1
|
Su J, Kong Z, Zeng L, Kong F, Xia K, Shi F, Du J. Fluorescent Nanodiamonds for Quantum Sensing in Biology. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2025; 17:e70012. [PMID: 40328518 DOI: 10.1002/wnan.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/20/2025] [Accepted: 04/14/2025] [Indexed: 05/08/2025]
Abstract
Fluorescent nanodiamonds exhibiting outstanding optical and biocompatible properties are the subject of increased studies and attention in physics and biology. The nitrogen-vacancy center in diamonds with unique quantum properties at room temperature is sensitive to physical properties such as magnetic field, electric field, temperature, and pressure. By taking advantage of the NV center and high sensitivity that arises from the intrinsic quantum properties of spins in nanodiamonds, which are extensively employed in quantum sensing, bio-imaging, and bio-sensing. In this review, the selected topic mainly focuses on the surface functionalization of nanodiamonds and the recent progress in applying nanodiamonds as quantum sensors for intracellular orientation tracking, temperature sensing, and notably nuclear magnetic resonance and electron spin resonance applications.
Collapse
Affiliation(s)
- Jia Su
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, China
| | - Zenghao Kong
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, China
| | - Linyu Zeng
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, China
| | - Fei Kong
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, China
| | - Kangwei Xia
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, China
| | - Fazhan Shi
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, China
- School of Biomedical Engineering and Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China
| | - Jiangfeng Du
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, China
- Institute of Quantum Sensing and School of Physics, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Aprà P, Zanelli G, Losero E, Amine NH, Andrini G, Barozzi M, Bernardi E, Britel A, Canteri R, Degiovanni IP, Mino L, Moreva E, Olivero P, Redolfi E, Stella C, Sturari S, Traina P, Varzi V, Genovese M, Picollo F. Effects of Thermal Oxidation and Proton Irradiation on Optically Detected Magnetic Resonance Sensitivity in Sub-100 nm Nanodiamonds. ACS APPLIED MATERIALS & INTERFACES 2025; 17:21589-21600. [PMID: 40159101 PMCID: PMC11986899 DOI: 10.1021/acsami.4c08780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 04/02/2025]
Abstract
In recent decades, nanodiamonds (NDs) have emerged as innovative nanotools for weak magnetic fields and small temperature variation sensing, especially in biological systems. At the basis of the use of NDs as quantum sensors are nitrogen-vacancy center lattice defects, whose electronic structures are influenced by the surrounding environment and can be probed by the optically detected magnetic resonance technique. Ideally, limiting the NDs' size as much as possible is important to ensure higher biocompatibility and provide higher spatial resolution. However, size reduction typically worsens the NDs' sensing properties. This study endeavors to obtain sub-100 nm NDs suitable to be used as quantum sensors. Thermal processing and surface oxidations were performed to purify NDs and control their surface chemistry and size. Ion irradiation techniques were also employed to increase the concentration of the nitrogen-vacancy centers. The impact of these processes was explored in terms of surface chemistry (diffuse reflectance infrared Fourier transform spectroscopy), structural and optical properties (Raman and photoluminescence spectroscopy), dimension variation (atomic force microscopy measurements), and optically detected magnetic resonance temperature sensitivity. Our results demonstrate how surface optimization and defect density enhancement can reduce the detrimental impact of size reduction, opening to the possibility of minimally invasive high-performance sensing of physical quantities in biological environments with nanoscale spatial resolution.
Collapse
Affiliation(s)
- Pietro Aprà
- National
Institute for Nuclear Physics (Section of Torino), Via P. Giuria 1, 10125 Torino, Italy
| | - Gabriele Zanelli
- Istituto
Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Torino, Italy
- Physics
Department, University of Torino, Via P. Giuria 1, 10125 Torino, Italy
| | - Elena Losero
- Istituto
Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Torino, Italy
| | - Nour-Hanne Amine
- National
Institute for Nuclear Physics (Section of Torino), Via P. Giuria 1, 10125 Torino, Italy
- Physics
Department, University of Torino, Via P. Giuria 1, 10125 Torino, Italy
- NIS
Inter-Departmental Centre, Via G. Quarello 15/a, 10135 Torino, Italy
| | - Greta Andrini
- National
Institute for Nuclear Physics (Section of Torino), Via P. Giuria 1, 10125 Torino, Italy
| | - Mario Barozzi
- Center
for Sensors and Devices, Bruno Kessler Foundation, Via Sommarive 18, Povo, I-38123 Trento, Italy
| | - Ettore Bernardi
- Istituto
Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Torino, Italy
| | - Adam Britel
- National
Institute for Nuclear Physics (Section of Torino), Via P. Giuria 1, 10125 Torino, Italy
- Physics
Department, University of Torino, Via P. Giuria 1, 10125 Torino, Italy
- NIS
Inter-Departmental Centre, Via G. Quarello 15/a, 10135 Torino, Italy
| | - Roberto Canteri
- Center
for Sensors and Devices, Bruno Kessler Foundation, Via Sommarive 18, Povo, I-38123 Trento, Italy
| | - Ivo Pietro Degiovanni
- Istituto
Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Torino, Italy
| | - Lorenzo Mino
- NIS
Inter-Departmental Centre, Via G. Quarello 15/a, 10135 Torino, Italy
- Chemistry
Department, University of Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Ekaterina Moreva
- Istituto
Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Torino, Italy
| | - Paolo Olivero
- National
Institute for Nuclear Physics (Section of Torino), Via P. Giuria 1, 10125 Torino, Italy
- Physics
Department, University of Torino, Via P. Giuria 1, 10125 Torino, Italy
- NIS
Inter-Departmental Centre, Via G. Quarello 15/a, 10135 Torino, Italy
| | - Elisa Redolfi
- National
Institute for Nuclear Physics (Section of Torino), Via P. Giuria 1, 10125 Torino, Italy
- Istituto
Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Torino, Italy
- Physics
Department, University of Torino, Via P. Giuria 1, 10125 Torino, Italy
| | - Claudia Stella
- Istituto
Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Torino, Italy
- Politecnico
di Torino, Corso Castelfidardo
39, 10129 Torino, Italy
| | - Sofia Sturari
- National
Institute for Nuclear Physics (Section of Torino), Via P. Giuria 1, 10125 Torino, Italy
- Physics
Department, University of Torino, Via P. Giuria 1, 10125 Torino, Italy
- NIS
Inter-Departmental Centre, Via G. Quarello 15/a, 10135 Torino, Italy
| | - Paolo Traina
- Istituto
Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Torino, Italy
| | - Veronica Varzi
- National
Institute for Nuclear Physics (Section of Torino), Via P. Giuria 1, 10125 Torino, Italy
- Physics
Department, University of Torino, Via P. Giuria 1, 10125 Torino, Italy
- NIS
Inter-Departmental Centre, Via G. Quarello 15/a, 10135 Torino, Italy
| | - Marco Genovese
- National
Institute for Nuclear Physics (Section of Torino), Via P. Giuria 1, 10125 Torino, Italy
- Istituto
Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Torino, Italy
| | - Federico Picollo
- National
Institute for Nuclear Physics (Section of Torino), Via P. Giuria 1, 10125 Torino, Italy
- Physics
Department, University of Torino, Via P. Giuria 1, 10125 Torino, Italy
- NIS
Inter-Departmental Centre, Via G. Quarello 15/a, 10135 Torino, Italy
| |
Collapse
|
3
|
Yukawa H, Kono H, Ishiwata H, Igarashi R, Takakusagi Y, Arai S, Hirano Y, Suhara T, Baba Y. Quantum life science: biological nano quantum sensors, quantum technology-based hyperpolarized MRI/NMR, quantum biology, and quantum biotechnology. Chem Soc Rev 2025; 54:3293-3322. [PMID: 39874046 DOI: 10.1039/d4cs00650j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
The emerging field of quantum life science combines principles from quantum physics and biology to study fundamental life processes at the molecular level. Quantum mechanics, which describes the properties of small particles, can help explain how quantum phenomena such as tunnelling, superposition, and entanglement may play a role in biological systems. However, capturing these effects in living systems is a formidable challenge, as it involves dealing with dissipation and decoherence caused by the surrounding environment. We overview the current status of the quantum life sciences from technologies and topics in quantum biology. Technologies such as biological nano quantum sensors, quantum technology-based hyperpolarized MRI/NMR, high-speed 2D electronic spectrometers, and computer simulations are being developed to address these challenges. These interdisciplinary fields have the potential to revolutionize our understanding of living organisms and lead to advancements in genetics, molecular biology, medicine, and bioengineering.
Collapse
Affiliation(s)
- Hiroshi Yukawa
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Hidetoshi Kono
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Hitoshi Ishiwata
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Ryuji Igarashi
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Yoichi Takakusagi
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Shigeki Arai
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Yu Hirano
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Tetsuya Suhara
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Yoshinobu Baba
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| |
Collapse
|
4
|
Fan X, Xing Y, Wu Z, Li B, Huang P, Liu L. Electrochemical-Enhanced Charge State Modulation of Nitrogen-Vacancy Centers for Ultrasensitive Biodetection of MicroRNA-155. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2592-2601. [PMID: 39690105 DOI: 10.1021/acsami.4c17823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Sensitive and accurate miRNA detection is important in cancer diagnosis but remains challenging owing to the essential features of miRNAs, such as their small size, high homology, and low abundance. This work proposes a novel electrochemical (EC)-enhanced quantum sensor achieving quantitative detection of miRNA-155 with simultaneous EC sensing. Specifically, fluorescent nanodiamonds/MXene nanocomposites were synthesized and modified with dual-mode signal labels, enabling miRNA-155 concentration measurement via T1 relaxation time of nitrogen-vacancy (NV) centers and EC signals. Quantum sensing was enhanced via external voltage during the EC process, which modulated the negatively charged state of the NV centers, thereby improving the sensitivity and accuracy of miRNA-155 detection. EC sensing improved the accuracy and reliability of miRNA-155 detection while enhancing quantum sensing. The limit of detection (LOD) of the EC-enhanced quantum biosensor reached 10.0 aM, nearly 106 and 10 times lower than the reported LODs of a quantum sensor using bulk diamond and fluorescent sensors, respectively. The LOD of EC sensing was 2.6 aM, aligning with previous reports. The findings of the study indicated that quantum sensing combined with EC sensing can achieve ultrasensitive miRNA-155 detection with high accuracy and reliability, providing an advanced approach for early cancer diagnosis.
Collapse
Affiliation(s)
- Xiaojian Fan
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
- Suzhou Research Institute of Southeast University, Suzhou 215123, China
| | - Youqiang Xing
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
- Suzhou Research Institute of Southeast University, Suzhou 215123, China
| | - Ze Wu
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
- Suzhou Research Institute of Southeast University, Suzhou 215123, China
| | - Bingjue Li
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
- Suzhou Research Institute of Southeast University, Suzhou 215123, China
| | - Peng Huang
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
- Suzhou Research Institute of Southeast University, Suzhou 215123, China
| | - Lei Liu
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
- Suzhou Research Institute of Southeast University, Suzhou 215123, China
| |
Collapse
|
5
|
Pasternak DG, Bagramov RH, Romshin AM, Zibrov IP, Filonenko VP, Vlasov II. Controlled Formation of Silicon-Vacancy Centers in High-Pressure Nanodiamonds Produced from an "Adamantane + Detonation Nanodiamond" Mixture. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1843. [PMID: 39591083 PMCID: PMC11597457 DOI: 10.3390/nano14221843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024]
Abstract
Despite progress in the high-pressure synthesis of nanodiamonds from hydrocarbons, the problem of controlled formation of fluorescent impurity centers in them still remains unresolved. In our work, we explore the potential of a new precursor composition, a mixture of adamantane with detonation nanodiamond, both in the synthesis of nanodiamonds and in the controlled formation of negatively charged silicon-vacancy centers in such nanodiamonds. Using different adamantane/detonation nanodiamond weight ratios, a series of samples was synthesized at a pressure of 7.5 GPa in the temperature range of 1200-1500 °C. It was found that temperature around 1350 °C, is optimal for the high-yield synthesis of nanodiamonds <50 nm in size. For the first time, controlled formation of negatively charged silicon-vacancy centers in such small nanodiamonds was demonstrated by varying the atomic ratios of silicon/carbon in the precursor in the range of 0.01-1%.
Collapse
Affiliation(s)
- Dmitrii G. Pasternak
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Str., Moscow 119991, Russia;
| | - Rustem H. Bagramov
- Vereshchagin Institute of High-Pressure Physics of the Russian Academy of Sciences, 14 Kaluzhskoe Shosse, Troitsk, Moscow 108840, Russia; (R.H.B.); (I.P.Z.); (V.P.F.)
| | - Alexey M. Romshin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Str., Moscow 119991, Russia;
| | - Igor P. Zibrov
- Vereshchagin Institute of High-Pressure Physics of the Russian Academy of Sciences, 14 Kaluzhskoe Shosse, Troitsk, Moscow 108840, Russia; (R.H.B.); (I.P.Z.); (V.P.F.)
| | - Vladimir P. Filonenko
- Vereshchagin Institute of High-Pressure Physics of the Russian Academy of Sciences, 14 Kaluzhskoe Shosse, Troitsk, Moscow 108840, Russia; (R.H.B.); (I.P.Z.); (V.P.F.)
| | - Igor I. Vlasov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Str., Moscow 119991, Russia;
| |
Collapse
|
6
|
Zhang Y, Sigaeva A, Fan S, Norouzi N, Zheng X, Heijink IH, Slebos DJ, Pouwels SD, Schirhagl R. Dynamics for High-Sensitivity Detection of Free Radicals in Primary Bronchial Epithelial Cells upon Stimulation with Cigarette Smoke Extract. NANO LETTERS 2024; 24:9650-9657. [PMID: 39012318 PMCID: PMC11311533 DOI: 10.1021/acs.nanolett.4c02409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024]
Abstract
Chronic obstructive pulmonary disease (COPD), the third leading cause of death worldwide, is caused by chronic exposure to toxic particles and gases, such as cigarette smoke. Free radicals, which are produced during a stress response to toxic particles, play a crucial role in disease progression. Measuring these radicals is difficult since the complex mixture of chemicals within cigarette smoke interferes with radical detection. We used a new quantum sensing technique called relaxometry to measure free radicals with nanoscale resolution on cells from COPD patients and healthy controls exposed to cigarette smoke extract (CSE) or control medium. Epithelial cells from COPD patients display a higher free radical load than those from healthy donors and are more vulnerable to CSE. We show that epithelial cells of COPD patients are more susceptible to the damaging effects of cigarette smoke, leading to increased release of free radicals.
Collapse
Affiliation(s)
- Y. Zhang
- Department
of Biomaterials and Biotechnology, University
of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - A. Sigaeva
- Department
of Biomaterials and Biotechnology, University
of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - S. Fan
- Department
of Biomaterials and Biotechnology, University
of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - N. Norouzi
- Department
of Biomaterials and Biotechnology, University
of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - X. Zheng
- Department
of Pathology and Medical Biology, University
of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
- Department
of Pulmonology, University of Groningen,
University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
| | - I. H. Heijink
- Department
of Pathology and Medical Biology, University
of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
- Department
of Pulmonology, University of Groningen,
University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
- Groningen
Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
| | - D. J. Slebos
- Department
of Pulmonology, University of Groningen,
University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
- Groningen
Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
| | - S. D. Pouwels
- Department
of Pathology and Medical Biology, University
of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
- Department
of Pulmonology, University of Groningen,
University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
- Groningen
Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
| | - R. Schirhagl
- Department
of Biomaterials and Biotechnology, University
of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| |
Collapse
|
7
|
Ermakova A. Fluorescent Nanodiamonds for High-Resolution Thermometry in Biology. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1318. [PMID: 39120422 PMCID: PMC11313720 DOI: 10.3390/nano14151318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
Optically active color centers in diamond and nanodiamonds can be utilized as quantum sensors for measuring various physical parameters, particularly magnetic and electric fields, as well as temperature. Due to their small size and possible surface functionalization, fluorescent nanodiamonds are extremely attractive systems for biological and medical applications since they can be used for intracellular experiments. This review focuses on fluorescent nanodiamonds for thermometry with high sensitivity and a nanoscale spatial resolution for the investigation of living systems. The current state of the art, possible further development, and potential limitations of fluorescent nanodiamonds as thermometers will be discussed here.
Collapse
Affiliation(s)
- Anna Ermakova
- Physics Department, Hasselt University, Wetenschapspark 1, 3590 Diepenbeek, Belgium;
- Department of Magnetosphere-Ionosphere Coupling, Royal Belgian Institute for Space Aeronomy, 1180 Brussels, Belgium
| |
Collapse
|
8
|
Fan S, Lopez Llorens L, Perona Martinez FP, Schirhagl R. Quantum Sensing of Free Radical Generation in Mitochondria of Human Keratinocytes during UVB Exposure. ACS Sens 2024; 9:2440-2446. [PMID: 38743437 PMCID: PMC11129351 DOI: 10.1021/acssensors.4c00118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/23/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
Ultraviolet (UV) radiation is known to cause skin issues, such as dryness, aging, and even cancer. Among UV rays, UVB stands out for its ability to trigger problems within cells, including mitochondrial dysfunction, oxidative stress, and DNA damage. Free radicals are implicated in these cellular responses, but they are challenging to measure due to their short lifetime and limited diffusion range. In our study, we used a quantum sensing technique (T1 relaxometry) involving fluorescent nanodiamonds (FNDs) that change their optical properties in response to magnetic noise. This allowed us to monitor the free radical presence in real time. To measure radicals near mitochondria, we coated FNDs with antibodies, targeting mitochondrial protein voltage-dependent anion channel 2 (anti-VDAC2). Our findings revealed a dynamic rise in radical levels on the mitochondrial membrane as cells were exposed to UVB (3 J/cm2), with a significant increase observed after 17 min.
Collapse
Affiliation(s)
- Siyu Fan
- Department of Biomaterials & Biomedical Technology, University Medical Center Groningen, University Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Lluna Lopez Llorens
- Department of Biomaterials & Biomedical Technology, University Medical Center Groningen, University Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Felipe P Perona Martinez
- Department of Biomaterials & Biomedical Technology, University Medical Center Groningen, University Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Romana Schirhagl
- Department of Biomaterials & Biomedical Technology, University Medical Center Groningen, University Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
9
|
Zalieckas J, Greve MM, Bellucci L, Sacco G, Håkonsen V, Tozzini V, Nifosì R. Quantum sensing of microRNAs with nitrogen-vacancy centers in diamond. Commun Chem 2024; 7:101. [PMID: 38710926 DOI: 10.1038/s42004-024-01182-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/16/2024] [Indexed: 05/08/2024] Open
Abstract
Label-free detection of nucleic acids such as microRNAs holds great potential for early diagnostics of various types of cancers. Measuring intrinsic biomolecular charge using methods based on field effect has been a promising way to accomplish label-free detection. However, the charges of biomolecules are screened by counter ions in solutions over a short distance (Debye length), thereby limiting the sensitivity of these methods. Here, we measure the intrinsic magnetic noise of paramagnetic counter ions, such as Mn2+, interacting with microRNAs using nitrogen-vacancy (NV) centers in diamond. All-atom molecular dynamics simulations show that microRNA interacts with the diamond surface resulting in excess accumulation of Mn ions and stronger magnetic noise. We confirm this prediction by observing an increase in spin relaxation contrast of the NV centers, indicating higher Mn2+ local concentration. This opens new possibilities for next-generation quantum sensing of charged biomolecules, overcoming limitations due to the Debye screening.
Collapse
Affiliation(s)
- Justas Zalieckas
- Department of Physics and Technology, University of Bergen, Bergen, Norway.
| | - Martin M Greve
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| | - Luca Bellucci
- Istituto Nanoscienze - CNR, Pisa, Italy
- Lab NEST Scuola Normale Superiore, Pisa, Italy
| | - Giuseppe Sacco
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Verner Håkonsen
- NTNU NanoLab, Norwegian University of Science and Technology, Trondheim, Norway
| | - Valentina Tozzini
- Istituto Nanoscienze - CNR, Pisa, Italy
- Lab NEST Scuola Normale Superiore, Pisa, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), sezione Pisa, Pisa, Italy
| | - Riccardo Nifosì
- Istituto Nanoscienze - CNR, Pisa, Italy.
- Lab NEST Scuola Normale Superiore, Pisa, Italy.
| |
Collapse
|
10
|
Hyder A, Ali A, Buledi JA, Memon AA, Iqbal M, Bangalni TH, Solangi AR, Thebo KH, Akhtar J. Nanodiamonds: A Cutting-Edge Approach to Enhancing Biomedical Therapies and Diagnostics in Biosensing. CHEM REC 2024; 24:e202400006. [PMID: 38530037 DOI: 10.1002/tcr.202400006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/25/2024] [Indexed: 03/27/2024]
Abstract
Nanodiamonds (NDs) have garnered attention in the field of nanomedicine due to their unique properties. This review offers a comprehensive overview of NDs synthesis methods, properties, and their uses in biomedical applications. Various synthesis techniques, such as detonation, high-pressure, high-temperature, and chemical vapor deposition, offer distinct advantages in tailoring NDs' size, shape, and surface properties. Surface modification methods further enhance NDs' biocompatibility and enable the attachment of bioactive molecules, expanding their applicability in biological systems. NDs serve as promising nanocarriers for drug delivery, showcasing biocompatibility and the ability to encapsulate therapeutic agents for targeted delivery. Additionally, NDs demonstrate potential in cancer treatment through hyperthermic therapy and vaccine enhancement for improved immune responses. Functionalization of NDs facilitates their utilization in biosensors for sensitive biomolecule detection, aiding in precise diagnostics and rapid detection of infectious diseases. This review underscores the multifaceted role of NDs in advancing biomedical applications. By synthesizing NDs through various methods and modifying their surfaces, researchers can tailor their properties for specific biomedical needs. The ability of NDs to serve as efficient drug delivery vehicles holds promise for targeted therapy, while their applications in hyperthermic therapy and vaccine enhancement offer innovative approaches to cancer treatment and immunization. Furthermore, the integration of NDs into biosensors enhances diagnostic capabilities, enabling rapid and sensitive detection of biomolecules and infectious diseases. Overall, the diverse functionalities of NDs underscore their potential as valuable tools in nanomedicine, paving the way for advancements in healthcare and biotechnology.
Collapse
Affiliation(s)
- Ali Hyder
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Akbar Ali
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering (IPE), Chinese Academy of Sciences, Beijing, 100F190, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Beijing, 100049, China
| | - Jamil A Buledi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Ayaz Ali Memon
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Muzaffar Iqbal
- Department of Chemistry, Faculty of Physical and Applied Sciences, The University of Haripur KPK, Haripur, 22620, Pakistan
| | - Talib Hussain Bangalni
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Amber R Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Khalid Hussain Thebo
- Institute of Metal Research (IMR), Chinese Academy of Science, 2 Wenhua Rood, Shenyang, China
- Department of Chemistry Mirpur, University of Science and Technology (MUST), 10250 (AJK), Mirpur, Pakistan
| | - Javeed Akhtar
- Department of Chemistry Mirpur, University of Science and Technology (MUST), 10250 (AJK), Mirpur, Pakistan
| |
Collapse
|
11
|
Lu Q, Vosberg B, Wang Z, Balasubramanian P, Sow M, Volkert C, Gonzalez Brouwer R, Lieberwirth I, Graf R, Jelezko F, Plenio MB, Wu Y, Weil T. Unraveling Eumelanin Radical Formation by Nanodiamond Optical Relaxometry in a Living Cell. J Am Chem Soc 2024; 146:7222-7232. [PMID: 38469853 PMCID: PMC10958502 DOI: 10.1021/jacs.3c07720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/13/2024]
Abstract
Defect centers in a nanodiamond (ND) allow the detection of tiny magnetic fields in their direct surroundings, rendering them as an emerging tool for nanoscale sensing applications. Eumelanin, an abundant pigment, plays an important role in biology and material science. Here, for the first time, we evaluate the comproportionation reaction in eumelanin by detecting and quantifying semiquinone radicals through the nitrogen-vacancy color center. A thin layer of eumelanin is polymerized on the surface of nanodiamonds (NDs), and depending on the environmental conditions, such as the local pH value, near-infrared, and ultraviolet light irradiation, the radicals form and react in situ. By combining experiments and theoretical simulations, we quantify the local number and kinetics of free radicals in the eumelanin layer. Next, the ND sensor enters the cells via endosomal vesicles. We quantify the number of radicals formed within the eumelanin layer in these acidic compartments by applying optical relaxometry measurements. In the future, we believe that the ND quantum sensor could provide valuable insights into the chemistry of eumelanin, which could contribute to the understanding and treatment of eumelanin- and melanin-related diseases.
Collapse
Affiliation(s)
- Qi Lu
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Berlind Vosberg
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Zhenyu Wang
- Institute
of Theoretical Physics and Center for Integrated Quantum Science and
Technology (IQST), Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Key
Laboratory of Atomic and Subatomic Structure and Quantum Control (Ministry
of Education), and School of Physics, South
China Normal University, Guangzhou 510006, China
- Guangdong
Provincial Key Laboratory of Quantum Engineering and Quantum Materials,
and Guangdong-Hong Kong Joint Laboratory of Quantum Matter, South China Normal University, Guangzhou 510006, China
| | - Priyadharshini Balasubramanian
- Institute
for Quantum Optics and Center for Integrated Quantum Science and Technology
(IQST), Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Maabur Sow
- Institute
for Quantum Optics and Center for Integrated Quantum Science and Technology
(IQST), Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Carla Volkert
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Raul Gonzalez Brouwer
- Institute
for Quantum Optics and Center for Integrated Quantum Science and Technology
(IQST), Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Ingo Lieberwirth
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Robert Graf
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Fedor Jelezko
- Institute
for Quantum Optics and Center for Integrated Quantum Science and Technology
(IQST), Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Martin B. Plenio
- Institute
of Theoretical Physics and Center for Integrated Quantum Science and
Technology (IQST), Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Yingke Wu
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Tanja Weil
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
12
|
Fan S, Gao H, Zhang Y, Nie L, Bártolo R, Bron R, Santos HA, Schirhagl R. Quantum Sensing of Free Radical Generation in Mitochondria of Single Heart Muscle Cells during Hypoxia and Reoxygenation. ACS NANO 2024; 18:2982-2991. [PMID: 38235677 PMCID: PMC10832053 DOI: 10.1021/acsnano.3c07959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/31/2023] [Accepted: 01/05/2024] [Indexed: 01/19/2024]
Abstract
Cells are damaged during hypoxia (blood supply deprivation) and reoxygenation (oxygen return). This damage occurs in conditions such as cardiovascular diseases, cancer, and organ transplantation, potentially harming the tissue and organs. The role of free radicals in cellular metabolic reprogramming under hypoxia is under debate, but their measurement is challenging due to their short lifespan and limited diffusion range. In this study, we employed a quantum sensing technique to measure the real-time production of free radicals at the subcellular level. We utilize fluorescent nanodiamonds (FNDs) that exhibit changes in their optical properties based on the surrounding magnetic noise. This way, we were able to detect the presence of free radicals. To specifically monitor radical generation near mitochondria, we coated the FNDs with an antibody targeting voltage-dependent anion channel 2 (anti-VDAC2), which is located in the outer membrane of mitochondria. We observed a significant increase in the radical load on the mitochondrial membrane when cells were exposed to hypoxia. Subsequently, during reoxygenation, the levels of radicals gradually decreased back to the normoxia state. Overall, by applying a quantum sensing technique, the connections among hypoxia, free radicals, and the cellular redox status has been revealed.
Collapse
Affiliation(s)
- Siyu Fan
- Department
of Biomaterials and Biomedical Technology, University Medical Center
Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Han Gao
- Department
of Biomaterials and Biomedical Technology, University Medical Center
Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Yue Zhang
- Department
of Biomaterials and Biomedical Technology, University Medical Center
Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Linyan Nie
- Department
of Biomaterials and Biomedical Technology, University Medical Center
Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Raquel Bártolo
- Department
of Biomaterials and Biomedical Technology, University Medical Center
Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Reinier Bron
- Department
of Biomaterials and Biomedical Technology, University Medical Center
Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Hélder A. Santos
- Department
of Biomaterials and Biomedical Technology, University Medical Center
Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
- Drug
Research Program, Division of Pharmaceutical Chemistry and Technology,
Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Romana Schirhagl
- Department
of Biomaterials and Biomedical Technology, University Medical Center
Groningen, University of Groningen, 9713 AV Groningen, The Netherlands
| |
Collapse
|
13
|
Xu F, Zhang S, Ma L, Hou Y, Li J, Denisenko A, Li Z, Spatz J, Wrachtrup J, Lei H, Cao Y, Wei Q, Chu Z. Quantum-enhanced diamond molecular tension microscopy for quantifying cellular forces. SCIENCE ADVANCES 2024; 10:eadi5300. [PMID: 38266085 PMCID: PMC10807811 DOI: 10.1126/sciadv.adi5300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
The constant interplay and information exchange between cells and the microenvironment are essential to their survival and ability to execute biological functions. To date, a few leading technologies such as traction force microscopy, optical/magnetic tweezers, and molecular tension-based fluorescence microscopy are broadly used in measuring cellular forces. However, the considerable limitations, regarding the sensitivity and ambiguities in data interpretation, are hindering our thorough understanding of mechanobiology. Here, we propose an innovative approach, namely, quantum-enhanced diamond molecular tension microscopy (QDMTM), to precisely quantify the integrin-based cell adhesive forces. Specifically, we construct a force-sensing platform by conjugating the magnetic nanotags labeled, force-responsive polymer to the surface of a diamond membrane containing nitrogen-vacancy centers. Notably, the cellular forces will be converted into detectable magnetic variations in QDMTM. After careful validation, we achieved the quantitative cellular force mapping by correlating measurement with the established theoretical model. We anticipate our method can be routinely used in studies like cell-cell or cell-material interactions and mechanotransduction.
Collapse
Affiliation(s)
- Feng Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Shuxiang Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Linjie Ma
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Yong Hou
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Jie Li
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Andrej Denisenko
- 3rd Institute of Physics, Research Center SCoPE and IQST, University of Stuttgart, 70569 Stuttgart, Germany
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Joachim Spatz
- Department for Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM), University of Heidelberg, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
| | - Jörg Wrachtrup
- 3rd Institute of Physics, Research Center SCoPE and IQST, University of Stuttgart, 70569 Stuttgart, Germany
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | - Hai Lei
- National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Yi Cao
- National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Qiang Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
- School of Biomedical Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
14
|
Quarshie MM, Malykhin S, Obraztsov A, Kuzhir P. Nano- and micro-crystalline diamond film structuring with electron beam lithography mask. NANOTECHNOLOGY 2024; 35:155301. [PMID: 38150740 DOI: 10.1088/1361-6528/ad18e9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/27/2023] [Indexed: 12/29/2023]
Abstract
Direct current plasma enhanced chemical vapor deposition (CVD) was employed to create polycrystalline diamond films from CH4/H2gaseous mixture at 98 mbar pressure and various substrate temperatures between 720 °C and 960 °C. The Si chips with patterns of periodic masked and open seeded zones were used as substrates. The mask free seeded areas evolved into polycrystalline diamond films after CVD process. The diamond crystallites of the films featured single crystal ordering individually with distinct cubic (100) or octahedral (111) facets on the film surfaces. Notably, specific growth conditions were determined for obtaining diamond films composed of the crystallites of nanometre and micrometre scale. These conditions are differing from those observed for non-pattern-prepared Si substrates. The nano-crystalline diamonds emerged within the 4.5-5 A current range, with growth conditions involving 3% CH4/H2mixture at 98 mbar. The micro-crystalline diamonds (MCDs) predominantly characterized by well-developed rectangular (100) crystal faces on the film surface were successfully grown with current settings of 5.5-6 A, under 3% CH4/H2mixture at 98 mbar. Furthermore, MCDs characterized by entirely crystalline (111) diamond faces forming CVD film surface were attained within a growth parameter range of 4.5-5.8 A, employing 3% CH4/H2mixture for certain samples, or alternatively, utilizing 5 A with a 1.5% CH4/H2mixture for others. Upon thorough evaluation, it was established that SiO2, TiO2, and Cr masks are well-suited materials for the planar patterning of both nano- and micro-crystalline diamond films, and the bottom-up approach can pave the way for the production of diamond planar structures through CVD, facilitated by electron beam lithography (EBL).
Collapse
Affiliation(s)
- Mariam M Quarshie
- Department of Physics and Mathematics, University of Eastern Finland, Joensuu, Finland
| | - Sergei Malykhin
- Department of Physics and Mathematics, University of Eastern Finland, Joensuu, Finland
| | - Alexander Obraztsov
- Department of Physics and Mathematics, University of Eastern Finland, Joensuu, Finland
| | - Polina Kuzhir
- Department of Physics and Mathematics, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
15
|
Smith JA, Zhang D, Balram KC. Robotic Vectorial Field Alignment for Spin-Based Quantum Sensors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304449. [PMID: 37974523 PMCID: PMC10787065 DOI: 10.1002/advs.202304449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/08/2023] [Indexed: 11/19/2023]
Abstract
Developing practical quantum technologies will require the exquisite manipulation of fragile systems in a robust and repeatable way. As quantum technologies move toward real world applications, from biological sensing to communication in space, increasing experimental complexity introduces constraints that can be alleviated by the introduction of new technologies. Robotics has shown tremendous progress in realizing increasingly smart, autonomous, and highly dexterous machines. Here, a robotic arm equipped with a magnet is demonstrated to sensitize an NV center quantum magnetometer in challenging conditions unachievable with standard techniques. Vector magnetic fields are generated with 1° angular and 0.1 mT amplitude accuracy and determine the orientation of a single stochastically-aligned spin-based sensor in a constrained physical environment. This work opens up the prospect of integrating robotics across many quantum degrees of freedom in constrained settings, allowing for increased prototyping speed, control, and robustness in quantum technology applications.
Collapse
Affiliation(s)
- Joe A Smith
- Quantum Engineering Technology Labs and Department of Electrical and Electronic Engineering, University of Bristol, Bristol, BS8 1FD, UK
| | - Dandan Zhang
- Bristol Robotics Laboratory and Department of Engineering Mathematics, University of Bristol, Bristol, BS8 1TW, UK
| | - Krishna C Balram
- Quantum Engineering Technology Labs and Department of Electrical and Electronic Engineering, University of Bristol, Bristol, BS8 1FD, UK
| |
Collapse
|
16
|
Flinn BT, Radu V, Fay MW, Tyler AJ, Pitcairn J, Cliffe MJ, Weare BL, Stoppiello CT, Mather ML, Khlobystov AN. Nitrogen vacancy defects in single-particle nanodiamonds sense paramagnetic transition metal spin noise from nanoparticles on a transmission electron microscopy grid. NANOSCALE ADVANCES 2023; 5:6423-6434. [PMID: 38024305 PMCID: PMC10662216 DOI: 10.1039/d3na00155e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 08/15/2023] [Indexed: 12/01/2023]
Abstract
Spin-active nanomaterials play a vital role in current and upcoming quantum technologies, such as spintronics, data storage and computing. To advance the design and application of these materials, methods to link size, shape, structure, and chemical composition with functional magnetic properties at the nanoscale level are needed. In this work, we combine the power of two local probes, namely, Nitrogen Vacancy (NV) spin-active defects in diamond and an electron beam, within experimental platforms used in electron microscopy. Negatively charged NVs within fluorescent nanodiamond (FND) particles are used to sense the local paramagnetic environment of Rb0.5Co1.3[Fe(CN)6]·3.7H2O nanoparticles (NPs), a Prussian blue analogue (PBA), as a function of FND-PBA distance (order of 10 nm) and local PBA concentration. We demonstrate perturbation of NV spins by proximal electron spins of transition metals within NPs, as detected by changes in the photoluminescence (PL) of NVs. Workflows are reported and demonstrated that employ a Transmission Electron Microscope (TEM) finder grid to spatially correlate functional and structural features of the same unique NP studied using NV sensing, based on a combination of Optically Detected Magnetic Resonance (ODMR) and Magnetic Modulation (MM) of NV PL, within TEM imaging modalities. Significantly, spin-spin dipole interactions were detected between NVs in a single FND and paramagnetic metal centre spin fluctuations in NPs through a carbon film barrier of 13 nm thickness, evidenced by TEM tilt series imaging and Electron Energy-Loss Spectroscopy (EELS), opening new avenues to sense magnetic materials encapsulated in or between thin-layered nanostructures. The measurement strategies reported herein provide a pathway towards solid-state quantitative NV sensing with atomic-scale theoretical spatial resolution, critical to the development of quantum technologies, such as memory storage and molecular switching nanodevices.
Collapse
Affiliation(s)
- Bradley T Flinn
- School of Chemistry, University of Nottingham, University Park Nottingham NG7 2RD UK
| | - Valentin Radu
- Optics and Photonics Group, Faculty of Engineering, University of Nottingham, University Park Nottingham NG7 2RD UK
| | - Michael W Fay
- Nanoscale and Microscale Research Centre, University of Nottingham Nottingham NG7 1QL UK
| | - Ashley J Tyler
- Optics and Photonics Group, Faculty of Engineering, University of Nottingham, University Park Nottingham NG7 2RD UK
| | - Jem Pitcairn
- School of Chemistry, University of Nottingham, University Park Nottingham NG7 2RD UK
| | - Matthew J Cliffe
- School of Chemistry, University of Nottingham, University Park Nottingham NG7 2RD UK
| | - Benjamin L Weare
- School of Chemistry, University of Nottingham, University Park Nottingham NG7 2RD UK
| | - Craig T Stoppiello
- Centre for Microscopy and Microanalysis, University of Queensland. St Lucia 4072 Australia
| | - Melissa L Mather
- Optics and Photonics Group, Faculty of Engineering, University of Nottingham, University Park Nottingham NG7 2RD UK
| | - Andrei N Khlobystov
- School of Chemistry, University of Nottingham, University Park Nottingham NG7 2RD UK
- Nanoscale and Microscale Research Centre, University of Nottingham Nottingham NG7 1QL UK
| |
Collapse
|
17
|
Mondal A, Kang J, Kim D. Recent Progress in Fluorescent Probes for Real-Time Monitoring of Glioblastoma. ACS APPLIED BIO MATERIALS 2023; 6:3484-3503. [PMID: 36917648 DOI: 10.1021/acsabm.3c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Treating glioblastoma (GBM) by resecting to a large extent can prolong a patient's survival by controlling the tumor cells, but excessive resection may produce postoperative complications by perturbing the brain structures. Therefore, various imaging procedures have been employed to successfully diagnose and resect with utmost caution and to protect vital structural or functional features. Fluorescence tagging is generally used as an intraoperative imaging technique in glioma cells in collaboration with other surgical tools such as MRI and navigation methods. However, the existing fluorescent probes may have several limitations, including poor selectivity, less photostability, false signals, and intraoperative re-administration when used in clinical and preclinical studies for glioma surgery. The involvement of smart fluorogenic materials, specifically fluorescent dyes, and biomarker-amended cell-penetrable fluorescent probes have noteworthy advantages for precise glioma imaging. This review outlines the contemporary advancements of fluorescent probes for imaging glioma cells along with their challenges and visions, with the anticipation to develop next-generation smart glioblastoma detection modalities.
Collapse
Affiliation(s)
- Amita Mondal
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jisoo Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, South Korea
| | - Dokyoung Kim
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, South Korea
- Center for Converging Humanities, Kyung Hee University, Seoul 02447, Republic of Korea
- Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul 02447, Republic of Korea
- Materials Research Science and Engineering Center, University of California at San Diego, 9500 Gilman Drive La Jolla, California 92093, United States
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
18
|
Angela S, Hsin R, Lu S, Le, T, Hsiao W. Nanodiamond‐Enabled Drug Delivery. NANODIAMONDS IN ANALYTICAL AND BIOLOGICAL SCIENCES 2023:171-197. [DOI: 10.1002/9781394202164.ch10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
|
19
|
Fan S, Nie L, Zhang Y, Ustyantseva E, Woudstra W, Kampinga HH, Schirhagl R. Diamond Quantum Sensing Revealing the Relation between Free Radicals and Huntington's Disease. ACS CENTRAL SCIENCE 2023; 9:1427-1436. [PMID: 37521781 PMCID: PMC10375573 DOI: 10.1021/acscentsci.3c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Indexed: 08/01/2023]
Abstract
Huntington's disease (HD) is a well-studied yet rare disease caused by a specific mutation that results in the expression of polyglutamine (PolyQ). The formation of aggregates of PolyQ leads to disease and increases the level of free radicals. However, it is unclear where free radicals are generated and how they impact cells. To address this, a new method called relaxometry was used to perform nanoscale MRI measurements with a subcellular resolution. The method uses a defect in fluorescent nanodiamond (FND) that changes its optical properties based on its magnetic surroundings, allowing for sensitive detection of free radicals. To investigate if radical generation occurs near PolyQ aggregates, stable tetracycline (tet)-inducible HDQ119-EGFP-expressing human embryonic kidney cells (HEK PQ) were used to induce the PolyQ formation and Huntington aggregation. The study found that NDs are highly colocalized with PolyQ aggregates at autolysosomes, and as the amount of PolyQ aggregation increased, so did the production of free radicals, indicating a relationship between PolyQ aggregation and autolysosome dysfunction.
Collapse
Affiliation(s)
- S. Fan
- University
Medical Center Groningen, Groningen University, Antonius Deusinglaan 1 9713AV Groningen, The Netherlands
| | - L. Nie
- University
Medical Center Groningen, Groningen University, Antonius Deusinglaan 1 9713AV Groningen, The Netherlands
| | - Y. Zhang
- University
Medical Center Groningen, Groningen University, Antonius Deusinglaan 1 9713AV Groningen, The Netherlands
| | - E. Ustyantseva
- University
Medical Center Groningen, Groningen University, Antonius Deusinglaan 1 9713AV Groningen, The Netherlands
| | - W. Woudstra
- University
Medical Center Groningen, Groningen University, Antonius Deusinglaan 1 9713AV Groningen, The Netherlands
| | - H. H. Kampinga
- University
Medical Center Groningen, Groningen University, Antonius Deusinglaan 1 9713AV Groningen, The Netherlands
| | - R. Schirhagl
- University
Medical Center Groningen, Groningen University, Antonius Deusinglaan 1 9713AV Groningen, The Netherlands
| |
Collapse
|
20
|
Jung HS, Cho KJ, Joo S, Lee M, Kim MY, Kwon IH, Song NW, Shim JH, Neuman KC. Mesoporous Polydopamine-Encapsulated Fluorescent Nanodiamonds: A Versatile Platform for Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:33425-33436. [PMID: 37341540 PMCID: PMC10361080 DOI: 10.1021/acsami.3c05443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/09/2023] [Indexed: 06/22/2023]
Abstract
Fluorescent nanodiamonds (FNDs) are versatile nanomaterials with promising properties. However, efficient functionalization of FNDs for biomedical applications remains challenging. In this study, we demonstrate mesoporous polydopamine (mPDA) encapsulation of FNDs. The mPDA shell is generated by sequential formation of micelles via self-assembly of Pluronic F127 (F127) with 1,3,5-trimethyl benzene (TMB) and composite micelles via oxidation and self-polymerization of dopamine hydrochloride (DA). The surface of the mPDA shell can be readily functionalized with thiol-terminated methoxy polyethylene glycol (mPEG-SH), hyperbranched polyglycerol (HPG), and d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS). The PEGylated FND@mPDA particles are efficiently taken up by, and employed as a fluorescent imaging probe for, HeLa cells. HPG-functionalized FND@mPDA is conjugated with an amino-terminated oligonucleotide to detect microRNA via hybridization. Finally, the increased surface area of the mPDA shell permits efficient loading of doxorubicin hydrochloride. Further modification with TPGS increases drug delivery efficiency, resulting in high toxicity to cancer cells.
Collapse
Affiliation(s)
- Hak-Sung Jung
- Laboratory
of Single Molecule Biophysics, National
Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
- Quantum
Magnetic Imaging Team, Korea Research Institute
of Standards and Science, Daejeon 34113, Republic
of Korea
| | - Kyung-Jin Cho
- Data
Convergence Drug Research Center, Korea
Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Sihwa Joo
- Safety
Measurement Institute, Korea Research Institute
of Standards and Science, Daejeon 34113, Republic
of Korea
| | - Mina Lee
- Safety
Measurement Institute, Korea Research Institute
of Standards and Science, Daejeon 34113, Republic
of Korea
| | - Myeong Yun Kim
- Safety
Measurement Institute, Korea Research Institute
of Standards and Science, Daejeon 34113, Republic
of Korea
| | - Ik Hwan Kwon
- Safety
Measurement Institute, Korea Research Institute
of Standards and Science, Daejeon 34113, Republic
of Korea
| | - Nam Woong Song
- Quantum
Magnetic Imaging Team, Korea Research Institute
of Standards and Science, Daejeon 34113, Republic
of Korea
| | - Jeong Hyun Shim
- Quantum
Magnetic Imaging Team, Korea Research Institute
of Standards and Science, Daejeon 34113, Republic
of Korea
- Department
of Applied Measurement Science, University
of Science and Technology, Daejeon 34113, Republic
of Korea
| | - Keir C. Neuman
- Laboratory
of Single Molecule Biophysics, National
Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
21
|
Robertson IO, Scholten SC, Singh P, Healey AJ, Meneses F, Reineck P, Abe H, Ohshima T, Kianinia M, Aharonovich I, Tetienne JP. Detection of Paramagnetic Spins with an Ultrathin van der Waals Quantum Sensor. ACS NANO 2023. [PMID: 37406158 DOI: 10.1021/acsnano.3c01678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Detecting magnetic noise from small quantities of paramagnetic spins is a powerful capability for chemical, biochemical, and medical analysis. Quantum sensors based on optically addressable spin defects in bulk semiconductors are typically employed for such purposes, but the 3D crystal structure of the sensor inhibits sensitivity by limiting the proximity of the defects to the target spins. Here we demonstrate the detection of paramagnetic spins using spin defects hosted in hexagonal boron nitride (hBN), a van der Waals material that can be exfoliated into the 2D regime. We first create negatively charged boron vacancy (VB-) defects in a powder of ultrathin hBN nanoflakes (<10 atomic monolayers thick on average) and measure the longitudinal spin relaxation time (T1) of this system. We then decorate the dry hBN nanopowder with paramagnetic Gd3+ ions and observe a clear T1 quenching under ambient conditions, consistent with the added magnetic noise. Finally, we demonstrate the possibility of performing spin measurements, including T1 relaxometry using solution-suspended hBN nanopowder. Our results highlight the potential and versatility of the hBN quantum sensor for a range of sensing applications and make steps toward the realization of a truly 2D, ultrasensitive quantum sensor.
Collapse
Affiliation(s)
- Islay O Robertson
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Sam C Scholten
- School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
- Centre for Quantum Computation and Communication Technology, School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Priya Singh
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Alexander J Healey
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia
- School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
- Centre for Quantum Computation and Communication Technology, School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Fernando Meneses
- School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
- Centre for Quantum Computation and Communication Technology, School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Philipp Reineck
- School of Science, RMIT University, Melbourne, Victoria 3001, Australia
- ARC Centre of Excellence for Nanoscale BioPhotonics, RMIT University, Melbourne, Victoria 3001, Australia
| | - Hiroshi Abe
- National Institutes for Quantum Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | - Takeshi Ohshima
- National Institutes for Quantum Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
- Department of Materials Science, Tohoku University, Sendai, 980-8579, Japan
| | - Mehran Kianinia
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Igor Aharonovich
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | | |
Collapse
|
22
|
Gorrini F, Bifone A. Advances in Stabilization and Enrichment of Shallow Nitrogen-Vacancy Centers in Diamond for Biosensing and Spin-Polarization Transfer. BIOSENSORS 2023; 13:691. [PMID: 37504090 PMCID: PMC10377017 DOI: 10.3390/bios13070691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023]
Abstract
Negatively charged nitrogen-vacancy (NV-) centers in diamond have unique magneto-optical properties, such as high fluorescence, single-photon generation, millisecond-long coherence times, and the ability to initialize and read the spin state using purely optical means. This makes NV- centers a powerful sensing tool for a range of applications, including magnetometry, electrometry, and thermometry. Biocompatible NV-rich nanodiamonds find application in cellular microscopy, nanoscopy, and in vivo imaging. NV- centers can also detect electron spins, paramagnetic agents, and nuclear spins. Techniques have been developed to hyperpolarize 14N, 15N, and 13C nuclear spins, which could open up new perspectives in NMR and MRI. However, defects on the diamond surface, such as hydrogen, vacancies, and trapping states, can reduce the stability of NV- in favor of the neutral form (NV0), which lacks the same properties. Laser irradiation can also lead to charge-state switching and a reduction in the number of NV- centers. Efforts have been made to improve stability through diamond substrate doping, proper annealing and surface termination, laser irradiation, and electric or electrochemical tuning of the surface potential. This article discusses advances in the stabilization and enrichment of shallow NV- ensembles, describing strategies for improving the quality of diamond devices for sensing and spin-polarization transfer applications. Selected applications in the field of biosensing are discussed in more depth.
Collapse
Affiliation(s)
- Federico Gorrini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, TO, Italy
- Center for Sustainable Future Technologies, Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Torino, TO, Italy
| | - Angelo Bifone
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, TO, Italy
- Center for Sustainable Future Technologies, Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Torino, TO, Italy
| |
Collapse
|
23
|
Segawa TF, Igarashi R. Nanoscale quantum sensing with Nitrogen-Vacancy centers in nanodiamonds - A magnetic resonance perspective. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2023; 134-135:20-38. [PMID: 37321756 DOI: 10.1016/j.pnmrs.2022.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Nanodiamonds containing fluorescent Nitrogen-Vacancy (NV) centers are the smallest single particles, of which a magnetic resonance spectrum can be recorded at room temperature using optically-detected magnetic resonance (ODMR). By recording spectral shift or changes in relaxation rates, various physical and chemical quantities can be measured such as the magnetic field, orientation, temperature, radical concentration, pH or even NMR. This turns NV-nanodiamonds into nanoscale quantum sensors, which can be read out by a sensitive fluorescence microscope equipped with an additional magnetic resonance upgrade. In this review, we introduce the field of ODMR spectroscopy of NV-nanodiamonds and how it can be used to sense different quantities. Thereby we highlight both, the pioneering contributions and the latest results (covered until 2021) with a focus on biological applications.
Collapse
Affiliation(s)
- Takuya F Segawa
- Laboratory of Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland; Laboratory for Solid State Physics, ETH Zurich, 8093 Zurich, Switzerland.
| | - Ryuji Igarashi
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1, Anagawa, Inage-Ku, Chiba 263-8555, Japan; Takasaki Advanced Radiation Research Institute, National Institutes for Quantum Science and Technology, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan; JST, PRESTO, Kawaguchi, Japan.
| |
Collapse
|
24
|
Aslam N, Zhou H, Urbach EK, Turner MJ, Walsworth RL, Lukin MD, Park H. Quantum sensors for biomedical applications. NATURE REVIEWS. PHYSICS 2023; 5:157-169. [PMID: 36776813 PMCID: PMC9896461 DOI: 10.1038/s42254-023-00558-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 05/09/2023]
Abstract
Quantum sensors are finding their way from laboratories to the real world, as witnessed by the increasing number of start-ups in this field. The atomic length scale of quantum sensors and their coherence properties enable unprecedented spatial resolution and sensitivity. Biomedical applications could benefit from these quantum technologies, but it is often difficult to evaluate the potential impact of the techniques. This Review sheds light on these questions, presenting the status of quantum sensing applications and discussing their path towards commercialization. The focus is on two promising quantum sensing platforms: optically pumped atomic magnetometers, and nitrogen-vacancy centres in diamond. The broad spectrum of biomedical applications is highlighted by four case studies ranging from brain imaging to single-cell spectroscopy.
Collapse
Affiliation(s)
- Nabeel Aslam
- Department of Physics, Harvard University, Cambridge, MA USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA USA
- Institute of Condensed Matter Physics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Hengyun Zhou
- Department of Physics, Harvard University, Cambridge, MA USA
| | - Elana K. Urbach
- Department of Physics, Harvard University, Cambridge, MA USA
| | - Matthew J. Turner
- Quantum Technology Center, University of Maryland, College Park, MD USA
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD USA
| | - Ronald L. Walsworth
- Quantum Technology Center, University of Maryland, College Park, MD USA
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD USA
- Department of Physics, University of Maryland, College Park, MD USA
| | | | - Hongkun Park
- Department of Physics, Harvard University, Cambridge, MA USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA USA
| |
Collapse
|
25
|
Grant ES, Hall LT, Hollenberg LCL, McColl G, Simpson DA. Nonmonotonic Superparamagnetic Behavior of the Ferritin Iron Core Revealed via Quantum Spin Relaxometry. ACS NANO 2023; 17:372-381. [PMID: 36534782 DOI: 10.1021/acsnano.2c08698] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Ferritin is the primary storage protein in our body and is of significant interest in biochemistry, nanotechnology, and condensed matter physics. More specifically within this sphere of interest are the magnetic properties of the iron core of ferritin, which have been utilized as a contrast agent in applications such as magnetic resonance imaging. This magnetism depends on both the number of iron atoms present, L, and the nature of the magnetic ordering of their electron spins. In this work, we create a series of ferritin samples containing homogeneous iron loads and apply diamond-based quantum spin relaxometry to systematically study their room temperature magnetic properties. We observe anomalous magnetic behavior that can be explained using a theoretical model detailing a morphological change to the iron core occurring at relatively low iron loads. This model provides an L0.35±0.06 scaling of the uncompensated Fe spins, in agreement with previous theoretical predictions. The necessary inclusion of this morphological change within the model is also supported by electron microscopy studies of ferritin with low iron content. This provides evidence for a magnetic consequence of this morphological change and positions diamond-based quantum spin relaxometry as an effective, noninvasive tool for probing the magnetic properties of metalloproteins. The low detection limit (ferritin 2% loaded at a concentration of 7.5 ± 0.4 μg/mL) also makes this a promising method for precision applications where low analyte concentrations are unavoidable, such as in biological research or even clinical analysis.
Collapse
Affiliation(s)
- Erin S Grant
- School of Physics, The University of Melbourne, Parkville, Victoria3010, Australia
| | - Liam T Hall
- School of Physics, The University of Melbourne, Parkville, Victoria3010, Australia
- School of Chemistry, The University of Melbourne, Parkville, Victoria3010, Australia
| | - Lloyd C L Hollenberg
- School of Physics, The University of Melbourne, Parkville, Victoria3010, Australia
| | - Gawain McColl
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria3010, Australia
| | - David A Simpson
- School of Physics, The University of Melbourne, Parkville, Victoria3010, Australia
| |
Collapse
|
26
|
Abstract
Relaxometry is a technique which makes use of a specific crystal lattice defect in diamond, the so-called NV center. This defect consists of a nitrogen atom, which replaces a carbon atom in the diamond lattice, and an adjacent vacancy. NV centers allow converting magnetic noise into optical signals, which dramatically increases the sensitivity of the readout, allowing for nanoscale resolution. Analogously to T1 measurements in conventional magnetic resonance imaging (MRI), relaxometry allows the detection of different concentrations of paramagnetic species. However, since relaxometry allows very local measurements, the detected signals are from nanoscale voxels around the NV centers. As a result, it is possible to achieve subcellular resolutions and organelle specific measurements.A relaxometry experiment starts with polarizing the spins of NV centers in the diamond lattice, using a strong laser pulse. Afterward the laser is switched off and the NV centers are allowed to stochastically decay into the equilibrium mix of different magnetic states. The polarized configuration exhibits stronger fluorescence than the equilibrium state, allowing one to optically monitor this transition and determine its rate. This process happens faster at higher levels of magnetic noise. Alternatively, it is possible to conduct T1 relaxation measurements from the dark to the bright equilibrium by applying a microwave pulse which brings NV centers into the -1 state instead of the 0 state. One can record a spectrum of T1 at varying strengths of the applied magnetic field. This technique is called cross-relaxometry. Apart from detecting magnetic signals, responsive coatings can be applied which render T1 sensitive to other parameters as pH, temperature, or electric field. Depending on the application there are three different ways to conduct relaxometry experiments: relaxometry in moving or stationary nanodiamonds, scanning magnetometry, and relaxometry in a stationary bulk diamond with a stationary sample on top.In this Account, we present examples for various relaxometry modes as well as their advantages and limitations. Due to the simplicity and low cost of the approach, relaxometry has been implemented in many different instruments and for a wide range of applications. Herein we review the progress that has been achieved in physics, chemistry, and biology. Many articles in this field have a proof-of-principle character, and the full potential of the technology still waits to be unfolded. With this Account, we would like to stimulate discourse on the future of relaxometry.
Collapse
Affiliation(s)
- Aldona Mzyk
- Groningen
University, University Medical
Center Groningen, Antonius
Deusinglaan 1, 9713AW Groningen, the Netherlands,Institute
of Metallurgy and Materials Science, Polish Academy of Sciences, ul. Reymonta 25, 30-059 Kraków, Poland
| | - Alina Sigaeva
- Groningen
University, University Medical
Center Groningen, Antonius
Deusinglaan 1, 9713AW Groningen, the Netherlands
| | - Romana Schirhagl
- Groningen
University, University Medical
Center Groningen, Antonius
Deusinglaan 1, 9713AW Groningen, the Netherlands,
| |
Collapse
|
27
|
Sigaeva A, Norouzi N, Schirhagl R. Intracellular Relaxometry, Challenges, and Future Directions. ACS CENTRAL SCIENCE 2022; 8:1484-1489. [PMID: 36439313 PMCID: PMC9686197 DOI: 10.1021/acscentsci.2c00976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen vacancy (NV) centers change their optical properties on the basis of their magnetic surroundings. Since optical signals can be detected more sensitively than small magnetic signals, this technique allows unprecedented sensitivity. Recently, NV center-based relaxometry has been used for measurements in living cells with subcellular resolution. The aim of this Outlook is to identify challenges in the field, including controlling the location of sensing particles, limitations in reproducibility, and issues arising from biocompatibility. We further provide an outlook and point to new directions in the field. These include new diamond materials with NV centers, other defects, or even entirely new materials that might replace diamonds. We further discuss new and more challenging samples, such as tissues or even entire organisms, that might be investigated with NV centers. Then, we address future challenges that have to be resolved in order to achieve this goal. Finally, we discuss new quantities that could be measured with NV centers in the future.
Collapse
|
28
|
Janitz E, Herb K, Völker LA, Huxter WS, Degen CL, Abendroth JM. Diamond surface engineering for molecular sensing with nitrogen-vacancy centers. JOURNAL OF MATERIALS CHEMISTRY. C 2022; 10:13533-13569. [PMID: 36324301 PMCID: PMC9521415 DOI: 10.1039/d2tc01258h] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/06/2022] [Indexed: 05/20/2023]
Abstract
Quantum sensing using optically addressable atomic-scale defects, such as the nitrogen-vacancy (NV) center in diamond, provides new opportunities for sensitive and highly localized characterization of chemical functionality. Notably, near-surface defects facilitate detection of the minute magnetic fields generated by nuclear or electron spins outside of the diamond crystal, such as those in chemisorbed and physisorbed molecules. However, the promise of NV centers is hindered by a severe degradation of critical sensor properties, namely charge stability and spin coherence, near surfaces (< ca. 10 nm deep). Moreover, applications in the chemical sciences require methods for covalent bonding of target molecules to diamond with robust control over density, orientation, and binding configuration. This forward-looking Review provides a survey of the rapidly converging fields of diamond surface science and NV-center physics, highlighting their combined potential for quantum sensing of molecules. We outline the diamond surface properties that are advantageous for NV-sensing applications, and discuss strategies to mitigate deleterious effects while simultaneously providing avenues for chemical attachment. Finally, we present an outlook on emerging applications in which the unprecedented sensitivity and spatial resolution of NV-based sensing could provide unique insight into chemically functionalized surfaces at the single-molecule level.
Collapse
Affiliation(s)
- Erika Janitz
- Department of Physics, ETH Zürich Otto-Stern-Weg 1 8093 Zürich Switzerland
| | - Konstantin Herb
- Department of Physics, ETH Zürich Otto-Stern-Weg 1 8093 Zürich Switzerland
| | - Laura A Völker
- Department of Physics, ETH Zürich Otto-Stern-Weg 1 8093 Zürich Switzerland
| | - William S Huxter
- Department of Physics, ETH Zürich Otto-Stern-Weg 1 8093 Zürich Switzerland
| | - Christian L Degen
- Department of Physics, ETH Zürich Otto-Stern-Weg 1 8093 Zürich Switzerland
| | - John M Abendroth
- Department of Physics, ETH Zürich Otto-Stern-Weg 1 8093 Zürich Switzerland
| |
Collapse
|
29
|
Tian Y, Nusantara AC, Hamoh T, Mzyk A, Tian X, Perona Martinez F, Li R, Permentier HP, Schirhagl R. Functionalized Fluorescent Nanodiamonds for Simultaneous Drug Delivery and Quantum Sensing in HeLa Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39265-39273. [PMID: 35984747 PMCID: PMC9437893 DOI: 10.1021/acsami.2c11688] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Here, we present multifunctional fluorescent nanodiamonds (FNDs) for simultaneous drug delivery and free radical detection. For this purpose, we modified FNDs containing nitrogen vacancy (NV) centers with a diazoxide derivative. We found that our particles enter cells more easily and are able to deliver this cancer drug into HeLa cells. The particles were characterized by infrared spectroscopy, dynamic light scattering, and secondary electron microscopy. Compared to the free drug, we observe a sustained release over 72 h rather than 12 h for the free drug. Apart from releasing the drug, with these particles, we can measure the drug's effect on free radical generation directly. This has the advantage that the response is measured locally, where the drug is released. These FNDs change their optical properties based on their magnetic surrounding. More specifically, we make use of a technique called relaxometry to detect spin noise from the free radical at the nanoscale with subcellular resolution. We further compared the results from our new technique with a conventional fluorescence assay for the detection of reactive oxygen species. This provides a new method to investigate the relationship between drug release and the response by the cell via radical formation or inhibition.
Collapse
Affiliation(s)
- Yuchen Tian
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, Netherlands
| | - Anggrek C. Nusantara
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, Netherlands
| | - Thamir Hamoh
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, Netherlands
| | - Aldona Mzyk
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, Netherlands
- Institute
of Metallurgy and Materials Science Polish Academy of Sciences, 25 Reymonta Street, 30-059, Cracow, Poland
| | - Xiaobo Tian
- Department
of Analytical Biochemistry, Interfaculty Mass Spectrometry Center,
Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - Felipe Perona Martinez
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, Netherlands
| | - Runrun Li
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, Netherlands
| | - Hjalmar P. Permentier
- Department
of Analytical Biochemistry, Interfaculty Mass Spectrometry Center,
Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - Romana Schirhagl
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, Netherlands
| |
Collapse
|
30
|
Reyes-San-Martin C, Hamoh T, Zhang Y, Berendse L, Klijn C, Li R, Llumbet AE, Sigaeva A, Kawałko J, Mzyk A, Schirhagl R. Nanoscale MRI for Selective Labeling and Localized Free Radical Measurements in the Acrosomes of Single Sperm Cells. ACS NANO 2022; 16:10701-10710. [PMID: 35771989 PMCID: PMC9331174 DOI: 10.1021/acsnano.2c02511] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Free radicals play a major role in sperm development, including maturation and fertilization, but they are also linked to infertility. Since they are short-lived and reactive, they are challenging to detect with state of the art methodologies. Thus, many details surrounding their role remain unknown. One unknown factor is the source of radicals that plays a role in the sperm maturation process. Two alternative sources have been postulated: First, the NADPH-oxidase system embedded in the plasma membrane (NOX5) and second, the NADH-dependent oxidoreductase of mitochondria. Due to a lack of localized measurements, the relative contribution of each source for capacitation remains unknown. To answer this question, we use a technique called diamond magnetometry, which allows nanoscale MRI to perform localized free radical detection. With this tool, we were able to quantify radical formation in the acrosome of sperm heads. This allowed us to quantify radical formation locally in real time during capacitation. We further investigated how different inhibitors or triggers alter the radical generation. We were able to identify NOX5 as the prominent source of radical generation in capacitation while the NADH-dependent oxidoreductase of mitochondria seems to play a smaller role.
Collapse
Affiliation(s)
- Claudia Reyes-San-Martin
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Thamir Hamoh
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Yue Zhang
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Lotte Berendse
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Carline Klijn
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Runrun Li
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Arturo E. Llumbet
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
- Laboratory
of Genomics of Germ Cells, Biomedical Sciences Institute, Faculty
of Medicine, University of Chile, Independencia, 1027, Independencia, Santiago 8380000, Chile
| | - Alina Sigaeva
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Jakub Kawałko
- AGH
University of Science and Technology, Academic Centre for Materials and Nanotechnology, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
| | - Aldona Mzyk
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
- Institute
of Metallurgy and Materials Science, Polish
Academy of Sciences, Reymonta 25, 30-059 Krakow, Poland
| | - Romana Schirhagl
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| |
Collapse
|
31
|
Padamati SK, Vedelaar TA, Perona Martínez F, Nusantara AC, Schirhagl R. Insight into a Fenton-like Reaction Using Nanodiamond Based Relaxometry. NANOMATERIALS 2022; 12:nano12142422. [PMID: 35889646 PMCID: PMC9319944 DOI: 10.3390/nano12142422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 02/06/2023]
Abstract
Copper has several biological functions, but also some toxicity, as it can act as a catalyst for oxidative damage to tissues. This is especially relevant in the presence of H2O2, a by-product of oxygen metabolism. In this study, the reactions of copper with H2O2 have been investigated with spectroscopic techniques. These results were complemented by a new quantum sensing technique (relaxometry), which allows nanoscale magnetic resonance measurements at room temperature, and at nanomolar concentrations. For this purpose, we used fluorescent nanodiamonds (FNDs) containing ensembles of specific defects called nitrogen-vacancy (NV) centers. More specifically, we performed so-called T1 measurements. We use this method to provide real-time measurements of copper during a Fenton-like reaction. Unlike with other chemical fluorescent probes, we can determine both the increase and decrease in copper formed in real time.
Collapse
|
32
|
Wu Y, Weil T. Recent Developments of Nanodiamond Quantum Sensors for Biological Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200059. [PMID: 35343101 PMCID: PMC9259730 DOI: 10.1002/advs.202200059] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/23/2022] [Indexed: 05/09/2023]
Abstract
Measuring certain quantities at the nanoscale is often limited to strict conditions such as low temperature or vacuum. However, the recently developed nanodiamond (ND) quantum sensing technology shows great promise for ultrasensitive diagnosis and probing subcellular parameters at ambient conditions. Atom defects (i.e., N, Si) within the ND lattice provide stable emissions and sometimes spin-dependent photoluminescence. These unique properties endow ND quantum sensors with the capacity to detect local temperature, magnetic fields, electric fields, or strain. In this review, some of the recent, most exciting developments in the preparation and application of ND sensors to solve current challenges in biology and medicine including ultrasensitive detection of virions and local sensing of pH, radical species, magnetic fields, temperature, and rotational movements, are discussed.
Collapse
Affiliation(s)
- Yingke Wu
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Tanja Weil
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| |
Collapse
|
33
|
Wu Y, Balasubramanian P, Wang Z, Coelho JAS, Prslja M, Siebert R, Plenio MB, Jelezko F, Weil T. Detection of Few Hydrogen Peroxide Molecules Using Self-Reporting Fluorescent Nanodiamond Quantum Sensors. J Am Chem Soc 2022; 144:12642-12651. [PMID: 35737900 PMCID: PMC9305977 DOI: 10.1021/jacs.2c01065] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Hydrogen peroxide
(H2O2) plays an important
role in various signal transduction pathways and regulates important
cellular processes. However, monitoring and quantitatively assessing
the distribution of H2O2 molecules inside living
cells requires a nanoscale sensor with molecular-level sensitivity.
Herein, we show the first demonstration of sub-10 nm-sized fluorescent
nanodiamonds (NDs) as catalysts for the decomposition of H2O2 and the production of radical intermediates at the
nanoscale. Furthermore, the nitrogen-vacancy quantum sensors inside
the NDs are employed to quantify the aforementioned radicals. We believe
that our method of combining the peroxidase-mimicking activities of
the NDs with their intrinsic quantum sensor showcases their application
as self-reporting H2O2 sensors with molecular-level
sensitivity and nanoscale spatial resolution. Given the robustness
and the specificity of the sensor, our results promise a new platform
for elucidating the role of H2O2 at the cellular
level.
Collapse
Affiliation(s)
- Yingke Wu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Priyadharshini Balasubramanian
- Institute for Quantum Optics and IQST, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany.,Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm 89081, Germany
| | - Zhenyu Wang
- Institut für Theoretische Physik und IQST, Universität Ulm, Albert-Einstein-Allee 11, Ulm 89081, Germany.,Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China.,Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China
| | - Jaime A S Coelho
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculty of Sciences, University of Lisbon, Campo Grande, Lisbon 1749-016, Portugal
| | - Mateja Prslja
- Institute for Quantum Optics and IQST, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm 89081, Germany
| | - Martin B Plenio
- Institut für Theoretische Physik und IQST, Universität Ulm, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Fedor Jelezko
- Institute for Quantum Optics and IQST, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Tanja Weil
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.,Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| |
Collapse
|
34
|
Hsiao WW, Le T, Chang H. Applications of Fluorescent Nanodiamond in Biology. ENCYCLOPEDIA OF ANALYTICAL CHEMISTRY 2022:1-43. [DOI: 10.1002/9780470027318.a9776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Abstract
Fluorescent nanodiamond (FND) has emerged as a promising material in several multidisciplinary areas, including biology, chemistry, physics, and materials science. Composed of sp
3
‐carbon atoms, FND offers superior biocompatibility, chemical inertness, a large surface area, tunable surface structure, and excellent mechanical characteristics. The nanoparticle is unique in that it comprises a high‐density ensemble of negatively charged nitrogen‐vacancy (NV
−
) centers that act as built‐in fluorophores and exhibit a number of remarkable optical and magnetic properties. These properties make FND particularly well suited for a wide range of applications, including cell labeling, long‐term cell tracking, super‐resolution imaging, nanoscale sensing, and drug delivery. This article discusses recent applications of FND‐enabled developments in biology.
Collapse
|
35
|
Liu W, Alam MNA, Liu Y, Agafonov VN, Qi H, Koynov K, Davydov VA, Uzbekov R, Kaiser U, Lasser T, Jelezko F, Ermakova A, Weil T. Silicon-Vacancy Nanodiamonds as High Performance Near-Infrared Emitters for Live-Cell Dual-Color Imaging and Thermometry. NANO LETTERS 2022; 22:2881-2888. [PMID: 35289621 PMCID: PMC9011402 DOI: 10.1021/acs.nanolett.2c00040] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/09/2022] [Indexed: 05/28/2023]
Abstract
Nanodiamonds (NDs) with color centers are excellent emitters for various bioimaging and quantum biosensing applications. In our work, we explore new applications of NDs with silicon-vacancy centers (SiV) obtained by high-pressure high-temperature (HPHT) synthesis based on metal-catalyst-free growth. They are coated with a polypeptide biopolymer, which is essential for efficient cellular uptake. The unique optical properties of NDs with SiV are their high photostability and narrow emission in the near-infrared region. Our results demonstrate for the first time that NDs with SiV allow live-cell dual-color imaging and intracellular tracking. Also, intracellular thermometry and challenges associated with SiV atomic defects in NDs are investigated and discussed for the first time. NDs with SiV nanoemitters provide new avenues for live-cell bioimaging, diagnostic (SiV as a nanosized thermometer), and theranostic (nanodiamonds as drug carrier) applications.
Collapse
Affiliation(s)
- Weina Liu
- Max-Planck-Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Institute
of Materials, École Polytechnique
Fédérale de Lausanne, Station 12, 1015 Lausanne, Switzerland
| | - Md Noor A. Alam
- Max-Planck-Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Yan Liu
- Beijing
Academy of Quantum Information Sciences, No.10 Xi-bei-wang East Road, 100193 Beijing, China
- Institute
for Quantum Optics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | | - Haoyuan Qi
- Central
Facility for Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Center
for Advancing Electronics Dresden (cfaed) and Food Chemistry, Technical University of Dresden, 01069 Dresden, Germany
| | - Kaloian Koynov
- Max-Planck-Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Valery A. Davydov
- L.
F. Vereshchagin Institute for High Pressure Physics, The Russian Academy of Sciences, Troitsk, Moscow 108840, Russia
| | - Rustem Uzbekov
- Laboratoire
Biologie Cellulaire et Microscopie Electronique, Faculté de
Médecine, Université François
Rabelais, 37032 Tours, France
- Faculty
of Bioengineering and Bioinformatics, Moscow
State University, Leninskye
gory 73, Moscow 119992, Russia
| | - Ute Kaiser
- Central
Facility for Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Theo Lasser
- Max-Planck-Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Fedor Jelezko
- Institute
for Quantum Optics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Anna Ermakova
- Max-Planck-Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
for Physics, Johannes Gutenberg University
Mainz, Staudingerweg
7, 55128 Mainz, Germany
| | - Tanja Weil
- Max-Planck-Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
36
|
Liu W, Alam MNA, Liu Y, Agafonov VN, Qi H, Koynov K, Davydov VA, Uzbekov R, Kaiser U, Lasser T, Jelezko F, Ermakova A, Weil T. Silicon-Vacancy Nanodiamonds as High Performance Near-Infrared Emitters for Live-Cell Dual-Color Imaging and Thermometry. NANO LETTERS 2022; 22:2881-2888. [PMID: 35289621 DOI: 10.26434/chemrxiv-2022-2ssz2-v3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nanodiamonds (NDs) with color centers are excellent emitters for various bioimaging and quantum biosensing applications. In our work, we explore new applications of NDs with silicon-vacancy centers (SiV) obtained by high-pressure high-temperature (HPHT) synthesis based on metal-catalyst-free growth. They are coated with a polypeptide biopolymer, which is essential for efficient cellular uptake. The unique optical properties of NDs with SiV are their high photostability and narrow emission in the near-infrared region. Our results demonstrate for the first time that NDs with SiV allow live-cell dual-color imaging and intracellular tracking. Also, intracellular thermometry and challenges associated with SiV atomic defects in NDs are investigated and discussed for the first time. NDs with SiV nanoemitters provide new avenues for live-cell bioimaging, diagnostic (SiV as a nanosized thermometer), and theranostic (nanodiamonds as drug carrier) applications.
Collapse
Affiliation(s)
- Weina Liu
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Institute of Materials, École Polytechnique Fédérale de Lausanne, Station 12, 1015 Lausanne, Switzerland
| | - Md Noor A Alam
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Yan Liu
- Beijing Academy of Quantum Information Sciences, No.10 Xi-bei-wang East Road, 100193 Beijing, China
- Institute for Quantum Optics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | | - Haoyuan Qi
- Central Facility for Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Center for Advancing Electronics Dresden (cfaed) and Food Chemistry, Technical University of Dresden, 01069 Dresden, Germany
| | - Kaloian Koynov
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Valery A Davydov
- L. F. Vereshchagin Institute for High Pressure Physics, The Russian Academy of Sciences, Troitsk, Moscow 108840, Russia
| | - Rustem Uzbekov
- Laboratoire Biologie Cellulaire et Microscopie Electronique, Faculté de Médecine, Université François Rabelais, 37032 Tours, France
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Leninskye gory 73, Moscow 119992, Russia
| | - Ute Kaiser
- Central Facility for Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Theo Lasser
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Fedor Jelezko
- Institute for Quantum Optics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Anna Ermakova
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute for Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - Tanja Weil
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
37
|
Nie L, Nusantara AC, Damle VG, Baranov MV, Chipaux M, Reyes-San-Martin C, Hamoh T, Epperla CP, Guricova M, Cigler P, van den Bogaart G, Schirhagl R. Quantum Sensing of Free Radicals in Primary Human Dendritic Cells. NANO LETTERS 2022; 22:1818-1825. [PMID: 34929080 PMCID: PMC8880378 DOI: 10.1021/acs.nanolett.1c03021] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/06/2021] [Indexed: 05/21/2023]
Abstract
Free radicals are crucial indicators for stress and appear in all kinds of pathogenic conditions, including cancer, cardiovascular diseases, and infection. However, they are difficult to detect due to their reactivity and low abundance. We use relaxometry for the detection of radicals with subcellular resolution. This method is based on a fluorescent defect in a diamond, which changes its optical properties on the basis of the magnetic surroundings. This technique allows nanoscale MRI with unprecedented sensitivity and spatial resolution. Recently, this technique was used inside living cells from a cell line. Cell lines differ in terms of endocytic capability and radical production from primary cells derived from patients. Here we provide the first measurements of phagocytic radical production by the NADPH oxidase (NOX2) in primary dendritic cells from healthy donors. The radical production of these cells differs greatly between donors. We investigated the cell response to stimulation or inhibition.
Collapse
Affiliation(s)
- Linyan Nie
- University
of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Anggrek C. Nusantara
- University
of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Viraj G. Damle
- University
of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Maxim V. Baranov
- University
of Groningen, Department of Molecular Immunology,
Groningen Biomolecular Sciences and Biotechnology Institute, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Mayeul Chipaux
- Institute
of Physics, École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Claudia Reyes-San-Martin
- University
of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Thamir Hamoh
- University
of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Chandra Prakash Epperla
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague, Czech Republic
| | - Miroslava Guricova
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague, Czech Republic
| | - Petr Cigler
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10 Prague, Czech Republic
| | - Geert van den Bogaart
- University
of Groningen, Department of Molecular Immunology,
Groningen Biomolecular Sciences and Biotechnology Institute, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Romana Schirhagl
- University
of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
- Email for R.S.:
| |
Collapse
|
38
|
Li R, Vedelaar T, Mzyk A, Morita A, Padamati SK, Schirhagl R. Following Polymer Degradation with Nanodiamond Magnetometry. ACS Sens 2022; 7:123-130. [PMID: 34982542 PMCID: PMC8809337 DOI: 10.1021/acssensors.1c01782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/14/2021] [Indexed: 01/07/2023]
Abstract
Degradable polymers are widely used in the biomedical fields due to non-toxicity and great biocompatibility and biodegradability, and it is crucial to understand how they degrade. These polymers are exposed to various biochemical media in medical practice. Hence, it is important to precisely follow the degradation of the polymer in real time. In this study, we made use of diamond magnetometry for the first time to track polymer degradation with nanoscale precision. The method is based on a fluorescent defect in nanodiamonds, which changes its optical properties based on its magnetic surrounding. Since optical signals can be read out more sensitively than magnetic signals, this method allows unprecedented sensitivity. We used a specific mode of diamond magnetometry called relaxometry or T1 measurements. These are sensitive to magnetic noise and thus can detect paramagnetic species (gadolinium in this case). Nanodiamonds were incorporated into polylactic acid (PLA) films and PLA nanoparticles in order to follow polymer degradation. However, in principle, they can be incorporated into other polymers too. We found that T1 constants decreased gradually with the erosion of the film exposed to an alkaline condition. In addition, the mobility of nanodiamonds increased, which allows us to estimate polymer viscosity. The degradation rates obtained using this approach were in good agreement with data obtained by quartz crystal microbalance, Fourier-transform infrared spectroscopy, and atomic force microscopy.
Collapse
Affiliation(s)
- Runrun Li
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AW, The Netherlands
| | - Thea Vedelaar
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AW, The Netherlands
| | - Aldona Mzyk
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AW, The Netherlands
- Institute
of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, Krakow 30-059, Poland
| | - Aryan Morita
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AW, The Netherlands
- Dept.
Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Jalan Denta 1, Sekip Utara, Yogyakarta 55281, Indonesia
| | - Sandeep Kumar Padamati
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AW, The Netherlands
| | - Romana Schirhagl
- Groningen
University, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AW, The Netherlands
| |
Collapse
|
39
|
Mzyk A, Ong Y, Ortiz Moreno AR, Padamati SK, Zhang Y, Reyes-San-Martin CA, Schirhagl R. Diamond Color Centers in Diamonds for Chemical and Biochemical Analysis and Visualization. Anal Chem 2022; 94:225-249. [PMID: 34841868 DOI: 10.1021/acs.analchem.1c04536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Aldona Mzyk
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, 30-059 Krakow, Poland
| | - Yori Ong
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Ari R Ortiz Moreno
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Sandeep K Padamati
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Yue Zhang
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Claudia A Reyes-San-Martin
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| | - Romana Schirhagl
- University Medical Center Groningen, Groningen University, Antonius Deusinglaan 1, 9713 AW Groningen, The Netherlands
| |
Collapse
|
40
|
Wang QY, Wang ZH, Du B, Chen XD, Guo GC, Sun FW. Charge state depletion nanoscopy with a nitrogen-vacancy center in nanodiamonds. OPTICS LETTERS 2022; 47:66-69. [PMID: 34951884 DOI: 10.1364/ol.447864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
The development of super-resolution imaging has driven research into biological labeling, new materials' characterization, and nanoscale sensing. Here, we studied the photoinduced charge state conversion of nitrogen-vacancy (NV) centers in nanodiamonds (NDs), which show the potential for multifunction sensing and labeling at the nanoscale. Charge state depletion (CSD) nanoscopy is subsequently demonstrated for the diffraction-unlimited imaging of NDs in biological cells. A resolution of 77 nm is obtained with 50 nm NDs. The depletion laser power of CSD nanoscopy is approximately 1/16 of stimulated emission depletion (STED) microscopy with the same resolution. The results can be used to improve the spatial resolution of biological labeling and sensing with NDs and other nanoparticles.
Collapse
|
41
|
Sotoma S, Okita H, Chuma S, Harada Y. Quantum nanodiamonds for sensing of biological quantities: Angle, temperature, and thermal conductivity. Biophys Physicobiol 2022; 19:e190034. [PMID: 36349322 PMCID: PMC9592573 DOI: 10.2142/biophysico.bppb-v19.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/06/2022] [Indexed: 12/01/2022] Open
Abstract
Measuring physical quantities in the nanometric region inside single cells is of great importance for understanding cellular activity. Thus, the development of biocompatible, sensitive, and reliable nanobiosensors is essential for progress in biological research. Diamond nanoparticles containing nitrogen-vacancy centers (NVCs), referred to as fluorescent nanodiamonds (FNDs), have recently emerged as the sensors that show great promise for ultrasensitive nanosensing of physical quantities. FNDs emit stable fluorescence without photobleaching. Additionally, their distinctive magneto-optical properties enable an optical readout of the quantum states of the electron spin in NVC under ambient conditions. These properties enable the quantitative sensing of physical parameters (temperature, magnetic field, electric field, pH, etc.) in the vicinity of an FND; hence, FNDs are often described as “quantum sensors”. In this review, recent advancements in biosensing applications of FNDs are summarized. First, the principles of orientation and temperature sensing using FND quantum sensors are explained. Next, we introduce surface coating techniques indispensable for controlling the physicochemical properties of FNDs. The achievements of practical biological sensing using surface-coated FNDs, including orientation, temperature, and thermal conductivity, are then highlighted. Finally, the advantages, challenges, and perspectives of the quantum sensing of FND are discussed. This review article is an extended version of the Japanese article, In Situ Measurement of Intracellular Thermal Conductivity Using Diamond Nanoparticle, published in SEIBUTSU BUTSURI Vol. 62, p. 122–124 (2022).
Collapse
Affiliation(s)
| | | | - Shunsuke Chuma
- Department of Biological Sciences, Graduate School of Science, Osaka University
| | - Yoshie Harada
- Center for Quantum Information and Quantum Biology, Osaka University
| |
Collapse
|
42
|
Sharmin R, Hamoh T, Sigaeva A, Mzyk A, Damle VG, Morita A, Vedelaar T, Schirhagl R. Fluorescent Nanodiamonds for Detecting Free-Radical Generation in Real Time during Shear Stress in Human Umbilical Vein Endothelial Cells. ACS Sens 2021; 6:4349-4359. [PMID: 34797983 DOI: 10.1021/acssensors.1c01582] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Free-radical generation is suspected to play a key role in cardiovascular diseases. Another crucial factor is shear stress. Human umbilical vein endothelial cells (HUVECS), which form the lining of blood vessels, require a physiological shear stress to activate many vasoactive factors. These are needed for maintaining vascular cell functions such as nonthrombogenicity, regulation of blood flow, and vascular tone. Additionally, blood clots form at regions of high shear stress within a blood vessel. Here, we use a new method called diamond magnetometry which allows us to measure the dynamics of free-radical generation in real time under shear stress. This quantum sensing technique allows free-radical detection with nanoscale resolution at the single-cell level. We investigate radical formation in HUVECs in a microfluidic environment under different flow conditions typically found in veins and arteries. Here, we looked into free-radical formation before, during, and after flow. We found that the free-radical production varied depending on the flow conditions. To confirm the magnetometry results and to differentiate between radicals, we performed conventional fluorescent reactive oxygen species (ROS) assays specific for superoxide, nitric oxide, and overall ROS.
Collapse
Affiliation(s)
- Rokshana Sharmin
- Department Biomedical Engineering, Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW Groningen, The Netherlands
| | - Thamir Hamoh
- Department Biomedical Engineering, Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW Groningen, The Netherlands
| | - Alina Sigaeva
- Department Biomedical Engineering, Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW Groningen, The Netherlands
| | - Aldona Mzyk
- Department Biomedical Engineering, Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW Groningen, The Netherlands
- Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta 25, 30-059 Krakow, Poland
| | - Viraj G. Damle
- Department Biomedical Engineering, Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW Groningen, The Netherlands
| | - Aryan Morita
- Department Biomedical Engineering, Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW Groningen, The Netherlands
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Jalan Denta 1 Sekip Utara, 55281 Yogyakarta, Indonesia
| | - Thea Vedelaar
- Department Biomedical Engineering, Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW Groningen, The Netherlands
| | - Romana Schirhagl
- Department Biomedical Engineering, Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AW Groningen, The Netherlands
| |
Collapse
|
43
|
Obydennov DV, Shilkin DA, Elyas EI, Yaroshenko VV, Kudryavtsev OS, Zuev DA, Lyubin EV, Ekimov EA, Vlasov II, Fedyanin AA. Spontaneous Light Emission Assisted by Mie Resonances in Diamond Nanoparticles. NANO LETTERS 2021; 21:10127-10132. [PMID: 34492189 DOI: 10.1021/acs.nanolett.1c02616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Spontaneous light emission is known to be affected by the local density of states and enhanced when coupled to a resonant cavity. Here, we report on an experimental study of silicon-vacancy (SiV) color center fluorescence and spontaneous Raman scattering from subwavelength diamond particles supporting low-order Mie resonances in the visible range. For the first time to our knowledge, we have measured the size dependences of the SiV fluorescence emission rate and the Raman scattering intensity from individual diamond particles in the range from 200 to 450 nm. The obtained dependences reveal a sequence of peaks, which we explicitly associate with specific multipole resonances. The results are in agreement with our theoretical analysis and highlight the potential of intrinsic optical resonances for developing nanodiamond-based lasers and single-photon sources.
Collapse
Affiliation(s)
- Dmitry V Obydennov
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Daniil A Shilkin
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Ekaterina I Elyas
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Vitaly V Yaroshenko
- School of Physics and Engineering, ITMO University, St. Petersburg 191002, Russia
| | - Oleg S Kudryavtsev
- Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow 119991, Russia
| | - Dmitry A Zuev
- School of Physics and Engineering, ITMO University, St. Petersburg 191002, Russia
| | - Evgeny V Lyubin
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Evgeny A Ekimov
- Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk 142190, Russia
- Lebedev Physical Institute, Russian Academy of Sciences, Moscow 117924, Russia
| | - Igor I Vlasov
- Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow 119991, Russia
| | - Andrey A Fedyanin
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
44
|
Bilal M, Cheng H, González-González RB, Parra-Saldívar R, Iqbal HM. Bio-applications and biotechnological applications of nanodiamonds. JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY 2021; 15:6175-6189. [DOI: 10.1016/j.jmrt.2021.11.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
45
|
Wu Y, Cao S, Alam MNA, Raabe M, Michel-Souzy S, Wang Z, Wagner M, Ermakova A, Cornelissen JJLM, Weil T. Fluorescent nanodiamonds encapsulated by Cowpea Chlorotic Mottle Virus (CCMV) proteins for intracellular 3D-trajectory analysis. J Mater Chem B 2021; 9:5621-5627. [PMID: 34184014 PMCID: PMC8292973 DOI: 10.1039/d1tb00890k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/20/2021] [Indexed: 02/05/2023]
Abstract
Long-term tracking of nanoparticles to resolve intracellular structures and motions is essential to elucidate fundamental parameters as well as transport processes within living cells. Fluorescent nanodiamond (ND) emitters provide cell compatibility and very high photostability. However, high stability, biocompatibility, and cellular uptake of these fluorescent NDs under physiological conditions are required for intracellular applications. Herein, highly stable NDs encapsulated with Cowpea chlorotic mottle virus capsid proteins (ND-CP) are prepared. A thin capsid protein layer is obtained around the NDs, which imparts reactive groups and high colloidal stability, while retaining the opto-magnetic properties of the coated NDs as well as the secondary structure of CPs adsorbed on the surface of NDs. In addition, the ND-CP shows excellent biocompatibility both in vitro and in vivo. Long-term 3D trajectories of the ND-CP with fine spatiotemporal resolutions are recorded; their intracellular motions are analyzed by different models, and the diffusion coefficients are calculated. The ND-CP with its brilliant optical properties and stability under physiological conditions provides us with a new tool to advance the understanding of cell biology, e.g., endocytosis, exocytosis, and active transport processes in living cells as well as intracellular dynamic parameters.
Collapse
Affiliation(s)
- Yingke Wu
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany.
| | - Shuqin Cao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China and Department of Molecules & Materials, MESA+Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
| | - Md Noor A Alam
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany. and Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Marco Raabe
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany. and Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Sandra Michel-Souzy
- Department of Molecules & Materials, MESA+Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
| | - Zuyuan Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany. and Institute for Measurement and Automation, Division of Sensor Technology and Measurement Systems, Bundeswehr University Munich, Werner-Heisenberg-Weg 39, Neubiberg 85579, Germany
| | - Manfred Wagner
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany.
| | - Anna Ermakova
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany. and Institute for Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, Mainz 55128, Germany
| | - Jeroen J L M Cornelissen
- Department of Molecules & Materials, MESA+Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
| | - Tanja Weil
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany. and Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| |
Collapse
|
46
|
Zhang T, Pramanik G, Zhang K, Gulka M, Wang L, Jing J, Xu F, Li Z, Wei Q, Cigler P, Chu Z. Toward Quantitative Bio-sensing with Nitrogen-Vacancy Center in Diamond. ACS Sens 2021; 6:2077-2107. [PMID: 34038091 DOI: 10.1021/acssensors.1c00415] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The long-dreamed-of capability of monitoring the molecular machinery in living systems has not been realized yet, mainly due to the technical limitations of current sensing technologies. However, recently emerging quantum sensors are showing great promise for molecular detection and imaging. One of such sensing qubits is the nitrogen-vacancy (NV) center, a photoluminescent impurity in a diamond lattice with unique room-temperature optical and spin properties. This atomic-sized quantum emitter has the ability to quantitatively measure nanoscale electromagnetic fields via optical means at ambient conditions. Moreover, the unlimited photostability of NV centers, combined with the excellent diamond biocompatibility and the possibility of diamond nanoparticles internalization into the living cells, makes NV-based sensors one of the most promising and versatile platforms for various life-science applications. In this review, we will summarize the latest developments of NV-based quantum sensing with a focus on biomedical applications, including measurements of magnetic biomaterials, intracellular temperature, localized physiological species, action potentials, and electronic and nuclear spins. We will also outline the main unresolved challenges and provide future perspectives of many promising aspects of NV-based bio-sensing.
Collapse
Affiliation(s)
- Tongtong Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Goutam Pramanik
- UGC DAE Consortium for Scientific Research, Kolkata Centre, Sector III, LB-8, Bidhan Nagar, Kolkata 700106, India
| | - Kai Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Michal Gulka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague, Czech Republic
| | - Lingzhi Wang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jixiang Jing
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Feng Xu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, College of Life Science and Technology, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Qiang Wei
- College of Polymer Science and Engineering, College of Biomedical Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, 610065 Chengdu, China
| | - Petr Cigler
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague, Czech Republic
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering, Joint Appointment with School of Biomedical Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
47
|
Wu Y, Alam MNA, Balasubramanian P, Winterwerber P, Ermakova A, Müller M, Wagner M, Jelezko F, Raabe M, Weil T. Fluorescent Nanodiamond–Nanogels for Nanoscale Sensing and Photodynamic Applications. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Yingke Wu
- Department of Synthesis of Macromolecules Max Planck Institute for Polymer Research Ackermannweg 10 Mainz 55128 Germany
| | - Md Noor A Alam
- Department of Synthesis of Macromolecules Max Planck Institute for Polymer Research Ackermannweg 10 Mainz 55128 Germany
- Institute of Inorganic Chemistry I Ulm University Albert-Einstein-Allee 11 Ulm 89081 Germany
| | | | - Pia Winterwerber
- Department of Synthesis of Macromolecules Max Planck Institute for Polymer Research Ackermannweg 10 Mainz 55128 Germany
| | - Anna Ermakova
- Department of Synthesis of Macromolecules Max Planck Institute for Polymer Research Ackermannweg 10 Mainz 55128 Germany
| | - Michael Müller
- Department of Synthesis of Macromolecules Max Planck Institute for Polymer Research Ackermannweg 10 Mainz 55128 Germany
| | - Manfred Wagner
- Department of Synthesis of Macromolecules Max Planck Institute for Polymer Research Ackermannweg 10 Mainz 55128 Germany
| | - Fedor Jelezko
- Institute for Quantum Optics and IQST Ulm University Albert-Einstein-Allee 11 Ulm 89081 Germany
| | - Marco Raabe
- Department of Synthesis of Macromolecules Max Planck Institute for Polymer Research Ackermannweg 10 Mainz 55128 Germany
- Institute of Inorganic Chemistry I Ulm University Albert-Einstein-Allee 11 Ulm 89081 Germany
| | - Tanja Weil
- Department of Synthesis of Macromolecules Max Planck Institute for Polymer Research Ackermannweg 10 Mainz 55128 Germany
- Institute of Inorganic Chemistry I Ulm University Albert-Einstein-Allee 11 Ulm 89081 Germany
| |
Collapse
|
48
|
Speranza G. Carbon Nanomaterials: Synthesis, Functionalization and Sensing Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:967. [PMID: 33918769 PMCID: PMC8069879 DOI: 10.3390/nano11040967] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023]
Abstract
Recent advances in nanomaterial design and synthesis has resulted in robust sensing systems that display superior analytical performance. The use of nanomaterials within sensors has accelerated new routes and opportunities for the detection of analytes or target molecules. Among others, carbon-based sensors have reported biocompatibility, better sensitivity, better selectivity and lower limits of detection to reveal a wide range of organic and inorganic molecules. Carbon nanomaterials are among the most extensively studied materials because of their unique properties spanning from the high specific surface area, high carrier mobility, high electrical conductivity, flexibility, and optical transparency fostering their use in sensing applications. In this paper, a comprehensive review has been made to cover recent developments in the field of carbon-based nanomaterials for sensing applications. The review describes nanomaterials like fullerenes, carbon onions, carbon quantum dots, nanodiamonds, carbon nanotubes, and graphene. Synthesis of these nanostructures has been discussed along with their functionalization methods. The recent application of all these nanomaterials in sensing applications has been highlighted for the principal applicative field and the future prospects and possibilities have been outlined.
Collapse
Affiliation(s)
- Giorgio Speranza
- CMM—FBK, v. Sommarive 18, 38123 Trento, Italy;
- IFN—CNR, CSMFO Lab., via alla Cascata 56/C Povo, 38123 Trento, Italy
- Department of Industrial Engineering, University of Trento, v. Sommarive 9, 38123 Trento, Italy
| |
Collapse
|
49
|
Jung HS, Neuman KC. Surface Modification of Fluorescent Nanodiamonds for Biological Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:E153. [PMID: 33435443 PMCID: PMC7826955 DOI: 10.3390/nano11010153] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/29/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022]
Abstract
Fluorescent nanodiamonds (FNDs) are a new class of carbon nanomaterials that offer great promise for biological applications such as cell labeling, imaging, and sensing due to their exceptional optical properties and biocompatibility. Implementation of these applications requires reliable and precise surface functionalization. Although diamonds are generally considered inert, they typically possess diverse surface groups that permit a range of different functionalization strategies. This review provides an overview of nanodiamond surface functionalization methods including homogeneous surface termination approaches (hydrogenation, halogenation, amination, oxidation, and reduction), in addition to covalent and non-covalent surface modification with different functional moieties. Furthermore, the subsequent coupling of biomolecules onto functionalized nanodiamonds is reviewed. Finally, biomedical applications of nanodiamonds are discussed in the context of functionalization.
Collapse
Affiliation(s)
| | - Keir C. Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| |
Collapse
|
50
|
McMichael RD, Dushenko S, Blakley SM. Sequential Bayesian experiment design for adaptive Ramsey sequence measurements. JOURNAL OF APPLIED PHYSICS 2021; 130:10.1063/5.0055630. [PMID: 36618327 PMCID: PMC9813949 DOI: 10.1063/5.0055630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/20/2021] [Indexed: 06/17/2023]
Abstract
The Ramsey sequence is a canonical example of a quantum phase measurement for a spin qubit. In Ramsey measurements, the measurement efficiency can be optimized through careful selection of settings for the phase accumulation time setting, τ. This paper implements a sequential Bayesian experiment design protocol in low-fidelity Ramsey measurements, and its performance is compared to a previously reported adaptive heuristic protocol, a quantum phase estimation algorithm, and random setting choices. A workflow allowing measurements and design calculations to run concurrently largely eliminates computation time from measurement overhead. When precession frequency is the lone parameter to estimate, the Bayesian design is faster by factors of roughly 2 and 4 and 5 relative to the adaptive heuristic, random τ choices and the quantum phase estimation algorithm respectively. When four parameters are to be determined, Bayesian experiment design and random τ choices can converge to roughy equivalent sensitivity, but the Bayesian method converges 4 times faster.
Collapse
Affiliation(s)
- Robert D McMichael
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Sergey Dushenko
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, USA
| | - Sean M Blakley
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|