1
|
Zhang W, Oh JH, Zhang W, Aldrich CC, Sirianni RW, Elmquist WF. Central nervous system distributional kinetics of selected histone deacetylase inhibitors. J Pharmacol Exp Ther 2025; 392:100014. [PMID: 39893010 DOI: 10.1124/jpet.124.002170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Histone deacetylase expression and activity are often dysregulated in central nervous system (CNS) tumors, providing a rationale for investigating histone deacetylase inhibitors (HDACIs) in selected brain tumor patients. Although many HDACIs have shown potential in in vitro studies, they have had modest efficacy in vivo. This lack of activity could be due to insufficient CNS exposure to the unbound drug. In this study, we investigated the systemic pharmacokinetics and subsequent CNS distribution of 2 potent HDACIs, vorinostat and quisinostat, in the murine model. Both compounds undergo in vitro degradation in mouse plasma, requiring precautions during sample processing. They also have short half-lives in vivo, in both plasma and the CNS, which may lead to diminished efficacy. Transgenic transporter-deficient mouse models show that the CNS delivery of vorinostat was not limited by the 2 major blood-brain barrier efflux transporters, p-glycoprotein and breast cancer resistance protein. Vorinostat had an unbound CNS tissue-to-plasma partition coefficient of 0.06 ± 0.02. Conversely, the exposure of unbound quisinostat in the brain was only 0.02 ± 0.001 of that in the plasma, and the CNS distribution of quisinostat was limited by the activity of p-glycoprotein. To gain further context for these findings, the CNS distributional kinetics for vorinostat and quisinostat were compared with another hydroxamic acid HDACI, panobinostat. A comprehensive understanding of the CNS target exposure to unbound HDACI, along with known potencies from in vitro testing, can inform the prediction of a therapeutic window for HDACIs that have limited CNS exposure to unbound drug and guide targeted dosing strategies. SIGNIFICANCE STATEMENT: This study indicates that quisinostat and vorinostat are susceptible to enzymatic degradation in the plasma, and to a lesser degree, in the target central nervous system (CNS) tissues. Employing techniques that minimize the postsampling degradation in plasma, brain, and spinal cord, accurate CNS distributional kinetic parameters for these potentially useful compounds were determined. A knowledge of CNS exposure, time to peak, and duration can inform dosing strategies in preclinical and clinical trials in selected CNS tumors.
Collapse
Affiliation(s)
- Wenqiu Zhang
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota.
| | - Ju-Hee Oh
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota
| | - Wenjuan Zhang
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota
| | - Rachael W Sirianni
- Department of Neurologic Surgery, UMass Chan Medical School, Worcester, Massachusetts
| | - William F Elmquist
- Department of Pharmaceutics, Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
2
|
Wang L, Bai Y, Cao Z, Guo Z, Lian Y, Liu P, Zeng Y, Lyu W, Chen Q. Histone deacetylases and inhibitors in diabetes mellitus and its complications. Biomed Pharmacother 2024; 177:117010. [PMID: 38941890 DOI: 10.1016/j.biopha.2024.117010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 06/30/2024] Open
Abstract
Diabetes mellitus (DM) is a metabolic disorder characterized by hyperglycemia, with its prevalence linked to both genetic predisposition and environmental factors. Epigenetic modifications, particularly through histone deacetylases (HDACs), have been recognized for their significant influence on DM pathogenesis. This review focuses on the classification of HDACs, their role in DM and its complications, and the potential therapeutic applications of HDAC inhibitors. HDACs, which modulate gene expression without altering DNA sequences, are categorized into four classes with distinct functions and tissue specificity. HDAC inhibitors (HDACi) have shown efficacy in various diseases, including DM, by targeting these enzymes. The review highlights how HDACs regulate β-cell function, insulin sensitivity, and hepatic gluconeogenesis in DM, as well as their impact on diabetic cardiomyopathy, nephropathy, and retinopathy. Finally, we suggest that targeted histone modification is expected to become a key method for the treatment of diabetes and its complications. The study of HDACi offers insights into new treatment strategies for DM and its associated complications.
Collapse
Affiliation(s)
- Li Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610072, PR China; Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, PR China
| | - Yuning Bai
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, PR China
| | - Zhengmin Cao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, PR China
| | - Ziwei Guo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, PR China
| | - Yanjie Lian
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, PR China
| | - Pan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610072, PR China
| | - Yixian Zeng
- Department of Proctology, Beibei Hospital of Traditional Chinese Medicine, Chongqing 400799, PR China
| | - Wenliang Lyu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, PR China.
| | - Qiu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 610072, PR China.
| |
Collapse
|
3
|
Flores R, Iqbal S, Sikazwe D. Phenylacetyl-/Trolox- Amides: Synthesis, Sigma-1, HDAC-6, and Antioxidant Activities. Int J Mol Sci 2023; 24:15295. [PMID: 37894975 PMCID: PMC10607876 DOI: 10.3390/ijms242015295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/07/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
In search of novel multi-mechanistic approaches for treating Alzheimer's disease (AD), we have embarked on synthesizing single small molecules for probing contributory roles of the following combined disease targets: sigma-1 (σ-1), class IIb histone deacetylase-6 (HDAC-6), and oxidative stress (OS). Herein, we report the synthesis and partial evaluation of 20 amides (i.e., phenylacetic and Trolox or 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid derivatives). Target compounds were conveniently synthesized via amidation by either directly reacting acyl chlorides with amines or condensing acids with amines in the presence of coupling agents 1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo [4,5-b] pyridinium 3-oxide hexafluorophosphate (HATU) or 1,1'-carbonyldiimidazole (CDI). Overall, this project afforded compound 8 as a promising lead with σ-1 affinity (Ki = 2.1 μM), HDAC-6 (IC50 = 17 nM), and antioxidant (1.92 Trolox antioxidant equivalents or TEs) activities for optimization in ensuing structure-activity relationship (SAR) studies.
Collapse
Affiliation(s)
| | | | - Donald Sikazwe
- Pharmaceutical Sciences Department, Feik School of Pharmacy, University of the Incarnate Word, San Antonio, TX 78209, USA; (R.F.); (S.I.)
| |
Collapse
|
4
|
Lumpkin CJ, Harris AW, Connell AJ, Kirk RW, Whiting JA, Saieva L, Pellizzoni L, Burghes AHM, Butchbach MER. Evaluation of the orally bioavailable 4-phenylbutyrate-tethered trichostatin A analogue AR42 in models of spinal muscular atrophy. Sci Rep 2023; 13:10374. [PMID: 37365234 PMCID: PMC10293174 DOI: 10.1038/s41598-023-37496-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 06/22/2023] [Indexed: 06/28/2023] Open
Abstract
Proximal spinal muscular atrophy (SMA) is a leading genetic cause for infant death in the world and results from the selective loss of motor neurons in the spinal cord. SMA is a consequence of low levels of SMN protein and small molecules that can increase SMN expression are of considerable interest as potential therapeutics. Previous studies have shown that both 4-phenylbutyrate (4PBA) and trichostatin A (TSA) increase SMN expression in dermal fibroblasts derived from SMA patients. AR42 is a 4PBA-tethered TSA derivative that is a very potent histone deacetylase inhibitor. SMA patient fibroblasts were treated with either AR42, AR19 (a related analogue), 4PBA, TSA or vehicle for 5 days and then immunostained for SMN localization. AR42 as well as 4PBA and TSA increased the number of SMN-positive nuclear gems in a dose-dependent manner while AR19 did not show marked changes in gem numbers. While gem number was increased in AR42-treated SMA fibroblasts, there were no significant changes in FL-SMN mRNA or SMN protein. The neuroprotective effect of this compound was then assessed in SMNΔ7 SMA (SMN2+/+;SMNΔ7+/+;mSmn-/-) mice. Oral administration of AR42 prior to disease onset increased the average lifespan of SMNΔ7 SMA mice by ~ 27% (20.1 ± 1.6 days for AR42-treated mice vs. 15.8 ± 0.4 days for vehicle-treated mice). AR42 treatment also improved motor function in these mice. AR42 treatment inhibited histone deacetylase (HDAC) activity in treated spinal cord although it did not affect SMN protein expression in these mice. AKT and GSK3β phosphorylation were both significantly increased in SMNΔ7 SMA mouse spinal cords. In conclusion, presymptomatic administration of the HDAC inhibitor AR42 ameliorates the disease phenotype in SMNΔ7 SMA mice in a SMN-independent manner possibly by increasing AKT neuroprotective signaling.
Collapse
Affiliation(s)
- Casey J Lumpkin
- Division of Neurology, Nemours Children's Hospital Delaware, 4462 E400 DuPont Experimental Station, 200 Powder Mill Road, Wilmington, DE, 19803, USA
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Ashlee W Harris
- Division of Neurology, Nemours Children's Hospital Delaware, 4462 E400 DuPont Experimental Station, 200 Powder Mill Road, Wilmington, DE, 19803, USA
| | - Andrew J Connell
- Division of Neurology, Nemours Children's Hospital Delaware, 4462 E400 DuPont Experimental Station, 200 Powder Mill Road, Wilmington, DE, 19803, USA
| | - Ryan W Kirk
- Division of Neurology, Nemours Children's Hospital Delaware, 4462 E400 DuPont Experimental Station, 200 Powder Mill Road, Wilmington, DE, 19803, USA
| | - Joshua A Whiting
- Division of Neurology, Nemours Children's Hospital Delaware, 4462 E400 DuPont Experimental Station, 200 Powder Mill Road, Wilmington, DE, 19803, USA
| | - Luciano Saieva
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Livio Pellizzoni
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
- Department of Neurology, Columbia University, New York, NY, USA
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, USA
| | - Arthur H M Burghes
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Matthew E R Butchbach
- Division of Neurology, Nemours Children's Hospital Delaware, 4462 E400 DuPont Experimental Station, 200 Powder Mill Road, Wilmington, DE, 19803, USA.
- Department of Biological Sciences, University of Delaware, Newark, DE, USA.
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Tien Anh D, Hai Nam N, Kircher B, Baecker D. The Impact of Fluorination on the Design of Histone Deacetylase Inhibitors. Molecules 2023; 28:molecules28041973. [PMID: 36838960 PMCID: PMC9965134 DOI: 10.3390/molecules28041973] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
In recent years, histone deacetylases (HDACs) have emerged as promising targets in the treatment of cancer. The approach is to inhibit HDACs with drugs known as HDAC inhibitors (HDACis). Such HDACis are broadly classified according to their chemical structure, e.g., hydroxamic acids, benzamides, thiols, short-chain fatty acids, and cyclic peptides. Fluorination plays an important role in the medicinal-chemical design of new active representatives. As a result of the introduction of fluorine into the chemical structure, parameters such as potency or selectivity towards isoforms of HDACs can be increased. However, the impact of fluorination cannot always be clearly deduced. Nevertheless, a change in lipophilicity and, hence, solubility, as well as permeability, can influence the potency. The selectivity towards certain HDACs isoforms can be explained by special interactions of fluorinated compounds with the structure of the slightly different enzymes. Another aspect is that for a more detailed investigation of newly synthesized fluorine-containing active compounds, fluorination is often used for the purpose of labeling. Aside from the isotope 19F, which can be detected by nuclear magnetic resonance spectroscopy, the positron emission tomography of 18F plays a major role. However, to our best knowledge, a survey of the general effects of fluorination on HDACis development is lacking in the literature to date. Therefore, the aim of this review is to highlight the introduction of fluorine in the course of chemical synthesis and the impact on biological activity, using selected examples of recently developed fluorinated HDACis.
Collapse
Affiliation(s)
- Duong Tien Anh
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi 10000, Vietnam
| | - Nguyen Hai Nam
- Department of Pharmaceutical Chemistry, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi 10000, Vietnam
| | - Brigitte Kircher
- Immunobiology and Stem Cell Laboratory, Department of Internal Medicine V (Hematology and Oncology), Medical University Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
- Tyrolean Cancer Research Institute, Innrain 66, 6020 Innsbruck, Austria
- Correspondence: (B.K.); (D.B.)
| | - Daniel Baecker
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Straße 17, 17489 Greifswald, Germany
- Correspondence: (B.K.); (D.B.)
| |
Collapse
|
6
|
Anestopoulos I, Kyriakou S, Tragkola V, Paraskevaidis I, Tzika E, Mitsiogianni M, Deligiorgi MV, Petrakis G, Trafalis DT, Botaitis S, Giatromanolaki A, Koukourakis MI, Franco R, Pappa A, Panayiotidis MI. Targeting the epigenome in malignant melanoma: Facts, challenges and therapeutic promises. Pharmacol Ther 2022; 240:108301. [PMID: 36283453 DOI: 10.1016/j.pharmthera.2022.108301] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/03/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022]
Abstract
Malignant melanoma is the most lethal type of skin cancer with high rates of mortality. Although current treatment options provide a short-clinical benefit, acquired-drug resistance highlights the low 5-year survival rate among patients with advanced stage of the disease. In parallel, the involvement of an aberrant epigenetic landscape, (e.g., alterations in DNA methylation patterns, histone modifications marks and expression of non-coding RNAs), in addition to the genetic background, has been also associated with the onset and progression of melanoma. In this review article, we report on current therapeutic options in melanoma treatment with a focus on distinct epigenetic alterations and how their reversal, by specific drug compounds, can restore a normal phenotype. In particular, we concentrate on how single and/or combinatorial therapeutic approaches have utilized epigenetic drug compounds in being effective against malignant melanoma. Finally, the role of deregulated epigenetic mechanisms in promoting drug resistance to targeted therapies and immune checkpoint inhibitors is presented leading to the development of newly synthesized and/or improved drug compounds capable of targeting the epigenome of malignant melanoma.
Collapse
Affiliation(s)
- I Anestopoulos
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - S Kyriakou
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - V Tragkola
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - I Paraskevaidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - E Tzika
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | | | - M V Deligiorgi
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - G Petrakis
- Saint George Hospital, Chania, Crete, Greece
| | - D T Trafalis
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - S Botaitis
- Department of Surgery, Alexandroupolis University Hospital, Democritus University of Thrace School of Medicine, Alexandroupolis, Greece
| | - A Giatromanolaki
- Department of Pathology, Democritus University of Thrace, University General Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - M I Koukourakis
- Radiotherapy / Oncology, Radiobiology & Radiopathology Unit, Department of Medicine, School of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - R Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE, USA; School of Veterinary Medicine & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - A Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - M I Panayiotidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus.
| |
Collapse
|
7
|
Gupta S, Ahmed MM. Targeting radiation-induced upstream stimulatory factor-1 by histone deacetylase inhibitors to reverse radioresistance in prostate cancer. Cancer Rep (Hoboken) 2021; 5:e1553. [PMID: 34533293 PMCID: PMC9780427 DOI: 10.1002/cnr2.1553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/11/2021] [Accepted: 08/23/2021] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Ionizing radiation (IR) is a standard modality for the management of solid tumors. Apart from its killing effects, IR can induce pro-survival factors leading to radioresistance of cancer. Mechanistic understanding of radiation resistance is warranted to overcome the pro-survival effects of IR. AIM The aim of this study was to investigate the role of upstream stimulatory factor-1 (USF-1) in the induction of radioresistance in prostate cancer and its targeting by histone deacetylase (HDAC) inhibitors to reverse resistance. METHODS AND RESULTS This study reports here that USF-1 is a marker for radioresistance in PC-3 cells. Using protein-DNA array analysis, it was documented that DNA binding activity of USF-1 was elevated following IR in PC-3 cells. Novel HDAC inhibitors downregulated USF-1 binding either alone or in combination with IR. A 5 Gy dose of IR induced the expression of target genes of USF-1 (human telomerase reverse transcriptase [hTERT], IGF2R, CyclinB1, and Cdk1), however, HDAC inhibitors alone or in combination with IR reduced their expression as measured by real time RT PCR analysis. Furthermore, immunofluorescence analysis revealed that while USF-1 localized primarily in the nucleus following IR, it localized in the cytoplasm when treated with HDAC inhibitors/combination. Maximum effects of modulation of USF-1 expression (overexpression or suppression) were observed on hTERT activity as determined by dual-luciferase reporter assay. To further confirm the role of USF-1 in radioresistance, cell growth was analyzed using the real-time cell electronic sensing (RT-CES) system. This study found that USF-1-transfected cells proliferated faster than the vector-transfected cells with or without treatments with HDAC inhibitors/IR/combination. Colony forming assay also confirmed that USF-1 overexpression led to increased survival following IR. Importantly, colony-forming assay demonstrated that HDAC inhibitors reversed the radioresistance in both PC-3 and DU-145 cells. CONCLUSION These studies demonstrate that HDAC inhibitors reverse the radioresistance in prostate cancer through down-modulation of USF-1-mediated transactivation of target genes involved in cell proliferation and cell cycle.
Collapse
Affiliation(s)
- Seema Gupta
- Department of Radiation OncologyUniversity of MiamiMiamiFloridaUSA,Present address:
The Loop Immuno‐Oncology Laboratory, Lombardi Comprehensive Cancer CenterGeorgetown University Medical CenterWashington, DCUSA
| | - Mansoor M. Ahmed
- Department of Radiation OncologyUniversity of MiamiMiamiFloridaUSA,Present address:
Radiation Research Program (RRP), Division of Cancer Treatment and Diagnosis (DCTD)National Cancer Institute/National Institutes of HealthRockvilleMarylandUSA
| |
Collapse
|
8
|
Chua MJ, Tng J, Hesping E, Fisher GM, Goodman CD, Skinner-Adams T, Do D, Lucke AJ, Reid RC, Fairlie DP, Andrews KT. Histone deacetylase inhibitor AR-42 and achiral analogues kill malaria parasites in vitro and in mice. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2021; 17:118-127. [PMID: 34560571 PMCID: PMC8463797 DOI: 10.1016/j.ijpddr.2021.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 11/29/2022]
Abstract
Malaria is caused by infection with Plasmodium parasites and results in significant health and economic impacts. Malaria eradication is hampered by parasite resistance to current drugs and the lack of a widely effective vaccine. Compounds that target epigenetic regulatory proteins, such as histone deacetylases (HDACs), may lead to new therapeutic agents with a different mechanism of action, thereby avoiding resistance mechanisms to current antimalarial drugs. The anticancer HDAC inhibitor AR-42, as its racemate (rac-AR-42), and 36 analogues were investigated for in vitro activity against P. falciparum. Rac-AR-42 and selected compounds were assessed for cytotoxicity against human cells, histone hyperacetylation, human HDAC1 inhibition and oral activity in a murine malaria model. Rac-AR-42 was tested for ex vivo asexual and in vitro exoerythrocytic stage activity against P. berghei murine malaria parasites. Rac-AR-42 and 13 achiral analogues were potent inhibitors of asexual intraerythrocytic stage P. falciparum 3D7 growth in vitro (IC50 5–50 nM), with four of these compounds having >50-fold selectivity for P. falciparum versus human cells (selectivity index 56–118). Rac-AR-42 induced in situ hyperacetylation of P. falciparum histone H4, consistent with PfHDAC(s) inhibition. Furthermore, rac-AR-42 potently inhibited P. berghei infected erythrocyte growth ex vivo (IC50 40 nM) and P. berghei exoerythrocytic forms in hepatocytes (IC50 1 nM). Oral administration of rac-AR-42 and two achiral analogues inhibited P. berghei growth in mice, with rac-AR-42 (50 mg/kg/day single dose for four days) curing all infections. These findings demonstrate curative properties for HDAC inhibitors in the oral treatment of experimental mouse malaria. HDAC inhibitors rac-AR-42 and 13 analogues inhibit P. falciparum growth in vitro. Rac-AR-42 inhibits P. berghei exoerythrocytic forms in hepatocytes (IC50 1 nM). Rac-AR-42 causes in situ hyperacetylation of P. falciparum histone H4. Rac-AR-42 cures P. berghei infected mice with oral dosing.
Collapse
Affiliation(s)
- Ming Jang Chua
- Griffith Institute for Drug Discovery, Griffith University, Queensland, 4111, Australia
| | - Jiahui Tng
- Institute for Molecular Bioscience, The University of Queensland, Queensland, 4072, Australia
| | - Eva Hesping
- Griffith Institute for Drug Discovery, Griffith University, Queensland, 4111, Australia
| | - Gillian M Fisher
- Griffith Institute for Drug Discovery, Griffith University, Queensland, 4111, Australia
| | | | - Tina Skinner-Adams
- Griffith Institute for Drug Discovery, Griffith University, Queensland, 4111, Australia
| | - Darren Do
- Institute for Molecular Bioscience, The University of Queensland, Queensland, 4072, Australia
| | - Andrew J Lucke
- Institute for Molecular Bioscience, The University of Queensland, Queensland, 4072, Australia
| | - Robert C Reid
- Institute for Molecular Bioscience, The University of Queensland, Queensland, 4072, Australia
| | - David P Fairlie
- Institute for Molecular Bioscience, The University of Queensland, Queensland, 4072, Australia.
| | - Katherine T Andrews
- Griffith Institute for Drug Discovery, Griffith University, Queensland, 4111, Australia.
| |
Collapse
|
9
|
Collier KA, Valencia H, Newton H, Hade EM, Sborov DW, Cavaliere R, Poi M, Phelps MA, Liva SG, Coss CC, Wang J, Khountham S, Monk P, Shapiro CL, Piekarz R, Hofmeister CC, Welling DB, Mortazavi A. A phase 1 trial of the histone deacetylase inhibitor AR-42 in patients with neurofibromatosis type 2-associated tumors and advanced solid malignancies. Cancer Chemother Pharmacol 2021; 87:599-611. [PMID: 33492438 DOI: 10.1007/s00280-020-04229-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 12/29/2020] [Indexed: 11/29/2022]
Abstract
PURPOSE Given clinical activity of AR-42, an oral histone deacetylase inhibitor, in hematologic malignancies and preclinical activity in solid tumors, this phase 1 trial investigated the safety and tolerability of AR-42 in patients with advanced solid tumors, including neurofibromatosis type 2-associated meningiomas and schwannomas (NF2). The primary objective was to define the maximum tolerated dose (MTD) and dose-limiting toxicities (DLTs). Secondary objectives included determining pharmacokinetics and clinical activity. METHODS This phase I trial was an open-label, single-center, dose-escalation study of single-agent AR-42 in primary central nervous system and advanced solid tumors. The study followed a 3 + 3 design with an expansion cohort at the MTD. RESULTS Seventeen patients were enrolled with NF2 (n = 5), urothelial carcinoma (n = 3), breast cancer (n = 2), non-NF2-related meningioma (n = 2), carcinoma of unknown primary (n = 2), small cell lung cancer (n = 1), Sertoli cell carcinoma (n = 1), and uveal melanoma (n = 1). The recommended phase II dose is 60 mg three times weekly, for 3 weeks of a 28-day cycle. DLTs included grade 3 thrombocytopenia and grade 4 psychosis. The most common treatment-related adverse events were cytopenias, fatigue, and nausea. The best response was stable disease in 53% of patients (95% CI 26.6-78.7). Median progression-free survival (PFS) was 3.6 months (95% CI 1.2-9.1). Among evaluable patients with NF2 or meningioma (n = 5), median PFS was 9.1 months (95% CI 1.9-not reached). CONCLUSION Single-agent AR-42 is safe and well tolerated. Further studies may consider AR-42 in a larger cohort of patients with NF2 or in combination with other agents in advanced solid tumors. TRIAL REGISTRATION NCT01129193, registered 5/24/2010.
Collapse
Affiliation(s)
- Katharine A Collier
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University and The Comprehensive Cancer Center, Columbus, OH, USA.,Division of Hematology, Department of Internal Medicine, The Ohio State University and The Comprehensive Cancer Center, Columbus, OH, USA
| | - Hugo Valencia
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University and The Comprehensive Cancer Center, Columbus, OH, USA.,Division of Hematology, Department of Internal Medicine, The Ohio State University and The Comprehensive Cancer Center, Columbus, OH, USA
| | - Herbert Newton
- Division of Neuro-Oncology, Departments of Neurology and Neurosurgery, The Ohio State University and The Comprehensive Cancer Center, Columbus, OH, USA
| | - Erinn M Hade
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Douglas W Sborov
- Division of Hematology and Hematologic Malignancies, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Robert Cavaliere
- Division Neuro-Oncology, Department of Cancer Medicine, Baptist MD Anderson, Jacksonville, FL, USA
| | - Ming Poi
- College of Pharmacy, The Ohio State University and The Comprehensive Cancer Center, Columbus, OH, USA
| | - Mitch A Phelps
- College of Pharmacy, The Ohio State University and The Comprehensive Cancer Center, Columbus, OH, USA
| | - Sophia G Liva
- College of Pharmacy, The Ohio State University and The Comprehensive Cancer Center, Columbus, OH, USA
| | - Christopher C Coss
- College of Pharmacy, The Ohio State University and The Comprehensive Cancer Center, Columbus, OH, USA
| | - Jiang Wang
- College of Pharmacy, The Ohio State University and The Comprehensive Cancer Center, Columbus, OH, USA
| | - Soun Khountham
- Division of Hematology, Department of Internal Medicine, The Ohio State University and The Comprehensive Cancer Center, Columbus, OH, USA
| | - Paul Monk
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University and The Comprehensive Cancer Center, Columbus, OH, USA
| | - Charles L Shapiro
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University and The Comprehensive Cancer Center, Columbus, OH, USA
| | - Richard Piekarz
- National Cancer Institute/Cancer Therapy Evaluation Program, Bethesda, MD, USA
| | - Craig C Hofmeister
- Division of Hematology, Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - D Bradley Welling
- Department of Otolaryngology Head and Neck Surgery, Harvard Medical School, Massachusetts Eye and Ear Infirmary and Massachusetts General Hospital, Boston, MA, USA
| | - Amir Mortazavi
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University and The Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
10
|
Dvorak Z, Klapholz M, Burris TP, Willing BP, Gioiello A, Pellicciari R, Galli F, March J, O'Keefe SJ, Sartor RB, Kim CH, Levy M, Mani S. Weak Microbial Metabolites: a Treasure Trove for Using Biomimicry to Discover and Optimize Drugs. Mol Pharmacol 2020; 98:343-349. [PMID: 32764096 PMCID: PMC7485585 DOI: 10.1124/molpharm.120.000035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
For decades, traditional drug discovery has used natural product and synthetic chemistry approaches to generate libraries of compounds, with some ending as promising drug candidates. A complementary approach has been to adopt the concept of biomimicry of natural products and metabolites so as to improve multiple drug-like features of the parent molecule. In this effort, promiscuous and weak interactions between ligands and receptors are often ignored in a drug discovery process. In this Emerging Concepts article, we highlight microbial metabolite mimicry, whereby parent metabolites have weak interactions with their receptors that then have led to discrete examples of more potent and effective drug-like molecules. We show specific examples of parent-metabolite mimics with potent effects in vitro and in vivo. Furthermore, we show examples of emerging microbial ligand-receptor interactions and provide a context in which these ligands could be improved as potential drugs. A balanced conceptual advance is provided in which we also acknowledge potential pitfalls-hyperstimulation of finely balanced receptor-ligand interactions could also be detrimental. However, with balance, we provide examples of where this emerging concept needs to be tested. SIGNIFICANCE STATEMENT: Microbial metabolite mimicry is a novel way to expand on the chemical repertoire of future drugs. The emerging concept is now explained using specific examples of the discovery of therapeutic leads from microbial metabolites.
Collapse
Affiliation(s)
- Zdenek Dvorak
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania (M.K., M.L.); The Center for Clinical Pharmacology, Washington University in St. Louis and St. Louis College of Pharmacy, St. Louis, Missouri (T.P.B.); Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta (B.P.W.); Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy (A.G., F.G.); TES Pharma, Corso Vannucci, Perugia, Italy (R.P.); The Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York (J.M.); Division of Gastroenterology and Nutrition, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania (S.J.O.); Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.B.S.); Department of Pathology, Mary H. Weiser Food Allergy Center, and Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Max Klapholz
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania (M.K., M.L.); The Center for Clinical Pharmacology, Washington University in St. Louis and St. Louis College of Pharmacy, St. Louis, Missouri (T.P.B.); Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta (B.P.W.); Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy (A.G., F.G.); TES Pharma, Corso Vannucci, Perugia, Italy (R.P.); The Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York (J.M.); Division of Gastroenterology and Nutrition, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania (S.J.O.); Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.B.S.); Department of Pathology, Mary H. Weiser Food Allergy Center, and Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Thomas P Burris
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania (M.K., M.L.); The Center for Clinical Pharmacology, Washington University in St. Louis and St. Louis College of Pharmacy, St. Louis, Missouri (T.P.B.); Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta (B.P.W.); Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy (A.G., F.G.); TES Pharma, Corso Vannucci, Perugia, Italy (R.P.); The Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York (J.M.); Division of Gastroenterology and Nutrition, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania (S.J.O.); Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.B.S.); Department of Pathology, Mary H. Weiser Food Allergy Center, and Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Benjamin P Willing
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania (M.K., M.L.); The Center for Clinical Pharmacology, Washington University in St. Louis and St. Louis College of Pharmacy, St. Louis, Missouri (T.P.B.); Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta (B.P.W.); Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy (A.G., F.G.); TES Pharma, Corso Vannucci, Perugia, Italy (R.P.); The Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York (J.M.); Division of Gastroenterology and Nutrition, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania (S.J.O.); Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.B.S.); Department of Pathology, Mary H. Weiser Food Allergy Center, and Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Antimo Gioiello
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania (M.K., M.L.); The Center for Clinical Pharmacology, Washington University in St. Louis and St. Louis College of Pharmacy, St. Louis, Missouri (T.P.B.); Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta (B.P.W.); Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy (A.G., F.G.); TES Pharma, Corso Vannucci, Perugia, Italy (R.P.); The Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York (J.M.); Division of Gastroenterology and Nutrition, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania (S.J.O.); Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.B.S.); Department of Pathology, Mary H. Weiser Food Allergy Center, and Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Roberto Pellicciari
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania (M.K., M.L.); The Center for Clinical Pharmacology, Washington University in St. Louis and St. Louis College of Pharmacy, St. Louis, Missouri (T.P.B.); Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta (B.P.W.); Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy (A.G., F.G.); TES Pharma, Corso Vannucci, Perugia, Italy (R.P.); The Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York (J.M.); Division of Gastroenterology and Nutrition, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania (S.J.O.); Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.B.S.); Department of Pathology, Mary H. Weiser Food Allergy Center, and Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Francesco Galli
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania (M.K., M.L.); The Center for Clinical Pharmacology, Washington University in St. Louis and St. Louis College of Pharmacy, St. Louis, Missouri (T.P.B.); Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta (B.P.W.); Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy (A.G., F.G.); TES Pharma, Corso Vannucci, Perugia, Italy (R.P.); The Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York (J.M.); Division of Gastroenterology and Nutrition, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania (S.J.O.); Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.B.S.); Department of Pathology, Mary H. Weiser Food Allergy Center, and Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - John March
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania (M.K., M.L.); The Center for Clinical Pharmacology, Washington University in St. Louis and St. Louis College of Pharmacy, St. Louis, Missouri (T.P.B.); Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta (B.P.W.); Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy (A.G., F.G.); TES Pharma, Corso Vannucci, Perugia, Italy (R.P.); The Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York (J.M.); Division of Gastroenterology and Nutrition, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania (S.J.O.); Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.B.S.); Department of Pathology, Mary H. Weiser Food Allergy Center, and Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Stephen J O'Keefe
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania (M.K., M.L.); The Center for Clinical Pharmacology, Washington University in St. Louis and St. Louis College of Pharmacy, St. Louis, Missouri (T.P.B.); Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta (B.P.W.); Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy (A.G., F.G.); TES Pharma, Corso Vannucci, Perugia, Italy (R.P.); The Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York (J.M.); Division of Gastroenterology and Nutrition, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania (S.J.O.); Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.B.S.); Department of Pathology, Mary H. Weiser Food Allergy Center, and Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - R Balfour Sartor
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania (M.K., M.L.); The Center for Clinical Pharmacology, Washington University in St. Louis and St. Louis College of Pharmacy, St. Louis, Missouri (T.P.B.); Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta (B.P.W.); Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy (A.G., F.G.); TES Pharma, Corso Vannucci, Perugia, Italy (R.P.); The Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York (J.M.); Division of Gastroenterology and Nutrition, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania (S.J.O.); Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.B.S.); Department of Pathology, Mary H. Weiser Food Allergy Center, and Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Chang H Kim
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania (M.K., M.L.); The Center for Clinical Pharmacology, Washington University in St. Louis and St. Louis College of Pharmacy, St. Louis, Missouri (T.P.B.); Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta (B.P.W.); Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy (A.G., F.G.); TES Pharma, Corso Vannucci, Perugia, Italy (R.P.); The Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York (J.M.); Division of Gastroenterology and Nutrition, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania (S.J.O.); Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.B.S.); Department of Pathology, Mary H. Weiser Food Allergy Center, and Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Maayan Levy
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania (M.K., M.L.); The Center for Clinical Pharmacology, Washington University in St. Louis and St. Louis College of Pharmacy, St. Louis, Missouri (T.P.B.); Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta (B.P.W.); Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy (A.G., F.G.); TES Pharma, Corso Vannucci, Perugia, Italy (R.P.); The Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York (J.M.); Division of Gastroenterology and Nutrition, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania (S.J.O.); Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.B.S.); Department of Pathology, Mary H. Weiser Food Allergy Center, and Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| | - Sridhar Mani
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania (M.K., M.L.); The Center for Clinical Pharmacology, Washington University in St. Louis and St. Louis College of Pharmacy, St. Louis, Missouri (T.P.B.); Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta (B.P.W.); Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy (A.G., F.G.); TES Pharma, Corso Vannucci, Perugia, Italy (R.P.); The Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York (J.M.); Division of Gastroenterology and Nutrition, UPMC Presbyterian Hospital, Pittsburgh, Pennsylvania (S.J.O.); Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (R.B.S.); Department of Pathology, Mary H. Weiser Food Allergy Center, and Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, Michigan (C.H.K.); and Department of Medicine, Albert Einstein College of Medicine, Bronx, New York (S.M.)
| |
Collapse
|
11
|
Design, synthesis and SARs of novel telomerase inhibitors based on BIBR1532. Bioorg Chem 2020; 102:104077. [DOI: 10.1016/j.bioorg.2020.104077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/29/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022]
|
12
|
You D, Richardson JR, Aleksunes LM. Epigenetic Regulation of Multidrug Resistance Protein 1 and Breast Cancer Resistance Protein Transporters by Histone Deacetylase Inhibition. Drug Metab Dispos 2020; 48:459-480. [PMID: 32193359 PMCID: PMC7250367 DOI: 10.1124/dmd.119.089953] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/13/2020] [Indexed: 02/06/2023] Open
Abstract
Multidrug resistance protein 1 (MDR1, ABCB1, P-glycoprotein) and breast cancer resistance protein (BCRP, ABCG2) are key efflux transporters that mediate the extrusion of drugs and toxicants in cancer cells and healthy tissues, including the liver, kidneys, and the brain. Altering the expression and activity of MDR1 and BCRP influences the disposition, pharmacodynamics, and toxicity of chemicals, including a number of commonly prescribed medications. Histone acetylation is an epigenetic modification that can regulate gene expression by changing the accessibility of the genome to transcriptional regulators and transcriptional machinery. Recently, studies have suggested that pharmacological inhibition of histone deacetylases (HDACs) modulates the expression and function of MDR1 and BCRP transporters as a result of enhanced histone acetylation. This review addresses the ability of HDAC inhibitors to modulate the expression and the function of MDR1 and BCRP transporters and explores the molecular mechanisms by which HDAC inhibition regulates these transporters. While the majority of studies have focused on histone regulation of MDR1 and BCRP in drug-resistant and drug-sensitive cancer cells, emerging data point to similar responses in nonmalignant cells and tissues. Elucidating epigenetic mechanisms regulating MDR1 and BCRP is important to expand our understanding of the basic biology of these two key transporters and subsequent consequences on chemoresistance as well as tissue exposure and responses to drugs and toxicants. SIGNIFICANCE STATEMENT: Histone deacetylase inhibitors alter the expression of key efflux transporters multidrug resistance protein 1 and breast cancer resistance protein in healthy and malignant cells.
Collapse
Affiliation(s)
- Dahea You
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey (D.Y.); Department of Environmental Health Sciences, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, Florida (J.R.R.); Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey (J.R.R., L.M.A.); and Department of Pharmacology and Toxicology, Rutgers, The State University of New Jersey, Ernest Mario School of Pharmacy, Piscataway, New Jersey (L.M.A.)
| | - Jason R Richardson
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey (D.Y.); Department of Environmental Health Sciences, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, Florida (J.R.R.); Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey (J.R.R., L.M.A.); and Department of Pharmacology and Toxicology, Rutgers, The State University of New Jersey, Ernest Mario School of Pharmacy, Piscataway, New Jersey (L.M.A.)
| | - Lauren M Aleksunes
- Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, Piscataway, New Jersey (D.Y.); Department of Environmental Health Sciences, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, Florida (J.R.R.); Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey (J.R.R., L.M.A.); and Department of Pharmacology and Toxicology, Rutgers, The State University of New Jersey, Ernest Mario School of Pharmacy, Piscataway, New Jersey (L.M.A.)
| |
Collapse
|
13
|
Tng J, Lim J, Wu KC, Lucke AJ, Xu W, Reid RC, Fairlie DP. Achiral Derivatives of Hydroxamate AR-42 Potently Inhibit Class I HDAC Enzymes and Cancer Cell Proliferation. J Med Chem 2020; 63:5956-5971. [DOI: 10.1021/acs.jmedchem.0c00230] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jiahui Tng
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Junxian Lim
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Kai-Chen Wu
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andrew J. Lucke
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Weijun Xu
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Robert C. Reid
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David P. Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
14
|
Liva SG, Coss CC, Wang J, Blum W, Klisovic R, Bhatnagar B, Walsh K, Geyer S, Zhao Q, Garzon R, Marcucci G, Phelps MA, Walker AR. Phase I study of AR-42 and decitabine in acute myeloid leukemia. Leuk Lymphoma 2020; 61:1484-1492. [PMID: 32037935 DOI: 10.1080/10428194.2020.1719095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This phase I trial sought to determine a biologically safe and effective dose of AR-42, a novel histone deacetylase inhibitor, which would lead to a doubling of miR-29b prior to decitabine administration. Thirteen patients with previously untreated or relapsed/refractory AML were treated at 3 dose levels (DL): AR-42 20 mg qd on d1,3,5 in DL1, 40 mg qd on d1,3,5 in DL2 and 40 mg qd on d1,3,4,5 in DL3. Patients received decitabine 20 mg/m2 on d6-15 of each induction cycle and 20 mg/m2 on d6-10 of each maintenance cycle. One DLT of polymicrobial sepsis and multi-organ failure occurred at DL3. Two patients achieved a CRi and one patient achieved a CR for an ORR of 23.1%. The higher risk features of this patient population and the dosing schedule of AR-42 may have led to the observed clinical response and failure to meet the biologic endpoint.
Collapse
Affiliation(s)
- Sophia G Liva
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Christopher C Coss
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Jiang Wang
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - William Blum
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Rebecca Klisovic
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Bhavana Bhatnagar
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Katherine Walsh
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, USA
| | | | - Qiuhong Zhao
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Ramiro Garzon
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Guido Marcucci
- Department of Hematologic Malignancies Translational Science, City of Hope, Duarte, CA, USA
| | - Mitch A Phelps
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Alison R Walker
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
15
|
Shouksmith AE, Gawel JM, Nawar N, Sina D, Raouf YS, Bukhari S, He L, Johns AE, Manaswiyoungkul P, Olaoye OO, Cabral AD, Sedighi A, de Araujo ED, Gunning PT. Class I/IIb-Selective HDAC Inhibitor Exhibits Oral Bioavailability and Therapeutic Efficacy in Acute Myeloid Leukemia. ACS Med Chem Lett 2020; 11:56-64. [PMID: 31938464 DOI: 10.1021/acsmedchemlett.9b00471] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 12/13/2019] [Indexed: 01/29/2023] Open
Abstract
The HDAC inhibitor 4-tert-butyl-N-(4-(hydroxycarbamoyl)phenyl)benzamide (AES-350, 51) was identified as a promising preclinical candidate for the treatment of acute myeloid leukemia (AML), an aggressive malignancy with a meagre 24% 5-year survival rate. Through screening of low-molecular-weight analogues derived from the previously discovered novel HDAC inhibitor, AES-135, compound 51 demonstrated greater HDAC isoform selectivity, higher cytotoxicity in MV4-11 cells, an improved therapeutic window, and more efficient absorption through cellular and lipid membranes. Compound 51 also demonstrated improved oral bioavailability compared to SAHA in mouse models. A broad spectrum of experiments, including FACS, ELISA, and Western blotting, were performed to support our hypothesis that 51 dose-dependently triggers apoptosis in AML cells through HDAC inhibition.
Collapse
Affiliation(s)
- Andrew E. Shouksmith
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Justyna M. Gawel
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Nabanita Nawar
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Diana Sina
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Yasir S. Raouf
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Shazreh Bukhari
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Liying He
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Alexandra E. Johns
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Pimyupa Manaswiyoungkul
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Olasunkanmi O. Olaoye
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Aaron D. Cabral
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Abootaleb Sedighi
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Elvin D. de Araujo
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| | - Patrick T. Gunning
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada
| |
Collapse
|
16
|
Zhu Y, Yuan T, Zhang Y, Shi J, Bai L, Duan X, Tong R, Zhong L. AR-42: A Pan-HDAC Inhibitor with Antitumor and Antiangiogenic Activities in Esophageal Squamous Cell Carcinoma. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:4321-4330. [PMID: 31908417 PMCID: PMC6930838 DOI: 10.2147/dddt.s211665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 12/01/2019] [Indexed: 12/24/2022]
Abstract
Purpose Esophageal squamous cell carcinoma (ESCC) is a refractory malignancy with high morbidity and mortality. Thus, there is an urgent need to find effective targets and agents for ESCC treatment. The purpose of this study was to assess the anti-ESCC effects of a pan-histone deacetylase (HDAC) inhibitor AR-42 and its mechanisms of action. Methods Immunohistochemical staining was performed to detect HDAC1 expression in ESCC and adjacent tissue samples. MTT assay, Edu cell proliferation test, flow cytometry, and subcutaneous xenograft were used to assess the anti-ESCC effects of AR-42; furthermore, the antiangiogenic activity of AR-42 was evaluated using endothelial cell migration, invasion, and tube formation assays as well as zebrafish angiogenesis assay. Western blot analysis was performed to explore the underlying mechanism of the anti-ESCC activity of AR-42. Results HDAC1-positive expression was much higher in ESCC cells than in paracancerous tissues, and the elevated HDAC1 expression was a strong indicator of lymph node metastasis and a more advanced TNM stage of ESCC. Moreover, AR-42 potently suppressed ESCC cell growth through cellular proliferation inhibition and apoptosis induction. Moreover, AR-42 displayed a moderate antiangiogenic activity, and it could significantly inhibit the migration, invasion and tubulogenesis of human umbilical vein endothelial cells as well as intersegmental vessel formation in zebrafish at micromolar concentrations. More importantly, the inhibitory activity of AR-42 on ESCC cells and angiogenesis could also be observed in the TE-1 xenograft model. Further studies showed that AR-42 exerts its anti-ESCC effects mainly by upregulating the expression of p21 and blocking the transduction of multiple signaling cascades related to tumor growth, especially Stat3-mediated signaling. Conclusion Overall, AR-42 has significant potency for inhibiting ESCC cell growth and shows moderate effect in suppressing angiogenesis, displaying strong anti-ESCC effects in vitro and in vivo. Thus, AR-42 deserves further evaluation as a potential candidate for ESCC therapy.
Collapse
Affiliation(s)
- Yuxuan Zhu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, People's Republic of China
| | - Ting Yuan
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, People's Republic of China
| | - Yuan Zhang
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, People's Republic of China
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, People's Republic of China
| | - Lan Bai
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, People's Republic of China
| | - Xingmei Duan
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, People's Republic of China
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, People's Republic of China
| | - Lei Zhong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, People's Republic of China
| |
Collapse
|
17
|
Ediriweera MK, Cho SK. Targeting miRNAs by histone deacetylase inhibitors (HDACi): Rationalizing epigenetics-based therapies for breast cancer. Pharmacol Ther 2019; 206:107437. [PMID: 31715287 DOI: 10.1016/j.pharmthera.2019.107437] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/05/2019] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) belong to a group of short RNA molecules of ~22 nucleotides that play a significant role in the regulation of gene expression through post-transcriptional regulatory mechanisms. They can directly interact with their target mRNA molecules and induce target gene silencing. Many investigations over the past decade have revealed the involvement of different miRNAs in essential biological events. The expression of a considerable number of miRNAs is tightly regulated through epigenetic events such as histone modifications and DNA methylation. Notably, irregularities in these epigenetic events are associated with aberrant expression of miRNAs in a range of diseases including cancer. Impaired epigenetic events associated with aberrant expression of miRNAs can be pharmacologically modified using chromatin modifying drugs. Numerous pre-clinical and clinical data demonstrate that histone deacetylase inhibitors (HDACi) can re-establish the expression of aberrantly expressed miRNAs in a range of cancer types, rationalizing miRNAs as potential drug targets. This review highlights evidence from investigations assessing the effects of different classes of HDACi on miRNA expression in breast cancer (BC).
Collapse
Affiliation(s)
- Meran Keshawa Ediriweera
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Republic of Korea.
| | - Somi Kim Cho
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Republic of Korea; Faculty of Biotechnology, College of Applied Life Sciences, SARI, Jeju National University, Jeju 63243, Republic of Korea; Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea.
| |
Collapse
|
18
|
Role of Personalized Nutrition in Chronic-Degenerative Diseases. Nutrients 2019; 11:nu11081707. [PMID: 31344895 PMCID: PMC6723746 DOI: 10.3390/nu11081707] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/15/2019] [Accepted: 07/20/2019] [Indexed: 02/07/2023] Open
Abstract
Human nutrition is a branch of medicine based on foods biochemical interactions with the human body. The phenotypic transition from health to disease status can be attributed to changes in genes and/or protein expression. For this reason, a new discipline has been developed called “-omic science”. In this review, we analyzed the role of “-omics sciences” (nutrigenetics, nutrigenomics, proteomics and metabolomics) in the health status and as possible therapeutic tool in chronic degenerative diseases. In particular, we focused on the role of nutrigenetics and the relationship between eating habits, changes in the DNA sequence and the onset of nutrition-related diseases. Moreover, we examined nutrigenomics and the effect of nutrients on gene expression. We perused the role of proteomics and metabolomics in personalized nutrition. In this scenario, we analyzed also how dysbiosis of gut microbiota can influence the onset and progression of chronic degenerative diseases. Moreover, nutrients influencing and regulating gene activity, both directly and indirectly, paves the way for personalized nutrition that plays a key role in the prevention and treatment of chronic degenerative diseases.
Collapse
|
19
|
Liu Y, Li H, Pi R, Yang Y, Zhao X, Qi X. Current strategies against persistent human papillomavirus infection (Review). Int J Oncol 2019; 55:570-584. [PMID: 31364734 DOI: 10.3892/ijo.2019.4847] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/16/2019] [Indexed: 11/06/2022] Open
Abstract
Human papillomavirus (HPV) is the most common sexually transmitted infection, exhibiting a tropism for the epidermis and mucosae. The link between persistent HPV infection and malignancies involving the anogenital tract as well as the head and neck has been well‑established, and it is estimated that HPV‑related cancers involving various anatomical sites account for 4.5% of all human cancers. Current prophylactic vaccines against HPV have enabled the prevention of associated malignancies. However, the sizeable population base of current infection in whom prophylactic vaccines are not applicable, certain high‑risk HPV types not included in vaccines, and the vast susceptible population in developing countries who do not have access to the costly prophylactic vaccines, put forward an imperative need for effective therapies targeting persistent infection. In this article, the life cycle of HPV, the mechanisms facilitating HPV evasion of recognition and clearance by the host immune system, and the promising therapeutic strategies currently under investigation, particularly antiviral drugs and therapeutic vaccines, are reviewed.
Collapse
Affiliation(s)
- Yu Liu
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hongyi Li
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ruyu Pi
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yang Yang
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaorong Qi
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
20
|
Shugrue CR, Sculimbrene BR, Jarvo ER, Mercado BQ, Miller SJ. Outer-Sphere Control for Divergent Multicatalysis with Common Catalytic Moieties. J Org Chem 2019; 84:1664-1672. [PMID: 30608173 PMCID: PMC6358474 DOI: 10.1021/acs.joc.8b03068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We herein report two examples of one-pot, simultaneous reactions, mediated by multiple, orthogonal catalysts with the same catalytic motif. First, BINOL-derived chiral phosphoric acids (CPA) and phosphothreonine (pThr)-embedded peptides were found to be matched for two different steps in double reductions of bisquinolines. Next, two π-methylhistidine (Pmh)-containing peptides catalyzed enantio- and chemoselective acylations and phosphorylations of multiple substrates in one pot. The selectivity exhibited by common reactive moieties is adjusted solely by the appended chiral scaffold through outer-sphere interactions.
Collapse
Affiliation(s)
- Christopher R. Shugrue
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | | | | | - Brandon Q. Mercado
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | | |
Collapse
|
21
|
Alam MA. Methods for Hydroxamic Acid Synthesis. CURR ORG CHEM 2019; 23:978-993. [PMID: 32565717 PMCID: PMC7304568 DOI: 10.2174/1385272823666190424142821] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 03/20/2019] [Accepted: 03/28/2019] [Indexed: 12/26/2022]
Abstract
Substituted hydroxamic acid is one of the most extensively studied pharmacophores because of their ability to chelate biologically important metal ions to modulate various enzymes, such as HDACs, urease, metallopeptidase, and carbonic anhydrase. Syntheses and biological studies of various classes of hydroxamic acid derivatives have been reported in numerous research articles in recent years but this is the first review article dedicated to their synthetic methods and their application for the synthesis of these novel molecules. In this review article, commercially available reagents and preparation of hydroxylamine donating reagents have also been described.
Collapse
Affiliation(s)
- Mohammad A. Alam
- Department of Chemistry and Physics, College of Science and Mathematics, Arkansas State University, Jonesboro, AR 72467, USA
| |
Collapse
|
22
|
Uba AI, Yelekçi K. Carboxylic acid derivatives display potential selectivity for human histone deacetylase 6: Structure-based virtual screening, molecular docking and dynamics simulation studies. Comput Biol Chem 2018; 75:131-142. [PMID: 29859380 DOI: 10.1016/j.compbiolchem.2018.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/02/2018] [Accepted: 05/06/2018] [Indexed: 12/17/2022]
Abstract
Human histone deacetylase 6 (HDAC6) has been shown to play a major role in oncogenic cell transformation via deacetylation of α-tubulin, making it a viable target of anticancer drug design and development. The crystal structure of HDAC6 catalytic domain 2 has been recently made available, providing avenues for structure-based drug design campaign. Here, in our continuous effort to identify potentially selective HDAC6 inhibitors, structure-based virtual screening of ∼72 461 compounds was carried out using Autodock Vina. The top 100 compounds with calculated ΔG < -10 kcal/mol were manually inspected for binding mode orientation. Furthermore, the top 20 compounds with reasonable binding modes were evaluated for selectivity by further docking against HDAC6 and HDAC7 using Autodock4. Four compounds with a carboxylic fragment, displayed potential selectivity for HDAC6 over HDAC7, and were found to have good druglike and ADMET properties. Their docking complexes were then submitted to 10 ns-molecular dynamics (MD) simulation using nanoscale MD (NAMD) software, to examine the stability of ligand binding modes. These predicted inhibitors remained bound to HDAC6 in the presence of water and ions, and the root-mean-square deviation (RMSD), radius of gyration (Rg) and nonbond distance (protein-ligand) profiles suggested that they might be stable over time of the simulation. This study may provide scaffolds for further lead optimization towards the design of HDAC6 inhibitors with improved selectivity.
Collapse
Affiliation(s)
- Abdullahi Ibrahim Uba
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, Cibali Campus, 34083, Fatih, Istanbul, Turkey; Centre for Biotechnology Research, Bayero University Kano, P.M.B 3011, Kano, Nigeria
| | - Kemal Yelekçi
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, Cibali Campus, 34083, Fatih, Istanbul, Turkey.
| |
Collapse
|
23
|
Hsieh HY, Chuang HC, Shen FH, Detroja K, Hsin LW, Chen CS. Targeting breast cancer stem cells by novel HDAC3-selective inhibitors. Eur J Med Chem 2017; 140:42-51. [DOI: 10.1016/j.ejmech.2017.08.069] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 10/18/2022]
|
24
|
Ho RH, Chan JCY, Fan H, Kioh DYQ, Lee BW, Chan ECY. In Silico and in Vitro Interactions between Short Chain Fatty Acids and Human Histone Deacetylases. Biochemistry 2017; 56:4871-4878. [PMID: 28809557 DOI: 10.1021/acs.biochem.7b00508] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Short chain fatty acids (SCFAs) are postulated to modulate the immune development of neonates via epigenetic regulations such as histone deacetylase (HDAC) inhibition. In the context of atopic diseases, the inhibition of HDAC maintains T-cell homeostasis and induces naïve T-cell differentiation into adaptive Treg, which regulates the production of anti-inflammatory cytokines and suppression of Th2 immune responses. We investigated the structure-inhibition relationships of SCFAs with class I HDAC3 and class IIa HDAC7 using in silico docking simulation and the in vitro human recombinant HDAC inhibition assay. In silico docking simulation demonstrated that the lower binding energy of SCFAs toward HDACs was associated with the longer aliphatic chain length of SCFAs. Conversely, branching of SCFAs increased their binding energies toward both HDAC3 and HDAC7. The in vitro HDAC inhibition assay revealed that SCFAs more potently inhibit HDAC3 than HDAC7, with butyric acid being the most potent HDAC3 inhibitor among SCFAs (IC50 = 0.318 mM). In conclusion, our findings inform novel structural relationships between SCFAs and HDAC3 versus HDAC7. Future investigation of human disposition of SCFAs is important to establish their effects on innate versus adaptive immunity.
Collapse
Affiliation(s)
- Rou Hui Ho
- Department of Pharmacy, National University of Singapore , 18 Science Drive 4, Singapore 117543
| | - James Chun Yip Chan
- Department of Pharmacy, National University of Singapore , 18 Science Drive 4, Singapore 117543
| | - Hao Fan
- Bioinformatics Institute , 30 Biopolis Street, #07-01 Matrix, Singapore 138671.,Department of Biological Sciences, National University of Singapore , 14 Science Drive 4, Singapore 117545
| | - Dorinda Yan Qin Kioh
- Department of Pharmacy, National University of Singapore , 18 Science Drive 4, Singapore 117543
| | - Bee Wah Lee
- Department of Pediatrics, National University Health System , 5 Lower Kent Ridge Road, Singapore 119074
| | - Eric Chun Yong Chan
- Department of Pharmacy, National University of Singapore , 18 Science Drive 4, Singapore 117543.,Brenner Centre for Molecular Medicine, Singapore Institute for Clinical Sciences (SICS) , 30 Medical Drive, Singapore 117609
| |
Collapse
|
25
|
Synthesis and applications of benzohydroxamic acid-based histone deacetylase inhibitors. Eur J Med Chem 2017; 135:174-195. [DOI: 10.1016/j.ejmech.2017.04.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/03/2017] [Accepted: 04/07/2017] [Indexed: 02/08/2023]
|
26
|
Sborov DW, Canella A, Hade EM, Mo X, Khountham S, Wang J, Ni W, Poi M, Coss C, Liu Z, Phelps MA, Mortazavi A, Andritsos L, Baiocchi RA, Christian BA, Benson DM, Flynn J, Porcu P, Byrd JC, Pichiorri F, Hofmeister CC. A phase 1 trial of the HDAC inhibitor AR-42 in patients with multiple myeloma and T- and B-cell lymphomas. Leuk Lymphoma 2017; 58:2310-2318. [PMID: 28270022 DOI: 10.1080/10428194.2017.1298751] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Histone deacetylase inhibitors (HDACi) have proven activity in hematologic malignancies, and their FDA approval in multiple myeloma (MM) and T-cell lymphoma highlights the need for further development of this drug class. We investigated AR-42, an oral pan-HDACi, in a first-in-man phase 1 dose escalation clinical trial. Overall, treatment was well tolerated, no DLTs were evident, and the MTD was defined as 40 mg dosed three times weekly for three weeks of a 28-day cycle. One patient each with MM and mantle cell lymphoma demonstrated disease control for 19 and 27 months (ongoing), respectively. Treatment was associated with reduction of serum CD44, a transmembrane glycoprotein associated with steroid and immunomodulatory drug resistance in MM. Our findings indicate that AR-42 is safe and that further investigation of AR-42 in combination regimens for the treatment of patients with lymphoma and MM is warranted. TRIAL REGISTRATION http://clinicaltrials.gov/ct2/show/NCT01129193.
Collapse
Affiliation(s)
- Douglas W Sborov
- a Division of Hematology, Department of Internal Medicine , University of Utah , Salt Lake City , UT , USA
| | - Alessandro Canella
- b Comprehensive Cancer Center , The Ohio State University , Columbus , OH , USA
| | - Erinn M Hade
- c Center for Biostatistics, Department of Biomedical Informatics , The Ohio State University , Columbus , OH , USA
| | - Xiaokui Mo
- c Center for Biostatistics, Department of Biomedical Informatics , The Ohio State University , Columbus , OH , USA
| | - Soun Khountham
- b Comprehensive Cancer Center , The Ohio State University , Columbus , OH , USA
| | - Jiang Wang
- b Comprehensive Cancer Center , The Ohio State University , Columbus , OH , USA
| | - Wenjun Ni
- d Division of Pharmaceutics, College of Pharmacy , The Ohio State University , Columbus , OH , USA
| | - Ming Poi
- b Comprehensive Cancer Center , The Ohio State University , Columbus , OH , USA.,d Division of Pharmaceutics, College of Pharmacy , The Ohio State University , Columbus , OH , USA
| | - Christopher Coss
- b Comprehensive Cancer Center , The Ohio State University , Columbus , OH , USA.,d Division of Pharmaceutics, College of Pharmacy , The Ohio State University , Columbus , OH , USA
| | - Zhongfa Liu
- d Division of Pharmaceutics, College of Pharmacy , The Ohio State University , Columbus , OH , USA
| | - Mitch A Phelps
- b Comprehensive Cancer Center , The Ohio State University , Columbus , OH , USA.,d Division of Pharmaceutics, College of Pharmacy , The Ohio State University , Columbus , OH , USA
| | - Amir Mortazavi
- e Division of Medical Oncology, Department of Internal Medicine , The Ohio State University , Columbus , OH , USA
| | - Leslie Andritsos
- f Division of Hematology, Department of Internal Medicine , The Ohio State University , Columbus , OH , USA
| | - Robert A Baiocchi
- f Division of Hematology, Department of Internal Medicine , The Ohio State University , Columbus , OH , USA
| | - Beth A Christian
- f Division of Hematology, Department of Internal Medicine , The Ohio State University , Columbus , OH , USA
| | - Don M Benson
- f Division of Hematology, Department of Internal Medicine , The Ohio State University , Columbus , OH , USA
| | - Joseph Flynn
- f Division of Hematology, Department of Internal Medicine , The Ohio State University , Columbus , OH , USA
| | - Pierluigi Porcu
- f Division of Hematology, Department of Internal Medicine , The Ohio State University , Columbus , OH , USA
| | - John C Byrd
- f Division of Hematology, Department of Internal Medicine , The Ohio State University , Columbus , OH , USA
| | - Flavia Pichiorri
- g Comprehensive Cancer Center , City of Hope , Duarte , CA , USA
| | - Craig C Hofmeister
- f Division of Hematology, Department of Internal Medicine , The Ohio State University , Columbus , OH , USA
| |
Collapse
|
27
|
Davis CD, Uthus EO. DNA Methylation, Cancer Susceptibility, and Nutrient Interactions. Exp Biol Med (Maywood) 2016; 229:988-95. [PMID: 15522834 DOI: 10.1177/153537020422901002] [Citation(s) in RCA: 293] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
DNA methylation is an important epigenetic mechanism of transcriptional control. DNA methylation plays an essential role in maintaining cellular function, and changes in methylation patterns may contribute to the development of cancer. Aberrant methylation of DNA (global hypomethylation accompanied by region-specific hypermethylation) is frequently found in tumor cells. Global hypomethylation can result in chromosome instability, and hypermethylation has been associated with the inaction of tumor suppressor genes. Preclinical and clinical studies suggest that part of the cancer-protective effects associated with several bioactive food components may relate to DNA methylation patterns. Dietary factors that are involved in one-carbon metabolism provide the most compelling data for the interaction of nutrients and DNA methylation because they influence the supply of methyl groups, and therefore the biochemical pathways of methylation processes. These nutrients include folate, vitamin B12, vitamin B6, methionine, and choline. However, looking at individual nutrients may be too simplistic. Dietary methyl (folate, choline, and methionine) deficiency in combination causes decreased tissue S-adenosylmethionine, global DNA hypomethylation, hepatic steatosis, cirrhosis, and ultimately hepatic tumorigenesis in rodents in the absence of carcinogen treatment. Other dietary components such as vitamin B12, alcohol, and selenium may modify the response to inadequate dietary folate.
Collapse
Affiliation(s)
- Cindy D Davis
- Nutritional Sciences Research Group, Division of Cancer Prevention, National Cancer Institute, 6130 Executive Boulevard, Suite 3159, Rockville, MD 20892-7328, USA.
| | | |
Collapse
|
28
|
Cheng H, Xie Z, Jones WP, Wei XT, Liu Z, Wang D, Kulp SK, Wang J, Coss CC, Chen CS, Marcucci G, Garzon R, Covey JM, Phelps MA, Chan KK. Preclinical Pharmacokinetics Study of R- and S-Enantiomers of the Histone Deacetylase Inhibitor, AR-42 (NSC 731438), in Rodents. AAPS J 2016; 18:737-45. [PMID: 26943915 PMCID: PMC5256597 DOI: 10.1208/s12248-016-9876-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/20/2016] [Indexed: 01/07/2023] Open
Abstract
AR-42, a new orally bioavailable, potent, hydroxamate-tethered phenylbutyrate class I/IIB histone deacetylase inhibitor currently is under evaluation in phase 1 and 2 clinical trials and has demonstrated activity in both hematologic and solid tumor malignancies. This report focuses on the preclinical characterization of the pharmacokinetics of AR-42 in mice and rats. A high-performance liquid chromatography-tandem mass spectrometry assay has been developed and applied to the pharmacokinetic study of the more active stereoisomer, S-AR-42, when administered via intravenous and oral routes in rodents, including plasma, bone marrow, and spleen pharmacokinetics (PK) in CD2F1 mice and plasma PK in F344 rats. Oral bioavailability was estimated to be 26 and 100% in mice and rats, respectively. R-AR-42 was also evaluated intravenously in rats and was shown to display different pharmacokinetics with a much shorter terminal half-life compared to that of S-AR-42. Renal clearance was a minor elimination pathway for parental S-AR-42. Oral administration of S-AR-42 to tumor-bearing mice demonstrated high uptake and exposure of the parent drug in the lymphoid tissues, spleen, and bone marrow. This is the first report of the pharmacokinetics of this novel agent, which is now in early phase clinical trials.
Collapse
Affiliation(s)
- Hao Cheng
- College of Pharmacy, The Ohio State University, 500 W. 12th Avenue, Columbus, Ohio, 43210, USA
| | - Zhiliang Xie
- College of Pharmacy, The Ohio State University, 500 W. 12th Avenue, Columbus, Ohio, 43210, USA
| | - William P Jones
- College of Pharmacy, The Ohio State University, 500 W. 12th Avenue, Columbus, Ohio, 43210, USA
| | | | - Zhongfa Liu
- College of Pharmacy, The Ohio State University, 500 W. 12th Avenue, Columbus, Ohio, 43210, USA
| | - Dasheng Wang
- College of Pharmacy, The Ohio State University, 500 W. 12th Avenue, Columbus, Ohio, 43210, USA
| | - Samuel K Kulp
- College of Pharmacy, The Ohio State University, 500 W. 12th Avenue, Columbus, Ohio, 43210, USA
| | - Jiang Wang
- Comprehensive Cancer, The Ohio State University, Columbus, Ohio, USA
| | - Christopher C Coss
- College of Pharmacy, The Ohio State University, 500 W. 12th Avenue, Columbus, Ohio, 43210, USA
| | - Ching-Shih Chen
- College of Pharmacy, The Ohio State University, 500 W. 12th Avenue, Columbus, Ohio, 43210, USA
| | - Guido Marcucci
- College of Pharmacy, The Ohio State University, 500 W. 12th Avenue, Columbus, Ohio, 43210, USA
- Comprehensive Cancer, The Ohio State University, Columbus, Ohio, USA
- College of Medicine, The Ohio State University, Columbus, Ohio, USA
- Gehr Family Center For Leukemia Research Hematologist Malignancies Institute City of Hope, Duarte, CA, 90010, USA
| | - Ramiro Garzon
- Comprehensive Cancer, The Ohio State University, Columbus, Ohio, USA
- College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | | | - Mitch A Phelps
- College of Pharmacy, The Ohio State University, 500 W. 12th Avenue, Columbus, Ohio, 43210, USA.
- Comprehensive Cancer, The Ohio State University, Columbus, Ohio, USA.
| | - Kenneth K Chan
- College of Pharmacy, The Ohio State University, 500 W. 12th Avenue, Columbus, Ohio, 43210, USA.
- Comprehensive Cancer, The Ohio State University, Columbus, Ohio, USA.
- The National Cancer Institute, Rockville, Maryland, USA.
| |
Collapse
|
29
|
Lei E, Vacy K, Boon WC. Fatty acids and their therapeutic potential in neurological disorders. Neurochem Int 2016; 95:75-84. [PMID: 26939763 DOI: 10.1016/j.neuint.2016.02.014] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 11/27/2022]
Abstract
There is little doubt that we are what we eat. Fatty acid supplementation and diets rich in fatty acids are being promoted as ways to a healthier brain. Short chain fatty acids are a product of intestinal microbiota metabolism of dietary fibre; and their derivatives are used as an anti-convulstant. They demonstrated therapeutic potential in neurodegenerative conditions as HDAC inhibitors; and while the mechanism is not well understood, have been shown to lower amyloid β in Alzheimer's Disease in preclinical studies. Medium chain fatty acids consumed as a mixture in dietary oils can induce ketogenesis without the need for a ketogentic diet. Hence, this has the potential to provide an alternative energy source to prevent neuronal cell death due to lack of glucose. Long chain fatty acids are commonly found in the diet as omega fatty acids. They act as an anti-oxidant protecting neuronal cell membranes from oxidative damage and as an anti-inflammatory mediator in the brain. We review which agents, from each fatty acid class, have the most therapeutic potential for neurological disorders (primarily Alzheimer's disease, Parkinson's disease, Autism Spectrum Disorder as well as possible applications to traumatic brain injury), by discussing what is known about their biological mechanisms from preclinical studies.
Collapse
Affiliation(s)
- Enie Lei
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Kristina Vacy
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Wah Chin Boon
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia; Dept of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
30
|
Sharma S, Taliyan R. Transcriptional dysregulation in Huntington's disease: The role of histone deacetylases. Pharmacol Res 2015; 100:157-69. [PMID: 26254871 DOI: 10.1016/j.phrs.2015.08.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 08/03/2015] [Accepted: 08/03/2015] [Indexed: 12/16/2022]
Abstract
Huntington's disease (HD) is a progressive neurological disorder for which there are no disease-modifying treatments. Although, the exact underlying mechanism(s) leading to the neural cell death in HD still remains elusive, the transcriptional dysregulation is a major molecular feature. Recently, the transcriptional activation and repression regulated by chromatin acetylation has been found to be impaired in HD pathology. The acetylation and deacetylation of histone proteins is carried out by opposing actions of histone acetyl-transferases and histone deacetylases (HDACs), respectively. Studies carried out in cell culture, yeast, Drosophila and rodent model(s) have indicated that HDAC inhibitors (HDACIs) might provide useful class of therapeutic agents for HD. Clinical trials have also reported the beneficial effects of HDACIs in patients suffering from HD. Therefore, the development of HDACIs as therapeutics for HD has been vigorously pursued. In this review, we highlight and summarize the putative role of HDACs in HD like pathology and further discuss the potential of HDACIs as new therapeutic avenues for the treatment of HD.
Collapse
Affiliation(s)
- Sorabh Sharma
- Neuropharmacology Division, Department of Pharmacy Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India.
| | - Rajeev Taliyan
- Neuropharmacology Division, Department of Pharmacy Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India
| |
Collapse
|
31
|
|
32
|
Guzman ML, Yang N, Sharma KK, Balys M, Corbett CA, Jordan CT, Becker MW, Steidl U, Abdel-Wahab O, Levine RL, Marcucci G, Roboz GJ, Hassane DC. Selective activity of the histone deacetylase inhibitor AR-42 against leukemia stem cells: a novel potential strategy in acute myelogenous leukemia. Mol Cancer Ther 2014; 13:1979-90. [PMID: 24934933 PMCID: PMC4383047 DOI: 10.1158/1535-7163.mct-13-0963] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Most patients with acute myelogenous leukemia (AML) relapse and die of their disease. Increasing evidence indicates that AML relapse is driven by the inability to eradicate leukemia stem cells (LSC). Thus, it is imperative to identify novel therapies that can ablate LSCs. Using an in silico gene expression-based screen for compounds evoking transcriptional effects similar to the previously described anti-LSC agent parthenolide, we identified AR-42 (OSU-HDAC42), a novel histone deacetylase inhibitor that is structurally similar to phenylbutyrate, but with improved activity at submicromolar concentrations. Here, we report that AR-42 induces NF-κB inhibition, disrupts the ability of Hsp90 to stabilize its oncogenic clients, and causes potent and specific cell death of LSCs but not normal hematopoietic stem and progenitor cells. Unlike parthenolide, the caspasedependent apoptosis caused by AR-42 occurs without activation of Nrf-2-driven cytoprotective pathways. As AR-42 is already being tested in early clinical trials, we expect that our results can be extended to the clinic.
Collapse
Affiliation(s)
- Monica L Guzman
- Division of Hematology/Medical Oncology, Department of Medicine and
| | - Neng Yang
- Division of Hematology/Medical Oncology, Department of Medicine and
| | - Krishan K Sharma
- Division of Hematology/Medical Oncology, Department of Medicine and
| | - Marlene Balys
- James P. Wilmot Cancer Center, University of Rochester School of Medicine, Rochester
| | - Cheryl A Corbett
- James P. Wilmot Cancer Center, University of Rochester School of Medicine, Rochester
| | - Craig T Jordan
- Department of Medicine, University of Colorado Denver, Aurora, Colorado; and
| | - Michael W Becker
- James P. Wilmot Cancer Center, University of Rochester School of Medicine, Rochester
| | - Ulrich Steidl
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program and Leukemia Service, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Ross L Levine
- Human Oncology and Pathogenesis Program and Leukemia Service, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Guido Marcucci
- Division of Hematology, The Comprehensive Cancer Center, College of Pharmacy, Ohio State University, Columbus, Ohio
| | - Gail J Roboz
- Division of Hematology/Medical Oncology, Department of Medicine and
| | - Duane C Hassane
- Institute of Computational Biomedicine, Weill Medical College of Cornell University, New York;
| |
Collapse
|
33
|
Knoff J, Yang B, Hung CF, Wu TC. Cervical Cancer: Development of Targeted Therapies Beyond Molecular Pathogenesis. CURRENT OBSTETRICS AND GYNECOLOGY REPORTS 2014; 3:18-32. [PMID: 24533233 PMCID: PMC3921905 DOI: 10.1007/s13669-013-0068-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
It is well known that human papillomavirus (HPV) is the causative agent of cervical cancer. The integration of HPV genes into the host genome causes the upregulation of E6 and E7 oncogenes. E6 and E7 proteins inactivate and degrade tumor suppressors p53 and retinoblastoma, respectively, leading to malignant progression. HPV E6 and E7 antigens are ideal targets for the development of therapies for cervical cancer and precursor lesions because they are constitutively expressed in infected cells and malignant tumors but not in normal cells and they are essential for cell immortalization and transformation. Immunotherapies are being developed to target E6/E7 by eliciting antigen-specific immune responses. siRNA technologies target E6/E7 by modulating the expression of the oncoproteins. Proteasome inhibitors and histone deacetylase inhibitors are being developed to indirectly target E6/E7 by interfering with their oncogenic activities. The ultimate goal for HPV-targeted therapies is the progression through clinical trials to commercialization.
Collapse
Affiliation(s)
- Jayne Knoff
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Benjamin Yang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - T.-C. Wu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Obstetrics and Gynecology, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
34
|
van Kampen JGM, Marijnissen-van Zanten MAJ, Simmer F, van der Graaf WTA, Ligtenberg MJL, Nagtegaal ID. Epigenetic targeting in pancreatic cancer. Cancer Treat Rev 2014; 40:656-64. [PMID: 24433955 DOI: 10.1016/j.ctrv.2013.12.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/18/2013] [Accepted: 12/21/2013] [Indexed: 12/22/2022]
Abstract
The prognosis of pancreatic cancer patients is very poor, with a 5-year survival of less than 6%. Therefore, there is an urgent need for new therapeutic options in pancreatic cancer. In the past years it became evident that deregulation of epigenetic mechanisms plays an important role in pancreatic carcinogenesis. This review focuses on the exploitation of drugs that alter histone modifications, DNA methylation and microRNA expression as options for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Jasmijn G M van Kampen
- Department of Pathology 824, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands; Department of Urology 267, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | - Femke Simmer
- Department of Pathology 824, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Winette T A van der Graaf
- Department of Medical Oncology 452, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Marjolijn J L Ligtenberg
- Department of Pathology 824, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands; Department of Human Genetics 855, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Iris D Nagtegaal
- Department of Pathology 824, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
35
|
Abstract
The etiology of many brain diseases remains allusive to date after intensive investigation of genomic background and symptomatology from the day of birth. Emerging evidences indicate that a third factor, epigenetics prior to the birth, can exert profound influence on the development and functioning of the brain and over many neurodevelopmental syndromes. This chapter reviews how aversive environmental exposure to parents might predispose or increase vulnerability of offspring to neurodevelopmental deficit through alteration of epigenetics. These epigenetic altering environmental factors will be discussed in the category of addictive agents, nutrition or diet, prescriptive medicine, environmental pollutant, and stress. Epigenetic alterations induced by these aversive environmental factors cover all aspects of epigenetics including DNA methylation, histone modification, noncoding RNA, and chromatin modification. Next, the mechanisms how these environmental inputs influence epigenetics will be discussed. Finally, how environmentally altered epigenetic marks affect neurodevelopment is exemplified by the alcohol-induced fetal alcohol syndrome. It is hoped that a thorough understanding of the nature of prenatal epigenetic inputs will enable researchers with a clear vision to better unravel neurodevelopmental deficit, late-onset neuropsychiatric diseases, or idiosyncratic mental disorders.
Collapse
Affiliation(s)
- Chiao-Ling Lo
- Department of Anatomy and Cell Biology, Stark Neuroscience Research Institute, Indiana Alcohol Research Center, Indiana University School of Medicine, and Department of Psychology, Indiana University Purdue University at Indianapolis, Indianapolis, Indiana, USA
| | - Feng C Zhou
- Department of Anatomy and Cell Biology, Stark Neuroscience Research Institute, Indiana Alcohol Research Center, Indiana University School of Medicine, and Department of Psychology, Indiana University Purdue University at Indianapolis, Indianapolis, Indiana, USA.
| |
Collapse
|
36
|
Lee SY, Huang Z, Kang TH, Soong RS, Knoff J, Axenfeld E, Wang C, Alvarez RD, Chen CS, Hung CF, Wu TC. Histone deacetylase inhibitor AR-42 enhances E7-specific CD8⁺ T cell-mediated antitumor immunity induced by therapeutic HPV DNA vaccination. J Mol Med (Berl) 2013; 91:1221-31. [PMID: 23715898 PMCID: PMC3783646 DOI: 10.1007/s00109-013-1054-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 05/06/2013] [Accepted: 05/08/2013] [Indexed: 12/12/2022]
Abstract
UNLABELLED We have previously created a potent DNA vaccine encoding calreticulin linked to the human papillomavirus (HPV) oncogenic protein E7 (CRT/E7). While treatment with the CRT/E7 DNA vaccine generates significant tumor-specific immune responses in vaccinated mice, the potency with the DNA vaccine could potentially be improved by co-administration of a histone deacetylase inhibitor (HDACi) as HDACi has been shown to increase the expression of MHC class I and II molecules. Thus, we aimed to determine whether co-administration of a novel HDACi, AR-42, with therapeutic HPV DNA vaccines could improve the activation of HPV antigen-specific CD8(+) T cells, resulting in potent therapeutic antitumor effects. To do so, HPV-16 E7-expressing murine TC-1 tumor-bearing mice were treated orally with AR-42 and/or CRT/E7 DNA vaccine via gene gun. Mice were monitored for E7-specific CD8(+) T cell immune responses and antitumor effects. TC-1 tumor-bearing mice treated with AR-42 and CRT/E7 DNA vaccine experienced longer survival, decreased tumor growth, and enhanced E7-specific immune response compared to mice treated with AR-42 or CRT/E7 DNA vaccine alone. Additionally, treatment of TC-1 cells with AR-42 increased the surface expression of MHC class I molecules and increased the susceptibility of tumor cells to the cytotoxicity of E7-specific T cells. This study indicates the ability of AR-42 to significantly enhance the potency of the CRT/E7 DNA vaccine by improving tumor-specific immune responses and antitumor effects. Both AR-42 and CRT/E7 DNA vaccines have been used in independent clinical trials; the current study serves as foundation for future clinical trials combining both treatments in cervical cancer therapy. KEY MESSAGE AR-42, a novel HDAC inhibitor, enhances potency of therapeutic HPV DNA vaccines AR-42 treatment leads to strong E7-specific CD8+ T cell immune responses AR-42 improves tumor-specific immunity and antitumor effects elicited by HPV DNA vaccine AR-42 is more potent than clinically available HDACi in combination with HPV DNA vaccine.
Collapse
Affiliation(s)
- Sung Yong Lee
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Internal Medicine, Korea University Medical Center, Seoul, South Korea
| | - Zhuomin Huang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Gynecology, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Tae Heung Kang
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Ruey-Shyang Soong
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of General Surgery, Chang Gung Memorial Hospital at Keelung, Taiwan
| | - Jayne Knoff
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Ellen Axenfeld
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Chenguang Wang
- Department of Biostatistics and Bioinformatics, Sidney Kimmel Cancer Comprehensive Cancer Center Johns Hopkins University, Baltimore, MD, USA
| | - Ronald D. Alvarez
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham
| | - Ching-Shih Chen
- Division of Medical Chemistry, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - T.-C. Wu
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Obstetrics and Gynecology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| |
Collapse
|
37
|
Harrison IF, Dexter DT. Epigenetic targeting of histone deacetylase: therapeutic potential in Parkinson's disease? Pharmacol Ther 2013; 140:34-52. [PMID: 23711791 DOI: 10.1016/j.pharmthera.2013.05.010] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/09/2013] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is the most common movement disorder affecting more than 4million people worldwide. The primary motor symptoms of the disease are due to degeneration of dopaminergic nigrostriatal neurons. Dopamine replacement therapies have therefore revolutionised disease management by partially controlling these symptoms. However these drugs can produce debilitating side effects when used long term and do not protect degenerating neurons against death. Recent evidence has highlighted a pathological imbalance in PD between the acetylation and deacetylation of the histone proteins around which deoxyribonucleic acid (DNA) is coiled, in favour of excessive histone deacetylation. This mechanism of adding/removing acetyl groups to histone lysine residues is one of many epigenetic regulatory processes which control the expression of genes, many of which will be essential for neuronal survival. Hence, such epigenetic modifications may have a pathogenic role in PD. It has therefore been hypothesised that if this pathological imbalance can be corrected with the use of histone deacetylase inhibiting agents then neurodegeneration observed in PD can be ameliorated. This article will review the current literature with regard to epigenetic changes in PD and the use of histone deacetylase inhibitors (HDACIs) in PD: examining the evidence of the neuroprotective effects of numerous HDACIs in cellular and animal models of Parkinsonian cell death. Ultimately answering the question: does epigenetic targeting of histone deacetylases hold therapeutic potential in PD?
Collapse
Affiliation(s)
- Ian F Harrison
- Parkinson's Disease Research Group, Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Department of Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK.
| | | |
Collapse
|
38
|
Steliou K, Boosalis MS, Perrine SP, Sangerman J, Faller DV. Butyrate histone deacetylase inhibitors. Biores Open Access 2013; 1:192-8. [PMID: 23514803 PMCID: PMC3559235 DOI: 10.1089/biores.2012.0223] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In addition to being a part of the metabolic fatty acid fuel cycle, butyrate is also capable of inducing growth arrest in a variety of normal cell types and senescence-like phenotypes in gynecological cancer cells, inhibiting DNA synthesis and cell growth in colonic tumor cell lines, suppressing hTERT mRNA expression and telomerase activity in human prostate cancer cells, and inducing stem cell differentiation and apoptosis by DNA fragmentation. It regulates gene expression by inhibiting histone deacetylases (HDACs), enhances memory recovery and formation in mice, stimulates neurogenesis in the ischemic brain, promotes osteoblast formation, selectively blocks cell replication in transformed cells (compared to healthy cells), and can prevent and treat diet-induced obesity and insulin resistance in mouse models of obesity, as well as stimulate fetal hemoglobin expression in individuals with hematologic diseases such as the thalassemias and sickle-cell disease, in addition to a multitude of other biochemical effects in vivo. However, efforts to exploit the potential of butyrate in the clinical treatment of cancer and other medical disorders are thwarted by its poor pharmacological properties (short half-life and first-pass hepatic clearance) and the multigram doses needed to achieve therapeutic concentrations in vivo. Herein, we review some of the methods used to overcome these difficulties with an emphasis on HDAC inhibition.
Collapse
Affiliation(s)
- Kosta Steliou
- PhenoMatriX, Inc. , Boston, Massachusetts. ; Cancer Research Center, Boston University School of Medicine , Boston, Massachusetts
| | | | | | | | | |
Collapse
|
39
|
Increased anti-leukemic activity of decitabine via AR-42-induced upregulation of miR-29b: a novel epigenetic-targeting approach in acute myeloid leukemia. Leukemia 2012. [PMID: 23178755 DOI: 10.1038/leu.2012.342] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Histone deacetylase (HDAC) inhibitors either alone or in combination with hypomethylating agents have limited clinical effect in acute myeloid leukemia (AML). Previously, we demonstrated that AML patients with higher miR (microRNA)-29b expression had better response to the hypomethylating agent decitabine. Therefore, an increase in miR-29b expression preceding decitabine treatment may provide a therapeutic advantage. We previously showed that miR-29b expression is suppressed by a repressor complex that includes HDACs. Thus, HDAC inhibition may increase miR-29b expression. We hypothesized that priming AML cells with the novel HDAC inhibitor (HDACI) AR-42 would result in increased response to decitabine treatment via upregulation of miR-29b. Here, we show that AR-42 is a potent HDACI in AML, increasing miR-29b levels and leading to downregulation of known miR-29b targets (that is, SP1, DNMT1, DNMT3A and DNMT3B). We then demonstrated that the sequential administration of AR-42 followed by decitabine resulted in a stronger anti-leukemic activity in vitro and in vivo than decitabine followed by AR-42 or either drug alone. These preclinical results with AR-42 priming before decitabine administration represent a promising, novel treatment approach and a paradigm shift with regard to the combination of epigenetic-targeting compounds in AML, where decitabine has been traditionally given before HDACIs.
Collapse
|
40
|
Wessels I, Rosenkranz E, Ventura Ferreira M, Neuss S, Zenke M, Rink L, Uciechowski P. Activation of IL-1β and TNFα genes is mediated by the establishment of permissive chromatin structures during monopoiesis. Immunobiology 2012. [PMID: 23195574 DOI: 10.1016/j.imbio.2012.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
IL-1β and TNFα participate in a wide range of immunoregulatory activities. The overproduction of these cytokines can result in inflammatory and autoimmune diseases. Monocytes are the main producers of both cytokines. In contrast, studies with highly purified polymorphonuclear leukocytes (PMN) showed their inability to synthesize IL-1β and TNFα. Mature monocytes and PMN are derived from the same precursors. However, the reason for the differential IL-1β and TNFα expression is not elucidated. Our study investigates the epigenetic mechanisms that may explain this apparent discrepancy. The expression and promoter accessibilities of IL-1β and TNFα genes of primary and in vitro differentiated monocytes and PMN and their common precursors were compared. The effects of histone deacetylase (HDAC)-inhibition by trichostatin A (TSA) on IL-1β and TNFα expression and their promoter structures were measured in promyeloid HL-60 cells. Cytokine expression was assessed by real-time PCR and ELISA. Chromatin structures were analyzed using chromatin accessibility by real-time PCR (CHART) assay. The proximal IL-1β promoter was remodeled into an open conformation during monopoiesis, but not granulopoiesis. Although stimulation-dependent, remodeling of the TNFα promoter was again only observed in monocytes. TSA activated IL-1β and TNFα expression and supported chromatin remodeling of their promoters in HL-60 cells. The ability to express IL-1β and TNFα is linked to a cell type specific promoter structure, which is established during monocytic but not granulocytic differentiation. The participation of acetylation in IL-1β and TNFα promoter activation shed new light on the regulation of IL-1β or TNFα expression. These data may have implications for understanding the progression from normal to disease conditions.
Collapse
Affiliation(s)
- Inga Wessels
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | | | | | | | | | | | | |
Collapse
|
41
|
Wessels I, Haase H, Engelhardt G, Rink L, Uciechowski P. Zinc deficiency induces production of the proinflammatory cytokines IL-1β and TNFα in promyeloid cells via epigenetic and redox-dependent mechanisms. J Nutr Biochem 2012; 24:289-97. [PMID: 22902331 DOI: 10.1016/j.jnutbio.2012.06.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 06/06/2012] [Accepted: 06/06/2012] [Indexed: 01/10/2023]
Abstract
The deprivation of zinc, caused by malnutrition or as a consequence of aging or disease, strongly affects immune cell functions, causing higher frequency of infections. Among other effects, an increased production of reactive oxygen species (ROS) and proinflammatory cytokines has been observed in zinc-deficient patients, but the underlying mechanisms were unknown. The aim of the current study was to define mechanisms explaining the increase in proinflammatory cytokine production during zinc deficiency, focusing on the role of epigenetic and redox-mediated mechanisms. Interleukin (IL)-1β and tumor necrosis factor (TNF)α production was increased in HL-60 cells under zinc deficiency. Analyses of the chromatin structure demonstrated that the elevated cytokine production was due to increased accessibilities of IL-1β and TNFα promoters in zinc-deficient cells. Moreover, the level of nicotinamide adenine dinucleotide phosphate-oxidase (NADPH) oxidase-produced ROS was elevated under zinc deficiency, subsequently leading to p38 mitogen-activated protein kinase (MAPK) phosphorylation. The increased activation of p38 MAPK appeared to be necessary for posttranscriptional processes in IL-1β and TNFα synthesis. These data demonstrate that IL-1β and TNFα expression under zinc deficiency is regulated via epigenetic and redox-mediated mechanisms. Assuming an important role of zinc in proinflammatory cytokine regulation, this should encourage research in the use of zinc supplementation for treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Inga Wessels
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, D-52074 Aachen, Germany
| | | | | | | | | |
Collapse
|
42
|
Suppression of T cell functions by hydroxamic acid-based histone deacetylase inhibitors. Arch Pharm Res 2012; 35:929-36. [DOI: 10.1007/s12272-012-0519-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 11/21/2011] [Accepted: 01/19/2012] [Indexed: 01/15/2023]
|
43
|
Radiosensitizing effect of a phenylbutyrate-derived histone deacetylase inhibitor in hepatocellular carcinoma. Int J Radiat Oncol Biol Phys 2012; 83:e181-9. [PMID: 22381897 DOI: 10.1016/j.ijrobp.2011.12.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Revised: 11/29/2011] [Accepted: 12/06/2011] [Indexed: 11/23/2022]
Abstract
PURPOSE Radiotherapy is integrated into the multimodal treatment of localized hepatocellular carcinoma (HCC) refractory to conventional treatment. Tumor control remains unsatisfactory and the sublethal effect associates with secondary spread. The use of an effective molecularly targeted agent in combination with radiotherapy is a potential therapeutic approach. Our aim was to assess the effect of combining a phenylbutyrate-derived histone deacetylase (HDAC) inhibitor, AR-42, with radiotherapy in in vitro and in vivo models of human HCC. METHODS AND MATERIALS Human HCC cell lines (Huh-7 and PLC-5) were used to evaluate the in vitro synergism of combining AR-42 with irradiation. Flow cytometry analyzed the cell cycle changes, whereas Western blot investigated the protein expressions after the combined treatment. Severe combined immunodeficient (SCID) mice bearing ectopic and orthotopic HCC xenografts were treated with AR-42 and/or radiotherapy for the in vivo response. RESULTS AR-42 significantly enhanced radiation-induced cell death by the inhibition of the DNA end-binding activity of Ku70, a highly versatile regulatory protein for DNA repair, telomere maintenance, and apoptosis. In ectopic xenografts of Huh-7 and PLC-5, pretreatment with AR-42 significantly enhanced the tumor-suppressive effect of radiotherapy by 48% and 66%, respectively. A similar combinatorial effect of AR-42 (10 and 25 mg/kg) and radiotherapy was observed in Huh-7 orthotopic model of tumor growth by 52% and 82%, respectively. This tumor suppression was associated with inhibition of intratumoral Ku70 activity as well as reductions in markers of HDAC activity and proliferation, and increased apoptosis. CONCLUSION AR-42 is a potent, orally bioavailable inhibitor of HDAC with therapeutic value as a radiosensitizer of HCC.
Collapse
|
44
|
Verrotti A, Loiacono G, Laus M, Coppola G, Chiarelli F, Tiboni GM. Hormonal and reproductive disturbances in epileptic male patients: Emerging issues. Reprod Toxicol 2011; 31:519-27. [DOI: 10.1016/j.reprotox.2011.02.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 01/12/2011] [Accepted: 02/14/2011] [Indexed: 01/23/2023]
|
45
|
Valente S, Tardugno M, Conte M, Cirilli R, Perrone A, Ragno R, Simeoni S, Tramontano A, Massa S, Nebbioso A, Miceli M, Franci G, Brosch G, Altucci L, Mai A. Novel cinnamyl hydroxyamides and 2-aminoanilides as histone deacetylase inhibitors: apoptotic induction and cytodifferentiation activity. ChemMedChem 2011; 6:698-712. [PMID: 21374822 DOI: 10.1002/cmdc.201000535] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Revised: 01/19/2011] [Indexed: 12/26/2022]
Abstract
Four novel series of cinnamyl-containing histone deacetylase (HDAC) inhibitors 1-4 are described, containing hydroxamate (1 and 3) or 2-aminoanilide (2 and 4) derivatives. When screened against class I (maize HD1-B and human HDAC1) and class II (maize HD1-A and human HDAC4) HDACs, most hydroxamates and 2-aminoanilides displayed potent and selective inhibition toward class I enzymes. Immunoblotting analyses performed in U937 leukemia cells generally revealed high acetyl-H3 and low acetyl-α-tubulin levels. Exceptions are compounds 3 f-i, 3 m-o, and 4 k, which showed higher tubulin acetylation than SAHA. In U937 cells, cell-cycle blockade in either the G₂/M or G₁/S phase was observed with 1-4. Five hydroxamates (compounds 1 h-l) effected a two- to greater than threefold greater percent apoptosis than SAHA, and in the CD11c cytodifferentiation test some 2-aminoanilides belonging to both series 2 and 4 were more active than MS-275. The highest-scoring derivatives in terms of apoptosis (1 k, 1 l) or cytodifferentiation (2 c, 4 n) also showed antiproliferative activity in U937 cells, thus representing valuable tools for study in other cancer contexts.
Collapse
Affiliation(s)
- Sergio Valente
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Università degli Studi di Roma "La Sapienza", P.le A. Moro 5, 00185 Roma, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Tang YA, Wen WL, Chang JW, Wei TT, Tan YHC, Salunke S, Chen CT, Chen CS, Wang YC. A novel histone deacetylase inhibitor exhibits antitumor activity via apoptosis induction, F-actin disruption and gene acetylation in lung cancer. PLoS One 2010; 5:e12417. [PMID: 20856855 PMCID: PMC2939045 DOI: 10.1371/journal.pone.0012417] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 08/02/2010] [Indexed: 12/03/2022] Open
Abstract
Background Lung cancer is the leading cause of cancer mortality worldwide, yet the therapeutic strategy for advanced non-small cell lung cancer (NSCLC) is limitedly effective. In addition, validated histone deacetylase (HDAC) inhibitors for the treatment of solid tumors remain to be developed. Here, we propose a novel HDAC inhibitor, OSU-HDAC-44, as a chemotherapeutic drug for NSCLC. Methodology/Principal Findings The cytotoxicity effect of OSU-HDAC-44 was examined in three human NSCLC cell lines including A549 (p53 wild-type), H1299 (p53 null), and CL1-1 (p53 mutant). The antiproliferatative mechanisms of OSU-HDAC-44 were investigated by flow cytometric cell cycle analysis, apoptosis assays and genome-wide chromatin-immunoprecipitation-on-chip (ChIP-on-chip) analysis. Mice with established A549 tumor xenograft were treated with OSU-HDAC-44 or vehicle control and were used to evaluate effects on tumor growth, cytokinesis inhibition and apoptosis. OSU-HDAC-44 was a pan-HDAC inhibitor and exhibits 3–4 times more effectiveness than suberoylanilide hydroxamic acid (SAHA) in suppressing cell viability in various NSCLC cell lines. Upon OSU-HDAC-44 treatment, cytokinesis was inhibited and subsequently led to mitochondria-mediated apoptosis. The cytokinesis inhibition resulted from OSU-HDAC-44-mediated degradation of mitosis and cytokinesis regulators Auroroa B and survivin. The deregulation of F-actin dynamics induced by OSU-HDAC-44 was associated with reduction in RhoA activity resulting from srGAP1 induction. ChIP-on-chip analysis revealed that OSU-HDAC-44 induced chromatin loosening and facilitated transcription of genes involved in crucial signaling pathways such as apoptosis, axon guidance and protein ubiquitination. Finally, OSU-HDAC-44 efficiently inhibited A549 xenograft tumor growth and induced acetylation of histone and non-histone proteins and apoptosis in vivo. Conclusions/Significance OSU-HDAC-44 significantly suppresses tumor growth via induction of cytokinesis defect and intrinsic apoptosis in preclinical models of NSCLC. Our data provide compelling evidence that OSU-HDAC-44 is a potent HDAC targeted inhibitor and can be tested for NSCLC chemotherapy.
Collapse
Affiliation(s)
- Yen-An Tang
- Institute of Basic Medical Science, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Wei-Ling Wen
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan, Republic of China
| | - Jer-Wei Chang
- Department of Pharmacology, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Tzi-Tang Wei
- Department of Pharmacology, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Yi-Hung Carol Tan
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan, Republic of China
| | - Santosh Salunke
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan, Republic of China
| | - Chien-Tien Chen
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
| | - Ching-Shih Chen
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio, United States of America
| | - Yi-Ching Wang
- Institute of Basic Medical Science, National Cheng Kung University, Tainan, Taiwan, Republic of China
- Department of Pharmacology, National Cheng Kung University, Tainan, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
47
|
Lucas DM, Alinari L, West DA, Davis ME, Edwards RB, Johnson AJ, Blum KA, Hofmeister CC, Freitas MA, Parthun MR, Wang D, Lehman A, Zhang X, Jarjoura D, Kulp SK, Croce CM, Grever MR, Chen CS, Baiocchi RA, Byrd JC. The novel deacetylase inhibitor AR-42 demonstrates pre-clinical activity in B-cell malignancies in vitro and in vivo. PLoS One 2010; 5:e10941. [PMID: 20532179 PMCID: PMC2880605 DOI: 10.1371/journal.pone.0010941] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 05/13/2010] [Indexed: 11/18/2022] Open
Abstract
Background While deacetylase (DAC) inhibitors show promise for the treatment of B-cell malignancies, those introduced to date are weak inhibitors of class I and II DACs or potent inhibitors of class I DAC only, and have shown suboptimal activity or unacceptable toxicities. We therefore investigated the novel DAC inhibitor AR-42 to determine its efficacy in B-cell malignancies. Principal Findings In mantle cell lymphoma (JeKo-1), Burkitt's lymphoma (Raji), and acute lymphoblastic leukemia (697) cell lines, the 48-hr IC50 (50% growth inhibitory concentration) of AR-42 is 0.61 µM or less. In chronic lymphocytic leukemia (CLL) patient cells, the 48-hr LC50 (concentration lethal to 50%) of AR-42 is 0.76 µM. AR-42 produces dose- and time-dependent acetylation both of histones and tubulin, and induces caspase-dependent apoptosis that is not reduced in the presence of stromal cells. AR-42 also sensitizes CLL cells to TNF-Related Apoptosis Inducing Ligand (TRAIL), potentially through reduction of c-FLIP. AR-42 significantly reduced leukocyte counts and/or prolonged survival in three separate mouse models of B-cell malignancy without evidence of toxicity. Conclusions/Significance Together, these data demonstrate that AR-42 has in vitro and in vivo efficacy at tolerable doses. These results strongly support upcoming phase I testing of AR-42 in B-cell malignancies.
Collapse
Affiliation(s)
- David M. Lucas
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
- College of Pharmacy, The Ohio State University, Columbus, Ohio, United States of America
| | - Lapo Alinari
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Derek A. West
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Melanie E. Davis
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Ryan B. Edwards
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Amy J. Johnson
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Kristie A. Blum
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Craig C. Hofmeister
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Michael A. Freitas
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Mark R. Parthun
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Dasheng Wang
- College of Pharmacy, The Ohio State University, Columbus, Ohio, United States of America
| | - Amy Lehman
- Center for Biostatisics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Xiaoli Zhang
- Center for Biostatisics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - David Jarjoura
- Center for Biostatisics, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Samuel K. Kulp
- College of Pharmacy, The Ohio State University, Columbus, Ohio, United States of America
| | - Carlo M. Croce
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Michael R. Grever
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
- College of Pharmacy, The Ohio State University, Columbus, Ohio, United States of America
| | - Ching-Shih Chen
- College of Pharmacy, The Ohio State University, Columbus, Ohio, United States of America
| | - Robert A. Baiocchi
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - John C. Byrd
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
- College of Pharmacy, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
48
|
Ciura J, Jagodziński PP. Butyrate increases the formation of anti-angiogenic vascular endothelial growth factor variants in human lung microvascular endothelial cells. Mol Biol Rep 2010; 37:3729-34. [PMID: 20213511 DOI: 10.1007/s11033-010-0026-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 02/24/2010] [Indexed: 11/30/2022]
Abstract
The primary transcript of vascular endothelial growth factor (VEGF) can be alternatively spliced and translated to pro-angiogenic and anti-angiogenic VEGF variants. We investigated the effect of sodium butyrate (NaB) on pro-angiogenic and anti-angiogenic VEGF variants production in immortalized human lung microvascular endothelial cells (HLMEC). These cells were cultured in the absence or in the presence of NaB, followed by total RNA and protein isolation. The transcript and protein levels of pro-angiogenic and anti-angiogenic VEGF variants were evaluated by reverse transcription, real-time quantitative PCR and western blot analysis. We found that NaB significantly increased the anti-angiogenic transcript and protein levels of the VEGF 121b, VEGF165b and VEGF189b variants in HLMEC cells. We did not find the pro-angiogenic VEGF189a transcript variant either in control or NaB treated cells. By contrast, the pro-angiogenic VEGF121a and VEGF165a transcript variants were present in HLMEC cells, but their levels were slightly modulated in the cells treated with NaB compared to controls. Since anti-angiogenic VEGF variants inhibit angiogenesis and tumour progression, and NaB is considered an anticancer drug, our findings may have clinical significance.
Collapse
Affiliation(s)
- J Ciura
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 6 Swiecickiego St., 60-781, Poznan, Poland
| | | |
Collapse
|
49
|
Pontiki E, Hadjipavlou-Litina D. Histone deacetylase inhibitors (HDACIs). Structure--activity relationships: history and new QSAR perspectives. Med Res Rev 2010; 32:1-165. [PMID: 20162725 DOI: 10.1002/med.20200] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Histone deacetylase (HDAC) inhibition is a recent, clinically validated therapeutic strategy for cancer treatment. HDAC inhibitors (HDACIs) block angiogenesis, arrest cell growth, and lead to differentiation and apoptosis in tumor cells. In this article, a survey of published quantitative structure-activity relationships (QSARs) studies are presented and discussed in the hope of identifying the structural determinants for anticancer activity. Secondly a two-dimensional QSAR study was carried out on biological results derived from various types of HDACIs and from different assays using the C-QSAR program of Biobyte. The QSAR analysis presented here is an attempt to organize the knowledge on the HDACIs with the purpose of designing new chemical entities with enhanced inhibitory potencies and to study the mechanism of action of the compounds. This study revealed that lipophilicity is one of the most important determinants of activity. Additionally, steric factors such as the overall molar refractivity (CMR), molar volume (MgVol), the substituent's molar refractivity (MR) (linear or parabola), or the sterimol parameters B(1) and L are important. Electronic parameters indicated as σ(p), are found to be present only in one case.
Collapse
Affiliation(s)
- Eleni Pontiki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotelian University of Thessaloniki, Thessaloniki 54124, Greece.
| | | |
Collapse
|
50
|
Klein C, Kemmel V, Taleb O, Aunis D, Maitre M. Pharmacological doses of gamma-hydroxybutyrate (GHB) potentiate histone acetylation in the rat brain by histone deacetylase inhibition. Neuropharmacology 2009; 57:137-47. [PMID: 19427877 DOI: 10.1016/j.neuropharm.2009.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2008] [Revised: 04/21/2009] [Accepted: 04/27/2009] [Indexed: 10/20/2022]
Abstract
Several small chain fatty acids, including butyrate, valproate, phenylbutyrate and its derivatives, inhibit several HDAC activities in the brain at a several hundred micromolar concentration. Gamma-hydroxy-butyrate (GHB), a natural compound found in the brain originating from the metabolism of GABA, is structurally related to these fatty acids. The average physiological tissue concentration of GHB in the brain is below 50 microM, but when GHB is administered or absorbed for therapeutic or recreative purposes, its concentration reaches several hundred micromolars. In the present scenario, we demonstrate that pharmacological concentrations of GHB significantly induce brain histone H3 acetylation with a heterogeneous distribution in the brain and reduce in vitro HDAC activity. The degree of HDAC inhibition was also different according to the region of the brain considered. Taking into account the multiple physiological and functional roles attributed to the modification of histone acetylation and its consequences at the level of gene expression, we propose that part of the therapeutic or toxic effects of high concentrations of GHB in the brain after therapeutic administration of the drug could be partly due to GHB-induced epigenetic factors. In addition, we hypothesize that GHB, being naturally synthesized in the cytosolic compartment of certain neurons, could penetrate into the nuclei and may reach sufficient levels that could significantly modulate histone acetylation and may participate in the epigenetic modification of gene expression.
Collapse
Affiliation(s)
- Christian Klein
- Department of Biochemistry and INSERM U-575, Faculty of Medicine, University of Strasbourg, France
| | | | | | | | | |
Collapse
|