1
|
Zhang Q, Wang X, Que J, He J, Peng C, Jiao Y, Zhao D, Liu D, Li H, Tang Z, Liu C, Liu M, Song K, Zhao D, Liu Y. Enhanced Stability and Luminescence Efficiency of CsPbBr 3 PQDs via In Situ Growth and SiO 2 Encapsulation in Surface-Functionalized Mesoporous Silica Nanospheres. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412581. [PMID: 40197767 DOI: 10.1002/smll.202412581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/11/2025] [Indexed: 04/10/2025]
Abstract
All-inorganic perovskite quantum dots (PQDs) have garnered significant attention for optoelectronic applications due to their high photoluminescence quantum yield (PLQY), narrow emission linewidths, and tunable bandgaps. However, their inherent instability under environmental conditions and susceptibility to surface defects limit their practical use. In this study, surface-functionalized mesoporous silica nanospheres (s-MSNs) are employed as substrates for the in situ nucleation and growth of CsPbBr3 PQDs within their open pores, achieving a high PQDs loading of up to 28.3%. To further enhance stability and fluorescence efficiency, the composites are encapsulated with an additional SiO2 shell via hydrolysis of a silicon precursor, forming CsPbBr3/s-MSNs@SiO2 core-shell nanostructures. The SiO2 shell not only effectively shields the PQDs from environmental factors-preventing degradation, leakage and aggregation-but also passivates surface defects and promotes efficient radiative recombination, leading to a significant improvement in luminescence efficiency. Consequently, the CsPbBr3/s-MSNs@SiO2 composites exhibit enhanced stability and achieve a high PLQY of 90.0%, enabling their sufficient use in anti-counterfeiting applications. This encapsulation strategy offers a promising route to improve the reliability, efficiency, and longevity of PQDs-based optoelectronic devices.
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiaoqian Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jiaqian Que
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jiazhen He
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Chong Peng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yanhui Jiao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Dafu Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Damin Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Hang Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Zisheng Tang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Chengqi Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Manrui Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Kang Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Dongyuan Zhao
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P.R. China
| | - Yong Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
2
|
Saxena J, Murali R, Roy A, Al-Kahtani AA, Soma VR, Raavi SSK, Sadhanala A. FRET-driven hybrid polymer-perovskite matrices for efficient pure-red emission. NANOSCALE 2025; 17:7753-7759. [PMID: 40059840 DOI: 10.1039/d4nr05253f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Achieving efficient pure-red emission in perovskite-based high-definition display applications remains challenging due to persistent spectral, thermodynamic, and operational instability. Although significant progress has been made using red-emitting quasi-2D perovskites, quantum dots, and mixed-halide perovskites, their performance under operational conditions often remains limited. Here, we address these challenges by embedding mixed-halide perovskite nanocrystals (PeNCs) into a polymer matrix to create a donor-acceptor architecture. This hybrid system stabilizes the nanocrystals and enables efficient energy transfer via Förster resonance energy transfer (FRET). We observe enhanced acceptor photoluminescence and reduced donor lifetimes, confirming the effective FRET-mediated energy transfer arising from optimal spectral overlap. With a FRET rate of 0.18 ps-1 and a FRET efficiency of 88.9%, our approach provides spectrally stable, enhanced pure-red emission. Moreover, it demonstrates a pathway for designing customized energy cascades, paving the way for next-generation optoelectronic devices with improved stability and performance.
Collapse
Affiliation(s)
- Jyoti Saxena
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru 560012, Karnataka, India.
| | - Rahul Murali
- Ultrafast Photophysics and Photonics Laboratory, Department of Physics, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - Avari Roy
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru 560012, Karnataka, India.
| | - Abdullah A Al-Kahtani
- King Saud University, College of Science, Chemistry Department, P. O. Box 2455, Riyadh-11451, Saudi Arabia
| | - Venugopal Rao Soma
- School of Physics, University of Hyderabad, Hyderabad 500046, Telangana, India
- DRDO Industry Academia - Centre of Excellence (DIA-CoE; formerly ACRHEM), University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Sai Santosh Kumar Raavi
- Ultrafast Photophysics and Photonics Laboratory, Department of Physics, Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - Aditya Sadhanala
- Centre for Nano Science and Engineering, Indian Institute of Science, Bengaluru 560012, Karnataka, India.
- King Saud University, College of Science, Chemistry Department, P. O. Box 2455, Riyadh-11451, Saudi Arabia
| |
Collapse
|
3
|
Ghasemi M, Lu J, Jia B, Wen X. Steady state and transient absorption spectroscopy in metal halide perovskites. Chem Soc Rev 2025; 54:1644-1683. [PMID: 39801268 DOI: 10.1039/d4cs00985a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Metal halide perovskites (MHPs) have emerged as the most promising materials due to superior optoelectronic properties and great applications spanning from photovoltaics to photonics. Absorption spectroscopy provides a broad and deep insight into the carrier dynamics of MHPs, and is a critical complement to fluorescence and scattering spectroscopy. However, absorption spectroscopy is often misunderstood or underestimated, being seen as UV-vis spectroscopy only, which can lead to various misinterpretations. In fact, absorption spectroscopy is one of the most important branches of spectroscopic techniques (others including fluorescence and scattering), which plays a critical role in understanding the electronic structure and optoelectrical dynamics of MHPs. In this tutorial, the basic principles of various types of absorption spectroscopy as well as their recent developments and applications in MHP materials and devices are summarized, covering comprehensive advances in steady state and transient absorption spectroscopy. Given the significance of absorption spectroscopy in directing the design of different optoelectronic applications of MHPs, this tutorial will comprehensively discuss absorption spectroscopy, covering wavelengths from optical to terahertz (THz) and microwave, and timescales from femtoseconds to hours, and it specifically focuses on time-dependent steady-state and transient absorption spectroscopy under light illumination bias to study MHP materials and devices, allowing researchers to select suitable characterization techniques.
Collapse
Affiliation(s)
- Mehri Ghasemi
- School of Science, RMIT University, Melbourne, 3000, Australia.
| | - Junlin Lu
- School of Science, RMIT University, Melbourne, 3000, Australia.
| | - Baohua Jia
- School of Science, RMIT University, Melbourne, 3000, Australia.
| | - Xiaoming Wen
- School of Science, RMIT University, Melbourne, 3000, Australia.
| |
Collapse
|
4
|
Sasongko NA, Jeong Y, Paramita SA, Heo J, Oh MH, Reyes-Lillo SE, Park M. Role of Size and Shape in Photoluminescence and Ultra-Low-Frequency Raman of Methylammonium Lead Iodide Perovskite Quantum Dots. J Phys Chem Lett 2025; 16:1522-1528. [PMID: 39899795 DOI: 10.1021/acs.jpclett.4c03612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
The photophysical properties of methylammonium lead iodide (MAPbI3) quantum dots (QDs) have not been systematically studied for size and shape dependence. Here, we synthesize MAPbI3 QDs using ligand-assisted reprecipitation, controlling the injection speed and reaction times to produce QDs with different sizes and shapes. Dropwise injection yields ∼5 nm spherical QDs, emitting photoluminescence (PL) at 2.06 eV. In contrast, swift injections yield larger (>10 nm) rectangular QDs with varying aspect ratios, supported by an infinite quantum well model. The PL lifetime of QDs increases with their size, and the size variation significantly influences the ultra-low-frequency Raman modes at 81, 107, and 127 cm-1, in contrast to what is observed in polymorphic MAPbI3 thin films. Our findings, supported by first-principles density functional theory, show that key PL and Raman properties are governed by the sizes and shapes of MAPbI3 QDs. This study contributes to the understanding of the optical behavior of these QDs, which is crucial for their potential applications and environmental implications.
Collapse
Affiliation(s)
| | - Yeonsu Jeong
- BB21 Plus Program, Department of Chemistry, Pukyong National University, Busan 48513, Republic of Korea
| | - Safira Arta Paramita
- BB21 Plus Program, Department of Chemistry, Pukyong National University, Busan 48513, Republic of Korea
| | - Jaeseong Heo
- BB21 Plus Program, Department of Chemistry, Pukyong National University, Busan 48513, Republic of Korea
| | - Myoung Hwan Oh
- Department of Energy Engineering, KENTECH Institute for Environmental and Climate Technology, Korea Institute of Energy Technology, Naju 58330, Republic of Korea
| | | | - Myeongkee Park
- BB21 Plus Program, Department of Chemistry, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
5
|
Cho S, Sree VG, Fulari AV, Park S, Mei M, Kim M, Jana A, Das D, Im H, Kyhm K, Taylor RA. Water-mediated optical and morphological tuning of highly stable orange-emitting Mn-doped perovskite for white light-emission. J Colloid Interface Sci 2024; 680:215-225. [PMID: 39504751 DOI: 10.1016/j.jcis.2024.10.193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/13/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024]
Abstract
The main challenges in the optical and morphological tuning of highly stable orange-emitting Mn-doped perovskite include achieving uniform dopant distribution, maintaining structural integrity under varying environmental conditions, and optimizing luminescent efficiency while minimizing non-radiative recombination pathways. This study presents a novel, one-step, water-induced ultrafast synthesis strategy for obtaining Mn-doped mixed-halide perovskites at room temperature. This technique offers morphological control by varying the amount of water-based precursor, allowing the tuning of resulting nanostructures to produce nanoplatelets, nanocubes, or nanowires. In the growth mechanism, Mn2+ dopants affect the crystal structure by promoting stable growth and uniform doping at higher concentrations, while water improves ion dispersion, reaction kinetics, and passivation, facilitating optimal crystal growth and the formation of desired nanostructure morphologies. The synthesized Mn:CsPbBr3-xClx NCs form a highly stable colloidal solution with approximately 100 % emission stability for up to one year under ambient conditions and retain 98.9 % of its photoluminescence after aging at 85 °C for 200 h. We also explore the PL mechanism in Mn:CsPbBr3-xClx NCs, where temperature-dependent PL analysis reveals energy transfer from CsPbBr3-xClx exciton states to Mn2+-doped levels, enhancing PL intensity, with both exciton and Mn2+ emissions exhibiting a blue shift as the temperature increased from 6 K to 300 K, attributed to lattice expansion and electron-phonon interactions. A warm white light emission is achieved with excellent stability and an exceptionally wide color gamut coverage. The proposed strategy has the potential to enable large-scale synthesis and fabrication of highly stable perovskite devices for high-quality display and lighting applications.
Collapse
Affiliation(s)
- Sangeun Cho
- Division of System Semiconductor, College of AI Convergence, Dongguk University, Seoul 04620, South Korea.
| | | | - Akash V Fulari
- Division of System Semiconductor, College of AI Convergence, Dongguk University, Seoul 04620, South Korea
| | - Sanghyuk Park
- Department of Opto-mechatronics Engineering, Pusan National University, Busan 46241, South Korea; Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | - Ming Mei
- Department of Opto-mechatronics Engineering, Pusan National University, Busan 46241, South Korea
| | - Minju Kim
- Department of Opto-mechatronics Engineering, Pusan National University, Busan 46241, South Korea
| | - Atanu Jana
- Division of System Semiconductor, College of AI Convergence, Dongguk University, Seoul 04620, South Korea
| | - Deblina Das
- Division of System Semiconductor, College of AI Convergence, Dongguk University, Seoul 04620, South Korea
| | - Hyunsik Im
- Division of System Semiconductor, College of AI Convergence, Dongguk University, Seoul 04620, South Korea
| | - Kwangseuk Kyhm
- Department of Opto-mechatronics Engineering, Pusan National University, Busan 46241, South Korea.
| | - Robert A Taylor
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| |
Collapse
|
6
|
Jiang J, Shi M, Xia Z, Cheng Y, Chu Z, Zhang W, Li J, Yin Z, You J, Zhang X. Efficient pure-red perovskite light-emitting diodes with strong passivation via ultrasmall-sized molecules. SCIENCE ADVANCES 2024; 10:eadn5683. [PMID: 38701203 PMCID: PMC11067999 DOI: 10.1126/sciadv.adn5683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/02/2024] [Indexed: 05/05/2024]
Abstract
Perovskite light-emitting diodes (PeLEDs) have attracted great attention in recent years; however, the halogen vacancy defects in perovskite notably hamper the development of high-efficiency devices. Previously, large-sized passivation agents have been usually used, while the effect of defect passivation is limited due to the weak bonding or the large space steric hindrance. Here, we predict that the ultrasmall-sized formate (Fa) and acetate (Ac) have more efficient passivation ability because of the stronger binding with the perovskite, as demonstrated by density functional theory calculation. We introduce ultrasmall-sized cesium salts (CsFa/CsAc) into buried interface, which can also diffuse into the bulk, resulting in both buried interface and bulk passivation. In addition, the improved perovskite growth has been found due to the enhanced hydrophily after introducing CsFa/CsAc as additive. According to these advantages, a pure-red PeLED with 24.2% efficiency at 639 nm has been achieved.
Collapse
Affiliation(s)
- Ji Jiang
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Mingming Shi
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhengchang Xia
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yong Cheng
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zema Chu
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wei Zhang
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
| | - Jingzhen Li
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhigang Yin
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jingbi You
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xingwang Zhang
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
7
|
Chang S, Koo JH, Yoo J, Kim MS, Choi MK, Kim DH, Song YM. Flexible and Stretchable Light-Emitting Diodes and Photodetectors for Human-Centric Optoelectronics. Chem Rev 2024; 124:768-859. [PMID: 38241488 DOI: 10.1021/acs.chemrev.3c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Optoelectronic devices with unconventional form factors, such as flexible and stretchable light-emitting or photoresponsive devices, are core elements for the next-generation human-centric optoelectronics. For instance, these deformable devices can be utilized as closely fitted wearable sensors to acquire precise biosignals that are subsequently uploaded to the cloud for immediate examination and diagnosis, and also can be used for vision systems for human-interactive robotics. Their inception was propelled by breakthroughs in novel optoelectronic material technologies and device blueprinting methodologies, endowing flexibility and mechanical resilience to conventional rigid optoelectronic devices. This paper reviews the advancements in such soft optoelectronic device technologies, honing in on various materials, manufacturing techniques, and device design strategies. We will first highlight the general approaches for flexible and stretchable device fabrication, including the appropriate material selection for the substrate, electrodes, and insulation layers. We will then focus on the materials for flexible and stretchable light-emitting diodes, their device integration strategies, and representative application examples. Next, we will move on to the materials for flexible and stretchable photodetectors, highlighting the state-of-the-art materials and device fabrication methods, followed by their representative application examples. At the end, a brief summary will be given, and the potential challenges for further development of functional devices will be discussed as a conclusion.
Collapse
Affiliation(s)
- Sehui Chang
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Ja Hoon Koo
- Department of Semiconductor Systems Engineering, Sejong University, Seoul 05006, Republic of Korea
- Institute of Semiconductor and System IC, Sejong University, Seoul 05006, Republic of Korea
| | - Jisu Yoo
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Min Seok Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Moon Kee Choi
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Graduate School of Semiconductor Materials and Devices Engineering, Center for Future Semiconductor Technology (FUST), UNIST, Ulsan 44919, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University (SNU), Seoul 08826, Republic of Korea
- Department of Materials Science and Engineering, SNU, Seoul 08826, Republic of Korea
- Interdisciplinary Program for Bioengineering, SNU, Seoul 08826, Republic of Korea
| | - Young Min Song
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Artificial Intelligence (AI) Graduate School, GIST, Gwangju 61005, Republic of Korea
| |
Collapse
|
8
|
Zhang J, Cai B, Zhou X, Yuan F, Yin C, Wang H, Chen H, Ji X, Liang X, Shen C, Wang Y, Ma Z, Qing J, Shi Z, Hu Z, Hou L, Zeng H, Bai S, Gao F. Ligand-Induced Cation-π Interactions Enable High-Efficiency, Bright, and Spectrally Stable Rec. 2020 Pure-Red Perovskite Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303938. [PMID: 37464982 DOI: 10.1002/adma.202303938] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023]
Abstract
Achieving high-performance perovskite light-emitting diodes (PeLEDs) with pure-red electroluminescence for practical applications remains a critical challenge because of the problematic luminescence property and spectral instability of existing emitters. Herein, high-efficiency Rec. 2020 pure-red PeLEDs, simultaneously exhibiting exceptional brightness and spectral stability, based on CsPb(Br/I)3 perovskite nanocrystals (NCs) capping with aromatic amino acid ligands featuring cation-π interactions, are reported. It is proven that strong cation-π interactions between the PbI6 -octahedra of perovskite units and the electron-rich indole ring of tryptophan (TRP) molecules not only chemically polish the imperfect surface sites, but also markedly increase the binding affinity of the ligand molecules, leading to high photoluminescence quantum yields and greatly enhanced spectral stability of the CsPb(Br/I)3 NCs. Moreover, the incorporation of small-size aromatic TRP ligands ensures superior charge-transport properties of the assembled emissive layers. The resultant devices emitting at around 635 nm demonstrate a champion external quantum efficiency of 22.8%, a max luminance of 12 910 cd m-2 , and outstanding spectral stability, representing one of the best-performing Rec. 2020 pure-red PeLEDs achieved so far.
Collapse
Affiliation(s)
- Jibin Zhang
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Bo Cai
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, 210094, Nanjing, China
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, China
| | - Xin Zhou
- Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Siyuan Laboratory, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Physics, Jinan University, Guangzhou, 510632, China
| | - Fanglong Yuan
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Chunyang Yin
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Heyong Wang
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Hongting Chen
- Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Siyuan Laboratory, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Physics, Jinan University, Guangzhou, 510632, China
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, 210094, Nanjing, China
| | - Xinzhen Ji
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Xiangfei Liang
- Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Siyuan Laboratory, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Physics, Jinan University, Guangzhou, 510632, China
| | - Chao Shen
- Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Siyuan Laboratory, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Physics, Jinan University, Guangzhou, 510632, China
| | - Yu Wang
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Zhuangzhuang Ma
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Jian Qing
- Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Siyuan Laboratory, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Physics, Jinan University, Guangzhou, 510632, China
| | - Zhifeng Shi
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou, 450052, China
| | - Zhangjun Hu
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Lintao Hou
- Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Siyuan Laboratory, Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Department of Physics, Jinan University, Guangzhou, 510632, China
| | - Haibo Zeng
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology, 210094, Nanjing, China
| | - Sai Bai
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Feng Gao
- Department of Physics, Chemistry, and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| |
Collapse
|
9
|
Crawford ML, Sadighian JC, Hassan Y, Sadhanala A, Nawab L, Wong CY. Formation of Iodide-Rich Domains During Halide Segregation in Lead-Halide Perovskite Nanocrystals. J Phys Chem Lett 2023; 14:8962-8969. [PMID: 37772502 DOI: 10.1021/acs.jpclett.3c02068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Mixed iodide-bromide methylammonium lead perovskite (MAPbIxBr3-x) nanocrystals (NCs) hold promise for use in light-emitting applications owing to the size- and composition-tunability of their bandgap. However, the segregation of halides during light exposure causes their band gaps to become unstable and narrow. Here, we use transient absorption spectroscopy to track excited-state dynamics during photoinduced halide segregation. The Auger recombination dynamics are observed to accelerate as the bandgap narrows, suggesting enhanced electron-hole overlap. We simulate the motion of iodide within the NC and estimate the evolving bandgap and electron-hole overlap during two possible mechanisms of halide segregation. Our results support a segregation mechanism in which iodide anions form a domain within the NC, rather than a mechanism in which iodide anions independently segregate toward the NC surface. Such mechanistic insight will contribute to future NC bandgap stabilization strategies.
Collapse
Affiliation(s)
- Michael L Crawford
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| | - James C Sadighian
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| | - Yasser Hassan
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, PO Box: 2713, Doha, Qatar
| | - Aditya Sadhanala
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Laila Nawab
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| | - Cathy Y Wong
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
- Oregon Center for Optical, Molecular, and Quantum Science, University of Oregon, Eugene, Oregon 97405, United States
- Materials Science Institute, University of Oregon, Eugene, Oregon 97405, United States
| |
Collapse
|
10
|
Dai L, Ye J, Greenham NC. Thermalization and relaxation mediated by phonon management in tin-lead perovskites. LIGHT, SCIENCE & APPLICATIONS 2023; 12:208. [PMID: 37648717 PMCID: PMC10468496 DOI: 10.1038/s41377-023-01236-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/04/2023] [Accepted: 07/14/2023] [Indexed: 09/01/2023]
Abstract
Understanding and control of ultrafast non-equilibrium processes in semiconductors is key to making use of the full photon energy before relaxation, leading to new ways to break efficiency limits for solar energy conversion. In this work, we demonstrate the observation and modulation of slow relaxation in uniformly mixed tin-lead perovskites (MASnxPb1-xI3 and CsSnxPb1-xI3 nanocrystals). Transient absorption measurements reveal that slow cooling mediated by a hot phonon bottleneck effect appears at carrier densities above ~1018 cm-3 for tin-lead alloy nanocrystals, and tin addition is found to give rise to suppressed cooling. Within the alloy nanoparticles, the combination of a newly introduced high-energy band, screened Fröhlich interaction, suppressed Klemens decay and reduced thermal conductivity (acoustic phonon transport) with increased tin content contributes to the slowed relaxation. For inorganic nanocrystals where defect states couple strongly with carriers, sodium doping has been confirmed to benefit in maintaining hot carriers by decoupling them from deep defects, leading to a decreased energy-loss rate during thermalization and an enhanced hot phonon bottleneck effect. The slow cooling we observe uncovers the intrinsic photophysics of perovskite nanocrystals, with implications for photovoltaic applications where suppressed cooling could lead to hot-carrier solar cells.
Collapse
Affiliation(s)
- Linjie Dai
- Cavendish Laboratory, University of Cambridge, 19 J. J. Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Junzhi Ye
- Cavendish Laboratory, University of Cambridge, 19 J. J. Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Neil C Greenham
- Cavendish Laboratory, University of Cambridge, 19 J. J. Thomson Avenue, Cambridge, CB3 0HE, UK.
| |
Collapse
|
11
|
Yang JN, Wang JJ, Yin YC, Yao HB. Mitigating halide ion migration by resurfacing lead halide perovskite nanocrystals for stable light-emitting diodes. Chem Soc Rev 2023; 52:5516-5540. [PMID: 37482807 DOI: 10.1039/d3cs00179b] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Lead halide perovskite nanocrystals are promising for next-generation high-definition displays, especially in light of their tunable bandgaps, high color purities, and high carrier mobility. Within the past few years, the external quantum efficiency of perovskite nanocrystal-based light-emitting diodes has progressed rapidly, reaching the standard for commercial applications. However, the low operational stability of these perovskite nanocrystal-based light-emitting diodes remains a crucial issue for their industrial development. Recent experimental evidence indicates that the migration of ionic species is the primary factor giving rise to the performance degradation of perovskite nanocrystal-based light-emitting diodes, and ion migration is closely related to the defects on the surface of perovskite nanocrystals and at the grain boundaries of their thin films. In this review, we focus on the central idea of surface reconstruction of perovskite nanocrystals, discuss the influence of surface defects on halide ion migration, and summarize recent advances in resurfacing perovskite nanocrystal strategies toward mitigating halide ion migration to improve the stability of the as-fabricated light-emitting diode devices. From the perspective of perovskite nanocrystal resurfacing, we set out a promising research direction for improving both the spectral and operational stability of perovskite nanocrystal-based light-emitting diodes.
Collapse
Affiliation(s)
- Jun-Nan Yang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230088, China.
- Department of Applied Chemistry, Hefei Science Center of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jing-Jing Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230088, China.
- Department of Applied Chemistry, Hefei Science Center of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yi-Chen Yin
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230088, China.
- Department of Applied Chemistry, Hefei Science Center of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hong-Bin Yao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230088, China.
- Department of Applied Chemistry, Hefei Science Center of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
12
|
Zhang Y, Hou G, Wu Y, Chen M, Dai Y, Liu S, Zhao Q, Lin H, Fang J, Jing C, Chu J. Surface Reconstruction of CsPbBr 3 Nanocrystals by the Ligand Engineering Approach for Achieving High Quantum Yield and Improved Stability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6222-6230. [PMID: 37079335 DOI: 10.1021/acs.langmuir.3c00393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Oleylamine/oleic acid (OAm/OA) as the commonly used ligand is indispensable in the synthesis of perovskite nanocrystals (PNCs). Unfortunately, poor colloidal stability and unsatisfactory photoluminescence quantum yield (PLQY) are observed, resulting from a highly dynamic binding nature between ligands. Herein, we adopt a facile hybrid ligand (DDAB/ZnBr2) passivation strategy to reconstruct the surface chemistry of CsPbBr3 NCs. The hybrid ligand can detach the native surface ligand, in which the acid-base reactions between ligands are suppressed effectively. Also, they can substitute the loose capping ligand, anchor to the surface firmly, and supply sufficient halogens to passivate the surface trap, realizing an exceptional PLQY of 95% and an enhanced tolerance toward ambient storage, UV irradiation, anti-solvents, and thermal treatment. Besides, the as-fabricated white light-emitting diode (WLED) utilizing the PNCs as the green-emitting phosphor has a luminous efficiency around 73 lm/W; the color gamut covers 125% of the NTSC standard.
Collapse
Affiliation(s)
- Yu Zhang
- Engineering Research Center for Nanophotonics & Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| | - Guangning Hou
- Engineering Research Center for Nanophotonics & Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| | - Yong Wu
- Engineering Research Center for Nanophotonics & Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| | - Maosheng Chen
- Engineering Research Center for Nanophotonics & Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| | - Yannan Dai
- Engineering Research Center for Nanophotonics & Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| | - Shaohua Liu
- Engineering Research Center for Nanophotonics & Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| | - Qingbiao Zhao
- Engineering Research Center for Nanophotonics & Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| | - Hechun Lin
- Engineering Research Center for Nanophotonics & Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| | - Junfeng Fang
- Engineering Research Center for Nanophotonics & Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| | - Chengbin Jing
- Engineering Research Center for Nanophotonics & Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| | - Junhao Chu
- Engineering Research Center for Nanophotonics & Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, PR China
| |
Collapse
|
13
|
Li H, Ding C, Liu D, Yajima S, Takahashi K, Hayase S, Shen Q. Efficient Charge Transfer in MAPbI 3 QDs/TiO 2 Heterojunctions for High-Performance Solar Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1292. [PMID: 37049385 PMCID: PMC10096805 DOI: 10.3390/nano13071292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Methylammonium lead iodide (MAPbI3) perovskite quantum dots (QDs) have become one of the most promising materials for optoelectronics. Understanding the dynamics of the charge transfer from MAPbI3 QDs to the charge transport layer (CTL) is critical for improving the performance of MAPbI3 QD photoelectronic devices. However, there is currently less consensus on this. In this study, we used an ultrafast transient absorption (TA) technique to investigate the dynamics of charge transfer from MAPbI3 QDs to CTL titanium dioxide (TiO2), elucidating the dependence of these kinetics on QD size with an injection rate from 1.6 × 1010 to 4.3 × 1010 s-1. A QD solar cell based on MAPbI3/TiO2 junctions with a high-power conversion efficiency (PCE) of 11.03% was fabricated, indicating its great potential for application in high-performance solar cells.
Collapse
Affiliation(s)
- Hua Li
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Chao Ding
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, China
| | - Dong Liu
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Shota Yajima
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Kei Takahashi
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Shuzi Hayase
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Qing Shen
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| |
Collapse
|
14
|
Rivera Medina MJ, Di Mario L, Kahmann S, Xi J, Portale G, Bongiovanni G, Mura A, Alonso Huitrón JC, Loi MA. Tuning the energy transfer in Ruddlesden-Popper perovskites phases through isopropylammonium addition - towards efficient blue emitters. NANOSCALE 2023; 15:6673-6685. [PMID: 36929178 DOI: 10.1039/d3nr00087g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Here we demonstrate blue LEDs with a peak wavelength of 481 nm, with outstanding colour purity of up to 88% (CIE coordinates (0.1092, 0.1738)), an external quantum yield of 5.2% and a luminance of 8260 cd m-2. These devices are based on quasi-2D PEA2(Cs0.75MA0.25)Pb2Br7, which is cast from solutions containing isopropylammonium (iPAm). iPAm as additive assist in supressing the formation of bulk-like phases, as pointed out by both photophysical and structural characterization. Additionally, the study of the excitation dynamics demonstrates a hindering of the energy transfer to domains of lower energy that generally undermines the performance and emission characteristics of blue-emitting LEDs based on quasi-2D perovskites. The achieved narrow distribution of quantum well sizes and the hindered energy transfer result in a thin film photoluminescence quantum yield exceeding 60%. Our work demonstrates the great potential to tailor the composition and the structure of thin films based on Ruddlesden-Popper phases to boost performance of optoelectronic devices - specifically blue perovskite LEDs.
Collapse
Affiliation(s)
- Martha Judith Rivera Medina
- Photophysics & Optoelectronics group, Zernike Institute of Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
- Departamento de Materia Condensada y Criogenia. Instituto de Investigaciones en Materiales. Universidad Nacional Autónoma de México. Ciudad Universitaria, A.P. 70-360, Coyoacán, 04510, Mexico City, Mexico
| | - Lorenzo Di Mario
- Photophysics & Optoelectronics group, Zernike Institute of Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| | - Simon Kahmann
- Photophysics & Optoelectronics group, Zernike Institute of Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| | - Jun Xi
- Photophysics & Optoelectronics group, Zernike Institute of Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| | - Giuseppe Portale
- Macromolecular Chemistry and New Polymeric Material, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Giovanni Bongiovanni
- Dipartimento di Fisica, Università degli Studi di Cagliari, cittadella universitaria 09040, Monserrato, Cagliari, Italy
| | - Andrea Mura
- Dipartimento di Fisica, Università degli Studi di Cagliari, cittadella universitaria 09040, Monserrato, Cagliari, Italy
| | - Juan Carlos Alonso Huitrón
- Departamento de Materia Condensada y Criogenia. Instituto de Investigaciones en Materiales. Universidad Nacional Autónoma de México. Ciudad Universitaria, A.P. 70-360, Coyoacán, 04510, Mexico City, Mexico
| | - Maria Antonietta Loi
- Photophysics & Optoelectronics group, Zernike Institute of Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
15
|
Liang S, Biesold GM, Zhuang M, Kang Z, Wagner B, Lin Z. Continuous manufacturing of highly stable lead halide perovskite nanocrystals via a dual-reactor strategy. NANOSCALE ADVANCES 2023; 5:2038-2044. [PMID: 36998667 PMCID: PMC10044306 DOI: 10.1039/d2na00744d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/22/2023] [Indexed: 06/19/2023]
Abstract
Lead halide perovskite nanocrystals possess incredible potential as next generation emitters due to their stellar set of optoelectronic properties. Unfortunately, their instability towards many ambient conditions and reliance on batch processing hinder their widespread utilities. Herein, we address both challenges by continuously synthesizing highly stable perovskite nanocrystals via integrating star-like block copolymer nanoreactors into a house-built flow reactor. Perovskite nanocrystals manufactured in this strategy display significantly enhanced colloidal, UV, and thermal stabilities over those synthesized with conventional ligands. Such scaling up of highly stable perovskite nanocrystals represents an important step towards their eventual use in many practical applications in optoelectronic materials and devices.
Collapse
Affiliation(s)
- Shuang Liang
- School of Materials Science and Engineering, Georgia Institute of Technology Atlanta 30332 GA USA
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology Atlanta 30332 Georgia USA
| | - Gill M Biesold
- School of Materials Science and Engineering, Georgia Institute of Technology Atlanta 30332 GA USA
| | - Mingyue Zhuang
- School of Materials Science and Engineering, Georgia Institute of Technology Atlanta 30332 GA USA
- Department of Chemical and Biomolecular Engineering, National University of Singapore Singapore 117585 Singapore
| | - Zhitao Kang
- Georgia Tech Research Institute, Georgia Institute of Technology Atlanta 30332 Georgia USA
| | - Brent Wagner
- Georgia Tech Research Institute, Georgia Institute of Technology Atlanta 30332 Georgia USA
| | - Zhiqun Lin
- School of Materials Science and Engineering, Georgia Institute of Technology Atlanta 30332 GA USA
- Department of Chemical and Biomolecular Engineering, National University of Singapore Singapore 117585 Singapore
| |
Collapse
|
16
|
Leonard AA, Diroll BT, Flanders NC, Panuganti S, Brumberg A, Kirschner MS, Cuthriell SA, Harvey SM, Watkins NE, Yu J, Wasielewski MR, Kanatzidis MG, Dichtel WR, Zhang X, Chen LX, Schaller RD. Light-Induced Transient Lattice Dynamics and Metastable Phase Transition in CH 3NH 3PbI 3 Nanocrystals. ACS NANO 2023; 17:5306-5315. [PMID: 36916650 DOI: 10.1021/acsnano.2c06950] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Methylammonium lead iodide (MAPbI3) perovskite nanocrystals (NCs) offer desirable optoelectronic properties with prospective utility in photovoltaics, lasers, and light-emitting diodes (LEDs). Structural rearrangements of MAPbI3 in response to photoexcitation, such as lattice distortions and phase transitions, are of particular interest, as these engender long carrier lifetime and bolster carrier diffusion. Here, we use variable temperature X-ray diffraction (XRD) and synchrotron-based transient X-ray diffraction (TRXRD) to investigate lattice response following ultrafast optical excitation. MAPbI3 NCs are found to slowly undergo a phase transition from the tetragonal to a pseudocubic phase over the course of 1 ns under 0.02-4.18 mJ/cm2 fluence photoexcitation, with apparent nonthermal lattice distortions attributed to polaron formation. Lattice recovery exceeds time scales expected for both carrier recombination and thermal dissipation, indicating meta-stability likely due to the proximal phase transition, with symmetry-breaking along equatorial and axial directions. These findings are relevant for fundamental understanding and applications of structure-function properties.
Collapse
Affiliation(s)
- Ariel A Leonard
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Benjamin T Diroll
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Nathan C Flanders
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Shobhana Panuganti
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Alexandra Brumberg
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Matthew S Kirschner
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Shelby A Cuthriell
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Samantha M Harvey
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Nicolas E Watkins
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jin Yu
- X-ray Sciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208, United States
| | - Mercouri G Kanatzidis
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - William R Dichtel
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Xiaoyi Zhang
- X-ray Sciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Lin X Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Richard D Schaller
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
- Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
17
|
Shim HC, Kim J, Park SY, Kim BS, Jang B, Lee HJ, Kim A, Hyun S, Kim JH. Full-color micro-LED display with photo-patternable and highly ambient-stable perovskite quantum dot/siloxane composite as color conversion layers. Sci Rep 2023; 13:4836. [PMID: 36964232 PMCID: PMC10039071 DOI: 10.1038/s41598-023-31945-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/20/2023] [Indexed: 03/26/2023] Open
Abstract
In this paper, we successfully fabricated color conversion layers (CCLs) for full-color-mico-LED display using a perovskite quantum dot (PQD)/siloxane composite by ligand exchanged PQD with silane composite followed by surface activation by an addition of halide-anion containing salt. Due to this surface activation, it was possible to construct the PQD surface with a silane ligand using a non-polar organic solvent that does not damage the PQD. As a result, the ligand-exchanged PQD with a silane compound exhibited high dispersibility in the siloxane matrix and excellent atmospheric stability due to sol-gel condensation. Based on highly ambient stable PQD/siloxane composite based CCLs, full-color micro-LED display has a 1 mm pixel pitch, about 25.4 pixels per inch (PPI) resolution was achieved. In addition, due to the thin thickness of the black matrix to prevent blue light interference, the possibility of a flexible display that can be operated without damage even with a bending radius of 5 mm was demonstrated.
Collapse
Affiliation(s)
- Hyung Cheoul Shim
- Department of Nano-Mechanics, Korea Institute of Machinery & Materials (KIMM), 156, Gajeongbuk-ro, Yuseong-gu, Daejeon, 34103, Republic of Korea.
- Department of Nanomechatronics, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| | - Juho Kim
- Department of Nano-Mechanics, Korea Institute of Machinery & Materials (KIMM), 156, Gajeongbuk-ro, Yuseong-gu, Daejeon, 34103, Republic of Korea
| | - So Yeon Park
- Department of Nano-Mechanics, Korea Institute of Machinery & Materials (KIMM), 156, Gajeongbuk-ro, Yuseong-gu, Daejeon, 34103, Republic of Korea
| | - Bong Sung Kim
- Department of Nano-Mechanics, Korea Institute of Machinery & Materials (KIMM), 156, Gajeongbuk-ro, Yuseong-gu, Daejeon, 34103, Republic of Korea
| | - Bongkyun Jang
- Department of Nano-Mechanics, Korea Institute of Machinery & Materials (KIMM), 156, Gajeongbuk-ro, Yuseong-gu, Daejeon, 34103, Republic of Korea
- Department of Nanomechatronics, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Hak-Joo Lee
- Department of Nano-Mechanics, Korea Institute of Machinery & Materials (KIMM), 156, Gajeongbuk-ro, Yuseong-gu, Daejeon, 34103, Republic of Korea
- Center for Advanced Meta-Materials (CAMM), 156 Gajeongbuk-Ro, Yuseong-gu, Daejeon, 34103, Republic of Korea
| | - Areum Kim
- Department of Nano-Mechanics, Korea Institute of Machinery & Materials (KIMM), 156, Gajeongbuk-ro, Yuseong-gu, Daejeon, 34103, Republic of Korea
| | - Seungmin Hyun
- Department of Nano-Mechanics, Korea Institute of Machinery & Materials (KIMM), 156, Gajeongbuk-ro, Yuseong-gu, Daejeon, 34103, Republic of Korea
- Department of Nanomechatronics, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Jae-Hyun Kim
- Department of Nano-Mechanics, Korea Institute of Machinery & Materials (KIMM), 156, Gajeongbuk-ro, Yuseong-gu, Daejeon, 34103, Republic of Korea.
- Department of Nanomechatronics, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
18
|
Ginterseder M, Sun W, Shcherbakov-Wu W, McIsaac AR, Berkinsky DB, Kaplan AEK, Wang L, Krajewska C, Šverko T, Perkinson CF, Utzat H, Tisdale WA, Van Voorhis T, Bawendi MG. Lead Halide Perovskite Nanocrystals with Low Inhomogeneous Broadening and High Coherent Fraction through Dicationic Ligand Engineering. NANO LETTERS 2023; 23:1128-1134. [PMID: 36780509 DOI: 10.1021/acs.nanolett.2c03354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Lead halide perovskite nanocrystals (LHP NCs) are an emerging materials system with broad potential applications, including as emitters of quantum light. We apply design principles aimed at the structural optimization of surface ligand species for CsPbBr3 NCs, leading us to the study of LHP NCs with dicationic quaternary ammonium bromide ligands. Through the selection of linking groups and aliphatic backbones guided by experiments and computational support, we demonstrate consistently narrow photoluminescence line shapes with a full-width-at-half-maximum below 70 meV. We observe bulk-like Stokes shifts throughout our range of particle sizes, from 7 to 16 nm. At cryogenic temperatures, we find sub-200 ps lifetimes, significant photon coherence, and the fraction of photons emitted into the coherent channel increasing markedly to 86%. A 4-fold reduction in inhomogeneous broadening from previous work paves the way for the integration of LHP NC emitters into nanophotonic architectures to enable advanced quantum optical investigation.
Collapse
Affiliation(s)
- Matthias Ginterseder
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Weiwei Sun
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Wenbi Shcherbakov-Wu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alexandra R McIsaac
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - David B Berkinsky
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alexander E K Kaplan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Lili Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Chantalle Krajewska
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Tara Šverko
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Collin F Perkinson
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hendrik Utzat
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - William A Tisdale
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Troy Van Voorhis
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Moungi G Bawendi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
19
|
Scalon L, Freitas FS, Marques FDC, Nogueira AF. Tiny spots to light the future: advances in synthesis, properties, and application of perovskite nanocrystals in solar cells. NANOSCALE 2023; 15:907-941. [PMID: 36629010 DOI: 10.1039/d2nr05043a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Perovskites are in the hotspot of material science and technology. Outstanding properties have been discovered, fundamental mechanisms of defect formation and degradation elucidated, and applications in a wide variety of optoelectronic devices demonstrated. Advances through adjusting the bulk-perovskite composition, as well as the integration of layered and nanostructured perovskites in the devices, allowed improvement in performance and stability. Recently, efforts have been devoted to investigating the effects of quantum confinement in perovskite nanocrystals (PNCs) aiming to fabricate optoelectronic devices based solely on these nanoparticles. In general, the applications are focused on light-emitting diodes, especially because of the high color purity and high fluorescence quantum yield obtained in PNCs. Likewise, they present important characteristics featured for photovoltaic applications, highlighting the possibility of stabilizing photoactive phases that are unstable in their bulk analog, the fine control of the bandgap through size change, low defect density, and compatibility with large-scale deposition techniques. Despite the progress made in the last years towards the improvement in the performance and stability of PNCs-based solar cells, their efficiency is still much lower than that obtained with bulk perovskite, and discussions about upscaling of this technology are scarce. In light of this, we address in this review recent routes towards efficiency improvement and the up-scaling of PNC solar cells, emphasizing synthesis management and strategies for solar cell fabrication.
Collapse
Affiliation(s)
- Lucas Scalon
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil.
| | - Flavio Santos Freitas
- Centro Federal de Educação Tecnológica de Minas Gerais, Minas Gerais 30421-169, Brazil
| | | | - Ana Flávia Nogueira
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil.
| |
Collapse
|
20
|
Wang LX, Xiang J, Xiang D, Cheng SC, Leung CF, Ko CC, Xiang J. Multifunctional Luminescent Sensor Based on the Pb 2+ Complex Containing a Tetrazolato Ligand. Inorg Chem 2022; 61:16831-16840. [PMID: 36228087 DOI: 10.1021/acs.inorgchem.2c02783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of luminescent Pb2+ complexes, [Pb(L1)2]n (1), [Pb(L2)2]n (2), [Pb(L3)(NO3)(H2O)2]n (3), [Pb(L3)(Br)(H2O)]n (4), [Pb(L3)(Cl)(H2O)]n (5), and [Pb(L4)(H2O)2] (6) have been synthesized by treatment of polydentate tetrazolato ligands with various hydrated Pb2+ salts (HL1 = 2-(1H-tetrazol-5-yl)pyridine, HL2 = 3-(1H-tetrazol-5-yl)isoquinoline, HL3 = 6-(1H-tetrazol-5-yl)-2,2'-bipyridine, and H2L4 = 6,6'-bis(1H-tetrazol-5-yl)-2,2'-bipyridine). These complexes have been characterized by IR, TGA, and elemental analysis. Their crystal structures have been determined by X-ray crystallography, and the phase purity of bulk samples were further confirmed by PXRD. Their luminescence properties have been investigated in detail, and their emission origin may involve ligand-centered π-π* transition, metal-centered s-p transition and charge-transfer character. It is interesting to note that 5 exhibits obviously enhanced red-shifted emission, whose photoluminescence quantum yield (PLQY = 16.5%) is much higher than the other compounds (≤2%). Most importantly, the emission property of 5 was strongly affected by temperature. When the temperature rises from 295 to 493 K, the emission maximum gradually shifts to high energy due to the loss of the aqua ligand. In contrast, when the temperature is lowered from 295 to 13 K, two emission bands were observed. The low-energy emission band exhibits a slight blue shift, while a new high-energy emission band appears at around 520 nm, which is assigned to ligand-centered phosphorescence. After removal of the coordinated aqua ligand, the emission of 5-H2O is very sensitive to the vapors of volatile primary amines and acids, although they have different response mechanisms. This result indicates that 5-H2O may be a potential multifunctional sensor for temperature, volatile amines, and acids. To decipher the emission origin, DFT calculations have also been carried out based on the structure units of these compounds.
Collapse
Affiliation(s)
- Li-Xin Wang
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434020 Hubei, P. R. China
| | - Jing Xiang
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434020 Hubei, P. R. China
| | - Dong Xiang
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434020 Hubei, P. R. China
| | - Shun-Cheung Cheng
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, 999077 Hong Kong, China
| | - Chi-Fai Leung
- Department of Science and Environmental Studies, The Education University of Hong Kong, 999077 Hong Kong, China
| | - Chi-Chiu Ko
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, 999077 Hong Kong, China
| | - Jing Xiang
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, 434020 Hubei, P. R. China
| |
Collapse
|
21
|
Ye J, Li Z, Kubicki DJ, Zhang Y, Dai L, Otero-Martínez C, Reus MA, Arul R, Dudipala KR, Andaji-Garmaroudi Z, Huang YT, Li Z, Chen Z, Müller-Buschbaum P, Yip HL, Stranks SD, Grey CP, Baumberg JJ, Greenham NC, Polavarapu L, Rao A, Hoye RLZ. Elucidating the Role of Antisolvents on the Surface Chemistry and Optoelectronic Properties of CsPbBr xI 3-x Perovskite Nanocrystals. J Am Chem Soc 2022; 144:12102-12115. [PMID: 35759794 PMCID: PMC9284547 DOI: 10.1021/jacs.2c02631] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Colloidal lead-halide perovskite nanocrystals (LHP NCs) have emerged over the past decade as leading candidates for efficient next-generation optoelectronic devices, but their properties and performance critically depend on how they are purified. While antisolvents are widely used for purification, a detailed understanding of how the polarity of the antisolvent influences the surface chemistry and composition of the NCs is missing in the field. Here, we fill this knowledge gap by studying the surface chemistry of purified CsPbBrxI3-x NCs as the model system, which in itself is considered a promising candidate for pure-red light-emitting diodes and top-cells for tandem photovoltaics. Interestingly, we find that as the polarity of the antisolvent increases (from methyl acetate to acetone to butanol), there is a blueshift in the photoluminescence (PL) peak of the NCs along with a decrease in PL quantum yield (PLQY). Through transmission electron microscopy and X-ray photoemission spectroscopy measurements, we find that these changes in PL properties arise from antisolvent-induced iodide removal, which leads to a change in halide composition and, thus, the bandgap. Using detailed nuclear magnetic resonance (NMR) and Fourier-transform infrared spectroscopy (FTIR) measurements along with density functional theory calculations, we propose that more polar antisolvents favor the detachment of the oleic acid and oleylamine ligands, which undergo amide condensation reactions, leading to the removal of iodide anions from the NC surface bound to these ligands. This work shows that careful selection of low-polarity antisolvents is a critical part of designing the synthesis of NCs to achieve high PLQYs with minimal defect-mediated phase segregation.
Collapse
Affiliation(s)
- Junzhi Ye
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, United
Kingdom
| | - Zhenchao Li
- State
Key Laboratory of Luminescent Materials and Devices, School of Materials
Science and Engineering, South China University
of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Dominik J. Kubicki
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, United
Kingdom
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Yunwei Zhang
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, United
Kingdom
- School
of Physics, Sun Yat-sen University, 510275 Guangzhou, China
| | - Linjie Dai
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, United
Kingdom
| | - Clara Otero-Martínez
- CINBIO, Universidade
de Vigo, Materials Chemistry and Physics Group, Department of Physical
Chemistry, Campus Universitario As Lagoas,
Marcosende, 36310 Vigo, Spain
| | - Manuel A. Reus
- Lehrstuhl
für Funktionelle Materialien, Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Rakesh Arul
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, United
Kingdom
| | - Kavya Reddy Dudipala
- Department
of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Zahra Andaji-Garmaroudi
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, United
Kingdom
| | - Yi-Teng Huang
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, United
Kingdom
| | - Zewei Li
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, United
Kingdom
| | - Ziming Chen
- State
Key Laboratory of Luminescent Materials and Devices, School of Materials
Science and Engineering, South China University
of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Peter Müller-Buschbaum
- Lehrstuhl
für Funktionelle Materialien, Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
- Heinz
Maier-Leibnitz Zentrum (MLZ), Technische
Universität München, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Hin-Lap Yip
- State
Key Laboratory of Luminescent Materials and Devices, School of Materials
Science and Engineering, South China University
of Technology, 381 Wushan Road, Guangzhou 510640, China
- Department
of Materials Science and Engineering, City
University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Samuel D. Stranks
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, United
Kingdom
- Department
of Chemical Engineering & Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Clare P. Grey
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Jeremy J. Baumberg
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, United
Kingdom
| | - Neil C. Greenham
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, United
Kingdom
| | - Lakshminarayana Polavarapu
- CINBIO, Universidade
de Vigo, Materials Chemistry and Physics Group, Department of Physical
Chemistry, Campus Universitario As Lagoas,
Marcosende, 36310 Vigo, Spain
| | - Akshay Rao
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, United
Kingdom
| | - Robert L. Z. Hoye
- Department
of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| |
Collapse
|
22
|
Nazim M, Parwaz Khan AA, Khan F, Cho SK, Ahmad R. Insertion of metal cations into hybrid organometallic halide perovskite nanocrystals for enhanced stability: eco-friendly synthesis, lattice strain engineering, and defect chemistry studies. NANOSCALE ADVANCES 2022; 4:2729-2743. [PMID: 36132281 PMCID: PMC9419879 DOI: 10.1039/d2na00053a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/11/2022] [Indexed: 06/12/2023]
Abstract
In this work, we developed a facile and environmentally friendly synthesis strategy for large-scale preparation of Cr-doped hybrid organometallic halide perovskite nanocrystals. In the experiment, methylammonium lead bromide, CH3NH3PbBr3, was efficiently doped with Cr3+ cations by eco-friendly method at low temperatures to grow crystals via antisolvent-crystallization. The as-synthesized Cr3+ cation-doped perovskite nanocrystals displayed ∼45.45% decrease in the (100) phase intensity with an enhanced Bragg angle (2θ) of ∼15.01° compared to ∼14.92° of pristine perovskites while retaining their cubic (221/Pm-cm, ICSD no. 00-069-1350) crystalline phase of pristine perovskites. During synthesis, an eco-friendly solvent, ethanol, was utilized as an antisolvent to grow nanometer-sized rod-like crystals. However, Cr3+ cation-doped perovskite nanocrystals display a reduced crystallinity of ∼67% compared to pristine counterpart with ∼75% crystallinity with an improved contact angle of ∼72° against water in thin films. Besides, as-grown perovskite nanocrystals produced crystallite size of ∼48 nm and a full-width-at-half-maximum (FWHM) of ∼0.19° with an enhanced lattice-strain of ∼4.52 × 10-4 with a dislocation-density of ∼4.24 × 1014 lines per m2 compared to pristine perovskite nanocrystals, as extracted from the Williamson-Hall plots. The as-obtained stable perovskite materials might be promising light-harvesting candidates for optoelectronic applications in the future.
Collapse
Affiliation(s)
- Mohammed Nazim
- Department of Chemical Engineering, Kumoh National Institute of Technology 61 Daehak-ro, Gumi-si Gyeongbuk-do 39177 Republic of Korea
| | - Aftab Aslam Parwaz Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University P. O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Firoz Khan
- Interdisciplinary Research Center for Renewable Energy and Power System (IRC-REPS), King Fahd University of Petroleum & Minerals (KFUPM) Dhahran 31261 Saudi Arabia
| | - Sung Ki Cho
- Department of Chemical Engineering, Kumoh National Institute of Technology 61 Daehak-ro, Gumi-si Gyeongbuk-do 39177 Republic of Korea
- Department of Energy Engineering Convergence, Kumoh National Institute of Technology 61 Daehak-ro, Gumi-si Gyeongsangbuk-do 39177 Republic of Korea
| | - Rafiq Ahmad
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia New Delhi-110025 India
| |
Collapse
|
23
|
Perez CM, Ghosh D, Prezhdo O, Nie W, Tretiak S, Neukirch A. Point Defects in Two-Dimensional Ruddlesden-Popper Perovskites Explored with Ab Initio Calculations. J Phys Chem Lett 2022; 13:5213-5219. [PMID: 35670577 DOI: 10.1021/acs.jpclett.2c00575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two-dimensional Ruddlesden-Popper (RP) halide perovskites stand out as excellent layered materials with favorable optoelectronic properties for efficient light-emitting, spintronic, and other spin-related applications. However, properties often determined by defects are not well understood in these perovskite systems. This work investigates the ground state electronic structure of commonly formed defects in a typical RP perovskite structure by density functional theory. Our study reveals that these 2D perovskites generally retain their defect tolerance with limited perturbation of the electronic structure in the case of neutral-type point defects. In contrast, donor/acceptor defects induce deep midgap states, potentially causing harm to the material's electronic performance. To retain positive intrinsic properties, the halide vacancies and interstitial defects should be avoided. The observed strong electron localization results in trap states and consequently leads to reduced device performance. This understanding can guide experimental efforts that aim for improved 2D halide perovskite-based device performance.
Collapse
Affiliation(s)
- Carlos Mora Perez
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Dibyajyoti Ghosh
- Department of Material Science and Engineering and Department of Chemistry, Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Oleg Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | | | | | | |
Collapse
|
24
|
Li N, Jia Y, Guo Y, Zhao N. Ion Migration in Perovskite Light-Emitting Diodes: Mechanism, Characterizations, and Material and Device Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108102. [PMID: 34847262 DOI: 10.1002/adma.202108102] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/26/2021] [Indexed: 06/13/2023]
Abstract
In recent years, perovskite light-emitting diodes (PeLEDs) have emerged as a promising new lighting technology with high external quantum efficiency, color purity, and wavelength tunability, as well as, low-temperature processability. However, the operational stability of PeLEDs is still insufficient for their commercialization. The generation and migration of ionic species in metal halide perovskites has been widely acknowledged as the primary factor causing the performance degradation of PeLEDs. Herein, this topic is systematically discussed by considering the fundamental and engineering aspects of ion-related issues in PeLEDs, including the material and processing origins of ion generation, the mechanisms driving ion migration, characterization approaches for probing ion distributions, the effects of ion migration on device performance and stability, and strategies for ion management in PeLEDs. Finally, perspectives on remaining challenges and future opportunities are highlighted.
Collapse
Affiliation(s)
- Nan Li
- Department of Electronic Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong
| | - Yongheng Jia
- Department of Electronic Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong
| | - Yuwei Guo
- Department of Electronic Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong
| | - Ni Zhao
- Department of Electronic Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong
| |
Collapse
|
25
|
Zhao C, Dai J, Zhu C, Liu X, Dong H, Yuan F, Jiao B, Yu Y, Wu Z. Complementary Triple-Ligand Engineering Approach to Methylamine Lead Bromide Nanocrystals for High-Performance Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10508-10516. [PMID: 35179027 DOI: 10.1021/acsami.1c18791] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Conjugated and short-molecule capping ligands have been demonstrated as a valid strategy for achieving high-efficiency perovskite nanocrystal (NCs) light-emitting diodes (LEDs) owing to their advantage of allowing efficient carrier transport between NCs. However, monotonously utilizing conjugated ligands cannot achieve sufficient surface modification/passivation for perovskite NCs, leading to their poor photoluminescence quantum yield (PLQY) and dispersibility. This work designs a complementary ligand synthesis method to obtain high-quality methylamine lead bromide (MAPbBr3) NCs and then leverage them into efficient LEDs. The complementary ligand system combines a conjugated ligand 3-phenyl-2-propen-1-amine (PPA) and a long-chain ligand didodecyldimethylammonium bromide (DDAB) together with a well-known inductive inorganic ligand ZnBr2. With such complementary ligand engineering, we significantly improve the emissive features of MAPbBr3 NCs (PLQY: 99% ± 0.7%). Simultaneously, the complementary ligand strategy facilitated the adequate charge transportation in related NCs films and modified the interfacial energy-level alignment when the NCs assemble as an emitting layer into LEDs. Finally, based on this NCs synthesis method, high-efficiency green LEDs were achieved, exhibiting the maximum luminance of 1.59 × 104 cd m-2, a current efficiency of 23.7 cd A-1, and an external quantum efficiency of 7.8%. Our finding could provide a new avenue for further development of LEDs and their commercial application.
Collapse
Affiliation(s)
- Chenjing Zhao
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jinfei Dai
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chunrong Zhu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiaoyun Liu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hua Dong
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Fang Yuan
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Bo Jiao
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yue Yu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhaoxin Wu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
26
|
Enomoto J, Sato R, Yokoyama M, Kimura T, Oshita N, Umemoto K, Asakura S, Masuhara A. Highly luminescent MAPbI 3 perovskite quantum dots with a simple purification process via ultrasound-assisted bead milling. RSC Adv 2022; 12:5571-5576. [PMID: 35425546 PMCID: PMC8981582 DOI: 10.1039/d1ra08887d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/31/2022] [Indexed: 11/21/2022] Open
Abstract
Organic-inorganic hybrid lead halide perovskite quantum dots (QDs) have various excellent optical properties, and they have drastically enhanced the field of light-emitting diode (LED) research. However, red-emissive CH3NH3 (MA) PbI3 QDs have worse optical properties compared with those of green-emissive MAPbBr3 QDs due to their instability under high-moisture and high-temperature conditions. Therefore, it is quite difficult to prepare MAPbI3 QDs with good optical properties via bottom-up methods using conditions involving high temperature and high-solubility solvents. On the other hand, top-down methods for preparing MAPbI3 QDs under an air atmosphere have attracted attention; however, there are issues, such as PL emission with a wide FWHM being obtained due to the wide particle-size distribution. In this research, red-emissive MAPbI3 QDs were prepared via an ultrasound-assisted bead milling (UBM) method, and the MAPbI3 QDs were purified using various carboxylate esters. As a result, we solved the issue of the wide particle-size distribution unique to top-down methods via purifying the MAPbI3 QDs, and they achieved the following excellent optical properties: a FWHM of 44 to 48 nm and a PLQY of over 60%. Notably, a fabricated LED device with MAPbI3 QDs purified using methyl acetate showed a PL peak at 738 nm and a FWHM of 49 nm, resulting in an excellent EQE value of 3.2%.
Collapse
Affiliation(s)
- Junya Enomoto
- Graduate School of Science and Engineering, Yamagata University 4-3-16, Jonan Yonezawa Yamagata 992-8510 Japan
| | - Ryota Sato
- Graduate School of Science and Engineering, Yamagata University 4-3-16, Jonan Yonezawa Yamagata 992-8510 Japan
| | - Masaaki Yokoyama
- Graduate School of Science and Engineering, Yamagata University 4-3-16, Jonan Yonezawa Yamagata 992-8510 Japan
| | - Taisei Kimura
- Graduate School of Science and Engineering, Yamagata University 4-3-16, Jonan Yonezawa Yamagata 992-8510 Japan
| | - Naoaki Oshita
- Graduate School of Science and Engineering, Yamagata University 4-3-16, Jonan Yonezawa Yamagata 992-8510 Japan
| | - Kazuki Umemoto
- Graduate School of Science and Engineering, Yamagata University 4-3-16, Jonan Yonezawa Yamagata 992-8510 Japan
| | - Satoshi Asakura
- Graduate School of Science and Engineering, Yamagata University 4-3-16, Jonan Yonezawa Yamagata 992-8510 Japan
- Ise Chemicals Corporation 1-3-1, Kyobashi Chuo-ku Tokyo Japan
| | - Akito Masuhara
- Graduate School of Science and Engineering, Yamagata University 4-3-16, Jonan Yonezawa Yamagata 992-8510 Japan
- Frontier Center for Organic Materials (FROM), Yamagata University 4-3-16, Jonan Yonezawa Yamagata 992-8510 Japan
| |
Collapse
|
27
|
Xu F, Chen D, Huang D, Xu K, Liang S, Hu J, Zhang X, Liu L, Xiong F, Zhu H. Suppression of Photoinduced Phase Segregation in Mixed-Halide Perovskite Nanocrystals for Stable Light-Emitting Diodes. J Phys Chem Lett 2022; 13:718-725. [PMID: 35025523 DOI: 10.1021/acs.jpclett.1c03895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Halide segregation is a critical bottleneck that hampers the application of mixed-halide perovskite nanocrystals (NCs) in both electroluminescent and down-conversion red-light-emitting diodes. Herein, we report a strategy that combines precursor and surface engineering to obtain pure-red-emitting (peaked at 624 nm) NCs with a photoluminescence quantum yield of up to 92% and strongly suppresses the halide segregation of mixed-halide NCs under light irradiation. Red-light-emitting diodes (LED) using these mixed-halide NCs as phosphors exhibit color-stable emission with a negligible peak shift and spectral broadening during operation over 240 min. By contrast, a dramatic peak shift and spectral broadening were observed after 10 min of operation in LEDs based on mixed-halide NCs synthesized by a traditional method. Our strategy is critical to achieving photo- and band-gap-stable mixed-halide perovskite NCs for a variety of optoelectronic applications such as micro-LEDs.
Collapse
Affiliation(s)
- Feixiang Xu
- Department of Optoelectronic and Communication Engineering, Xiamen University of Technology, Xiamen, Fujian 361024, China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Xiamen Research Center of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Dejian Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Xiamen Research Center of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Decai Huang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Xiamen Research Center of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Kunyuan Xu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Xiamen Research Center of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Sisi Liang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Xiamen Research Center of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Jie Hu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Xiamen Research Center of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Xiaoyun Zhang
- Department of Optoelectronic and Communication Engineering, Xiamen University of Technology, Xiamen, Fujian 361024, China
| | - Lin Liu
- Department of Optoelectronic and Communication Engineering, Xiamen University of Technology, Xiamen, Fujian 361024, China
| | - Feibing Xiong
- Department of Optoelectronic and Communication Engineering, Xiamen University of Technology, Xiamen, Fujian 361024, China
| | - Haomiao Zhu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Xiamen Research Center of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| |
Collapse
|
28
|
Ba Q, Kim J, Im H, Lin S, Jana A. Modulation of the optical bandgap and photoluminescence quantum yield in pnictogen (Sb 3+/Bi 3+)-doped organic-inorganic tin(IV) perovskite single crystals and nanocrystals. J Colloid Interface Sci 2022; 606:808-816. [PMID: 34425268 DOI: 10.1016/j.jcis.2021.08.083] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/23/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022]
Abstract
Water-stable, lead-free zero-dimensional (0D) organic-inorganic hybrid colloidal tin(IV) perovskite, A2SnX6 (A is a monocationic organic ion and X is a halide) nanocrystals (NCs) with high photoluminescence (PL) quantum yield (QY) have rarely been explored. Herein, we report solution-processed colloidal NCs of blue light-emitting T2SnCl6 and orange light-emitting T2Sn1-xSbxCl6 [T+ = tetramethylammonium cation] from their corresponding single crystals (SCs). These colloidal NCs are well-dispersible in non-polar solvents, thereby maintaining their bright emission. This paves the way for fabricating homogeneous thin films of these NCs. Due to organic cation (T+)-controlled large spin-orbit coupling (SOC), the T2Sn1-xSbxCl6 NCs exhibit bright orange emission with an enhancement in PL QY of 41% compared to their bulk counterpart. Furthermore, we explore T2Sn1-xBixCl6 and T2Sn1-x-yBixSbyCl6 SCs, which show blue and green emission, respectively; the latter is attributed to the newly formed Sb 5p and Sb 5 s orbital-driven band structures confirmed by applying density functional theory (DFT) calculations. The SCs and NCs exhibit excellent stability in water under ambient conditions because of the in-situ generation of a hydrophobic and oxygen-resistant passivating layer of oxychloride in the presence of water. Our findings open a pathway for designing lead-free perovskites materials for thin-film-based optoelectronic devices.
Collapse
Affiliation(s)
- Qiankai Ba
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China; Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Junu Kim
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Hyunsik Im
- Division of Physics and Semiconductor Science, Dongguk University, 30 Pildong-ro 1-gil, Seoul 04620, Republic of Korea
| | - Shenghuang Lin
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Atanu Jana
- Division of Physics and Semiconductor Science, Dongguk University, 30 Pildong-ro 1-gil, Seoul 04620, Republic of Korea.
| |
Collapse
|
29
|
Jeong HW, Zsigmond TS, Samu GF, Janáky C. Sacrificial Agent Gone Rogue: Electron-Acceptor-Induced Degradation of CsPbBr 3 Photocathodes. ACS ENERGY LETTERS 2022; 7:417-424. [PMID: 35059504 PMCID: PMC8762702 DOI: 10.1021/acsenergylett.1c02130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/21/2021] [Indexed: 05/08/2023]
Abstract
Lead halide perovskites (LHPs) have emerged as perspective materials for light harvesting, due to their tunable band gap and optoelectronic properties. Photocatalytic and photoelectrochemical (PEC) studies, employing LHP/liquid junctions, are evolving, where sacrificial reagents are often used. In this study, we found that a frequently applied electron scavenger (TCNQ) has dual roles: while it leads to rapid electron transfer from the electrode to TCNQ, enhancing the PEC performance, it also accelerates the decomposition of the CsPbBr3 photoelectrode. The instability of the films is caused by the TCNQ-mediated halide exchange between the dichloromethane solvent and the LHP film, during PEC operation. Charge transfer and halide exchange pathways were proposed on the basis of in situ spectroelectrochemical and ex situ surface characterization methods, also providing guidance on planning PEC experiments with such systems.
Collapse
Affiliation(s)
- Hye Won Jeong
- Department
of Physical Chemistry and Materials Science, Interdisciplinary Excellence
Centre, University of Szeged, Aradi Square 1, Szeged H-6720, Hungary
- H.W.J.: email,
| | - Tamás Sándor Zsigmond
- Department
of Physical Chemistry and Materials Science, Interdisciplinary Excellence
Centre, University of Szeged, Aradi Square 1, Szeged H-6720, Hungary
| | - Gergely Ferenc Samu
- Department
of Physical Chemistry and Materials Science, Interdisciplinary Excellence
Centre, University of Szeged, Aradi Square 1, Szeged H-6720, Hungary
- ELI-ALPS,
ELI-HU Non-Profit Ltd., Wolfgang Sandner street 3, Szeged H-6728, Hungary
| | - Csaba Janáky
- Department
of Physical Chemistry and Materials Science, Interdisciplinary Excellence
Centre, University of Szeged, Aradi Square 1, Szeged H-6720, Hungary
- ELI-ALPS,
ELI-HU Non-Profit Ltd., Wolfgang Sandner street 3, Szeged H-6728, Hungary
- C.J.: email, ; Twitter, @JanakyLab
| |
Collapse
|
30
|
Bai Y, Hao M, Ding S, Chen P, Wang L. Surface Chemistry Engineering of Perovskite Quantum Dots: Strategies, Applications, and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105958. [PMID: 34643300 DOI: 10.1002/adma.202105958] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/07/2021] [Indexed: 05/27/2023]
Abstract
The presence of surface ligands not only plays a key role in keeping the colloidal integrity and non-defective surface of metal halide perovskite quantum dots (PQDs), but also serves as a knob to tune their optoelectronic properties for a variety of exciting applications including solar cells and light-emitting diodes. However, these indispensable surface ligands may also deteriorate the stability and key properties of PQDs due to their highly dynamic binding and insulating nature. To address these issues, a number of innovative surface chemistry engineering approaches have been developed in the past few years. Based on an in-depth fundamental understanding of the surface atomistic structure and surface defect formation mechanism in the tiny nanoparticles, a critical overview focusing on the surface chemistry engineering of PQDs including advanced colloidal synthesis, in-situ surface passivation, and solution-phase/solid-state ligand exchange is presented, after which their unprecedented achievements in photovoltaics and other optoelectronics are presented. The practical hurdles and future directions are critically discussed to inspire more rational design of PQD surface chemistry toward practical applications.
Collapse
Affiliation(s)
- Yang Bai
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Mengmeng Hao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Shanshan Ding
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Peng Chen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Lianzhou Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
31
|
Chen J, Xiang H, Wang J, Wang R, Li Y, Shan Q, Xu X, Dong Y, Wei C, Zeng H. Perovskite White Light Emitting Diodes: Progress, Challenges, and Opportunities. ACS NANO 2021; 15:17150-17174. [PMID: 34758267 DOI: 10.1021/acsnano.1c06849] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As global warming, energy shortages, and environment pollution have intensified, low-carbon and energy-saving lighting technology has attracted great attention worldwide. Light emitting diodes (LEDs) have been around for decades and are considered to be the most ideal lighting technology currently due to their high luminescence efficiency (LE) and long lifespan. Besides, along with the development of modern technology, lighting technologies with higher performance and more functions are desired. Perovskite based LEDs (PeLEDs) have recently emerged as ideal candidates for lighting technology owing to the extraordinary photoelectric properties of perovskite, such as high photoluminescence quantum yields (PLQYs), easy wavelength tuning, and low-cost synthesis. Herein, we open this review by introducing the background of white LEDs (WLEDs), including their light-emitting mechanism, typical characteristics, and key indicators in applications. Then, four main approaches to fabricate WLEDs are discussed and compared. After that, in accordance with the four categories, we focus on the recent progress of white PeLEDs (Pe-WLEDs), followed by the challenges and opportunities for Pe-WLEDs in practical application. Meanwhile, some pertinent countermeasures to their challenges are put forward. Finally, the development promise of Pe-WLEDs is explored.
Collapse
Affiliation(s)
- Jiawei Chen
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Hengyang Xiang
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jian Wang
- Department of Chemistry, University of Washington, Seattle, Washington 98195-2120, United States
| | - Run Wang
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yan Li
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Qingsong Shan
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiaobao Xu
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuhui Dong
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Changting Wei
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Haibo Zeng
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
32
|
Jagadeeswararao M, Vashishtha P, Hooper TJN, Kanwat A, Lim JWM, Vishwanath SK, Yantara N, Park T, Sum TC, Chung DS, Mhaisalkar SG, Mathews N. One-Pot Synthesis and Structural Evolution of Colloidal Cesium Lead Halide-Lead Sulfide Heterostructure Nanocrystals for Optoelectronic Applications. J Phys Chem Lett 2021; 12:9569-9578. [PMID: 34581578 DOI: 10.1021/acs.jpclett.1c02915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Heterostructures, combining perovskite nanocrystals (PNC) and chalcogenide quantum dots, could pave a path to optoelectronic device applications by enabling absorption in the near-infrared region, tailorable electronic properties, and stable crystal structures. Ideally, the heterostructure host material requires a similar lattice constant as the guest which is also constrained by the synthesis protocol and materials selectivity. Herein, we present an efficient one-pot hot-injection method to synthesize colloidal all-inorganic cesium lead halide-lead sulfide (CsPbX3 (X = Cl, Br, I)-PbS) heterostructure nanocrystals (HNCs) via the epitaxial growth of the perovskite onto the presynthesized PbS nanocrystals (NCs). Optical and structural characterization evidenced the formation of heterostructures. The embedding of PbS NCs into CsPbX3 perovskite allows the tuning of the absorption and emission from 400 to 1100 nm by tuning the size and composition of perovskite HNCs. The CsPbI3-PbS HNCs show enhanced stability in ambient conditions. The stability, tunable optical properties, and variable band alignments accessible in this system would have implications in the design of novel optoelectronic applications such as light-emitting diodes, photodetectors, photocatalysis, and photovoltaics.
Collapse
Affiliation(s)
- Metikoti Jagadeeswararao
- Energy Research Institute @ NTU (ERIAN), Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37363, Republic of Korea
| | - Parth Vashishtha
- School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Thomas J N Hooper
- Center of High Field NMR Spectroscopy and Imaging, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Anil Kanwat
- Energy Research Institute @ NTU (ERIAN), Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
| | - Jia Wei Melvin Lim
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- Energy Research Institute @NTU (ERI@N), Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore 637371, Singapore
| | - Sujaya Kumar Vishwanath
- School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Natalia Yantara
- Energy Research Institute @ NTU (ERIAN), Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
| | - Taewook Park
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37363, Republic of Korea
| | - Tze Chien Sum
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Dae Sung Chung
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37363, Republic of Korea
| | - Subodh G Mhaisalkar
- Energy Research Institute @ NTU (ERIAN), Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
| | - Nripan Mathews
- Energy Research Institute @ NTU (ERIAN), Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
- School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
33
|
Dey A, Ye J, De A, Debroye E, Ha SK, Bladt E, Kshirsagar AS, Wang Z, Yin J, Wang Y, Quan LN, Yan F, Gao M, Li X, Shamsi J, Debnath T, Cao M, Scheel MA, Kumar S, Steele JA, Gerhard M, Chouhan L, Xu K, Wu XG, Li Y, Zhang Y, Dutta A, Han C, Vincon I, Rogach AL, Nag A, Samanta A, Korgel BA, Shih CJ, Gamelin DR, Son DH, Zeng H, Zhong H, Sun H, Demir HV, Scheblykin IG, Mora-Seró I, Stolarczyk JK, Zhang JZ, Feldmann J, Hofkens J, Luther JM, Pérez-Prieto J, Li L, Manna L, Bodnarchuk MI, Kovalenko MV, Roeffaers MBJ, Pradhan N, Mohammed OF, Bakr OM, Yang P, Müller-Buschbaum P, Kamat PV, Bao Q, Zhang Q, Krahne R, Galian RE, Stranks SD, Bals S, Biju V, Tisdale WA, Yan Y, Hoye RLZ, Polavarapu L. State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS NANO 2021; 15:10775-10981. [PMID: 34137264 PMCID: PMC8482768 DOI: 10.1021/acsnano.0c08903] [Citation(s) in RCA: 463] [Impact Index Per Article: 115.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/04/2021] [Indexed: 05/10/2023]
Abstract
Metal-halide perovskites have rapidly emerged as one of the most promising materials of the 21st century, with many exciting properties and great potential for a broad range of applications, from photovoltaics to optoelectronics and photocatalysis. The ease with which metal-halide perovskites can be synthesized in the form of brightly luminescent colloidal nanocrystals, as well as their tunable and intriguing optical and electronic properties, has attracted researchers from different disciplines of science and technology. In the last few years, there has been a significant progress in the shape-controlled synthesis of perovskite nanocrystals and understanding of their properties and applications. In this comprehensive review, researchers having expertise in different fields (chemistry, physics, and device engineering) of metal-halide perovskite nanocrystals have joined together to provide a state of the art overview and future prospects of metal-halide perovskite nanocrystal research.
Collapse
Grants
- from U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division
- Ministry of Education, Culture, Sports, Science and Technology
- European Research Council under the European Unionâ??s Horizon 2020 research and innovation programme (HYPERION)
- Ministry of Education - Singapore
- FLAG-ERA JTC2019 project PeroGas.
- Deutsche Forschungsgemeinschaft
- Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy
- EPSRC
- iBOF funding
- Agencia Estatal de Investigaci�ón, Ministerio de Ciencia, Innovaci�ón y Universidades
- National Research Foundation Singapore
- National Natural Science Foundation of China
- Croucher Foundation
- US NSF
- Fonds Wetenschappelijk Onderzoek
- National Science Foundation
- Royal Society and Tata Group
- Department of Science and Technology, Ministry of Science and Technology
- Swiss National Science Foundation
- Natural Science Foundation of Shandong Province, China
- Research 12210 Foundation?Flanders
- Japan International Cooperation Agency
- Ministry of Science and Innovation of Spain under Project STABLE
- Generalitat Valenciana via Prometeo Grant Q-Devices
- VetenskapsrÃÂ¥det
- Natural Science Foundation of Jiangsu Province
- KU Leuven
- Knut och Alice Wallenbergs Stiftelse
- Generalitat Valenciana
- Agency for Science, Technology and Research
- Ministerio de EconomÃÂa y Competitividad
- Royal Academy of Engineering
- Hercules Foundation
- China Association for Science and Technology
- U.S. Department of Energy
- Alexander von Humboldt-Stiftung
- Wenner-Gren Foundation
- Welch Foundation
- Vlaamse regering
- European Commission
- Bayerisches Staatsministerium für Wissenschaft, Forschung und Kunst
Collapse
Affiliation(s)
- Amrita Dey
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Junzhi Ye
- Cavendish
Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Apurba De
- School of
Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Elke Debroye
- Department
of Chemistry, KU Leuven, 3001 Leuven, Belgium
| | - Seung Kyun Ha
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Eva Bladt
- EMAT, University
of Antwerp, Groenenborgerlaan
171, 2020 Antwerp, Belgium
- NANOlab Center
of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Anuraj S. Kshirsagar
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER), Pune 411008, India
| | - Ziyu Wang
- School
of
Science and Technology for Optoelectronic Information ,Yantai University, Yantai, Shandong Province 264005, China
| | - Jun Yin
- Division
of Physical Science and Engineering, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- CINBIO,
Universidade de Vigo, Materials Chemistry
and Physics group, Departamento de Química Física, Campus Universitario As Lagoas,
Marcosende, 36310 Vigo, Spain
- Advanced
Membranes and Porous Materials Center, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yue Wang
- MIIT Key
Laboratory of Advanced Display Materials and Devices, Institute of
Optoelectronics & Nanomaterials, College of Materials Science
and Engineering, Nanjing University of Science
and Technology, Nanjing 210094, China
| | - Li Na Quan
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Fei Yan
- LUMINOUS!
Center of Excellence for Semiconductor Lighting and Displays, TPI-The
Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Mengyu Gao
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California, Berkeley, California 94720, United States
| | - Xiaoming Li
- MIIT Key
Laboratory of Advanced Display Materials and Devices, Institute of
Optoelectronics & Nanomaterials, College of Materials Science
and Engineering, Nanjing University of Science
and Technology, Nanjing 210094, China
| | - Javad Shamsi
- Cavendish
Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Tushar Debnath
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Muhan Cao
- Institute
of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Manuel A. Scheel
- Lehrstuhl
für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Sudhir Kumar
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH-Zurich, CH-8093 Zürich, Switzerland
| | - Julian A. Steele
- MACS Department
of Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium
| | - Marina Gerhard
- Chemical
Physics and NanoLund Lund University, PO Box 124, 22100 Lund, Sweden
| | - Lata Chouhan
- Graduate
School of Environmental Science and Research Institute for Electronic
Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - Ke Xu
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, California 95064, United States
- Multiscale
Crystal Materials Research Center, Shenzhen Institute of Advanced
Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xian-gang Wu
- Beijing
Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems,
School of Materials Science & Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian
District, Beijing 100081, China
| | - Yanxiu Li
- Department
of Materials Science and Engineering, and Centre for Functional Photonics
(CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R.
| | - Yangning Zhang
- McKetta
Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712-1062, United States
| | - Anirban Dutta
- School
of Materials Sciences, Indian Association
for the Cultivation of Science, Kolkata 700032, India
| | - Chuang Han
- Department
of Chemistry and Biochemistry, San Diego
State University, San Diego, California 92182, United States
| | - Ilka Vincon
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Andrey L. Rogach
- Department
of Materials Science and Engineering, and Centre for Functional Photonics
(CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R.
| | - Angshuman Nag
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER), Pune 411008, India
| | - Anunay Samanta
- School of
Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Brian A. Korgel
- McKetta
Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712-1062, United States
| | - Chih-Jen Shih
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH-Zurich, CH-8093 Zürich, Switzerland
| | - Daniel R. Gamelin
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Dong Hee Son
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Haibo Zeng
- MIIT Key
Laboratory of Advanced Display Materials and Devices, Institute of
Optoelectronics & Nanomaterials, College of Materials Science
and Engineering, Nanjing University of Science
and Technology, Nanjing 210094, China
| | - Haizheng Zhong
- Beijing
Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems,
School of Materials Science & Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian
District, Beijing 100081, China
| | - Handong Sun
- Division
of Physics and Applied Physics, School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore 637371
- Centre
for Disruptive Photonic Technologies (CDPT), Nanyang Technological University, Singapore 637371
| | - Hilmi Volkan Demir
- LUMINOUS!
Center of Excellence for Semiconductor Lighting and Displays, TPI-The
Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
- Division
of Physics and Applied Physics, School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore 639798
- Department
of Electrical and Electronics Engineering, Department of Physics,
UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Ivan G. Scheblykin
- Chemical
Physics and NanoLund Lund University, PO Box 124, 22100 Lund, Sweden
| | - Iván Mora-Seró
- Institute
of Advanced Materials (INAM), Universitat
Jaume I, 12071 Castelló, Spain
| | - Jacek K. Stolarczyk
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Jin Z. Zhang
- Department
of Chemistry and Biochemistry, University
of California, Santa Cruz, California 95064, United States
| | - Jochen Feldmann
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
| | - Johan Hofkens
- Department
of Chemistry, KU Leuven, 3001 Leuven, Belgium
- Max Planck
Institute for Polymer Research, Mainz 55128, Germany
| | - Joseph M. Luther
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Julia Pérez-Prieto
- Institute
of Molecular Science, University of Valencia, c/Catedrático José
Beltrán 2, Paterna, Valencia 46980, Spain
| | - Liang Li
- School
of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liberato Manna
- Nanochemistry
Department, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Maryna I. Bodnarchuk
- Institute
of Inorganic Chemistry and § Institute of Chemical and Bioengineering,
Department of Chemistry and Applied Bioscience, ETH Zurich, Vladimir
Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Maksym V. Kovalenko
- Institute
of Inorganic Chemistry and § Institute of Chemical and Bioengineering,
Department of Chemistry and Applied Bioscience, ETH Zurich, Vladimir
Prelog Weg 1, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | | | - Narayan Pradhan
- School
of Materials Sciences, Indian Association
for the Cultivation of Science, Kolkata 700032, India
| | - Omar F. Mohammed
- Advanced
Membranes and Porous Materials Center, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST Catalysis
Center, King Abdullah University of Science
and Technology, Thuwal 23955-6900, Kingdom of Saudi
Arabia
| | - Osman M. Bakr
- Division
of Physical Science and Engineering, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- Advanced
Membranes and Porous Materials Center, King
Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Peidong Yang
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Materials Science and Engineering, University
of California, Berkeley, California 94720, United States
- Kavli
Energy NanoScience Institute, Berkeley, California 94720, United States
| | - Peter Müller-Buschbaum
- Lehrstuhl
für Funktionelle Materialien, Physik Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
- Heinz Maier-Leibnitz
Zentrum (MLZ), Technische Universität
München, Lichtenbergstr. 1, D-85748 Garching, Germany
| | - Prashant V. Kamat
- Notre Dame
Radiation Laboratory, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Qiaoliang Bao
- Department
of Materials Science and Engineering and ARC Centre of Excellence
in Future Low-Energy Electronics Technologies (FLEET), Monash University, Clayton, Victoria 3800, Australia
| | - Qiao Zhang
- Institute
of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory
for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Roman Krahne
- Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Raquel E. Galian
- School
of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Samuel D. Stranks
- Cavendish
Laboratory, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Sara Bals
- EMAT, University
of Antwerp, Groenenborgerlaan
171, 2020 Antwerp, Belgium
- NANOlab Center
of Excellence, University of Antwerp, 2020 Antwerp, Belgium
| | - Vasudevanpillai Biju
- Graduate
School of Environmental Science and Research Institute for Electronic
Science, Hokkaido University, Sapporo, Hokkaido 001-0020, Japan
| | - William A. Tisdale
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Yong Yan
- Department
of Chemistry and Biochemistry, San Diego
State University, San Diego, California 92182, United States
| | - Robert L. Z. Hoye
- Department
of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Lakshminarayana Polavarapu
- Chair for
Photonics and Optoelectronics, Nano-Institute Munich, Department of
Physics, Ludwig-Maximilians-Universität
(LMU), Königinstrasse 10, 80539 Munich, Germany
- CINBIO,
Universidade de Vigo, Materials Chemistry
and Physics group, Departamento de Química Física, Campus Universitario As Lagoas,
Marcosende, 36310 Vigo, Spain
| |
Collapse
|
34
|
Mulder J, du Fossé I, Alimoradi Jazi M, Manna L, Houtepen AJ. Electrochemical p-Doping of CsPbBr 3 Perovskite Nanocrystals. ACS ENERGY LETTERS 2021; 6:2519-2525. [PMID: 34307881 PMCID: PMC8294022 DOI: 10.1021/acsenergylett.1c00970] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/15/2021] [Indexed: 05/21/2023]
Abstract
Lead halide perovskite nanocrystals have drawn attention as active light-absorbing or -emitting materials for opto-electronic applications due to their facile synthesis, intrinsic defect tolerance, and color-pure emission ranging over the entire visible spectrum. To optimize their application in, e.g., solar cells and light-emitting diodes, it is desirable to gain control over electronic doping of these materials. However, predominantly due to the intrinsic instability of perovskites, successful electronic doping has remained elusive. Using spectro-electrochemistry and electrochemical transistor measurements, we demonstrate here that CsPbBr3 nanocrystals can be successfully and reversibly p-doped via electrochemical hole injection. From an applied potential of ∼0.9 V vs NHE, the emission quenches, the band edge absorbance bleaches, and the electronic conductivity quickly increases, demonstrating the successful injection of holes into the valence band of the CsPbBr3 nanocrystals.
Collapse
Affiliation(s)
- Jence
T. Mulder
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Indy du Fossé
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Maryam Alimoradi Jazi
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Liberato Manna
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
- Department
of Nanochemistry, Istituto Italiano di Tecnologia
(IIT), Via Morego 30, 16163 Genova, Italy
| | - Arjan J. Houtepen
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| |
Collapse
|
35
|
Dai SW, Lai YL, Yang L, Chuang YT, Tan GH, Shen SW, Huang YS, Lo YC, Yeh TH, Wu CI, Chen LJ, Lu MY, Wong KT, Liu SW, Lin HW. Organic Lead Halide Nanocrystals Providing an Ultra-Wide Color Gamut with Almost-Unity Photoluminescence Quantum Yield. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25202-25213. [PMID: 34010569 DOI: 10.1021/acsami.1c05961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The most attractive aspect of perovskite nanocrystals (NCs) for optoelectronic applications is their widely tunable emission wavelength, but it has been quite challenging to tune it without sacrificing the photoluminescence quantum yield (PLQY). In this work, we report a facile ligand-optimized ion-exchange (LOIE) method to convert room-temperature spray-synthesized, perovskite parent NCs that emit a saturated green color to NCs capable of emitting colors across the entire visible spectrum. These NCs exhibited exceptionally stable and high PLQYs, particularly for the pure blue (96%) and red (93%) primary colors that are indispensable for display applications. Surprisingly, the blue- and red-emissive NCs obtained using the LOIE method preserved the cubic shape and cubic phase structure that they inherited from their parent NCs, while exhibiting high crystallinity and high color-purity. Together with the parent green-emissive NCs, the obtained blue- and red-emissive NCs provided a very wide color gamut, corresponding to a Digital Cinema Initiatives-P3 of 140% or an International Telecommunication Union Recommendation BT.2020 of 102%. With the superior optical merits of these LOIE-manipulated NCs, a corresponding color conversion luminescence device provided a high external quantum efficiency (10.5%) and extremely high brightness (970 000 cd/m2). This study provides a valid route toward highly stable, extremely emissive, and panchromatic perovskite NCs with potential use in a variety of future optoelectronic applications.
Collapse
Affiliation(s)
- Shu-Wen Dai
- Department of Materials Science and Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Ying-Lin Lai
- Department of Materials Science and Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Lin Yang
- Department of Materials Science and Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Yung-Tang Chuang
- Department of Materials Science and Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Guang-Hsun Tan
- Department of Materials Science and Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Shin-Wei Shen
- Graduate Institute of Photonics and Optoelectronics and Department of Electrical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Yu-Sheng Huang
- Department of Materials Science and Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Yuan-Chih Lo
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Tzu-Hung Yeh
- Organic Electronics Research Center, Ming Chi University of Technology, No. 84, Gungjuan Road, Taishan Dist., New Taipei City 24301, Taiwan
| | - Chih-I Wu
- Graduate Institute of Photonics and Optoelectronics and Department of Electrical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Lih-Juann Chen
- Department of Materials Science and Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Ming-Yen Lu
- Department of Materials Science and Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Ken-Tsung Wong
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Shun-Wei Liu
- Organic Electronics Research Center, Ming Chi University of Technology, No. 84, Gungjuan Road, Taishan Dist., New Taipei City 24301, Taiwan
| | - Hao-Wu Lin
- Department of Materials Science and Engineering, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, No. 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| |
Collapse
|
36
|
Hills‐Kimball K, Yang H, Cai T, Wang J, Chen O. Recent Advances in Ligand Design and Engineering in Lead Halide Perovskite Nanocrystals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100214. [PMID: 34194945 PMCID: PMC8224438 DOI: 10.1002/advs.202100214] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/17/2021] [Indexed: 05/09/2023]
Abstract
Lead halide perovskite (LHP) nanocrystals (NCs) have recently garnered enhanced development efforts from research disciplines owing to their superior optical and optoelectronic properties. These materials, however, are unlike conventional quantum dots, because they possess strong ionic character, labile ligand coverage, and overall stability issues. As a result, the system as a whole is highly dynamic and can be affected by slight changes of particle surface environment. Specifically, the surface ligand shell of LHP NCs has proven to play imperative roles throughout the lifetime of a LHP NC. Recent advances in engineering and understanding the roles of surface ligand shells from initial synthesis, through postsynthetic processing and device integration, finally to application performances of colloidal LHP NCs are covered here.
Collapse
Affiliation(s)
| | - Hanjun Yang
- Department of ChemistryBrown UniversityProvidenceRI02912USA
| | - Tong Cai
- Department of ChemistryBrown UniversityProvidenceRI02912USA
| | - Junyu Wang
- Department of ChemistryBrown UniversityProvidenceRI02912USA
| | - Ou Chen
- Department of ChemistryBrown UniversityProvidenceRI02912USA
| |
Collapse
|
37
|
Biesold GM, Liang S, Brettmann B, Thadhani N, Kang Z, Lin Z. Tailoring Optical Properties of Luminescent Semiconducting Nanocrystals through Hydrostatic, Anisotropic Static, and Dynamic Pressures. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202008395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Gill M. Biesold
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta Georgia 30332 USA
| | - Shuang Liang
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta Georgia 30332 USA
| | - Blair Brettmann
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta Georgia 30332 USA
- School of Chemical and Biomedical Engineering Georgia Institute of Technology Atlanta Georgia 30332 USA
| | - Naresh Thadhani
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta Georgia 30332 USA
| | - Zhitao Kang
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta Georgia 30332 USA
- Georgia Tech Research Institute Georgia Institute of Technology Atlanta Georgia 30332 USA
| | - Zhiqun Lin
- School of Materials Science and Engineering Georgia Institute of Technology Atlanta Georgia 30332 USA
| |
Collapse
|
38
|
Solari SF, Kumar S, Jagielski J, Kubo NM, Krumeich F, Shih CJ. Ligand-assisted solid phase synthesis of mixed-halide perovskite nanocrystals for color-pure and efficient electroluminescence. JOURNAL OF MATERIALS CHEMISTRY. C 2021; 9:5771-5778. [PMID: 33996098 PMCID: PMC8101407 DOI: 10.1039/d0tc04667a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Colloidal nanocrystals (NCs) of lead halide perovskites have generated considerable interest in the fabrication of optoelectronic devices, such as light emitting-diodes (LEDs), because of their tunable optical bandgap, narrow spectral width, and high defect tolerance. However, the inhomogeneous halide distribution within individual NCs remains a critical challenge in order to obtain color-stable electroluminescence in mixed-halide systems. Here, we demonstrate a new post-synthetic approach, ligand-assisted solid phase synthesis (LASPS), for the preparation of electroluminescent colloidal NCs of methylammonium (MA) lead halide perovskites, at room temperature. The slow reaction kinetics preserves the morphology, size, and shape in the resulting NCs whose emission covers the entire visible spectral region with photoluminescence (PL) quantum yields (QYs) of up to >90% and colloidal stability up to several months. The LEDs fabricated using the prepared mixed-halide NCs display narrowband electroluminescence (EL) ranging from 476 to 720 nm. The optimized red LEDs exhibit an external quantum efficiency, η ext, of up to 2.65%, with the CIE 1931 color coordinates of (0.705, 0.290), nearly identical to those of the red primary in the recommendation (rec.) 2020 standard (0.708, 0.292).
Collapse
Affiliation(s)
- Simon F Solari
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir Prelog Weg 1 CH-8093 Zürich Switzerland
| | - Sudhir Kumar
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir Prelog Weg 1 CH-8093 Zürich Switzerland
| | - Jakub Jagielski
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir Prelog Weg 1 CH-8093 Zürich Switzerland
| | - Nikolas M Kubo
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir Prelog Weg 1 CH-8093 Zürich Switzerland
| | - Frank Krumeich
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir Prelog Weg 1 CH-8093 Zürich Switzerland
| | - Chih-Jen Shih
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir Prelog Weg 1 CH-8093 Zürich Switzerland
| |
Collapse
|
39
|
Hassan Y, Park JH, Crawford ML, Sadhanala A, Lee J, Sadighian JC, Mosconi E, Shivanna R, Radicchi E, Jeong M, Yang C, Choi H, Park SH, Song MH, De Angelis F, Wong CY, Friend RH, Lee BR, Snaith HJ. Ligand-engineered bandgap stability in mixed-halide perovskite LEDs. Nature 2021; 591:72-77. [PMID: 33658694 DOI: 10.1038/s41586-021-03217-8] [Citation(s) in RCA: 308] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 01/11/2021] [Indexed: 01/31/2023]
Abstract
Lead halide perovskites are promising semiconductors for light-emitting applications because they exhibit bright, bandgap-tunable luminescence with high colour purity1,2. Photoluminescence quantum yields close to unity have been achieved for perovskite nanocrystals across a broad range of emission colours, and light-emitting diodes with external quantum efficiencies exceeding 20 per cent-approaching those of commercial organic light-emitting diodes-have been demonstrated in both the infrared and the green emission channels1,3,4. However, owing to the formation of lower-bandgap iodide-rich domains, efficient and colour-stable red electroluminescence from mixed-halide perovskites has not yet been realized5,6. Here we report the treatment of mixed-halide perovskite nanocrystals with multidentate ligands to suppress halide segregation under electroluminescent operation. We demonstrate colour-stable, red emission centred at 620 nanometres, with an electroluminescence external quantum efficiency of 20.3 per cent. We show that a key function of the ligand treatment is to 'clean' the nanocrystal surface through the removal of lead atoms. Density functional theory calculations reveal that the binding between the ligands and the nanocrystal surface suppresses the formation of iodine Frenkel defects, which in turn inhibits halide segregation. Our work exemplifies how the functionality of metal halide perovskites is extremely sensitive to the nature of the (nano)crystalline surface and presents a route through which to control the formation and migration of surface defects. This is critical to achieve bandgap stability for light emission and could also have a broader impact on other optoelectronic applications-such as photovoltaics-for which bandgap stability is required.
Collapse
Affiliation(s)
- Yasser Hassan
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK.
| | - Jong Hyun Park
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Michael L Crawford
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, USA
| | - Aditya Sadhanala
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK.,Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore, India.,Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Jeongjae Lee
- School of Earth and Environmental Sciences, Seoul National University, Seoul, Republic of Korea
| | - James C Sadighian
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, USA
| | - Edoardo Mosconi
- Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Chimiche 'Giulio Natta' (CNR-SCITEC), Perugia, Italy
| | | | - Eros Radicchi
- Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Chimiche 'Giulio Natta' (CNR-SCITEC), Perugia, Italy.,Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Mingyu Jeong
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Changduk Yang
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Hyosung Choi
- Department of Chemistry, Research Institute for Convergence of Basic Sciences, Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Sung Heum Park
- Department of Physics, Pukyong National University, Busan, Republic of Korea
| | - Myoung Hoon Song
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Filippo De Angelis
- Computational Laboratory for Hybrid/Organic Photovoltaics (CLHYO), Istituto CNR di Scienze e Tecnologie Chimiche 'Giulio Natta' (CNR-SCITEC), Perugia, Italy.,Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy.,CompuNet, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Cathy Y Wong
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, USA. .,Materials Science Institute, University of Oregon, Eugene, OR, USA. .,Oregon Center for Optical, Molecular, and Quantum Science, University of Oregon, Eugene, OR, USA.
| | | | - Bo Ram Lee
- Department of Physics, Pukyong National University, Busan, Republic of Korea.
| | - Henry J Snaith
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK.
| |
Collapse
|
40
|
Perez CM, Ghosh D, Prezhdo O, Tretiak S, Neukirch AJ. Excited-State Properties of Defected Halide Perovskite Quantum Dots: Insights from Computation. J Phys Chem Lett 2021; 12:1005-1011. [PMID: 33470811 DOI: 10.1021/acs.jpclett.0c03317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
CsPbBr3 quantum dots (QDs) have been recently suggested for their application as bright green light-emitting diodes (LEDs); however, their optical properties are yet to be fully understood and characterized. In this work, we utilize time-dependent density functional theory to analyze the ground and excited states of the CsPbBr3 clusters in the presence of various low formation energy vacancy defects. Our study finds that the QD perovskites retain their defect tolerance with limited perturbance to the simulated UV-vis spectra. The exception to this general trend is that Br vacancies must be avoided, as they cause molecular orbital localization, resulting in trap states and lower LED performance. Blinking will likely still plague CsPbBr3 QDs, given that the charged defects critically perturb the spectra via red-shifting and lower absorbance. Our study provides insight into the tunability of CsPbBr3 QDs optical properties by understanding the nature of the electronic excitations and guiding improved development for high-performance LEDs.
Collapse
Affiliation(s)
- Carlos Mora Perez
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Theoretical Physics and Chemistry of Materials, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Dibyajyoti Ghosh
- Theoretical Physics and Chemistry of Materials, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Oleg Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Sergei Tretiak
- Theoretical Physics and Chemistry of Materials, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Amanda J Neukirch
- Theoretical Physics and Chemistry of Materials, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
41
|
Biesold GM, Liang S, Brettmann B, Thadhani N, Kang Z, Lin Z. Tailoring Optical Properties of Luminescent Semiconducting Nanocrystals through Hydrostatic, Anisotropic Static, and Dynamic Pressures. Angew Chem Int Ed Engl 2021; 60:9772-9788. [PMID: 32621404 DOI: 10.1002/anie.202008395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Indexed: 12/25/2022]
Abstract
Luminescent semiconductor nanocrystals are a fascinating class of materials because of their size-dependent emissions. Numerous past studies have demonstrated that semiconductor nanoparticles with radii smaller than their Bohr radius experience quantum confinement and thus size-dependent emissions. Exerting pressure on these nanoparticles represents an additional, more dynamic, strategy to alter their size and shift their emission. The application of pressure results in the lattices becoming strained and the electronic structure altered. In this Minireview, colloidal semiconductor nanocrystals are first introduced. The effects of uniform hydrostatic pressure on the optical properties of metal halide perovskite (ABX3 ), II-VI, III-V, and IV-VI semiconductor nanocrystals are then examined. The optical properties of semiconductor nanocrystals under static and dynamic anisotropic pressure are then summarized. Finally, future research directions and applications utilizing the pressure-dependent optical properties of semiconductor nanocrystals are discussed.
Collapse
Affiliation(s)
- Gill M Biesold
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Shuang Liang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Blair Brettmann
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA.,School of Chemical and Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Naresh Thadhani
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Zhitao Kang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA.,Georgia Tech Research Institute, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Zhiqun Lin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| |
Collapse
|
42
|
A-Site Cation Engineering for Efficient Blue-Emissive Perovskite Light-Emitting Diodes. ENERGIES 2020. [DOI: 10.3390/en13246689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Metal halide perovskites have been investigated for the next-generation light-emitting materials because of their advantages such as high photoluminescence quantum yield (PLQY), excellent color purity, and facile color tunability. Recently, red- and green-emissive perovskite light-emitting diodes (PeLEDs) have shown an external quantum efficiency (EQE) of over 20%, whereas there is still room for improvement for blue emissive PeLEDs. By controlling the halide compositions of chloride (Cl−) and bromide (Br−), the bandgap of perovskites can be easily tuned for blue emission. However, halide segregation easily occurrs in the mixed-halide perovskite under light irradiation and LED operation because of poor phase stability. Here, we explore the effect of A-site cation engineering on the phase stability of the mixed-halide perovskites and find that a judicious selection of low dipole moment A cation (formamidinium or cesium) suppresses the halide segregation. This enables efficient bandgap tuning and electroluminescence stability for sky blue emissive PeLEDs over the current density of 15 mA/cm2.
Collapse
|
43
|
Sadighian JC, Wilson KS, Crawford ML, Wong CY. Evolving Stark Effect During Growth of Perovskite Nanocrystals Measured Using Transient Absorption. Front Chem 2020; 8:585853. [PMID: 33195083 PMCID: PMC7594514 DOI: 10.3389/fchem.2020.585853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 08/28/2020] [Indexed: 12/05/2022] Open
Abstract
Methylammonium lead triiodide (MAPbI3) nanocrystals (NCs) are emerging materials for a range of optoelectronic applications. Photophysical characterization is typically limited to structurally stable NCs owing to the long timescales required for many spectroscopies, preventing the accurate measurement of NCs during growth. This is a particular challenge for non-linear spectroscopies such as transient absorption. Here we report on the use of a novel single-shot transient absorption (SSTA) spectrometer to study MAPbI3 NCs as they grow. Comparing the transient spectra to derivatives of the linear absorbance reveals that photogenerated charge carriers become localized at surface trap states during NC growth, inducing a TA lineshape characteristic of the Stark effect. Observation of this Stark signal shows that the contribution of trapped carriers to the TA signal declines as growth continues, supporting a growth mechanism with increased surface ligation toward the end of NC growth. This work opens the door to the application of time-resolved spectroscopies to NCs in situ, during their synthesis, to provide greater insight into their growth mechanisms and the evolution of their photophysical properties.
Collapse
Affiliation(s)
- James C. Sadighian
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, United States
| | - Kelly S. Wilson
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, United States
| | - Michael L. Crawford
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, United States
| | - Cathy Y. Wong
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, United States
- Oregon Center for Optical, Molecular, and Quantum Science, University of Oregon, Eugene, OR, United States
- Materials Science Institute, University of Oregon, Eugene, OR, United States
| |
Collapse
|
44
|
Deng J, Xun J, Qin Y, Li M, He R. Blue-emitting NH 4+-doped MAPbBr 3 perovskite quantum dots with near unity quantum yield and super stability. Chem Commun (Camb) 2020; 56:11863-11866. [PMID: 33021258 DOI: 10.1039/d0cc04912c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Novel NH4+-doped MA1-x(NH4)xPbBr3 perovskite quantum dots were synthesized at room temperature. The introduction of NH4+ results in larger lattice formation energy and better crystallinity of MA1-x(NH4)xPbBr3, which greatly reduces the defect density and inhibits non-radiative recombinations, and thus helps in achieving excellent stability and near unity blue-emitting photoluminescence quantum yields.
Collapse
Affiliation(s)
- Jidong Deng
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | | | | | | | | |
Collapse
|
45
|
Burlakov VM, Hassan Y, Danaie M, Snaith HJ, Goriely A. Competitive Nucleation Mechanism for CsPbBr 3 Perovskite Nanoplatelet Growth. J Phys Chem Lett 2020; 11:6535-6543. [PMID: 32667805 DOI: 10.1021/acs.jpclett.0c01794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We analyze nucleation-controlled nanocrystal growth in a solution containing surface-binding molecular ligands, which can also nucleate compact layers on the crystal surfaces. We show that, if the critical nucleus size for ligands is larger and the nucleation barrier is lower than those for crystal atoms, the ligands nucleate faster than the atoms on relatively wide crystal facets but much slower, if at all, on narrow facets. Such competitive nucleation of ligands and atoms results in ligands covering predominantly wider facets, thus excluding them from the growth process, and acts as a selection mechanism for the growth of crystals with narrower facets, the so-called nanoplatelets. The theory is confirmed by Monte Carlo simulations and validated experimentally for CsPbBr3 nanoplatelets grown from solution. We find that the anisotropic crystal growth is controlled by the growth temperature and the strength of surface bonding for the passivating molecular ligands.
Collapse
Affiliation(s)
- Victor M Burlakov
- Linacre College, University of Oxford, Oxford, OX1 3JA, U.K
- Mathematical Institute, Woodstock Road, Andrew Wiles Building, University of Oxford, Oxford, OX2 6GG, U.K
| | - Yasser Hassan
- Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, U.K
| | - Mohsen Danaie
- Diamond Light Source Ltd., Electron Physical Science Imaging Centre (ePSIC), Harwell Science & Innovation Campus, Didcot, OX11 0DE, U.K
| | - Henry J Snaith
- Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, U.K
| | - Alain Goriely
- Mathematical Institute, Woodstock Road, Andrew Wiles Building, University of Oxford, Oxford, OX2 6GG, U.K
| |
Collapse
|
46
|
McKenna B, Shivkumar A, Charles B, Evans RC. Synthetic factors affecting the stability of methylammonium lead halide perovskite nanocrystals. NANOSCALE 2020; 12:11694-11702. [PMID: 32441286 DOI: 10.1039/d0nr03227a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lead halide perovskite nanocrystals (PNCs) have emerged as promising candidates for use in optoelectronic devices. Significant focus has been directed towards optimising synthetic conditions to obtain PNCs with tunable emission properties. However, the reproducible production of stable PNC dispersions is also crucial for fabrication and scale-up of these devices using liquid deposition methods. Here, the stability of methylammonium lead halide (MAPbX3 where X = Br, I) PNCs produced via the ligand-assisted reprecipitation process is explored. We have focussed on understanding how different combinations of specific synthetic factors - dilution, halide source and ratio as well as capping-ligand concentration - affect the stability of the resultant PNC dispersion. Photoluminescence spectroscopy, transmission electron microscopy and dynamic light scattering studies revealed that subtle changes in the reaction conditions lead to significant changes in the particle morphology and associated optical properties, often with catastrophic consequences on stability. This study highlights the importance of designing PNC dispersions in order to make more efficient and reliable optoelectronic devices.
Collapse
Affiliation(s)
- Barry McKenna
- School of Chemistry and CRANN, Trinity College, The University of Dublin, Dublin 2, Ireland
| | - Abhinav Shivkumar
- School of Chemistry and CRANN, Trinity College, The University of Dublin, Dublin 2, Ireland
| | - Bethan Charles
- Department of Materials Science & Metallurgy, University of Cambridge, UK.
| | - Rachel C Evans
- Department of Materials Science & Metallurgy, University of Cambridge, UK.
| |
Collapse
|
47
|
Liang H, Yuan F, Johnston A, Gao C, Choubisa H, Gao Y, Wang Y, Sagar LK, Sun B, Li P, Bappi G, Chen B, Li J, Wang Y, Dong Y, Ma D, Gao Y, Liu Y, Yuan M, Saidaminov MI, Hoogland S, Lu Z, Sargent EH. High Color Purity Lead-Free Perovskite Light-Emitting Diodes via Sn Stabilization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903213. [PMID: 32328423 PMCID: PMC7175260 DOI: 10.1002/advs.201903213] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Indexed: 05/20/2023]
Abstract
Perovskite-based light-emitting diodes (PeLEDs) are now approaching the upper limits of external quantum efficiency (EQE); however, their application is currently limited by reliance on lead and by inadequate color purity. The Rec. 2020 requires Commission Internationale de l'Eclairage coordinates of (0.708, 0.292) for red emitters, but present-day perovskite devices only achieve (0.71, 0.28). Here, lead-free PeLEDs are reported with color coordinates of (0.706, 0.294)-the highest purity reported among red PeLEDs. The variation of the emission spectrum is also evaluated as a function of temperature and applied potential, finding that emission redshifts by <3 nm under low temperature and by <0.3 nm V-1 with operating voltage. The prominent oxidation pathway of Sn is identified and this is suppressed with the aid of H3PO2. This strategy prevents the oxidation of the constituent precursors, through both its moderate reducing properties and through its forming complexes with the perovskite that increase the energetic barrier toward Sn oxidation. The H3PO2 additionally seeds crystal growth during film formation, improving film quality. PeLEDs are reported with an EQE of 0.3% and a brightness of 70 cd m-2; this is the record among reported red-emitting, lead-free PeLEDs.
Collapse
Affiliation(s)
- Hongyan Liang
- School of Materials Science and EngineeringTianjin UniversityTianjin300350P. R. China
| | - Fanglong Yuan
- Department of Materials Science and EngineeringUniversity of TorontoTorontoONM5S 3E4Canada
| | - Andrew Johnston
- Department of Electrical and Computer EngineeringUniversity of TorontoTorontoONM5S 3G4Canada
| | - Congcong Gao
- School of Materials Science and EngineeringTianjin UniversityTianjin300350P. R. China
| | - Hitarth Choubisa
- Department of Electrical and Computer EngineeringUniversity of TorontoTorontoONM5S 3G4Canada
| | - Yuan Gao
- Department of Electrical and Computer EngineeringUniversity of TorontoTorontoONM5S 3G4Canada
| | - Ya‐Kun Wang
- Department of Electrical and Computer EngineeringUniversity of TorontoTorontoONM5S 3G4Canada
| | - Laxmi Kishore Sagar
- Department of Electrical and Computer EngineeringUniversity of TorontoTorontoONM5S 3G4Canada
| | - Bin Sun
- Department of Electrical and Computer EngineeringUniversity of TorontoTorontoONM5S 3G4Canada
| | - Peicheng Li
- Department of Materials Science and EngineeringUniversity of TorontoTorontoONM5S 3E4Canada
| | - Golam Bappi
- Department of Electrical and Computer EngineeringUniversity of TorontoTorontoONM5S 3G4Canada
| | - Bin Chen
- Department of Electrical and Computer EngineeringUniversity of TorontoTorontoONM5S 3G4Canada
| | - Jun Li
- Department of Electrical and Computer EngineeringUniversity of TorontoTorontoONM5S 3G4Canada
| | - Yunkun Wang
- State Key Lab for Artificial Microstructure and Mesoscopic PhysicsSchool of PhysicsPeking UniversityBeijing100871China
| | - Yitong Dong
- Department of Electrical and Computer EngineeringUniversity of TorontoTorontoONM5S 3G4Canada
| | - Dongxin Ma
- Department of Electrical and Computer EngineeringUniversity of TorontoTorontoONM5S 3G4Canada
| | - Yunan Gao
- State Key Lab for Artificial Microstructure and Mesoscopic PhysicsSchool of PhysicsPeking UniversityBeijing100871China
| | - Yongchang Liu
- School of Materials Science and EngineeringTianjin UniversityTianjin300350P. R. China
| | - Mingjian Yuan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)College of ChemistryNankai UniversityTianjin300071China
| | - Makhsud I. Saidaminov
- Department of Electrical and Computer EngineeringUniversity of TorontoTorontoONM5S 3G4Canada
| | - Sjoerd Hoogland
- Department of Electrical and Computer EngineeringUniversity of TorontoTorontoONM5S 3G4Canada
| | - Zheng‐Hong Lu
- Department of Materials Science and EngineeringUniversity of TorontoTorontoONM5S 3E4Canada
| | - Edward H. Sargent
- Department of Electrical and Computer EngineeringUniversity of TorontoTorontoONM5S 3G4Canada
| |
Collapse
|
48
|
Zhang X, Gao L, Zhao M, Miao Y, Wang Z, Wang C, Liu P, Xu B, Guo J. Low-temperature direct synthesis of perovskite nanocrystals in water and their application in light-emitting diodes. NANOSCALE 2020; 12:6522-6528. [PMID: 32159195 DOI: 10.1039/c9nr10679k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cesium lead halide perovskite nanocrystals (PNCs) have aroused tremendous research attention because of their excellent optoelectronic properties. Herein, we developed a facile and green low-temperature strategy free of organic solvents, in which only pure water was adopted as the solvent, to synthesize CsPbBr3 NCs. Intriguingly, although formed with the assistance of water, the obtained CsPbBr3 NCs present a cubic crystal structure, photoluminescence quantum yield (PLQY) of 75%, and narrow emission line width for bright green emission. Furthermore, both electroluminescence (EL) and photoluminescence (PL)-based light-emitting diodes (LEDs) present intrinsic green emission originating from the as-prepared CsPbBr3 NCs. Hence, this work offered a novel eco-friendly avenue for the preparation of perovskite NCs for their practical applications in LEDs.
Collapse
Affiliation(s)
- Xuefeng Zhang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Long Gao
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Min Zhao
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Yanqin Miao
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Zhiyuan Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Chengqiang Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Peizhi Liu
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Bingshe Xu
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China. and Materials Institute of Atomic and Molecular Science, Shaanxi University of Science & Technology, Xi'An 710021, China
| | - Junjie Guo
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China.
| |
Collapse
|
49
|
Yang JN, Song Y, Yao JS, Wang KH, Wang JJ, Zhu BS, Yao MM, Rahman SU, Lan YF, Fan FJ, Yao HB. Potassium Bromide Surface Passivation on CsPbI3-xBrx Nanocrystals for Efficient and Stable Pure Red Perovskite Light-Emitting Diodes. J Am Chem Soc 2020; 142:2956-2967. [DOI: 10.1021/jacs.9b11719] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jun-Nan Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Applied Chemistry, Hefei Science Center of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yang Song
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ji-Song Yao
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Applied Chemistry, Hefei Science Center of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Kun-Hua Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Applied Chemistry, Hefei Science Center of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jing-Jing Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Applied Chemistry, Hefei Science Center of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bai-Sheng Zhu
- Department of Applied Chemistry, Hefei Science Center of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ming-Ming Yao
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Applied Chemistry, Hefei Science Center of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Sami Ur Rahman
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yi-Feng Lan
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Feng-Jia Fan
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei, Anhui 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hong-Bin Yao
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Applied Chemistry, Hefei Science Center of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
50
|
Kumar S, Jagielski J, Marcato T, Solari SF, Shih CJ. Understanding the Ligand Effects on Photophysical, Optical, and Electroluminescent Characteristics of Hybrid Lead Halide Perovskite Nanocrystal Solids. J Phys Chem Lett 2019; 10:7560-7567. [PMID: 31736317 PMCID: PMC6926956 DOI: 10.1021/acs.jpclett.9b02950] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
There has been a tremendous amount of interest in developing high-efficiency light-emitting diodes (LEDs) based on colloidal nanocrystals (NCs) of hybrid lead halide perovskites. Here, we systematically investigate the ligand effects on EL characteristics by tuning the hydrophobicity of primary alkylamine ligands used in NC synthesis. By increasing the ligand hydrophobicity, we find (i) a reduced NC size that induces a higher degree of quantum confinement, (ii) a shortened exciton lifetime that increases the photoluminescence quantum yield, (iii) a lowering of refractive index that increases the light outcoupling efficiency, and (iv) an increased thin-film resistivity. Accordingly, ligand engineering allows us to demonstrate high-performance green LEDs exhibiting a maximum external quantum efficiency up to 16.2%. The device operational lifetime, defined by the time lasted when the device luminance reduces to 85% of its initial value, LT85, reaches 243 min at an initial luminance of 516 cd m-2.
Collapse
|