1
|
Goren E, Subramani B, Avram L, Falkovich AH, Perlman O, Bar-Shir A. Harnessing Dynamic Supramolecular Interactions for Lanthanide Detection via Computational Pattern Recognition of Magnetic Resonance Fingerprints. J Am Chem Soc 2025. [PMID: 40389359 DOI: 10.1021/jacs.5c03583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
The reliance of modern technology growth on lanthanides presents dual challenges: securing sustainable sources from natural or recycled materials and reducing environmental harm from waste discharge. However, the similar ionic radii, oxidation states, and binding affinities of Ln3+ ions hinder their nondestructive detection in mixtures. Furthermore, the overlap of spectroscopic signals and the inapplicability for opaque solutions limit the harness of luminescent sensors for differentiating one Ln3+ from another. Here, we introduce 19F-paramagnetic guest exchange saturation transfer magnetic resonance fingerprinting (19F-paraGEST MRF), a rapid signal acquisition, encoding, and analysis approach for detecting specific Ln3+ in mixtures. Based on a small-sized experimental 19F-paraGEST data set, we generated a de novo dictionary of ∼2500 combinations of Ln3+ mixtures, resulting in ∼7,000,000 simulated 19F-paraGEST MRF patterns of different Ln3+ concentrations. This dictionary was later used for computational pattern recognition of experimental NMR signal evolutions ("fingerprints"), utilizing a rapid computational approach executable on a standard laptop within seconds. Hence, fast and reliable multiplexed lanthanide detection in complex mixtures was enabled. Demonstrated through the analysis of lanthanides' content of permanent magnets from a hard disk drive, this MR-based method paves the way for broader applications of lanthanide detection in murky, nontransparent mixtures and further exploration of supramolecular sensors in diverse scenarios.
Collapse
Affiliation(s)
- Elad Goren
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Balamurugan Subramani
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Liat Avram
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Alla H Falkovich
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Or Perlman
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Amnon Bar-Shir
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
2
|
Wang J, Liu X, Li K, Shi T, Xu Q, Peng T, Huang Q, Gao Z, Zhou H, Lu W, Wang J. Design and Evolution of a Phosphorescent Protein via the Proximal Encoding of Lanthanide and the Antenna Chromophore. J Am Chem Soc 2025; 147:15205-15215. [PMID: 40265575 DOI: 10.1021/jacs.5c00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Genetically encoded phosphorescent proteins with extended luminescence lifetimes provide an orthogonal channel for biological imaging and detection. While conventional fluorescent proteins typically exhibit nanosecond-scale lifetimes, the development of proteins with longer lifetimes enables time-resolved detection and enhanced signal-to-noise ratios. Here, we designed a novel phosphorescent protein system by incorporating photosensitizing unnatural amino acids (UAAs) proximal to the metal center of a lanthanide binding protein (LanM). Through systematic optimization of the incorporation sites, we achieved considerable enhancement in lanthanide phosphorescence compared with that of the wild-type LanM protein. The subsequent directed evolution of LanM and chemical evolution of UAA yielded variants with an additional muti-fold increase in signal intensity. This iterative optimization strategy generated phosphorescent proteins with extended lifetimes of up to 500 μs and significantly increased brightness. Using this phosphorescence protein platform, a europium sensor with a signal-to-noise ratio of more than 100 for 200 nM Eu(III) and a detection limit of less than 10 nM was developed. In addition, a protease sensor was further designed by inserting a cleavage site into a loop of the phosphorescent protein, achieving remarkable signal-to-noise ratios at nanomolar concentrations. Finally, this phosphorescent protein was fused to the affibody and further used for immunofluorescence imaging. These applications demonstrated a novel platform for developing genetically encoded sensors with enhanced detection sensitivity through time-resolved measurements.
Collapse
Affiliation(s)
- Jinyu Wang
- Department of Chemistry, College of Science, Guangdong Provincial Key Laboratory of Catalysis, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xingfeng Liu
- Department of Chemistry, College of Science, Guangdong Provincial Key Laboratory of Catalysis, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kaitong Li
- Department of Chemistry, College of Science, Guangdong Provincial Key Laboratory of Catalysis, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tao Shi
- Department of Chemistry, College of Science, Guangdong Provincial Key Laboratory of Catalysis, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qianqian Xu
- Department of Chemistry, College of Science, Guangdong Provincial Key Laboratory of Catalysis, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tiantian Peng
- Department of Chemistry, College of Science, Guangdong Provincial Key Laboratory of Catalysis, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qingjun Huang
- Department of Chemistry, College of Science, Guangdong Provincial Key Laboratory of Catalysis, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ziqi Gao
- Department of Chemistry, College of Science, Guangdong Provincial Key Laboratory of Catalysis, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongqi Zhou
- Department of Chemistry, College of Science, Guangdong Provincial Key Laboratory of Catalysis, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wei Lu
- Department of Chemistry, College of Science, Guangdong Provincial Key Laboratory of Catalysis, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jie Wang
- Department of Chemistry, College of Science, Guangdong Provincial Key Laboratory of Catalysis, Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen 518055, China
- Taizhou Research Institute, Southern University of Science and Technology, Taizhou 318001, China
| |
Collapse
|
3
|
Prejanò M, Tonazzi A, Giangregorio N, Indiveri C, Marino T. Lanthanides Gd and Tm Can Inhibit Carnitine/Acylcarnitine Transporter: Insights from All-Atoms Simulations. Chembiochem 2025; 26:e202401018. [PMID: 39906981 DOI: 10.1002/cbic.202401018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/04/2025] [Accepted: 02/04/2025] [Indexed: 02/06/2025]
Abstract
Recent experimental evidence highlighted the inhibition of carnitine/acylcarnitine carrier (CAC), an important mitochondrial transmembrane protein for living organisms, by the early lanthanide Pr3+. A possible explanation of such a behaviour was found in the preference of the cation for amino acids like aspartate and glutamate containing a carboxylate in the side chain, laying in the inter-membrane space. Interaction of the cation with these residues can cause halt the transfer of the protein's substrates between the matrix and cytoplasm thus opening to new scenarios concerning the CAC-metal interactions and its relative inhibition. In the present work, the panel of metals binding the CAC protein is predictively expanded including Gd3+ and Tm3+, selected as representative species of middle and late lanthanides, respectively. A more realistic membrane-containing model of the protein was built and the comparative analysis of the molecular dynamics (MD) simulations of CAC apo-form with its complexed systems, named CAC-Pr, CAC-Gd and CAC-Tm, was performed. The analysis of the trajectories revealed that the inhibition is caused by the coordination of D132 and E179 to the cations and that such interactions generate a reorganization of important salt-bridges inside the framework of CAC. In detail, MD simulations highlighted that a spontaneous conformational change from cytoplasmatic-state (c-state) to matrix-state (m-state) induced by cations and that, in this condition, the protein channel is occluded, thus explaining the inhibition.
Collapse
Affiliation(s)
- Mario Prejanò
- Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 14/C, 87036, Arcavacata di Rende, CS, Italy
| | - Annamaria Tonazzi
- National Research Council (CNR), Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126, Bari, Italy
| | - Nicola Giangregorio
- National Research Council (CNR), Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126, Bari, Italy
| | - Cesare Indiveri
- National Research Council (CNR), Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126, Bari, Italy
- Laboratory of Biochemistry, Molecular Biotechnology and Molecular Biology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via Bucci 4 C, 87036, Arcavacata di Rende, Italy
| | - Tiziana Marino
- Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 14/C, 87036, Arcavacata di Rende, CS, Italy
| |
Collapse
|
4
|
Lee HD, Grady CJ, Krell K, Strebeck C, Al‐Hilfi A, Ricker B, Linn M, Xin NY, Good NM, Martinez‐Gomez NC, Gilad AA. A novel protein for bioremediation of gadolinium waste. Protein Sci 2025; 34:e70101. [PMID: 40099927 PMCID: PMC11915603 DOI: 10.1002/pro.70101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 02/11/2025] [Accepted: 03/05/2025] [Indexed: 03/20/2025]
Abstract
Several hundreds of tons of gadolinium-based contrast agents (GBCAs) are being dumped into the environment every year. Although macrocyclic GBCAs exhibit superior stability compared to their linear counterparts, we have found that the structural integrity of chelates is susceptible to ultraviolet light, regardless of configuration. In this study, we present a synthetic protein termed GLamouR that binds and reports gadolinium in an intensiometric manner. We then explore the extraction of gadolinium from MRI patient urine as a preventative measure for gadolinium pollution and investigate the viability of employing cost-effective bioremediation techniques for treating contaminated water bodies. Based on promising results, we anticipate proteins such as GLamouR can be used for detecting and mining rare earth elements beyond gadolinium and hope to expand the biological toolbox for such applications.
Collapse
Affiliation(s)
- Harvey D. Lee
- Department of Biomedical EngineeringMichigan State UniversityEast LansingMichiganUSA
| | - Connor J. Grady
- Department of Biomedical EngineeringMichigan State UniversityEast LansingMichiganUSA
| | - Katie Krell
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Cooper Strebeck
- Department of Mechanical EngineeringMichigan State UniversityEast LansingMichiganUSA
| | - Aimen Al‐Hilfi
- Department of Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingMichiganUSA
| | - Brianna Ricker
- Department of Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingMichiganUSA
| | - Melanie Linn
- Department of Small Animal SciencesMichigan State UniversityEast LansingMichiganUSA
| | - Nicole Y. Xin
- Department of Plant and Microbial BiologyUniversity of California, BerkeleyBerkeleyCaliforniaUSA
| | - Nathan M. Good
- Department of Plant and Microbial BiologyUniversity of California, BerkeleyBerkeleyCaliforniaUSA
| | | | - Assaf A. Gilad
- Department of Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingMichiganUSA
- Department of RadiologyMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
5
|
Guo Z, Smutok O, Ronacher C, Aguiar Rocha R, Walden P, Mureev S, Cui Z, Katz E, Scott C, Alexandrov K. Lanthanide-Controlled Protein Switches: Development and In Vitro and In Vivo Applications. Angew Chem Int Ed Engl 2025; 64:e202411584. [PMID: 39856018 PMCID: PMC11848957 DOI: 10.1002/anie.202411584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 01/27/2025]
Abstract
Lanthanides, which are part of the rare earth elements group have numerous applications in electronics, medicine and energy storage. However, our ability to extract them is not meeting the rapidly increasing demand. The discovery of the bacterial periplasmic lanthanide-binding protein lanmodulin spurred significant interest in developing biotechnological routes for lanthanide detection and extraction. Here we report the construction of β-lactamase-lanmodulin chimeras that function as lanthanide-controlled enzymatic switches. Optimized switches demonstrated dynamic ranges approaching 3000-fold and could accurately quantify lanthanide ions in simple colorimetric or electrochemical assays. E.coli cells expressing such chimeras grow on β-lactam antibiotics only in the presence of lanthanide ions. The developed lanthanide-controlled protein switches represent a novel platform for engineering metal-binding proteins for biosensing and microbial engineering.
Collapse
Affiliation(s)
- Zhong Guo
- ARC Centre of Excellence in Synthetic BiologyAustralia
- Centre for Agriculture and the BioeconomyQueensland University of TechnologyBrisbaneQLD4001Australia
- School of Biology and Environmental ScienceQueensland University of TechnologyBrisbaneQLD4001Australia
| | - Oleh Smutok
- Department of Chemistry and Biomolecular ScienceClarkson University8 Clarkson Ave.PotsdamNY13699USA
| | - Chantal Ronacher
- School of Engineering Sciences in ChemistryBiotechnology and HealthKTH Royal Institute of Technology100 44StockholmSweden
| | - Raquel Aguiar Rocha
- ARC Centre of Excellence in Synthetic BiologyAustralia
- CSIRO Advanced Engineering Biology Future Science PlatformBlack Mountain Research & Innovation ParkClunies Ross RoadCanberraACT2601Australia
| | - Patricia Walden
- Centre for Agriculture and the BioeconomyQueensland University of TechnologyBrisbaneQLD4001Australia
- School of Biology and Environmental ScienceQueensland University of TechnologyBrisbaneQLD4001Australia
| | - Sergey Mureev
- Centre for Agriculture and the BioeconomyQueensland University of TechnologyBrisbaneQLD4001Australia
- School of Biology and Environmental ScienceQueensland University of TechnologyBrisbaneQLD4001Australia
| | - Zhenling Cui
- Centre for Agriculture and the BioeconomyQueensland University of TechnologyBrisbaneQLD4001Australia
- School of Biology and Environmental ScienceQueensland University of TechnologyBrisbaneQLD4001Australia
| | - Evgeny Katz
- Department of Chemistry and Biomolecular ScienceClarkson University8 Clarkson Ave.PotsdamNY13699USA
| | - Colin Scott
- ARC Centre of Excellence in Synthetic BiologyAustralia
- CSIRO Advanced Engineering Biology Future Science PlatformBlack Mountain Research & Innovation ParkClunies Ross RoadCanberraACT2601Australia
| | - Kirill Alexandrov
- ARC Centre of Excellence in Synthetic BiologyAustralia
- Centre for Agriculture and the BioeconomyQueensland University of TechnologyBrisbaneQLD4001Australia
- School of Biology and Environmental ScienceQueensland University of TechnologyBrisbaneQLD4001Australia
| |
Collapse
|
6
|
Wang Q, Yu J, Zhong Z, Hui C, Zhang Y, Liu H, Yang L. A lanmodulin-based fluorescent assay for the rapid and sensitive detection of rare earth elements. Analyst 2025; 150:750-759. [PMID: 39844641 DOI: 10.1039/d4an01196a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Sensitive and rapid detection methods for rare earth elements (REEs), including lanthanides (Lns), will facilitate the mining and recovery of these elements. Here, we innovated a rapid, highly selective and sensitive fluorescence detection method for Lns, based on Hans-Lanmodulin, a newly discovered protein with high selectivity and binding affinity for rare earth elements. By labelling the fluorescein moiety FITC onto Hans-Lanmodulin, named as FITC-Hans-LanM. When rare earth ions are present in solution, FITC-Hans-LanM will specifically bind rare earth ions undergoing a conformational change from a disordered state to a dimer, in which the FITC molecules come close to each other, resulting in decreasing fluorescence intensity or even quenching. The assay was responsive to light, medium and heavy rare earth ions. The fluorescence signal has a good linear relationship with Nd3+ concentration in the range of 1-20 nM. The detection limit of the method was 0.512 nM, within 1 min. This method could become a useful technique for the detection and quantification of rare earth elements in environmental and industrial samples.
Collapse
Affiliation(s)
- QiKe Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- Key Laboratory of Green and High-Value Utilization of Salt Lake Resources, State Key Laboratory of Petroleum Molecular & Process Engineering (RIPP, SINOPEC), CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - JieMiao Yu
- Key Laboratory of Green and High-Value Utilization of Salt Lake Resources, State Key Laboratory of Petroleum Molecular & Process Engineering (RIPP, SINOPEC), CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - ZhaoXiang Zhong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Cai Hui
- Key Laboratory of Green and High-Value Utilization of Salt Lake Resources, State Key Laboratory of Petroleum Molecular & Process Engineering (RIPP, SINOPEC), CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Zhang
- National Engineering Research Center for Petroleum Refining Technology and Catalyst, China
| | - Huizhou Liu
- Key Laboratory of Green and High-Value Utilization of Salt Lake Resources, State Key Laboratory of Petroleum Molecular & Process Engineering (RIPP, SINOPEC), CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - LiangRong Yang
- Key Laboratory of Green and High-Value Utilization of Salt Lake Resources, State Key Laboratory of Petroleum Molecular & Process Engineering (RIPP, SINOPEC), CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
7
|
Wait EE, Riley CR, Manginell MM, Peretti A, Spoerke ED, Bachand GD, Rempe SB, Ren P. QM Investigation of Rare Earth Ion Interactions with First Hydration Shell Waters and Protein-Based Coordination Models. J Phys Chem B 2025; 129:1529-1543. [PMID: 39847513 DOI: 10.1021/acs.jpcb.4c07361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Conventional methods for extracting rare earth metals (REMs) from mined mineral ores are inefficient, expensive, and environmentally damaging. Recent discovery of lanmodulin (LanM), a protein that coordinates REMs with high-affinity and selectivity over competing ions, provides inspiration for new REM refinement methods. Here, we used quantum mechanical (QM) methods to investigate trivalent lanthanide cation (Ln3+) interactions with coordination systems representing bulk solvent water and protein binding sites. Energy decomposition analysis (EDA) showed differences in the energetic components of Ln3+ interaction with representatives of solvent (water, H2O) and protein binding sites (acetate, CH3COO-), highlighting the importance of accurate description of electrostatics and polarization in computational modeling of REM interactions with biological and bioinspired molecules. Relative binding free energies were obtained for Ln3+ with coordination complexes originating from binding sites in PDB structures of a lanthanum binding peptide (PDB entry 7CCO) and LanM, with explicit consideration of the first hydration shell waters, according to quasi-chemical theory (QCT). Beyond the first shell, the bulk solvent environment was represented with an implicit continuum model. Ln3+ interactions with (H2O)9 and both binding site models became more favorable, moving down the periodic series. This trend was more pronounced with the protein binding site models than with water, resulting in affinity increasing with periodic number, except for the last REM, Lu3+, which bound less favorably than the preceding element, Yb3+. Using the truncated 7CCO binding site model, the magnitude and trend of the experimental Ln3+ relative binding free energies for the whole 7CCO peptide were reproduced. Conversely, the previously reported experimental data for LanM show a preference for the earlier lanthanides; this is likely due to longer-range interactions and cooperative effects, which are not represented by the reduced models. Using the truncated 7CCO binding site model, the magnitude and trend of the experimental Ln3+ relative binding free energies for the whole 7CCO peptide were reproduced. In contrast to the previously reported experimental data for LanM, the peptide preferentially binds the earlier lanthanides. This difference likely arises due to longer-range interactions and cooperative effects not represented by the peptide. Further investigation of Ln3+ interactions with whole proteins using polarizable molecular mechanics models with explicit solvent is warranted to understand the influence of longer-ranged interactions, cooperativity, and bulk solvent. Nevertheless, the present work provides new insights into Ln3+ interactions with biomolecules and presents an effective computational platform for designing specific single-site REM binding peptides more efficiently.
Collapse
Affiliation(s)
- Elizabeth E Wait
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Christopher R Riley
- Ceramics and Materials Physics, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Monica M Manginell
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Amanda Peretti
- Ceramics and Materials Physics, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Erik D Spoerke
- Energy Storage Technology and Systems, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - George D Bachand
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Susan B Rempe
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Pengyu Ren
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
8
|
Wang J, Kaiyum YA, Li X, Lei H, Johnson PE, Liu J. Kinetic and Affinity Profiling Rare Earth Metals Using a DNA Aptamer. J Am Chem Soc 2025; 147:1831-1839. [PMID: 39743479 DOI: 10.1021/jacs.4c13768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Rare earth elements (REEs) are widely used in various high-tech industries. Developing affinity ligands that can detect and distinguish REEs is at the forefront of analytical chemistry. It is also interesting to understand the limits of natural biomolecules for the recognition of REEs. In this study, Sc3+ was used as a target for the isolation of DNA aptamers, and an aptamer named Sc-1 was obtained. Using a thioflavin T (ThT) fluorescence assay, Sc-1 bound only to REEs, but not other metal ions. Additionally, the binding of Sc-1 to Sc3+ exhibited slow kinetics, and the binding complex resisted dissociation by EDTA. Furthermore, Sc-1 displayed varying binding kinetics with trivalent lanthanide ions, allowing for the discrimination of 17 REEs into three major groups: (1) La3+, Ce3+, Pr3+, Nd3+, Sm3+, Eu3+, and Gd3+; (2) Tb3+, Dy3+, Ho3+, Er3+, Tm3+, Yb3+, Lu3+, and Y3+; and (3) Sc3+. NMR spectroscopy confirmed binding-induced conformational changes in the aptamer. Using the fluorescence strand-displacement method, the true Kd of the aptamer was measured to range from 0.6 to 258.5 nM for the REE ions, and it showed effective detection of Sc3+ in real samples.
Collapse
Affiliation(s)
- Jin Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Yunus A Kaiyum
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Xiangmei Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Philip E Johnson
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
9
|
Yang W, Wu K, Chen H, Huang J, Yu Z. Emerging role of rare earth elements in biomolecular functions. THE ISME JOURNAL 2025; 19:wrae241. [PMID: 39657633 PMCID: PMC11845868 DOI: 10.1093/ismejo/wrae241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/27/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024]
Abstract
The importance of rare earth elements is increasingly recognized due to the increased demand for their mining and separation. This demand is driving research on the biology of rare earth elements. Biomolecules associated with rare earth elements include rare earth element-dependent enzymes (methanol dehydrogenase XoxF, ethanol dehydrogenase ExaF/PedH), rare earth element-binding proteins, and the relevant metallophores. Traditional (chemical) separation methods for rare earth elements harvesting and separation are typically inefficient, while causing environmental problems, whereas bioharvesting, potentially, offers more efficient, more green platforms. Here, we review the current state of research on the biological functions of rare earth element-dependent biomolecules, and the characteristics of the relevant proteins, including the specific amino acids involved in rare earth metal binding. We also provide an outlook at strategies for further understanding of biological processes and the potential applications of rare earth element-dependent enzymes and other biomolecules.
Collapse
Affiliation(s)
- Wenyu Yang
- Human Microbiome and Health Group, Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Kaijuan Wu
- Human Microbiome and Health Group, Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Hao Chen
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Jing Huang
- Human Microbiome and Health Group, Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Zheng Yu
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
10
|
Larrinaga WB, Jung JJ, Lin CY, Boal AK, Cotruvo JA. Modulating metal-centered dimerization of a lanthanide chaperone protein for separation of light lanthanides. Proc Natl Acad Sci U S A 2024; 121:e2410926121. [PMID: 39467132 PMCID: PMC11551332 DOI: 10.1073/pnas.2410926121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/22/2024] [Indexed: 10/30/2024] Open
Abstract
Elucidating details of biology's selective uptake and trafficking of rare earth elements, particularly the lanthanides, has the potential to inspire sustainable biomolecular separations of these essential metals for myriad modern technologies. Here, we biochemically and structurally characterize Methylobacterium (Methylorubrum) extorquens LanD, a periplasmic protein from a bacterial gene cluster for lanthanide uptake. This protein provides only four ligands at its surface-exposed lanthanide-binding site, allowing for metal-centered protein dimerization that favors the largest lanthanide, LaIII. However, the monomer prefers NdIII and SmIII, which are disfavored lanthanides for cellular utilization. Structure-guided mutagenesis of a metal-ligand and an outer-sphere residue weakens metal binding to the LanD monomer and enhances dimerization for PrIII and NdIII by 100-fold. Selective dimerization enriches high-value PrIII and NdIII relative to low-value LaIII and CeIII in an all-aqueous process, achieving higher separation factors than lanmodulins and comparable or better separation factors than common industrial extractants. Finally, we show that LanD interacts with lanmodulin (LanM), a previously characterized periplasmic protein that shares LanD's preference for NdIII and SmIII. Our results suggest that LanD's unusual metal-binding site transfers less-desirable lanthanides to LanM to siphon them away from the pathway for cytosolic import. The properties of LanD show how relatively weak chelators can achieve high selectivity, and they form the basis for the design of protein dimers for separation of adjacent lanthanide pairs and other metal ions.
Collapse
Affiliation(s)
- Wyatt B. Larrinaga
- Department of Chemistry, The Pennsylvania State University, University Park, PA16802
| | - Jonathan J. Jung
- Department of Chemistry, The Pennsylvania State University, University Park, PA16802
| | - Chi-Yun Lin
- Department of Chemistry, The Pennsylvania State University, University Park, PA16802
| | - Amie K. Boal
- Department of Chemistry, The Pennsylvania State University, University Park, PA16802
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA16802
| | - Joseph A. Cotruvo
- Department of Chemistry, The Pennsylvania State University, University Park, PA16802
| |
Collapse
|
11
|
Gorniak L, Bucka SL, Nasr B, Cao J, Hellmann S, Schäfer T, Westermann M, Bechwar J, Wegner CE. Changes in growth, lanthanide binding, and gene expression in Pseudomonas alloputida KT2440 in response to light and heavy lanthanides. mSphere 2024; 9:e0068524. [PMID: 39291981 PMCID: PMC11520305 DOI: 10.1128/msphere.00685-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
Pseudomonas alloputida KT2440 is a ubiquitous, soil-dwelling bacterium that metabolizes recalcitrant and volatile carbon sources. The latter is utilized by two redundant, Ca- and lanthanide (Ln)-dependent, pyrroloquinoline quinone-dependent alcohol dehydrogenases (PQQ ADH), PedE and PedH, whose expression is regulated by Ln availability. P. alloputida KT2440 is the best-studied non-methylotroph in the context of Ln-utilization. Combined with microfluidic cultivation and single-cell elemental analysis, we studied the impact of light and heavy Ln on transcriptome-wide gene expression when growing P. alloputida KT2440 with 2-phenylethanol as the carbon and energy source. Light Ln (La, Ce, and Nd) and a mixture of light and heavy Ln (La, Ce, Nd, Dy, Ho, Er, and Yb) had a positive effect on growth, whereas supplementation with heavy Ln (Dy, Ho, Er, and Yb) exerted fitness costs. These were likely a consequence of mismetallation and non-utilizable Ln interfering with Ln sensing and signaling. The measured amounts of cell-associated Ln varied between elements. Gene expression analysis suggested that the Ln sensing and signaling machinery, the two-component system PedS2R2 and PedH, responds differently to (non-)utilizable Ln. We expanded our understanding of the lanthanide (Ln) switch in P. alloputida KT2440, demonstrating that it adjusts the levels of pedE and pedH transcripts based on the availability of Ln. We propose that the usability of Ln influences the bacterium's response to different Ln elements.IMPORTANCEThe Ln switch, the inverse regulation of Ca- and Ln-dependent PQQ ADH in response to Ln availability in organisms featuring both, is central to our understanding of Ln utilization. Although the preference of bacteria for light Ln is well known, the effect of different Ln, light and heavy, on growth and gene expression has rarely been studied. We provide evidence for a fine-tuning mechanism of Ca- and Ln-dependent PQQ ADH in P. alloputida KT2440 on the transcriptome level. The response to (non-)utilizable Ln differs depending on the element. Ln commonly co-occur in nature. Our findings underline that Ln-utilizing microbes must be able to discriminate between Ln to use them effectively. Considering the prevalence of Ln-dependent proteins in many microbial taxa, more work addressing Ln sensing and signaling is needed. Ln availability likely necessitates different adaptations regarding Ln utilization.
Collapse
Affiliation(s)
- Linda Gorniak
- Institute of Biodiversity, Aquatic Geomicrobiology, Friedrich Schiller University Jena, Jena, Germany
| | - Sarah Luise Bucka
- Institute of Biodiversity, Aquatic Geomicrobiology, Friedrich Schiller University Jena, Jena, Germany
| | - Bayan Nasr
- Department of Physical Chemistry and Microreaction Technology, Institute for Chemistry and Biotechnique, Technische Universität Ilmenau, Ilmenau, Germany
| | - Jialan Cao
- Department of Physical Chemistry and Microreaction Technology, Institute for Chemistry and Biotechnique, Technische Universität Ilmenau, Ilmenau, Germany
| | - Steffen Hellmann
- Institute of Geosciences, Applied Geology, Friedrich Schiller University Jena, Jena, Germany
- International Max Planck Research School for Global Biogeochemical Cycles, Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Thorsten Schäfer
- Institute of Geosciences, Applied Geology, Friedrich Schiller University Jena, Jena, Germany
| | | | - Julia Bechwar
- Institute of Biodiversity, Aquatic Geomicrobiology, Friedrich Schiller University Jena, Jena, Germany
| | - Carl-Eric Wegner
- Institute of Biodiversity, Aquatic Geomicrobiology, Friedrich Schiller University Jena, Jena, Germany
- Bioinorganic Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
12
|
Huang KY, Cardenas L, Ellington AD, Walker DJF. Supercharged fluorescent proteins detect lanthanides via direct antennae signaling. Nat Commun 2024; 15:9200. [PMID: 39448572 PMCID: PMC11502933 DOI: 10.1038/s41467-024-53106-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/28/2024] [Indexed: 10/26/2024] Open
Abstract
A sustainable operation for harvesting metals in the lanthanide series is needed to meet the rising demand for rare earth elements across diverse global industries. However, existing methods are limited in their capacity for detection and capture at environmentally and industrially relevant lanthanide concentrations. Supercharged fluorescent proteins have solvent-exposed, negatively charged residues that potentially create multiple direct chelation pockets for free lanthanide cations. Here, we demonstrate that negatively supercharged proteins can bind and quantitatively report concentrations of lanthanides via an underutilized lanthanide-to-chromophore pathway of energy transfer. The top-performing sensors detect lanthanides in the micromolar to millimolar range and remain unperturbed by environmentally significant concentrations of competing metals. As a demonstration of the versatility and adaptability of this energy transfer method, we show proximity and signal transmission between the lanthanides and a supramolecular assembly of supercharged proteins, paving the way for the detection of lanthanides via programmable protein oligomers and materials.
Collapse
Affiliation(s)
- Kevin Y Huang
- Army Research Laboratory-South, Austin, TX, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA
| | - Lizette Cardenas
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, University of Texas at Austin, Austin, TX, USA
- Bennett Aerospace, Raleigh, NC, USA
| | - Andrew D Ellington
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA
| | - David J F Walker
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA.
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, University of Texas at Austin, Austin, TX, USA.
- Bioconscientia, LLC, Austin, TX, USA.
| |
Collapse
|
13
|
Pramanik S, Li B, Driscoll DM, Johnson KR, Evans BR, Damron JT, Ivanov AS, Jiang DE, Einkauf J, Popovs I, Jansone-Popova S. Tetradentate Ligand's Chameleon-Like Behavior Offers Recognition of Specific Lanthanides. J Am Chem Soc 2024; 146:25669-25679. [PMID: 39136967 PMCID: PMC11421014 DOI: 10.1021/jacs.4c07332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The surging demand for high-purity individual lanthanides necessitates the development of novel and exceptionally selective separation strategies. At the heart of these separation systems is an organic compound that, based on its structural features, selectively recognizes the lighter or heavier lanthanides in the trivalent lanthanide (Ln) series. This work emphasizes the significant implications resulting from modifying the donor group configuration within an N,O-based tetradentate ligand and the changes in the solvation environment of Ln ions in the process of separating Lns, with the unique ability to achieve peak selectivity in the light, medium, and heavy Ln regions. The structural rigidity of the bis-lactam-1,10-phenanthroline ligand enforces size-based selectivity, displaying an exceptional affinity for Lns having larger ionic radii such as La. Modifying the ligand by eliminating one preorganization element (phenanthroline → bipyridine) results in the fast formation of complexes with light Lns, but, in the span of hours, the peak selectivity shifts toward middle Ln (Sm), resulting in time-resolved separation. As expected, at low nitric acid concentrations, the neutral tetradentate ligand complexes with Ln3+ ions. However, the change in extraction mechanism is observed at high nitric acid concentrations, leading to the formation and preferential extraction of anionic heavy Ln species, [Ln(NO3)x+3]x-, that self-assemble with two ligands that have undergone protonation, forming intricate supramolecular architectures. The tetradentate ligand that is structurally balanced with restrictive and unrestrictive motifs demonstrates unique, controllable selectivity for light, middle, and heavy Lns, underscoring the pivotal role of solvation and ion interactions within the first and second coordination spheres.
Collapse
Affiliation(s)
- Subhamay Pramanik
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Bo Li
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Darren M Driscoll
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Katherine R Johnson
- Nuclear Energy and Fuel Cycle Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Barbara R Evans
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Joshua T Damron
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Alexander S Ivanov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - De-En Jiang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jeffrey Einkauf
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Ilja Popovs
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Santa Jansone-Popova
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
14
|
Xin W, Cui Y, Qian Y, Liu T, Kong XY, Ling H, Chen W, Zhang Z, Hu Y, Jiang L, Wen L. High-efficiency dysprosium-ion extraction enabled by a biomimetic nanofluidic channel. Nat Commun 2024; 15:5876. [PMID: 38997277 PMCID: PMC11245470 DOI: 10.1038/s41467-024-50237-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
Biological ion channels exhibit high selectivity and permeability of ions because of their asymmetrical pore structures and surface chemistries. Here, we demonstrate a biomimetic nanofluidic channel (BNC) with an asymmetrical structure and glycyl-L-proline (GLP) -functionalization for ultrafast, selective, and unidirectional Dy3+ extraction over other lanthanide (Ln3+) ions with very similar electronic configurations. The selective extraction mainly depends on the amplified chemical affinity differences between the Ln3+ ions and GLPs in nanoconfinement. In particular, the conductivities of Ln3+ ions across the BNC even reach up to two orders of magnitude higher than in a bulk solution, and a high Dy3+/Nd3+ selectivity of approximately 60 could be achieved. The designed BNC can effectively extract Dy3+ ions with ultralow concentrations and thereby purify Nd3+ ions to an ultimate content of 99.8 wt.%, which contribute to the recycling of rare earth resources and environmental protection. Theoretical simulations reveal that the BNC preferentially binds to Dy3+ ion due to its highest affinity among Ln3+ ions in nanoconfinement, which attributes to the coupling of ion radius and coordination matching. These findings suggest that BNC-based ion selectivity system provides alternative routes to achieving highly efficient lanthanide separation.
Collapse
Affiliation(s)
- Weiwen Xin
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Yanglansen Cui
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Yongchao Qian
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Tianchi Liu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Xiang-Yu Kong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, PR China.
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, PR China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, PR China.
| | - Haoyang Ling
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Weipeng Chen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Zhehua Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yuhao Hu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, PR China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, PR China
| | - Liping Wen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, PR China.
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, PR China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, PR China.
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, PR China.
| |
Collapse
|
15
|
Subach OM, Piatkevich KD, Subach FV. NeMeHg, genetically encoded indicator for mercury ions based on mNeonGreen green fluorescent protein and merP protein from Shigella flexneri. Front Bioeng Biotechnol 2024; 12:1407874. [PMID: 39050684 PMCID: PMC11266101 DOI: 10.3389/fbioe.2024.1407874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/29/2024] [Indexed: 07/27/2024] Open
Abstract
The detection of mercury ions is an important task in both environmental monitoring and cell biology research. However, existing genetically encoded sensors for mercury ions have certain limitations, such as negative fluorescence response, narrow dynamic range, or the need for cofactor supplementation. To address these limitations, we have developed novel sensors by fusing a circularly permutated version of the mNeonGreen green fluorescent protein with the merP mercury-binding protein from Gram-negative bacteria Shigella flexneri. The developed NeMeHg and iNeMeHg sensors responded to mercury ions with positive and negative fluorescence changes, respectively. We characterized their properties in vitro. Using the developed biosensors, we were able to successfully visualize changes in mercury ion concentration in mammalian cultured cells.
Collapse
Affiliation(s)
- Oksana M. Subach
- Complex of NBICS Technologies, National Research Center, Kurchatov Institute, Moscow, Russia
| | - Kiryl D. Piatkevich
- School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Fedor V. Subach
- Complex of NBICS Technologies, National Research Center, Kurchatov Institute, Moscow, Russia
| |
Collapse
|
16
|
Rocha RA, Alexandrov K, Scott C. Rare earth elements in biology: From biochemical curiosity to solutions for extractive industries. Microb Biotechnol 2024; 17:e14503. [PMID: 38829373 PMCID: PMC11146143 DOI: 10.1111/1751-7915.14503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/28/2024] [Accepted: 05/11/2024] [Indexed: 06/05/2024] Open
Abstract
Rare earth elements (REEs) are critical for our modern lifestyles and the transition to a low-carbon economy. Recent advances in our understanding of the role of REEs in biology, particularly methylotrophy, have provided opportunities to explore biotechnological innovations to improve REE mining and recycling. In addition to bacterial accumulation and concentration of REEs, biological REE binders, including proteins (lanmodulin, lanpepsy) and small molecules (metallophores and cofactors) have been identified that enable REE concentration and separation. REE-binding proteins have also been used in several mechanistically distinct REE biosensors, which have potential application in mining and medicine. Notably, the role of REEs in biology has only been known for a decade, suggesting their considerable scope for developing new understanding and novel applications.
Collapse
Affiliation(s)
- Raquel A. Rocha
- ARC Centre of Excellence in Synthetic BiologyCanberraAustralian Capital TerritoryAustralia
- CSIRO Advanced Engineering Biology Future Science Platform, Black Mountain Science and Innovation ParkCanberraAustralian Capital TerritoryAustralia
| | - Kirill Alexandrov
- ARC Centre of Excellence in Synthetic BiologyCanberraAustralian Capital TerritoryAustralia
- Centre for Agriculture and the BioeconomyQueensland University of TechnologyBrisbaneQueenslandAustralia
- School of Biology and Environmental ScienceQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Colin Scott
- ARC Centre of Excellence in Synthetic BiologyCanberraAustralian Capital TerritoryAustralia
- CSIRO Advanced Engineering Biology Future Science Platform, Black Mountain Science and Innovation ParkCanberraAustralian Capital TerritoryAustralia
| |
Collapse
|
17
|
Alasadi EA, Choi W, Chen X, Cotruvo JA, Baiz CR. Lanmodulin's EF 2-3 Domain: Insights from Infrared Spectroscopy and Simulations. ACS Chem Biol 2024; 19:1056-1065. [PMID: 38620063 DOI: 10.1021/acschembio.3c00789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Lanmodulins are small, ∼110-residue proteins with four EF-hand motifs that demonstrate a picomolar affinity for lanthanide ions, making them efficient in the recovery and separation of these technologically important metals. In this study, we examine the thermodynamic and structural complexities of lanthanide ion binding to a 41-residue domain, EF 2-3, that constitutes the two highest-affinity metal-binding sites in the lanmodulin protein from Methylorubrum extorquens. Using a combination of circular dichroism (CD) spectroscopy, isothermal titration calorimetry (ITC), two-dimensional infrared (2D IR) spectroscopy, and molecular dynamics (MD) simulations, we characterize the metal binding capabilities of EF 2-3. ITC demonstrates that binding occurs between peptide and lanthanides with conditional dissociation constants (Kd) in the range 20-30 μM, with no significant differences in the Kd values for La3+, Eu3+, and Tb3+ at pH 7.4. In addition, CD spectroscopy suggests that only one binding site of EF 2-3 undergoes a significant conformational change in the presence of lanthanides. 2D IR spectroscopy demonstrates the presence of both mono- and bidentate binding configurations in EF 2-3 with all three lanthanides. MD simulations, supported by Eu3+ luminescence measurements, explore these results, suggesting a competition between water-lanthanide and carboxylate-lanthanide interactions in the EF 2-3 domain. These results underscore the role of the core helical bundle of the protein architecture in influencing binding affinities and communication between the metal-binding sites in the full-length protein.
Collapse
Affiliation(s)
- Eman A Alasadi
- Department of Chemistry, University of Texas at Austin, 105 E 24th St. A5300, Austin, Texas 78712, United States
| | - Wonseok Choi
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Xiaobing Chen
- Department of Chemistry, University of Texas at Austin, 105 E 24th St. A5300, Austin, Texas 78712, United States
| | - Joseph A Cotruvo
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Carlos R Baiz
- Department of Chemistry, University of Texas at Austin, 105 E 24th St. A5300, Austin, Texas 78712, United States
| |
Collapse
|
18
|
Hussain Z, Dwivedi D, Kwon I. Recovery of rare earth elements from low-grade coal fly ash using a recyclable protein biosorbent. Front Bioeng Biotechnol 2024; 12:1385845. [PMID: 38817924 PMCID: PMC11137179 DOI: 10.3389/fbioe.2024.1385845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/24/2024] [Indexed: 06/01/2024] Open
Abstract
Rare earth elements (REEs), including those in the lanthanide series, are crucial components essential for clean energy transitions, but they originate from geographically limited regions. Exploiting new and diverse supply sources is vital to facilitating a clean energy future. Hence, we explored the recovery of REEs from coal fly ash (FA), a complex, low-grade industrial feedstock that is currently underutilized (leachate concentrations of REEs in FA are < 0.003 mol%). Herein, we demonstrated the thermo-responsive genetically encoded REE-selective elastin-like polypeptides (RELPs) as a recyclable bioengineered protein adsorbent for the selective retrieval of REEs from coal fly ash over multiple cycles. The results showed that RELPs could be efficiently separated using temperature cycling and reused with high stability, as they retained ∼95% of their initial REE binding capacity even after four cycles. Moreover, RELPs selectively recovered high-purity REEs from the simulated solution containing one representative REE in the range of 0.0001-0.005 mol%, resulting in up to a 100,000-fold increase in REE purity. This study offers a sustainable approach to diversifying REE supplies by recovering REEs from low-grade coal fly ash in industrial wastes and provides a scientific basis for the extraction of high-purity REEs for industrial purposes.
Collapse
Affiliation(s)
| | | | - Inchan Kwon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| |
Collapse
|
19
|
Jensen GC, Janis MK, Nguyen HN, David OW, Zastrow ML. Fluorescent Protein-Based Sensors for Detecting Essential Metal Ions across the Tree of Life. ACS Sens 2024; 9:1622-1643. [PMID: 38587931 PMCID: PMC11073808 DOI: 10.1021/acssensors.3c02695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Genetically encoded fluorescent metal ion sensors are powerful tools for elucidating metal dynamics in living systems. Over the last 25 years since the first examples of genetically encoded fluorescent protein-based calcium indicators, this toolbox of probes has expanded to include other essential and non-essential metal ions. Collectively, these tools have illuminated fundamental aspects of metal homeostasis and trafficking that are crucial to fields ranging from neurobiology to human nutrition. Despite these advances, much of the application of metal ion sensors remains limited to mammalian cells and tissues and a limited number of essential metals. Applications beyond mammalian systems and in vivo applications in living organisms have primarily used genetically encoded calcium ion sensors. The aim of this Perspective is to provide, with the support of historical and recent literature, an updated and critical view of the design and use of fluorescent protein-based sensors for detecting essential metal ions in various organisms. We highlight the historical progress and achievements with calcium sensors and discuss more recent advances and opportunities for the detection of other essential metal ions. We also discuss outstanding challenges in the field and directions for future studies, including detecting a wider variety of metal ions, developing and implementing a broader spectral range of sensors for multiplexing experiments, and applying sensors to a wider range of single- and multi-species biological systems.
Collapse
Affiliation(s)
- Gary C Jensen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Makena K Janis
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Hazel N Nguyen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Ogonna W David
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Melissa L Zastrow
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
20
|
Jones E, Su Y, Sander C, Justman QA, Springer M, Silver PA. LanTERN: A Fluorescent Sensor That Specifically Responds to Lanthanides. ACS Synth Biol 2024; 13:958-962. [PMID: 38377571 PMCID: PMC10949232 DOI: 10.1021/acssynbio.3c00600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/10/2024] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
Lanthanides, a series of 15 f-block elements, are crucial in modern technology, and their purification by conventional chemical means comes at a significant environmental cost. Synthetic biology offers promising solutions. However, progress in developing synthetic biology approaches is bottlenecked because it is challenging to measure lanthanide binding with current biochemical tools. Here we introduce LanTERN, a lanthanide-responsive fluorescent protein. LanTERN was designed based on GCaMP, a genetically encoded calcium indicator that couples the ion binding of four EF hand motifs to increased GFP fluorescence. We engineered eight mutations across the parent construct's four EF hand motifs to switch specificity from calcium to lanthanides. The resulting protein, LanTERN, directly converts the binding of 10 measured lanthanides to 14-fold or greater increased fluorescence. LanTERN development opens new avenues for creating improved lanthanide-binding proteins and biosensing systems.
Collapse
Affiliation(s)
- Ethan
M. Jones
- Department
of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - Yang Su
- Department
of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Chris Sander
- Department
of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Quincey A. Justman
- Department
of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Michael Springer
- Department
of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - Pamela A. Silver
- Department
of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| |
Collapse
|
21
|
Zheng K, Ma P. Recent advances in lanthanide-based POMs for photoluminescent applications. Dalton Trans 2024; 53:3949-3958. [PMID: 38295380 DOI: 10.1039/d3dt03999d] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Since the first formation of the famous "Peacock-Weakley" anions [Ln(W5O18)2]8/9-, a steady stream of breakthroughs have been made in the chemistry of multitalented lanthanide (Ln)-based polyoxometalates (POMs) for their potentially desirable properties. In particular, LnIII ions are generally recognised as the "vitamins of the modern industry" owing to their ability to cover a wide emission range, endowing Ln-based POMs with great potential for versatile and diverse luminescence-related applications. In this frontier, we discuss the synthesis strategies and intramolecular energy transfer in Ln-based POM derivatives. Then, the progressive improvements achieved with Ln-based POMs in photoluminescence applications are highlighted, focusing mainly on luminescent and fluorescent probes. Finally, the challenges for Ln-based POM materials for photoluminescence applications are discussed.
Collapse
Affiliation(s)
- Kangting Zheng
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China.
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China.
| |
Collapse
|
22
|
Qian X, Ma C, Zhang H, Liu K. Bioseparation of rare earth elements and high value-added biomaterials applications. Bioorg Chem 2024; 143:107040. [PMID: 38141331 DOI: 10.1016/j.bioorg.2023.107040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/24/2023] [Accepted: 12/15/2023] [Indexed: 12/25/2023]
Abstract
Rare earth elements (REEs) are a group of critical minerals and extensively employed in new material manufacturing. However, separation of lanthanides is difficult because of their similar chemical natures. Current lanthanide leaching and separation methods require hazardous compounds, resulting in severe environmental concerns. Bioprocessing of lanthanides offers an emerging class of tools for REE separation due to mild leaching conditions and highly selective separation scenarios. In the course of biopreparation, engineered microbes not only dissolve REEs from ores but also allow for selective separation of the lanthanides. In this review, we present an overview of recent advances in microbes and proteins used for the biomanufacturing of lanthanides and discuss high value-added applications of REE-derived biomaterials. We begin by introducing the fundamental interactions between natural microbes and REEs. Then we discuss the rational design of chassis microbes for bioleaching and biosorption. We also highlight the investigations on REE binding proteins and their applications in the synthesis of high value-added biomaterials. Finally, future opportunities and challenges for the development of next generation lanthanide-binding biological systems are discussed.
Collapse
Affiliation(s)
- Xining Qian
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Chao Ma
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China; Xiangfu Laboratory, Building 5, No.828 Zhongxing Road, Xitang Town, Jiashan, Jiaxing, Zhejiang 314102, China.
| | - Hongjie Zhang
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China; Xiangfu Laboratory, Building 5, No.828 Zhongxing Road, Xitang Town, Jiashan, Jiaxing, Zhejiang 314102, China
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China; Xiangfu Laboratory, Building 5, No.828 Zhongxing Road, Xitang Town, Jiashan, Jiaxing, Zhejiang 314102, China
| |
Collapse
|
23
|
Larrinaga WB, Cotruvo JA, Worrell BT, Eaton SS, Eaton GR. Electron Paramagnetic Resonance, Electronic Ground State, and Electron Spin Relaxation of Seven Lanthanide Ions Bound to Lanmodulin and the Bioinspired Chelator, 3,4,3-LI(1,2-HOPO). Chemistry 2023; 29:e202303215. [PMID: 37802965 DOI: 10.1002/chem.202303215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/08/2023]
Abstract
The electron paramagnetic resonance (EPR) spectra of lanthanide(III) ions besides Gd3+ , bound to small-molecule and protein chelators, are uncharacterized. Here, the EPR properties of 7 lanthanide(III) ions bound to the natural lanthanide-binding protein, lanmodulin (LanM), and the synthetic small-molecule chelator, 3,4,3-LI(1,2-HOPO) ("HOPO"), were systematically investigated. Echo-detected pulsed EPR spectra reveal intense signals from ions for which the normal continuous-wave first-derivative spectra are negligibly different from zero. Spectra of Kramers lanthanide ions Ce3+ , Nd3+ , Sm3+ , Er3+ , and Yb3+ , and non-Kramers Tb3+ and Tm3+ , bound to LanM are more similar to the ions in dilute aqueous:ethanol solution than to those coordinated with HOPO. Lanmodulins from two bacteria, with distinct metal-binding sites, had similar spectra for Tb3+ but different spectra for Nd3+ . Spin echo dephasing rates (1/Tm ) are faster for lanthanides than for most transition metals and limited detection of echoes to temperatures below ~6 to 12 K. Dephasing rates were environment dependent and decreased in the order water:ethanol>LanM>HOPO, which is attributed to decreasing librational motion. These results demonstrate that the EPR spectra and relaxation times of lanthanide(III) ions are sensitive to coordination environment, motivating wider application of these methods for characterization of both small-molecule and biomolecule interactions with lanthanides.
Collapse
Affiliation(s)
- Wyatt B Larrinaga
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States
| | - Joseph A Cotruvo
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States
| | - Brady T Worrell
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, 80208, United States
| | - Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, 80208, United States
| | - Gareth R Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, 80208, United States
| |
Collapse
|
24
|
Gorniak L, Bechwar J, Westermann M, Steiniger F, Wegner CE. Different lanthanide elements induce strong gene expression changes in a lanthanide-accumulating methylotroph. Microbiol Spectr 2023; 11:e0086723. [PMID: 37909735 PMCID: PMC10848612 DOI: 10.1128/spectrum.00867-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Since its discovery, Ln-dependent metabolism in bacteria attracted a lot of attention due to its bio-metallurgical application potential regarding Ln recycling and circular economy. The physiological role of Ln is mostly studied dependent on presence and absence. Comparisons of how different (utilizable) Ln affect metabolism have rarely been done. We noticed unexpectedly pronounced changes in gene expression caused by different Ln supplementation. Our research suggests that strain RH AL1 distinguishes different Ln elements and that the effect of Ln reaches into many aspects of metabolism, for instance, chemotaxis, motility, and polyhydroxyalkanoate metabolism. Our findings regarding Ln accumulation suggest a distinction between individual Ln elements and provide insights relating to intracellular Ln homeostasis. Understanding comprehensively how microbes distinguish and handle different Ln elements is key for turning knowledge into application regarding Ln-centered biometallurgy.
Collapse
Affiliation(s)
- Linda Gorniak
- Institute of Biodiversity, Aquatic Geomicrobiology, Friedrich Schiller University, Jena, Germany
| | - Julia Bechwar
- Institute of Biodiversity, Aquatic Geomicrobiology, Friedrich Schiller University, Jena, Germany
| | | | - Frank Steiniger
- Electron Microscopy Center, Jena University Hospital, Jena, Germany
| | - Carl-Eric Wegner
- Institute of Biodiversity, Aquatic Geomicrobiology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
25
|
Deblonde GJP, Morrison K, Mattocks JA, Cotruvo JA, Zavarin M, Kersting AB. Impact of a Biological Chelator, Lanmodulin, on Minor Actinide Aqueous Speciation and Transport in the Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20830-20843. [PMID: 37897703 DOI: 10.1021/acs.est.3c06033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
Minor actinides are major contributors to the long-term radiotoxicity of nuclear fuels and other radioactive wastes. In this context, understanding their interactions with natural chelators and minerals is key to evaluating their transport behavior in the environment. The lanmodulin family of metalloproteins is produced by ubiquitous bacteria and Methylorubrum extorquens lanmodulin (LanM) was recently identified as one of nature's most selective chelators for trivalent f-elements. Herein, we investigated the behavior of neptunium, americium, and curium in the presence of LanM, carbonate ions, and common minerals (calcite, montmorillonite, quartz, and kaolinite). We show that LanM's aqueous complexes with Am(III) and Cm(III) remain stable in carbonate-bicarbonate solutions. Furthermore, the sorption of Am(III) to these minerals is strongly impacted by LanM, while Np(V) sorption is not. With calcite, even a submicromolar concentration of LanM leads to a significant reduction in the Am(III) distribution coefficient (Kd, from >104 to ∼102 mL/g at pH 8.5), rendering it even more mobile than Np(V). Thus, LanM-type chelators can potentially increase the mobility of trivalent actinides and lanthanide fission products under environmentally relevant conditions. Monitoring biological chelators, including metalloproteins, and their biogenerators should therefore be considered during the evaluation of radioactive waste repository sites and the risk assessment of contaminated sites.
Collapse
Affiliation(s)
- Gauthier J-P Deblonde
- Physical and Life Sciences Directorate, Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Keith Morrison
- Physical and Life Sciences Directorate, Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Joseph A Mattocks
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Joseph A Cotruvo
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mavrik Zavarin
- Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Annie B Kersting
- Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
26
|
Chen J, Shi W, Ren Y, Zhao K, Liu Y, Jia B, Zhao L, Li M, Liu Y, Su J, Ma C, Wang F, Sun J, Tian Y, Li J, Zhang H, Liu K. Strong Protein Adhesives through Lanthanide-enhanced Structure Folding and Stack Density. Angew Chem Int Ed Engl 2023; 62:e202304483. [PMID: 37670725 DOI: 10.1002/anie.202304483] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/07/2023]
Abstract
Generating strong adhesion by engineered proteins has the potential for high technical applications. Current studies of adhesive proteins are primarily limited to marine organisms, e.g., mussel adhesive proteins. Here, we present a modular engineering strategy to generate a type of exotic protein adhesives with super strong adhesion behaviors. In the protein complexes, the lanmodulin (LanM) underwent α-helical conformational transition induced by lanthanides, thereby enhancing the stacking density and molecular interactions of adhesive protein. The resulting adhesives exhibited outstanding lap-shear strength of ≈31.7 MPa, surpassing many supramolecular and polymer adhesives. The extreme temperature (-196 to 200 °C) resistance capacity and underwater adhesion performance can significantly broaden their practical application scenarios. Ex vivo and in vivo experiments further demonstrated the persistent adhesion performance for surgical sealing and healing applications.
Collapse
Affiliation(s)
- Jing Chen
- Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Weiwei Shi
- Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yubin Ren
- Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Kelu Zhao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yangyi Liu
- Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Jia
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Lai Zhao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Ming Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yawei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Juanjuan Su
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Ma
- Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jing Sun
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Yang Tian
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Hongjie Zhang
- Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Xiangfu Laboratory, Jiaxing, 314102, China
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Xiangfu Laboratory, Jiaxing, 314102, China
| |
Collapse
|
27
|
Martin KE, Mattocks JA, Śmiłowicz D, Aluicio-Sarduy E, Whetter JN, Engle JW, Cotruvo JA, Boros E. Radiolabeling and in vivo evaluation of lanmodulin with biomedically relevant lanthanide isotopes. RSC Chem Biol 2023; 4:414-421. [PMID: 37292057 PMCID: PMC10246553 DOI: 10.1039/d3cb00020f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/04/2023] [Indexed: 06/10/2023] Open
Abstract
Short-lived, radioactive lanthanides comprise an emerging class of radioisotopes attractive for biomedical imaging and therapy applications. To deliver such isotopes to target tissues, they must be appended to entities that target antigens overexpressed on the target cell's surface. However, the thermally sensitive nature of biomolecule-derived targeting vectors requires the incorporation of these isotopes without the use of denaturing temperatures or extreme pH conditions; chelating systems that can capture large radioisotopes under mild conditions are therefore highly desirable. Herein, we demonstrate the successful radiolabeling of the lanthanide-binding protein, lanmodulin (LanM), with medicinally relevant radioisotopes: 177Lu, 132/135La and 89Zr. Radiolabeling of the endogenous metal-binding sites of LanM, as well exogenous labeling of a protein-appended chelator, was successfully conducted at 25 °C and pH 7 with radiochemical yields ranging from 20-82%. The corresponding radiolabeled constructs possess good formulation stability in pH 7 MOPS buffer over 24 hours (>98%) in the presence of 2 equivalents of natLa carrier. In vivo experiments with [177Lu]-LanM, [132/135La]-LanM, and a prostate cancer targeting-vector linked conjugate, [132/135La]-LanM-PSMA, reveal that endogenously labeled constructs produce bone uptake in vivo. Exogenous, chelator-tag mediated radiolabeling to produce [89Zr]-DFO-LanM enables further study of the protein's in vivo behavior, demonstrating low bone and liver uptake, and renal clearance of the protein itself. While these results indicate that additional stabilization of LanM is required, this study establishes precedence for the radiochemical labeling of LanM with medically relevant lanthanide radioisotopes.
Collapse
Affiliation(s)
- Kirsten E Martin
- Department of Chemistry, Stony Brook University, Stony Brook New York 11794 USA
| | - Joseph A Mattocks
- Department of Chemistry, The Pennsylvania State University, University Park Pennsylvania 16802 USA
| | - Dariusz Śmiłowicz
- Department of Chemistry, Stony Brook University, Stony Brook New York 11794 USA
| | - Eduardo Aluicio-Sarduy
- Department of Medical Physics, University of Wisconsin Madison Wisconsin 53705 USA
- Department of Radiology, University of Wisconsin Madison Wisconsin 53705 USA
| | - Jennifer N Whetter
- Department of Chemistry, Stony Brook University, Stony Brook New York 11794 USA
| | - Jonathan W Engle
- Department of Medical Physics, University of Wisconsin Madison Wisconsin 53705 USA
- Department of Radiology, University of Wisconsin Madison Wisconsin 53705 USA
| | - Joseph A Cotruvo
- Department of Chemistry, The Pennsylvania State University, University Park Pennsylvania 16802 USA
| | - Eszter Boros
- Department of Chemistry, Stony Brook University, Stony Brook New York 11794 USA
| |
Collapse
|
28
|
Mattocks JA, Jung JJ, Lin CY, Dong Z, Yennawar NH, Featherston ER, Kang-Yun CS, Hamilton TA, Park DM, Boal AK, Cotruvo JA. Enhanced rare-earth separation with a metal-sensitive lanmodulin dimer. Nature 2023; 618:87-93. [PMID: 37259003 PMCID: PMC10232371 DOI: 10.1038/s41586-023-05945-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/13/2023] [Indexed: 06/02/2023]
Abstract
Technologically critical rare-earth elements are notoriously difficult to separate, owing to their subtle differences in ionic radius and coordination number1-3. The natural lanthanide-binding protein lanmodulin (LanM)4,5 is a sustainable alternative to conventional solvent-extraction-based separation6. Here we characterize a new LanM, from Hansschlegelia quercus (Hans-LanM), with an oligomeric state sensitive to rare-earth ionic radius, the lanthanum(III)-induced dimer being >100-fold tighter than the dysprosium(III)-induced dimer. X-ray crystal structures illustrate how picometre-scale differences in radius between lanthanum(III) and dysprosium(III) are propagated to Hans-LanM's quaternary structure through a carboxylate shift that rearranges a second-sphere hydrogen-bonding network. Comparison to the prototypal LanM from Methylorubrum extorquens reveals distinct metal coordination strategies, rationalizing Hans-LanM's greater selectivity within the rare-earth elements. Finally, structure-guided mutagenesis of a key residue at the Hans-LanM dimer interface modulates dimerization in solution and enables single-stage, column-based separation of a neodymium(III)/dysprosium(III) mixture to >98% individual element purities. This work showcases the natural diversity of selective lanthanide recognition motifs, and it reveals rare-earth-sensitive dimerization as a biological principle by which to tune the performance of biomolecule-based separation processes.
Collapse
Affiliation(s)
- Joseph A Mattocks
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Jonathan J Jung
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Chi-Yun Lin
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Ziye Dong
- Critical Materials Institute, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Neela H Yennawar
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Emily R Featherston
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Christina S Kang-Yun
- Critical Materials Institute, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Timothy A Hamilton
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Dan M Park
- Critical Materials Institute, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.
| | - Amie K Boal
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA.
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA.
| | - Joseph A Cotruvo
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
29
|
Torres-Ocampo AP, Palmer AE. Genetically encoded fluorescent sensors for metals in biology. Curr Opin Chem Biol 2023; 74:102284. [PMID: 36917910 PMCID: PMC10573084 DOI: 10.1016/j.cbpa.2023.102284] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/30/2023] [Accepted: 02/10/2023] [Indexed: 03/14/2023]
Abstract
Metal ions intersect a wide range of biological processes. Some metal ions are essential and hence absolutely required for the growth and health of an organism, others are toxic and there is great interest in understanding mechanisms of toxicity. Genetically encoded fluorescent sensors are powerful tools that enable the visualization, quantification, and tracking of dynamics of metal ions in biological systems. Here, we review recent advances in the development of genetically encoded fluorescent sensors for metal ions. We broadly focus on 5 classes of sensors: single fluorescent protein, FRET-based, chemigenetic, DNAzymes, and RNA-based. We highlight recent developments in the past few years and where these developments stand concerning the rest of the field.
Collapse
Affiliation(s)
- Ana P Torres-Ocampo
- BioFrontiers Institute, University of Colorado, Boulder, 3415 Colorado Ave, CO, 80303, Boulder, United States
| | - Amy E Palmer
- Department of Biochemistry, University of Colorado, Boulder, 3415 Colorado Ave, CO, 80303, Boulder, United States; BioFrontiers Institute, University of Colorado, Boulder, 3415 Colorado Ave, CO, 80303, Boulder, United States.
| |
Collapse
|
30
|
Bhowmik D, Maitra U. A photoluminescence assay with a portable device for rapid, sensitive and selective detection of europium and terbium. Chem Sci 2023; 14:4901-4904. [PMID: 37181768 PMCID: PMC10171180 DOI: 10.1039/d3sc00009e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
Rare earth elements are essential in many real-life applications, but their steady supply is being affected by multiple challenges. The recycling of lanthanides from electronic and other waste is thus gaining momentum which makes the detection of lanthanides with high sensitivity and selectivity a critical area of research. We now report a paper-based photoluminescent sensor for the rapid detection of terbium and europium with low detection limit (nM), which has the potential to facilitate recycling processes.
Collapse
Affiliation(s)
- Dipankar Bhowmik
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560012 Karnataka India
| | - Uday Maitra
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560012 Karnataka India
| |
Collapse
|
31
|
Schmollinger S, Chen S, Merchant SS. Quantitative elemental imaging in eukaryotic algae. Metallomics 2023; 15:mfad025. [PMID: 37186252 PMCID: PMC10209819 DOI: 10.1093/mtomcs/mfad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 03/03/2023] [Indexed: 05/17/2023]
Abstract
All organisms, fundamentally, are made from the same raw material, namely the elements of the periodic table. Biochemical diversity is achieved by how these elements are utilized, for what purpose, and in which physical location. Determining elemental distributions, especially those of trace elements that facilitate metabolism as cofactors in the active centers of essential enzymes, can determine the state of metabolism, the nutritional status, or the developmental stage of an organism. Photosynthetic eukaryotes, especially algae, are excellent subjects for quantitative analysis of elemental distribution. These microbes utilize unique metabolic pathways that require various trace nutrients at their core to enable their operation. Photosynthetic microbes also have important environmental roles as primary producers in habitats with limited nutrient supplies or toxin contaminations. Accordingly, photosynthetic eukaryotes are of great interest for biotechnological exploitation, carbon sequestration, and bioremediation, with many of the applications involving various trace elements and consequently affecting their quota and intracellular distribution. A number of diverse applications were developed for elemental imaging, allowing subcellular resolution, with X-ray fluorescence microscopy (XFM, XRF) being at the forefront, enabling quantitative descriptions of intact cells in a non-destructive method. This Tutorial Review summarizes the workflow of a quantitative, single-cell elemental distribution analysis of a eukaryotic alga using XFM.
Collapse
Affiliation(s)
- Stefan Schmollinger
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Departments of Molecular and Cell Biology and Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Si Chen
- X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Sabeeha S Merchant
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Departments of Molecular and Cell Biology and Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
32
|
Lee HD, Grady CJ, Krell K, Strebeck C, Good NM, Martinez-Gomez NC, Gilad AA. A Novel Protein for the Bioremediation of Gadolinium Waste. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.05.522788. [PMID: 36711778 PMCID: PMC9881998 DOI: 10.1101/2023.01.05.522788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Several hundreds of tons of gadolinium-based contrast agents (GBCAs) are being dumped into the environment every year. Although macrocyclic GBCAs exhibit superior stability compared to their linear counterparts, we have found that the structural integrity of chelates are susceptible to ultraviolet light, regardless of configuration. In this study, we present a synthetic protein termed GLamouR that binds and reports gadolinium in an intensiometric manner. We then explore the extraction of gadolinium from GBCA-spiked artificial urine samples and investigate if the low picomolar concentrations reported in gadolinium-contaminated water sources pose a barrier for bioremediation. Based on promising results, we anticipate GLamouR can be used for detecting and mining REEs beyond gadolinium as well and hope to expand the biological toolbox for such applications.
Collapse
Affiliation(s)
- Harvey D. Lee
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States
| | - Connor J. Grady
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States
| | - Katie Krell
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Cooper Strebeck
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, United States
| | - Nathan M. Good
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - N. Cecilia Martinez-Gomez
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Assaf A. Gilad
- Department of Radiology, Michigan State University, East Lansing, MI, United States
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
33
|
Abstract
The genetically encoded fluorescent sensors convert chemical and physical signals into light. They are powerful tools for the visualisation of physiological processes in living cells and freely moving animals. The fluorescent protein is the reporter module of a genetically encoded biosensor. In this study, we first review the history of the fluorescent protein in full emission spectra on a structural basis. Then, we discuss the design of the genetically encoded biosensor. Finally, we briefly review several major types of genetically encoded biosensors that are currently widely used based on their design and molecular targets, which may be useful for the future design of fluorescent biosensors.
Collapse
Affiliation(s)
- Minji Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| | - Yifan Da
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| |
Collapse
|
34
|
Sun YL, Wang Z, Ren C, Zhang J, Zhang H, Zhang C, Tang BZ. Highly Emissive Organic Cage in Single-Molecule and Aggregate States by Anchoring Multiple Aggregation-Caused Quenching Dyes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53567-53574. [PMID: 36413752 DOI: 10.1021/acsami.2c17640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
It remains a great challenge to design and synthesize organic luminescent molecules with strong emission in both dilute solution and aggregate state. Herein, an organic cage with dodecadansyl groups (D-RCC1) from an easy sulfonation reaction displays strong emissive behavior in dilute organic solution with a quantum yield of 42%. Moreover, D-RCC1 exhibits an ultrahigh quantum yield of 92% in the solid state, which is more than 3 times that of 27% for the model compound D-DEA. The results of the experiment and theoretical calculation show that the three-dimensional symmetrical skeleton of the organic cage anchored evenly by multiple dye molecules effectively satisfies both high local density and a symmetrical distribution of chromophores, which prevents the interaction of dye molecules and ensures that dye molecules have strong emission in both single-molecule and aggregate states.
Collapse
Affiliation(s)
- Yu-Ling Sun
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Zhen Wang
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Chang Ren
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Jianyu Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077 Hong Kong Special Administrative Region of the People's Republic of China
| | - Haoke Zhang
- Ministry of Education (MOE) Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311215, People's Republic of China
| | - Chun Zhang
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077 Hong Kong Special Administrative Region of the People's Republic of China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, People's Republic of China
| |
Collapse
|
35
|
Daumann LJ, Pol A, Op den Camp HJM, Martinez-Gomez NC. A perspective on the role of lanthanides in biology: Discovery, open questions and possible applications. Adv Microb Physiol 2022; 81:1-24. [PMID: 36167440 DOI: 10.1016/bs.ampbs.2022.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Because of their use in high technologies like computers, smartphones and renewable energy applications, lanthanides (belonging to the group of rare earth elements) are essential for our daily lives. A range of applications in medicine and biochemical research made use of their photo-physical properties. The discovery of a biological role for lanthanides has boosted research in this new field. Several methanotrophs and methylotrophs are strictly dependent on the presence of lanthanides in the growth medium while others show a regulatory response. After the first demonstration of a lanthanide in the active site of the XoxF-type pyrroloquinoline quinone methanol dehydrogenases, follow-up studies showed the same for other pyrroloquinoline quinone-containing enzymes. In addition, research focused on the effect of lanthanides on regulation of gene expression and uptake mechanism into bacterial cells. This review briefly describes the discovery of the role of lanthanides in biology and focuses on open questions in biological lanthanide research and possible application of lanthanide-containing bacteria and enzymes in recovery of these special elements.
Collapse
Affiliation(s)
- Lena J Daumann
- Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Arjan Pol
- Department of Microbiology, RIBES, Radboud University, Nijmegen, The Netherlands
| | - Huub J M Op den Camp
- Department of Microbiology, RIBES, Radboud University, Nijmegen, The Netherlands.
| | - N Cecilia Martinez-Gomez
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States
| |
Collapse
|
36
|
Fujitani Y, Shibata T, Tani A. A Periplasmic Lanthanide Mediator, Lanmodulin, in Methylobacterium aquaticum Strain 22A. Front Microbiol 2022; 13:921636. [PMID: 35814700 PMCID: PMC9260416 DOI: 10.3389/fmicb.2022.921636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022] Open
Abstract
Methylobacterium and Methylorubrum species oxidize methanol via pyrroloquinoline quinone-methanol dehydrogenases (MDHs). MDHs can be classified into two major groups, Ca2+-dependent MDH (MxaF) and lanthanide (Ln3+)-dependent MDH (XoxF), whose expression is regulated by the availability of Ln3+. A set of a siderophore, TonB-dependent receptor, and an ABC transporter that resembles the machinery for iron uptake is involved in the solubilization and transport of Ln3+. The transport of Ln3+ into the cytosol enhances XoxF expression. A unique protein named lanmodulin from Methylorubrum extorquens strain AM1 was identified as a specific Ln3+-binding protein, and its biological function was implicated to be an Ln3+ shuttle in the periplasm. In contrast, it remains unclear how Ln3+ levels in the cells are maintained, because Ln3+ is potentially deleterious to cellular systems due to its strong affinity to phosphate ions. In this study, we investigated the function of a lanmodulin homolog in Methylobacterium aquaticum strain 22A. The expression of a gene encoding lanmodulin (lanM) was induced in response to the presence of La3+. A recombinant LanM underwent conformational change upon La3+ binding. Phenotypic analyses on lanM deletion mutant and overexpressing strains showed that LanM is not necessary for the wild-type and XoxF-dependent mutant’s methylotrophic growth. We found that lanM expression was regulated by MxcQE (a two-component regulator for MxaF) and TonB_Ln (a TonB-dependent receptor for Ln3+). The expression level of mxcQE was altered to be negatively dependent on Ln3+ concentration in ∆lanM, whereas it was constant in the wild type. Furthermore, when exposed to La3+, ∆lanM showed an aggregating phenotype, cell membrane impairment, La deposition in the periplasm evidenced by electron microscopy, differential expression of proteins involved in membrane integrity and phosphate starvation, and possibly lower La content in the membrane vesicle (MV) fractions. Taken together, we concluded that lanmodulin is involved in the complex regulation mechanism of MDHs and homeostasis of cellular Ln levels by facilitating transport and MV-mediated excretion.
Collapse
Affiliation(s)
- Yoshiko Fujitani
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| | | | - Akio Tani
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
- *Correspondence: Akio Tani,
| |
Collapse
|
37
|
Mattocks JA, Cotruvo JA, Deblonde GJP. Engineering lanmodulin's selectivity for actinides over lanthanides by controlling solvent coordination and second-sphere interactions. Chem Sci 2022; 13:6054-6066. [PMID: 35685815 PMCID: PMC9132084 DOI: 10.1039/d2sc01261h] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/25/2022] [Indexed: 11/21/2022] Open
Abstract
Developing chelators that combine high affinity and selectivity for lanthanides and/or actinides is paramount for numerous industries, including rare earths mining, nuclear waste management, and cancer medicine. In particular, achieving selectivity between actinides and lanthanides is notoriously difficult. The protein lanmodulin (LanM) is one of Nature's most selective chelators for trivalent actinides and lanthanides. However, mechanistic understanding of LanM's affinity and selectivity for f-elements remains limited. In order to decipher, and possibly improve, the features of LanM's metal-binding sites that contribute to this actinide/lanthanide selectivity, we characterized five LanM variants, substituting the aspartate residue at the 9th position of each metal-binding site with asparagine, histidine, alanine, methionine, and selenomethionine. Spectroscopic measurements with lanthanides (Nd3+ and Eu3+) and actinides (243Am3+ and 248Cm3+) reveal that, contrary to the behavior of small chelator complexes, metal-coordinated water molecules enhance LanM's affinity for f-elements and pH-stability of its complexes. Furthermore, the results show that the native aspartate does not coordinate the metal directly but rather hydrogen bonds to coordinated solvent. By tuning this first-sphere/second-sphere interaction, the asparagine variant nearly doubles LanM's selectivity for actinides versus lanthanides. This study not only clarifies the essential role of coordinated solvent for LanM's physiological function and separation applications, but it also demonstrates that LanM's preference for actinides over lanthanides can be further improved. More broadly, it demonstrates how biomolecular scaffolds possess an expanded repertoire of tunable interactions compared to most small-molecule ligands - providing an avenue for high-performance LanM-based actinide/lanthanide separation methods and bio-engineered chelators optimized for specific medical isotopes.
Collapse
Affiliation(s)
- Joseph A Mattocks
- Department of Chemistry, The Pennsylvania State University, University Park Pennsylvania 16802 USA
| | - Joseph A Cotruvo
- Department of Chemistry, The Pennsylvania State University, University Park Pennsylvania 16802 USA
| | - Gauthier J-P Deblonde
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory Livermore California 94550 USA
- Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory Livermore California 94550 USA
| |
Collapse
|
38
|
Daszczyńska A, Krucoń T, Stasiuk R, Koblowska M, Matlakowska R. Lanthanide-Dependent Methanol Metabolism of a Proteobacteria-Dominated Community in a Light Lanthanide-Rich Deep Environment. Int J Mol Sci 2022; 23:ijms23073947. [PMID: 35409305 PMCID: PMC8999231 DOI: 10.3390/ijms23073947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 02/01/2023] Open
Abstract
This study investigated the occurrence and diversity of proteobacterial XoxF-type methanol dehydrogenases (MDHs) in the microbial community that inhabits a fossil organic matter- and sedimentary lanthanide (Ln3+)-rich underground mine environment using a metagenomic and metaproteomic approach. A total of 8 XoxF-encoding genes (XoxF-EGs) and 14 protein sequences matching XoxF were identified. XoxF-type MDHs were produced by Alpha-, Beta-, and Gammaproteobacteria represented by the four orders Methylococcales, Nitrosomonadales, Rhizobiales, and Xanthomonadales. The highest number of XoxF-EG- and XoxF-matching protein sequences were affiliated with Nitrosomonadales and Rhizobiales, respectively. Among the identified XoxF-EGs, two belonged to the XoxF1 clade, five to the XoxF4 clade, and one to the XoxF5 clade, while seven of the identified XoxF proteins belonged to the XoxF1 clade, four to the XoxF4 clade, and three to the XoxF5 clade. Moreover, the accumulation of light lanthanides and the presence of methanol in the microbial mat were confirmed. This study is the first to show the occurrence of XoxF in the metagenome and metaproteome of a deep microbial community colonizing a fossil organic matter- and light lanthanide-rich sedimentary environment. The presented results broaden our knowledge of the ecology of XoxF-producing bacteria as well as of the distribution and diversity of these enzymes in the natural environment.
Collapse
Affiliation(s)
- Agnieszka Daszczyńska
- Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (A.D.); (R.S.)
| | - Tomasz Krucoń
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland;
| | - Robert Stasiuk
- Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (A.D.); (R.S.)
| | - Marta Koblowska
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland;
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Renata Matlakowska
- Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (A.D.); (R.S.)
- Correspondence:
| |
Collapse
|
39
|
Zhao H, Zastrow ML. Transition Metals Induce Quenching of Monomeric Near-Infrared Fluorescent Proteins. Biochemistry 2022; 61:494-504. [PMID: 35289592 DOI: 10.1021/acs.biochem.1c00705] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transition metals such as zinc and copper are essential in numerous life processes, and both deficiency and toxic overload of these metals are associated with various diseases. Fluorescent metal sensors are powerful tools for studying the roles of metal ions in the physiology and pathology of biological systems. Green fluorescent protein (GFP) and its derivatives are highly utilized for protein-based sensor design, but application to anaerobic systems is limited because these proteins require oxygen to become fluorescent. Bacteriophytochrome-based monomeric near-infrared fluorescent proteins (miRFPs) covalently bind a bilin cofactor, which can be added exogenously for anaerobic cells. miRFPs can also have emission wavelengths extending to >700 nm, which is valuable for imaging applications. Here, we evaluated the suitability of miRFP670 and miRFP709 as platforms for single fluorescent protein metal ion sensors. We found that divalent metal ions like Zn2+, Co2+, Ni2+, and Cu2+ can quench from ∼6-20% (Zn2+, Co2+, and Ni2+) and up to nearly 90% (Cu2+) of the fluorescence intensity of pure miRFPs and have similar impacts in live Escherichia coli cells expressing miRFPs. The presence of a 6× histidine tag for purification influences metal quenching, but significant Cu2+-induced quenching and a picomolar binding affinity are retained in the absence of the His6 tag in both cuvettes and live bacterial cells. By comparing the Cu2+ and Cu+-induced quenching results for miRFP670 and miRFP709 and through examining absorption spectra and previously reported crystal structures, we propose a surface metal binding site near the biliverdin IXα chromophore.
Collapse
Affiliation(s)
- Haowen Zhao
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Melissa L Zastrow
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
40
|
Archer WR, Gallagher CMB, Vaissier Welborn V, Schulz MD. Exploring the role of polymer hydrophobicity in polymer-metal binding thermodynamics. Phys Chem Chem Phys 2022; 24:3579-3585. [PMID: 35088772 DOI: 10.1039/d1cp05263b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metal-chelating polymers play a key role in rare-earth element (REE) extraction and separation processes. Often, these processes occur in aqueous solution, but the interactions among water, polymer, and REE are largely under-investigated in these applications. To probe these interactions, we synthesized a series of poly(amino acid acrylamide)s with systematically varied hydrophobicity around a consistent chelating group (carboxylate). We then measured the ΔH of Eu3+ chelation as a function of temperature across the polymer series using isothermal titration calorimetry (ITC) to give the change in heat capacity (ΔCP). We observed an order of magnitude variation in ΔCP (39-471 J mol1 K-1) with changes in the hydrophobicity of the polymer. Atomistic simulations of the polymer-metal-water interactions revealed greater Eu3+ and polymer desolvation when binding to the more hydrophobic polymers. These combined experimental and computational results demonstrate that metal binding in aqueous solution can be modulated not only by directly modifying the chelating groups, but also by altering the molecular environment around the chelating site, thus suggesting a new design principle for developing increasingly effective metal-chelating materials.
Collapse
Affiliation(s)
- William R Archer
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, VA 24060, USA.
| | - Connor M B Gallagher
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, VA 24060, USA.
| | - V Vaissier Welborn
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, VA 24060, USA.
| | - Michael D Schulz
- Department of Chemistry, Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, VA 24060, USA.
| |
Collapse
|
41
|
Wu Q, Liu X, Chai Z, Cheng K, Xu G, Jiang L, Liu M, Li C. Lanmodulin Remains Unfold and Fails to Interact with Lanthanide Ions in Escherichia coli Cells. Chem Commun (Camb) 2022; 58:8230-8233. [DOI: 10.1039/d2cc02038f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the conformation of a newly discovered specific lanthanide ions (Ln3+) binding protein, Lanmodulin (LanM), and its inteaction with Ln3+ in Escherichia coli cells using In-cell NMR. We found...
Collapse
|
42
|
Dong Z, Mattocks JA, Deblonde GJP, Hu D, Jiao Y, Cotruvo JA, Park DM. Bridging Hydrometallurgy and Biochemistry: A Protein-Based Process for Recovery and Separation of Rare Earth Elements. ACS CENTRAL SCIENCE 2021; 7:1798-1808. [PMID: 34841054 PMCID: PMC8614107 DOI: 10.1021/acscentsci.1c00724] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Indexed: 05/20/2023]
Abstract
The extraction and subsequent separation of individual rare earth elements (REEs) from REE-bearing feedstocks represent a challenging yet essential task for the growth and sustainability of renewable energy technologies. As an important step toward overcoming the technical and environmental limitations of current REE processing methods, we demonstrate a biobased, all-aqueous REE extraction and separation scheme using the REE-selective lanmodulin protein. Lanmodulin was conjugated onto porous support materials using thiol-maleimide chemistry to enable tandem REE purification and separation under flow-through conditions. Immobilized lanmodulin maintains the attractive properties of the soluble protein, including remarkable REE selectivity, the ability to bind REEs at low pH, and high stability over numerous low-pH adsorption/desorption cycles. We further demonstrate the ability of immobilized lanmodulin to achieve high-purity separation of the clean-energy-critical REE pair Nd/Dy and to transform a low-grade leachate (0.043 mol % REEs) into separate heavy and light REE fractions (88 mol % purity of total REEs) in a single column run while using ∼90% of the column capacity. This ability to achieve, for the first time, tandem extraction and grouped separation of REEs from very complex aqueous feedstock solutions without requiring organic solvents establishes this lanmodulin-based approach as an important advance for sustainable hydrometallurgy.
Collapse
Affiliation(s)
- Ziye Dong
- Critical
Materials Institute, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Joseph A. Mattocks
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Gauthier J.-P. Deblonde
- Critical
Materials Institute, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- Glenn
T. Seaborg Institute, Lawrence Livermore
National Laboratory, Livermore, California 94550, United States
| | - Dehong Hu
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| | - Yongqin Jiao
- Critical
Materials Institute, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Joseph A. Cotruvo
- Department
of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- E-mail:
| | - Dan M. Park
- Critical
Materials Institute, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- E-mail:
| |
Collapse
|
43
|
Neodymium as Metal Cofactor for Biological Methanol Oxidation: Structure and Kinetics of an XoxF1-Type Methanol Dehydrogenase. mBio 2021; 12:e0170821. [PMID: 34544276 PMCID: PMC8546591 DOI: 10.1128/mbio.01708-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The methane-oxidizing bacterium Methylacidimicrobium thermophilum AP8 thrives in acidic geothermal ecosystems that are characterized by high degassing of methane (CH4), H2, H2S, and by relatively high lanthanide concentrations. Lanthanides (atomic numbers 57 to 71) are essential in a variety of high-tech devices, including mobile phones. Remarkably, the same elements are actively taken up by methanotrophs/methylotrophs in a range of environments, since their XoxF-type methanol dehydrogenases require lanthanides as a metal cofactor. Lanthanide-dependent enzymes seem to prefer the lighter lanthanides (lanthanum, cerium, praseodymium, and neodymium), as slower methanotrophic/methylotrophic growth is observed in medium supplemented with only heavier lanthanides. Here, we purified XoxF1 from the thermoacidophilic methanotroph Methylacidimicrobium thermophilum AP8, which was grown in medium supplemented with neodymium as the sole lanthanide. The neodymium occupancy of the enzyme is 94.5% ± 2.0%, and through X-ray crystallography, we reveal that the structure of the active site shows interesting differences from the active sites of other methanol dehydrogenases, such as an additional aspartate residue in close proximity to the lanthanide. Nd-XoxF1 oxidizes methanol at a maximum rate of metabolism (Vmax) of 0.15 ± 0.01 μmol · min-1 · mg protein-1 and an affinity constant (Km) of 1.4 ± 0.6 μM. The structural analysis of this neodymium-containing XoxF1-type methanol dehydrogenase will expand our knowledge in the exciting new field of lanthanide biochemistry. IMPORTANCE Lanthanides comprise a group of 15 elements with atomic numbers 57 to 71 that are essential in a variety of high-tech devices, such as mobile phones, but were considered biologically inert for a long time. The biological relevance of lanthanides became evident when the acidophilic methanotroph Methylacidiphilum fumariolicum SolV, isolated from a volcanic mud pot, could only grow when lanthanides were supplied to the growth medium. We expanded knowledge in the exciting and rapidly developing field of lanthanide biochemistry by the purification and characterization of a neodymium-containing methanol dehydrogenase from a thermoacidophilic methanotroph.
Collapse
|
44
|
Deblonde GJP, Mattocks JA, Dong Z, Wooddy PT, Cotruvo JA, Zavarin M. Capturing an elusive but critical element: Natural protein enables actinium chemistry. SCIENCE ADVANCES 2021; 7:eabk0273. [PMID: 34669462 PMCID: PMC8528432 DOI: 10.1126/sciadv.abk0273] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Actinium-based therapies could revolutionize cancer medicine but remain tantalizing due to the difficulties in studying and limited knowledge of Ac chemistry. Current efforts focus on small synthetic chelators, limiting radioisotope complexation and purification efficiencies. Here, we demonstrate a straightforward strategy to purify medically relevant radiometals, actinium(III) and yttrium(III), and probe their chemistry, using the recently discovered protein, lanmodulin. The stoichiometry, solution behavior, and formation constant of the 228Ac3+-lanmodulin complex and its 90Y3+/natY3+/natLa3+ analogs were experimentally determined, representing the first actinium-protein and strongest actinide(III)-protein complex (sub-picomolar Kd) to be characterized. Lanmodulin’s unparalleled properties enable the facile purification recovery of radiometals, even in the presence of >10+10 equivalents of competing ions and at ultratrace levels: down to 2 femtograms 90Y3+ and 40 attograms 228Ac3+. The lanmodulin-based approach charts a new course to study elusive isotopes and develop versatile chelating platforms for medical radiometals, both for high-value separations and potential in vivo applications.
Collapse
Affiliation(s)
- Gauthier J.-P. Deblonde
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
- Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
- Corresponding author. (G.J.-P.D.); (J.A.C.)
| | - Joseph A. Mattocks
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ziye Dong
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Paul T. Wooddy
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Joseph A. Cotruvo
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
- Corresponding author. (G.J.-P.D.); (J.A.C.)
| | - Mavrik Zavarin
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
- Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| |
Collapse
|
45
|
Guan L, Wu F, Ren G, Wang J, Yang X, Huang X, Yu P, Lin Y, Mao L. Role of rare-earth elements in enhancing bioelectrocatalysis for biosensing with NAD +-dependent glutamate dehydrogenase. Chem Sci 2021; 12:13434-13441. [PMID: 34777762 PMCID: PMC8528072 DOI: 10.1039/d1sc00193k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 09/01/2021] [Indexed: 11/21/2022] Open
Abstract
Dehydrogenases (DHs) are widely explored bioelectrocatalysts in the development of enzymatic bioelectronics like biosensors and biofuel cells. However, the relatively low intrinsic reaction rates of DHs which mostly depend on diffusional coenzymes (e.g., NAD+) have limited their bioelectrocatalytic performance in applications such as biosensors with a high sensitivity. In this study, we find that rare-earth elements (REEs) can enhance the activity of NAD+-dependent glutamate dehydrogenase (GDH) toward highly sensitive electrochemical biosensing of glutamate in vivo. Electrochemical studies show that the sensitivity of the GDH-based glutamate biosensor is remarkably enhanced in the presence of REE cations (i.e., Yb3+, La3+ or Eu3+) in solution, of which Yb3+ yields the highest sensitivity increase (ca. 95%). With the potential effect of REE cations on NAD+ electrochemistry being ruled out, homogeneous kinetic assays by steady-state and stopped-flow spectroscopy reveal a two-fold enhancement in the intrinsic reaction rate of GDH by introducing Yb3+, mainly through accelerating the rate-determining NADH releasing step during the catalytic cycle. In-depth structural investigations using small angle X-ray scattering and infrared spectroscopy indicate that Yb3+ induces the backbone compaction of GDH and subtle β-sheet transitions in the active site, which may reduce the energetic barrier to NADH dissociation from the binding pocket as further suggested by molecular dynamics simulation. This study not only unmasks the mechanism of REE-promoted GDH kinetics but also paves a new way to highly sensitive biosensing of glutamate in vivo.
Collapse
Affiliation(s)
- Lihao Guan
- Department of Chemistry, Capital Normal University Beijing 100048 China
| | - Fei Wu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, University of Chinese Academy of Sciences Beijing 100049 China
| | - Guoyuan Ren
- Department of Chemistry, Capital Normal University Beijing 100048 China
| | - Jialu Wang
- Department of Chemistry, Capital Normal University Beijing 100048 China
| | - Xiaoti Yang
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiaohua Huang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 China
| | - Ping Yu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, University of Chinese Academy of Sciences Beijing 100049 China
| | - Yuqing Lin
- Department of Chemistry, Capital Normal University Beijing 100048 China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, University of Chinese Academy of Sciences Beijing 100049 China
- College of Chemistry, Beijing Normal University Beijing 100875 China
| |
Collapse
|
46
|
Liu S, Featherston ER, Cotruvo JA, Baiz CR. Lanthanide-dependent coordination interactions in lanmodulin: a 2D IR and molecular dynamics simulations study. Phys Chem Chem Phys 2021; 23:21690-21700. [PMID: 34581354 DOI: 10.1039/d1cp03628a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The biological importance of lanthanides, and the early lanthanides (La3+-Nd3+) in particular, has only recently been recognized, and the structural principles underlying selective binding of lanthanide ions in biology are not yet well established. Lanmodulin (LanM) is a novel protein that displays unprecedented affinity and selectivity for lanthanides over most other metal ions, with an uncommon preference for the early lanthanides. Its utilization of EF-hand motifs to bind lanthanides, rather than the Ca2+ typically recognized by these motifs in other proteins, has led it to be used as a model system to understand selective lanthanide recognition. Two-dimensional infrared (2D IR) spectroscopy combined with molecular dynamics simulations were used to investigate LanM's selectivity mechanisms by characterizing local binding site geometries upon coordination of early and late lanthanides as well as calcium. These studies focused on the protein's uniquely conserved proline residues in the second position of each EF-hand binding loop. We found that these prolines constrain the EF-hands for strong coordination of early lanthanides. Substitution of this proline results in a more flexible binding site to accommodate a larger range of ions but also results in less compact coordination geometries and greater disorder within the binding site. Finally, we identify the conserved glycine in the sixth position of each EF-hand as a mediator of local binding site conformation and global secondary structure. Uncovering fundamental structure-function relationships in LanM informs the development of synthetic biology technologies targeting lanthanides in industrial applications.
Collapse
Affiliation(s)
- Stephanie Liu
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA.
| | - Emily R Featherston
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Joseph A Cotruvo
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Carlos R Baiz
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
47
|
Diverse Coordination Numbers and Geometries in Pyridyl Adducts of Lanthanide(III) Complexes Based on β-Diketonate. INORGANICS 2021. [DOI: 10.3390/inorganics9100074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ten mononuclear rare earth complexes of formula [La(btfa)3(H2O)2] (1), [La(btfa)3(4,4′-Mt2bipy)] (2), [La(btfa)3(4,4′-Me2bipy)2] (3), [La(btfa)3(5,5′-Me2bipy)2] (4), [La(btfa)3(terpy)] (5), [La(btfa)3(phen)(EtOH)] (6), [La(btfa)3(4,4′-Me2bipy)(EtOH)] (7), [La(btfa)3(2-benzpy)(MeOH)] (8), [Tb(btfa)3(4,4′-Me2bipy)] (9) and (Hpy)[Eu(btfa)4] (10), where btfa = 4,4,4-trifuoro-1-phenylbutane-1,3-dionato anion, 4,4′-Mt2bipy = 4,4′-dimethoxy-2,2′-bipyridine, 4,4′-Me2bipy = 4,4′-dimethyl-2,2′-bipyridine, 5,5′-Me2bipy = 5,5′-dimethyl-2,2′-bipyridine, terpy = 2,2′:6′,2′-terpyridine, phen = 1,10-phenathroline, 2-benzpy = 2-(2-pyridyl)benzimidazole, Hpy = pyridiniumH+ cation) have been synthesized and structurally characterized. The complexes display coordination numbers (CN) eight for 1, 2, 9, 10, nine for 5, 6, 7, 8 and ten for 3 and 4. The solid-state luminescence spectra of Tb-9 and Eu-10 complexes showed the same characteristic bands predicted from the Tb(III) and Eu(III) ions. The Overall Quantum Yield measured (ϕTOT) at the excitation wavelength of 371 nm for both compounds yielded 1.04% for 9 and up to 34.56% for 10.
Collapse
|
48
|
Deblonde GJP, Mattocks JA, Wang H, Gale EM, Kersting AB, Zavarin M, Cotruvo JA. Characterization of Americium and Curium Complexes with the Protein Lanmodulin: A Potential Macromolecular Mechanism for Actinide Mobility in the Environment. J Am Chem Soc 2021; 143:15769-15783. [PMID: 34542285 DOI: 10.1021/jacs.1c07103] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Anthropogenic radionuclides, including long-lived heavy actinides such as americium and curium, represent the primary long-term challenge for management of nuclear waste. The potential release of these wastes into the environment necessitates understanding their interactions with biogeochemical compounds present in nature. Here, we characterize the interactions between the heavy actinides, Am3+ and Cm3+, and the natural lanthanide-binding protein, lanmodulin (LanM). LanM is produced abundantly by methylotrophic bacteria, including Methylorubrum extorquens, that are widespread in the environment. We determine the first stability constant for an Am3+-protein complex (Am3LanM) and confirm the results with Cm3LanM, indicating a ∼5-fold higher affinity than that for lanthanides with most similar ionic radius, Nd3+ and Sm3+, and making LanM the strongest known heavy actinide-binding protein. The protein's high selectivity over 243Am's daughter nuclide 239Np enables lab-scale actinide-actinide separations as well as provides insight into potential protein-driven mobilization for these actinides in the environment. The luminescence properties of the Cm3+-LanM complex, and NMR studies of Gd3+-LanM, reveal that lanmodulin-bound f-elements possess two coordinated solvent molecules across a range of metal ionic radii. Finally, we show under a wide range of environmentally relevant conditions that lanmodulin effectively outcompetes desferrioxamine B, a hydroxamate siderophore previously proposed to be important in trivalent actinide mobility. These results suggest that natural lanthanide-binding proteins such as lanmodulin may play important roles in speciation and mobility of actinides in the environment; it also suggests that protein-based biotechnologies may provide a new frontier in actinide remediation, detection, and separations.
Collapse
Affiliation(s)
- Gauthier J-P Deblonde
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States.,Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Joseph A Mattocks
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Huan Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, United States
| | - Eric M Gale
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, United States
| | - Annie B Kersting
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States.,Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Mavrik Zavarin
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, United States.,Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Joseph A Cotruvo
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
49
|
Featherston ER, Issertell EJ, Cotruvo JA. Probing Lanmodulin's Lanthanide Recognition via Sensitized Luminescence Yields a Platform for Quantification of Terbium in Acid Mine Drainage. J Am Chem Soc 2021; 143:14287-14299. [PMID: 34432449 DOI: 10.1021/jacs.1c06360] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lanmodulin is the first natural, selective macrochelator for f elements-a protein that binds lanthanides with picomolar affinity at 3 EF hands, motifs that instead bind calcium in most other proteins. Here, we use sensitized terbium luminescence to probe the mechanism of lanthanide recognition by this protein as well as to develop a terbium-specific biosensor that can be applied directly in environmental samples. By incorporating tryptophan residues into specific EF hands, we infer the order of metal binding of these three sites. Despite lanmodulin's remarkable lanthanide binding properties, its coordination of approximately two solvent molecules per site (by luminescence lifetime) and metal dissociation kinetics (koff = 0.02-0.05 s-1, by stopped-flow fluorescence) are revealed to be rather ordinary among EF hands; what sets lanmodulin apart is that metal association is nearly diffusion limited (kon ≈ 109 M-1 s-1). Finally, we show that Trp-substituted lanmodulin can quantify 3 ppb (18 nM) terbium directly in acid mine drainage at pH 3.2 in the presence of a 100-fold excess of other rare earths and a 100 000-fold excess of other metals using a plate reader. These studies not only yield insight into lanmodulin's mechanism of lanthanide recognition and the structures of its metal binding sites but also show that this protein's unique combination of affinity and selectivity outperforms synthetic luminescence-based sensors, opening the door to rapid and inexpensive methods for selective sensing of individual lanthanides in the environment and in-line monitoring in industrial operations.
Collapse
Affiliation(s)
- Emily R Featherston
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Edward J Issertell
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Joseph A Cotruvo
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
50
|
Chen H, Zhou Z, Li Z, He X, Shen J. Highly sensitive fluorescent sensor based on coumarin organic dye for pyrophosphate ion turn-on biosensing in synovial fluid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 257:119792. [PMID: 33887510 DOI: 10.1016/j.saa.2021.119792] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Highly sensitive fluorescence detection of pyrophosphate ion (PPi) is in urgent demand but remains a great obstacle, ascribing to scarcity of high-performance materials with promising optical property and high affinity. Herein, we report the design and fabrication of a coumarin-based organic dye (DCCH-TPD) containing both hydrazide group and terpyridine moiety for PPi biosensing through Cu2+-induced photo-electron transfer (PET) effect and target analyte-switched competitive coordination reaction. Individual DCCH-TPD was found to be highly emissive, and displayed a turn-off response toward Cu2+ due to formation of Cu2+@DCCH-TPD and PET effect. The recognition of Cu2+@DCCH-TPD by PPi leads to generation of Cu2+@PPi complex, which greatly reduces the amount of Cu2+ coordinated with DCCH-TPD, subsequently decreasing PET effect. Significantly enhanced fluorescence is recorded and the fluorescence intensity is closely relied on PPi concentration. Thus, highly sensitive detection of PPi is achieved, and the detection limit was calculated to be 0.075 μM. Furthermore, the proposed sensor presented good selectivity, and excellent practical ability for application in arthritic fluid.
Collapse
Affiliation(s)
- Hong Chen
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang 471934, PR China.
| | - Zhan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China
| | - Ziyong Li
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang 471934, PR China
| | - Xiaojun He
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, PR China; Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Science, Wenzhou 325001, PR China
| | - Jianliang Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, PR China; Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Science, Wenzhou 325001, PR China.
| |
Collapse
|