first study to consider the role of GAL-3BP as an early predictive biomarker in the development of GDM during the whole pregnancy. Another advantage is that volunteers in this study were recruited from two provinces in China to eliminate the impacts of environmental confounders. The similar changes of blood glucose/lipid indicators for women with GDM and NGT in both regions was found in the first and second trimester of pregnancy, which added to the reliability of analytical results.
Collapse
Affiliation(s)
- Fujia Chen
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, China
| | - Min Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, China
| | - Xiaoping Fei
- The First people's Hospital of Kunshan, Kunshan, China
| | - Xiaohong Chen
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital of Pudong New Area, Shanghai, China
| | - Zhaofeng Zhang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, China
| | - Weiqiang Zhu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, China
| | - Yupei Shen
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, China
| | - Yanyan Mao
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, China
| | - Jun Liu
- NHC Key Laboratory of Birth Defects and Reproductive Health (Chongqing Population and Family Planning Science and Technology Research Institute)
| | - Jianhua Xu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, China.
| | - Jing Du
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
14
|
Shivatare SS, Shivatare VS, Wong CH. Glycoconjugates: Synthesis, Functional Studies, and Therapeutic Developments. Chem Rev 2022; 122:15603-15671. [PMID: 36174107 PMCID: PMC9674437 DOI: 10.1021/acs.chemrev.1c01032] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glycoconjugates are major constituents of mammalian cells that are formed via covalent conjugation of carbohydrates to other biomolecules like proteins and lipids and often expressed on the cell surfaces. Among the three major classes of glycoconjugates, proteoglycans and glycoproteins contain glycans linked to the protein backbone via amino acid residues such as Asn for N-linked glycans and Ser/Thr for O-linked glycans. In glycolipids, glycans are linked to a lipid component such as glycerol, polyisoprenyl pyrophosphate, fatty acid ester, or sphingolipid. Recently, glycoconjugates have become better structurally defined and biosynthetically understood, especially those associated with human diseases, and are accessible to new drug, diagnostic, and therapeutic developments. This review describes the status and new advances in the biological study and therapeutic applications of natural and synthetic glycoconjugates, including proteoglycans, glycoproteins, and glycolipids. The scope, limitations, and novel methodologies in the synthesis and clinical development of glycoconjugates including vaccines, glyco-remodeled antibodies, glycan-based adjuvants, glycan-specific receptor-mediated drug delivery platforms, etc., and their future prospectus are discussed.
Collapse
Affiliation(s)
- Sachin S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Vidya S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Chi-Huey Wong
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
15
|
Kandel M, Tong S, Walker SP, Cannon P, Nguyen TV, MacDonald TM, Hannan NJ, Kaitu’u-Lino TJ, Bartho LA. Placental galectin-3 is reduced in early-onset preeclampsia. Front Physiol 2022; 13:1037597. [PMID: 36311252 PMCID: PMC9614155 DOI: 10.3389/fphys.2022.1037597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/30/2022] [Indexed: 08/31/2023] Open
Abstract
Preeclampsia is a disease of pregnancy responsible for significant maternal and neonatal mortality. Galectin-3 is a β-Galactoside binding protein. This study aimed to characterise galectin-3 in women with preeclampsia and human trophoblast stem cells (hTSCs). Galectin-3 was measured in placental lysates and plasma collected from patients with early-onset preeclampsia (delivered <34 weeks' gestation) and gestation matched controls. Placental galectin-3 protein was significantly reduced in 43 women with early-onset preeclampsia compared to 21 controls. mRNA expression of LGALS3 (galectin-3 encoding gene) was reduced in 29 women with early-onset preeclampsia, compared to 18 controls (p = 0.009). There was no significant difference in plasma galectin-3 protein in 46 women with early-onset preeclampsia compared to 20 controls. In a separate cohort of samples collected at 36 weeks' gestation, circulating galectin-3 was not altered in 23 women who later developed preeclampsia, versus 182 who did not. In syncytialised hTSCs, hypoxia increased mRNA expression of LGALS3 (p = 0.01). Treatment with inflammatory cytokines (TNF-α and IL-6) had no effect on LGALS3 mRNA expression. However, TNF-α treatment caused an increase in mRNA expression of LGALS3BP (galectin-3 binding protein encoding gene) in hTSCs (p = 0.03). This study showed a reduction of galectin-3 in placenta from pregnancies complicated by early-onset preeclampsia. LGALS3 mRNA expression was dysregulated by hypoxia exposure in placental stem cells.
Collapse
Affiliation(s)
- Manju Kandel
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, VIC, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, Australia
| | - Stephen Tong
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, VIC, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, Australia
| | - Susan P Walker
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, VIC, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, Australia
| | - Ping Cannon
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, VIC, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, Australia
| | - Tuong-Vi Nguyen
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, VIC, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, Australia
| | - Teresa M. MacDonald
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, VIC, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, Australia
| | - Natalie J. Hannan
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, VIC, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, Australia
| | - Tu’uhevaha J. Kaitu’u-Lino
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, VIC, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, Australia
| | - Lucy A Bartho
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, VIC, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, Australia
| |
Collapse
|
16
|
Choi YS, Kim MJ, Choi EA, Kim S, Lee EJ, Park MJ, Kim MJ, Kim YW, Ahn HS, Jung JY, Jang G, Kim Y, Kim H, Kim K, Kim JY, Hong SM, Kim SC, Chang S. Antibody-mediated blockade for galectin-3 binding protein in tumor secretome abrogates PDAC metastasis. Proc Natl Acad Sci U S A 2022; 119:e2119048119. [PMID: 35858411 PMCID: PMC9335190 DOI: 10.1073/pnas.2119048119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/27/2022] [Indexed: 01/21/2023] Open
Abstract
The major challenges in pancreatic ductal adenocarcinoma (PDAC) management are local or distant metastasis and limited targeted therapeutics to prevent it. To identify a druggable target in tumor secretome and to explore its therapeutic intervention, we performed a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomic analysis of tumors obtained from a patient-derived xenograft model of PDAC. Galectin-3 binding protein (Gal-3BP) is identified as a highly secreted protein, and its overexpression is further validated in multiple PDAC tumors and primary cells. Knockdown and exogenous treatment of Gal-3BP showed that it is required for PDAC cell proliferation, migration, and invasion. Mechanistically, we revealed that Gal-3BP enhances galectin-3-mediated epidermal growth factor receptor signaling, leading to increased cMyc and epithelial-mesenchymal transition. To explore the clinical impact of these findings, two antibody clones were developed, and they profoundly abrogated the metastasis of PDAC cells in vivo. Altogether, our data demonstrate that Gal-3BP is an important therapeutic target in PDAC, and we propose its blockade by antibody as a therapeutic option for suppressing PDAC metastasis.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Antineoplastic Agents, Immunological/immunology
- Antineoplastic Agents, Immunological/therapeutic use
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/immunology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/secondary
- Carcinoma, Pancreatic Ductal/therapy
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Chromatography, Liquid
- Epithelial-Mesenchymal Transition
- Gene Knockdown Techniques
- Humans
- Mice
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/therapy
- Proteomics
- Secretome
- Tandem Mass Spectrometry
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Yeon-Sook Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Myung Ji Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Eun A. Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Sinae Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Eun ji Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Min Ji Park
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Mi-Ju Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
| | - Yeon Wook Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
| | - Hee-Sung Ahn
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Jae Yun Jung
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Gayoung Jang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Yongsub Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Hyori Kim
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Kyunggon Kim
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Jin Young Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, 28119, South Korea
| | - Seung-Mo Hong
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Song Cheol Kim
- Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Suhwan Chang
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| |
Collapse
|
17
|
Gal-3BP in Viral Infections: An Emerging Role in Severe Acute Respiratory Syndrome Coronavirus 2. Int J Mol Sci 2022; 23:ijms23137314. [PMID: 35806317 PMCID: PMC9266551 DOI: 10.3390/ijms23137314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022] Open
Abstract
Galectin-3 binding protein (Gal-3BP) is a multifunctional glycoprotein involved in cell–cell and cell–matrix interactions known to be upregulated in cancer and various viral infections, including HIV-1, HCV, and SARS-CoV-2, with a key role in regulating the antiviral immune response. Studies have identified a direct correlation between circulating levels of Gal-3BP and the severity of disease and/or disease progression for some viral infections, including SARS-CoV-2, suggesting a role of Gal-3BP in these processes. Due to Gal-3BP’s complex biology, the molecular mechanisms underlying its role in viral diseases have been only partially clarified. Gal-3BP induces the expression of interferons (IFNs) and proinflammatory cytokines, including interleukin-6 (IL-6), mainly interacting with galectin-3, targeting the TNF receptor-associated factors (TRAF-6 and TRAF-3) complex, thus having a putative role in the modulation of TGF-β signaling. In addition, an antiviral activity of Gal-3BP has been ascribed to a direct interaction of the protein with virus components. In this review, we explored the role of Gal-3BP in viral infections and the relationship between Gal-3BP upregulation and disease severity and progression, mainly focusing on SARS-CoV-2. Augmented knowledge of Gal-3BP’s role in virus infections can be useful to evaluate its possible use as a prognostic biomarker and as a putative target to block or attenuate severe disease.
Collapse
|
18
|
Funkhouser AT, Strigenz AM, Blair BB, Miller AP, Shealy JC, Ewing JA, Martin JC, Funk CR, Edenfield WJ, Blenda AV. KIT Mutations Correlate with Higher Galectin Levels and Brain Metastasis in Breast and Non-Small Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14112781. [PMID: 35681762 PMCID: PMC9179545 DOI: 10.3390/cancers14112781] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
To investigate a potential role for galectins as biomarkers that enable diagnosis or prognostication of breast or non-small cell lung cancer, the serum levels of galectins -1, -3, -7, -8, and -9 of cancer patients determined by ELISA assays were compared to the mutation status of 50 known cancer-critical genes, which were determined using multiplex PCR in tumors of the same patients. Mutations in the KIT proto-oncogene, which codes for the c-Kit protein, a receptor tyrosine kinase, correlated with higher levels of galectins -1, -3, -8, and -9 in breast cancer patients and galectin-1 in non-small cell lung cancer patients. Mutations in the KIT gene were more likely found in brain metastases from both of these primary cancers. The most common KIT mutation in our panel was p.M541L, a missense mutation in the transmembrane domain of the c-Kit protein. These results demonstrate an association between KIT oncogenic signaling and elevated serum galectins in patients with metastatic disease. Changes in protein trafficking and the glycocalyx composition of cancer cells may explain the observed alterations in galectin expression. This study can be useful for the targeted selection of receptor tyrosine kinase and galectin inhibitor anti-cancer treatments.
Collapse
Affiliation(s)
- Avery T Funkhouser
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, SC 29605, USA
| | - Alexander M Strigenz
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, SC 29605, USA
| | - Bailey B Blair
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, SC 29605, USA
| | - Andrew P Miller
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, SC 29605, USA
| | - Jonah C Shealy
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, SC 29605, USA
| | - Joseph A Ewing
- Data Support Core, Prisma Health, Greenville, SC 29605, USA
| | - Julie C Martin
- Prisma Health Cancer Institute, Prisma Health, Greenville, SC 29605, USA
| | - Christopher R Funk
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Anna V Blenda
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, SC 29605, USA
- Prisma Health Cancer Institute, Prisma Health, Greenville, SC 29605, USA
| |
Collapse
|
19
|
Ding H, Shen Y, Lin C, Qin L, He S, Dai M, Okitsu SL, DeMartino JA, Guo Q, Shen N. Urinary galectin-3 binding protein (G3BP) as a biomarker for disease activity and renal pathology characteristics in lupus nephritis. Arthritis Res Ther 2022; 24:77. [PMID: 35346341 PMCID: PMC8962213 DOI: 10.1186/s13075-022-02763-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 03/16/2022] [Indexed: 11/10/2022] Open
Abstract
Objective There is an urgent need to identify novel biomarkers of LN to reflect renal histological changes. This study aims to investigate urinary G3BP levels in LN patients and their association with renal disease activity both clinically and pathologically. Methods This is a cross-sectional study. A total of 119 lupus nephritis patients were recruited. Thirty patients with chronic kidney diseases (CKD) and 27 healthy volunteers were also recruited as controls. Urinary G3BP was tested by ELISA. Renal histopathology was reviewed by an experienced renal pathologist. Other clinical variables were collected through chart review. Results The levels of uG3BP were significantly increased in active LN patients compared to those in inactive LN (p<0.001), CKD patients (p=0.01), and healthy controls (p<0.001). ROC analysis indicated a good discrimination ability of uG3BP to differentiate active LN from CKD patients (AUC=0.7), inactive LN (AUC=0.76), or healthy controls (AUC=0.87). uG3BP was positively correlated with SLEDAI (ρ=0.352, p<0.001), rSLEDAI (ρ=0.302, p<0.001), and SLICC RAS (ρ=0.465, p<0.001), indicating a role as a biomarker of disease activity. It also correlated with clinical parameters, including 24-h urine protein, ESR, and serum C3 levels. In patients with 24-h urine protein > 3.0 g/24h, uG3BP levels were higher in proliferative LN than in membranous LN (p=0.04). They could discriminate the two pathogenic types of LN (AUC=0.72), and they also positively correlated with AI (ρ=0.389, p=0.008) and scores of hyaline deposits (ρ=0.418, p=0.006). While in patients with 24-h urine protein ≤ 3.0 g/24h, uG3BP levels were not significantly different between proliferative and membranous LN, and there was no apparent relationship between uG3BP levels with AI or with scores of hyaline deposits, but they correlated positively with scores of cellular/fibrocellular crescents (ρ=0.328, p=0.04). Conclusion uG3BP is a non-invasive biomarker for clinically and histologically reflecting disease activity. It is associated with active histological changes and can be used as a surrogate biomarker when the renal biopsy is impractical. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-022-02763-4.
Collapse
Affiliation(s)
- Huihua Ding
- Department of Rheumatology, Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University School of Medicine, 145 Shandong (M) Rd, Shanghai, 200001, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yiwei Shen
- Department of Rheumatology, Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University School of Medicine, 145 Shandong (M) Rd, Shanghai, 200001, China
| | - Cheng Lin
- Department of Rheumatology, Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University School of Medicine, 145 Shandong (M) Rd, Shanghai, 200001, China
| | - Ling Qin
- Department of Nephrology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shijun He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Min Dai
- Department of Rheumatology, Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University School of Medicine, 145 Shandong (M) Rd, Shanghai, 200001, China
| | - Shinji L Okitsu
- EMD Serono (a business of Merck KGaA, Darmstadt, Germany), Billerica, MA, USA
| | - Julie A DeMartino
- EMD Serono (a business of Merck KGaA, Darmstadt, Germany), Billerica, MA, USA
| | - Qiang Guo
- Department of Rheumatology, Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University School of Medicine, 145 Shandong (M) Rd, Shanghai, 200001, China.
| | - Nan Shen
- Department of Rheumatology, Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University School of Medicine, 145 Shandong (M) Rd, Shanghai, 200001, China.,China-Australia Centre for Personalized Immunology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
20
|
Rana R, Chauhan K, Gautam P, Kulkarni M, Banarjee R, Chugh P, Chhabra SS, Acharya R, Kalra SK, Gupta A, Jain S, Ganguly NK. Plasma-Derived Extracellular Vesicles Reveal Galectin-3 Binding Protein as Potential Biomarker for Early Detection of Glioma. Front Oncol 2021; 11:778754. [PMID: 34900729 PMCID: PMC8661035 DOI: 10.3389/fonc.2021.778754] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/01/2021] [Indexed: 12/11/2022] Open
Abstract
Gliomas are the most common type of the malignant brain tumor, which arise from glial cells. They make up about 40% of all primary brain tumors and around 70% of all primary malignant brain tumors. They can occur anywhere in the central nervous system (CNS) and have a poor prognosis. The average survival of glioma patients is approximately 6-15 months with poor aspects of life. In this edge, identification of proteins secreted by cancer cells is of special interest because it may provide a better understanding of tumor progression and provide early diagnosis of the diseases. Extracellular vesicles (EVs) were isolated from pooled plasma of healthy controls (n=03) and patients with different grades of glioma (Grade I or II or III, n=03 each). Nanoparticle tracking analysis, western blot, and flow cytometry were performed to determine the size, morphology, the concentration of glioma-derived vesicles and EV marker, CD63. Further, iTRAQ-based LC-MS/MS analysis of EV protein was performed to determine the differential protein abundance in extracellular vesicles across different glioma grades. We further verified galectin-3 binding protein (LGALS3BP) by ELISA in individual blood plasma and plasma-derived vesicles from control and glioma patients (n=40 each). Analysis by Max Quant identified 123 proteins from the pooled patient exosomes, out of which 34, 21, and 14 proteins were found to be differentially abundant by more than 1.3-fold in the different grades of glioma grade I, pilocytic astrocytoma; grade II, diffuse astrocytoma; grade III, anaplastic astrocytoma, respectively, in comparison with the control samples. A total of seven proteins-namely, CRP, SAA2, SERPINA3, SAA1, C4A, LV211, and KV112-showed differential abundance in all the three grades. LGALS3BP was seen to be upregulated across the different grades, and ELISA analysis from individual blood plasma and plasma-derived extracellular vesicles confirmed the increased expression of LGALS3BP in glioma patients (p<0.001). The present study provides LGALS3BP as a potential biomarker for early detection of glioma and improve survival outcome of the patient. The present study further provides the information of progression and monitoring the tumor grades (grade 1, grade II, grade III).
Collapse
Affiliation(s)
- Rashmi Rana
- Department of Research, Sir Ganga Ram Hospital, New Delhi, India
| | - Kirti Chauhan
- Department of Research, Sir Ganga Ram Hospital, New Delhi, India
| | - Poonam Gautam
- Laboratory of Molecular Oncology, National Institute of Pathology, Indian Council of Medical Research (ICMR), New Delhi, India
| | - Mahesh Kulkarni
- Biochemical Sciences Division, National Chemical Laboratory, Council of Scientific and Industrial Research (CSIR), Pune, India
| | - Reema Banarjee
- Biochemical Sciences Division, National Chemical Laboratory, Council of Scientific and Industrial Research (CSIR), Pune, India
| | - Parul Chugh
- Department of Research, Sir Ganga Ram Hospital, New Delhi, India
| | | | - Rajesh Acharya
- Department of Neurosurgery, Sir Ganga Ram Hospital, New Delhi, India
| | - Samir Kumar Kalra
- Department of Neurosurgery, Sir Ganga Ram Hospital, New Delhi, India
| | - Anshul Gupta
- Department of Neurosurgery, Sir Ganga Ram Hospital, New Delhi, India
| | - Sunila Jain
- Department of Histopathology, Sir Ganga Ram Hospital, New Delhi, India
| | | |
Collapse
|
21
|
Oliveira T, Zhang M, Joo EJ, Abdel-Azim H, Chen CW, Yang L, Chou CH, Qin X, Chen J, Alagesan K, Almeida A, Jacob F, Packer NH, von Itzstein M, Heisterkamp N, Kolarich D. Glycoproteome remodeling in MLL-rearranged B-cell precursor acute lymphoblastic leukemia. Am J Cancer Res 2021; 11:9519-9537. [PMID: 34646384 PMCID: PMC8490503 DOI: 10.7150/thno.65398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/03/2021] [Indexed: 01/13/2023] Open
Abstract
B-cell precursor acute lymphoblastic leukemia (BCP-ALL) with mixed-lineage leukemia gene rearrangement (MLL-r) is a poor-prognosis subtype for which additional therapeutic targets are urgently needed. Currently no multi-omics data set for primary MLL r patient cells exists that integrates transcriptomics, proteomics and glycomics to gain an inclusive picture of theranostic targets. Methods: We have integrated transcriptomics, proteomics and glycomics to i) obtain the first inclusive picture of primary patient BCP-ALL cells and identify molecular signatures that distinguish leukemic from normal precursor B-cells and ii) better understand the benefits and limitations of the applied technologies to deliver deep molecular sequence data across major cellular biopolymers. Results: MLL-r cells feature an extensive remodeling of their glycocalyx, with increased levels of Core 2-type O-glycans and complex N-glycans as well as significant changes in sialylation and fucosylation. Notably, glycosaminoglycan remodeling from chondroitin sulfate to heparan sulfate was observed. A survival screen, to determine if glycan remodeling enzymes are redundant, identified MGAT1 and NGLY1, essential components of the N-glycosylation/degradation pathway, as highly relevant within this in vitro screening. OGT and OGA, unique enzymes that regulate intracellular O-GlcNAcylation, were also indispensable. Transcriptomics and proteomics further identified Fes and GALNT7-mediated glycosylation as possible therapeutic targets. While there is overall good correlation between transcriptomics and proteomics data, we demonstrate that a systematic combined multi-omics approach delivers important diagnostic information that is missed when applying a single omics technology. Conclusions: Apart from confirming well-known MLL-r BCP-ALL glycoprotein markers, our integrated multi-omics workflow discovered previously unidentified diagnostic/therapeutic protein targets.
Collapse
Affiliation(s)
- Tiago Oliveira
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, Australia
| | - Mingfeng Zhang
- Department of Systems Biology, Beckman Research Institute City of Hope, Monrovia, CA, USA
| | - Eun Ji Joo
- Department of Systems Biology, Beckman Research Institute City of Hope, Monrovia, CA, USA
| | - Hisham Abdel-Azim
- Division of Hematology/Oncology and Bone Marrow Transplant, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute City of Hope, Monrovia, CA, USA
| | - Lu Yang
- Department of Systems Biology, Beckman Research Institute City of Hope, Monrovia, CA, USA
| | - Chih-Hsing Chou
- Division of Hematology/Oncology and Bone Marrow Transplant, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Xi Qin
- Department of Systems Biology, Beckman Research Institute City of Hope, Monrovia, CA, USA
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute City of Hope, Monrovia, CA, USA
| | - Kathirvel Alagesan
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, Australia
| | - Andreia Almeida
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, Australia
| | - Francis Jacob
- Glyco-Oncology, Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Nicolle H Packer
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, Australia.,Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia.,ARC Centre of Excellence for Nanoscale BioPhotonics, Griffith University, QLD and Macquarie University, NSW, Australia
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, Australia
| | - Nora Heisterkamp
- Department of Systems Biology, Beckman Research Institute City of Hope, Monrovia, CA, USA.,✉ Corresponding authors: Equal contributions of Nora Heisterkamp, E-mail: ; and Daniel Kolarich, E-mail:
| | - Daniel Kolarich
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, Australia.,ARC Centre of Excellence for Nanoscale BioPhotonics, Griffith University, QLD and Macquarie University, NSW, Australia.,✉ Corresponding authors: Equal contributions of Nora Heisterkamp, E-mail: ; and Daniel Kolarich, E-mail:
| |
Collapse
|
22
|
O'Neill RS, Stoita A. Biomarkers in the diagnosis of pancreatic cancer: Are we closer to finding the golden ticket? World J Gastroenterol 2021; 27:4045-4087. [PMID: 34326612 PMCID: PMC8311531 DOI: 10.3748/wjg.v27.i26.4045] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/24/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is a leading cause of cancer related mortality on a global scale. The disease itself is associated with a dismal prognosis, partly due to its silent nature resulting in patients presenting with advanced disease at the time of diagnosis. To combat this, there has been an explosion in the last decade of potential candidate biomarkers in the research setting in the hope that a diagnostic biomarker may provide a glimmer of hope in what is otherwise quite a substantial clinical dilemma. Currently, serum carbohydrate antigen 19-9 is utilized in the diagnostic work-up of patients diagnosed with PC however this biomarker lacks the sensitivity and specificity associated with a gold-standard marker. In the search for a biomarker that is both sensitive and specific for the diagnosis of PC, there has been a paradigm shift towards a focus on liquid biopsy and the use of diagnostic panels which has subsequently proved to have efficacy in the diagnosis of PC. Currently, promising developments in the field of early detection on PC using diagnostic biomarkers include the detection of microRNA (miRNA) in serum and circulating tumour cells. Both these modalities, although in their infancy and yet to be widely accepted into routine clinical practice, possess merit in the early detection of PC. We reviewed over 300 biomarkers with the aim to provide an in-depth summary of the current state-of-play regarding diagnostic biomarkers in PC (serum, urinary, salivary, faecal, pancreatic juice and biliary fluid).
Collapse
Affiliation(s)
- Robert S O'Neill
- Department of Gastroenterology, St Vincent's Hospital Sydney, Sydney 2010, Australia
- St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney 2010, Australia
| | - Alina Stoita
- Department of Gastroenterology, St Vincent's Hospital Sydney, Sydney 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney 2010, Australia
| |
Collapse
|
23
|
Zhen S, Ma Y, Han Y, Zhao Z, Yang X, Wen D. Serum galectin-3BP as a novel marker of obesity and metabolic syndrome in Chinese adolescents. BMJ Open Diabetes Res Care 2021; 9:9/1/e001894. [PMID: 33910911 PMCID: PMC8094345 DOI: 10.1136/bmjdrc-2020-001894] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/01/2021] [Accepted: 02/07/2021] [Indexed: 11/15/2022] Open
Abstract
INTRODUCTION Childhood obesity (OB) and metabolic syndrome (MetS) have become a worldwide health problem. Comparative proteomic approaches are widely used in human OB to analyze protein changes in blood plasma. The present study determined the galectin-3 binding protein (galectin-3BP) expression level in different weight categories and assessed the associations between galectin-3BP and OB and MetS. RESEARCH DESIGN AND METHODS The current study included 932 Chinese adolescents 13-18 years of age. The biochemical and anthropometric variables of all the subjects were evaluated using standardized procedures. The differentially expressed proteins (DEPs) were investigated among 60 adolescents (20 normal weight, 20 overweight and 20 obese) using tandem mass tag (TMT) quantitative proteomics. The serum galectin-3BP level was measured using ELISA. The associations between galectin-3BP and OB and MetS were analyzed in 932 adolescents using multiple logistic regression analyses. RESULTS A significant DEP, galectin-3BP, can effectively separate the obese from the normal weight group using TMT. Adolescents in tertile 3 of galectin-3BP, when compared with adolescents in the tertile 1, were positively associated with OB (OR=3.32, 95% CI 1.79 to 6.16) and MetS (OR=3.28, 95% CI 1.30 to 8.26). The receiver operating characteristic curve for galectin-3BP in subjects with MetS indicated that the area under the curve was 0.85 (95% CI 0.79 to 0.91). CONCLUSIONS This study confirmed an association between galectin-3BP and OB in Chinese adolescents, and galectin-3BP was also positively associated with MetS, and thus might be useful for identifying adolescents with MetS.
Collapse
Affiliation(s)
- Shihan Zhen
- Institute of Health Sciences, China Medical University, Shenyang, China
| | - Yanan Ma
- School of Public Health, China Medical University, Shenyang, China
| | - Yanshuo Han
- School of Public Health, China Medical University, Shenyang, China
| | - Zhongyi Zhao
- School of Public Health, China Medical University, Shenyang, China
| | - Xuelian Yang
- Institute of Health Sciences, China Medical University, Shenyang, China
| | - Deliang Wen
- Institute of Health Sciences, China Medical University, Shenyang, China
| |
Collapse
|
24
|
Mohallem R, Aryal UK. Regulators of TNFα mediated insulin resistance elucidated by quantitative proteomics. Sci Rep 2020; 10:20878. [PMID: 33257747 PMCID: PMC7705713 DOI: 10.1038/s41598-020-77914-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/03/2020] [Indexed: 12/21/2022] Open
Abstract
Obesity is a growing epidemic worldwide and is a major risk factor for several chronic diseases, including diabetes, kidney disease, heart disease, and cancer. Obesity often leads to type 2 diabetes mellitus, via the increased production of proinflammatory cytokines such as tumor necrosis factor-α (TNFα). Our study combines different proteomic techniques to investigate the changes in the global proteome, secretome and phosphoproteome of adipocytes under chronic inflammation condition, as well as fundamental cross-talks between different cellular pathways regulated by chronic TNFα exposure. Our results show that many key regulator proteins of the canonical and non-canonical NF-κB pathways, such as Nfkb2, and its downstream effectors, including Csf-1 and Lgals3bp, directly involved in leukocyte migration and invasion, were significantly upregulated at the intra and extracellular proteomes suggesting the progression of inflammation. Our data provides evidence of several key proteins that play a role in the development of insulin resistance.
Collapse
Affiliation(s)
- Rodrigo Mohallem
- Department of Comparative Pathobiology, Purdue University, West Lafayette, USA
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, USA
| | - Uma K Aryal
- Department of Comparative Pathobiology, Purdue University, West Lafayette, USA.
- Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University, West Lafayette, USA.
| |
Collapse
|
25
|
Yi N, Zhao X, Ji J, Xu M, Jiao Y, Qian T, Zhu S, Jiang F, Chen J, Xiao M. Serum galectin-3 as a biomarker for screening, early diagnosis, prognosis and therapeutic effect evaluation of pancreatic cancer. J Cell Mol Med 2020; 24:11583-11591. [PMID: 32886424 PMCID: PMC7576229 DOI: 10.1111/jcmm.15775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 12/25/2022] Open
Abstract
Galectin‐3 plays an important role in cell‐cell adhesion, macrophage activation, angiogenesis, metastasis and apoptosis and is overexpressed in pancreatic cancer. We explored the importance of galectin‐3 in the screening, early diagnosis, prognosis and therapeutic effect evaluation of pancreatic cancer. A time‐resolved fluorescence immunoassay was performed to detect serum galectin‐3 level. Serum samples were collected from healthy controls and patients with pancreatic cancer before and after different treatments, and the relationships between galectin‐3 level and clinical parameters were analysed. Among the healthy controls, one individual with an abnormally high concentration of galectin‐3 (9.85 μg/L) was diagnosed with pancreatic cancer. Compared to the pre‐operative level, galectin‐3 concentration significantly decreased in patients with radical excision 1 month after surgery (P < .05), but showed no obvious change in patients who underwent palliative resection. Additionally, among patients with radical excision, carcinoma recurrence rate was significantly higher in those with increased or unchanged galectin‐3 level. Retrospective analysis revealed the extraordinarily high value and high specificity of galectin‐3 for predicting 3‐year survival (P < .001). Thus, galectin‐3 may serve as a potential biomarker for the screening and early diagnosis of pancreatic cancer and as an independent prognostic indicator in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Nan Yi
- Department of Gastroenterology, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Xuying Zhao
- Department of Endocrinology, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Jie Ji
- Department of Gastroenterology, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China.,Medical College, Nantong University, Nantong, China
| | - Minxue Xu
- Department of Gastroenterology, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China.,Medical College, Nantong University, Nantong, China
| | - Yujie Jiao
- Department of Gastroenterology, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China.,Medical College, Nantong University, Nantong, China
| | - Tianyang Qian
- Chinese Medicine 193, First Clinical Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shengze Zhu
- Medical College, Nantong University, Nantong, China
| | - Feng Jiang
- Department of Gastroenterology, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Jianhua Chen
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.,Tongji University Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Dermatology Hospital, Tongji University, Shanghai, China
| | - Mingbing Xiao
- Department of Gastroenterology, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
26
|
Sun J, Zhang L, Fang J, Yang S, Chen L. Galectin-3 mediates high-glucose-induced cardiomyocyte injury by the NADPH oxidase/reactive oxygen species pathway. Can J Physiol Pharmacol 2020; 98:826-833. [PMID: 32311288 DOI: 10.1139/cjpp-2019-0708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Galectin-3 is a member of the β-galactoside-binding lectin family taking part in the regulation of inflammation, angiogenesis, and fibrosis. This study was designed to study the improved effect of galectin-3 inhibition on diabetic cardiomyopathy (DCM). Sprague-Dawley rats were randomized into the control, DCM, and DCM + modified citrus pectin (MCP) (a galectin-3 pharmacological inhibitor) groups. After 8 weeks, streptozotocin-induced DCM led to high blood glucose level, oxidative stress, cardiac injury, and dysfunction accompanied by suppressed body mass. On the contrary, MCP (100 mg·kg-1·day-1) administration improved body mass and blood glucose level and attenuated cardiac injury and dysfunction in DCM rats. Additionally, MCP attenuated pathological changes in plasma and myocardial tissue markers of oxidative stress, such as hydrogen peroxide and malonyldialdehyde, although it did not change superoxide dismutase activities, which were decreased in the DCM group. The levels of oxidative stress associated proteins evaluated by Western blot, such as p67phox and NADPH oxidase 4, were obviously increased in the DCM group, while they were reversed by MCP treatment. Therefore, galectin-3-mediated high-glucose-induced cardiomyocyte injury and galectin-3 inhibition attenuated DCM by suppressing NADPH oxidase. These findings suggested that galectin-3 could be a potential target for treatment of patients with DCM.
Collapse
Affiliation(s)
- Jingang Sun
- Linyi Central Hospital, Linyi, China, 276400
| | | | | | - Shuguo Yang
- Linyi Central Hospital, Linyi, China, 276400
| | | |
Collapse
|
27
|
Leung KK, Wilson GM, Kirkemo LL, Riley NM, Coon JJ, Wells JA. Broad and thematic remodeling of the surfaceome and glycoproteome on isogenic cells transformed with driving proliferative oncogenes. Proc Natl Acad Sci U S A 2020; 117:7764-7775. [PMID: 32205440 PMCID: PMC7148585 DOI: 10.1073/pnas.1917947117] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The cell surface proteome, the surfaceome, is the interface for engaging the extracellular space in normal and cancer cells. Here we apply quantitative proteomics of N-linked glycoproteins to reveal how a collection of some 700 surface proteins is dramatically remodeled in an isogenic breast epithelial cell line stably expressing any of six of the most prominent proliferative oncogenes, including the receptor tyrosine kinases, EGFR and HER2, and downstream signaling partners such as KRAS, BRAF, MEK, and AKT. We find that each oncogene has somewhat different surfaceomes, but the functions of these proteins are harmonized by common biological themes including up-regulation of nutrient transporters, down-regulation of adhesion molecules and tumor suppressing phosphatases, and alteration in immune modulators. Addition of a potent MEK inhibitor that blocks MAPK signaling brings each oncogene-induced surfaceome back to a common state reflecting the strong dependence of the oncogene on the MAPK pathway to propagate signaling. Cell surface protein capture is mediated by covalent tagging of surface glycans, yet current methods do not afford sequencing of intact glycopeptides. Thus, we complement the surfaceome data with whole cell glycoproteomics enabled by a recently developed technique called activated ion electron transfer dissociation (AI-ETD). We found massive oncogene-induced changes to the glycoproteome and differential increases in complex hybrid glycans, especially for KRAS and HER2 oncogenes. Overall, these studies provide a broad systems-level view of how specific driver oncogenes remodel the surfaceome and the glycoproteome in a cell autologous fashion, and suggest possible surface targets, and combinations thereof, for drug and biomarker discovery.
Collapse
Affiliation(s)
- Kevin K Leung
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143
| | - Gary M Wilson
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Lisa L Kirkemo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143
| | - Nicholas M Riley
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143;
| |
Collapse
|
28
|
Liu Y, Fan J, Xu T, Ahmadinejad N, Hess K, Lin SH, Zhang J, Liu X, Liu L, Ning B, Liao Z, Hu TY. Extracellular vesicle tetraspanin-8 level predicts distant metastasis in non-small cell lung cancer after concurrent chemoradiation. SCIENCE ADVANCES 2020; 6:eaaz6162. [PMID: 32195353 PMCID: PMC7065889 DOI: 10.1126/sciadv.aaz6162] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/13/2019] [Indexed: 05/11/2023]
Abstract
Non-small cell lung cancer (NSCLC) is the most commonly diagnosed cancer and the leading cause of cancer death worldwide. More than half of patients with NSCLC die after developing distant metastases, so rapid, minimally invasive prognostic biomarkers are needed to reduce mortality. We used proteomics to identify proteins differentially expressed on extracellular vesicles (EVs) of nonmetastatic 393P and metastatic 344SQ NSCLC cell lines and found that tetraspanin-8 (Tspan8) was selectively enriched on 344SQ EVs. NSCLC cell lines treated with EVs overexpressing Tspan8 also exhibited increased Matrigel invasion. Elevated Tspan8 expression on serum EVs of individuals with stage III premetastatic NSCLC tumors was also associated with reduced distant metastasis-free survival, suggesting that Tspan8 levels on serum EVs may predict future metastasis. This result suggests that a minimally invasive blood test to analyze EV expression of Tspan8 may be of potential value to guide therapeutic decisions for patients with NSCLC and merits further study.
Collapse
Affiliation(s)
- Yang Liu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jia Fan
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Ting Xu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Navid Ahmadinejad
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
- Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Kenneth Hess
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Steven H. Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianjun Zhang
- Department of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xi Liu
- Molecular Pharmacology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Li Liu
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
- Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Bo Ning
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Zhongxing Liao
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tony Y. Hu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
29
|
Peng W, Mirzaei P, Zhu R, Zhou S, Mechref Y. Comparative Membrane N-Glycomics of Different Breast Cancer Cell Lines To Understand Breast Cancer Brain Metastasis. J Proteome Res 2020; 19:854-863. [PMID: 31876156 DOI: 10.1021/acs.jproteome.9b00664] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mechanism of brain metastatic breast cancer has gained attention because of its increased incidence rate and its low survival rate. Aberrant protein glycosylation is thought to be a contributing factor in this metastatic mechanism, in which metastatic cancer cells can pass through the blood-brain barrier (BBB). The cell membrane is the outermost layer of a cell and in direct contact with the environment and with other cells, making membrane glycans especially important in many biological processes that include mediating cell-cell adhesion, cell signaling, and interactions. Thus, membrane glycomics has attracted more interest for a variety of disease studies in recent years. To reveal the role that membrane N-glycans play in breast cancer brain metastasis, in this study, membrane enrichment was achieved by ultracentrifugation. Liquid chromatography-tandem mass spectrometry was employed to analyze enriched membrane N-glycomes from five breast cancer cell lines and one brain cancer cell line. Relative quantitative glycomic data from each cell line were compared to MDA-MB-231BR, which is the brain-seeking cell line. The higher sialylation level observed in MDA-MB-231BR suggested the importance of sialylation as it might assist with cell invasion and the penetration of the BBB. Some highly sialylated N-glycans, such as HexNAc5Hex6DeoxyHex1NeuAc3 and HexNAc6Hex7DeoxyHex1NeuAc3, exhibited higher abundances in 231BR, indicating their possible contributions to breast cancer brain metastasis as well as their potential to be indicators for the breast cancer brain metastasis.
Collapse
Affiliation(s)
- Wenjing Peng
- Department of Chemistry and Biochemistry , Texas Tech University , Lubbock 79409-1061 , Texas , United States
| | - Parvin Mirzaei
- Department of Chemistry and Biochemistry , Texas Tech University , Lubbock 79409-1061 , Texas , United States
| | - Rui Zhu
- Department of Chemistry and Biochemistry , Texas Tech University , Lubbock 79409-1061 , Texas , United States
| | - Shiyue Zhou
- Department of Chemistry and Biochemistry , Texas Tech University , Lubbock 79409-1061 , Texas , United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry , Texas Tech University , Lubbock 79409-1061 , Texas , United States
| |
Collapse
|
30
|
Huang TY, Wang CY, Chen KY, Huang LT. Urinary Exosomal Thyroglobulin in Thyroid Cancer Patients With Post-ablative Therapy: A New Biomarker in Thyroid Cancer. Front Endocrinol (Lausanne) 2020; 11:382. [PMID: 32612576 PMCID: PMC7308545 DOI: 10.3389/fendo.2020.00382] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/14/2020] [Indexed: 01/08/2023] Open
Abstract
Background: Most patients with thyroid cancer typically receive thyroidectomy with ablative radioactive iodine therapy. Such patients were followed with thyroid ultrasonography and serial serum thyroglobulin evaluation. Exosomes are nanovesicles secreted into extracellular environments, including plasma, saliva, urine, and other body fluids of patients with cancer. We try to find the early prognostic and exosomal biological markers of urine. Methods: We analyzed urinary exosomal proteins, including thyroglobulin and galectin-3, to identify early prognostic biological markers in urine for patients receiving operation and radioactive iodine ablative therapy. We enrolled sixteen newly diagnosed patients with papillary thyroid carcinoma and follicular thyroid carcinoma. We collect all patient's urine samples before operation, immediately after operation, post-operatively at three and six months (4 collections per patient). The levels of pre-operative and post-ablative of U-Ex Tg and galectin-3 in patients with thyroid cancer were measured. Results: Trends in urinary thyroglobulin concentrations in patients with post-ablative thyroid cancer were detected in the first sixteen patients. Importantly, serum thyroglobulin was not detected in five patients after operation and radioactive I-131 ablation, while U-Ex Tg still showed an increasing trend, which implicating the probable recurrence of thyroid cancer. This is the first study to evaluate whether U-Ex Tg is a future biological marker as a substitute for serum thyroglobulin. Conclusion: Our study have developed a brand-new evaluation for tracking thyroid cancer. The most useful scenario in using a test that is potentially more sensitive than existing serological testing is to eliminate the suspicion of recurrence and remove subjects from long term follow up. Trial Registration: ClinicalTrials.gov: NCT02862470; 5, August 2016. https://clinicaltrials.gov/ct2/show/NCT02862470?term=NCT02862470&rank=1. ClinicalTrials.gov: NCT03488134; 3, August 2018. https://clinicaltrials.gov/ct2/show/NCT03488134?term=NCT03488134&draw=2&rank=1.
Collapse
Affiliation(s)
- Tse-Ying Huang
- Department of Internal Medicine, National Taiwan University Hospital Yun-Lin/Hsin-Chu Branch, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Yuan Wang
- Department of Internal Medicine, National Taiwan University Hospital Yun-Lin/Hsin-Chu Branch, College of Medicine, National Taiwan University, Taipei, Taiwan
- *Correspondence: Chih-Yuan Wang ;
| | - Kuen-Yuan Chen
- Department of Surgery, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Li-Ting Huang
- Department of Internal Medicine, National Taiwan University Hospital Yun-Lin/Hsin-Chu Branch, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
31
|
Galectin-3 may serve as a marker for poor prognosis in colorectal cancer: A meta-analysis. Pathol Res Pract 2019; 215:152612. [DOI: 10.1016/j.prp.2019.152612] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/07/2019] [Accepted: 08/19/2019] [Indexed: 12/31/2022]
|
32
|
Wei J, Ni N, Meng W, Gao Y. Early urine proteome changes in the Walker-256 tail-vein injection rat model. Sci Rep 2019; 9:13804. [PMID: 31551472 PMCID: PMC6760176 DOI: 10.1038/s41598-019-50301-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 09/05/2019] [Indexed: 12/11/2022] Open
Abstract
Detection of cancer at its early stage is important for treatment. Urine, which is not regulated by homeostatic mechanisms, reflects early systemic changes throughout the whole body and can be used for the early detection of cancer. In this study, the Walker-256 tail-vein injection rat model was established to find whether the urine proteome could reflect early changes if tumor grown in lung. Urine samples from the control group (n = 7) and Walker-256 tail-vein injection group (n = 7) on days 2, 4, 6 and 9 were analyzed by label-free proteomic quantitative methods. On day 2, when lung tumor nodules did not appear, 62 differential proteins were identified. They were associated with epithelial cell differentiation, regulation of immune system processes and the classical complement activation pathway. On day 4, when lung tumor nodules appeared, 72 differential proteins were identified. They were associated with the innate immune response and positive regulation of phagocytosis. On day 6, when body weight began to decrease, 117 differential proteins were identified. On day 9, the identified 125 differential proteins were associated with the B cell receptor signaling pathway and the positive regulation of B cell activation. Our results indicate that (1) the urine proteome changed even on the second day after tail-vein injection of Walker-256 cells and that (2) compared to previous studies, the urine proteomes were different when the same cancer cells were grown in different organs.
Collapse
Affiliation(s)
- Jing Wei
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing, 100875, China
| | - Na Ni
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Wenshu Meng
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing, 100875, China
| | - Youhe Gao
- Department of Biochemistry and Molecular Biology, Beijing Normal University, Gene Engineering Drug and Biotechnology Beijing Key Laboratory, Beijing, 100875, China.
| |
Collapse
|
33
|
Natarajamurthy SH, Sistla S, Dharmesh SM. Disruption of galectin-3 and galectin-3 binding protein (G3BP) interaction by dietary pectic polysaccharides (DPP) - Arrest of metastasis, inhibition of proliferation and induction of apoptosis. Int J Biol Macromol 2019; 139:486-499. [PMID: 31356934 DOI: 10.1016/j.ijbiomac.2019.07.180] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 06/27/2019] [Accepted: 07/26/2019] [Indexed: 11/26/2022]
Abstract
Galectin-3 and galectin-3 binding proteins (G3BP) are implicated as key players in metastasis. In the current study, we evaluated the effect of pectic polysaccharides on galectin-3 and G3BP mediated metastasis in vitro (cells) and in vivo (tissues). In vitro study (double immunostaining) confirms the presence of galectin-3 on the cell surface and G3BP in the interlinking region of the cells confirming the role of G3BP in bridging galectin-3 molecules. Dietary carrot (Daucus carota) pectic polysaccharide (CRPP) blocked the expression of galectin-3 and G3BP more effectively (80%), whereas the expressions were reduced to 60% upon treatment with swallow root (Decalepis hamiltonii) pectic polysaccharide (SRPP), β‑carotene and deferoxamine (antiproliferative drug). Ginger (Gingiber officinale) pectic polysaccharide (GRPP) showed only 20% reduction. CRPP reduced 80% of tumor incidence followed by cyclophosphamide - a chemotherapeutic drug (77%), SRPP (67%) and GRPP (45%). Further 3-5 folds reduction in galectin-3/G3BP expression followed by infiltration of macrophages into the deeper layer of the skin by CRPP and SRPP suggested the anticancer property via immunomodulation. Surface Plasmon Resonance (SPR) studies confirm galectin-3 and G3BP interaction, which are disrupted during the treatment with dietary pectic polysaccharides (DPP) (Supplementary Scheme-1). Overall data demonstrate the role of DPPs as potential anticancer alternatives.
Collapse
Affiliation(s)
- Sindhuja Heggavadipura Natarajamurthy
- Center for Stem Cell and Regenerative Medicine, Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Srinivas Sistla
- Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Shylaja M Dharmesh
- Department of Biochemistry, CSIR - Central Food Technological Research Institute, Mysuru 570 020, Karnataka, India.
| |
Collapse
|
34
|
Zhang L, Li Y, Meng W, Ni Y, Gao Y. Dynamic urinary proteomic analysis in a Walker 256 intracerebral tumor model. Cancer Med 2019; 8:3553-3565. [PMID: 31090175 PMCID: PMC6601583 DOI: 10.1002/cam4.2240] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/17/2019] [Accepted: 04/19/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Patients with primary and metastatic brain cancer have an extremely poor prognosis, mostly due to the late diagnosis of disease. Urine, which lacks homeostatic mechanisms, is an ideal biomarker source that accumulates early and highly sensitive changes to provide information about the early stage of disease. METHODS A rat model mimicking the local tumor growth process in the brain was established with intracerebral Walker 256 (W256) cell injection. Urine samples were collected on days 3, 5, and 8 after injection, and then analyzed by liquid chromatography coupled with tandem mass spectrometry. RESULTS In the intracerebral W256 model, no obvious clinical manifestations or abnormal magnetic resonance imaging (MRI) signals were found on days 3 or 5; at these time points, 9 proteins were changed significantly in the urine of all eight tumor rats. On day 8, when tumors were detected by MRI, 25 differential proteins were identified, including 10 that have been reported to be closely related to brain metastasis or primary tumors. The differential urinary proteome was compared with those from the subcutaneous W256 model and the intracerebral C6 model. Few differential proteins overlapped, and specific differential protein patterns were observed among the three models. CONCLUSIONS These findings demonstrate that early changes in the urine proteome can be detected in the intracerebral W256 model. The urinary proteome can reflect the difference when tumor cells with different growth characteristics are inoculated into the brain and when identical tumor cells are inoculated into different areas, specifically, the subcutis and the brain.
Collapse
Affiliation(s)
- Linpei Zhang
- Department of Biochemistry and Molecular BiologyBeijing Normal University, Gene Engineering Drug and Biotechnology Beijing Key LaboratoryBeijingChina
- BiobankThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Yuqiu Li
- Department of Biochemistry and Molecular BiologyBeijing Normal University, Gene Engineering Drug and Biotechnology Beijing Key LaboratoryBeijingChina
| | - Wenshu Meng
- Department of Biochemistry and Molecular BiologyBeijing Normal University, Gene Engineering Drug and Biotechnology Beijing Key LaboratoryBeijingChina
| | - Yanying Ni
- Department of PathologyAviation General Hospital of China Medical UniversityBeijingChina
| | - Youhe Gao
- Department of Biochemistry and Molecular BiologyBeijing Normal University, Gene Engineering Drug and Biotechnology Beijing Key LaboratoryBeijingChina
| |
Collapse
|
35
|
Ward MD, Brueggemann EE, Kenny T, Reitstetter RE, Mahone CR, Trevino S, Wetzel K, Donnelly GC, Retterer C, Norgren RB, Panchal RG, Warren TK, Bavari S, Cazares LH. Characterization of the plasma proteome of nonhuman primates during Ebola virus disease or melioidosis: a host response comparison. Clin Proteomics 2019; 16:7. [PMID: 30774579 PMCID: PMC6366079 DOI: 10.1186/s12014-019-9227-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/30/2019] [Indexed: 12/19/2022] Open
Abstract
Background In-depth examination of the plasma proteomic response to infection with a wide variety of pathogens can assist in the development of new diagnostic paradigms, while providing insight into the interdependent pathogenic processes which encompass a host’s immunological and physiological responses. Ebola virus (EBOV) causes a highly lethal infection termed Ebola virus disease (EVD) in primates and humans. The Gram negative non-spore forming bacillus Burkholderia pseudomallei (Bp) causes melioidosis in primates and humans, characterized by severe pneumonia with high mortality. We sought to examine the host response to infection with these two bio-threat pathogens using established animal models to provide information on the feasibility of pre-symptomatic diagnosis, since the induction of host molecular signaling networks can occur before clinical presentation and pathogen detection. Methods Herein we report the quantitative proteomic analysis of plasma collected at various times of disease progression from 10 EBOV-infected and 5 Bp-infected nonhuman primates (NHP). Our strategy employed high resolution LC–MS/MS and a peptide-tagging approach for relative protein quantitation. In each infection type, for all proteins with > 1.3 fold abundance change at any post-infection time point, a direct comparison was made with levels obtained from plasma collected daily from 5 naïve rhesus macaques, to determine the fold changes that were significant, and establish the natural variability of abundance for endogenous plasma proteins. Results A total of 41 plasma proteins displayed significant alterations in abundance during EBOV infection, and 28 proteins had altered levels during Bp infection, when compared to naïve NHPs. Many major acute phase proteins quantitated displayed similar fold-changes between the two infection types but exhibited different temporal dynamics. Proteins related to the clotting cascade, immune signaling and complement system exhibited significant differential abundance during infection with EBOV or Bp, indicating a specificity of the response. Conclusions These results advance our understanding of the global plasma proteomic response to EBOV and Bp infection in relevant primate models for human disease and provide insight into potential innate immune response differences between viral and bacterial infections. Electronic supplementary material The online version of this article (10.1186/s12014-019-9227-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael D Ward
- 1Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702 USA
| | - Ernst E Brueggemann
- 1Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702 USA
| | - Tara Kenny
- 1Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702 USA
| | - Raven E Reitstetter
- 1Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702 USA
| | - Christopher R Mahone
- 1Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702 USA
| | - Sylvia Trevino
- 2Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702 USA
| | - Kelly Wetzel
- 1Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702 USA
| | - Ginger C Donnelly
- 1Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702 USA
| | - Cary Retterer
- 1Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702 USA
| | - Robert B Norgren
- 3Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Rekha G Panchal
- 1Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702 USA
| | - Travis K Warren
- 1Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702 USA
| | - Sina Bavari
- 1Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702 USA
| | - Lisa H Cazares
- 1Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702 USA
| |
Collapse
|
36
|
Banerjee K, Padmavathi G, Bhattacherjee D, Saha S, Kunnumakkara AB, Bhabak KP. Potent anti-proliferative activities of organochalcogenocyanates towards breast cancer. Org Biomol Chem 2018; 16:8769-8782. [DOI: 10.1039/c8ob01891j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The synthesis of benzylic and mesitylenic organochalcogenocyanates has been described and the compounds have been studied for their anti-proliferative activities in breast cancer cells (MDA-MB-231, MCF-7 and T-47D).
Collapse
Affiliation(s)
- Kaustav Banerjee
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati-781039
- India
| | - Ganesan Padmavathi
- Cancer Biology Laboratory & DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB)
- Department of Biosciences and Bioengineering
- Indian Institute of Technology Guwahati
- Guwahati-781039
- India
| | - Debojit Bhattacherjee
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati-781039
- India
- Centre for the Environment
| | - Suchismita Saha
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati-781039
- India
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory & DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB)
- Department of Biosciences and Bioengineering
- Indian Institute of Technology Guwahati
- Guwahati-781039
- India
| | - Krishna P. Bhabak
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati-781039
- India
- Centre for the Environment
| |
Collapse
|
37
|
Liu T, Shang S, Li W, Qin X, Sun L, Zhang S, Liu Y. Assessment of Hepatocellular Carcinoma Metastasis Glycobiomarkers Using Advanced Quantitative N-glycoproteome Analysis. Front Physiol 2017; 8:472. [PMID: 28736531 PMCID: PMC5500640 DOI: 10.3389/fphys.2017.00472] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/21/2017] [Indexed: 12/27/2022] Open
Abstract
Hepatocelluar carcinoma (HCC) is one of the most common malignant tumors with high incidence of metastasis. Glycosylation is involved in fundamental molecular and cell biology process occurring in cancer including metastasis formation. In this study, lectin microarray, lectin blotting, lectin affinity chromatography and tandem 18O stable isotope labeling coupled with liquid chromatography-mass spectrometer (LC-MS) analysis were applied to quantify the changes in N-glycosite occupancy for HCC metastasis serum. Firstly, lectin microarray was used to screen glycoforms and Phaseolus vulgaris Leucoagglutinin (PHA-L) reactive structure (β1,6-GlcNAc branched N-glycan) was found to be increased significantly in HCC patients with metastasis compared with those with non-metastasis. Then, PHA-L affinity glycoproteins were enriched followed by N-glycosite occupancy measurement with strategy of tandem 18O stable isotope labeling. 11 glycoproteins with significantly changed N-glycosite occupancy were identified, they were associated with cell migration, invasion and adhesion through p38 mitogen-activated protein kinase signaling pathway and nuclear factor kappa B signaling pathway. Quantification of N-glycosite occupancy for PHA-L reactive glycoproteins could help to discover important glycoproteins of potential clinically significance in terms of HCC etiology. Also, understanding of N-glycosite occupancy alterations will aid the characterization of molecular mechanism of HCC metastasis as well as establishment of novel glycobiomarkers.
Collapse
Affiliation(s)
- Tianhua Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan UniversityShanghai, China.,Institutes of Biomedical Sciences, Fudan UniversityShanghai, China
| | - Shuxin Shang
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical UniversityNanning, China
| | - Wei Li
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan UniversityShanghai, China.,Institutes of Biomedical Sciences, Fudan UniversityShanghai, China
| | - Xue Qin
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical UniversityNanning, China
| | - Lu Sun
- Institutes of Biomedical Sciences, Fudan UniversityShanghai, China
| | - Shu Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan UniversityShanghai, China
| | - Yinkun Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan UniversityShanghai, China.,Institutes of Biomedical Sciences, Fudan UniversityShanghai, China
| |
Collapse
|
38
|
Xia J, Cheng Y, Zhang H, Li R, Hu Y, Liu B. The role of adhesions between homologous cancer cells in tumor progression and targeted therapy. Expert Rev Anticancer Ther 2017; 17:517-526. [DOI: 10.1080/14737140.2017.1322511] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
39
|
Nielsen CT, Østergaard O, Rasmussen NS, Jacobsen S, Heegaard NHH. A review of studies of the proteomes of circulating microparticles: key roles for galectin-3-binding protein-expressing microparticles in vascular diseases and systemic lupus erythematosus. Clin Proteomics 2017; 14:11. [PMID: 28405179 PMCID: PMC5385087 DOI: 10.1186/s12014-017-9146-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/31/2017] [Indexed: 02/06/2023] Open
Abstract
Subcellular microvesicles (MVs) have attracted increasing interest during the past decades. While initially considered as inert cellular debris, several important roles for MVs in physiological homeostasis, cancer, cardiovascular, and autoimmune diseases have been uncovered. Although still poorly understood, MVs are involved in trafficking of information from cell-to-cell, and are implicated in the regulation of immunity, thrombosis, and coagulation. Different subtypes of extracellular MVs exist. This review focuses on the cell membrane-derived shedded MVs (ranging in size from 200 to 1000 nm) typically termed microparticles (MPs). The numbers and particularly the composition of MPs appear to reflect the state of their parental cells and MPs may therefore carry great potential as clinical biomarkers which can be elucidated and developed by proteomics in particular. Determination of the identity of the specific proteins and their quantities, i.e. the proteome, in complex samples such as MPs enables an in-depth characterization of the phenotypical changes of the MPs during disease states. At present, only a limited number of proteomic studies of circulating MPs have been carried out in healthy individuals and disease populations. Interestingly, these studies indicate that a small set of MP-proteins, in particular, overexpression of galectin-3-binding protein (G3BP) distinguish MPs in patients with venous thromboembolism and the systemic autoimmune disease, systemic lupus erythematosus (SLE). G3BP is important in cell–cell adhesion, clearance, and intercellular signaling. MPs overexpressing G3BP may thus be involved in thrombosis and hemostasis, vascular inflammation, and autoimmunity, further favoring G3BP as a marker of “pathogenic” MPs. MPs expressing G3BP may also hold a potential as biomarkers in other conditions such as cancer and chronic viral infections. This review highlights the methodology and results of the proteome studies behind these discoveries and places them in a pathophysiological and biomarker perspective.
Collapse
Affiliation(s)
- Christoffer T Nielsen
- Copenhagen Lupus and Vasculitis Clinic, Centre for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark
| | - Ole Østergaard
- Department of Autoimmunology and Biomarkers, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Niclas S Rasmussen
- Copenhagen Lupus and Vasculitis Clinic, Centre for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark
| | - Søren Jacobsen
- Copenhagen Lupus and Vasculitis Clinic, Centre for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark
| | - Niels H H Heegaard
- Department of Autoimmunology and Biomarkers, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen, Denmark.,Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, University of Southern Denmark, Søndre Boulevard 29, 5000 Odense, Denmark
| |
Collapse
|
40
|
Hall SC, Hassis ME, Williams KE, Albertolle ME, Prakobphol A, Dykstra AB, Laurance M, Ona K, Niles RK, Prasad N, Gormley M, Shiboski C, Criswell LA, Witkowska HE, Fisher SJ. Alterations in the Salivary Proteome and N-Glycome of Sjögren's Syndrome Patients. J Proteome Res 2017; 16:1693-1705. [PMID: 28282148 PMCID: PMC9668345 DOI: 10.1021/acs.jproteome.6b01051] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We used isobaric mass tagging (iTRAQ) and lectin affinity capture mass spectrometry (MS)-based workflows for global analyses of parotid saliva (PS) and whole saliva (WS) samples obtained from patients diagnosed with primary Sjögren's Syndrome (pSS) who were enrolled in the Sjögren's International Collaborative Clinical Alliance (SICCA) as compared with two control groups. The iTRAQ analyses revealed up- and down-regulation of numerous proteins that could be involved in the disease process (e.g., histones) or attempts to mitigate the ensuing damage (e.g., bactericidal/permeability increasing fold containing family (BPIF) members). An immunoblot approach applied to independent sample sets confirmed the pSS associated up-regulation of β2-microglobulin (in PS) and down-regulation of carbonic anhydrase VI (in WS) and BPIFB2 (in PS). Beyond the proteome, we profiled the N-glycosites of pSS and control samples. They were enriched for glycopeptides using lectins Aleuria aurantia and wheat germ agglutinin, which recognize fucose and sialic acid/N-acetyl glucosamine, respectively. MS analyses showed that pSS is associated with increased N-glycosylation of numerous salivary glycoproteins in PS and WS. The observed alterations of the salivary proteome and N-glycome could be used as pSS biomarkers enabling easier and earlier detection of this syndrome while lending potential new insights into the disease process.
Collapse
Affiliation(s)
- Steven C. Hall
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California 94143, United States
- Sandler-Moore Mass Spectrometry Core Facility, University of California, San Francisco, San Francisco, California 94143, United States
| | - Maria E. Hassis
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California 94143, United States
- Sandler-Moore Mass Spectrometry Core Facility, University of California, San Francisco, San Francisco, California 94143, United States
| | - Katherine E. Williams
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California 94143, United States
- Sandler-Moore Mass Spectrometry Core Facility, University of California, San Francisco, San Francisco, California 94143, United States
| | - Matthew E. Albertolle
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California 94143, United States
- Sandler-Moore Mass Spectrometry Core Facility, University of California, San Francisco, San Francisco, California 94143, United States
| | - Akraporn Prakobphol
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California 94143, United States
| | - Andrew B. Dykstra
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California 94143, United States
- Sandler-Moore Mass Spectrometry Core Facility, University of California, San Francisco, San Francisco, California 94143, United States
| | - Megan Laurance
- Library and Center for Knowledge Management, University of California, San Francisco, San Francisco, California 94143, United States
| | - Katherine Ona
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California 94143, United States
| | - Richard K. Niles
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California 94143, United States
- Sandler-Moore Mass Spectrometry Core Facility, University of California, San Francisco, San Francisco, California 94143, United States
| | - Namrata Prasad
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California 94143, United States
- Sandler-Moore Mass Spectrometry Core Facility, University of California, San Francisco, San Francisco, California 94143, United States
| | - Matthew Gormley
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California 94143, United States
| | - Caroline Shiboski
- Department of Orofacial Sciences, University of California, San Francisco, San Francisco, California 94143, United States
| | - Lindsey A. Criswell
- Department of Orofacial Sciences, University of California, San Francisco, San Francisco, California 94143, United States
- Russel/Engleman Rheumatology Research Center, Department of Medicine, University of California, San Francisco, San Francisco, California 94143, United States
| | - H. Ewa Witkowska
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California 94143, United States
- Sandler-Moore Mass Spectrometry Core Facility, University of California, San Francisco, San Francisco, California 94143, United States
| | - Susan J. Fisher
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California 94143, United States
- Sandler-Moore Mass Spectrometry Core Facility, University of California, San Francisco, San Francisco, California 94143, United States
| |
Collapse
|
41
|
Liu T, Liu D, Liu R, Jiang H, Yan G, Li W, Sun L, Zhang S, Liu Y, Guo K. Discovering potential serological biomarker for chronic Hepatitis B Virus-related hepatocellular carcinoma in Chinese population by MAL-associated serum glycoproteomics analysis. Sci Rep 2017; 7:38918. [PMID: 28079114 PMCID: PMC5228127 DOI: 10.1038/srep38918] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/15/2016] [Indexed: 12/12/2022] Open
Abstract
The accuracy of current biomarkers for the diagnosis of hepatocellular carcinoma (HCC), especially chronic Hepatitis B Virus (HBV)-related HCC, is limited. Recent progress in glycoproteomics has provided a novel platform for screening novel serological biomarkers of HCC. In this study, lectin affinity chromatography by Maackia amurensis lectin (MAL) and iTRAQ combined with mass spectrometric analysis were performed to enrich and identify the glycoprotein fractions in serum samples from HBV-related HCC patients and from healthy controls. Seventeen differential MAL-associated glycoproteins were identified. Among them, Galectin 3 binding protein (Gal-3BP) was selected for further evaluated by ELISA analysis and showed a high diagnostic potential of HBV-related HCC, with the AUC of 0.898 and a sensitivity, specificity and accuracy of 80.00%, 93.75% and 86.88%, respectively. Moreover, we constructed a predictive model through the combined use of serum Gal-3BP and Alpha Fetoprotein (AFP), which improved the sensitivity (from 87.5% to 95%), specificity (from 93.75% to 95%) and accuracy (from 90.63% to 95%) of diagnosing early HCC. These data suggested serum Gal-3BP level is a promising biomarker to identify HBV-related HCC and the combined use of serum Gal-3BP and AFP improves the diagnostic potential of HBV-HCC compared with AFP alone in current clinical practice.
Collapse
Affiliation(s)
- Tianhua Liu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Cancer Research Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Denghe Liu
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Riqiang Liu
- People’s Hospital of Gangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Hucong Jiang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Cancer Research Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Guoquan Yan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Cancer Research Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Wei Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Cancer Research Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Lu Sun
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Cancer Research Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Shu Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Cancer Research Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yinkun Liu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Cancer Research Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Kun Guo
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Cancer Research Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
42
|
Li T, Huang M, Liu L, Wang S, Moremen KW, Boons GJ. Divergent Chemoenzymatic Synthesis of Asymmetrical-Core-Fucosylated and Core-Unmodified N-Glycans. Chemistry 2016; 22:18742-18746. [PMID: 27798819 PMCID: PMC5442444 DOI: 10.1002/chem.201604999] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Indexed: 11/08/2022]
Abstract
A divergent chemoenzymaytic approach for the preparation of core-fucosylated and core-unmodified asymmetrical N-glycans from a common advances precursor is described. An undecasaccharide was synthesized by sequential chemical glycosylations of an orthogonally protected core fucosylated hexasaccharide that is common to all mammalian core fucosylated N-glycans. Antennae-selective enzymatic extension of the undecasaccharide using a panel of glycosyl transferases afforded core fucosylated asymmetrical triantennary N-glycan isomers, which are potential biomarkers for breast cancer. A unique aspect of our approach is that a fucosidase (FucA1) has been identified that selectively can cleave a core-fucoside without affecting the fucoside of a sialyl LewisX epitope to give easy access to core-unmodified compounds.
Collapse
Affiliation(s)
- Tiehai Li
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia, 30602, USA
| | - Min Huang
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia, 30602, USA
| | - Lin Liu
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia, 30602, USA
| | - Shuo Wang
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia, 30602, USA
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia, 30602, USA
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia, 30602, USA
- Chemical Biology and Drug Discovery, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| |
Collapse
|
43
|
Zhang Y, Kou X, Jiang N, Liu Y, Tay FR, Zhou Y. Effect of intraoral mechanical stress application on the expression of a force-responsive prognostic marker associated with system disease progression. J Dent 2016; 57:57-65. [PMID: 27979689 DOI: 10.1016/j.jdent.2016.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/08/2016] [Accepted: 12/10/2016] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES Malocclusion may be corrected nonsurgically by mechanical tooth movement. The plasma protein profiles of human subjects receiving the first phase of orthodontic treatment were examined to test the hypothesis that application of mechanical stresses to teeth induces systemic proteomic alterations. METHODS Tandem mass tag-based liquid chromatography-mass spectrometry (LC-MS/MS) was used to examine systemic proteomic alterations in subjects undergoing controlled stress application (N=10) and in volunteers not receiving treatment (N=7) at 3 time intervals within 24h. Proteins differentially expressed by the tooth movement group were functionally analyzed with "Gene Ontology" (GO) and "Search Tool to Retrieve Interacting Genes/proteins" (STRING) softwares. Enzyme-Linked Immunosorbent Assay and Western-blot were used to validate the in vivo protein alterations. An in vitro model consisting of human periodontal ligament cells (hPDLCs) under compression was used to validate the force-responsive characteristics of galectin-3 binding protein (LGALS3BP). RESULTS Sixteen out of the 294 proteins identified by LC-MS/MS were differentially expressed in the plasma of subjects receiving controlled mechanical stresses for moving teeth. Those proteins were clustered in biological processes related to acute inflammatory response and vesicle-related transportation. Serotransferrin, fibronectin and LGALS3BP were processed for confirmation in vivo; LGALS3BP was significantly increased in the tooth movement group. In vitro secretion of LGALS3BP in PDLCs was force-responsive. CONCLUSIONS Regional application of mechanical stresses stimulates systemic proteomic changes. Because serum LGALS3BP is over-expressed in different systemic diseases, including cancer, further work is needed to examine how systemic up-regulation of LGALS3BP affects the progression of those diseases.
Collapse
Affiliation(s)
- Yimei Zhang
- The Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiaoxing Kou
- The Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Nan Jiang
- The Center of Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yan Liu
- The Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Franklin R Tay
- College of Graduate Studies, Augusta University, Augusta, GA, USA.
| | - Yanheng Zhou
- The Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China.
| |
Collapse
|
44
|
Greville G, McCann A, Rudd PM, Saldova R. Epigenetic regulation of glycosylation and the impact on chemo-resistance in breast and ovarian cancer. Epigenetics 2016; 11:845-857. [PMID: 27689695 DOI: 10.1080/15592294.2016.1241932] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glycosylation is one of the most fundamental posttranslational modifications in cellular biology and has been shown to be epigenetically regulated. Understanding this process is important as epigenetic therapies such as those using DNA methyltransferase inhibitors are undergoing clinical trials for the treatment of ovarian and breast cancer. Previous work has demonstrated that altered glycosylation patterns are associated with aggressive disease in women presenting with breast and ovarian cancer. Moreover, the tumor microenvironment of hypoxia results in globally altered DNA methylation and is associated with aggressive cancer phenotypes and chemo-resistance, a feature integral to many cancers. There is sparse knowledge on the impact of these therapies on glycosylation. Moreover, little is known about the efficacy of DNA methyltransferase inhibitors in hypoxic tumors. In this review, we interrogate the impact that hypoxia and epigenetic regulation has on cancer cell glycosylation in relation to resultant tumor cell aggressiveness and chemo-resistance.
Collapse
Affiliation(s)
- Gordon Greville
- a NIBRT GlycoScience Group , The National Institute for Bioprocessing Research and Training , Mount Merrion, Blackrock, Dublin , Ireland
| | - Amanda McCann
- b UCD School of Medicine, College of Health and Agricultural Science, University College Dublin , UCD, Belfield, Dublin , Ireland.,c UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin , UCD, Belfield, Dublin , Ireland
| | - Pauline M Rudd
- a NIBRT GlycoScience Group , The National Institute for Bioprocessing Research and Training , Mount Merrion, Blackrock, Dublin , Ireland
| | - Radka Saldova
- a NIBRT GlycoScience Group , The National Institute for Bioprocessing Research and Training , Mount Merrion, Blackrock, Dublin , Ireland
| |
Collapse
|
45
|
Liang Y, Zhou Y, Deng S, Chen T. Microwave-Assisted Syntheses of Benzimidazole-Containing Selenadiazole Derivatives That Induce Cell-Cycle Arrest and Apoptosis in Human Breast Cancer Cells by Activation of the ROS/AKT Pathway. ChemMedChem 2016; 11:2339-2346. [DOI: 10.1002/cmdc.201600261] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/03/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Yuanwei Liang
- Department of Chemistry; Jinan University; Guangzhou 510632 P.R. China
| | - Yangliang Zhou
- Department of Chemistry; Jinan University; Guangzhou 510632 P.R. China
| | - Shulin Deng
- Department of Chemistry; Jinan University; Guangzhou 510632 P.R. China
| | - Tianfeng Chen
- Department of Chemistry; Jinan University; Guangzhou 510632 P.R. China
| |
Collapse
|
46
|
Changes in serum proteins after endotoxin administration in healthy and choline-treated calves. BMC Vet Res 2016; 12:210. [PMID: 27646125 PMCID: PMC5028968 DOI: 10.1186/s12917-016-0837-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 09/10/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND This study aimed to investigate the possible serum protein changes after endotoxin administration in healthy and choline-treated calves using proteomics. These results are expected to contribute to the understanding of the pathophysiological mechanisms of endotoxemia and the beneficial effect of choline administration in this clinical situation. METHODS Healthy-calves (n = 20) were divided into 4 groups: Control, Choline treated (C), Lipopolysaccharide administered (LPS), and LPS + C. Control calves received 0.9 % NaCl injection. Calves in C and LPS + C groups received choline chloride (1 mg/kg/iv). Endotoxin (LPS) was injected (2 μg/kg/iv) to the calves in LPS and LPS + C groups. Serum samples were collected before and after the treatments. Differentially expressed proteins (> 1.5 fold-change relative to controls) were identified by LC-MS/MS. RESULTS After LPS administration, 14 proteins increased, and 13 proteins decreased within 48 h as compared to controls. In the LPS group, there were significant increases in serum levels of ragulator complex protein (189-fold) and galectin-3-binding protein (10-fold), but transcription factor MafF and corticosteroid binding globulin were down regulated (≥ 5 fold). As compared with the LPS group, in LPS + C group, fibrinogen gamma-B-chain and antithrombin were up-regulated, while hemopexin and histone H4 were down-regulated. Choline treatment attenuated actin alpha cardiac muscle-1 overexpression after LPS. CONCLUSIONS LPS administration produces changes in serum proteins associated with lipid metabolism, immune and inflammatory response, protein binding/transport, cell adhesion, venous thrombosis, cardiac contractility and blood coagulation. The administration of choline is associated with changes in proteins which can be related with its beneficial effect in this clinical situation.
Collapse
|
47
|
Guo Z, Zhang T, Fang K, Liu P, Li M, Gu N. The effect of porosity and stiffness of glutaraldehyde cross-linked egg white scaffold simulating aged extracellular matrix on distribution and aggregation of ovarian cancer cells. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.05.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
48
|
Heijs B, Holst S, Briaire-de Bruijn IH, van Pelt GW, de Ru AH, van Veelen PA, Drake RR, Mehta AS, Mesker WE, Tollenaar RA, Bovée JVMG, Wuhrer M, McDonnell LA. Multimodal Mass Spectrometry Imaging of N-Glycans and Proteins from the Same Tissue Section. Anal Chem 2016; 88:7745-53. [PMID: 27373711 DOI: 10.1021/acs.analchem.6b01739] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
On-tissue digestion matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) can be used to record spatially correlated molecular information from formalin-fixed, paraffin-embedded (FFPE) tissue sections. In this work, we present the in situ multimodal analysis of N-linked glycans and proteins from the same FFPE tissue section. The robustness and applicability of the method are demonstrated for several tumors, including epithelial and mesenchymal tumor types. Major analytical aspects, such as lateral diffusion of the analyte molecules and differences in measurement sensitivity due to the additional sample preparation methods, have been investigated for both N-glycans and proteolytic peptides. By combining the MSI approach with extract analysis, we were also able to assess which mass spectral peaks generated by MALDI-MSI could be assigned to unique N-glycan and peptide identities.
Collapse
Affiliation(s)
- Bram Heijs
- Center for Proteomics and Metabolomics, Leiden University Medical Center , Leiden, The Netherlands
| | - Stephanie Holst
- Center for Proteomics and Metabolomics, Leiden University Medical Center , Leiden, The Netherlands
| | | | - Gabi W van Pelt
- Department of Surgery, Leiden University Medical Center , Leiden, The Netherlands
| | - Arnoud H de Ru
- Center for Proteomics and Metabolomics, Leiden University Medical Center , Leiden, The Netherlands
| | - Peter A van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center , Leiden, The Netherlands
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina , Charleston, South Carolina 29425, United States
| | - Anand S Mehta
- Department of Microbiology and Immunology, College of Medicine, Drexel University , Philadelphia, Pennsylvania 19129, United States
| | - Wilma E Mesker
- Department of Surgery, Leiden University Medical Center , Leiden, The Netherlands
| | - Rob A Tollenaar
- Department of Surgery, Leiden University Medical Center , Leiden, The Netherlands
| | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center , Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center , Leiden, The Netherlands
| | - Liam A McDonnell
- Center for Proteomics and Metabolomics, Leiden University Medical Center , Leiden, The Netherlands.,Department of Pathology, Leiden University Medical Center , Leiden, The Netherlands.,Fondazione Pisana per la Scienza ONLUS , Pisa, Italy
| |
Collapse
|
49
|
Serum Galectin-9 and Galectin-3-Binding Protein in Acute Dengue Virus Infection. Int J Mol Sci 2016; 17:ijms17060832. [PMID: 27240351 PMCID: PMC4926366 DOI: 10.3390/ijms17060832] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/15/2016] [Accepted: 05/20/2016] [Indexed: 11/20/2022] Open
Abstract
Dengue fever is a serious threat for public health and induces various inflammatory cytokines and mediators, including galectins and glycoproteins. Diverse immune responses and immunological pathways are induced in different phases of dengue fever progression. However, the status of serum galectins and glycoproteins is not fully determined. The aim of this study was to investigate the serum concentration and potential interaction of soluble galectin-1, galectin-3, galectin-9, galectin-3 binding protein (galectin-3BP), glycoprotein 130 (gp130), and E-, L-, and P-selectin in patients with dengue fever in acute febrile phase. In this study, 317 febrile patients (187 dengue patients, 150 non-dengue patients that included 48 patients with bacterial infection and 102 patients with other febrile illness) who presented to the emergency department and 20 healthy controls were enrolled. Our results showed the levels of galectin-9 and galectin-3BP were significantly higher in dengue patients than those in healthy controls. Lower serum levels of galectin-1, galectin-3, and E-, L-, and P-selectin in dengue patients were detected compared to bacteria-infected patients, but not to healthy controls. In addition, strong correlation between galectin-9 and galectin-3BP was observed in dengue patients. In summary, our study suggested galectin-9 and galectin-3BP might be critical inflammatory mediators in acute dengue virus infection.
Collapse
|
50
|
Sindrewicz P, Lian LY, Yu LG. Interaction of the Oncofetal Thomsen-Friedenreich Antigen with Galectins in Cancer Progression and Metastasis. Front Oncol 2016; 6:79. [PMID: 27066458 PMCID: PMC4814717 DOI: 10.3389/fonc.2016.00079] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/21/2016] [Indexed: 11/20/2022] Open
Abstract
Aberrant glycosylation of cell membrane proteins is a universal feature of cancer cells. One of the most common glycosylation changes in epithelial cancer is the increased occurrence of the oncofetal Thomsen–Friedenreich disaccharide Galβ1–3GalNAc (T or TF antigen), which appears in about 90% of cancers but is rarely seen in normal epithelium. Over the past few years, increasing evidence has revealed that the increased appearance of TF antigen on cancer cell surface plays an active role in promoting cancer progression and metastasis by interaction with the β-galactoside-binding proteins, galectins, which themselves are also frequently overexpressed in cancer and pre-cancerous conditions. This review summarizes the current understanding of the molecular mechanism of the increased TF occurrence in cancer, the structural nature, and biological impact of TF interaction with galectins, in particular galectin-1 and -3, on cancer progression and metastasis.
Collapse
Affiliation(s)
- Paulina Sindrewicz
- Gastroenterology Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool , Liverpool , UK
| | - Lu-Yun Lian
- NMR Centre for Structural Biology, Institute of Integrative Biology, University of Liverpool , Liverpool , UK
| | - Lu-Gang Yu
- Gastroenterology Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool , Liverpool , UK
| |
Collapse
|