1
|
Omar H, Ahmadi S, Szymoniak P, Schönhals A. Molecular mobility of thin films of poly(bisphenol-A carbonate) capped and with one free surface: from bulk-like samples down to the adsorbed layer. SOFT MATTER 2025; 21:241-254. [PMID: 39655510 DOI: 10.1039/d4sm01238k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The molecular mobility of thin films of poly(bisphenol A carbonate) (PBAC) was systematically investigated using broadband dielectric spectroscopy, employing two distinct electrode configurations. First, films were prepared in a capped geometry between aluminum electrodes employing a crossed electrode capacitor (CEC) configuration, down to film thicknesses of 40 nm. The Vogel temperature, derived from the temperature dependence of relaxation rates of the α-relaxation, increases with decreasing film thickness characterized by an onset thickness. The onset thickness depends on the annealing conditions, with less intense annealing yielding a lower onset thickness. Additionally, a broadening of the β-relaxation peak was observed with decreasing thickness, attributed to the interaction of phenyl groups with thermally evaporated aluminum, resulting in a shift of certain relaxation modes to higher temperatures relative to the bulk material. A novel phenomenon, termed the slow Arrhenius process (SAP), was also identified in proximity to the α-relaxation temperature. For films with thicknesses below 40 nm, nanostructured electrodes (NSE) were utilized, incorporating nanostructured silica spacers to establish a free surface with air. This free surface causes an enhancement in the molecular mobility for the 40 nm sample, preserving the β-relaxation as a distinct peak. The α-relaxation was detectable in the dielectric loss down to 18 nm, shifting to higher temperatures as film thickness is decreased. Notably, the onset thickness for the increase in Vogel temperature was lower in the NSE configuration compared to the CEC setup, attributed to the presence of the polymer-air interface.
Collapse
Affiliation(s)
- Hassan Omar
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany.
| | - Shayan Ahmadi
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany.
| | - Paulina Szymoniak
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany.
| | - Andreas Schönhals
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany.
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| |
Collapse
|
2
|
Bai L, Jiang Z, Fan L, Zhou X, Xu J, Tan J, Wei F, Ye S, Wang X. Mechanism of Density Evolution of Polystyrene Adsorbed Layers on the Substrate. ACS Macro Lett 2024; 13:1539-1544. [PMID: 39471401 DOI: 10.1021/acsmacrolett.4c00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
The density evolution of polystyrene (PS) adsorbed layers on phenyl-modified SiO2-Si substrates was investigated. The thickness and density of flattened layer on substrates with above 75% phenyl content increased over annealing time and could approach 4.7 nm and 1.37 g/cm3 at equilibrium, respectively, which were much higher than those on SiO2-Si. The annealing time for flattened chains to reach equilibrium increased with an increasing phenyl content on the substrate. The interface sensitive sum frequency generation vibrational spectroscopy (SFG) technique revealed that both the amount and the strength of the interfacial π-π interaction between the phenyl groups of substrates and in PS chains increased with annealing time. This resulted in more stretched chains perpendicularly, leading to a denser and thicker adsorbed layer with a closest-packing structure, driven by favorable enthalpy processes. Our work provides important insight into the densification mechanism of adsorbed flattened layers.
Collapse
Affiliation(s)
- Lu Bai
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Zhenwei Jiang
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Liang Fan
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Xianjing Zhou
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Jianquan Xu
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Junjun Tan
- Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Feng Wei
- School of Optoelectronic Materials and Technology and Institute of Interdisciplinary Research, Jianghan University, Wuhan, 430056, P. R. China
| | - Shuji Ye
- Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xinping Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| |
Collapse
|
3
|
Chen J, Dong Z, Wang Q, Han Z, Sun H, Li Y, Wu Y, Zhan X, Zhu T, Endoh M, Koga T, Jiang N. Impact of Irreversible Adsorption on Molecular Ordering and Charge Transport in Poly(3-hexylthiophene) Thin Films on Solid Substrates. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39368107 DOI: 10.1021/acsami.4c11049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
We investigate the irreversible adsorption of poly(3-hexylthiophene) (P3HT) polymer thin films on silicon dioxide/silicon (SiO2/Si) substrates during thermal annealing at a temperature below the melting temperature (Tm) but far above the glass transition temperature (Tg), i.e., Tg ≪ T = 170 °C < Tm, and its effect on their crystalline ordering and charge transport properties. It was found that short-time annealing enhances the molecular ordering of P3HT films, while prolonged thermal annealing gradually disrupts the crystalline structures and reduces the overall crystallinity of the film. Concurrently, thermal annealing at this temperature facilitates the slow irreversible adsorption of P3HT chains at the polymer-solid interface, resulting in the formation of a 1.7 Rg-thick (∼18 nm thick) adsorbed layer on SiO2/Si substrates that is fully amorphous and contains a large fraction of loosely adsorbed chains. We postulate that such irreversible adsorption is responsible for the reduced crystalline packing of P3HT at the polymer-solid interface at Tg ≪ T < Tm, which further disrupts the molecular ordering of the entire 46 nm thick P3HT film by a long-range perturbation effect. Electrical measurements using an organic field-effect transistor (OFET) device reveal that the enhanced charge carrier mobility of P3HT films correlates with an optimized annealing time at Tg ≪ T < Tm, which achieves a balance between maximizing molecular ordering and minimizing the impact of irreversible chain adsorption. These findings provide new insights into the underlying mechanism of thermal annealing in tailoring the structure and property of conjugated polymer thin films prepared on solid substrates.
Collapse
Affiliation(s)
- Jianxia Chen
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhixiang Dong
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Qi Wang
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhijing Han
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Spallation Neutron Source Science Center, Dongguan 523803, China
| | - Haofeng Sun
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Spallation Neutron Source Science Center, Dongguan 523803, China
| | - Yuzhan Li
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ying Wu
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaozhi Zhan
- Spallation Neutron Source Science Center, Dongguan 523803, China
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Zhu
- Spallation Neutron Source Science Center, Dongguan 523803, China
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Maya Endoh
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794-2275, United States
| | - Tadanori Koga
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794-2275, United States
| | - Naisheng Jiang
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
4
|
Bae S, Kim DH, Kim SY. Constructing a Comprehensive Nanopattern Library through Morphological Transitions of Block Copolymer Surface Micelles via Direct Solvent Immersion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311939. [PMID: 38461516 DOI: 10.1002/smll.202311939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/23/2024] [Indexed: 03/12/2024]
Abstract
This study establishes a comprehensive library of nanopatterns achievable by a single block copolymer (BCP), ranging from spheres to complex structures like split micelles, flower-like clusters, toroids, disordered micelle arrays, and unspecified unique shapes. The ordinary nanostructures of polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) surface micelles deposited on a SiOx surface undergo a unique morphology transformation when immersed directly in solvents. Investigating parameters such as immersion solvents, BCP molecular weight, substrate interactions, and temperature, this work reveals the influence of these parameters on the thermodynamics and kinetics governing the morphology transformation. Additionally, the practical application of BCP nanopattern templates for fabricating metal nanostructures through direct solvent immersion of surface micelles is demonstrated. This approach offers an efficient and effective method for producing diverse nanostructures, with the potential to be employed in nanolithography, catalysts, electronics, membranes, plasmonics, and photonics.
Collapse
Affiliation(s)
- Seokyoung Bae
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dong Hyup Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Chemistry, University of Chicago, Chicago, IL, 60637, USA
| | - So Youn Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
5
|
Shimokita K, Yamamoto K, Miyata N, Shibata M, Nakanishi Y, Arakawa M, Takenaka M, Kida T, Tokumitsu K, Tanaka R, Shiono T, Yamada M, Seto H, Yamada NL, Aoki H, Miyazaki T. Neutron Reflectivity Study on the Adsorption Layer of Polyethylene Grown on Si Substrate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39012261 DOI: 10.1021/acs.langmuir.4c01584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
To investigate the structure of the interface between polyethylene films and substrates, the neutron reflectivity (NR) of deuterated polyethylene (dPE) thin films deposited on Si substrates was measured, demonstrating water accumulation at the interface, even under ambient conditions. After leaching the thermally annealed dPE films in hot p-xylene, NR measurements were conducted on the layers remaining on the substrate, clearly revealing that the adsorption layer of dPE grew during annealing and consisted of two layers, an inner adsorption layer and an outer adsorption layer, as previously proposed for amorphous polymers. The inner adsorption layer was approximately 3.7 nm thick with a density comparable to that of the bulk. The outer adsorption layer was several nanometers thick and appeared to grow insufficiently on top of the inner adsorption layer under the annealing conditions examined in this study. This study clarifying the growth of the adsorption layer of polyethylene at the interface with an inorganic substrate is useful for improving the performance of polymer/inorganic filler nanocomposites due to the wide utility of crystalline polyolefins as polymer matrix materials in nanocomposites.
Collapse
Affiliation(s)
- Keisuke Shimokita
- Department of Life Science and Applied Chemistry, Gradual School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Katsuhiro Yamamoto
- Department of Life Science and Applied Chemistry, Gradual School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Noboru Miyata
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Motoki Shibata
- Office of Society-Academia Collaboration for Innovation, Kyoto University, Sakyou-ku, Kyoto 606-8501, Japan
| | - Yohei Nakanishi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Masato Arakawa
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Mikihito Takenaka
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Takumitsu Kida
- Department of Materials Chemistry, Faculty of Engineering, The University of Shiga Prefecture, 2500 Hassaka, Hikone 522-8533, Japan
| | - Katsuhisa Tokumitsu
- Department of Materials Chemistry, Faculty of Engineering, The University of Shiga Prefecture, 2500 Hassaka, Hikone 522-8533, Japan
| | - Ryo Tanaka
- Graduate School of Advanced Science and Engineering, Applied Chemistry Program, Hiroshima University, 1-4-1 Kagamiyama, Higashi-hiroshima 739-8527, Japan
| | - Takeshi Shiono
- Graduate School of Advanced Science and Engineering, Applied Chemistry Program, Hiroshima University, 1-4-1 Kagamiyama, Higashi-hiroshima 739-8527, Japan
| | - Masako Yamada
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 203-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Hideki Seto
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 203-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Norifumi L Yamada
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 203-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Hiroyuki Aoki
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 203-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
- Materials and Life Science Division, J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki 319-1195, Japan
| | - Tsukasa Miyazaki
- Office of Society-Academia Collaboration for Innovation, Kyoto University, Sakyou-ku, Kyoto 606-8501, Japan
| |
Collapse
|
6
|
Kumaki J. In Situ Real-Time Atomic Force Microscopy Observation of the Surface Mobility on Each Domain of a Polystyrene- b-poly(methyl methacrylate) Film at High Temperatures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12974-12986. [PMID: 38857434 DOI: 10.1021/acs.langmuir.4c00648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
The surface chain movements within the microdomains of a polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA) and corresponding homopolymer films were observed via in situ real-time atomic force microscopy (AFM) at high temperatures and analyzed quantitatively using particle image velocimetry (PIV). At low temperatures, mobility within the PS microdomains resembled that within the PS homopolymer film, but movements in the PMMA microdomains were notably accelerated compared to the PMMA homopolymer. Conversely, at high temperatures, mobility within both PS and PMMA microdomains was considerably suppressed compared to their respective homopolymer films, likely owing to the fixed linkage of the block chains at the microdomain interface. This combination of real-time AFM observation and PIV analysis is an effective method for quantitatively evaluating surface chain mobility in real space.
Collapse
Affiliation(s)
- Jiro Kumaki
- Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
7
|
Cai C, Tang H, Li F, Xu Z, Lin J, Li D, Tang Z, Yang C, Gao L. Archimedean Spirals with Controllable Chirality: Disk Substrate-Mediated Solution Assembly of Rod-Coil Block Copolymers. JACS AU 2024; 4:2363-2371. [PMID: 38938804 PMCID: PMC11200227 DOI: 10.1021/jacsau.4c00324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
Spirals are common in nature; however, they are rarely observed in polymer self-assembly systems, and the formation mechanism is not well understood. Herein, we report the formation of two-dimensional (2D) spiral patterns via microdisk substrate-mediated solution self-assembly of polypeptide-based rod-coil block copolymers. The spiral pattern consists of multiple strands assembled from the block copolymers, and two central points are observed. The spirals fit well with the Archimedean spiral model, and their chirality is dependent on the chirality of the polypeptide blocks. As revealed by a combination of experiments and theoretical simulations, these spirals are induced by an interplay of the parallel ordering tendency of the strands and circular confinement of the microdisks. This work presents the first example regarding substrate-mediated self-assembly of block copolymers into spirals. The gained information could not only enhance our understanding of natural spirals but also assist in both the controllable preparations and applications of spiral nanostructures.
Collapse
Affiliation(s)
- Chunhua Cai
- Shanghai
Key Laboratory of Advanced Polymeric Materials, Key Laboratory for
Ultrafine Materials of Ministry of Education, Frontiers Science Center
for Materiobiology and Dynamic Chemistry, School of Materials Science
and Engineering, East China University of
Science and Technology, Shanghai 200237, China
| | - Hongfeng Tang
- Shanghai
Key Laboratory of Advanced Polymeric Materials, Key Laboratory for
Ultrafine Materials of Ministry of Education, Frontiers Science Center
for Materiobiology and Dynamic Chemistry, School of Materials Science
and Engineering, East China University of
Science and Technology, Shanghai 200237, China
| | - Feiyan Li
- Shanghai
Key Laboratory of Advanced Polymeric Materials, Key Laboratory for
Ultrafine Materials of Ministry of Education, Frontiers Science Center
for Materiobiology and Dynamic Chemistry, School of Materials Science
and Engineering, East China University of
Science and Technology, Shanghai 200237, China
| | - Zhanwen Xu
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Jiaping Lin
- Shanghai
Key Laboratory of Advanced Polymeric Materials, Key Laboratory for
Ultrafine Materials of Ministry of Education, Frontiers Science Center
for Materiobiology and Dynamic Chemistry, School of Materials Science
and Engineering, East China University of
Science and Technology, Shanghai 200237, China
| | - Da Li
- Shanghai
Key Laboratory of Advanced Polymeric Materials, Key Laboratory for
Ultrafine Materials of Ministry of Education, Frontiers Science Center
for Materiobiology and Dynamic Chemistry, School of Materials Science
and Engineering, East China University of
Science and Technology, Shanghai 200237, China
| | - Zhengmin Tang
- Department
of Laboratory Medicine, the First Affiliated Hospital, College of
Medicine, Zhejiang University, Hangzhou 311121, China
| | - Chunming Yang
- Shanghai
Synchrotron Radiation Facility, Shanghai
Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Liang Gao
- Shanghai
Key Laboratory of Advanced Polymeric Materials, Key Laboratory for
Ultrafine Materials of Ministry of Education, Frontiers Science Center
for Materiobiology and Dynamic Chemistry, School of Materials Science
and Engineering, East China University of
Science and Technology, Shanghai 200237, China
| |
Collapse
|
8
|
Tu S, Qiu L, Liu C, Zeng F, Yuan YY, Hedhili MN, Musteata V, Ma Y, Liang K, Jiang N, Alshareef HN, Zhang X. Suppressing Dielectric Loss in MXene/Polymer Nanocomposites through Interfacial Interactions. ACS NANO 2024; 18:10196-10205. [PMID: 38526994 DOI: 10.1021/acsnano.4c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Although numerous polymer-based composites exhibit excellent dielectric permittivity, their dielectric performance in various applications is severely hampered by high dielectric loss induced by interfacial space charging and a leakage current. Herein, we demonstrate that embedding molten salt etched MXene into a poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) (P(VDF-TrFE-CFE))/poly(methyl methacrylate) (PMMA) hybrid matrix induces strong interfacial interactions, forming a close-packed inner polymer layer and leading to significantly suppressed dielectric loss and markedly increased dielectric permittivity over a broad frequency range. The intensive molecular interaction caused by the dense electronegative functional terminations (-O and -Cl) in MXene results in restricted polymer chain movement and dense molecular arrangement, which reduce the transportation of the mobile charge carriers. Consequently, compared to the neat polymer, the dielectric constant of the composite with 2.8 wt % MXene filler increases from ∼52 to ∼180 and the dielectric loss remains at the same value (∼0.06) at 1 kHz. We demonstrate that the dielectric loss suppression is largely due to the formation of close-packed interfaces between the MXene and the polymer matrix.
Collapse
Affiliation(s)
- Shaobo Tu
- School of Physics and Materials Science, Nanchang University, 999 Xuefu Road, Honggutan District, Nanchang, Jiangxi 330031, China
- Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Longguo Qiu
- School of Physics and Materials Science, Nanchang University, 999 Xuefu Road, Honggutan District, Nanchang, Jiangxi 330031, China
- Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Chen Liu
- Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Fanshuai Zeng
- School of Physics and Materials Science, Nanchang University, 999 Xuefu Road, Honggutan District, Nanchang, Jiangxi 330031, China
| | - You-You Yuan
- Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Mohamed Nejib Hedhili
- Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Valentina Musteata
- Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Yinchang Ma
- Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Kun Liang
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Naisheng Jiang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Husam N Alshareef
- Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Xixiang Zhang
- Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| |
Collapse
|
9
|
Cheng S, Kogut D, Zheng J, Patil S, Yang F, Lu W. Dynamics of polylactic acid under ultrafine nanoconfinement: The collective interface effect and the spatial gradient. J Chem Phys 2024; 160:114904. [PMID: 38506298 DOI: 10.1063/5.0189762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/16/2024] [Indexed: 03/21/2024] Open
Abstract
Polymers under nanoconfinement can exhibit large alterations in dynamics from their bulk values due to an interface effect. However, understanding the interface effect remains a challenge, especially in the ultrafine nanoconfinement region. In this work, we prepare new geometries with ultrafine nanoconfinement ∼10nm through controlled distributions of the crystalline phases and the amorphous phases of a model semi-crystalline polymer, i.e., the polylactic acid. The broadband dielectric spectroscopy measurements show that ultrafine nanoconfinement leads to a large elevation in the glass transition temperature and a strong increment in the polymer fragility index. Moreover, new relaxation time profile analyses demonstrate a spatial gradient that can be well described by either a single-exponential decay or a double-exponential decay functional form near the middle of the film with a collective interface effect. However, the dynamics at the 1-2 nm vicinity of the interface exhibit a power-law decay that is different from the single-exponential decay or double-exponential decay functional forms as predicted by theories. Thus, these results call for further investigations of the interface effect on polymer dynamics, especially for interfaces with perturbed chain packing.
Collapse
Affiliation(s)
- Shiwang Cheng
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA
| | - David Kogut
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA
| | - Juncheng Zheng
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA
| | - Shalin Patil
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA
| | - Fuming Yang
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - Weiyi Lu
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
10
|
Xu J, Bai L, Ren W, Zhu H, Zhou X, Zhang C, Wang X. Flattened chains dominate the adsorption dynamics of loosely adsorbed chains on modified planar substrates. SOFT MATTER 2023; 20:201-211. [PMID: 38078383 DOI: 10.1039/d3sm01339a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Herein, the adsorption of polystyrene (PS) on phenyl-modified SiO2-Si substrates was investigated. Different from those for PS adsorption on a neat SiO2-Si substrate, the growth rate (vads) in the linear regime and hads/Rg (hads, thickness of flattened and loosely adsorbed layers on the substrate; Rg, radius of gyration) declined with increasing molecular weight (Mw) of PS and the phenyl content on the modified substrates, while the thickness of the flattened layer (hflat) and its coverage increased with increasing phenyl content. The results indicated that the adsorption of loose chains was controlled by the adsorption of flattened chains, as it only occurred in the empty contact sites remaining after the adsorption of flattened chains. Before approaching quasi-equilibrium (t < tcross), the number of flattened chain contact sites increased due to an enthalpically favorable process and, correspondingly, their spatial positions dynamically changed, which perturbed the adsorption of loose chains. When the adsorption of flattened chains reached quasi-equilibrium (t > tcross), the adsorption of loose chains was determined by the empty contact sites. The coverage of flattened chains and time to reach quasi-equilibrium were increased with more phenyl groups on the substrate, enhancing π-π interfacial interactions and resulting in a decreased adsorption rate and fewer loosely adsorbed chains. Mw-dependent vads and hads/Rg differed on phenyl-modified substrates compared to the neat SiO2-Si substrate owing to fewer empty contact sites for loose chains. The study findings improve our understanding of the mechanism responsible for the formation and structure of the adsorbed layer on solid surfaces.
Collapse
Affiliation(s)
- Jianquan Xu
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.
| | - Lu Bai
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.
| | - Weizhao Ren
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.
| | - Huifeng Zhu
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.
| | - Xianjing Zhou
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.
| | - Cuiyun Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.
| | - Xinping Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.
| |
Collapse
|
11
|
Xu J, Guo X, Guo H, Zhang Y, Wang X. Exploring the Molecular Origin for the Long-Range Propagation of the Substrate Effect in Unentangled Poly(methyl methacrylate) Films. Polymers (Basel) 2023; 15:4655. [PMID: 38139907 PMCID: PMC10748294 DOI: 10.3390/polym15244655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The polymer/substrate interface plays a significant role in the dynamics of nanoconfined polymers because of its suppression on polymer mobility and its long-range propagation feature, while the molecular origin of the long-range substrate effect in unentangled polymer material is still ambiguous. Herein, we investigated the propagation distances of the substrate effect (h*) by a fluorinated tracer-labeled method of two unentangled polymer films supported on silicon substrates: linear and ring poly(methyl methacrylate) films with relatively low molecular weights. The results indicate that the value of h* has a molecular weight dependence of h*∝N (N is the degree of polymerization) in the unentangled polymer films, while h*∝N1/2 was presented as previously reported in the entangled films. A theoretical model, depending on the polymer/polymer intermolecular interaction, was proposed to describe the above long-range propagation behavior of the substrate effect and agrees with our experiment results very well. From the model, it revealed that the intermolecular friction determines the long-range propagation of the substrate effect in the unentangled system, but the intermolecular entanglement is the dominant role in entangled system. These results give us a deeper understanding of the long-range substrate effect.
Collapse
Affiliation(s)
- Jianquan Xu
- Institute for School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China; (X.G.); (H.G.); (Y.Z.)
| | | | | | | | - Xinping Wang
- Institute for School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China; (X.G.); (H.G.); (Y.Z.)
| |
Collapse
|
12
|
Shimokita K, Yamamoto K, Miyata N, Nakanishi Y, Shibata M, Takenaka M, Yamada NL, Seto H, Aoki H, Miyazaki T. Neutron reflectivity study on the nanostructure of PMMA chains near substrate interfaces based on contrast variation accompanied with small molecule sorption. SOFT MATTER 2023; 19:2082-2089. [PMID: 36808205 DOI: 10.1039/d2sm01482c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In the case of poly(methyl methacrylate) (PMMA) thin films on a Si substrate, thermal annealing induces the formation of a layer of PMMA chains tightly adsorbed near the substrate interface, and the strongly adsorbed PMMA remains on the substrate, even after washing with toluene (hereinafter called adsorbed sample). Neutron reflectometry revealed that the concerned structure consists of three layers: an inner layer (tightly bound on the substrate), a middle layer (bulk-like), and an outer layer (surface) in the adsorbed sample. When an adsorbed sample was exposed to toluene vapor, it became clear that, between the solid adsorption layer (which does not swell) and bulk-like swollen layer, there was a "buffer layer" that could sorb more toluene molecules than the bulk-like layer. This buffer layer was found not only in the adsorbed sample but also in the standard spin-cast PMMA thin films on the substrate. When the polymer chains were firmly adsorbed and immobilized on the Si substrate, the freedom of the possible structure right next to the tightly bound layer was reduced, which restricted the relaxation of the conformation of the polymer chain strongly. The "buffer layer" was manifested by the sorption of toluene with different scattering length density contrasts.
Collapse
Affiliation(s)
- Keisuke Shimokita
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan.
| | - Katsuhiro Yamamoto
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan.
| | - Noboru Miyata
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, Tokai, Ibaraki, 319-1106, Japan.
| | - Yohei Nakanishi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Motoki Shibata
- Office of Society-Academia Collaboration for Innovation, Kyoto University, Kyoto, 606-8501, Japan
| | - Mikihito Takenaka
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Norifumi L Yamada
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tokai, Ibaraki, 319-1106, Japan
| | - Hideki Seto
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tokai, Ibaraki, 319-1106, Japan
| | - Hiroyuki Aoki
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tokai, Ibaraki, 319-1106, Japan
- Materials and Life Science Division, J-PARC Center, Japan Atomic Energy Agency, Tokai, Ibaraki, 319-1195, Japan
| | - Tsukasa Miyazaki
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, Tokai, Ibaraki, 319-1106, Japan.
- Office of Society-Academia Collaboration for Innovation, Kyoto University, Kyoto, 606-8501, Japan
| |
Collapse
|
13
|
Zhou Y, Zhang J, Huang J. Dynamic Propagation Depth in Substrate-Supported Polymer Films: A Molecular Dynamics Simulation. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Affiliation(s)
- Yun Zhou
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jin Zhang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jianhua Huang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
14
|
Song Y, Fukuzawa K, Hirayama T, Yamashita N, Yamada NL, Itoh S, Azuma N, Zhang H. Effects of Polarity of Polymers on Conformation and Lubricating Film Formation of Adsorbed Films. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Affiliation(s)
- Yuxi Song
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Kenji Fukuzawa
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Tomoko Hirayama
- Department of Mechanical Engineering and Science, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Naoki Yamashita
- Department of Mechanical Engineering and Science, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Norifumi L. Yamada
- Neutron Science Division, High Energy Accelerator Research Organization (KEK), 203-1 Shirakata, Tokai, Naka, Ibaraki 319-1106, Japan
| | - Shintaro Itoh
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Naoki Azuma
- Department of Micro-Nano Mechanical Science and Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Hedong Zhang
- Department of Complex Systems Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
15
|
Ren W, Hong Y, Wei H, Xu J, Zhang C, Zhou X, Wang X. Structure of the Poly(methyl methacrylate) Adsorbed Layer Determined by the Surface Chemistry of the Substrate. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Weizhao Ren
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yongming Hong
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Huidong Wei
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jianquan Xu
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Cuiyun Zhang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xianjing Zhou
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xinping Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
16
|
Salatto D, Huang Z, Benziger PT, Carrillo JMY, Bajaj Y, Gauer A, Tsapatsaris L, Sumpter BG, Li R, Takenaka M, Yin W, Thanassi DG, Endoh M, Koga T. Structure-Based Design of Dual Bactericidal and Bacteria-Releasing Nanosurfaces. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3420-3432. [PMID: 36600562 DOI: 10.1021/acsami.2c18121] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Here, we report synergistic nanostructured surfaces combining bactericidal and bacteria-releasing properties. A polystyrene-block-poly(methyl methacrylate) (PS-block-PMMA) diblock copolymer is used to fabricate vertically oriented cylindrical PS structures ("PS nanopillars") on silicon substrates. The results demonstrate that the PS nanopillars (with a height of about 10 nm, size of about 50 nm, and spacing of about 70 nm) exhibit highly effective bactericidal and bacteria-releasing properties ("dual properties") against Escherichia coli for at least 36 h of immersion in an E. coli solution. Interestingly, the PS nanopillars coated with a thin layer (≈3 nm thick) of titanium oxide (TiO2) ("TiO2 nanopillars") show much improved dual properties against E. coli (a Gram-negative bacterium) compared to the PS nanopillars. Moreover, the dual properties emerge against Listeria monocytogenes (a Gram-positive bacterium). To understand the mechanisms underlying the multifaceted property of the nanopillars, coarse-grained molecular dynamics (MD) simulations of a lipid bilayer (as a simplified model for E. coli) in contact with a substrate containing hexagonally packed hydrophilic nanopillars were performed. The MD results demonstrate that when the bacterium-substrate interaction is strong, the lipid heads adsorb onto the nanopillar surfaces, conforming the shape of a lipid bilayer to the structure/curvature of nanopillars and generating high stress concentrations within the membrane (i.e., the driving force for rupture) at the edge of the nanopillars. Membrane rupture begins with the formation of pores between nanopillars (i.e., bactericidal activity) and ultimately leads to the membrane withdrawal from the nanopillar surface (i.e., bacteria-releasing activity). In the case of Gram-positive bacteria, the adhesion area to the pillar surface is limited due to the inherent stiffness of the bacteria, creating higher stress concentrations within a bacterial cell wall. The present study provides insight into the mechanism underlying the "adhesion-mediated" multifaceted property of nanosurfaces, which is crucial for the development of next-generation antibacterial surface coatings for relevant medical applications.
Collapse
Affiliation(s)
- Daniel Salatto
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York11794-2275, United States
| | - Zhixing Huang
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York11794-2275, United States
| | - Peter Todd Benziger
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York11794-5222, United States
- Center for Infectious Diseases, Stony Brook University, Stony Brook, New York11794-5120, United States
| | - Jan-Michael Y Carrillo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Yashasvi Bajaj
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York11794-2275, United States
| | - Aiden Gauer
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York11794-2275, United States
| | - Leonidas Tsapatsaris
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York11794-2275, United States
| | - Bobby G Sumpter
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York11973, United States
| | - Mikihito Takenaka
- Institute for Chemical Research, Kyoto University, Uji, Kyoto611-0011, Japan
| | - Wei Yin
- Department of Biomedical engineering, Stony Brook University, Stony Brook, New York11794-5281, United States
| | - David G Thanassi
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York11794-5222, United States
- Center for Infectious Diseases, Stony Brook University, Stony Brook, New York11794-5120, United States
| | - Maya Endoh
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York11794-2275, United States
| | - Tadanori Koga
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York11794-2275, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York11794-3400, United States
| |
Collapse
|
17
|
Jiang Z, Cheng B, Yang J, Zhao J. Free Space Makes the Polymer "Dead Layer" Alive. J Phys Chem B 2022; 126:10750-10757. [PMID: 36479883 DOI: 10.1021/acs.jpcb.2c05858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The effect of free space on molecular motion inside the polymer "dead layer" or adsorbed nanolayers on solid surfaces is investigated. Free space is introduced into the nanolayer by choosing a polymer with a relatively big side group, poly n-butyl methacrylate (PnBMA), and polarization-resolved single-molecule fluorescence microscopy is adopted as the method. The rotational motion of the doped fluorescent probes is found to be considerably excited at moderate temperatures, attributed to the free space brought by the side group of the PnBMA. The development of the adsorbed nanolayer by the prolonged annealing of the parent film is carefully monitored, together with the evolution of the molecular motion and the glass transition temperature (Tg). The Tg values of the exposed nanolayers are considerably lower than that of the bulk system, while they become higher than those in the bulk situation when the nanolayer is covered with a polymer top layer. The experimental evidence has demonstrated that the free space made available by the side group and the air-polymer interface has considerably promoted the molecular motion inside the adsorbed nanolayers, even under the situation of overwhelming surface attraction.
Collapse
Affiliation(s)
- Zhichao Jiang
- Beijing National Research Center for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Cheng
- Beijing National Research Center for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingfa Yang
- Beijing National Research Center for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiang Zhao
- Beijing National Research Center for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Qiang Y, Turner KT, Lee D. Role of Polymer–Nanoparticle Interactions on the Fracture Toughness of Polymer-Infiltrated Nanoparticle Films. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yiwei Qiang
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kevin T. Turner
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
19
|
Improvement of polymer adhesion by designing the interface layer. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Local conformations and heterogeneities in structures and dynamics of isotactic polypropylene adsorbed onto carbon fiber. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
21
|
Wang S, Luo Z, Liang J, Hu J, Jiang N, He J, Li Q. Polymer Nanocomposite Dielectrics: Understanding the Matrix/Particle Interface. ACS NANO 2022; 16:13612-13656. [PMID: 36107156 DOI: 10.1021/acsnano.2c07404] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polymer nanocomposite dielectrics possess exceptional electric properties that are absent in the pristine dielectric polymers. The matrix/particle interface in polymer nanocomposite dielectrics is suggested to play decisive roles on the bulk material performance. Herein, we present a critical overview of recent research advances and important insights in understanding the matrix/particle interfacial characteristics in polymer nanocomposite dielectrics. The primary experimental strategies and state-of-the-art characterization techniques for resolving the local property-structure correlation of the matrix/particle interface are dissected in depth, with a focus on the characterization capabilities of each strategy or technique that other approaches cannot compete with. Limitations to each of the experimental strategy are evaluated as well. In the last section of this Review, we summarize and compare the three experimental strategies from multiple aspects and point out their advantages and disadvantages, critical issues, and possible experimental schemes to be established. Finally, the authors' personal viewpoints regarding the challenges of the existing experimental strategies are presented, and potential directions for the interface study are proposed for future research.
Collapse
Affiliation(s)
- Shaojie Wang
- State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhen Luo
- State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Jiajie Liang
- State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Jun Hu
- State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Naisheng Jiang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jinliang He
- State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Qi Li
- State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
22
|
Ma M, Cui W, Guo Y, Yu W. Adsorption-desorption effect on physical aging in PMMA-silica nanocomposite. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
23
|
Venkatesh RB, Lee D. Conflicting Effects of Extreme Nanoconfinement on the Translational and Segmental Motion of Entangled Polymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- R. Bharath Venkatesh
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
24
|
Inutsuka M, Watanabe H, Aoyagi M, Yamada NL, Tanaka C, Ikehara T, Kawaguchi D, Yamamoto S, Tanaka K. Effect of Oligomer Segregation on the Aggregation State and Strength at the Polystyrene/Substrate Interface. ACS Macro Lett 2022; 11:504-509. [PMID: 35575338 DOI: 10.1021/acsmacrolett.2c00062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interfacial strength of polystyrene (PS) with and without PS oligomers in contact with a glass substrate was examined to determine the relationship between the interfacial aggregation state and adhesion. The shear bond strength and adsorbed layer thickness of neat PS exhibited a similar dependence on the thermal annealing time: they increased to constant values within almost the same time. This implies that the adhesion of the polymer is closely related to the formation of an adsorbed layer at the adhesion interface. Nevertheless, in the case of PS with a small amount of oligomer, the shear bond strength decreased, while the adsorbed layer thickness was almost the same as that of neat PS. Based on the results of interfacial analyses, we propose that the interfacial segregation of the oligomer reduced the entanglement between the interfacial free chains in the adsorbed layer and the bulk chains.
Collapse
Affiliation(s)
- Manabu Inutsuka
- Organic Materials Diagnosis Group, National Institute of Advanced Industrial Science and Technology, 3-11-32 Kagamiyama, Higashihiroshima, Hiroshima 739-0046, Japan
| | - Hirohmi Watanabe
- Organic Materials Diagnosis Group, National Institute of Advanced Industrial Science and Technology, 3-11-32 Kagamiyama, Higashihiroshima, Hiroshima 739-0046, Japan
| | - Masaru Aoyagi
- Organic Materials Diagnosis Group, National Institute of Advanced Industrial Science and Technology, 3-11-32 Kagamiyama, Higashihiroshima, Hiroshima 739-0046, Japan
| | - Norifumi L. Yamada
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Chisa Tanaka
- Department of Material and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama-shi, Kanagawa 221-8686, Japan
| | - Takayuki Ikehara
- Department of Material and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama-shi, Kanagawa 221-8686, Japan
| | - Daisuke Kawaguchi
- Department of Applied Chemistry, Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Satoru Yamamoto
- Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Keiji Tanaka
- Department of Applied Chemistry, Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
25
|
Ren W, Wang X, Shi J, Xu J, Taneda H, Yamada NL, Kawaguchi D, Tanaka K, Wang X. The role of the molecular weight of the adsorbed layer on a substrate in the suppressed dynamics of supported thin polystyrene films. SOFT MATTER 2022; 18:1997-2005. [PMID: 35195149 DOI: 10.1039/d2sm00067a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The adsorbed layer on a solid surface plays a crucial role in the dynamics of nanoconfinement polymer materials. However, the influence of the adsorbed layer is complex, and clarifying this influence on the dynamics of confined polymers remains a major challenge. In this paper, SiO2-Si substrates with various thicknesses and adsorbed layers of PS with various molecular weights were used to reveal the effect of the adsorbed layer on the corresponding segmental dynamics of the supported thin PS films. Strongly suppressed segmental dynamics of thin PS films were observed for the films supported on thicker adsorbed layers or prepared using higher molecular weight. Neutron reflectivity revealed that the overlap region thickness between the adsorbed layer and the top overlayer increased with increasing thickness and molecular weight of the adsorbed layer, both of which correlate well with the distance over which the polystyrene dynamics were depressed by the adsorbed layer. The results show that the influencing distance of the adsorbed layer is related to the overlap zone formed between the adsorption layer and the upper thin film. The effect of the adsorbed layer molecular weight can be ascribed to the fact that large loops and long tails in the adsorbed layer result in stronger interpenetrations and entanglements between polymer chains in the adsorbed layer and in the overlayer, causing a stronger substrate effect and suppression of the segment dynamics of the supported thin PS films.
Collapse
Affiliation(s)
- Weizhao Ren
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China.
| | - Xin Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China.
| | - Jiahui Shi
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China.
| | - Jianquan Xu
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China.
| | - Hidenobu Taneda
- Department of Applied Chemistry, Kyushu University, Fukuoka, 819-0395, Japan.
| | - Norifumi L Yamada
- Neutron Science Laboratory, High Energy Accelerator Research Organization, 203-1 Shirakata, Tokai, Naka-gun, Ibaraki 319-1106, Japan
| | - Daisuke Kawaguchi
- Department of Applied Chemistry, Kyushu University, Fukuoka, 819-0395, Japan.
- Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Keiji Tanaka
- Department of Applied Chemistry, Kyushu University, Fukuoka, 819-0395, Japan.
- Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Xinping Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China.
| |
Collapse
|
26
|
Abstract
The lightweight and high-strength functional nanocomposites are important in many practical applications. Natural biomaterials with excellent mechanical properties provide inspiration for improving the performance of composite materials. Previous studies have usually focused on the bionic design of the material's microstructure, sometimes overlooking the importance of the interphase in the nanocomposite system. In this Perspective, we will focus on the construction and control of the interphase in confined space and the connection between the interphase and the macroscopic properties of the materials. We shall survey the current understanding of the critical size of the interphase and discuss the general rules of interphase formation. We hope to raise awareness of the interphase concept and encourage more experimental and simulation studies on this subject, with the aim of an optimal design and controllable preparation of polymer nanocomposite materials.
Collapse
Affiliation(s)
- Jin Huang
- Key
Laboratory of Bio-Inspired Smart Interfacial Science and Technology
of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, People’s Republic
of China
- School
of Mechanical Engineering and Automation, Beihang University, Beijing 100191, People’s Republic
of China
| | - Jiajia Zhou
- South
China Advanced Institute for Soft Matter Science and Technology, School
of Molecular Science and Engineering, South
China University of Technology, Guangzhou 510640, People’s Republic of China
- Guangdong
Provincial Key Laboratory of Functional and Intelligent Hybrid Materials
and Devices, South China University of Technology, Guangzhou 510640, People’s Republic of China
| | - Mingjie Liu
- Key
Laboratory of Bio-Inspired Smart Interfacial Science and Technology
of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, People’s Republic
of China
| |
Collapse
|
27
|
Bai L, Luo P, Yang X, Xu J, Kawaguchi D, Zhang C, Yamada NL, Tanaka K, Zhang W, Wang X. Enhanced Glass Transition Temperature of Thin Polystyrene Films Having an Underneath Cross-Linked Layer. ACS Macro Lett 2022; 11:210-216. [PMID: 35574771 DOI: 10.1021/acsmacrolett.1c00611] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Due to the importance of the interface in the segmental dynamics of supported macromolecule ultrathin films, the glass transition temperature (Tg) of polystyrene (PS) ultrathin films upon solid substrates modified with a cross-linked PS (CLPS) layer has been investigated. The results showed that the Tg of the thin PS films on a silica surface with a ∼5 nm cross-linked layer increased with reducing film thickness. Meanwhile, the increase in Tg of the thin PS films became more pronounced with increasing the cross-linking density of the layer. For example, a 20 nm thick PS film supported on CLPS with 1.8 kDa of cross-linking degree exhibited a ∼35 and ∼50 K increase in Tg compared to its bulk and that on neat SiO2 substrate, respectively. Such a large Tg elevation for the ultrathin PS films was attributed to the interfacial aggregation states in which chains diffused through nanolevel voids formed in the cross-linked layer to the SiO2-Si surface. In such a situation, the chains were topologically constrained in the cross-linked layer with less mobility. These results offer us the opportunity to tailor interfacial effects by changing the degree of cross-linking, which has great potential application in many polymer nanocomposites.
Collapse
Affiliation(s)
- Lu Bai
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Pan Luo
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xudong Yang
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jianquan Xu
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Daisuke Kawaguchi
- Department of Applied Chemistry and Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Cuiyun Zhang
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Norifumi L. Yamada
- Neutron Science Division, Institute for Materials Structure Science, High Energy, Acceleration Research Organization, Naka, Ibaraki 319-1106, Japan
| | - Keiji Tanaka
- Department of Applied Chemistry and Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Wei Zhang
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xinping Wang
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
28
|
Ishihara M, Watanabe T, Sasaki T. Adsorption Kinetics of Polystyrene and Poly(9-anthracenyl methyl methacrylate) onto SiO 2 Surface Measured by Chip Nano-Calorimetry. Polymers (Basel) 2022; 14:605. [PMID: 35160594 PMCID: PMC8839510 DOI: 10.3390/polym14030605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 02/04/2023] Open
Abstract
The alternating current (AC) chip nano-calorimetry is a powerful tool to investigate the physical properties of polymer thin films. In this paper, we report on the adsorption kinetics of polymers in which an AC chip nano-calorimetry was used for the first time. This technique allows for the real-time measurement of the adsorption kinetics of polymer chains onto the SiO2 surface. We used polystyrene (PS) and poly(9-anthracenyl methyl methacrylate) (PAMMA), which have different chemical natures and side group sizes. It was confirmed that the observed adsorption kinetics for PS were consistent with previously reported results obtained by dielectric spectroscopy. For PAMMA, we found characteristic adsorption kinetics, which shows a clear kink at the crossover between the early and later stages, while PS exhibits a lesser tendency of showing the kink as demonstrated by previously reported results.
Collapse
Affiliation(s)
| | | | - Takashi Sasaki
- Department of Materials Science and Engineering, University of Fukui, Fukui 9108507, Japan; (M.I.); (T.W.)
| |
Collapse
|
29
|
Shimokita K, Yamamoto K, Miyata N, Nakanishi Y, Ogawa H, Takenaka M, Yamada NL, Miyazaki T. Investigation of Interfacial Water Accumulation between Polypropylene Thin Film and Si Substrate by Neutron Reflectivity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14550-14557. [PMID: 34865493 DOI: 10.1021/acs.langmuir.1c02771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We performed neutron reflectivity (NR) measurements of isotactic polypropylene (PP) thin films deposited on a Si substrate at the saturated vapor pressure of deuterated water to investigate interfacial water accumulation between the PP and metal surfaces in PP-based polymer/inorganic filler nanocomposites and metal/resin bonding materials. The PP thin films prepared on a Si substrate by a spin-coating technique were adequate as a model system for the PP/metal interface in these materials. A water-rich layer with a maximum water concentration of 0.5, which was considerably higher than those reported in previous studies of organic/inorganic interfaces, was observed within a width of approximately 3 nm at the interface under saturated vapor conditions. This could be attributed to the weak interaction between the PP thin film and the Si substrate. The pathway of moisture transport to the interfacial region was along the interface rather than through the PP film because the hydrophobic PP thin film does not entirely swell with water vapor.
Collapse
Affiliation(s)
- Keisuke Shimokita
- Functional Base Products Sector, Nitto Denko Corporation, 18 Hirayama, Nakahara, Toyohashi, Aichi 441-3194, Japan
- Department of Life Science and Applied Chemistry, Gradual School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Katsuhiro Yamamoto
- Department of Life Science and Applied Chemistry, Gradual School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Noboru Miyata
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Yohei Nakanishi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Hiroki Ogawa
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Mikihito Takenaka
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Norifumi L Yamada
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 203-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Tsukasa Miyazaki
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| |
Collapse
|
30
|
Randazzo K, Bartkiewicz M, Graczykowski B, Cangialosi D, Fytas G, Zuo B, Priestley RD. Direct Visualization and Characterization of Interfacially Adsorbed Polymer atop Nanoparticles and within Nanocomposites. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Katelyn Randazzo
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | | | - Bartlomiej Graczykowski
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, Poznan 61-614, Poland
| | - Daniele Cangialosi
- Centro de Física de Materiales (CSIC-UPV/EHU), Paseo Manuel de Lardizábal 5, San Sebastián 20018, Spain
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizábal 4, 20018, San Sebastián 20018, Spain
| | - George Fytas
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Biao Zuo
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Rodney D. Priestley
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
31
|
Relaxation behavior of polymer thin films: Effects of free surface, buried interface, and geometrical confinement. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101431] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Correlation of physical aging and glass transition temperatures in ultrathin polystyrene films supported on SiO2. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Miyazaki T, Miyata N, Arima-Osonoi H, Kira H, Ohuchi K, Kasai S, Tsumura Y, Aoki H. Layered Structure in the Crystalline Adsorption Layer and the Leaching Process of Poly(vinyl alcohol) Revealed by Neutron Reflectivity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9873-9882. [PMID: 34348461 DOI: 10.1021/acs.langmuir.1c01563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We investigated the structure of the crystalline adsorption layer of poly(vinyl alcohol) (PVA) in hot water by neutron reflectivity in two cases: when the adsorption layer is exposed on the substrate by leaching the upper bulk layer and when it is deeply embedded between a relatively thick PVA film and substrate. In both cases, the PVA adsorption layer consists of three layers on the Si substrate. The bottom layer, consisting of amorphous chains that are strongly constrained on the substrate, is not swollen even in hot water at 90 °C. The middle layer, consisting of amorphous chains that are much more mobile compared with those in the bottom layer, has no freedom to assume a crystalline form. Only the molecular chains in the top layer are crystallizable in the adsorption layer, leading to a heterogeneous layered structure in the film thickness direction. This layered structure is attributed to the crystallizable chains of PVA during the formation of the adsorption layer driven by hydrogen bonding. However, the structure and dynamics in the adsorption layer may differ in both cases because the molecular chains in the vicinity of the surface seem to be affected by surface effects even in the adsorption layer.
Collapse
Affiliation(s)
- Tsukasa Miyazaki
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Noboru Miyata
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Hiroshi Arima-Osonoi
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Hiroshi Kira
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Keiichi Ohuchi
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Satoshi Kasai
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Yoshihiro Tsumura
- Kurashiki Research Center, Kuraray Co., Ltd., 2045-1, Sakazu, Kurashiki, Okayama 710-0801, Japan
| | - Hiroyuki Aoki
- Materials and Life Science Division, J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki 319-1195, Japan
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 203-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| |
Collapse
|
34
|
Xu W, Mihhels K, Kotov N, Lepikko S, Ras RHA, Johnson CM, Pettersson T, Kontturi E. Solid-state polymer adsorption for surface modification: The role of molecular weight. J Colloid Interface Sci 2021; 605:441-450. [PMID: 34333417 DOI: 10.1016/j.jcis.2021.07.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS Solid-state polymer adsorption offers a distinct approach for surface modification. These ultrathin, so-called Guiselin layers can easily be obtained by placing a polymer melt in contact with an interface, followed by a removal of the non-adsorbed layer with a good solvent. While the mechanism of formation has been well established for Guiselin layers, their stability, crucial from the perspective of materials applications, is not. The stability is a trade-off in the entropic penalty between cooperative detachment of the number of segments directly adsorbed on the substrate and consecutively pinned monomers. EXPERIMENTS Experimental model systems of Guiselin layers of polystyrene (PS) on silicon wafers with native oxide layer on top were employed. The stability of the adsorbed layers was studied as a function of PS molecular weight and polydispersibility by various microscopic and spectroscopic tools as well as quasi-static contact angle measurements. FINDINGS Adsorbed layers from low molecular weight PS were disrupted with typical spinodal decomposition patterns whereas high molecular weight (>500 kDa) PS resulted in stable, continuous layers. Moreover, we show that Guiselin layers offer an enticing way to modify a surface, as demonstrated by adsorbed PS that imparts a hydrophobic character to initially hydrophilic silicon wafers.
Collapse
Affiliation(s)
- Wenyang Xu
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland; Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, 10044 Stockholm, Sweden.
| | - Karl Mihhels
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Nikolay Kotov
- Department of Chemistry, KTH Royal Institute of Technology, Drottning Kristinas väg 51, SE-100 44 Stockholm, Sweden
| | - Sakari Lepikko
- Department of Applied Physics, School of Science, Aalto University, Espoo, Finland
| | - Robin H A Ras
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland; Department of Applied Physics, School of Science, Aalto University, Espoo, Finland
| | - C Magnus Johnson
- Department of Chemistry, KTH Royal Institute of Technology, Drottning Kristinas väg 51, SE-100 44 Stockholm, Sweden
| | - Torbjörn Pettersson
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, 10044 Stockholm, Sweden; Wallenberg Wood Science Centre, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, 10044 Stockholm, Sweden.
| | - Eero Kontturi
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16300, FI-00076 Aalto, Finland.
| |
Collapse
|
35
|
|
36
|
Sunday DF, Thelen JL, Zhou C, Ren J, Nealey PF, Kline RJ. Buried Structure in Block Copolymer Films Revealed by Soft X-ray Reflectivity. ACS NANO 2021; 15:9577-9587. [PMID: 34014640 DOI: 10.1021/acsnano.0c09907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Interactions between polymers and surfaces can be used to influence properties including mechanical performance in nanocomposites, the glass transition temperature, and the orientation of thin film block copolymers (BCPs). In this work we investigate how specific interactions between the substrate and BCPs with varying substrate affinity impact the interfacial width between polymer components. The interface width is generally assumed to be a function of the BCP properties and independent of the surface affinity or substrate proximity. Using resonant soft X-ray reflectivity the optical constants of the film can be controlled by changing the incident energy, thereby varying the depth sensitivity of the measurement. Resonant soft X-ray reflectivity measurements were conducted on films of polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) and PS-b-poly(methyl methacrylate) (PS-b-PMMA), where the thickness of the film was varied from half the periodicity (L0) of the BCP to 5.5 L0. The results of this measurement on the PS-b-P2VP films show a significant expansion of the interface width immediately adjacent to the surface. This is likely caused by the strong adsorption of P2VP to the substrate, which constrains the mobility of the junction points, preventing them from reaching their equilibrium distribution and expanding the observed interface width. The interface width decays toward equilibrium moving away from the substrate, with the decay rate being a function of film thickness below a critical limit. The PMMA block appears to be more mobile, and the BCP interfaces near the substrate match their equilibrium value.
Collapse
Affiliation(s)
- Daniel F Sunday
- Materials Science and Engineering Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Jacob L Thelen
- Materials Science and Engineering Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Chun Zhou
- Institute for Molecular Engineering, University of Chicago, 5801 S Ellis Ave, Chicago, Illinois 60637, United States
| | - Jiaxing Ren
- Institute for Molecular Engineering, University of Chicago, 5801 S Ellis Ave, Chicago, Illinois 60637, United States
| | - Paul F Nealey
- Institute for Molecular Engineering, University of Chicago, 5801 S Ellis Ave, Chicago, Illinois 60637, United States
| | - R Joseph Kline
- Materials Science and Engineering Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
37
|
Nieto Simavilla D, Abate AA, Liu J, Geerts YH, Losada-Peréz P, Napolitano S. 1D-Confinement Inhibits the Anomaly in Secondary Relaxation of a Fluorinated Polymer. ACS Macro Lett 2021; 10:649-653. [PMID: 35570757 DOI: 10.1021/acsmacrolett.1c00220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present an experimental study of the dynamics of a well-pronounced secondary relaxation observed in bulk and ultrathin films of the fluorinated copolymer poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP). In proximity to the glass transition, an anomalous phenomenon is observed: the β-relaxation slows down upon heating. Measurements as a function of the film thickness show that this exceptional behavior gradually vanishes upon confinement at the nanoscale level. Regardless of sample size, the relaxation dynamics could be described in terms of the Minimal Model via an asymmetric double well potential. Supported by a structural investigation of surfaces and interfaces, our results reveal that the presence of adsorbing walls induces an increase in glass transition temperature, which counterbalances the asymmetry in the double well potential responsible for molecular motion.
Collapse
Affiliation(s)
- David Nieto Simavilla
- Laboratory of Polymer and Soft Matter Dynamics, Experimental Soft Matter and Thermal Physics (EST), Université libre de Bruxelles (ULB), Bruxelles 1050, Belgium
| | - Anabella A Abate
- Laboratory of Polymer and Soft Matter Dynamics, Experimental Soft Matter and Thermal Physics (EST), Université libre de Bruxelles (ULB), Bruxelles 1050, Belgium
| | - Jie Liu
- Laboratoire de Chimie des Polyméres, Université Libre de Bruxelles (ULB), 1050 Bruxelles, Belgium
| | - Yves H Geerts
- Laboratoire de Chimie des Polyméres, Université Libre de Bruxelles (ULB), 1050 Bruxelles, Belgium.,International Solvay Institutes of Physics and Chemistry, ULB - Campus Plaine - CP 231, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Patricia Losada-Peréz
- Experimental Soft Matter and Thermal Physics (EST), Université Libre de Bruxelles (ULB), Bruxelles 1050, Belgium
| | - Simone Napolitano
- Laboratory of Polymer and Soft Matter Dynamics, Experimental Soft Matter and Thermal Physics (EST), Université libre de Bruxelles (ULB), Bruxelles 1050, Belgium
| |
Collapse
|
38
|
Rahman MU, Xi Y, Li H, Chen F, Liu D, Wei J. Dynamics and Structure Formation of Confined Polymer Thin Films Supported on Solid Substrates. Polymers (Basel) 2021; 13:1621. [PMID: 34067812 PMCID: PMC8155975 DOI: 10.3390/polym13101621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/27/2021] [Accepted: 05/11/2021] [Indexed: 01/18/2023] Open
Abstract
The stability/instability behavior of polystyrene (PS) films with tunable thickness ranging from higher as-cast to lower residual made on Si substrates with and without native oxide layer was studied in this paper. For further extraction of residual PS thin film (hresi) and to investigate the polymer-substrate interaction, Guiselin's method was used by decomposing the polymer thin films in different solvents. The solvents for removing loosely adsorbed chains and extracting the strongly adsorbed irreversible chains were selected based on their relative desorption energy difference with polymer. The PS thin films rinsed in chloroform with higher polarity than that of toluene showed a higher decrease in the residual film thickness but exhibited earlier growth of holes and dewetting in the film. The un-annealed samples with a higher oxide film thickness showed a higher decrease in the PS residual film thickness. The effective viscosity of PS thin films spin-coated on H-Si substrates increased because of more resistance to flow dynamics due to the stronger polymer-substrate interaction as compared to that of Si-SiOx substrates. By decreasing the film thickness, the overall effective mobility of the film increased and led to the decrease in the effective viscosity, with matching results of the film morphology from atomic force microscopy (AFM). The polymer film maintained low viscosity until a certain period of time, whereupon further annealing occurred, and the formation of holes in the film grew, which ultimately dewetted the film. The residual film decrement, growth of holes in the film, and dewetting of the polymer-confined thin film showed dependence on the effective viscosity, the strength of solvent used, and various involved interactions on the surface of substrates.
Collapse
Affiliation(s)
- Mujib Ur Rahman
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Yonghao Xi
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Y.X.); (H.L.); (F.C.)
| | - Haipeng Li
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Y.X.); (H.L.); (F.C.)
| | - Fei Chen
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Y.X.); (H.L.); (F.C.)
| | - Dongjie Liu
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Y.X.); (H.L.); (F.C.)
| | - Jinjia Wei
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China;
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (Y.X.); (H.L.); (F.C.)
| |
Collapse
|
39
|
Sharma T, Konishi M, Sekiya K, Takahashi I. Thickness and Substrate Dependences of the Relaxation of Spin-Coated Polymethyl Methacrylate Ultrathin Films Supported on SiO2 and SiOH Substrates. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tulika Sharma
- Department of Physics and Astronomy, School of Science and Technology, Kwansei Gakuin University, Sanda 669-1337, Japan
| | - Masaaki Konishi
- Department of Physics and Astronomy, School of Science and Technology, Kwansei Gakuin University, Sanda 669-1337, Japan
| | - Kazuki Sekiya
- Department of Physics and Astronomy, School of Science and Technology, Kwansei Gakuin University, Sanda 669-1337, Japan
| | - Isao Takahashi
- Department of Physics and Astronomy, School of Science and Technology, Kwansei Gakuin University, Sanda 669-1337, Japan
| |
Collapse
|
40
|
Xu Q, Zhu N, Fang H, Wang X, Priestley RD, Zuo B. Decoupling Role of Film Thickness and Interfacial Effect on Polymer Thin Film Dynamics. ACS Macro Lett 2021; 10:1-8. [PMID: 35548993 DOI: 10.1021/acsmacrolett.0c00760] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The film thickness and substrate interface are the two most common parameters to tune the dynamics of supported thin films. Here, we investigated the glass transition temperature (Tg) and thermal expansion of thin poly(methyl methacrylate) (PMMA) films with various thicknesses and different interfacial effects. We showed that, although the Tg of the thin films can be modulated equivalently by the two factors, their ability to change the expansivity (β) is quite different; that is, β increases notably with a reduction in the thickness, while it is insensitive to perturbations at the interface. We attribute the deviation in modulating β by the thickness and the interfacial effect to the disparate abilities to change the free volume content in the film by a free surface and substrate interface. This leads to a situation where thin films with dissimilar thicknesses and interfacial properties can have the same Tg but very different β values, suggesting that Tg alone cannot unequivocally quantify thin film dynamics.
Collapse
Affiliation(s)
- Quanyin Xu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Ningtao Zhu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Huasong Fang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xinping Wang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Rodney D. Priestley
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Biao Zuo
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
41
|
Madkour S, Gawek M, Hertwig A, Schönhals A. Do Interfacial Layers in Thin Films Act as an Independent Layer within Thin Films? Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Sherif Madkour
- Bundesanstalt für Materialforschung und −prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - Marcel Gawek
- Bundesanstalt für Materialforschung und −prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - Andreas Hertwig
- Bundesanstalt für Materialforschung und −prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - Andreas Schönhals
- Bundesanstalt für Materialforschung und −prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| |
Collapse
|
42
|
Miyazaki T, Shimokita K, Yamamoto K, Aoki H, Yamada NL, Miyata N. Neutron Reflectivity on the Mobile Surface and Immobile Interfacial Layers in the Poly(vinyl acetate) Adsorption Layer on a Si Substrate with Deuterated Toluene Vapor-Induced Swelling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:15181-15188. [PMID: 33259712 DOI: 10.1021/acs.langmuir.0c03025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We investigated the polymer chain dynamics in a 2-3 nm thick poly(vinyl acetate) (PVAc) adsorption layer on a Si substrate with a native oxide layer via neutron reflectometry combined with toluene vapor-induced swelling. We can investigate the polymer chain dynamics difference in the film thickness direction by the difference in the degree of swelling of the polymer layers detected by neutron reflectometry. The mobility of the polymer chains depends on the distance from the substrate. The results elucidated that the interfacial layer with a thickness of approximately 1 nm did not swell at all with toluene vapor, which is a solvent for PVAc. Meanwhile, the surface layer excessively swells with toluene vapor compared to the bulk. This indicates that the polymer chain within the interfacial region is immobilized by the substrate through hydrogen-bonding interaction, but in the surface region, the surface effect overcomes this interfacial interaction. We concluded that the polymer chains in the adsorption layer are either strongly constrained to the substrate, owing to hydrogen bonding, or more mobile than the bulk, owing to the surface effect.
Collapse
Affiliation(s)
- Tsukasa Miyazaki
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, 162-1 Shirakata, Tokai, Naka, Ibaraki 319-1106, Japan
| | - Keisuke Shimokita
- Functional Base Products Sector, Nitto Denko Corporation, 18 Hirayama, Nakahara, Toyohashi, Aichi 441-3194, Japan
- Department of Life Science and Applied Chemistry, Gradual School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Katsuhiro Yamamoto
- Department of Life Science and Applied Chemistry, Gradual School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Hiroyuki Aoki
- Materials and Life Science Division, J-PARC Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki 319-1195, Japan
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 203-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Norifumi L Yamada
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 203-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| | - Noboru Miyata
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, 162-1 Shirakata, Tokai, Naka, Ibaraki 319-1106, Japan
| |
Collapse
|
43
|
Xu L, Shi TF, An LJ, Lu YY, Wang LN. Effect of Interfacial Adsorption on the Stability of Thin Polymer Films in a Solvent-induced Process. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2493-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
44
|
Wang M, Zhang J, Zhou S, Yang Z, Zhang X. Glass transition behaviour of thin polymer films coated on the 3D networks of porous CNT sponges. Phys Chem Chem Phys 2020; 22:21297-21306. [PMID: 32935675 DOI: 10.1039/d0cp02983a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The glass transition behaviors of thin polymer films on the sidewalls of carbon nanotubes (CNTs) in CNT sponges (CNTSs) were studied. Due to the extremely large surface area of CNTS, the glass transition temperatures (Tg) of thin polystyrene (PS) and poly(methyl methacrylate) (PMMA) films were measured using a routine experimental method, differential scanning calorimetry (DSC). We thus provide a direct Tg comparison between the thin film and the bulk sample using the same DSC technique. For thin polymer films on the CNT sidewalls, free surface and polymer-substrate interfacial interactions co-exist. It is well-known that polymer chains at the liquid-like free surface tend to have a relatively high mobility, but the mobility in the interfacial layer near the substrate depends strongly on the polymer-substrate interaction strength. Accordingly, we tuned the polymer-substrate interaction strength by introducing an amphiphilic sodiumdodecylsulfate (SDS) molecule layer on the CNT sidewalls. The value and sign of Tg deviation were influenced by the competition between the free surface effect and the interfacial interactions. Strong polymer-substrate interactions led to a decrease in the mobility of polymer chains near the substrate and weak polymer-substrate interactions have little influence on the mobility of polymer chains near the substrate. When the polymer-substrate interactions are strong, both the free surface effect and the polymer-substrate interaction are key factors influencing the glass transition temperature. For thin polymer films having weak interactions with substrates, the free surface effect dominates the glass transition behavior and Tgs shows a large reduction. We also observed a double Tg behavior in the thin PS film and found the thickness of the PS film on the substrate was a deciding factor for controlling the spatial variation of Tg.
Collapse
Affiliation(s)
- Min Wang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | | | | | | | | |
Collapse
|
45
|
Jiang N, Chen J, Yu T, Chao A, Kang L, Wu Y, Niu K, Li R, Fukuto M, Zhang D. Cyclic Topology Enhancing Structural Ordering and Stability of Comb-Shaped Polypeptoid Thin Films against Melt-Induced Dewetting. Macromolecules 2020; 53:7601-7612. [PMID: 32952217 PMCID: PMC7498153 DOI: 10.1021/acs.macromol.0c01205] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/21/2020] [Indexed: 12/03/2022]
Abstract
We investigated the effect of cyclic chain topology on the molecular ordering and thermal stability of comb-shaped polypeptoid thin films on silicon (Si) substrates. Cyclic and linear poly(N-decylglycine) (PNDG) bearing long n-decyl side chains were synthesized by ring-opening polymerization of N-decylglycine-derived N-carboxyanhydrides. When the spin-coated thin films were subjected to thermal annealing at temperatures above the melting temperature (T > T m), the cyclic PNDG films exhibited significantly enhanced stability against melt-induced dewetting than the linear counterparts (l-PNDG). When recrystallized at temperatures below the crystallization temperature (T < T c), the homogeneous c-PNDG films exhibit enhanced crystalline ordering relative to the macroscopically dewetted l-PNDG films. Both cyclic and linear PNDG molecules adopt cis-amide conformations in the crystalline film, which transition into trans-amide conformations upon melting. A top-down solvent leaching treatment of both l/c-PNDG films revealed the formation of an irreversibly physisorbed monolayer with similar thickness (ca. 3 nm) on the Si substrate. The physisorbed monolayers are more disordered relative to the respective thicker crystalline films for both cyclic and linear PNDGs. Upon heating above T m, the adsorbed c-PNDG chains adopt trans-amide backbone conformation identical with the free c-PNDG molecules in the molten film. By contrast, the backbone conformations of l-PNDG chains in the adsorbed layers are notably different from those of the free chains in the molten film. We postulate that the conformational disparity between the chains in the physically adsorbed layers versus the free chains in the molten film is an important factor to account for the difference in the thermal stability of PNDG thin films. These findings highlight the use of cyclic chain topology to suppress the melt-induced dewetting in polymer thin films.
Collapse
Affiliation(s)
- Naisheng Jiang
- Department of Chemistry
and Macromolecular Studies Group, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianxia Chen
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Tianyi Yu
- Department of Chemistry
and Macromolecular Studies Group, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Albert Chao
- Department of Chemistry
and Macromolecular Studies Group, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Liying Kang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ying Wu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kangmin Niu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Masafumi Fukuto
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Donghui Zhang
- Department of Chemistry
and Macromolecular Studies Group, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| |
Collapse
|
46
|
Tang Z, Xu Z, Cai C, Lin J, Yao Y, Yang C, Tian X. 2D Chiral Stripe Nanopatterns Self-Assembled from Rod-Coil Block Copolymers on Microstripes. Macromol Rapid Commun 2020; 41:e2000349. [PMID: 32830421 DOI: 10.1002/marc.202000349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/09/2020] [Indexed: 12/11/2022]
Abstract
Chiral nanoarchitectures usually possess unique and intriguing properties. However, the construction of 2D chiral nanopatterns through polymer self-assembly is a challenge. Reported herein is the formation of chiral stripe nanopatterns through surface self-assembly of polypeptide-based rod-coil block copolymers on microstripes. The nanostripes align oblique to the boundary of the microstripes, resulting in the chirality of the nanopatterns. The chirality of the nanopatterns is closely related to the width of the microstripes, i.e., a narrower width results in higher chirality. Besides, the chiral sense of the nanopatterns can be regulated by the chirality of the polypeptide blocks. This work demonstrates the transmission of chirality from polymer to nanoarchitecture on a confined surface, which can guide the preparation of nanopatterns with tuned chiral features.
Collapse
Affiliation(s)
- Zhengmin Tang
- Z. Tang, Dr. Z. Xu, Prof. C. Cai, Prof. J. Lin, Prof. Y. Yao, Prof. X. Tian, Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhanwen Xu
- Z. Tang, Dr. Z. Xu, Prof. C. Cai, Prof. J. Lin, Prof. Y. Yao, Prof. X. Tian, Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chunhua Cai
- Z. Tang, Dr. Z. Xu, Prof. C. Cai, Prof. J. Lin, Prof. Y. Yao, Prof. X. Tian, Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiaping Lin
- Z. Tang, Dr. Z. Xu, Prof. C. Cai, Prof. J. Lin, Prof. Y. Yao, Prof. X. Tian, Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuan Yao
- Z. Tang, Dr. Z. Xu, Prof. C. Cai, Prof. J. Lin, Prof. Y. Yao, Prof. X. Tian, Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chunming Yang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Xiaohui Tian
- Z. Tang, Dr. Z. Xu, Prof. C. Cai, Prof. J. Lin, Prof. Y. Yao, Prof. X. Tian, Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
47
|
Kim Y, Lee W, Jo S, Ahn H, Kim K, Kim JU, Ryu DY. Lamellar Orientation and Transition Behavior of PS-b-P2VP Copolymers Supported on Physically Adsorbed Layers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yeongsik Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Wooseop Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Seungyun Jo
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Hyungju Ahn
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, 80 Jigok-ro, Nam-gu, Pohang 37673, Korea
| | - Kyungkon Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Jaeup U. Kim
- Department of Physics, School of Natural Science, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, Korea
| | - Du Yeol Ryu
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
48
|
Huang X, Thees MF, Size WB, Roth CB. Experimental study of substrate roughness on the local glass transition of polystyrene. J Chem Phys 2020; 152:244901. [PMID: 32610987 DOI: 10.1063/5.0011380] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Xinru Huang
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| | - Michael F. Thees
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| | - William B. Size
- Department of Environmental Sciences, Emory University, Atlanta, Georgia 30322, USA
| | - Connie B. Roth
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
49
|
Salatto D, Koga YT, Bajaj Y, Huang Z, Yavitt BM, Meng Y, Carrillo JMY, Sumpter BG, Nykypanchuk D, Taniguchi T, Endoh MK, Koga T. Generalized Protein-Repellent Properties of Ultrathin Homopolymer Films. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Daniel Salatto
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794-2275, United States
| | - Yuto T. Koga
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853, United States
| | - Yashasvi Bajaj
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794-2275, United States
| | - Zhixing Huang
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794-2275, United States
| | - Benjamin M. Yavitt
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794-2275, United States
| | - Yizhi Meng
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794-2275, United States
| | - Jan-Michael Y. Carrillo
- Center for Nanophase Materials Sciences and Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Bobby G. Sumpter
- Center for Nanophase Materials Sciences and Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Dmytro Nykypanchuk
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Takashi Taniguchi
- Graduate School of Engineering, Department of Chemical Engineering, Kyoto University, Katsura-Campus, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Maya K. Endoh
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794-2275, United States
| | - Tadanori Koga
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794-2275, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
50
|
Thees MF, McGuire JA, Roth CB. Review and reproducibility of forming adsorbed layers from solvent washing of melt annealed films. SOFT MATTER 2020; 16:5366-5387. [PMID: 32365149 DOI: 10.1039/d0sm00565g] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recent studies suggest chain adsorption in the melt may be responsible for a number of property changes in thin films by making correlations between the residual adsorbed layer thickness hads(t) measured after a given solvent washing procedure as a function of annealing time t of the film at an elevated temperature prior to this solvent rinse. This procedure, frequently called "Guiselin's experiment", refers to the thought experiment proposed in a 1992 theoretical treatment by Guiselin that assumed chain segments in contact with the surface are irreversibly adsorbed whereby unadsorbed chains could be washed away by solvent without disturbing the adsorbed substrate contact points in the melt. In the present work, we review this recent literature, identifying and experimentally testing a common protocol for forming adsorbed layers hads(t) from solvent washing melt films. We find hads(t) curves to be far less reproducible and reliable than implied in the literature, strongly dependent on solvent washing and substrate cleaning conditions, and annealing at elevated temperatures is unnecessary as densification of films sitting at room temperature makes the glassy film harder to wash off, leaving behind hads of comparable thickness. This review also summarizes literature understanding developed over several decades of study on polymer adsorption in solution, which experimentally demonstrated that polymer chains in solution are highly mobile, diffusing and exchanging on the surface even in the limit of strong adsorption, contradicting Guiselin's assumption. Preformed adsorbed layers of different thicknesses hads are shown to not affect the average glass transition temperature or physical aging of 30 nm thick films. In summary, a number of open questions and implications are discussed related to thin films and polymer nanocomposites.
Collapse
Affiliation(s)
- Michael F Thees
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|