1
|
Si H, Zhang J, Qin A, Tang BZ. Organobase-Catalyzed Carboxyl-yne Click Polymerization. ACS Macro Lett 2025; 14:551-557. [PMID: 40252078 DOI: 10.1021/acsmacrolett.5c00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2025]
Abstract
Polyesters have been widely used in the biological and engineering fields. However, the polycondensations used require high reaction temperatures and long reaction times, and the ring-opening polymerizations are generally intolerant to functional groups. Therefore, the development of a new polymerization toward polyesters under mild reaction conditions will further promote their development. In this work, we established a new organobase-catalyzed click polymerization of ester-activated alkynes and bis(carboxylic acid)s under mild reaction conditions, and regio- and stereoregular poly(β-acyloxyacrylate)s with weight-average molecular weights up to 24200 were obtained in yields up to 96%. The resultant polymers show versatile properties. The aliphatic poly(β-acyloxyacrylate)s exhibit crystalline behavior, whereas the aromatic polymers demonstrate high thermal stability. The polymer containing tetraphenylethene units exhibits the trade-off of high refractive index and Abbé Number. Thanks to the dynamic nature of β-acyloxyacrylate units, the resultant polymers could be quickly degraded upon addition of phenol derivatives and organobase, which could be applied in the fabrication of fluorescent photopatterns. Thus, this work not only provides a powerful polymerization toward polyesters and a facile reaction for postmodification of the materials containing carbonyl groups, but also enriches the family of X-yne click polymerization.
Collapse
Affiliation(s)
- Han Si
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Jie Zhang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, China
| |
Collapse
|
2
|
Rasoulmosaedi H, Bélanger-Bouliga M, Nguyen PT, Bourgault S, Nazemi A. Exploiting Activated Alkyne Chemistry for the Synthesis of Tailored Amphiphilic Janus Dendrimers with Aggregation-Induced Emission and Their Assemblies for Cell Imaging. Chemistry 2025:e202500385. [PMID: 40261067 DOI: 10.1002/chem.202500385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/12/2025] [Accepted: 04/22/2025] [Indexed: 04/24/2025]
Abstract
Amphiphilic Janus dendrimers (AJDs) are a promising class of macromolecules capable of self-assembling into well-defined nanostructures. In this study, AJDs were synthesized employing, for the first time, the activated alkyne-hydroxyl "click" chemistry approach, enabling the construction of dendritic architectures under mild conditions. The AJDs were functionalized with a π-extended tetraphenylethylene (TPE) derivative, imparting aggregation-induced emission (AIE) property. These AJDs self-assembled into fluorescent nanostructures, including micelles and dendrimersomes, with tunable dimensions. The AIE-active assemblies demonstrated strong photoluminescence upon formation and were characterized by narrow size distributions. Cytotoxicity and cellular uptake studies using Chinese Hamster Ovary K1 (CHO-K1) cells revealed excellent biocompatibility and efficient cellular internalization, confirming their potential for live-cell imaging. Importantly, the extended π-conjugation of the TPE derivative facilitated excitation at longer wavelengths, compatible with conventional confocal microscopy. This work showcases the versatility of activated alkyne-hydroxyl "click" chemistry in dendrimer synthesis and highlights the potential of these AJD-based nanostructures in nanomedicine, particularly for imaging and diagnostic applications.
Collapse
Affiliation(s)
- Hossein Rasoulmosaedi
- Department of Chemistry, NanoQAM and Quebec Centre for Advanced Materials (QCAM), Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, QC, H3C 3P8, Canada
| | - Marilyne Bélanger-Bouliga
- Department of Chemistry, NanoQAM and Quebec Centre for Advanced Materials (QCAM), Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, QC, H3C 3P8, Canada
| | - Phuong Trang Nguyen
- Department of Chemistry, NanoQAM and Quebec Centre for Advanced Materials (QCAM), Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, QC, H3C 3P8, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), C.P. 8888, Succursale Centre-Ville, Montréal, QC, H3C 3P8, Canada
| | - Steve Bourgault
- Department of Chemistry, NanoQAM and Quebec Centre for Advanced Materials (QCAM), Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, QC, H3C 3P8, Canada
- Quebec Network for Research on Protein Function, Engineering and Applications (PROTEO), C.P. 8888, Succursale Centre-Ville, Montréal, QC, H3C 3P8, Canada
| | - Ali Nazemi
- Department of Chemistry, NanoQAM and Quebec Centre for Advanced Materials (QCAM), Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, QC, H3C 3P8, Canada
| |
Collapse
|
3
|
Guo Y, Li P, Guo X, Yao C, Yang D. Synthetic Nanoassemblies for Regulating Organelles: From Molecular Design to Precision Therapeutics. ACS NANO 2024; 18:30224-30246. [PMID: 39441007 DOI: 10.1021/acsnano.4c10194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Each organelle referring to a complex multiorder architecture executes respective biological processes via its distinct spatial organization and internal microenvironment. As the assembly of biomolecules is the structural basis of living cells, creating synthetic nanoassemblies with specific physicochemical and morphological properties in living cells to interfere or couple with the natural organelle architectures has attracted great attention in precision therapeutics of cancers. In this review, we give an overview of the latest advances in the synthetic nanoassemblies for precise organelle regulation, including the formation mechanisms, triggering strategies, and biomedical applications in precision therapeutics. We summarize the emerging material systems, including polymers, peptides, and deoxyribonucleic acids (DNAs), and their respective intermolecular interactions for intercellular synthetic nanoassemblies, and highlight their design principles in constructing precursors that assemble into synthetic nanoassemblies targeting specific organelles in the complex cellular environment. We further showcase the developed intracellular synthetic nanoassemblies targeting specific organelles including mitochondria, the endoplasmic reticulum, lysosome, Golgi apparatus, and nucleus and describe their underlying mechanisms for organelle regulation and precision therapeutics for cancer. Last, the essential challenges in this field and prospects for future precision therapeutics of synthetic nanoassemblies are discussed. This review should facilitate the rational design of organelle-targeting synthetic nanoassemblies and the comprehensive recognition of organelles by materials and contribute to the deep understanding and application of the synthetic nanoassemblies for precision therapeutics.
Collapse
Affiliation(s)
- Yanfei Guo
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, College of Chemistry and Materials, Fudan University, Shanghai 200438, P.R. China
| | - Peiran Li
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Xiaocui Guo
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Chi Yao
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Dayong Yang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, College of Chemistry and Materials, Fudan University, Shanghai 200438, P.R. China
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| |
Collapse
|
4
|
Muñoz-Galán H, Enshaei H, Silva JC, Esteves T, Ferreira FC, Casanovas J, Worch JC, Dove AP, Alemán C, Pérez-Madrigal MM. Electroresponsive Thiol-Yne Click-Hydrogels for Insulin Smart Delivery: Tackling Sustained Release and Leakage Control. ACS APPLIED POLYMER MATERIALS 2024; 6:8093-8104. [PMID: 39839886 PMCID: PMC11745422 DOI: 10.1021/acsapm.4c00911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/31/2024] [Accepted: 06/20/2024] [Indexed: 01/23/2025]
Abstract
Diabetes is a metabolic disorder caused by the body's inability to produce or use insulin. Considering the figures projected by the World Health Organization, research on insulin therapy is crucial. Hence, we present a soft biointerface based on a thiol-yne poly(ethylene glycol) (PEG) click-hydrogel as an advanced treatment option to administrate insulin. Most importantly, the device is rendered electroactive by incorporating biocompatible poly(3,4-ethylenedioxythiophene) nanoparticles (PEDOT NPs) as conductive moieties to precisely control the release of insulin over an extended period through electrochemical stimulation (ES). The device has been carefully optimized on account of: (i) the main interactions established between PEDOT- and PEG-based moieties, which have been studied by density functional theory calculations, and reveal the choice of 4-arm PEG precursors as most suitable cross-linkers; and (ii) the concentration of PEDOT NPs in the device, which has been determined considering minimal interference with the gelation process, as well as the resulting morphological, mechanical, electrochemical, and cytocompatible properties of the PEG-based click-hydrogels. Finally, the management over insulin delivery through ES is verified in vitro, with released insulin being detected by high-performance liquid chromatography. Overall, our hydrogel-based device establishes a method for controlled insulin delivery with the potential for translation to other relevant bioelectronic applications.
Collapse
Affiliation(s)
- Helena Muñoz-Galán
- Departament
d’Enginyeria Química, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya Barcelona
Tech, Av. Eduard Maristany
10-14, Barcelona 08019, Spain
- Barcelona
Research Center for Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, Barcelona 08019, Spain
| | - Hamidreza Enshaei
- Departament
d’Enginyeria Química, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya Barcelona
Tech, Av. Eduard Maristany
10-14, Barcelona 08019, Spain
- Barcelona
Research Center for Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, Barcelona 08019, Spain
| | - João C. Silva
- iBB—Institute
for Bioengineering and Biosciences, Department of Bioengineering,Instituto Superior Técnico—Universidade
de Lisboa, Avenida Rovisco
Pais 1, Lisboa 1049-001, Portugal
- Associate
Laboratory i4HB—Institute for Health and Bioeconomy at Instituto
Superior Técnico, Universidade de
Lisboa, Avenida Rovisco
Pais 1, Lisboa 1049-001, Portugal
| | - Teresa Esteves
- iBB—Institute
for Bioengineering and Biosciences, Department of Bioengineering,Instituto Superior Técnico—Universidade
de Lisboa, Avenida Rovisco
Pais 1, Lisboa 1049-001, Portugal
- Associate
Laboratory i4HB—Institute for Health and Bioeconomy at Instituto
Superior Técnico, Universidade de
Lisboa, Avenida Rovisco
Pais 1, Lisboa 1049-001, Portugal
| | - Frederico Castelo Ferreira
- iBB—Institute
for Bioengineering and Biosciences, Department of Bioengineering,Instituto Superior Técnico—Universidade
de Lisboa, Avenida Rovisco
Pais 1, Lisboa 1049-001, Portugal
- Associate
Laboratory i4HB—Institute for Health and Bioeconomy at Instituto
Superior Técnico, Universidade de
Lisboa, Avenida Rovisco
Pais 1, Lisboa 1049-001, Portugal
| | - Jordi Casanovas
- Departament
de Química, Física i Ciències Ambientals i del
Sòl, Escola Politècnica Superior, Universitat de Lleida, C/Jaume II No. 69, Lleida E-25001, Spain
| | - Joshua C. Worch
- School of
Chemistry, University of Birmingham, University Rd W, Birmingham B152TT, U.K.
| | - Andrew P. Dove
- School of
Chemistry, University of Birmingham, University Rd W, Birmingham B152TT, U.K.
| | - Carlos Alemán
- Departament
d’Enginyeria Química, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya Barcelona
Tech, Av. Eduard Maristany
10-14, Barcelona 08019, Spain
- Barcelona
Research Center for Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, Barcelona 08019, Spain
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain
| | - Maria M. Pérez-Madrigal
- Departament
d’Enginyeria Química, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya Barcelona
Tech, Av. Eduard Maristany
10-14, Barcelona 08019, Spain
- Barcelona
Research Center for Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, Barcelona 08019, Spain
| |
Collapse
|
5
|
Sun Y, Zhang C, Zhang X. O/S Exchange Reaction in Synthesizing Sulfur-Containing Polymers. Chemistry 2024; 30:e202401684. [PMID: 38802324 DOI: 10.1002/chem.202401684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 05/29/2024]
Abstract
Using carbon disulfide (CS2) and carbonyl sulfide (COS) as sulfur-containing and one-carbon feedstocks to make value-added products is paramount for both pure and applied chemistry and environmental science. One of the practical strategies is to copolymerize these bulk chemicals with epoxides to produce sulfur-containing polymers. This approach contributes to improving the sustainability of polymer manufacturing, provides highly desired functional polymer materials, and has attracted much attention. However, these copolymerizations invariably exhibit the intensely complicated chemistry of O/S exchange reaction, leading to sulfur-containing polymers with diverse architectures. As the understanding of O/S exchange continues to deepen, recent efforts have guided significant advances in the synthesis of CS2- and COS-based polymers. This review examines the O/S exchange chemistry and summarizes the recent progress in this field to promote the further advance of synthesizing sulfur-containing polymers from CS2 and COS.
Collapse
Affiliation(s)
- Yue Sun
- State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chengjian Zhang
- State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xinghong Zhang
- State Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
6
|
Porras JD, Diaz IL, Perez LD. Synthesis of PEGylated amphiphilic block copolymers with pendant linoleic moieties by combining ring-opening polymerization and click chemistry. Biopolymers 2024; 115:e23582. [PMID: 38680100 DOI: 10.1002/bip.23582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
This study focused on synthesizing and characterizing PEGylated amphiphilic block copolymers with pendant linoleic acid (Lin) moieties as an alternative to enhance their potential in drug delivery applications. The synthesis involved a two-step process, starting with ring-opening polymerization of ε-caprolactone (CL) and propargylated cyclic carbonate (MCP) to obtain PEG-b-P(CL-co-MCP) copolymers, which were subsequently modified via click chemistry. Various reaction conditions were explored to improve the yield and efficiency of the click chemistry step. The use of anisole as a solvent, N-(3-azidopropyl)linoleamide as a substrate, and a reaction temperature of 60°C proved to be highly efficient, achieving nearly 100% conversion at a low catalyst concentration. The resulting copolymers exhibited controlled molecular weights and low polydispersity, confirming the successful synthesis. Furthermore, click chemistry allows for the attachment of Lin moieties to the copolymer, enhancing its hydrophobic character, as deduced from their significantly lower critical micelle concentration than that of traditional PEG-b-PCL systems, which is indicative of enhanced stability against dilution. The modified copolymers exhibited improved thermal stability, making them suitable for applications that require high processing temperatures. Dynamic light scattering and transmission electron microscopy confirmed the formation of micellar structures with sizes below 100 nm and minimal aggregate formation. Additionally, 1H NMR spectroscopy in deuterated water revealed the presence of core-shell micelles, which provided higher kinetic stability against dilution.
Collapse
Affiliation(s)
- Julian D Porras
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Bogotá, Bogotá, Colombia
| | - Ivonne L Diaz
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Bogotá, Bogotá, Colombia
| | - Leon D Perez
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia-Sede Bogotá, Bogotá, Colombia
| |
Collapse
|
7
|
Jiang S, Huang H. Mechanism-Guided Design of Chain-Growth Click Polymerization Based on a Thiol-Michael Reaction. Angew Chem Int Ed Engl 2023; 62:e202217895. [PMID: 36734515 DOI: 10.1002/anie.202217895] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 02/04/2023]
Abstract
The development of chain-growth click polymerization is challenging yet desirable in modern polymer chemistry. In this work, we reported a novel chain-growth click polymerization based on the thiol-Michael reaction. This polymerization could be performed efficiently under ambient conditions and spatiotemporally regulated by ultraviolet light, allowing the synthesis of sulfur-containing polymers in excellent yields and high molecular weights. Density functional theory calculations indicated that the thiolate addition to the Michael acceptor is the rate-determining step, and introducing the phenyl group could facilitate the chain-growth process. This polymerization is a new type of chain-growth click polymerization, which will provide a unique approach to creating functional polymers.
Collapse
Affiliation(s)
- Suqiu Jiang
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Hanchu Huang
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
8
|
Xia Y, Yue X, Sun Y, Zhang C, Zhang X. Chemically Recyclable Polyethylene-like Sulfur-Containing Plastics from Sustainable Feedstocks. Angew Chem Int Ed Engl 2023; 62:e202219251. [PMID: 36737409 DOI: 10.1002/anie.202219251] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 02/05/2023]
Abstract
The green revolution in plastics should be accelerated due to growing sustainability concerns. Here, we develop a series of chemically recyclable polymers from the first reported cascade polymerization of H2 O, COS, and diacrylates. In addition to abundant feedstocks, the method is efficient and air-tolerant, uses common organic bases as catalysts, and yields polymers with high molecular weights under mild conditions. Such polymers, structurally like polyethylene with low-density in-chain polar groups, manifest impressive toughness and ductility comparable to high-density polyethylene. The in-chain ester group acts as a breaking point, enabling these polymers to undergo chemical recycling through two loops. The structures and properties of these polymers also have an immeasurably expanded range owing to the versatility of our method. The readily available raw materials, facile synthesis, and high performance make these polymers promising prospects as sustainable materials in practice.
Collapse
Affiliation(s)
- Yanni Xia
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xinchen Yue
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yue Sun
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chengjian Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xinghong Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.,Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou, 310027, China.,Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Hangzhou, 310027, China
| |
Collapse
|
9
|
Advances in unusual interfacial polymerization techniques. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
10
|
Kamon Y, Miura J, Okuno K, Yamasaki S, Nakahata M, Hashidzume A. Synthesis of Stereoregular Uniform Oligomers Possessing a Dense 1,2,3-Triazole Backbone. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yuri Kamon
- Administrative Department, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka560-0043, Japan
| | - Junji Miura
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka560-0043, Japan
| | - Koji Okuno
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka560-0043, Japan
| | - Shota Yamasaki
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka560-0043, Japan
| | - Masaki Nakahata
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka560-0043, Japan
| | - Akihito Hashidzume
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka560-0043, Japan
| |
Collapse
|
11
|
Feng J, Hu R, Jiang J, Cai Z, Pan S, Zou X, Dong G, Zhao N, Zhang W. Aggregation-Induced Emission in a Polymeric Photovoltaic Donor Material. THE JOURNAL OF PHYSICAL CHEMISTRY C 2022; 126:20275-20283. [DOI: 10.1021/acs.jpcc.2c06848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Junyi Feng
- School of Physics and Materials Science, Guangzhou University, Guangzhou510006, China
| | - Rong Hu
- School of Materials Science and Engineering, Chongqing University of Arts and Sciences, Chongqing402160, China
| | - Jianjun Jiang
- School of Physics and Materials Science, Guangzhou University, Guangzhou510006, China
| | - Zekai Cai
- School of Physics and Materials Science, Guangzhou University, Guangzhou510006, China
| | - Shusheng Pan
- School of Physics and Materials Science, Guangzhou University, Guangzhou510006, China
- Research Center for Advanced Information Materials (CAIM), Huangpu Research and Graduate School of Guangzhou University, Guangzhou510006, China
| | - Xianshao Zou
- Division of Chemical Physics, Lund University, Lund22100, Sweden
| | - Geng Dong
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou515041, China
| | - Ningjiu Zhao
- Songshan Lake Materials Laboratory, Dongguan523808, China
- The State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou510640, China
| | - Wei Zhang
- School of Physics and Materials Science, Guangzhou University, Guangzhou510006, China
- Research Center for Advanced Information Materials (CAIM), Huangpu Research and Graduate School of Guangzhou University, Guangzhou510006, China
- Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou510006, China
| |
Collapse
|
12
|
Fallah D, Fareghi-Alamdari R, Tavangar S. Unsaturated oligoesters containing internal triple and double bonds based on DL-malic acid: synthesis, characterization and study of crosslinking via click reaction. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03218-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Li M, Duan X, Jiang Y, Sun X, Xu X, Zheng Y, Song W, Zheng N. Multicomponent Polymerization of Azides, Alkynes, and Electrophiles toward 1,4,5-Trisubstituted Polytriazoles. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ming Li
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xuelun Duan
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yu Jiang
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xinhao Sun
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiang Xu
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yubin Zheng
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wangze Song
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Nan Zheng
- Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
14
|
Pal S, Mandal A, Hong L, Ortuso RD, Petri-Fink A, Salentinig S, Kilbinger AFM. Native Chemical Ligation: Ultrafast Synthesis of Block Copolymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Subhajit Pal
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| | - Ankita Mandal
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| | - Linda Hong
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| | - Roberto D. Ortuso
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| | - Stefan Salentinig
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| | - Andreas F. M. Kilbinger
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| |
Collapse
|
15
|
Partipilo G, Graham AJ, Belardi B, Keitz BK. Extracellular Electron Transfer Enables Cellular Control of Cu(I)-Catalyzed Alkyne-Azide Cycloaddition. ACS CENTRAL SCIENCE 2022; 8:246-257. [PMID: 35233456 PMCID: PMC8875427 DOI: 10.1021/acscentsci.1c01208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Indexed: 05/03/2023]
Abstract
Extracellular electron transfer (EET) is an anaerobic respiration process that couples carbon oxidation to the reduction of metal species. In the presence of a suitable metal catalyst, EET allows for cellular metabolism to control a variety of synthetic transformations. Here, we report the use of EET from the electroactive bacterium Shewanella oneidensis for metabolic and genetic control over Cu(I)-catalyzed alkyne-azide cycloaddition (CuAAC). CuAAC conversion under anaerobic and aerobic conditions was dependent on live, actively respiring S. oneidensis cells. The reaction progress and kinetics were manipulated by tailoring the central carbon metabolism. Similarly, EET-CuAAC activity was dependent on specific EET pathways that could be regulated via inducible expression of EET-relevant proteins: MtrC, MtrA, and CymA. EET-driven CuAAC exhibited modularity and robustness in the ligand and substrate scope. Furthermore, the living nature of this system could be exploited to perform multiple reaction cycles without regeneration, something inaccessible to traditional chemical reductants. Finally, S. oneidensis enabled bioorthogonal CuAAC membrane labeling on live mammalian cells without affecting cell viability, suggesting that S. oneidensis can act as a dynamically tunable biocatalyst in complex environments. In summary, our results demonstrate how EET can expand the reaction scope available to living systems by enabling cellular control of CuAAC.
Collapse
Affiliation(s)
- Gina Partipilo
- McKetta
Department of Chemical Engineering, University
of Texas at Austin, Austin, Texas 78712, United States
- Center
for Dynamics and Control of Materials, University
of Texas at Austin, Austin, Texas 78712, United States
| | - Austin J. Graham
- McKetta
Department of Chemical Engineering, University
of Texas at Austin, Austin, Texas 78712, United States
- Center
for Dynamics and Control of Materials, University
of Texas at Austin, Austin, Texas 78712, United States
| | - Brian Belardi
- McKetta
Department of Chemical Engineering, University
of Texas at Austin, Austin, Texas 78712, United States
| | - Benjamin K. Keitz
- McKetta
Department of Chemical Engineering, University
of Texas at Austin, Austin, Texas 78712, United States
- Center
for Dynamics and Control of Materials, University
of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
16
|
Shikha, Jacob J. Dendritic core derived unimolecular micelles with poly(lactic acid) arms: Synthesis and application as a phase transfer agent. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shikha
- Department of Materials Science and Engineering Indian Institute of Technology Delhi New Delhi India
| | - Josemon Jacob
- Department of Materials Science and Engineering Indian Institute of Technology Delhi New Delhi India
| |
Collapse
|
17
|
Seoane GA, Daher GM. Readily accessible azido-alkyne-functionalized monomers for the synthesis of cyclodextrin analogues using click chemistry. Org Biomol Chem 2022; 20:1690-1698. [DOI: 10.1039/d1ob02496e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A set of linear and cyclic oligomers were synthesized starting from a suitable azido-alkyne monomer through click oligomerization. The synthesis of these monomers starting from bromobenzene features an enzymatic dihydroxylation...
Collapse
|
18
|
Shi QX, Li Q, Xiao H, Sun XL, Bao H, Wan WM. Room-temperature Barbier single-atom polymerization induced emission as a versatile approach for the utilization of monofunctional carboxylic acid resources. Polym Chem 2022. [DOI: 10.1039/d1py01493e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Barbier polymerization is realized at room-temperature with single-atom polymerization and polymerization-induced emission characteristics, which exhibits capability on sensitive explosive detection and artificial light-harvesting system fabrication.
Collapse
Affiliation(s)
- Quan-Xi Shi
- College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou 350002, P. R. of China
| | - Qian Li
- College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou 350002, P. R. of China
| | - Hang Xiao
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou 350002, P. R. of China
- College of Environmental Science and Engineering, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Xiao-Li Sun
- College of Environmental Science and Engineering, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Hongli Bao
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou 350002, P. R. of China
| | - Wen-Ming Wan
- College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou 350002, P. R. of China
| |
Collapse
|
19
|
One‐pot, one‐step, and selective terpolymerization of ethylene oxide, propylene oxide, and
COS
to copoly(thioether)s with tunable thermal properties. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Buglakov AI, Vasilevskaya VV. Fibril Assembly and Gelation of Macromolecules with Amphiphilic Repeating Units. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12377-12387. [PMID: 34637315 DOI: 10.1021/acs.langmuir.1c01953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This paper reports the self-assembly of the fibrillar network in a concentrated solution of macromolecules with an amphiphilic structure of repeating units. The investigation of amphiphilic homopolymers and alternating copolymers with the linear and cyclic topologies, the solution with different polymer concentrations and solvent qualities, allows us to conclude that the ability to form a fibrillar gel with branched fibrils and regular subchain thickness is inherent for macromolecules with the solvophobic backbone and solvophilic pendants. The elements of the gel structure, such as the mesh size and fibrillar thickness, the number of cross-links, and their functionality, can be tuned and customized according to the requirements of their application. The results could be helpful for the directed design of the synthetic analogue of the relevant extracellular matrix, in tissue engineering, for fibrotic disease treatment and cell encapsulation.
Collapse
Affiliation(s)
- Aleksandr I Buglakov
- A. N. Nesmeyanov Institute of Organoelement Compounds RAS, Vavilova ul., 28, Moscow 119991, Russia
- Faculty of Physics, M. V. Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - Valentina V Vasilevskaya
- A. N. Nesmeyanov Institute of Organoelement Compounds RAS, Vavilova ul., 28, Moscow 119991, Russia
| |
Collapse
|
21
|
Wang X, Han T, Lam JWY, Tang BZ. In Situ Generation of Heterocyclic Polymers by Triple-Bond Based Polymerizations. Macromol Rapid Commun 2021; 42:e2100524. [PMID: 34653283 DOI: 10.1002/marc.202100524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/27/2021] [Indexed: 11/07/2022]
Abstract
Stemming from unique ring structures, heterocyclic polymers exhibit distinguished electrical, mechanical, and photophysical properties and have been widely used in a variety of important applications. Along with the technological significance are the challenges in their synthesis. Traditional synthetic strategies toward heterocyclic polymers often require the direct attachment of heterocycles to polymer backbones, which are generally limited by the lack of suitable and low-cost heterocyclic monomers, tedious reaction process, difficulties in incorporation of multiple substitutents, etc. Alternatively, in situ construction of heterocyclic polymers via triple-bond based polymerization offers promising prospects. This review summarized the recent progress on polymerizations of triple-bond based monomers including alkynes, nitriles, and isonitriles that can in situ generate heterocyclic polymers. The properties and advanced applications of the derived heterocyclic polymers will also be discussed. Finally, the future perspectives and challenges in this field will be addressed.
Collapse
Affiliation(s)
- Xinnan Wang
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Institute of Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Ting Han
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jacky W Y Lam
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Institute of Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Institute of Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
22
|
Yamasaki S, Kamon Y, Xu L, Hashidzume A. Synthesis of Dense 1,2,3-Triazole Polymers Soluble in Common Organic Solvents. Polymers (Basel) 2021; 13:polym13101627. [PMID: 34067908 PMCID: PMC8156623 DOI: 10.3390/polym13101627] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 01/21/2023] Open
Abstract
Aiming at synthesis of dense 1,2,3-triazole polymers soluble in common organic solvents, a new 3-azido-1-propyne derivative, i.e., t-butyl 4-azido-5-hexynoate (tBuAH), was synthesized and polymerized by copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) and Huisgen cycloaddition (HC). CuAAC polymerization produced poly(tBuAH) composed of 1,4-disubstituted 1,2,3-triazole units (1,4-units), whereas HC polymerization gave poly(tBuAH) composed of 1,4- and 1,5-disubstituted 1,2,3-triazole units (1,4- and 1,5-units). In HC polymerization, the fraction of 1,4-unit (f1,4) decreased with the permittivity of solvent used. Differential scanning calorimetry data indicated that the melting point of poly(tBuAH) increased from 61 to 89 °C with increasing f1,4 from 0.38 to 1.0, indicative of higher crystallinity of poly(tBuAH) composed of 1,4-unit. Preliminary steady-state fluorescence study indicated that all the poly(tBuAH) samples of different f1,4 emitted weak but significant fluorescence in DMF. The maximum of fluorescence band shifted from ca. 350 to ca. 450 nm with varying the excitation wavelength from 300 to 400 nm.
Collapse
|
23
|
Dextran based amphiphilic self-assembled biopolymeric macromolecule synthesized via RAFT polymerization as indomethacin carrier. Int J Biol Macromol 2021; 183:718-726. [PMID: 33930447 DOI: 10.1016/j.ijbiomac.2021.04.145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/28/2022]
Abstract
This work demonstrates a facile pathway to develop a biopolymer based amphiphilic macromolecule through reversible addition-fragmentation chain transfer (RAFT) polymerization, using dextran (a biopolymer) as starting material. Also, a new hydrophobic monomer [2-methyl-acrylic acid 1-benzyl-1H-[1,2,3] triazol-4-ylmethyl ester (MABTE)] has been synthesized using methacrylic acid via "click" approach. The resultant copolymer displays controlled radical polymerization characteristics: narrow polydispersity (Ð) and controlled molecular weight as obtained through advanced polymer chromatography (APC) analysis. In aqueous solution, the copolymer can proficiently be self-assembled to provide micellar structure, which has been evidenced from field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) analyses. The in-vitro cytotoxicity study illustrates the nontoxic nature of the copolymer up to 100 μg/mL polymer concentration. The copolymer has been found to be worthy as an efficient carrier for the sustained release of hydrophobic drug: Indomethacin (IND).
Collapse
|
24
|
Kritchenkov AS, Egorov AR, Abramovich RA, Kurliuk AV, Shakola TV, Kultyshkina EK, Ballesteros Meza MJ, Pavlova AV, Suchkova EP, Le Nhat Thuy G, Van Tuyen N, Khrustalev VN. Water-soluble triazole chitin derivative and its based nanoparticles: Synthesis, characterization, catalytic and antibacterial properties. Carbohydr Polym 2021; 257:117593. [PMID: 33541634 DOI: 10.1016/j.carbpol.2020.117593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/18/2020] [Accepted: 12/28/2020] [Indexed: 12/27/2022]
Abstract
In this work, we treated chitin with 2-(azidomethyl)oxirane and successfully involved the resultant azido chitin derivatives in the ultrasound-assisted Cu(I)-catalyzed azido-alkyne click (CuAAC) reaction with propargylic ester of N,N,N-trimethyl glycine. Thus, we obtained novel water-soluble triazole chitin derivatives. The triazole chitin derivatives and their nanoparticles are characterized by a high in vitro antibacterial activity, which is the same or even higher than that of commercial antibiotics ampicillin and gentamicin. The obtained derivatives are non-toxic. Moreover, the obtained water-soluble polymers are highly efficient green catalysts for the aldol reaction in green solvent water. The catalysts can be easily extracted from the reaction mixture by its precipitation with green solvent ethanol followed by centrifugation and they can be reused at least 10 times.
Collapse
Affiliation(s)
- Andreii S Kritchenkov
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow, 117198, Russian Federation; Saint Petersburg National Research University of Information Technologies, Mechanics, and Optics, Kronverkskii pr. 49, 197101, St. Petersburg, Russian Federation; Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, Vitebsk, 210009, Belarus.
| | - Anton R Egorov
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow, 117198, Russian Federation
| | - Rimma A Abramovich
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow, 117198, Russian Federation
| | - Aleh V Kurliuk
- Vitebsk State Medical University, Frunze av. 27, Vitebsk, 210009, Belarus
| | - Tatsiana V Shakola
- Vitebsk State Medical University, Frunze av. 27, Vitebsk, 210009, Belarus
| | - Ekaterina K Kultyshkina
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow, 117198, Russian Federation
| | - Moises J Ballesteros Meza
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow, 117198, Russian Federation
| | - Anastasia V Pavlova
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow, 117198, Russian Federation
| | - Elena P Suchkova
- Saint Petersburg National Research University of Information Technologies, Mechanics, and Optics, Kronverkskii pr. 49, 197101, St. Petersburg, Russian Federation
| | - Giang Le Nhat Thuy
- Institute of Chemistry, Vietnam Academy of Science and Technology, Viet Nam
| | - Nguyen Van Tuyen
- Institute of Chemistry, Vietnam Academy of Science and Technology, Viet Nam
| | - Victor N Khrustalev
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow, 117198, Russian Federation; Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991, Russian Federation
| |
Collapse
|
25
|
Li K, Fong D, Meichsner E, Adronov A. A Survey of Strain-Promoted Azide-Alkyne Cycloaddition in Polymer Chemistry. Chemistry 2021; 27:5057-5073. [PMID: 33017499 DOI: 10.1002/chem.202003386] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Indexed: 02/06/2023]
Abstract
Highly efficient reactions that enable the assembly of molecules into complex structures have driven extensive progress in synthetic chemistry. In particular, reactions that occur under mild conditions and in benign solvents, while producing no by-products and rapidly reach completion are attracting significant attention. Amongst these, the strain-promoted azide-alkyne cycloaddition, involving various cyclooctyne derivatives reacting with azide-bearing molecules, has gained extensive popularity in organic synthesis and bioorthogonal chemistry. This reaction has also recently gained momentum in polymer chemistry, where it has been used to decorate, link, crosslink, and even prepare polymer chains. This survey highlights key achievements in the use of this reaction to produce a variety of polymeric constructs for disparate applications.
Collapse
Affiliation(s)
- Kelvin Li
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4M1, Canada
| | - Darryl Fong
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4M1, Canada
| | - Eric Meichsner
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4M1, Canada
| | - Alex Adronov
- Department of Chemistry & Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON, L8S 4M1, Canada
| |
Collapse
|
26
|
Li B, Wang J, Qin A, Tang BZ. Imidazole-based Cu( i)-catalyzed click polymerization of diazides and diynes under mild conditions. Polym Chem 2021. [DOI: 10.1039/d0py01675f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient imidazole-based Cu(i)-catalyzed azide–alkyne click polymerization under mild reaction conditions was developed.
Collapse
Affiliation(s)
- Baixue Li
- State Key Laboratory of Luminescent Materials and Devices
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates
- SCUT-HKUST Joint Research Institute
- AIE Institute
- Center for Aggregation-Induced Emission
| | - Jia Wang
- State Key Laboratory of Luminescent Materials and Devices
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates
- SCUT-HKUST Joint Research Institute
- AIE Institute
- Center for Aggregation-Induced Emission
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates
- SCUT-HKUST Joint Research Institute
- AIE Institute
- Center for Aggregation-Induced Emission
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates
- SCUT-HKUST Joint Research Institute
- AIE Institute
- Center for Aggregation-Induced Emission
| |
Collapse
|
27
|
Wang L, Huang S, Wang M, Liu ZY, Chen XM, Yang H. Synthesis and Self-Assembly of Alternating Heterodinucleoside Polytriazoles. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Li Wang
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Institute of Advanced Materials, Southeast University, Nanjing, Jiangsu Province 211189, China
| | - Shuai Huang
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Institute of Advanced Materials, Southeast University, Nanjing, Jiangsu Province 211189, China
| | - Meng Wang
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Institute of Advanced Materials, Southeast University, Nanjing, Jiangsu Province 211189, China
| | - Zhi-Yang Liu
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Institute of Advanced Materials, Southeast University, Nanjing, Jiangsu Province 211189, China
| | - Xu-Man Chen
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Institute of Advanced Materials, Southeast University, Nanjing, Jiangsu Province 211189, China
| | - Hong Yang
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, Institute of Advanced Materials, Southeast University, Nanjing, Jiangsu Province 211189, China
| |
Collapse
|
28
|
Yang Y, Kamon Y, Lynd NA, Hashidzume A. Self-Healing Thermoplastic Elastomers Formed from Triblock Copolymers with Dense 1,2,3-Triazole Blocks. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yanqiong Yang
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Yuri Kamon
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Nathaniel A. Lynd
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712-1589, United States
| | - Akihito Hashidzume
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
29
|
Wang H, Wang F, Deng P, Zhou J. Synthesis and Fluorescent Thermoresponsive Properties of Tetraphenylethylene-Labeled Methylcellulose. Macromol Rapid Commun 2020; 42:e2000497. [PMID: 33205538 DOI: 10.1002/marc.202000497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/29/2020] [Indexed: 11/07/2022]
Abstract
Functional polymer, especially the one based on renewable and sustainable materials, has attracted increasing attention to satisfy the growing demand for the design of stimuli-responsive devices. Methylcellulose (MC) is a water-soluble derivative of cellulose, which has been widely used in many fields for its biocompatibility and biological inertness. In this work, MC is labeled by tetraphenylethylene (TPE) via azide-alkyne click reaction to obtain a fluorescent cellulose-based derivative of MC-TPE. The degree of substitution of MC-TPE is determined to be 0.074, which can be self-assembled into micelles in water with the size of 42 ± 6 nm. MC-TPE shows thermoresponsivity and thermoreversibility in size, transmittance, and fluorescence, enabling it to work as a fluorescent thermosensor. Moreover, MC-TPE exhibits nontoxicity and biocompatibility, allowing its application in MCF-7 cell imaging. Therefore, this newly functional natural polymer shows promising potentials in the fields of sensing and bioimaging.
Collapse
Affiliation(s)
- Haoying Wang
- Hubei Engineering Center of Natural Polymers-Based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Fangyu Wang
- Hubei Engineering Center of Natural Polymers-Based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Pengpeng Deng
- Hubei Engineering Center of Natural Polymers-Based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Jinping Zhou
- Hubei Engineering Center of Natural Polymers-Based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
30
|
Kumar AG, Saha S, Tiwari BR, Ghangrekar MM, Das A, Mukherjee R, Banerjee S. Sulfonated co‐poly(ether imide)s with alkyne groups: Fabrication of crosslinked membranes and studies on PEM properties including MFC performance. POLYM ENG SCI 2020; 60:2097-2110. [DOI: 10.1002/pen.25454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/31/2020] [Indexed: 02/05/2023]
Abstract
AbstractA new diamine monomer having alkyne side‐groups (DADAF) has been successfully synthesized, and it was used to prepare a series of sulfonated co‐polyimides (DFN‐XX) when reacted with 1,4,5,8‐naphthalenetetracarboxylic dianhydride along with different mole% of 4,4′‐diaminostilbene‐2,2′‐disulfonic acid. The membrane was made from the copolymers by solution casting route, and one of the copolymers DFN‐70 was used to prepare crosslinked membranes by adding a different amount of 1,6‐hexanediazide during solution casting step. The morphological transformation from non‐crosslinked S‐coPI to crosslinked S‐coPI was observed by employing transmission electron microscopy, atomic force microscopy, and small‐angle X‐ray scattering analyses. Compared to the non‐crosslinked DFN‐XX membranes, crosslinked DFN‐70 copolymer membranes showed low water uptake and improved mechanical and peroxide radical stability. Also, crosslinked DFN‐70 copolymer membranes showed significantly higher proton conductivities (0.004‐0.06 S cm−1) compared to those of DFN‐70 (0.003‐0.05 S cm−1) particularly, at 80°C when the relative humidity increased from 40% to 98%. Furthermore, crosslinked DFN‐70 copolymer membranes exhibited significantly enhanced performance in a microbial fuel cell (MFC) as compared to those of non‐crosslinked DFN‐70 membrane.
Collapse
Affiliation(s)
| | - Sayantani Saha
- Materials Science Centre Indian Institute of Technology Kharagpur Kharagpur India
| | - Bikash Ranjan Tiwari
- Department of Civil Engineering Indian Institute of Technology Kharagpur Kharagpur India
| | - Makarand M. Ghangrekar
- Department of Civil Engineering Indian Institute of Technology Kharagpur Kharagpur India
| | - Anuja Das
- Department of Chemical Engineering Indian Institute of Technology Kharagpur Kharagpur India
| | - Rabibrata Mukherjee
- Department of Chemical Engineering Indian Institute of Technology Kharagpur Kharagpur India
| | - Susanta Banerjee
- Materials Science Centre Indian Institute of Technology Kharagpur Kharagpur India
| |
Collapse
|
31
|
Degradable and cationic long-subchain hyperbranched block copolymers with well-defined block subchain: Synthesis, characterization and degradation. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Oh J, Kim SJ, Oh MK, Khan A. Antibacterial properties of main-chain cationic polymers prepared through amine-epoxy 'Click' polymerization. RSC Adv 2020; 10:26752-26755. [PMID: 35515796 PMCID: PMC9055516 DOI: 10.1039/d0ra04625f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/13/2020] [Indexed: 11/28/2022] Open
Abstract
Poly(β-hydroxyl amine)s are prepared through an amine-epoxy 'click' polymerization process in water under ambient conditions. These materials could be subjected to a post-polymerization protonation/alkylation reaction at the nitrogen atom to yield quaternary ammonium salts in the polymer backbone. The antimicrobial activities indicated that polymers carrying butyl chains at the nitrogen atom are effective towards Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), as only 10-20 μg mL-1 polymer concentrations are required to inhibit the bacterial growth by >90%. One of the candidates was also found to be effective towards Mycobacterium smegmatis (M. smegmatis) - a model organism to develop drugs against rapidly spreading tuberculosis (TB) infections. The hemolysis assay indicated that a majority of antimicrobial agents did not disrupt red blood cell membranes. The mechanistic studies suggested that cell wall disruption by the cationic polymers was the likely cause of bacterial death.
Collapse
Affiliation(s)
- Junki Oh
- Department of Chemical and Biological Engineering, Korea University Seoul 02841 South Korea
| | - Seung-Jin Kim
- Department of Chemical and Biological Engineering, Korea University Seoul 02841 South Korea
| | - Min-Kyu Oh
- Department of Chemical and Biological Engineering, Korea University Seoul 02841 South Korea
| | - Anzar Khan
- Department of Chemical and Biological Engineering, Korea University Seoul 02841 South Korea
| |
Collapse
|
33
|
A brief minireview of poly-triazole: Alkyne and azide substrate selective, metal-catalyst expansion. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104531] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Konuray O, Fernández-Francos X, De la Flor S, Ramis X, Serra À. The Use of Click-Type Reactions in the Preparation of Thermosets. Polymers (Basel) 2020; 12:E1084. [PMID: 32397509 PMCID: PMC7285069 DOI: 10.3390/polym12051084] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/31/2022] Open
Abstract
Click chemistry has emerged as an effective polymerization method to obtain thermosets with enhanced properties for advanced applications. In this article, commonly used click reactions have been reviewed, highlighting their advantages in obtaining homogeneous polymer networks. The basic concepts necessary to understand network formation via click reactions, together with their main characteristics, are explained comprehensively. Some of the advanced applications of thermosets obtained by this methodology are also reviewed.
Collapse
Affiliation(s)
- Osman Konuray
- Thermodynamics Laboratory, ETSEIB Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain; (O.K.); (X.F.-F.); (X.R.)
| | - Xavier Fernández-Francos
- Thermodynamics Laboratory, ETSEIB Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain; (O.K.); (X.F.-F.); (X.R.)
| | - Silvia De la Flor
- Department of Mechanical Engineering, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain;
| | - Xavier Ramis
- Thermodynamics Laboratory, ETSEIB Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain; (O.K.); (X.F.-F.); (X.R.)
| | - Àngels Serra
- Department of Analytical and Organic Chemistry, University Rovira i Virgili, c/ Marcel·lí Domingo 1, 43007 Tarragona, Spain
| |
Collapse
|
35
|
Ju C, Meng C, Ma J, Zhang X, Ding S. Construction of sequence-defined polytriazoles by IrAAC and CuAAC reactions. Chem Commun (Camb) 2020; 56:3955-3958. [PMID: 32149302 DOI: 10.1039/d0cc00421a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Here we report the first synthesis of sequence-defined polytriazoles, in which different side groups are sequentially anchored to the C-5 position of 1,2,3-triazole rings. By using efficient synthetic strategies based on IrAAC and CuAAC, different monodispersed polytriazoles with up to ∼5.3 kDa and 31-mer were constructed. Structural characterization via NMR, SEC, MALDI-TOF-MS, tandem MS and FTICR-MS evidenced the formation of polytriazoles with the desired specified sequences and exact chain lengths.
Collapse
Affiliation(s)
- Changhong Ju
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | | | | | | | | |
Collapse
|
36
|
Si H, Wang K, Song B, Qin A, Tang BZ. Organobase-catalysed hydroxyl–yne click polymerization. Polym Chem 2020. [DOI: 10.1039/d0py00095g] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient organobase (DABCO)-catalysed hydroxyl–yne click polymerization is successfully developed under mild conditions.
Collapse
Affiliation(s)
- Han Si
- State Key Laboratory of Luminescent Materials and Devices
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates
- Center for Aggregation-Induced Emission
- South China University of Technology
- Guangzhou 510640
| | - Kaojin Wang
- State Key Laboratory of Luminescent Materials and Devices
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates
- Center for Aggregation-Induced Emission
- South China University of Technology
- Guangzhou 510640
| | - Bo Song
- State Key Laboratory of Luminescent Materials and Devices
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates
- Center for Aggregation-Induced Emission
- South China University of Technology
- Guangzhou 510640
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates
- Center for Aggregation-Induced Emission
- South China University of Technology
- Guangzhou 510640
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates
- Center for Aggregation-Induced Emission
- South China University of Technology
- Guangzhou 510640
| |
Collapse
|
37
|
Li B, Hu R, Qin A, Tang BZ. Copper-based ionic liquid-catalyzed click polymerization of diazides and diynes toward functional polytriazoles for sensing applications. Polym Chem 2020. [DOI: 10.1039/c9py01443h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An efficient copper-based ionic liquid-catalyzed azide–alkyne click polymerization was developed, and functional polytriazoles were produced which could be used as sensors.
Collapse
Affiliation(s)
- Baixue Li
- State Key Laboratory of Luminescent Materials and Devices
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates
- Center for Aggregation-Induced Emission
- South China University of Technology
- Guangzhou 510640
| | - Rong Hu
- State Key Laboratory of Luminescent Materials and Devices
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates
- Center for Aggregation-Induced Emission
- South China University of Technology
- Guangzhou 510640
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates
- Center for Aggregation-Induced Emission
- South China University of Technology
- Guangzhou 510640
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates
- Center for Aggregation-Induced Emission
- South China University of Technology
- Guangzhou 510640
| |
Collapse
|
38
|
Gao M, Lu H, Song RH, Ye L, Zhang AY, Feng ZG. Polyrotaxanes created by end-capping polypseudorotaxanes self-assembled from β-CDs with distal azide terminated PHEMA using propargylamine monosubstituted β-CDs. Polym Chem 2020. [DOI: 10.1039/c9py01619h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
When a distal azide terminated PHEMA was allowed to self-assemble with varying amounts of β-CDs in water, followed by in situ reaction with PA-β-CDs via the CuAAC, linear polyrotaxanes (PRs) and a mixture of linear and hyperbranched PRs were obtained.
Collapse
Affiliation(s)
- Ming Gao
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Hang Lu
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Rong-hao Song
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
| | - Lin Ye
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications
| | - Ai-ying Zhang
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications
| | - Zeng-guo Feng
- School of Materials Science and Engineering
- Beijing Institute of Technology
- Beijing 100081
- China
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications
| |
Collapse
|
39
|
Santra S, Bean R, Heckert B, Shaw Z, Jain V, Shrestha L, Narayanam R, Austin Q. Alkene–azide chemistry: a facile, one-step, solvent- and catalyst-free approach for developing new functional monomers and polymers. Polym Chem 2020. [DOI: 10.1039/d0py00346h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The application of solvent and catalyst free, green chemistry approaches is highly desired. Herein we have explored a facile, one-step “Click-ene” chemistry for the synthesis of functional monomers and macromolecules.
Collapse
Affiliation(s)
| | - Ren Bean
- Department of Chemistry
- Pittsburg State University
- Pittsburg
- USA
| | - Blaze Heckert
- Department of Chemistry
- Pittsburg State University
- Pittsburg
- USA
| | - Zachary Shaw
- Department of Chemistry
- Pittsburg State University
- Pittsburg
- USA
| | - Vedant Jain
- Department of Chemistry
- Pittsburg State University
- Pittsburg
- USA
| | - Lok Shrestha
- Department of Chemistry
- Pittsburg State University
- Pittsburg
- USA
| | | | - Quentin Austin
- Department of Chemistry
- Pittsburg State University
- Pittsburg
- USA
| |
Collapse
|
40
|
Cao XH, Zhang CJ, Yang JL, Hu LF, Zhang XH. Repurposing poly(monothiocarbonate)s to poly(thioether)s with organic bases. Polym Chem 2020. [DOI: 10.1039/c9py01147a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This work reports a unique one-pot/one-step route to rapidly produce poly(thioether)s from poly(monothiocarbonate) (PMTC), a sulfur-containing polymer, using commercially available organic bases.
Collapse
Affiliation(s)
- Xiao-Han Cao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Cheng-Jian Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Jia-Liang Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Lan-Fang Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| | - Xing-Hong Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
41
|
Wei C, Lian C, Yan B, Xiao Y, Lang M, Liu H. Tailor-made chalcogen-rich polycarbonates: experimental and computational insights into chalcogen group-dependent ring opening polymerization. Polym Chem 2020. [DOI: 10.1039/c9py01569h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A versatile strategy to poly(chalcogen-carbonate) library is presented by organic base catalytic macrocarbonate polymerization. Polymerization depends sensitively on chalcogen groups.
Collapse
Affiliation(s)
- Chao Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials and Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Cheng Lian
- State Key Laboratory of Chemical Engineering and School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Bingkun Yan
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials and Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Yan Xiao
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials and Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Meidong Lang
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials and Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Honglai Liu
- State Key Laboratory of Chemical Engineering and School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| |
Collapse
|
42
|
Structure-property relationships of d-mannitol-based cationic poly(amide triazoles) and their self-assembling complexes with DNA. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
43
|
Thermoresponsive Poly(ß-hydroxyl amine)s: Synthesis of a New Stimuli Responsive Amphiphilic Homopolymer Family through Amine-Epoxy 'Click' Polymerization. Polymers (Basel) 2019; 11:polym11121941. [PMID: 31775388 PMCID: PMC6961043 DOI: 10.3390/polym11121941] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/14/2019] [Accepted: 11/19/2019] [Indexed: 11/30/2022] Open
Abstract
A new synthesis of amphiphilic homopolymers is described. In this synthesis, commercially available and inexpensive primary amines and di-epoxide molecules are utilized as AA- and BB-types of monomers in an amine-epoxy ‘click’ polymerization process. This process can be carried out in water and at room temperature. It does not require a catalyst or inert conditions and forms no byproducts. Therefore, the polymer synthesis can be carried out in open-air and bench-top conditions and a post-synthesis purification step is not required. The modularity of the synthesis, on the other hand, allows for facile structural modulation and tuning of the thermally triggered aggregation process in the temperature range of 7 to 91 °C. Finally, the underlying principles can be translated from linear architectures to polymer networks (hydrogels).
Collapse
|
44
|
Facile Synthesis of Functional Poly(methyltriazolylcarboxylate)s by Solvent- and Catalyst-free Butynoate-Azide Polycycloaddition. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2316-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
45
|
Xiang SL, Hua QX, Gong WL, Xie NH, Zhao PJ, Cheng GJ, Li C, Zhu MQ. Photoplastic Transformation Based on Dynamic Covalent Chemistry. ACS APPLIED MATERIALS & INTERFACES 2019; 11:23623-23631. [PMID: 31184463 DOI: 10.1021/acsami.9b06608] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The magical fantasy of decades-old transformer characters is becoming closer to scientific reality, as transformable materials can change their shapes in response to thermal, mechanical, electrical, and chemical stimuli. However, precise and prompt control of plastic shaping remains to be wanted. Photoresponsive materials provide a promising alternative for rapid optomechanical shaping with limited success. Here, we report a new class of photoplastic transformation based on dynamic covalently crosslinked polytriazole (PTA) networks, in which crosslinking points are comprised of photocleaveable hexaarylbiimidazole (HABI). Upon sub-500 nm light irradiation, HABI is dissociated into two triphenylimidazole radicals (TPIRs) followed by spontaneous recombination back to the initial state. This photoswitching effect is demonstrated to generate nonthermal shape change in the PTA-HABI gel network at will upon light stimulus. A unique photoalignment phenomenon has also been discovered which can form oriented nanoscale patterning in the PTA-HABI gel network upon laser irradiation. The solvent-free PTA-HABI elastomer exhibits photoenhanced automatic self-healing properties at temperatures ranging from 25 °C to freezing points, which is attributed to the dynamic equilibrium between TPIRs and HABI. A photoplastic spring is fabricated and exhibits photoswitchable plastic behavior, i.e., a reversible transformation between plastic strain and elastic strain upon light irradiation. HABI-based polymer networks, including solvated gel and solvent-free elastomer, are promising as smart materials for nonthermal photoactivated shape changing, transformation, and self-healing applications.
Collapse
Affiliation(s)
- Shi-Li Xiang
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , China
| | - Qiong-Xin Hua
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , China
| | - Wen-Liang Gong
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , China
| | - Nuo-Hua Xie
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , China
| | - Peng-Ju Zhao
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , China
| | - Gary J Cheng
- School of Industrial Engineering , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Chong Li
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , China
| | - Ming-Qiang Zhu
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , China
| |
Collapse
|
46
|
|
47
|
Chavan PV, Charate SP, Desai UV, Rode CV, Wadgaonkar PP. Bentonite ‐ Clay ‐ Supported Cuprous Iodide Nanoparticles (BENT‐ CuI NPs): A New Heterogeneous Catalyst in Diversity ‐ Oriented Synthesis of 1, 2, 3‐ Triazoles in Aqueous Medium. ChemistrySelect 2019. [DOI: 10.1002/slct.201900421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Pramod V. Chavan
- Department of ChemistryShivaji University Kolhapur – 416 004 India
| | | | - Uday V. Desai
- Department of ChemistryShivaji University Kolhapur – 416 004 India
| | - Chandrashekhar V. Rode
- Chemical Engineering and Process DivisionCSIR National Chemical Laboratory Pune - 411 008 India
| | - Prakash P. Wadgaonkar
- Polymer Science and Engineering DivisionCSIR National Chemical Laboratory Pune - 411 008 India
| |
Collapse
|
48
|
Li B, Liu Y, Nie H, Qin A, Tang BZ. Phosphazene Base-Mediated Azide–Alkyne Click Polymerization toward 1,5-Regioregular Polytriazoles. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00620] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Baixue Li
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Yong Liu
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Han Nie
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
49
|
Chen X, Hu R, Qi C, Fu X, Wang J, He B, Huang D, Qin A, Tang BZ. Ethynylsulfone-Based Spontaneous Amino-yne Click Polymerization: A Facile Tool toward Regio- and Stereoregular Dynamic Polymers. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00670] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xuemei Chen
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Rong Hu
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Chunxuan Qi
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Xinyao Fu
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Jia Wang
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Benzhao He
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Die Huang
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
50
|
|